linux/drivers/base/regmap/regmap.c
<<
>>
Prefs
   1/*
   2 * Register map access API
   3 *
   4 * Copyright 2011 Wolfson Microelectronics plc
   5 *
   6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License version 2 as
  10 * published by the Free Software Foundation.
  11 */
  12
  13#include <linux/device.h>
  14#include <linux/slab.h>
  15#include <linux/export.h>
  16#include <linux/mutex.h>
  17#include <linux/err.h>
  18#include <linux/of.h>
  19#include <linux/rbtree.h>
  20#include <linux/sched.h>
  21#include <linux/delay.h>
  22#include <linux/log2.h>
  23
  24#define CREATE_TRACE_POINTS
  25#include "trace.h"
  26
  27#include "internal.h"
  28
  29/*
  30 * Sometimes for failures during very early init the trace
  31 * infrastructure isn't available early enough to be used.  For this
  32 * sort of problem defining LOG_DEVICE will add printks for basic
  33 * register I/O on a specific device.
  34 */
  35#undef LOG_DEVICE
  36
  37static int _regmap_update_bits(struct regmap *map, unsigned int reg,
  38                               unsigned int mask, unsigned int val,
  39                               bool *change, bool force_write);
  40
  41static int _regmap_bus_reg_read(void *context, unsigned int reg,
  42                                unsigned int *val);
  43static int _regmap_bus_read(void *context, unsigned int reg,
  44                            unsigned int *val);
  45static int _regmap_bus_formatted_write(void *context, unsigned int reg,
  46                                       unsigned int val);
  47static int _regmap_bus_reg_write(void *context, unsigned int reg,
  48                                 unsigned int val);
  49static int _regmap_bus_raw_write(void *context, unsigned int reg,
  50                                 unsigned int val);
  51
  52bool regmap_reg_in_ranges(unsigned int reg,
  53                          const struct regmap_range *ranges,
  54                          unsigned int nranges)
  55{
  56        const struct regmap_range *r;
  57        int i;
  58
  59        for (i = 0, r = ranges; i < nranges; i++, r++)
  60                if (regmap_reg_in_range(reg, r))
  61                        return true;
  62        return false;
  63}
  64EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
  65
  66bool regmap_check_range_table(struct regmap *map, unsigned int reg,
  67                              const struct regmap_access_table *table)
  68{
  69        /* Check "no ranges" first */
  70        if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
  71                return false;
  72
  73        /* In case zero "yes ranges" are supplied, any reg is OK */
  74        if (!table->n_yes_ranges)
  75                return true;
  76
  77        return regmap_reg_in_ranges(reg, table->yes_ranges,
  78                                    table->n_yes_ranges);
  79}
  80EXPORT_SYMBOL_GPL(regmap_check_range_table);
  81
  82bool regmap_writeable(struct regmap *map, unsigned int reg)
  83{
  84        if (map->max_register && reg > map->max_register)
  85                return false;
  86
  87        if (map->writeable_reg)
  88                return map->writeable_reg(map->dev, reg);
  89
  90        if (map->wr_table)
  91                return regmap_check_range_table(map, reg, map->wr_table);
  92
  93        return true;
  94}
  95
  96bool regmap_readable(struct regmap *map, unsigned int reg)
  97{
  98        if (!map->reg_read)
  99                return false;
 100
 101        if (map->max_register && reg > map->max_register)
 102                return false;
 103
 104        if (map->format.format_write)
 105                return false;
 106
 107        if (map->readable_reg)
 108                return map->readable_reg(map->dev, reg);
 109
 110        if (map->rd_table)
 111                return regmap_check_range_table(map, reg, map->rd_table);
 112
 113        return true;
 114}
 115
 116bool regmap_volatile(struct regmap *map, unsigned int reg)
 117{
 118        if (!map->format.format_write && !regmap_readable(map, reg))
 119                return false;
 120
 121        if (map->volatile_reg)
 122                return map->volatile_reg(map->dev, reg);
 123
 124        if (map->volatile_table)
 125                return regmap_check_range_table(map, reg, map->volatile_table);
 126
 127        if (map->cache_ops)
 128                return false;
 129        else
 130                return true;
 131}
 132
 133bool regmap_precious(struct regmap *map, unsigned int reg)
 134{
 135        if (!regmap_readable(map, reg))
 136                return false;
 137
 138        if (map->precious_reg)
 139                return map->precious_reg(map->dev, reg);
 140
 141        if (map->precious_table)
 142                return regmap_check_range_table(map, reg, map->precious_table);
 143
 144        return false;
 145}
 146
 147static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
 148        size_t num)
 149{
 150        unsigned int i;
 151
 152        for (i = 0; i < num; i++)
 153                if (!regmap_volatile(map, reg + i))
 154                        return false;
 155
 156        return true;
 157}
 158
 159static void regmap_format_2_6_write(struct regmap *map,
 160                                     unsigned int reg, unsigned int val)
 161{
 162        u8 *out = map->work_buf;
 163
 164        *out = (reg << 6) | val;
 165}
 166
 167static void regmap_format_4_12_write(struct regmap *map,
 168                                     unsigned int reg, unsigned int val)
 169{
 170        __be16 *out = map->work_buf;
 171        *out = cpu_to_be16((reg << 12) | val);
 172}
 173
 174static void regmap_format_7_9_write(struct regmap *map,
 175                                    unsigned int reg, unsigned int val)
 176{
 177        __be16 *out = map->work_buf;
 178        *out = cpu_to_be16((reg << 9) | val);
 179}
 180
 181static void regmap_format_10_14_write(struct regmap *map,
 182                                    unsigned int reg, unsigned int val)
 183{
 184        u8 *out = map->work_buf;
 185
 186        out[2] = val;
 187        out[1] = (val >> 8) | (reg << 6);
 188        out[0] = reg >> 2;
 189}
 190
 191static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
 192{
 193        u8 *b = buf;
 194
 195        b[0] = val << shift;
 196}
 197
 198static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
 199{
 200        __be16 *b = buf;
 201
 202        b[0] = cpu_to_be16(val << shift);
 203}
 204
 205static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
 206{
 207        __le16 *b = buf;
 208
 209        b[0] = cpu_to_le16(val << shift);
 210}
 211
 212static void regmap_format_16_native(void *buf, unsigned int val,
 213                                    unsigned int shift)
 214{
 215        *(u16 *)buf = val << shift;
 216}
 217
 218static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
 219{
 220        u8 *b = buf;
 221
 222        val <<= shift;
 223
 224        b[0] = val >> 16;
 225        b[1] = val >> 8;
 226        b[2] = val;
 227}
 228
 229static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
 230{
 231        __be32 *b = buf;
 232
 233        b[0] = cpu_to_be32(val << shift);
 234}
 235
 236static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
 237{
 238        __le32 *b = buf;
 239
 240        b[0] = cpu_to_le32(val << shift);
 241}
 242
 243static void regmap_format_32_native(void *buf, unsigned int val,
 244                                    unsigned int shift)
 245{
 246        *(u32 *)buf = val << shift;
 247}
 248
 249#ifdef CONFIG_64BIT
 250static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
 251{
 252        __be64 *b = buf;
 253
 254        b[0] = cpu_to_be64((u64)val << shift);
 255}
 256
 257static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
 258{
 259        __le64 *b = buf;
 260
 261        b[0] = cpu_to_le64((u64)val << shift);
 262}
 263
 264static void regmap_format_64_native(void *buf, unsigned int val,
 265                                    unsigned int shift)
 266{
 267        *(u64 *)buf = (u64)val << shift;
 268}
 269#endif
 270
 271static void regmap_parse_inplace_noop(void *buf)
 272{
 273}
 274
 275static unsigned int regmap_parse_8(const void *buf)
 276{
 277        const u8 *b = buf;
 278
 279        return b[0];
 280}
 281
 282static unsigned int regmap_parse_16_be(const void *buf)
 283{
 284        const __be16 *b = buf;
 285
 286        return be16_to_cpu(b[0]);
 287}
 288
 289static unsigned int regmap_parse_16_le(const void *buf)
 290{
 291        const __le16 *b = buf;
 292
 293        return le16_to_cpu(b[0]);
 294}
 295
 296static void regmap_parse_16_be_inplace(void *buf)
 297{
 298        __be16 *b = buf;
 299
 300        b[0] = be16_to_cpu(b[0]);
 301}
 302
 303static void regmap_parse_16_le_inplace(void *buf)
 304{
 305        __le16 *b = buf;
 306
 307        b[0] = le16_to_cpu(b[0]);
 308}
 309
 310static unsigned int regmap_parse_16_native(const void *buf)
 311{
 312        return *(u16 *)buf;
 313}
 314
 315static unsigned int regmap_parse_24(const void *buf)
 316{
 317        const u8 *b = buf;
 318        unsigned int ret = b[2];
 319        ret |= ((unsigned int)b[1]) << 8;
 320        ret |= ((unsigned int)b[0]) << 16;
 321
 322        return ret;
 323}
 324
 325static unsigned int regmap_parse_32_be(const void *buf)
 326{
 327        const __be32 *b = buf;
 328
 329        return be32_to_cpu(b[0]);
 330}
 331
 332static unsigned int regmap_parse_32_le(const void *buf)
 333{
 334        const __le32 *b = buf;
 335
 336        return le32_to_cpu(b[0]);
 337}
 338
 339static void regmap_parse_32_be_inplace(void *buf)
 340{
 341        __be32 *b = buf;
 342
 343        b[0] = be32_to_cpu(b[0]);
 344}
 345
 346static void regmap_parse_32_le_inplace(void *buf)
 347{
 348        __le32 *b = buf;
 349
 350        b[0] = le32_to_cpu(b[0]);
 351}
 352
 353static unsigned int regmap_parse_32_native(const void *buf)
 354{
 355        return *(u32 *)buf;
 356}
 357
 358#ifdef CONFIG_64BIT
 359static unsigned int regmap_parse_64_be(const void *buf)
 360{
 361        const __be64 *b = buf;
 362
 363        return be64_to_cpu(b[0]);
 364}
 365
 366static unsigned int regmap_parse_64_le(const void *buf)
 367{
 368        const __le64 *b = buf;
 369
 370        return le64_to_cpu(b[0]);
 371}
 372
 373static void regmap_parse_64_be_inplace(void *buf)
 374{
 375        __be64 *b = buf;
 376
 377        b[0] = be64_to_cpu(b[0]);
 378}
 379
 380static void regmap_parse_64_le_inplace(void *buf)
 381{
 382        __le64 *b = buf;
 383
 384        b[0] = le64_to_cpu(b[0]);
 385}
 386
 387static unsigned int regmap_parse_64_native(const void *buf)
 388{
 389        return *(u64 *)buf;
 390}
 391#endif
 392
 393static void regmap_lock_mutex(void *__map)
 394{
 395        struct regmap *map = __map;
 396        mutex_lock(&map->mutex);
 397}
 398
 399static void regmap_unlock_mutex(void *__map)
 400{
 401        struct regmap *map = __map;
 402        mutex_unlock(&map->mutex);
 403}
 404
 405static void regmap_lock_spinlock(void *__map)
 406__acquires(&map->spinlock)
 407{
 408        struct regmap *map = __map;
 409        unsigned long flags;
 410
 411        spin_lock_irqsave(&map->spinlock, flags);
 412        map->spinlock_flags = flags;
 413}
 414
 415static void regmap_unlock_spinlock(void *__map)
 416__releases(&map->spinlock)
 417{
 418        struct regmap *map = __map;
 419        spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
 420}
 421
 422static void dev_get_regmap_release(struct device *dev, void *res)
 423{
 424        /*
 425         * We don't actually have anything to do here; the goal here
 426         * is not to manage the regmap but to provide a simple way to
 427         * get the regmap back given a struct device.
 428         */
 429}
 430
 431static bool _regmap_range_add(struct regmap *map,
 432                              struct regmap_range_node *data)
 433{
 434        struct rb_root *root = &map->range_tree;
 435        struct rb_node **new = &(root->rb_node), *parent = NULL;
 436
 437        while (*new) {
 438                struct regmap_range_node *this =
 439                        container_of(*new, struct regmap_range_node, node);
 440
 441                parent = *new;
 442                if (data->range_max < this->range_min)
 443                        new = &((*new)->rb_left);
 444                else if (data->range_min > this->range_max)
 445                        new = &((*new)->rb_right);
 446                else
 447                        return false;
 448        }
 449
 450        rb_link_node(&data->node, parent, new);
 451        rb_insert_color(&data->node, root);
 452
 453        return true;
 454}
 455
 456static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
 457                                                      unsigned int reg)
 458{
 459        struct rb_node *node = map->range_tree.rb_node;
 460
 461        while (node) {
 462                struct regmap_range_node *this =
 463                        container_of(node, struct regmap_range_node, node);
 464
 465                if (reg < this->range_min)
 466                        node = node->rb_left;
 467                else if (reg > this->range_max)
 468                        node = node->rb_right;
 469                else
 470                        return this;
 471        }
 472
 473        return NULL;
 474}
 475
 476static void regmap_range_exit(struct regmap *map)
 477{
 478        struct rb_node *next;
 479        struct regmap_range_node *range_node;
 480
 481        next = rb_first(&map->range_tree);
 482        while (next) {
 483                range_node = rb_entry(next, struct regmap_range_node, node);
 484                next = rb_next(&range_node->node);
 485                rb_erase(&range_node->node, &map->range_tree);
 486                kfree(range_node);
 487        }
 488
 489        kfree(map->selector_work_buf);
 490}
 491
 492int regmap_attach_dev(struct device *dev, struct regmap *map,
 493                      const struct regmap_config *config)
 494{
 495        struct regmap **m;
 496
 497        map->dev = dev;
 498
 499        regmap_debugfs_init(map, config->name);
 500
 501        /* Add a devres resource for dev_get_regmap() */
 502        m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
 503        if (!m) {
 504                regmap_debugfs_exit(map);
 505                return -ENOMEM;
 506        }
 507        *m = map;
 508        devres_add(dev, m);
 509
 510        return 0;
 511}
 512EXPORT_SYMBOL_GPL(regmap_attach_dev);
 513
 514static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
 515                                        const struct regmap_config *config)
 516{
 517        enum regmap_endian endian;
 518
 519        /* Retrieve the endianness specification from the regmap config */
 520        endian = config->reg_format_endian;
 521
 522        /* If the regmap config specified a non-default value, use that */
 523        if (endian != REGMAP_ENDIAN_DEFAULT)
 524                return endian;
 525
 526        /* Retrieve the endianness specification from the bus config */
 527        if (bus && bus->reg_format_endian_default)
 528                endian = bus->reg_format_endian_default;
 529
 530        /* If the bus specified a non-default value, use that */
 531        if (endian != REGMAP_ENDIAN_DEFAULT)
 532                return endian;
 533
 534        /* Use this if no other value was found */
 535        return REGMAP_ENDIAN_BIG;
 536}
 537
 538enum regmap_endian regmap_get_val_endian(struct device *dev,
 539                                         const struct regmap_bus *bus,
 540                                         const struct regmap_config *config)
 541{
 542        struct device_node *np;
 543        enum regmap_endian endian;
 544
 545        /* Retrieve the endianness specification from the regmap config */
 546        endian = config->val_format_endian;
 547
 548        /* If the regmap config specified a non-default value, use that */
 549        if (endian != REGMAP_ENDIAN_DEFAULT)
 550                return endian;
 551
 552        /* If the dev and dev->of_node exist try to get endianness from DT */
 553        if (dev && dev->of_node) {
 554                np = dev->of_node;
 555
 556                /* Parse the device's DT node for an endianness specification */
 557                if (of_property_read_bool(np, "big-endian"))
 558                        endian = REGMAP_ENDIAN_BIG;
 559                else if (of_property_read_bool(np, "little-endian"))
 560                        endian = REGMAP_ENDIAN_LITTLE;
 561                else if (of_property_read_bool(np, "native-endian"))
 562                        endian = REGMAP_ENDIAN_NATIVE;
 563
 564                /* If the endianness was specified in DT, use that */
 565                if (endian != REGMAP_ENDIAN_DEFAULT)
 566                        return endian;
 567        }
 568
 569        /* Retrieve the endianness specification from the bus config */
 570        if (bus && bus->val_format_endian_default)
 571                endian = bus->val_format_endian_default;
 572
 573        /* If the bus specified a non-default value, use that */
 574        if (endian != REGMAP_ENDIAN_DEFAULT)
 575                return endian;
 576
 577        /* Use this if no other value was found */
 578        return REGMAP_ENDIAN_BIG;
 579}
 580EXPORT_SYMBOL_GPL(regmap_get_val_endian);
 581
 582struct regmap *__regmap_init(struct device *dev,
 583                             const struct regmap_bus *bus,
 584                             void *bus_context,
 585                             const struct regmap_config *config,
 586                             struct lock_class_key *lock_key,
 587                             const char *lock_name)
 588{
 589        struct regmap *map;
 590        int ret = -EINVAL;
 591        enum regmap_endian reg_endian, val_endian;
 592        int i, j;
 593
 594        if (!config)
 595                goto err;
 596
 597        map = kzalloc(sizeof(*map), GFP_KERNEL);
 598        if (map == NULL) {
 599                ret = -ENOMEM;
 600                goto err;
 601        }
 602
 603        if (config->lock && config->unlock) {
 604                map->lock = config->lock;
 605                map->unlock = config->unlock;
 606                map->lock_arg = config->lock_arg;
 607        } else {
 608                if ((bus && bus->fast_io) ||
 609                    config->fast_io) {
 610                        spin_lock_init(&map->spinlock);
 611                        map->lock = regmap_lock_spinlock;
 612                        map->unlock = regmap_unlock_spinlock;
 613                        lockdep_set_class_and_name(&map->spinlock,
 614                                                   lock_key, lock_name);
 615                } else {
 616                        mutex_init(&map->mutex);
 617                        map->lock = regmap_lock_mutex;
 618                        map->unlock = regmap_unlock_mutex;
 619                        lockdep_set_class_and_name(&map->mutex,
 620                                                   lock_key, lock_name);
 621                }
 622                map->lock_arg = map;
 623        }
 624
 625        /*
 626         * When we write in fast-paths with regmap_bulk_write() don't allocate
 627         * scratch buffers with sleeping allocations.
 628         */
 629        if ((bus && bus->fast_io) || config->fast_io)
 630                map->alloc_flags = GFP_ATOMIC;
 631        else
 632                map->alloc_flags = GFP_KERNEL;
 633
 634        map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
 635        map->format.pad_bytes = config->pad_bits / 8;
 636        map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
 637        map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
 638                        config->val_bits + config->pad_bits, 8);
 639        map->reg_shift = config->pad_bits % 8;
 640        if (config->reg_stride)
 641                map->reg_stride = config->reg_stride;
 642        else
 643                map->reg_stride = 1;
 644        if (is_power_of_2(map->reg_stride))
 645                map->reg_stride_order = ilog2(map->reg_stride);
 646        else
 647                map->reg_stride_order = -1;
 648        map->use_single_read = config->use_single_rw || !bus || !bus->read;
 649        map->use_single_write = config->use_single_rw || !bus || !bus->write;
 650        map->can_multi_write = config->can_multi_write && bus && bus->write;
 651        if (bus) {
 652                map->max_raw_read = bus->max_raw_read;
 653                map->max_raw_write = bus->max_raw_write;
 654        }
 655        map->dev = dev;
 656        map->bus = bus;
 657        map->bus_context = bus_context;
 658        map->max_register = config->max_register;
 659        map->wr_table = config->wr_table;
 660        map->rd_table = config->rd_table;
 661        map->volatile_table = config->volatile_table;
 662        map->precious_table = config->precious_table;
 663        map->writeable_reg = config->writeable_reg;
 664        map->readable_reg = config->readable_reg;
 665        map->volatile_reg = config->volatile_reg;
 666        map->precious_reg = config->precious_reg;
 667        map->cache_type = config->cache_type;
 668        map->name = config->name;
 669
 670        spin_lock_init(&map->async_lock);
 671        INIT_LIST_HEAD(&map->async_list);
 672        INIT_LIST_HEAD(&map->async_free);
 673        init_waitqueue_head(&map->async_waitq);
 674
 675        if (config->read_flag_mask || config->write_flag_mask) {
 676                map->read_flag_mask = config->read_flag_mask;
 677                map->write_flag_mask = config->write_flag_mask;
 678        } else if (bus) {
 679                map->read_flag_mask = bus->read_flag_mask;
 680        }
 681
 682        if (!bus) {
 683                map->reg_read  = config->reg_read;
 684                map->reg_write = config->reg_write;
 685
 686                map->defer_caching = false;
 687                goto skip_format_initialization;
 688        } else if (!bus->read || !bus->write) {
 689                map->reg_read = _regmap_bus_reg_read;
 690                map->reg_write = _regmap_bus_reg_write;
 691
 692                map->defer_caching = false;
 693                goto skip_format_initialization;
 694        } else {
 695                map->reg_read  = _regmap_bus_read;
 696                map->reg_update_bits = bus->reg_update_bits;
 697        }
 698
 699        reg_endian = regmap_get_reg_endian(bus, config);
 700        val_endian = regmap_get_val_endian(dev, bus, config);
 701
 702        switch (config->reg_bits + map->reg_shift) {
 703        case 2:
 704                switch (config->val_bits) {
 705                case 6:
 706                        map->format.format_write = regmap_format_2_6_write;
 707                        break;
 708                default:
 709                        goto err_map;
 710                }
 711                break;
 712
 713        case 4:
 714                switch (config->val_bits) {
 715                case 12:
 716                        map->format.format_write = regmap_format_4_12_write;
 717                        break;
 718                default:
 719                        goto err_map;
 720                }
 721                break;
 722
 723        case 7:
 724                switch (config->val_bits) {
 725                case 9:
 726                        map->format.format_write = regmap_format_7_9_write;
 727                        break;
 728                default:
 729                        goto err_map;
 730                }
 731                break;
 732
 733        case 10:
 734                switch (config->val_bits) {
 735                case 14:
 736                        map->format.format_write = regmap_format_10_14_write;
 737                        break;
 738                default:
 739                        goto err_map;
 740                }
 741                break;
 742
 743        case 8:
 744                map->format.format_reg = regmap_format_8;
 745                break;
 746
 747        case 16:
 748                switch (reg_endian) {
 749                case REGMAP_ENDIAN_BIG:
 750                        map->format.format_reg = regmap_format_16_be;
 751                        break;
 752                case REGMAP_ENDIAN_NATIVE:
 753                        map->format.format_reg = regmap_format_16_native;
 754                        break;
 755                default:
 756                        goto err_map;
 757                }
 758                break;
 759
 760        case 24:
 761                if (reg_endian != REGMAP_ENDIAN_BIG)
 762                        goto err_map;
 763                map->format.format_reg = regmap_format_24;
 764                break;
 765
 766        case 32:
 767                switch (reg_endian) {
 768                case REGMAP_ENDIAN_BIG:
 769                        map->format.format_reg = regmap_format_32_be;
 770                        break;
 771                case REGMAP_ENDIAN_NATIVE:
 772                        map->format.format_reg = regmap_format_32_native;
 773                        break;
 774                default:
 775                        goto err_map;
 776                }
 777                break;
 778
 779#ifdef CONFIG_64BIT
 780        case 64:
 781                switch (reg_endian) {
 782                case REGMAP_ENDIAN_BIG:
 783                        map->format.format_reg = regmap_format_64_be;
 784                        break;
 785                case REGMAP_ENDIAN_NATIVE:
 786                        map->format.format_reg = regmap_format_64_native;
 787                        break;
 788                default:
 789                        goto err_map;
 790                }
 791                break;
 792#endif
 793
 794        default:
 795                goto err_map;
 796        }
 797
 798        if (val_endian == REGMAP_ENDIAN_NATIVE)
 799                map->format.parse_inplace = regmap_parse_inplace_noop;
 800
 801        switch (config->val_bits) {
 802        case 8:
 803                map->format.format_val = regmap_format_8;
 804                map->format.parse_val = regmap_parse_8;
 805                map->format.parse_inplace = regmap_parse_inplace_noop;
 806                break;
 807        case 16:
 808                switch (val_endian) {
 809                case REGMAP_ENDIAN_BIG:
 810                        map->format.format_val = regmap_format_16_be;
 811                        map->format.parse_val = regmap_parse_16_be;
 812                        map->format.parse_inplace = regmap_parse_16_be_inplace;
 813                        break;
 814                case REGMAP_ENDIAN_LITTLE:
 815                        map->format.format_val = regmap_format_16_le;
 816                        map->format.parse_val = regmap_parse_16_le;
 817                        map->format.parse_inplace = regmap_parse_16_le_inplace;
 818                        break;
 819                case REGMAP_ENDIAN_NATIVE:
 820                        map->format.format_val = regmap_format_16_native;
 821                        map->format.parse_val = regmap_parse_16_native;
 822                        break;
 823                default:
 824                        goto err_map;
 825                }
 826                break;
 827        case 24:
 828                if (val_endian != REGMAP_ENDIAN_BIG)
 829                        goto err_map;
 830                map->format.format_val = regmap_format_24;
 831                map->format.parse_val = regmap_parse_24;
 832                break;
 833        case 32:
 834                switch (val_endian) {
 835                case REGMAP_ENDIAN_BIG:
 836                        map->format.format_val = regmap_format_32_be;
 837                        map->format.parse_val = regmap_parse_32_be;
 838                        map->format.parse_inplace = regmap_parse_32_be_inplace;
 839                        break;
 840                case REGMAP_ENDIAN_LITTLE:
 841                        map->format.format_val = regmap_format_32_le;
 842                        map->format.parse_val = regmap_parse_32_le;
 843                        map->format.parse_inplace = regmap_parse_32_le_inplace;
 844                        break;
 845                case REGMAP_ENDIAN_NATIVE:
 846                        map->format.format_val = regmap_format_32_native;
 847                        map->format.parse_val = regmap_parse_32_native;
 848                        break;
 849                default:
 850                        goto err_map;
 851                }
 852                break;
 853#ifdef CONFIG_64BIT
 854        case 64:
 855                switch (val_endian) {
 856                case REGMAP_ENDIAN_BIG:
 857                        map->format.format_val = regmap_format_64_be;
 858                        map->format.parse_val = regmap_parse_64_be;
 859                        map->format.parse_inplace = regmap_parse_64_be_inplace;
 860                        break;
 861                case REGMAP_ENDIAN_LITTLE:
 862                        map->format.format_val = regmap_format_64_le;
 863                        map->format.parse_val = regmap_parse_64_le;
 864                        map->format.parse_inplace = regmap_parse_64_le_inplace;
 865                        break;
 866                case REGMAP_ENDIAN_NATIVE:
 867                        map->format.format_val = regmap_format_64_native;
 868                        map->format.parse_val = regmap_parse_64_native;
 869                        break;
 870                default:
 871                        goto err_map;
 872                }
 873                break;
 874#endif
 875        }
 876
 877        if (map->format.format_write) {
 878                if ((reg_endian != REGMAP_ENDIAN_BIG) ||
 879                    (val_endian != REGMAP_ENDIAN_BIG))
 880                        goto err_map;
 881                map->use_single_write = true;
 882        }
 883
 884        if (!map->format.format_write &&
 885            !(map->format.format_reg && map->format.format_val))
 886                goto err_map;
 887
 888        map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
 889        if (map->work_buf == NULL) {
 890                ret = -ENOMEM;
 891                goto err_map;
 892        }
 893
 894        if (map->format.format_write) {
 895                map->defer_caching = false;
 896                map->reg_write = _regmap_bus_formatted_write;
 897        } else if (map->format.format_val) {
 898                map->defer_caching = true;
 899                map->reg_write = _regmap_bus_raw_write;
 900        }
 901
 902skip_format_initialization:
 903
 904        map->range_tree = RB_ROOT;
 905        for (i = 0; i < config->num_ranges; i++) {
 906                const struct regmap_range_cfg *range_cfg = &config->ranges[i];
 907                struct regmap_range_node *new;
 908
 909                /* Sanity check */
 910                if (range_cfg->range_max < range_cfg->range_min) {
 911                        dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
 912                                range_cfg->range_max, range_cfg->range_min);
 913                        goto err_range;
 914                }
 915
 916                if (range_cfg->range_max > map->max_register) {
 917                        dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
 918                                range_cfg->range_max, map->max_register);
 919                        goto err_range;
 920                }
 921
 922                if (range_cfg->selector_reg > map->max_register) {
 923                        dev_err(map->dev,
 924                                "Invalid range %d: selector out of map\n", i);
 925                        goto err_range;
 926                }
 927
 928                if (range_cfg->window_len == 0) {
 929                        dev_err(map->dev, "Invalid range %d: window_len 0\n",
 930                                i);
 931                        goto err_range;
 932                }
 933
 934                /* Make sure, that this register range has no selector
 935                   or data window within its boundary */
 936                for (j = 0; j < config->num_ranges; j++) {
 937                        unsigned sel_reg = config->ranges[j].selector_reg;
 938                        unsigned win_min = config->ranges[j].window_start;
 939                        unsigned win_max = win_min +
 940                                           config->ranges[j].window_len - 1;
 941
 942                        /* Allow data window inside its own virtual range */
 943                        if (j == i)
 944                                continue;
 945
 946                        if (range_cfg->range_min <= sel_reg &&
 947                            sel_reg <= range_cfg->range_max) {
 948                                dev_err(map->dev,
 949                                        "Range %d: selector for %d in window\n",
 950                                        i, j);
 951                                goto err_range;
 952                        }
 953
 954                        if (!(win_max < range_cfg->range_min ||
 955                              win_min > range_cfg->range_max)) {
 956                                dev_err(map->dev,
 957                                        "Range %d: window for %d in window\n",
 958                                        i, j);
 959                                goto err_range;
 960                        }
 961                }
 962
 963                new = kzalloc(sizeof(*new), GFP_KERNEL);
 964                if (new == NULL) {
 965                        ret = -ENOMEM;
 966                        goto err_range;
 967                }
 968
 969                new->map = map;
 970                new->name = range_cfg->name;
 971                new->range_min = range_cfg->range_min;
 972                new->range_max = range_cfg->range_max;
 973                new->selector_reg = range_cfg->selector_reg;
 974                new->selector_mask = range_cfg->selector_mask;
 975                new->selector_shift = range_cfg->selector_shift;
 976                new->window_start = range_cfg->window_start;
 977                new->window_len = range_cfg->window_len;
 978
 979                if (!_regmap_range_add(map, new)) {
 980                        dev_err(map->dev, "Failed to add range %d\n", i);
 981                        kfree(new);
 982                        goto err_range;
 983                }
 984
 985                if (map->selector_work_buf == NULL) {
 986                        map->selector_work_buf =
 987                                kzalloc(map->format.buf_size, GFP_KERNEL);
 988                        if (map->selector_work_buf == NULL) {
 989                                ret = -ENOMEM;
 990                                goto err_range;
 991                        }
 992                }
 993        }
 994
 995        ret = regcache_init(map, config);
 996        if (ret != 0)
 997                goto err_range;
 998
 999        if (dev) {
1000                ret = regmap_attach_dev(dev, map, config);
1001                if (ret != 0)
1002                        goto err_regcache;
1003        }
1004
1005        return map;
1006
1007err_regcache:
1008        regcache_exit(map);
1009err_range:
1010        regmap_range_exit(map);
1011        kfree(map->work_buf);
1012err_map:
1013        kfree(map);
1014err:
1015        return ERR_PTR(ret);
1016}
1017EXPORT_SYMBOL_GPL(__regmap_init);
1018
1019static void devm_regmap_release(struct device *dev, void *res)
1020{
1021        regmap_exit(*(struct regmap **)res);
1022}
1023
1024struct regmap *__devm_regmap_init(struct device *dev,
1025                                  const struct regmap_bus *bus,
1026                                  void *bus_context,
1027                                  const struct regmap_config *config,
1028                                  struct lock_class_key *lock_key,
1029                                  const char *lock_name)
1030{
1031        struct regmap **ptr, *regmap;
1032
1033        ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1034        if (!ptr)
1035                return ERR_PTR(-ENOMEM);
1036
1037        regmap = __regmap_init(dev, bus, bus_context, config,
1038                               lock_key, lock_name);
1039        if (!IS_ERR(regmap)) {
1040                *ptr = regmap;
1041                devres_add(dev, ptr);
1042        } else {
1043                devres_free(ptr);
1044        }
1045
1046        return regmap;
1047}
1048EXPORT_SYMBOL_GPL(__devm_regmap_init);
1049
1050static void regmap_field_init(struct regmap_field *rm_field,
1051        struct regmap *regmap, struct reg_field reg_field)
1052{
1053        rm_field->regmap = regmap;
1054        rm_field->reg = reg_field.reg;
1055        rm_field->shift = reg_field.lsb;
1056        rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1057        rm_field->id_size = reg_field.id_size;
1058        rm_field->id_offset = reg_field.id_offset;
1059}
1060
1061/**
1062 * devm_regmap_field_alloc(): Allocate and initialise a register field
1063 * in a register map.
1064 *
1065 * @dev: Device that will be interacted with
1066 * @regmap: regmap bank in which this register field is located.
1067 * @reg_field: Register field with in the bank.
1068 *
1069 * The return value will be an ERR_PTR() on error or a valid pointer
1070 * to a struct regmap_field. The regmap_field will be automatically freed
1071 * by the device management code.
1072 */
1073struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1074                struct regmap *regmap, struct reg_field reg_field)
1075{
1076        struct regmap_field *rm_field = devm_kzalloc(dev,
1077                                        sizeof(*rm_field), GFP_KERNEL);
1078        if (!rm_field)
1079                return ERR_PTR(-ENOMEM);
1080
1081        regmap_field_init(rm_field, regmap, reg_field);
1082
1083        return rm_field;
1084
1085}
1086EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1087
1088/**
1089 * devm_regmap_field_free(): Free register field allocated using
1090 * devm_regmap_field_alloc. Usally drivers need not call this function,
1091 * as the memory allocated via devm will be freed as per device-driver
1092 * life-cyle.
1093 *
1094 * @dev: Device that will be interacted with
1095 * @field: regmap field which should be freed.
1096 */
1097void devm_regmap_field_free(struct device *dev,
1098        struct regmap_field *field)
1099{
1100        devm_kfree(dev, field);
1101}
1102EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1103
1104/**
1105 * regmap_field_alloc(): Allocate and initialise a register field
1106 * in a register map.
1107 *
1108 * @regmap: regmap bank in which this register field is located.
1109 * @reg_field: Register field with in the bank.
1110 *
1111 * The return value will be an ERR_PTR() on error or a valid pointer
1112 * to a struct regmap_field. The regmap_field should be freed by the
1113 * user once its finished working with it using regmap_field_free().
1114 */
1115struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1116                struct reg_field reg_field)
1117{
1118        struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1119
1120        if (!rm_field)
1121                return ERR_PTR(-ENOMEM);
1122
1123        regmap_field_init(rm_field, regmap, reg_field);
1124
1125        return rm_field;
1126}
1127EXPORT_SYMBOL_GPL(regmap_field_alloc);
1128
1129/**
1130 * regmap_field_free(): Free register field allocated using regmap_field_alloc
1131 *
1132 * @field: regmap field which should be freed.
1133 */
1134void regmap_field_free(struct regmap_field *field)
1135{
1136        kfree(field);
1137}
1138EXPORT_SYMBOL_GPL(regmap_field_free);
1139
1140/**
1141 * regmap_reinit_cache(): Reinitialise the current register cache
1142 *
1143 * @map: Register map to operate on.
1144 * @config: New configuration.  Only the cache data will be used.
1145 *
1146 * Discard any existing register cache for the map and initialize a
1147 * new cache.  This can be used to restore the cache to defaults or to
1148 * update the cache configuration to reflect runtime discovery of the
1149 * hardware.
1150 *
1151 * No explicit locking is done here, the user needs to ensure that
1152 * this function will not race with other calls to regmap.
1153 */
1154int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1155{
1156        regcache_exit(map);
1157        regmap_debugfs_exit(map);
1158
1159        map->max_register = config->max_register;
1160        map->writeable_reg = config->writeable_reg;
1161        map->readable_reg = config->readable_reg;
1162        map->volatile_reg = config->volatile_reg;
1163        map->precious_reg = config->precious_reg;
1164        map->cache_type = config->cache_type;
1165
1166        regmap_debugfs_init(map, config->name);
1167
1168        map->cache_bypass = false;
1169        map->cache_only = false;
1170
1171        return regcache_init(map, config);
1172}
1173EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1174
1175/**
1176 * regmap_exit(): Free a previously allocated register map
1177 */
1178void regmap_exit(struct regmap *map)
1179{
1180        struct regmap_async *async;
1181
1182        regcache_exit(map);
1183        regmap_debugfs_exit(map);
1184        regmap_range_exit(map);
1185        if (map->bus && map->bus->free_context)
1186                map->bus->free_context(map->bus_context);
1187        kfree(map->work_buf);
1188        while (!list_empty(&map->async_free)) {
1189                async = list_first_entry_or_null(&map->async_free,
1190                                                 struct regmap_async,
1191                                                 list);
1192                list_del(&async->list);
1193                kfree(async->work_buf);
1194                kfree(async);
1195        }
1196        kfree(map);
1197}
1198EXPORT_SYMBOL_GPL(regmap_exit);
1199
1200static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1201{
1202        struct regmap **r = res;
1203        if (!r || !*r) {
1204                WARN_ON(!r || !*r);
1205                return 0;
1206        }
1207
1208        /* If the user didn't specify a name match any */
1209        if (data)
1210                return (*r)->name == data;
1211        else
1212                return 1;
1213}
1214
1215/**
1216 * dev_get_regmap(): Obtain the regmap (if any) for a device
1217 *
1218 * @dev: Device to retrieve the map for
1219 * @name: Optional name for the register map, usually NULL.
1220 *
1221 * Returns the regmap for the device if one is present, or NULL.  If
1222 * name is specified then it must match the name specified when
1223 * registering the device, if it is NULL then the first regmap found
1224 * will be used.  Devices with multiple register maps are very rare,
1225 * generic code should normally not need to specify a name.
1226 */
1227struct regmap *dev_get_regmap(struct device *dev, const char *name)
1228{
1229        struct regmap **r = devres_find(dev, dev_get_regmap_release,
1230                                        dev_get_regmap_match, (void *)name);
1231
1232        if (!r)
1233                return NULL;
1234        return *r;
1235}
1236EXPORT_SYMBOL_GPL(dev_get_regmap);
1237
1238/**
1239 * regmap_get_device(): Obtain the device from a regmap
1240 *
1241 * @map: Register map to operate on.
1242 *
1243 * Returns the underlying device that the regmap has been created for.
1244 */
1245struct device *regmap_get_device(struct regmap *map)
1246{
1247        return map->dev;
1248}
1249EXPORT_SYMBOL_GPL(regmap_get_device);
1250
1251static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1252                               struct regmap_range_node *range,
1253                               unsigned int val_num)
1254{
1255        void *orig_work_buf;
1256        unsigned int win_offset;
1257        unsigned int win_page;
1258        bool page_chg;
1259        int ret;
1260
1261        win_offset = (*reg - range->range_min) % range->window_len;
1262        win_page = (*reg - range->range_min) / range->window_len;
1263
1264        if (val_num > 1) {
1265                /* Bulk write shouldn't cross range boundary */
1266                if (*reg + val_num - 1 > range->range_max)
1267                        return -EINVAL;
1268
1269                /* ... or single page boundary */
1270                if (val_num > range->window_len - win_offset)
1271                        return -EINVAL;
1272        }
1273
1274        /* It is possible to have selector register inside data window.
1275           In that case, selector register is located on every page and
1276           it needs no page switching, when accessed alone. */
1277        if (val_num > 1 ||
1278            range->window_start + win_offset != range->selector_reg) {
1279                /* Use separate work_buf during page switching */
1280                orig_work_buf = map->work_buf;
1281                map->work_buf = map->selector_work_buf;
1282
1283                ret = _regmap_update_bits(map, range->selector_reg,
1284                                          range->selector_mask,
1285                                          win_page << range->selector_shift,
1286                                          &page_chg, false);
1287
1288                map->work_buf = orig_work_buf;
1289
1290                if (ret != 0)
1291                        return ret;
1292        }
1293
1294        *reg = range->window_start + win_offset;
1295
1296        return 0;
1297}
1298
1299int _regmap_raw_write(struct regmap *map, unsigned int reg,
1300                      const void *val, size_t val_len)
1301{
1302        struct regmap_range_node *range;
1303        unsigned long flags;
1304        u8 *u8 = map->work_buf;
1305        void *work_val = map->work_buf + map->format.reg_bytes +
1306                map->format.pad_bytes;
1307        void *buf;
1308        int ret = -ENOTSUPP;
1309        size_t len;
1310        int i;
1311
1312        WARN_ON(!map->bus);
1313
1314        /* Check for unwritable registers before we start */
1315        if (map->writeable_reg)
1316                for (i = 0; i < val_len / map->format.val_bytes; i++)
1317                        if (!map->writeable_reg(map->dev,
1318                                               reg + regmap_get_offset(map, i)))
1319                                return -EINVAL;
1320
1321        if (!map->cache_bypass && map->format.parse_val) {
1322                unsigned int ival;
1323                int val_bytes = map->format.val_bytes;
1324                for (i = 0; i < val_len / val_bytes; i++) {
1325                        ival = map->format.parse_val(val + (i * val_bytes));
1326                        ret = regcache_write(map,
1327                                             reg + regmap_get_offset(map, i),
1328                                             ival);
1329                        if (ret) {
1330                                dev_err(map->dev,
1331                                        "Error in caching of register: %x ret: %d\n",
1332                                        reg + i, ret);
1333                                return ret;
1334                        }
1335                }
1336                if (map->cache_only) {
1337                        map->cache_dirty = true;
1338                        return 0;
1339                }
1340        }
1341
1342        range = _regmap_range_lookup(map, reg);
1343        if (range) {
1344                int val_num = val_len / map->format.val_bytes;
1345                int win_offset = (reg - range->range_min) % range->window_len;
1346                int win_residue = range->window_len - win_offset;
1347
1348                /* If the write goes beyond the end of the window split it */
1349                while (val_num > win_residue) {
1350                        dev_dbg(map->dev, "Writing window %d/%zu\n",
1351                                win_residue, val_len / map->format.val_bytes);
1352                        ret = _regmap_raw_write(map, reg, val, win_residue *
1353                                                map->format.val_bytes);
1354                        if (ret != 0)
1355                                return ret;
1356
1357                        reg += win_residue;
1358                        val_num -= win_residue;
1359                        val += win_residue * map->format.val_bytes;
1360                        val_len -= win_residue * map->format.val_bytes;
1361
1362                        win_offset = (reg - range->range_min) %
1363                                range->window_len;
1364                        win_residue = range->window_len - win_offset;
1365                }
1366
1367                ret = _regmap_select_page(map, &reg, range, val_num);
1368                if (ret != 0)
1369                        return ret;
1370        }
1371
1372        map->format.format_reg(map->work_buf, reg, map->reg_shift);
1373
1374        u8[0] |= map->write_flag_mask;
1375
1376        /*
1377         * Essentially all I/O mechanisms will be faster with a single
1378         * buffer to write.  Since register syncs often generate raw
1379         * writes of single registers optimise that case.
1380         */
1381        if (val != work_val && val_len == map->format.val_bytes) {
1382                memcpy(work_val, val, map->format.val_bytes);
1383                val = work_val;
1384        }
1385
1386        if (map->async && map->bus->async_write) {
1387                struct regmap_async *async;
1388
1389                trace_regmap_async_write_start(map, reg, val_len);
1390
1391                spin_lock_irqsave(&map->async_lock, flags);
1392                async = list_first_entry_or_null(&map->async_free,
1393                                                 struct regmap_async,
1394                                                 list);
1395                if (async)
1396                        list_del(&async->list);
1397                spin_unlock_irqrestore(&map->async_lock, flags);
1398
1399                if (!async) {
1400                        async = map->bus->async_alloc();
1401                        if (!async)
1402                                return -ENOMEM;
1403
1404                        async->work_buf = kzalloc(map->format.buf_size,
1405                                                  GFP_KERNEL | GFP_DMA);
1406                        if (!async->work_buf) {
1407                                kfree(async);
1408                                return -ENOMEM;
1409                        }
1410                }
1411
1412                async->map = map;
1413
1414                /* If the caller supplied the value we can use it safely. */
1415                memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1416                       map->format.reg_bytes + map->format.val_bytes);
1417
1418                spin_lock_irqsave(&map->async_lock, flags);
1419                list_add_tail(&async->list, &map->async_list);
1420                spin_unlock_irqrestore(&map->async_lock, flags);
1421
1422                if (val != work_val)
1423                        ret = map->bus->async_write(map->bus_context,
1424                                                    async->work_buf,
1425                                                    map->format.reg_bytes +
1426                                                    map->format.pad_bytes,
1427                                                    val, val_len, async);
1428                else
1429                        ret = map->bus->async_write(map->bus_context,
1430                                                    async->work_buf,
1431                                                    map->format.reg_bytes +
1432                                                    map->format.pad_bytes +
1433                                                    val_len, NULL, 0, async);
1434
1435                if (ret != 0) {
1436                        dev_err(map->dev, "Failed to schedule write: %d\n",
1437                                ret);
1438
1439                        spin_lock_irqsave(&map->async_lock, flags);
1440                        list_move(&async->list, &map->async_free);
1441                        spin_unlock_irqrestore(&map->async_lock, flags);
1442                }
1443
1444                return ret;
1445        }
1446
1447        trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1448
1449        /* If we're doing a single register write we can probably just
1450         * send the work_buf directly, otherwise try to do a gather
1451         * write.
1452         */
1453        if (val == work_val)
1454                ret = map->bus->write(map->bus_context, map->work_buf,
1455                                      map->format.reg_bytes +
1456                                      map->format.pad_bytes +
1457                                      val_len);
1458        else if (map->bus->gather_write)
1459                ret = map->bus->gather_write(map->bus_context, map->work_buf,
1460                                             map->format.reg_bytes +
1461                                             map->format.pad_bytes,
1462                                             val, val_len);
1463
1464        /* If that didn't work fall back on linearising by hand. */
1465        if (ret == -ENOTSUPP) {
1466                len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1467                buf = kzalloc(len, GFP_KERNEL);
1468                if (!buf)
1469                        return -ENOMEM;
1470
1471                memcpy(buf, map->work_buf, map->format.reg_bytes);
1472                memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1473                       val, val_len);
1474                ret = map->bus->write(map->bus_context, buf, len);
1475
1476                kfree(buf);
1477        }
1478
1479        trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1480
1481        return ret;
1482}
1483
1484/**
1485 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1486 *
1487 * @map: Map to check.
1488 */
1489bool regmap_can_raw_write(struct regmap *map)
1490{
1491        return map->bus && map->bus->write && map->format.format_val &&
1492                map->format.format_reg;
1493}
1494EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1495
1496/**
1497 * regmap_get_raw_read_max - Get the maximum size we can read
1498 *
1499 * @map: Map to check.
1500 */
1501size_t regmap_get_raw_read_max(struct regmap *map)
1502{
1503        return map->max_raw_read;
1504}
1505EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1506
1507/**
1508 * regmap_get_raw_write_max - Get the maximum size we can read
1509 *
1510 * @map: Map to check.
1511 */
1512size_t regmap_get_raw_write_max(struct regmap *map)
1513{
1514        return map->max_raw_write;
1515}
1516EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1517
1518static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1519                                       unsigned int val)
1520{
1521        int ret;
1522        struct regmap_range_node *range;
1523        struct regmap *map = context;
1524
1525        WARN_ON(!map->bus || !map->format.format_write);
1526
1527        range = _regmap_range_lookup(map, reg);
1528        if (range) {
1529                ret = _regmap_select_page(map, &reg, range, 1);
1530                if (ret != 0)
1531                        return ret;
1532        }
1533
1534        map->format.format_write(map, reg, val);
1535
1536        trace_regmap_hw_write_start(map, reg, 1);
1537
1538        ret = map->bus->write(map->bus_context, map->work_buf,
1539                              map->format.buf_size);
1540
1541        trace_regmap_hw_write_done(map, reg, 1);
1542
1543        return ret;
1544}
1545
1546static int _regmap_bus_reg_write(void *context, unsigned int reg,
1547                                 unsigned int val)
1548{
1549        struct regmap *map = context;
1550
1551        return map->bus->reg_write(map->bus_context, reg, val);
1552}
1553
1554static int _regmap_bus_raw_write(void *context, unsigned int reg,
1555                                 unsigned int val)
1556{
1557        struct regmap *map = context;
1558
1559        WARN_ON(!map->bus || !map->format.format_val);
1560
1561        map->format.format_val(map->work_buf + map->format.reg_bytes
1562                               + map->format.pad_bytes, val, 0);
1563        return _regmap_raw_write(map, reg,
1564                                 map->work_buf +
1565                                 map->format.reg_bytes +
1566                                 map->format.pad_bytes,
1567                                 map->format.val_bytes);
1568}
1569
1570static inline void *_regmap_map_get_context(struct regmap *map)
1571{
1572        return (map->bus) ? map : map->bus_context;
1573}
1574
1575int _regmap_write(struct regmap *map, unsigned int reg,
1576                  unsigned int val)
1577{
1578        int ret;
1579        void *context = _regmap_map_get_context(map);
1580
1581        if (!regmap_writeable(map, reg))
1582                return -EIO;
1583
1584        if (!map->cache_bypass && !map->defer_caching) {
1585                ret = regcache_write(map, reg, val);
1586                if (ret != 0)
1587                        return ret;
1588                if (map->cache_only) {
1589                        map->cache_dirty = true;
1590                        return 0;
1591                }
1592        }
1593
1594#ifdef LOG_DEVICE
1595        if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1596                dev_info(map->dev, "%x <= %x\n", reg, val);
1597#endif
1598
1599        trace_regmap_reg_write(map, reg, val);
1600
1601        return map->reg_write(context, reg, val);
1602}
1603
1604/**
1605 * regmap_write(): Write a value to a single register
1606 *
1607 * @map: Register map to write to
1608 * @reg: Register to write to
1609 * @val: Value to be written
1610 *
1611 * A value of zero will be returned on success, a negative errno will
1612 * be returned in error cases.
1613 */
1614int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1615{
1616        int ret;
1617
1618        if (!IS_ALIGNED(reg, map->reg_stride))
1619                return -EINVAL;
1620
1621        map->lock(map->lock_arg);
1622
1623        ret = _regmap_write(map, reg, val);
1624
1625        map->unlock(map->lock_arg);
1626
1627        return ret;
1628}
1629EXPORT_SYMBOL_GPL(regmap_write);
1630
1631/**
1632 * regmap_write_async(): Write a value to a single register asynchronously
1633 *
1634 * @map: Register map to write to
1635 * @reg: Register to write to
1636 * @val: Value to be written
1637 *
1638 * A value of zero will be returned on success, a negative errno will
1639 * be returned in error cases.
1640 */
1641int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1642{
1643        int ret;
1644
1645        if (!IS_ALIGNED(reg, map->reg_stride))
1646                return -EINVAL;
1647
1648        map->lock(map->lock_arg);
1649
1650        map->async = true;
1651
1652        ret = _regmap_write(map, reg, val);
1653
1654        map->async = false;
1655
1656        map->unlock(map->lock_arg);
1657
1658        return ret;
1659}
1660EXPORT_SYMBOL_GPL(regmap_write_async);
1661
1662/**
1663 * regmap_raw_write(): Write raw values to one or more registers
1664 *
1665 * @map: Register map to write to
1666 * @reg: Initial register to write to
1667 * @val: Block of data to be written, laid out for direct transmission to the
1668 *       device
1669 * @val_len: Length of data pointed to by val.
1670 *
1671 * This function is intended to be used for things like firmware
1672 * download where a large block of data needs to be transferred to the
1673 * device.  No formatting will be done on the data provided.
1674 *
1675 * A value of zero will be returned on success, a negative errno will
1676 * be returned in error cases.
1677 */
1678int regmap_raw_write(struct regmap *map, unsigned int reg,
1679                     const void *val, size_t val_len)
1680{
1681        int ret;
1682
1683        if (!regmap_can_raw_write(map))
1684                return -EINVAL;
1685        if (val_len % map->format.val_bytes)
1686                return -EINVAL;
1687        if (map->max_raw_write && map->max_raw_write > val_len)
1688                return -E2BIG;
1689
1690        map->lock(map->lock_arg);
1691
1692        ret = _regmap_raw_write(map, reg, val, val_len);
1693
1694        map->unlock(map->lock_arg);
1695
1696        return ret;
1697}
1698EXPORT_SYMBOL_GPL(regmap_raw_write);
1699
1700/**
1701 * regmap_field_update_bits_base():
1702 *      Perform a read/modify/write cycle on the register field
1703 *      with change, async, force option
1704 *
1705 * @field: Register field to write to
1706 * @mask: Bitmask to change
1707 * @val: Value to be written
1708 * @change: Boolean indicating if a write was done
1709 * @async: Boolean indicating asynchronously
1710 * @force: Boolean indicating use force update
1711 *
1712 * A value of zero will be returned on success, a negative errno will
1713 * be returned in error cases.
1714 */
1715int regmap_field_update_bits_base(struct regmap_field *field,
1716                                  unsigned int mask, unsigned int val,
1717                                  bool *change, bool async, bool force)
1718{
1719        mask = (mask << field->shift) & field->mask;
1720
1721        return regmap_update_bits_base(field->regmap, field->reg,
1722                                       mask, val << field->shift,
1723                                       change, async, force);
1724}
1725EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
1726
1727/**
1728 * regmap_fields_update_bits_base():
1729 *      Perform a read/modify/write cycle on the register field
1730 *      with change, async, force option
1731 *
1732 * @field: Register field to write to
1733 * @id: port ID
1734 * @mask: Bitmask to change
1735 * @val: Value to be written
1736 * @change: Boolean indicating if a write was done
1737 * @async: Boolean indicating asynchronously
1738 * @force: Boolean indicating use force update
1739 *
1740 * A value of zero will be returned on success, a negative errno will
1741 * be returned in error cases.
1742 */
1743int regmap_fields_update_bits_base(struct regmap_field *field,  unsigned int id,
1744                                   unsigned int mask, unsigned int val,
1745                                   bool *change, bool async, bool force)
1746{
1747        if (id >= field->id_size)
1748                return -EINVAL;
1749
1750        mask = (mask << field->shift) & field->mask;
1751
1752        return regmap_update_bits_base(field->regmap,
1753                                       field->reg + (field->id_offset * id),
1754                                       mask, val << field->shift,
1755                                       change, async, force);
1756}
1757EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
1758
1759/*
1760 * regmap_bulk_write(): Write multiple registers to the device
1761 *
1762 * @map: Register map to write to
1763 * @reg: First register to be write from
1764 * @val: Block of data to be written, in native register size for device
1765 * @val_count: Number of registers to write
1766 *
1767 * This function is intended to be used for writing a large block of
1768 * data to the device either in single transfer or multiple transfer.
1769 *
1770 * A value of zero will be returned on success, a negative errno will
1771 * be returned in error cases.
1772 */
1773int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1774                     size_t val_count)
1775{
1776        int ret = 0, i;
1777        size_t val_bytes = map->format.val_bytes;
1778        size_t total_size = val_bytes * val_count;
1779
1780        if (map->bus && !map->format.parse_inplace)
1781                return -EINVAL;
1782        if (!IS_ALIGNED(reg, map->reg_stride))
1783                return -EINVAL;
1784
1785        /*
1786         * Some devices don't support bulk write, for
1787         * them we have a series of single write operations in the first two if
1788         * blocks.
1789         *
1790         * The first if block is used for memory mapped io. It does not allow
1791         * val_bytes of 3 for example.
1792         * The second one is used for busses which do not have this limitation
1793         * and can write arbitrary value lengths.
1794         */
1795        if (!map->bus) {
1796                map->lock(map->lock_arg);
1797                for (i = 0; i < val_count; i++) {
1798                        unsigned int ival;
1799
1800                        switch (val_bytes) {
1801                        case 1:
1802                                ival = *(u8 *)(val + (i * val_bytes));
1803                                break;
1804                        case 2:
1805                                ival = *(u16 *)(val + (i * val_bytes));
1806                                break;
1807                        case 4:
1808                                ival = *(u32 *)(val + (i * val_bytes));
1809                                break;
1810#ifdef CONFIG_64BIT
1811                        case 8:
1812                                ival = *(u64 *)(val + (i * val_bytes));
1813                                break;
1814#endif
1815                        default:
1816                                ret = -EINVAL;
1817                                goto out;
1818                        }
1819
1820                        ret = _regmap_write(map,
1821                                            reg + regmap_get_offset(map, i),
1822                                            ival);
1823                        if (ret != 0)
1824                                goto out;
1825                }
1826out:
1827                map->unlock(map->lock_arg);
1828        } else if (map->use_single_write ||
1829                   (map->max_raw_write && map->max_raw_write < total_size)) {
1830                int chunk_stride = map->reg_stride;
1831                size_t chunk_size = val_bytes;
1832                size_t chunk_count = val_count;
1833
1834                if (!map->use_single_write) {
1835                        chunk_size = map->max_raw_write;
1836                        if (chunk_size % val_bytes)
1837                                chunk_size -= chunk_size % val_bytes;
1838                        chunk_count = total_size / chunk_size;
1839                        chunk_stride *= chunk_size / val_bytes;
1840                }
1841
1842                map->lock(map->lock_arg);
1843                /* Write as many bytes as possible with chunk_size */
1844                for (i = 0; i < chunk_count; i++) {
1845                        ret = _regmap_raw_write(map,
1846                                                reg + (i * chunk_stride),
1847                                                val + (i * chunk_size),
1848                                                chunk_size);
1849                        if (ret)
1850                                break;
1851                }
1852
1853                /* Write remaining bytes */
1854                if (!ret && chunk_size * i < total_size) {
1855                        ret = _regmap_raw_write(map, reg + (i * chunk_stride),
1856                                                val + (i * chunk_size),
1857                                                total_size - i * chunk_size);
1858                }
1859                map->unlock(map->lock_arg);
1860        } else {
1861                void *wval;
1862
1863                if (!val_count)
1864                        return -EINVAL;
1865
1866                wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
1867                if (!wval) {
1868                        dev_err(map->dev, "Error in memory allocation\n");
1869                        return -ENOMEM;
1870                }
1871                for (i = 0; i < val_count * val_bytes; i += val_bytes)
1872                        map->format.parse_inplace(wval + i);
1873
1874                map->lock(map->lock_arg);
1875                ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1876                map->unlock(map->lock_arg);
1877
1878                kfree(wval);
1879        }
1880        return ret;
1881}
1882EXPORT_SYMBOL_GPL(regmap_bulk_write);
1883
1884/*
1885 * _regmap_raw_multi_reg_write()
1886 *
1887 * the (register,newvalue) pairs in regs have not been formatted, but
1888 * they are all in the same page and have been changed to being page
1889 * relative. The page register has been written if that was necessary.
1890 */
1891static int _regmap_raw_multi_reg_write(struct regmap *map,
1892                                       const struct reg_sequence *regs,
1893                                       size_t num_regs)
1894{
1895        int ret;
1896        void *buf;
1897        int i;
1898        u8 *u8;
1899        size_t val_bytes = map->format.val_bytes;
1900        size_t reg_bytes = map->format.reg_bytes;
1901        size_t pad_bytes = map->format.pad_bytes;
1902        size_t pair_size = reg_bytes + pad_bytes + val_bytes;
1903        size_t len = pair_size * num_regs;
1904
1905        if (!len)
1906                return -EINVAL;
1907
1908        buf = kzalloc(len, GFP_KERNEL);
1909        if (!buf)
1910                return -ENOMEM;
1911
1912        /* We have to linearise by hand. */
1913
1914        u8 = buf;
1915
1916        for (i = 0; i < num_regs; i++) {
1917                unsigned int reg = regs[i].reg;
1918                unsigned int val = regs[i].def;
1919                trace_regmap_hw_write_start(map, reg, 1);
1920                map->format.format_reg(u8, reg, map->reg_shift);
1921                u8 += reg_bytes + pad_bytes;
1922                map->format.format_val(u8, val, 0);
1923                u8 += val_bytes;
1924        }
1925        u8 = buf;
1926        *u8 |= map->write_flag_mask;
1927
1928        ret = map->bus->write(map->bus_context, buf, len);
1929
1930        kfree(buf);
1931
1932        for (i = 0; i < num_regs; i++) {
1933                int reg = regs[i].reg;
1934                trace_regmap_hw_write_done(map, reg, 1);
1935        }
1936        return ret;
1937}
1938
1939static unsigned int _regmap_register_page(struct regmap *map,
1940                                          unsigned int reg,
1941                                          struct regmap_range_node *range)
1942{
1943        unsigned int win_page = (reg - range->range_min) / range->window_len;
1944
1945        return win_page;
1946}
1947
1948static int _regmap_range_multi_paged_reg_write(struct regmap *map,
1949                                               struct reg_sequence *regs,
1950                                               size_t num_regs)
1951{
1952        int ret;
1953        int i, n;
1954        struct reg_sequence *base;
1955        unsigned int this_page = 0;
1956        unsigned int page_change = 0;
1957        /*
1958         * the set of registers are not neccessarily in order, but
1959         * since the order of write must be preserved this algorithm
1960         * chops the set each time the page changes. This also applies
1961         * if there is a delay required at any point in the sequence.
1962         */
1963        base = regs;
1964        for (i = 0, n = 0; i < num_regs; i++, n++) {
1965                unsigned int reg = regs[i].reg;
1966                struct regmap_range_node *range;
1967
1968                range = _regmap_range_lookup(map, reg);
1969                if (range) {
1970                        unsigned int win_page = _regmap_register_page(map, reg,
1971                                                                      range);
1972
1973                        if (i == 0)
1974                                this_page = win_page;
1975                        if (win_page != this_page) {
1976                                this_page = win_page;
1977                                page_change = 1;
1978                        }
1979                }
1980
1981                /* If we have both a page change and a delay make sure to
1982                 * write the regs and apply the delay before we change the
1983                 * page.
1984                 */
1985
1986                if (page_change || regs[i].delay_us) {
1987
1988                                /* For situations where the first write requires
1989                                 * a delay we need to make sure we don't call
1990                                 * raw_multi_reg_write with n=0
1991                                 * This can't occur with page breaks as we
1992                                 * never write on the first iteration
1993                                 */
1994                                if (regs[i].delay_us && i == 0)
1995                                        n = 1;
1996
1997                                ret = _regmap_raw_multi_reg_write(map, base, n);
1998                                if (ret != 0)
1999                                        return ret;
2000
2001                                if (regs[i].delay_us)
2002                                        udelay(regs[i].delay_us);
2003
2004                                base += n;
2005                                n = 0;
2006
2007                                if (page_change) {
2008                                        ret = _regmap_select_page(map,
2009                                                                  &base[n].reg,
2010                                                                  range, 1);
2011                                        if (ret != 0)
2012                                                return ret;
2013
2014                                        page_change = 0;
2015                                }
2016
2017                }
2018
2019        }
2020        if (n > 0)
2021                return _regmap_raw_multi_reg_write(map, base, n);
2022        return 0;
2023}
2024
2025static int _regmap_multi_reg_write(struct regmap *map,
2026                                   const struct reg_sequence *regs,
2027                                   size_t num_regs)
2028{
2029        int i;
2030        int ret;
2031
2032        if (!map->can_multi_write) {
2033                for (i = 0; i < num_regs; i++) {
2034                        ret = _regmap_write(map, regs[i].reg, regs[i].def);
2035                        if (ret != 0)
2036                                return ret;
2037
2038                        if (regs[i].delay_us)
2039                                udelay(regs[i].delay_us);
2040                }
2041                return 0;
2042        }
2043
2044        if (!map->format.parse_inplace)
2045                return -EINVAL;
2046
2047        if (map->writeable_reg)
2048                for (i = 0; i < num_regs; i++) {
2049                        int reg = regs[i].reg;
2050                        if (!map->writeable_reg(map->dev, reg))
2051                                return -EINVAL;
2052                        if (!IS_ALIGNED(reg, map->reg_stride))
2053                                return -EINVAL;
2054                }
2055
2056        if (!map->cache_bypass) {
2057                for (i = 0; i < num_regs; i++) {
2058                        unsigned int val = regs[i].def;
2059                        unsigned int reg = regs[i].reg;
2060                        ret = regcache_write(map, reg, val);
2061                        if (ret) {
2062                                dev_err(map->dev,
2063                                "Error in caching of register: %x ret: %d\n",
2064                                                                reg, ret);
2065                                return ret;
2066                        }
2067                }
2068                if (map->cache_only) {
2069                        map->cache_dirty = true;
2070                        return 0;
2071                }
2072        }
2073
2074        WARN_ON(!map->bus);
2075
2076        for (i = 0; i < num_regs; i++) {
2077                unsigned int reg = regs[i].reg;
2078                struct regmap_range_node *range;
2079
2080                /* Coalesce all the writes between a page break or a delay
2081                 * in a sequence
2082                 */
2083                range = _regmap_range_lookup(map, reg);
2084                if (range || regs[i].delay_us) {
2085                        size_t len = sizeof(struct reg_sequence)*num_regs;
2086                        struct reg_sequence *base = kmemdup(regs, len,
2087                                                           GFP_KERNEL);
2088                        if (!base)
2089                                return -ENOMEM;
2090                        ret = _regmap_range_multi_paged_reg_write(map, base,
2091                                                                  num_regs);
2092                        kfree(base);
2093
2094                        return ret;
2095                }
2096        }
2097        return _regmap_raw_multi_reg_write(map, regs, num_regs);
2098}
2099
2100/*
2101 * regmap_multi_reg_write(): Write multiple registers to the device
2102 *
2103 * where the set of register,value pairs are supplied in any order,
2104 * possibly not all in a single range.
2105 *
2106 * @map: Register map to write to
2107 * @regs: Array of structures containing register,value to be written
2108 * @num_regs: Number of registers to write
2109 *
2110 * The 'normal' block write mode will send ultimately send data on the
2111 * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
2112 * addressed. However, this alternative block multi write mode will send
2113 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2114 * must of course support the mode.
2115 *
2116 * A value of zero will be returned on success, a negative errno will be
2117 * returned in error cases.
2118 */
2119int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2120                           int num_regs)
2121{
2122        int ret;
2123
2124        map->lock(map->lock_arg);
2125
2126        ret = _regmap_multi_reg_write(map, regs, num_regs);
2127
2128        map->unlock(map->lock_arg);
2129
2130        return ret;
2131}
2132EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2133
2134/*
2135 * regmap_multi_reg_write_bypassed(): Write multiple registers to the
2136 *                                    device but not the cache
2137 *
2138 * where the set of register are supplied in any order
2139 *
2140 * @map: Register map to write to
2141 * @regs: Array of structures containing register,value to be written
2142 * @num_regs: Number of registers to write
2143 *
2144 * This function is intended to be used for writing a large block of data
2145 * atomically to the device in single transfer for those I2C client devices
2146 * that implement this alternative block write mode.
2147 *
2148 * A value of zero will be returned on success, a negative errno will
2149 * be returned in error cases.
2150 */
2151int regmap_multi_reg_write_bypassed(struct regmap *map,
2152                                    const struct reg_sequence *regs,
2153                                    int num_regs)
2154{
2155        int ret;
2156        bool bypass;
2157
2158        map->lock(map->lock_arg);
2159
2160        bypass = map->cache_bypass;
2161        map->cache_bypass = true;
2162
2163        ret = _regmap_multi_reg_write(map, regs, num_regs);
2164
2165        map->cache_bypass = bypass;
2166
2167        map->unlock(map->lock_arg);
2168
2169        return ret;
2170}
2171EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2172
2173/**
2174 * regmap_raw_write_async(): Write raw values to one or more registers
2175 *                           asynchronously
2176 *
2177 * @map: Register map to write to
2178 * @reg: Initial register to write to
2179 * @val: Block of data to be written, laid out for direct transmission to the
2180 *       device.  Must be valid until regmap_async_complete() is called.
2181 * @val_len: Length of data pointed to by val.
2182 *
2183 * This function is intended to be used for things like firmware
2184 * download where a large block of data needs to be transferred to the
2185 * device.  No formatting will be done on the data provided.
2186 *
2187 * If supported by the underlying bus the write will be scheduled
2188 * asynchronously, helping maximise I/O speed on higher speed buses
2189 * like SPI.  regmap_async_complete() can be called to ensure that all
2190 * asynchrnous writes have been completed.
2191 *
2192 * A value of zero will be returned on success, a negative errno will
2193 * be returned in error cases.
2194 */
2195int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2196                           const void *val, size_t val_len)
2197{
2198        int ret;
2199
2200        if (val_len % map->format.val_bytes)
2201                return -EINVAL;
2202        if (!IS_ALIGNED(reg, map->reg_stride))
2203                return -EINVAL;
2204
2205        map->lock(map->lock_arg);
2206
2207        map->async = true;
2208
2209        ret = _regmap_raw_write(map, reg, val, val_len);
2210
2211        map->async = false;
2212
2213        map->unlock(map->lock_arg);
2214
2215        return ret;
2216}
2217EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2218
2219static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2220                            unsigned int val_len)
2221{
2222        struct regmap_range_node *range;
2223        u8 *u8 = map->work_buf;
2224        int ret;
2225
2226        WARN_ON(!map->bus);
2227
2228        if (!map->bus || !map->bus->read)
2229                return -EINVAL;
2230
2231        range = _regmap_range_lookup(map, reg);
2232        if (range) {
2233                ret = _regmap_select_page(map, &reg, range,
2234                                          val_len / map->format.val_bytes);
2235                if (ret != 0)
2236                        return ret;
2237        }
2238
2239        map->format.format_reg(map->work_buf, reg, map->reg_shift);
2240
2241        /*
2242         * Some buses or devices flag reads by setting the high bits in the
2243         * register address; since it's always the high bits for all
2244         * current formats we can do this here rather than in
2245         * formatting.  This may break if we get interesting formats.
2246         */
2247        u8[0] |= map->read_flag_mask;
2248
2249        trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2250
2251        ret = map->bus->read(map->bus_context, map->work_buf,
2252                             map->format.reg_bytes + map->format.pad_bytes,
2253                             val, val_len);
2254
2255        trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2256
2257        return ret;
2258}
2259
2260static int _regmap_bus_reg_read(void *context, unsigned int reg,
2261                                unsigned int *val)
2262{
2263        struct regmap *map = context;
2264
2265        return map->bus->reg_read(map->bus_context, reg, val);
2266}
2267
2268static int _regmap_bus_read(void *context, unsigned int reg,
2269                            unsigned int *val)
2270{
2271        int ret;
2272        struct regmap *map = context;
2273
2274        if (!map->format.parse_val)
2275                return -EINVAL;
2276
2277        ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
2278        if (ret == 0)
2279                *val = map->format.parse_val(map->work_buf);
2280
2281        return ret;
2282}
2283
2284static int _regmap_read(struct regmap *map, unsigned int reg,
2285                        unsigned int *val)
2286{
2287        int ret;
2288        void *context = _regmap_map_get_context(map);
2289
2290        if (!map->cache_bypass) {
2291                ret = regcache_read(map, reg, val);
2292                if (ret == 0)
2293                        return 0;
2294        }
2295
2296        if (map->cache_only)
2297                return -EBUSY;
2298
2299        if (!regmap_readable(map, reg))
2300                return -EIO;
2301
2302        ret = map->reg_read(context, reg, val);
2303        if (ret == 0) {
2304#ifdef LOG_DEVICE
2305                if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2306                        dev_info(map->dev, "%x => %x\n", reg, *val);
2307#endif
2308
2309                trace_regmap_reg_read(map, reg, *val);
2310
2311                if (!map->cache_bypass)
2312                        regcache_write(map, reg, *val);
2313        }
2314
2315        return ret;
2316}
2317
2318/**
2319 * regmap_read(): Read a value from a single register
2320 *
2321 * @map: Register map to read from
2322 * @reg: Register to be read from
2323 * @val: Pointer to store read value
2324 *
2325 * A value of zero will be returned on success, a negative errno will
2326 * be returned in error cases.
2327 */
2328int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2329{
2330        int ret;
2331
2332        if (!IS_ALIGNED(reg, map->reg_stride))
2333                return -EINVAL;
2334
2335        map->lock(map->lock_arg);
2336
2337        ret = _regmap_read(map, reg, val);
2338
2339        map->unlock(map->lock_arg);
2340
2341        return ret;
2342}
2343EXPORT_SYMBOL_GPL(regmap_read);
2344
2345/**
2346 * regmap_raw_read(): Read raw data from the device
2347 *
2348 * @map: Register map to read from
2349 * @reg: First register to be read from
2350 * @val: Pointer to store read value
2351 * @val_len: Size of data to read
2352 *
2353 * A value of zero will be returned on success, a negative errno will
2354 * be returned in error cases.
2355 */
2356int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2357                    size_t val_len)
2358{
2359        size_t val_bytes = map->format.val_bytes;
2360        size_t val_count = val_len / val_bytes;
2361        unsigned int v;
2362        int ret, i;
2363
2364        if (!map->bus)
2365                return -EINVAL;
2366        if (val_len % map->format.val_bytes)
2367                return -EINVAL;
2368        if (!IS_ALIGNED(reg, map->reg_stride))
2369                return -EINVAL;
2370        if (val_count == 0)
2371                return -EINVAL;
2372
2373        map->lock(map->lock_arg);
2374
2375        if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2376            map->cache_type == REGCACHE_NONE) {
2377                if (!map->bus->read) {
2378                        ret = -ENOTSUPP;
2379                        goto out;
2380                }
2381                if (map->max_raw_read && map->max_raw_read < val_len) {
2382                        ret = -E2BIG;
2383                        goto out;
2384                }
2385
2386                /* Physical block read if there's no cache involved */
2387                ret = _regmap_raw_read(map, reg, val, val_len);
2388
2389        } else {
2390                /* Otherwise go word by word for the cache; should be low
2391                 * cost as we expect to hit the cache.
2392                 */
2393                for (i = 0; i < val_count; i++) {
2394                        ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2395                                           &v);
2396                        if (ret != 0)
2397                                goto out;
2398
2399                        map->format.format_val(val + (i * val_bytes), v, 0);
2400                }
2401        }
2402
2403 out:
2404        map->unlock(map->lock_arg);
2405
2406        return ret;
2407}
2408EXPORT_SYMBOL_GPL(regmap_raw_read);
2409
2410/**
2411 * regmap_field_read(): Read a value to a single register field
2412 *
2413 * @field: Register field to read from
2414 * @val: Pointer to store read value
2415 *
2416 * A value of zero will be returned on success, a negative errno will
2417 * be returned in error cases.
2418 */
2419int regmap_field_read(struct regmap_field *field, unsigned int *val)
2420{
2421        int ret;
2422        unsigned int reg_val;
2423        ret = regmap_read(field->regmap, field->reg, &reg_val);
2424        if (ret != 0)
2425                return ret;
2426
2427        reg_val &= field->mask;
2428        reg_val >>= field->shift;
2429        *val = reg_val;
2430
2431        return ret;
2432}
2433EXPORT_SYMBOL_GPL(regmap_field_read);
2434
2435/**
2436 * regmap_fields_read(): Read a value to a single register field with port ID
2437 *
2438 * @field: Register field to read from
2439 * @id: port ID
2440 * @val: Pointer to store read value
2441 *
2442 * A value of zero will be returned on success, a negative errno will
2443 * be returned in error cases.
2444 */
2445int regmap_fields_read(struct regmap_field *field, unsigned int id,
2446                       unsigned int *val)
2447{
2448        int ret;
2449        unsigned int reg_val;
2450
2451        if (id >= field->id_size)
2452                return -EINVAL;
2453
2454        ret = regmap_read(field->regmap,
2455                          field->reg + (field->id_offset * id),
2456                          &reg_val);
2457        if (ret != 0)
2458                return ret;
2459
2460        reg_val &= field->mask;
2461        reg_val >>= field->shift;
2462        *val = reg_val;
2463
2464        return ret;
2465}
2466EXPORT_SYMBOL_GPL(regmap_fields_read);
2467
2468/**
2469 * regmap_bulk_read(): Read multiple registers from the device
2470 *
2471 * @map: Register map to read from
2472 * @reg: First register to be read from
2473 * @val: Pointer to store read value, in native register size for device
2474 * @val_count: Number of registers to read
2475 *
2476 * A value of zero will be returned on success, a negative errno will
2477 * be returned in error cases.
2478 */
2479int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2480                     size_t val_count)
2481{
2482        int ret, i;
2483        size_t val_bytes = map->format.val_bytes;
2484        bool vol = regmap_volatile_range(map, reg, val_count);
2485
2486        if (!IS_ALIGNED(reg, map->reg_stride))
2487                return -EINVAL;
2488
2489        if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2490                /*
2491                 * Some devices does not support bulk read, for
2492                 * them we have a series of single read operations.
2493                 */
2494                size_t total_size = val_bytes * val_count;
2495
2496                if (!map->use_single_read &&
2497                    (!map->max_raw_read || map->max_raw_read > total_size)) {
2498                        ret = regmap_raw_read(map, reg, val,
2499                                              val_bytes * val_count);
2500                        if (ret != 0)
2501                                return ret;
2502                } else {
2503                        /*
2504                         * Some devices do not support bulk read or do not
2505                         * support large bulk reads, for them we have a series
2506                         * of read operations.
2507                         */
2508                        int chunk_stride = map->reg_stride;
2509                        size_t chunk_size = val_bytes;
2510                        size_t chunk_count = val_count;
2511
2512                        if (!map->use_single_read) {
2513                                chunk_size = map->max_raw_read;
2514                                if (chunk_size % val_bytes)
2515                                        chunk_size -= chunk_size % val_bytes;
2516                                chunk_count = total_size / chunk_size;
2517                                chunk_stride *= chunk_size / val_bytes;
2518                        }
2519
2520                        /* Read bytes that fit into a multiple of chunk_size */
2521                        for (i = 0; i < chunk_count; i++) {
2522                                ret = regmap_raw_read(map,
2523                                                      reg + (i * chunk_stride),
2524                                                      val + (i * chunk_size),
2525                                                      chunk_size);
2526                                if (ret != 0)
2527                                        return ret;
2528                        }
2529
2530                        /* Read remaining bytes */
2531                        if (chunk_size * i < total_size) {
2532                                ret = regmap_raw_read(map,
2533                                                      reg + (i * chunk_stride),
2534                                                      val + (i * chunk_size),
2535                                                      total_size - i * chunk_size);
2536                                if (ret != 0)
2537                                        return ret;
2538                        }
2539                }
2540
2541                for (i = 0; i < val_count * val_bytes; i += val_bytes)
2542                        map->format.parse_inplace(val + i);
2543        } else {
2544                for (i = 0; i < val_count; i++) {
2545                        unsigned int ival;
2546                        ret = regmap_read(map, reg + regmap_get_offset(map, i),
2547                                          &ival);
2548                        if (ret != 0)
2549                                return ret;
2550
2551                        if (map->format.format_val) {
2552                                map->format.format_val(val + (i * val_bytes), ival, 0);
2553                        } else {
2554                                /* Devices providing read and write
2555                                 * operations can use the bulk I/O
2556                                 * functions if they define a val_bytes,
2557                                 * we assume that the values are native
2558                                 * endian.
2559                                 */
2560#ifdef CONFIG_64BIT
2561                                u64 *u64 = val;
2562#endif
2563                                u32 *u32 = val;
2564                                u16 *u16 = val;
2565                                u8 *u8 = val;
2566
2567                                switch (map->format.val_bytes) {
2568#ifdef CONFIG_64BIT
2569                                case 8:
2570                                        u64[i] = ival;
2571                                        break;
2572#endif
2573                                case 4:
2574                                        u32[i] = ival;
2575                                        break;
2576                                case 2:
2577                                        u16[i] = ival;
2578                                        break;
2579                                case 1:
2580                                        u8[i] = ival;
2581                                        break;
2582                                default:
2583                                        return -EINVAL;
2584                                }
2585                        }
2586                }
2587        }
2588
2589        return 0;
2590}
2591EXPORT_SYMBOL_GPL(regmap_bulk_read);
2592
2593static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2594                               unsigned int mask, unsigned int val,
2595                               bool *change, bool force_write)
2596{
2597        int ret;
2598        unsigned int tmp, orig;
2599
2600        if (change)
2601                *change = false;
2602
2603        if (regmap_volatile(map, reg) && map->reg_update_bits) {
2604                ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2605                if (ret == 0 && change)
2606                        *change = true;
2607        } else {
2608                ret = _regmap_read(map, reg, &orig);
2609                if (ret != 0)
2610                        return ret;
2611
2612                tmp = orig & ~mask;
2613                tmp |= val & mask;
2614
2615                if (force_write || (tmp != orig)) {
2616                        ret = _regmap_write(map, reg, tmp);
2617                        if (ret == 0 && change)
2618                                *change = true;
2619                }
2620        }
2621
2622        return ret;
2623}
2624
2625/**
2626 * regmap_update_bits_base:
2627 *      Perform a read/modify/write cycle on the
2628 *      register map with change, async, force option
2629 *
2630 * @map: Register map to update
2631 * @reg: Register to update
2632 * @mask: Bitmask to change
2633 * @val: New value for bitmask
2634 * @change: Boolean indicating if a write was done
2635 * @async: Boolean indicating asynchronously
2636 * @force: Boolean indicating use force update
2637 *
2638 * if async was true,
2639 * With most buses the read must be done synchronously so this is most
2640 * useful for devices with a cache which do not need to interact with
2641 * the hardware to determine the current register value.
2642 *
2643 * Returns zero for success, a negative number on error.
2644 */
2645int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2646                            unsigned int mask, unsigned int val,
2647                            bool *change, bool async, bool force)
2648{
2649        int ret;
2650
2651        map->lock(map->lock_arg);
2652
2653        map->async = async;
2654
2655        ret = _regmap_update_bits(map, reg, mask, val, change, force);
2656
2657        map->async = false;
2658
2659        map->unlock(map->lock_arg);
2660
2661        return ret;
2662}
2663EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2664
2665void regmap_async_complete_cb(struct regmap_async *async, int ret)
2666{
2667        struct regmap *map = async->map;
2668        bool wake;
2669
2670        trace_regmap_async_io_complete(map);
2671
2672        spin_lock(&map->async_lock);
2673        list_move(&async->list, &map->async_free);
2674        wake = list_empty(&map->async_list);
2675
2676        if (ret != 0)
2677                map->async_ret = ret;
2678
2679        spin_unlock(&map->async_lock);
2680
2681        if (wake)
2682                wake_up(&map->async_waitq);
2683}
2684EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2685
2686static int regmap_async_is_done(struct regmap *map)
2687{
2688        unsigned long flags;
2689        int ret;
2690
2691        spin_lock_irqsave(&map->async_lock, flags);
2692        ret = list_empty(&map->async_list);
2693        spin_unlock_irqrestore(&map->async_lock, flags);
2694
2695        return ret;
2696}
2697
2698/**
2699 * regmap_async_complete: Ensure all asynchronous I/O has completed.
2700 *
2701 * @map: Map to operate on.
2702 *
2703 * Blocks until any pending asynchronous I/O has completed.  Returns
2704 * an error code for any failed I/O operations.
2705 */
2706int regmap_async_complete(struct regmap *map)
2707{
2708        unsigned long flags;
2709        int ret;
2710
2711        /* Nothing to do with no async support */
2712        if (!map->bus || !map->bus->async_write)
2713                return 0;
2714
2715        trace_regmap_async_complete_start(map);
2716
2717        wait_event(map->async_waitq, regmap_async_is_done(map));
2718
2719        spin_lock_irqsave(&map->async_lock, flags);
2720        ret = map->async_ret;
2721        map->async_ret = 0;
2722        spin_unlock_irqrestore(&map->async_lock, flags);
2723
2724        trace_regmap_async_complete_done(map);
2725
2726        return ret;
2727}
2728EXPORT_SYMBOL_GPL(regmap_async_complete);
2729
2730/**
2731 * regmap_register_patch: Register and apply register updates to be applied
2732 *                        on device initialistion
2733 *
2734 * @map: Register map to apply updates to.
2735 * @regs: Values to update.
2736 * @num_regs: Number of entries in regs.
2737 *
2738 * Register a set of register updates to be applied to the device
2739 * whenever the device registers are synchronised with the cache and
2740 * apply them immediately.  Typically this is used to apply
2741 * corrections to be applied to the device defaults on startup, such
2742 * as the updates some vendors provide to undocumented registers.
2743 *
2744 * The caller must ensure that this function cannot be called
2745 * concurrently with either itself or regcache_sync().
2746 */
2747int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
2748                          int num_regs)
2749{
2750        struct reg_sequence *p;
2751        int ret;
2752        bool bypass;
2753
2754        if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2755            num_regs))
2756                return 0;
2757
2758        p = krealloc(map->patch,
2759                     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
2760                     GFP_KERNEL);
2761        if (p) {
2762                memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2763                map->patch = p;
2764                map->patch_regs += num_regs;
2765        } else {
2766                return -ENOMEM;
2767        }
2768
2769        map->lock(map->lock_arg);
2770
2771        bypass = map->cache_bypass;
2772
2773        map->cache_bypass = true;
2774        map->async = true;
2775
2776        ret = _regmap_multi_reg_write(map, regs, num_regs);
2777
2778        map->async = false;
2779        map->cache_bypass = bypass;
2780
2781        map->unlock(map->lock_arg);
2782
2783        regmap_async_complete(map);
2784
2785        return ret;
2786}
2787EXPORT_SYMBOL_GPL(regmap_register_patch);
2788
2789/*
2790 * regmap_get_val_bytes(): Report the size of a register value
2791 *
2792 * Report the size of a register value, mainly intended to for use by
2793 * generic infrastructure built on top of regmap.
2794 */
2795int regmap_get_val_bytes(struct regmap *map)
2796{
2797        if (map->format.format_write)
2798                return -EINVAL;
2799
2800        return map->format.val_bytes;
2801}
2802EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2803
2804/**
2805 * regmap_get_max_register(): Report the max register value
2806 *
2807 * Report the max register value, mainly intended to for use by
2808 * generic infrastructure built on top of regmap.
2809 */
2810int regmap_get_max_register(struct regmap *map)
2811{
2812        return map->max_register ? map->max_register : -EINVAL;
2813}
2814EXPORT_SYMBOL_GPL(regmap_get_max_register);
2815
2816/**
2817 * regmap_get_reg_stride(): Report the register address stride
2818 *
2819 * Report the register address stride, mainly intended to for use by
2820 * generic infrastructure built on top of regmap.
2821 */
2822int regmap_get_reg_stride(struct regmap *map)
2823{
2824        return map->reg_stride;
2825}
2826EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
2827
2828int regmap_parse_val(struct regmap *map, const void *buf,
2829                        unsigned int *val)
2830{
2831        if (!map->format.parse_val)
2832                return -EINVAL;
2833
2834        *val = map->format.parse_val(buf);
2835
2836        return 0;
2837}
2838EXPORT_SYMBOL_GPL(regmap_parse_val);
2839
2840static int __init regmap_initcall(void)
2841{
2842        regmap_debugfs_initcall();
2843
2844        return 0;
2845}
2846postcore_initcall(regmap_initcall);
2847