linux/drivers/block/drbd/drbd_main.c
<<
>>
Prefs
   1/*
   2   drbd.c
   3
   4   This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
   5
   6   Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
   7   Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
   8   Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
   9
  10   Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev
  11   from Logicworks, Inc. for making SDP replication support possible.
  12
  13   drbd is free software; you can redistribute it and/or modify
  14   it under the terms of the GNU General Public License as published by
  15   the Free Software Foundation; either version 2, or (at your option)
  16   any later version.
  17
  18   drbd is distributed in the hope that it will be useful,
  19   but WITHOUT ANY WARRANTY; without even the implied warranty of
  20   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  21   GNU General Public License for more details.
  22
  23   You should have received a copy of the GNU General Public License
  24   along with drbd; see the file COPYING.  If not, write to
  25   the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
  26
  27 */
  28
  29#define pr_fmt(fmt)     KBUILD_MODNAME ": " fmt
  30
  31#include <linux/module.h>
  32#include <linux/jiffies.h>
  33#include <linux/drbd.h>
  34#include <asm/uaccess.h>
  35#include <asm/types.h>
  36#include <net/sock.h>
  37#include <linux/ctype.h>
  38#include <linux/mutex.h>
  39#include <linux/fs.h>
  40#include <linux/file.h>
  41#include <linux/proc_fs.h>
  42#include <linux/init.h>
  43#include <linux/mm.h>
  44#include <linux/memcontrol.h>
  45#include <linux/mm_inline.h>
  46#include <linux/slab.h>
  47#include <linux/random.h>
  48#include <linux/reboot.h>
  49#include <linux/notifier.h>
  50#include <linux/kthread.h>
  51#include <linux/workqueue.h>
  52#define __KERNEL_SYSCALLS__
  53#include <linux/unistd.h>
  54#include <linux/vmalloc.h>
  55
  56#include <linux/drbd_limits.h>
  57#include "drbd_int.h"
  58#include "drbd_protocol.h"
  59#include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */
  60#include "drbd_vli.h"
  61#include "drbd_debugfs.h"
  62
  63static DEFINE_MUTEX(drbd_main_mutex);
  64static int drbd_open(struct block_device *bdev, fmode_t mode);
  65static void drbd_release(struct gendisk *gd, fmode_t mode);
  66static void md_sync_timer_fn(unsigned long data);
  67static int w_bitmap_io(struct drbd_work *w, int unused);
  68
  69MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, "
  70              "Lars Ellenberg <lars@linbit.com>");
  71MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION);
  72MODULE_VERSION(REL_VERSION);
  73MODULE_LICENSE("GPL");
  74MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices ("
  75                 __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")");
  76MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR);
  77
  78#include <linux/moduleparam.h>
  79/* allow_open_on_secondary */
  80MODULE_PARM_DESC(allow_oos, "DONT USE!");
  81/* thanks to these macros, if compiled into the kernel (not-module),
  82 * this becomes the boot parameter drbd.minor_count */
  83module_param(minor_count, uint, 0444);
  84module_param(disable_sendpage, bool, 0644);
  85module_param(allow_oos, bool, 0);
  86module_param(proc_details, int, 0644);
  87
  88#ifdef CONFIG_DRBD_FAULT_INJECTION
  89int enable_faults;
  90int fault_rate;
  91static int fault_count;
  92int fault_devs;
  93/* bitmap of enabled faults */
  94module_param(enable_faults, int, 0664);
  95/* fault rate % value - applies to all enabled faults */
  96module_param(fault_rate, int, 0664);
  97/* count of faults inserted */
  98module_param(fault_count, int, 0664);
  99/* bitmap of devices to insert faults on */
 100module_param(fault_devs, int, 0644);
 101#endif
 102
 103/* module parameter, defined */
 104unsigned int minor_count = DRBD_MINOR_COUNT_DEF;
 105bool disable_sendpage;
 106bool allow_oos;
 107int proc_details;       /* Detail level in proc drbd*/
 108
 109/* Module parameter for setting the user mode helper program
 110 * to run. Default is /sbin/drbdadm */
 111char usermode_helper[80] = "/sbin/drbdadm";
 112
 113module_param_string(usermode_helper, usermode_helper, sizeof(usermode_helper), 0644);
 114
 115/* in 2.6.x, our device mapping and config info contains our virtual gendisks
 116 * as member "struct gendisk *vdisk;"
 117 */
 118struct idr drbd_devices;
 119struct list_head drbd_resources;
 120struct mutex resources_mutex;
 121
 122struct kmem_cache *drbd_request_cache;
 123struct kmem_cache *drbd_ee_cache;       /* peer requests */
 124struct kmem_cache *drbd_bm_ext_cache;   /* bitmap extents */
 125struct kmem_cache *drbd_al_ext_cache;   /* activity log extents */
 126mempool_t *drbd_request_mempool;
 127mempool_t *drbd_ee_mempool;
 128mempool_t *drbd_md_io_page_pool;
 129struct bio_set *drbd_md_io_bio_set;
 130
 131/* I do not use a standard mempool, because:
 132   1) I want to hand out the pre-allocated objects first.
 133   2) I want to be able to interrupt sleeping allocation with a signal.
 134   Note: This is a single linked list, the next pointer is the private
 135         member of struct page.
 136 */
 137struct page *drbd_pp_pool;
 138spinlock_t   drbd_pp_lock;
 139int          drbd_pp_vacant;
 140wait_queue_head_t drbd_pp_wait;
 141
 142DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5);
 143
 144static const struct block_device_operations drbd_ops = {
 145        .owner =   THIS_MODULE,
 146        .open =    drbd_open,
 147        .release = drbd_release,
 148};
 149
 150struct bio *bio_alloc_drbd(gfp_t gfp_mask)
 151{
 152        struct bio *bio;
 153
 154        if (!drbd_md_io_bio_set)
 155                return bio_alloc(gfp_mask, 1);
 156
 157        bio = bio_alloc_bioset(gfp_mask, 1, drbd_md_io_bio_set);
 158        if (!bio)
 159                return NULL;
 160        return bio;
 161}
 162
 163#ifdef __CHECKER__
 164/* When checking with sparse, and this is an inline function, sparse will
 165   give tons of false positives. When this is a real functions sparse works.
 166 */
 167int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins)
 168{
 169        int io_allowed;
 170
 171        atomic_inc(&device->local_cnt);
 172        io_allowed = (device->state.disk >= mins);
 173        if (!io_allowed) {
 174                if (atomic_dec_and_test(&device->local_cnt))
 175                        wake_up(&device->misc_wait);
 176        }
 177        return io_allowed;
 178}
 179
 180#endif
 181
 182/**
 183 * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch
 184 * @connection: DRBD connection.
 185 * @barrier_nr: Expected identifier of the DRBD write barrier packet.
 186 * @set_size:   Expected number of requests before that barrier.
 187 *
 188 * In case the passed barrier_nr or set_size does not match the oldest
 189 * epoch of not yet barrier-acked requests, this function will cause a
 190 * termination of the connection.
 191 */
 192void tl_release(struct drbd_connection *connection, unsigned int barrier_nr,
 193                unsigned int set_size)
 194{
 195        struct drbd_request *r;
 196        struct drbd_request *req = NULL;
 197        int expect_epoch = 0;
 198        int expect_size = 0;
 199
 200        spin_lock_irq(&connection->resource->req_lock);
 201
 202        /* find oldest not yet barrier-acked write request,
 203         * count writes in its epoch. */
 204        list_for_each_entry(r, &connection->transfer_log, tl_requests) {
 205                const unsigned s = r->rq_state;
 206                if (!req) {
 207                        if (!(s & RQ_WRITE))
 208                                continue;
 209                        if (!(s & RQ_NET_MASK))
 210                                continue;
 211                        if (s & RQ_NET_DONE)
 212                                continue;
 213                        req = r;
 214                        expect_epoch = req->epoch;
 215                        expect_size ++;
 216                } else {
 217                        if (r->epoch != expect_epoch)
 218                                break;
 219                        if (!(s & RQ_WRITE))
 220                                continue;
 221                        /* if (s & RQ_DONE): not expected */
 222                        /* if (!(s & RQ_NET_MASK)): not expected */
 223                        expect_size++;
 224                }
 225        }
 226
 227        /* first some paranoia code */
 228        if (req == NULL) {
 229                drbd_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n",
 230                         barrier_nr);
 231                goto bail;
 232        }
 233        if (expect_epoch != barrier_nr) {
 234                drbd_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n",
 235                         barrier_nr, expect_epoch);
 236                goto bail;
 237        }
 238
 239        if (expect_size != set_size) {
 240                drbd_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n",
 241                         barrier_nr, set_size, expect_size);
 242                goto bail;
 243        }
 244
 245        /* Clean up list of requests processed during current epoch. */
 246        /* this extra list walk restart is paranoia,
 247         * to catch requests being barrier-acked "unexpectedly".
 248         * It usually should find the same req again, or some READ preceding it. */
 249        list_for_each_entry(req, &connection->transfer_log, tl_requests)
 250                if (req->epoch == expect_epoch)
 251                        break;
 252        list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) {
 253                if (req->epoch != expect_epoch)
 254                        break;
 255                _req_mod(req, BARRIER_ACKED);
 256        }
 257        spin_unlock_irq(&connection->resource->req_lock);
 258
 259        return;
 260
 261bail:
 262        spin_unlock_irq(&connection->resource->req_lock);
 263        conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
 264}
 265
 266
 267/**
 268 * _tl_restart() - Walks the transfer log, and applies an action to all requests
 269 * @connection: DRBD connection to operate on.
 270 * @what:       The action/event to perform with all request objects
 271 *
 272 * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO,
 273 * RESTART_FROZEN_DISK_IO.
 274 */
 275/* must hold resource->req_lock */
 276void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
 277{
 278        struct drbd_request *req, *r;
 279
 280        list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests)
 281                _req_mod(req, what);
 282}
 283
 284void tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
 285{
 286        spin_lock_irq(&connection->resource->req_lock);
 287        _tl_restart(connection, what);
 288        spin_unlock_irq(&connection->resource->req_lock);
 289}
 290
 291/**
 292 * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL
 293 * @device:     DRBD device.
 294 *
 295 * This is called after the connection to the peer was lost. The storage covered
 296 * by the requests on the transfer gets marked as our of sync. Called from the
 297 * receiver thread and the worker thread.
 298 */
 299void tl_clear(struct drbd_connection *connection)
 300{
 301        tl_restart(connection, CONNECTION_LOST_WHILE_PENDING);
 302}
 303
 304/**
 305 * tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL
 306 * @device:     DRBD device.
 307 */
 308void tl_abort_disk_io(struct drbd_device *device)
 309{
 310        struct drbd_connection *connection = first_peer_device(device)->connection;
 311        struct drbd_request *req, *r;
 312
 313        spin_lock_irq(&connection->resource->req_lock);
 314        list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) {
 315                if (!(req->rq_state & RQ_LOCAL_PENDING))
 316                        continue;
 317                if (req->device != device)
 318                        continue;
 319                _req_mod(req, ABORT_DISK_IO);
 320        }
 321        spin_unlock_irq(&connection->resource->req_lock);
 322}
 323
 324static int drbd_thread_setup(void *arg)
 325{
 326        struct drbd_thread *thi = (struct drbd_thread *) arg;
 327        struct drbd_resource *resource = thi->resource;
 328        unsigned long flags;
 329        int retval;
 330
 331        snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s",
 332                 thi->name[0],
 333                 resource->name);
 334
 335restart:
 336        retval = thi->function(thi);
 337
 338        spin_lock_irqsave(&thi->t_lock, flags);
 339
 340        /* if the receiver has been "EXITING", the last thing it did
 341         * was set the conn state to "StandAlone",
 342         * if now a re-connect request comes in, conn state goes C_UNCONNECTED,
 343         * and receiver thread will be "started".
 344         * drbd_thread_start needs to set "RESTARTING" in that case.
 345         * t_state check and assignment needs to be within the same spinlock,
 346         * so either thread_start sees EXITING, and can remap to RESTARTING,
 347         * or thread_start see NONE, and can proceed as normal.
 348         */
 349
 350        if (thi->t_state == RESTARTING) {
 351                drbd_info(resource, "Restarting %s thread\n", thi->name);
 352                thi->t_state = RUNNING;
 353                spin_unlock_irqrestore(&thi->t_lock, flags);
 354                goto restart;
 355        }
 356
 357        thi->task = NULL;
 358        thi->t_state = NONE;
 359        smp_mb();
 360        complete_all(&thi->stop);
 361        spin_unlock_irqrestore(&thi->t_lock, flags);
 362
 363        drbd_info(resource, "Terminating %s\n", current->comm);
 364
 365        /* Release mod reference taken when thread was started */
 366
 367        if (thi->connection)
 368                kref_put(&thi->connection->kref, drbd_destroy_connection);
 369        kref_put(&resource->kref, drbd_destroy_resource);
 370        module_put(THIS_MODULE);
 371        return retval;
 372}
 373
 374static void drbd_thread_init(struct drbd_resource *resource, struct drbd_thread *thi,
 375                             int (*func) (struct drbd_thread *), const char *name)
 376{
 377        spin_lock_init(&thi->t_lock);
 378        thi->task    = NULL;
 379        thi->t_state = NONE;
 380        thi->function = func;
 381        thi->resource = resource;
 382        thi->connection = NULL;
 383        thi->name = name;
 384}
 385
 386int drbd_thread_start(struct drbd_thread *thi)
 387{
 388        struct drbd_resource *resource = thi->resource;
 389        struct task_struct *nt;
 390        unsigned long flags;
 391
 392        /* is used from state engine doing drbd_thread_stop_nowait,
 393         * while holding the req lock irqsave */
 394        spin_lock_irqsave(&thi->t_lock, flags);
 395
 396        switch (thi->t_state) {
 397        case NONE:
 398                drbd_info(resource, "Starting %s thread (from %s [%d])\n",
 399                         thi->name, current->comm, current->pid);
 400
 401                /* Get ref on module for thread - this is released when thread exits */
 402                if (!try_module_get(THIS_MODULE)) {
 403                        drbd_err(resource, "Failed to get module reference in drbd_thread_start\n");
 404                        spin_unlock_irqrestore(&thi->t_lock, flags);
 405                        return false;
 406                }
 407
 408                kref_get(&resource->kref);
 409                if (thi->connection)
 410                        kref_get(&thi->connection->kref);
 411
 412                init_completion(&thi->stop);
 413                thi->reset_cpu_mask = 1;
 414                thi->t_state = RUNNING;
 415                spin_unlock_irqrestore(&thi->t_lock, flags);
 416                flush_signals(current); /* otherw. may get -ERESTARTNOINTR */
 417
 418                nt = kthread_create(drbd_thread_setup, (void *) thi,
 419                                    "drbd_%c_%s", thi->name[0], thi->resource->name);
 420
 421                if (IS_ERR(nt)) {
 422                        drbd_err(resource, "Couldn't start thread\n");
 423
 424                        if (thi->connection)
 425                                kref_put(&thi->connection->kref, drbd_destroy_connection);
 426                        kref_put(&resource->kref, drbd_destroy_resource);
 427                        module_put(THIS_MODULE);
 428                        return false;
 429                }
 430                spin_lock_irqsave(&thi->t_lock, flags);
 431                thi->task = nt;
 432                thi->t_state = RUNNING;
 433                spin_unlock_irqrestore(&thi->t_lock, flags);
 434                wake_up_process(nt);
 435                break;
 436        case EXITING:
 437                thi->t_state = RESTARTING;
 438                drbd_info(resource, "Restarting %s thread (from %s [%d])\n",
 439                                thi->name, current->comm, current->pid);
 440                /* fall through */
 441        case RUNNING:
 442        case RESTARTING:
 443        default:
 444                spin_unlock_irqrestore(&thi->t_lock, flags);
 445                break;
 446        }
 447
 448        return true;
 449}
 450
 451
 452void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait)
 453{
 454        unsigned long flags;
 455
 456        enum drbd_thread_state ns = restart ? RESTARTING : EXITING;
 457
 458        /* may be called from state engine, holding the req lock irqsave */
 459        spin_lock_irqsave(&thi->t_lock, flags);
 460
 461        if (thi->t_state == NONE) {
 462                spin_unlock_irqrestore(&thi->t_lock, flags);
 463                if (restart)
 464                        drbd_thread_start(thi);
 465                return;
 466        }
 467
 468        if (thi->t_state != ns) {
 469                if (thi->task == NULL) {
 470                        spin_unlock_irqrestore(&thi->t_lock, flags);
 471                        return;
 472                }
 473
 474                thi->t_state = ns;
 475                smp_mb();
 476                init_completion(&thi->stop);
 477                if (thi->task != current)
 478                        force_sig(DRBD_SIGKILL, thi->task);
 479        }
 480
 481        spin_unlock_irqrestore(&thi->t_lock, flags);
 482
 483        if (wait)
 484                wait_for_completion(&thi->stop);
 485}
 486
 487int conn_lowest_minor(struct drbd_connection *connection)
 488{
 489        struct drbd_peer_device *peer_device;
 490        int vnr = 0, minor = -1;
 491
 492        rcu_read_lock();
 493        peer_device = idr_get_next(&connection->peer_devices, &vnr);
 494        if (peer_device)
 495                minor = device_to_minor(peer_device->device);
 496        rcu_read_unlock();
 497
 498        return minor;
 499}
 500
 501#ifdef CONFIG_SMP
 502/**
 503 * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs
 504 *
 505 * Forces all threads of a resource onto the same CPU. This is beneficial for
 506 * DRBD's performance. May be overwritten by user's configuration.
 507 */
 508static void drbd_calc_cpu_mask(cpumask_var_t *cpu_mask)
 509{
 510        unsigned int *resources_per_cpu, min_index = ~0;
 511
 512        resources_per_cpu = kzalloc(nr_cpu_ids * sizeof(*resources_per_cpu), GFP_KERNEL);
 513        if (resources_per_cpu) {
 514                struct drbd_resource *resource;
 515                unsigned int cpu, min = ~0;
 516
 517                rcu_read_lock();
 518                for_each_resource_rcu(resource, &drbd_resources) {
 519                        for_each_cpu(cpu, resource->cpu_mask)
 520                                resources_per_cpu[cpu]++;
 521                }
 522                rcu_read_unlock();
 523                for_each_online_cpu(cpu) {
 524                        if (resources_per_cpu[cpu] < min) {
 525                                min = resources_per_cpu[cpu];
 526                                min_index = cpu;
 527                        }
 528                }
 529                kfree(resources_per_cpu);
 530        }
 531        if (min_index == ~0) {
 532                cpumask_setall(*cpu_mask);
 533                return;
 534        }
 535        cpumask_set_cpu(min_index, *cpu_mask);
 536}
 537
 538/**
 539 * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread
 540 * @device:     DRBD device.
 541 * @thi:        drbd_thread object
 542 *
 543 * call in the "main loop" of _all_ threads, no need for any mutex, current won't die
 544 * prematurely.
 545 */
 546void drbd_thread_current_set_cpu(struct drbd_thread *thi)
 547{
 548        struct drbd_resource *resource = thi->resource;
 549        struct task_struct *p = current;
 550
 551        if (!thi->reset_cpu_mask)
 552                return;
 553        thi->reset_cpu_mask = 0;
 554        set_cpus_allowed_ptr(p, resource->cpu_mask);
 555}
 556#else
 557#define drbd_calc_cpu_mask(A) ({})
 558#endif
 559
 560/**
 561 * drbd_header_size  -  size of a packet header
 562 *
 563 * The header size is a multiple of 8, so any payload following the header is
 564 * word aligned on 64-bit architectures.  (The bitmap send and receive code
 565 * relies on this.)
 566 */
 567unsigned int drbd_header_size(struct drbd_connection *connection)
 568{
 569        if (connection->agreed_pro_version >= 100) {
 570                BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8));
 571                return sizeof(struct p_header100);
 572        } else {
 573                BUILD_BUG_ON(sizeof(struct p_header80) !=
 574                             sizeof(struct p_header95));
 575                BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8));
 576                return sizeof(struct p_header80);
 577        }
 578}
 579
 580static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size)
 581{
 582        h->magic   = cpu_to_be32(DRBD_MAGIC);
 583        h->command = cpu_to_be16(cmd);
 584        h->length  = cpu_to_be16(size);
 585        return sizeof(struct p_header80);
 586}
 587
 588static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size)
 589{
 590        h->magic   = cpu_to_be16(DRBD_MAGIC_BIG);
 591        h->command = cpu_to_be16(cmd);
 592        h->length = cpu_to_be32(size);
 593        return sizeof(struct p_header95);
 594}
 595
 596static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd,
 597                                      int size, int vnr)
 598{
 599        h->magic = cpu_to_be32(DRBD_MAGIC_100);
 600        h->volume = cpu_to_be16(vnr);
 601        h->command = cpu_to_be16(cmd);
 602        h->length = cpu_to_be32(size);
 603        h->pad = 0;
 604        return sizeof(struct p_header100);
 605}
 606
 607static unsigned int prepare_header(struct drbd_connection *connection, int vnr,
 608                                   void *buffer, enum drbd_packet cmd, int size)
 609{
 610        if (connection->agreed_pro_version >= 100)
 611                return prepare_header100(buffer, cmd, size, vnr);
 612        else if (connection->agreed_pro_version >= 95 &&
 613                 size > DRBD_MAX_SIZE_H80_PACKET)
 614                return prepare_header95(buffer, cmd, size);
 615        else
 616                return prepare_header80(buffer, cmd, size);
 617}
 618
 619static void *__conn_prepare_command(struct drbd_connection *connection,
 620                                    struct drbd_socket *sock)
 621{
 622        if (!sock->socket)
 623                return NULL;
 624        return sock->sbuf + drbd_header_size(connection);
 625}
 626
 627void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock)
 628{
 629        void *p;
 630
 631        mutex_lock(&sock->mutex);
 632        p = __conn_prepare_command(connection, sock);
 633        if (!p)
 634                mutex_unlock(&sock->mutex);
 635
 636        return p;
 637}
 638
 639void *drbd_prepare_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock)
 640{
 641        return conn_prepare_command(peer_device->connection, sock);
 642}
 643
 644static int __send_command(struct drbd_connection *connection, int vnr,
 645                          struct drbd_socket *sock, enum drbd_packet cmd,
 646                          unsigned int header_size, void *data,
 647                          unsigned int size)
 648{
 649        int msg_flags;
 650        int err;
 651
 652        /*
 653         * Called with @data == NULL and the size of the data blocks in @size
 654         * for commands that send data blocks.  For those commands, omit the
 655         * MSG_MORE flag: this will increase the likelihood that data blocks
 656         * which are page aligned on the sender will end up page aligned on the
 657         * receiver.
 658         */
 659        msg_flags = data ? MSG_MORE : 0;
 660
 661        header_size += prepare_header(connection, vnr, sock->sbuf, cmd,
 662                                      header_size + size);
 663        err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size,
 664                            msg_flags);
 665        if (data && !err)
 666                err = drbd_send_all(connection, sock->socket, data, size, 0);
 667        /* DRBD protocol "pings" are latency critical.
 668         * This is supposed to trigger tcp_push_pending_frames() */
 669        if (!err && (cmd == P_PING || cmd == P_PING_ACK))
 670                drbd_tcp_nodelay(sock->socket);
 671
 672        return err;
 673}
 674
 675static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
 676                               enum drbd_packet cmd, unsigned int header_size,
 677                               void *data, unsigned int size)
 678{
 679        return __send_command(connection, 0, sock, cmd, header_size, data, size);
 680}
 681
 682int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
 683                      enum drbd_packet cmd, unsigned int header_size,
 684                      void *data, unsigned int size)
 685{
 686        int err;
 687
 688        err = __conn_send_command(connection, sock, cmd, header_size, data, size);
 689        mutex_unlock(&sock->mutex);
 690        return err;
 691}
 692
 693int drbd_send_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock,
 694                      enum drbd_packet cmd, unsigned int header_size,
 695                      void *data, unsigned int size)
 696{
 697        int err;
 698
 699        err = __send_command(peer_device->connection, peer_device->device->vnr,
 700                             sock, cmd, header_size, data, size);
 701        mutex_unlock(&sock->mutex);
 702        return err;
 703}
 704
 705int drbd_send_ping(struct drbd_connection *connection)
 706{
 707        struct drbd_socket *sock;
 708
 709        sock = &connection->meta;
 710        if (!conn_prepare_command(connection, sock))
 711                return -EIO;
 712        return conn_send_command(connection, sock, P_PING, 0, NULL, 0);
 713}
 714
 715int drbd_send_ping_ack(struct drbd_connection *connection)
 716{
 717        struct drbd_socket *sock;
 718
 719        sock = &connection->meta;
 720        if (!conn_prepare_command(connection, sock))
 721                return -EIO;
 722        return conn_send_command(connection, sock, P_PING_ACK, 0, NULL, 0);
 723}
 724
 725int drbd_send_sync_param(struct drbd_peer_device *peer_device)
 726{
 727        struct drbd_socket *sock;
 728        struct p_rs_param_95 *p;
 729        int size;
 730        const int apv = peer_device->connection->agreed_pro_version;
 731        enum drbd_packet cmd;
 732        struct net_conf *nc;
 733        struct disk_conf *dc;
 734
 735        sock = &peer_device->connection->data;
 736        p = drbd_prepare_command(peer_device, sock);
 737        if (!p)
 738                return -EIO;
 739
 740        rcu_read_lock();
 741        nc = rcu_dereference(peer_device->connection->net_conf);
 742
 743        size = apv <= 87 ? sizeof(struct p_rs_param)
 744                : apv == 88 ? sizeof(struct p_rs_param)
 745                        + strlen(nc->verify_alg) + 1
 746                : apv <= 94 ? sizeof(struct p_rs_param_89)
 747                : /* apv >= 95 */ sizeof(struct p_rs_param_95);
 748
 749        cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM;
 750
 751        /* initialize verify_alg and csums_alg */
 752        memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX);
 753
 754        if (get_ldev(peer_device->device)) {
 755                dc = rcu_dereference(peer_device->device->ldev->disk_conf);
 756                p->resync_rate = cpu_to_be32(dc->resync_rate);
 757                p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead);
 758                p->c_delay_target = cpu_to_be32(dc->c_delay_target);
 759                p->c_fill_target = cpu_to_be32(dc->c_fill_target);
 760                p->c_max_rate = cpu_to_be32(dc->c_max_rate);
 761                put_ldev(peer_device->device);
 762        } else {
 763                p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF);
 764                p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF);
 765                p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF);
 766                p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF);
 767                p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF);
 768        }
 769
 770        if (apv >= 88)
 771                strcpy(p->verify_alg, nc->verify_alg);
 772        if (apv >= 89)
 773                strcpy(p->csums_alg, nc->csums_alg);
 774        rcu_read_unlock();
 775
 776        return drbd_send_command(peer_device, sock, cmd, size, NULL, 0);
 777}
 778
 779int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd)
 780{
 781        struct drbd_socket *sock;
 782        struct p_protocol *p;
 783        struct net_conf *nc;
 784        int size, cf;
 785
 786        sock = &connection->data;
 787        p = __conn_prepare_command(connection, sock);
 788        if (!p)
 789                return -EIO;
 790
 791        rcu_read_lock();
 792        nc = rcu_dereference(connection->net_conf);
 793
 794        if (nc->tentative && connection->agreed_pro_version < 92) {
 795                rcu_read_unlock();
 796                mutex_unlock(&sock->mutex);
 797                drbd_err(connection, "--dry-run is not supported by peer");
 798                return -EOPNOTSUPP;
 799        }
 800
 801        size = sizeof(*p);
 802        if (connection->agreed_pro_version >= 87)
 803                size += strlen(nc->integrity_alg) + 1;
 804
 805        p->protocol      = cpu_to_be32(nc->wire_protocol);
 806        p->after_sb_0p   = cpu_to_be32(nc->after_sb_0p);
 807        p->after_sb_1p   = cpu_to_be32(nc->after_sb_1p);
 808        p->after_sb_2p   = cpu_to_be32(nc->after_sb_2p);
 809        p->two_primaries = cpu_to_be32(nc->two_primaries);
 810        cf = 0;
 811        if (nc->discard_my_data)
 812                cf |= CF_DISCARD_MY_DATA;
 813        if (nc->tentative)
 814                cf |= CF_DRY_RUN;
 815        p->conn_flags    = cpu_to_be32(cf);
 816
 817        if (connection->agreed_pro_version >= 87)
 818                strcpy(p->integrity_alg, nc->integrity_alg);
 819        rcu_read_unlock();
 820
 821        return __conn_send_command(connection, sock, cmd, size, NULL, 0);
 822}
 823
 824int drbd_send_protocol(struct drbd_connection *connection)
 825{
 826        int err;
 827
 828        mutex_lock(&connection->data.mutex);
 829        err = __drbd_send_protocol(connection, P_PROTOCOL);
 830        mutex_unlock(&connection->data.mutex);
 831
 832        return err;
 833}
 834
 835static int _drbd_send_uuids(struct drbd_peer_device *peer_device, u64 uuid_flags)
 836{
 837        struct drbd_device *device = peer_device->device;
 838        struct drbd_socket *sock;
 839        struct p_uuids *p;
 840        int i;
 841
 842        if (!get_ldev_if_state(device, D_NEGOTIATING))
 843                return 0;
 844
 845        sock = &peer_device->connection->data;
 846        p = drbd_prepare_command(peer_device, sock);
 847        if (!p) {
 848                put_ldev(device);
 849                return -EIO;
 850        }
 851        spin_lock_irq(&device->ldev->md.uuid_lock);
 852        for (i = UI_CURRENT; i < UI_SIZE; i++)
 853                p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
 854        spin_unlock_irq(&device->ldev->md.uuid_lock);
 855
 856        device->comm_bm_set = drbd_bm_total_weight(device);
 857        p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set);
 858        rcu_read_lock();
 859        uuid_flags |= rcu_dereference(peer_device->connection->net_conf)->discard_my_data ? 1 : 0;
 860        rcu_read_unlock();
 861        uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0;
 862        uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0;
 863        p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags);
 864
 865        put_ldev(device);
 866        return drbd_send_command(peer_device, sock, P_UUIDS, sizeof(*p), NULL, 0);
 867}
 868
 869int drbd_send_uuids(struct drbd_peer_device *peer_device)
 870{
 871        return _drbd_send_uuids(peer_device, 0);
 872}
 873
 874int drbd_send_uuids_skip_initial_sync(struct drbd_peer_device *peer_device)
 875{
 876        return _drbd_send_uuids(peer_device, 8);
 877}
 878
 879void drbd_print_uuids(struct drbd_device *device, const char *text)
 880{
 881        if (get_ldev_if_state(device, D_NEGOTIATING)) {
 882                u64 *uuid = device->ldev->md.uuid;
 883                drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX\n",
 884                     text,
 885                     (unsigned long long)uuid[UI_CURRENT],
 886                     (unsigned long long)uuid[UI_BITMAP],
 887                     (unsigned long long)uuid[UI_HISTORY_START],
 888                     (unsigned long long)uuid[UI_HISTORY_END]);
 889                put_ldev(device);
 890        } else {
 891                drbd_info(device, "%s effective data uuid: %016llX\n",
 892                                text,
 893                                (unsigned long long)device->ed_uuid);
 894        }
 895}
 896
 897void drbd_gen_and_send_sync_uuid(struct drbd_peer_device *peer_device)
 898{
 899        struct drbd_device *device = peer_device->device;
 900        struct drbd_socket *sock;
 901        struct p_rs_uuid *p;
 902        u64 uuid;
 903
 904        D_ASSERT(device, device->state.disk == D_UP_TO_DATE);
 905
 906        uuid = device->ldev->md.uuid[UI_BITMAP];
 907        if (uuid && uuid != UUID_JUST_CREATED)
 908                uuid = uuid + UUID_NEW_BM_OFFSET;
 909        else
 910                get_random_bytes(&uuid, sizeof(u64));
 911        drbd_uuid_set(device, UI_BITMAP, uuid);
 912        drbd_print_uuids(device, "updated sync UUID");
 913        drbd_md_sync(device);
 914
 915        sock = &peer_device->connection->data;
 916        p = drbd_prepare_command(peer_device, sock);
 917        if (p) {
 918                p->uuid = cpu_to_be64(uuid);
 919                drbd_send_command(peer_device, sock, P_SYNC_UUID, sizeof(*p), NULL, 0);
 920        }
 921}
 922
 923int drbd_send_sizes(struct drbd_peer_device *peer_device, int trigger_reply, enum dds_flags flags)
 924{
 925        struct drbd_device *device = peer_device->device;
 926        struct drbd_socket *sock;
 927        struct p_sizes *p;
 928        sector_t d_size, u_size;
 929        int q_order_type;
 930        unsigned int max_bio_size;
 931
 932        if (get_ldev_if_state(device, D_NEGOTIATING)) {
 933                D_ASSERT(device, device->ldev->backing_bdev);
 934                d_size = drbd_get_max_capacity(device->ldev);
 935                rcu_read_lock();
 936                u_size = rcu_dereference(device->ldev->disk_conf)->disk_size;
 937                rcu_read_unlock();
 938                q_order_type = drbd_queue_order_type(device);
 939                max_bio_size = queue_max_hw_sectors(device->ldev->backing_bdev->bd_disk->queue) << 9;
 940                max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE);
 941                put_ldev(device);
 942        } else {
 943                d_size = 0;
 944                u_size = 0;
 945                q_order_type = QUEUE_ORDERED_NONE;
 946                max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */
 947        }
 948
 949        sock = &peer_device->connection->data;
 950        p = drbd_prepare_command(peer_device, sock);
 951        if (!p)
 952                return -EIO;
 953
 954        if (peer_device->connection->agreed_pro_version <= 94)
 955                max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET);
 956        else if (peer_device->connection->agreed_pro_version < 100)
 957                max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95);
 958
 959        p->d_size = cpu_to_be64(d_size);
 960        p->u_size = cpu_to_be64(u_size);
 961        p->c_size = cpu_to_be64(trigger_reply ? 0 : drbd_get_capacity(device->this_bdev));
 962        p->max_bio_size = cpu_to_be32(max_bio_size);
 963        p->queue_order_type = cpu_to_be16(q_order_type);
 964        p->dds_flags = cpu_to_be16(flags);
 965        return drbd_send_command(peer_device, sock, P_SIZES, sizeof(*p), NULL, 0);
 966}
 967
 968/**
 969 * drbd_send_current_state() - Sends the drbd state to the peer
 970 * @peer_device:        DRBD peer device.
 971 */
 972int drbd_send_current_state(struct drbd_peer_device *peer_device)
 973{
 974        struct drbd_socket *sock;
 975        struct p_state *p;
 976
 977        sock = &peer_device->connection->data;
 978        p = drbd_prepare_command(peer_device, sock);
 979        if (!p)
 980                return -EIO;
 981        p->state = cpu_to_be32(peer_device->device->state.i); /* Within the send mutex */
 982        return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
 983}
 984
 985/**
 986 * drbd_send_state() - After a state change, sends the new state to the peer
 987 * @peer_device:      DRBD peer device.
 988 * @state:     the state to send, not necessarily the current state.
 989 *
 990 * Each state change queues an "after_state_ch" work, which will eventually
 991 * send the resulting new state to the peer. If more state changes happen
 992 * between queuing and processing of the after_state_ch work, we still
 993 * want to send each intermediary state in the order it occurred.
 994 */
 995int drbd_send_state(struct drbd_peer_device *peer_device, union drbd_state state)
 996{
 997        struct drbd_socket *sock;
 998        struct p_state *p;
 999
1000        sock = &peer_device->connection->data;
1001        p = drbd_prepare_command(peer_device, sock);
1002        if (!p)
1003                return -EIO;
1004        p->state = cpu_to_be32(state.i); /* Within the send mutex */
1005        return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
1006}
1007
1008int drbd_send_state_req(struct drbd_peer_device *peer_device, union drbd_state mask, union drbd_state val)
1009{
1010        struct drbd_socket *sock;
1011        struct p_req_state *p;
1012
1013        sock = &peer_device->connection->data;
1014        p = drbd_prepare_command(peer_device, sock);
1015        if (!p)
1016                return -EIO;
1017        p->mask = cpu_to_be32(mask.i);
1018        p->val = cpu_to_be32(val.i);
1019        return drbd_send_command(peer_device, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0);
1020}
1021
1022int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val)
1023{
1024        enum drbd_packet cmd;
1025        struct drbd_socket *sock;
1026        struct p_req_state *p;
1027
1028        cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ;
1029        sock = &connection->data;
1030        p = conn_prepare_command(connection, sock);
1031        if (!p)
1032                return -EIO;
1033        p->mask = cpu_to_be32(mask.i);
1034        p->val = cpu_to_be32(val.i);
1035        return conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1036}
1037
1038void drbd_send_sr_reply(struct drbd_peer_device *peer_device, enum drbd_state_rv retcode)
1039{
1040        struct drbd_socket *sock;
1041        struct p_req_state_reply *p;
1042
1043        sock = &peer_device->connection->meta;
1044        p = drbd_prepare_command(peer_device, sock);
1045        if (p) {
1046                p->retcode = cpu_to_be32(retcode);
1047                drbd_send_command(peer_device, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0);
1048        }
1049}
1050
1051void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode)
1052{
1053        struct drbd_socket *sock;
1054        struct p_req_state_reply *p;
1055        enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY;
1056
1057        sock = &connection->meta;
1058        p = conn_prepare_command(connection, sock);
1059        if (p) {
1060                p->retcode = cpu_to_be32(retcode);
1061                conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1062        }
1063}
1064
1065static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code)
1066{
1067        BUG_ON(code & ~0xf);
1068        p->encoding = (p->encoding & ~0xf) | code;
1069}
1070
1071static void dcbp_set_start(struct p_compressed_bm *p, int set)
1072{
1073        p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0);
1074}
1075
1076static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n)
1077{
1078        BUG_ON(n & ~0x7);
1079        p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4);
1080}
1081
1082static int fill_bitmap_rle_bits(struct drbd_device *device,
1083                         struct p_compressed_bm *p,
1084                         unsigned int size,
1085                         struct bm_xfer_ctx *c)
1086{
1087        struct bitstream bs;
1088        unsigned long plain_bits;
1089        unsigned long tmp;
1090        unsigned long rl;
1091        unsigned len;
1092        unsigned toggle;
1093        int bits, use_rle;
1094
1095        /* may we use this feature? */
1096        rcu_read_lock();
1097        use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle;
1098        rcu_read_unlock();
1099        if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90)
1100                return 0;
1101
1102        if (c->bit_offset >= c->bm_bits)
1103                return 0; /* nothing to do. */
1104
1105        /* use at most thus many bytes */
1106        bitstream_init(&bs, p->code, size, 0);
1107        memset(p->code, 0, size);
1108        /* plain bits covered in this code string */
1109        plain_bits = 0;
1110
1111        /* p->encoding & 0x80 stores whether the first run length is set.
1112         * bit offset is implicit.
1113         * start with toggle == 2 to be able to tell the first iteration */
1114        toggle = 2;
1115
1116        /* see how much plain bits we can stuff into one packet
1117         * using RLE and VLI. */
1118        do {
1119                tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, c->bit_offset)
1120                                    : _drbd_bm_find_next(device, c->bit_offset);
1121                if (tmp == -1UL)
1122                        tmp = c->bm_bits;
1123                rl = tmp - c->bit_offset;
1124
1125                if (toggle == 2) { /* first iteration */
1126                        if (rl == 0) {
1127                                /* the first checked bit was set,
1128                                 * store start value, */
1129                                dcbp_set_start(p, 1);
1130                                /* but skip encoding of zero run length */
1131                                toggle = !toggle;
1132                                continue;
1133                        }
1134                        dcbp_set_start(p, 0);
1135                }
1136
1137                /* paranoia: catch zero runlength.
1138                 * can only happen if bitmap is modified while we scan it. */
1139                if (rl == 0) {
1140                        drbd_err(device, "unexpected zero runlength while encoding bitmap "
1141                            "t:%u bo:%lu\n", toggle, c->bit_offset);
1142                        return -1;
1143                }
1144
1145                bits = vli_encode_bits(&bs, rl);
1146                if (bits == -ENOBUFS) /* buffer full */
1147                        break;
1148                if (bits <= 0) {
1149                        drbd_err(device, "error while encoding bitmap: %d\n", bits);
1150                        return 0;
1151                }
1152
1153                toggle = !toggle;
1154                plain_bits += rl;
1155                c->bit_offset = tmp;
1156        } while (c->bit_offset < c->bm_bits);
1157
1158        len = bs.cur.b - p->code + !!bs.cur.bit;
1159
1160        if (plain_bits < (len << 3)) {
1161                /* incompressible with this method.
1162                 * we need to rewind both word and bit position. */
1163                c->bit_offset -= plain_bits;
1164                bm_xfer_ctx_bit_to_word_offset(c);
1165                c->bit_offset = c->word_offset * BITS_PER_LONG;
1166                return 0;
1167        }
1168
1169        /* RLE + VLI was able to compress it just fine.
1170         * update c->word_offset. */
1171        bm_xfer_ctx_bit_to_word_offset(c);
1172
1173        /* store pad_bits */
1174        dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7);
1175
1176        return len;
1177}
1178
1179/**
1180 * send_bitmap_rle_or_plain
1181 *
1182 * Return 0 when done, 1 when another iteration is needed, and a negative error
1183 * code upon failure.
1184 */
1185static int
1186send_bitmap_rle_or_plain(struct drbd_device *device, struct bm_xfer_ctx *c)
1187{
1188        struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1189        unsigned int header_size = drbd_header_size(first_peer_device(device)->connection);
1190        struct p_compressed_bm *p = sock->sbuf + header_size;
1191        int len, err;
1192
1193        len = fill_bitmap_rle_bits(device, p,
1194                        DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c);
1195        if (len < 0)
1196                return -EIO;
1197
1198        if (len) {
1199                dcbp_set_code(p, RLE_VLI_Bits);
1200                err = __send_command(first_peer_device(device)->connection, device->vnr, sock,
1201                                     P_COMPRESSED_BITMAP, sizeof(*p) + len,
1202                                     NULL, 0);
1203                c->packets[0]++;
1204                c->bytes[0] += header_size + sizeof(*p) + len;
1205
1206                if (c->bit_offset >= c->bm_bits)
1207                        len = 0; /* DONE */
1208        } else {
1209                /* was not compressible.
1210                 * send a buffer full of plain text bits instead. */
1211                unsigned int data_size;
1212                unsigned long num_words;
1213                unsigned long *p = sock->sbuf + header_size;
1214
1215                data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
1216                num_words = min_t(size_t, data_size / sizeof(*p),
1217                                  c->bm_words - c->word_offset);
1218                len = num_words * sizeof(*p);
1219                if (len)
1220                        drbd_bm_get_lel(device, c->word_offset, num_words, p);
1221                err = __send_command(first_peer_device(device)->connection, device->vnr, sock, P_BITMAP, len, NULL, 0);
1222                c->word_offset += num_words;
1223                c->bit_offset = c->word_offset * BITS_PER_LONG;
1224
1225                c->packets[1]++;
1226                c->bytes[1] += header_size + len;
1227
1228                if (c->bit_offset > c->bm_bits)
1229                        c->bit_offset = c->bm_bits;
1230        }
1231        if (!err) {
1232                if (len == 0) {
1233                        INFO_bm_xfer_stats(device, "send", c);
1234                        return 0;
1235                } else
1236                        return 1;
1237        }
1238        return -EIO;
1239}
1240
1241/* See the comment at receive_bitmap() */
1242static int _drbd_send_bitmap(struct drbd_device *device)
1243{
1244        struct bm_xfer_ctx c;
1245        int err;
1246
1247        if (!expect(device->bitmap))
1248                return false;
1249
1250        if (get_ldev(device)) {
1251                if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) {
1252                        drbd_info(device, "Writing the whole bitmap, MDF_FullSync was set.\n");
1253                        drbd_bm_set_all(device);
1254                        if (drbd_bm_write(device)) {
1255                                /* write_bm did fail! Leave full sync flag set in Meta P_DATA
1256                                 * but otherwise process as per normal - need to tell other
1257                                 * side that a full resync is required! */
1258                                drbd_err(device, "Failed to write bitmap to disk!\n");
1259                        } else {
1260                                drbd_md_clear_flag(device, MDF_FULL_SYNC);
1261                                drbd_md_sync(device);
1262                        }
1263                }
1264                put_ldev(device);
1265        }
1266
1267        c = (struct bm_xfer_ctx) {
1268                .bm_bits = drbd_bm_bits(device),
1269                .bm_words = drbd_bm_words(device),
1270        };
1271
1272        do {
1273                err = send_bitmap_rle_or_plain(device, &c);
1274        } while (err > 0);
1275
1276        return err == 0;
1277}
1278
1279int drbd_send_bitmap(struct drbd_device *device)
1280{
1281        struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1282        int err = -1;
1283
1284        mutex_lock(&sock->mutex);
1285        if (sock->socket)
1286                err = !_drbd_send_bitmap(device);
1287        mutex_unlock(&sock->mutex);
1288        return err;
1289}
1290
1291void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size)
1292{
1293        struct drbd_socket *sock;
1294        struct p_barrier_ack *p;
1295
1296        if (connection->cstate < C_WF_REPORT_PARAMS)
1297                return;
1298
1299        sock = &connection->meta;
1300        p = conn_prepare_command(connection, sock);
1301        if (!p)
1302                return;
1303        p->barrier = barrier_nr;
1304        p->set_size = cpu_to_be32(set_size);
1305        conn_send_command(connection, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0);
1306}
1307
1308/**
1309 * _drbd_send_ack() - Sends an ack packet
1310 * @device:     DRBD device.
1311 * @cmd:        Packet command code.
1312 * @sector:     sector, needs to be in big endian byte order
1313 * @blksize:    size in byte, needs to be in big endian byte order
1314 * @block_id:   Id, big endian byte order
1315 */
1316static int _drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1317                          u64 sector, u32 blksize, u64 block_id)
1318{
1319        struct drbd_socket *sock;
1320        struct p_block_ack *p;
1321
1322        if (peer_device->device->state.conn < C_CONNECTED)
1323                return -EIO;
1324
1325        sock = &peer_device->connection->meta;
1326        p = drbd_prepare_command(peer_device, sock);
1327        if (!p)
1328                return -EIO;
1329        p->sector = sector;
1330        p->block_id = block_id;
1331        p->blksize = blksize;
1332        p->seq_num = cpu_to_be32(atomic_inc_return(&peer_device->device->packet_seq));
1333        return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1334}
1335
1336/* dp->sector and dp->block_id already/still in network byte order,
1337 * data_size is payload size according to dp->head,
1338 * and may need to be corrected for digest size. */
1339void drbd_send_ack_dp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1340                      struct p_data *dp, int data_size)
1341{
1342        if (peer_device->connection->peer_integrity_tfm)
1343                data_size -= crypto_ahash_digestsize(peer_device->connection->peer_integrity_tfm);
1344        _drbd_send_ack(peer_device, cmd, dp->sector, cpu_to_be32(data_size),
1345                       dp->block_id);
1346}
1347
1348void drbd_send_ack_rp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1349                      struct p_block_req *rp)
1350{
1351        _drbd_send_ack(peer_device, cmd, rp->sector, rp->blksize, rp->block_id);
1352}
1353
1354/**
1355 * drbd_send_ack() - Sends an ack packet
1356 * @device:     DRBD device
1357 * @cmd:        packet command code
1358 * @peer_req:   peer request
1359 */
1360int drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1361                  struct drbd_peer_request *peer_req)
1362{
1363        return _drbd_send_ack(peer_device, cmd,
1364                              cpu_to_be64(peer_req->i.sector),
1365                              cpu_to_be32(peer_req->i.size),
1366                              peer_req->block_id);
1367}
1368
1369/* This function misuses the block_id field to signal if the blocks
1370 * are is sync or not. */
1371int drbd_send_ack_ex(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1372                     sector_t sector, int blksize, u64 block_id)
1373{
1374        return _drbd_send_ack(peer_device, cmd,
1375                              cpu_to_be64(sector),
1376                              cpu_to_be32(blksize),
1377                              cpu_to_be64(block_id));
1378}
1379
1380int drbd_send_drequest(struct drbd_peer_device *peer_device, int cmd,
1381                       sector_t sector, int size, u64 block_id)
1382{
1383        struct drbd_socket *sock;
1384        struct p_block_req *p;
1385
1386        sock = &peer_device->connection->data;
1387        p = drbd_prepare_command(peer_device, sock);
1388        if (!p)
1389                return -EIO;
1390        p->sector = cpu_to_be64(sector);
1391        p->block_id = block_id;
1392        p->blksize = cpu_to_be32(size);
1393        return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1394}
1395
1396int drbd_send_drequest_csum(struct drbd_peer_device *peer_device, sector_t sector, int size,
1397                            void *digest, int digest_size, enum drbd_packet cmd)
1398{
1399        struct drbd_socket *sock;
1400        struct p_block_req *p;
1401
1402        /* FIXME: Put the digest into the preallocated socket buffer.  */
1403
1404        sock = &peer_device->connection->data;
1405        p = drbd_prepare_command(peer_device, sock);
1406        if (!p)
1407                return -EIO;
1408        p->sector = cpu_to_be64(sector);
1409        p->block_id = ID_SYNCER /* unused */;
1410        p->blksize = cpu_to_be32(size);
1411        return drbd_send_command(peer_device, sock, cmd, sizeof(*p), digest, digest_size);
1412}
1413
1414int drbd_send_ov_request(struct drbd_peer_device *peer_device, sector_t sector, int size)
1415{
1416        struct drbd_socket *sock;
1417        struct p_block_req *p;
1418
1419        sock = &peer_device->connection->data;
1420        p = drbd_prepare_command(peer_device, sock);
1421        if (!p)
1422                return -EIO;
1423        p->sector = cpu_to_be64(sector);
1424        p->block_id = ID_SYNCER /* unused */;
1425        p->blksize = cpu_to_be32(size);
1426        return drbd_send_command(peer_device, sock, P_OV_REQUEST, sizeof(*p), NULL, 0);
1427}
1428
1429/* called on sndtimeo
1430 * returns false if we should retry,
1431 * true if we think connection is dead
1432 */
1433static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock)
1434{
1435        int drop_it;
1436        /* long elapsed = (long)(jiffies - device->last_received); */
1437
1438        drop_it =   connection->meta.socket == sock
1439                || !connection->ack_receiver.task
1440                || get_t_state(&connection->ack_receiver) != RUNNING
1441                || connection->cstate < C_WF_REPORT_PARAMS;
1442
1443        if (drop_it)
1444                return true;
1445
1446        drop_it = !--connection->ko_count;
1447        if (!drop_it) {
1448                drbd_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n",
1449                         current->comm, current->pid, connection->ko_count);
1450                request_ping(connection);
1451        }
1452
1453        return drop_it; /* && (device->state == R_PRIMARY) */;
1454}
1455
1456static void drbd_update_congested(struct drbd_connection *connection)
1457{
1458        struct sock *sk = connection->data.socket->sk;
1459        if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5)
1460                set_bit(NET_CONGESTED, &connection->flags);
1461}
1462
1463/* The idea of sendpage seems to be to put some kind of reference
1464 * to the page into the skb, and to hand it over to the NIC. In
1465 * this process get_page() gets called.
1466 *
1467 * As soon as the page was really sent over the network put_page()
1468 * gets called by some part of the network layer. [ NIC driver? ]
1469 *
1470 * [ get_page() / put_page() increment/decrement the count. If count
1471 *   reaches 0 the page will be freed. ]
1472 *
1473 * This works nicely with pages from FSs.
1474 * But this means that in protocol A we might signal IO completion too early!
1475 *
1476 * In order not to corrupt data during a resync we must make sure
1477 * that we do not reuse our own buffer pages (EEs) to early, therefore
1478 * we have the net_ee list.
1479 *
1480 * XFS seems to have problems, still, it submits pages with page_count == 0!
1481 * As a workaround, we disable sendpage on pages
1482 * with page_count == 0 or PageSlab.
1483 */
1484static int _drbd_no_send_page(struct drbd_peer_device *peer_device, struct page *page,
1485                              int offset, size_t size, unsigned msg_flags)
1486{
1487        struct socket *socket;
1488        void *addr;
1489        int err;
1490
1491        socket = peer_device->connection->data.socket;
1492        addr = kmap(page) + offset;
1493        err = drbd_send_all(peer_device->connection, socket, addr, size, msg_flags);
1494        kunmap(page);
1495        if (!err)
1496                peer_device->device->send_cnt += size >> 9;
1497        return err;
1498}
1499
1500static int _drbd_send_page(struct drbd_peer_device *peer_device, struct page *page,
1501                    int offset, size_t size, unsigned msg_flags)
1502{
1503        struct socket *socket = peer_device->connection->data.socket;
1504        mm_segment_t oldfs = get_fs();
1505        int len = size;
1506        int err = -EIO;
1507
1508        /* e.g. XFS meta- & log-data is in slab pages, which have a
1509         * page_count of 0 and/or have PageSlab() set.
1510         * we cannot use send_page for those, as that does get_page();
1511         * put_page(); and would cause either a VM_BUG directly, or
1512         * __page_cache_release a page that would actually still be referenced
1513         * by someone, leading to some obscure delayed Oops somewhere else. */
1514        if (disable_sendpage || (page_count(page) < 1) || PageSlab(page))
1515                return _drbd_no_send_page(peer_device, page, offset, size, msg_flags);
1516
1517        msg_flags |= MSG_NOSIGNAL;
1518        drbd_update_congested(peer_device->connection);
1519        set_fs(KERNEL_DS);
1520        do {
1521                int sent;
1522
1523                sent = socket->ops->sendpage(socket, page, offset, len, msg_flags);
1524                if (sent <= 0) {
1525                        if (sent == -EAGAIN) {
1526                                if (we_should_drop_the_connection(peer_device->connection, socket))
1527                                        break;
1528                                continue;
1529                        }
1530                        drbd_warn(peer_device->device, "%s: size=%d len=%d sent=%d\n",
1531                             __func__, (int)size, len, sent);
1532                        if (sent < 0)
1533                                err = sent;
1534                        break;
1535                }
1536                len    -= sent;
1537                offset += sent;
1538        } while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/);
1539        set_fs(oldfs);
1540        clear_bit(NET_CONGESTED, &peer_device->connection->flags);
1541
1542        if (len == 0) {
1543                err = 0;
1544                peer_device->device->send_cnt += size >> 9;
1545        }
1546        return err;
1547}
1548
1549static int _drbd_send_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1550{
1551        struct bio_vec bvec;
1552        struct bvec_iter iter;
1553
1554        /* hint all but last page with MSG_MORE */
1555        bio_for_each_segment(bvec, bio, iter) {
1556                int err;
1557
1558                err = _drbd_no_send_page(peer_device, bvec.bv_page,
1559                                         bvec.bv_offset, bvec.bv_len,
1560                                         bio_iter_last(bvec, iter)
1561                                         ? 0 : MSG_MORE);
1562                if (err)
1563                        return err;
1564        }
1565        return 0;
1566}
1567
1568static int _drbd_send_zc_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1569{
1570        struct bio_vec bvec;
1571        struct bvec_iter iter;
1572
1573        /* hint all but last page with MSG_MORE */
1574        bio_for_each_segment(bvec, bio, iter) {
1575                int err;
1576
1577                err = _drbd_send_page(peer_device, bvec.bv_page,
1578                                      bvec.bv_offset, bvec.bv_len,
1579                                      bio_iter_last(bvec, iter) ? 0 : MSG_MORE);
1580                if (err)
1581                        return err;
1582        }
1583        return 0;
1584}
1585
1586static int _drbd_send_zc_ee(struct drbd_peer_device *peer_device,
1587                            struct drbd_peer_request *peer_req)
1588{
1589        struct page *page = peer_req->pages;
1590        unsigned len = peer_req->i.size;
1591        int err;
1592
1593        /* hint all but last page with MSG_MORE */
1594        page_chain_for_each(page) {
1595                unsigned l = min_t(unsigned, len, PAGE_SIZE);
1596
1597                err = _drbd_send_page(peer_device, page, 0, l,
1598                                      page_chain_next(page) ? MSG_MORE : 0);
1599                if (err)
1600                        return err;
1601                len -= l;
1602        }
1603        return 0;
1604}
1605
1606static u32 bio_flags_to_wire(struct drbd_connection *connection, unsigned long bi_rw)
1607{
1608        if (connection->agreed_pro_version >= 95)
1609                return  (bi_rw & REQ_SYNC ? DP_RW_SYNC : 0) |
1610                        (bi_rw & REQ_FUA ? DP_FUA : 0) |
1611                        (bi_rw & REQ_FLUSH ? DP_FLUSH : 0) |
1612                        (bi_rw & REQ_DISCARD ? DP_DISCARD : 0);
1613        else
1614                return bi_rw & REQ_SYNC ? DP_RW_SYNC : 0;
1615}
1616
1617/* Used to send write or TRIM aka REQ_DISCARD requests
1618 * R_PRIMARY -> Peer    (P_DATA, P_TRIM)
1619 */
1620int drbd_send_dblock(struct drbd_peer_device *peer_device, struct drbd_request *req)
1621{
1622        struct drbd_device *device = peer_device->device;
1623        struct drbd_socket *sock;
1624        struct p_data *p;
1625        unsigned int dp_flags = 0;
1626        int digest_size;
1627        int err;
1628
1629        sock = &peer_device->connection->data;
1630        p = drbd_prepare_command(peer_device, sock);
1631        digest_size = peer_device->connection->integrity_tfm ?
1632                      crypto_ahash_digestsize(peer_device->connection->integrity_tfm) : 0;
1633
1634        if (!p)
1635                return -EIO;
1636        p->sector = cpu_to_be64(req->i.sector);
1637        p->block_id = (unsigned long)req;
1638        p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq));
1639        dp_flags = bio_flags_to_wire(peer_device->connection, req->master_bio->bi_rw);
1640        if (device->state.conn >= C_SYNC_SOURCE &&
1641            device->state.conn <= C_PAUSED_SYNC_T)
1642                dp_flags |= DP_MAY_SET_IN_SYNC;
1643        if (peer_device->connection->agreed_pro_version >= 100) {
1644                if (req->rq_state & RQ_EXP_RECEIVE_ACK)
1645                        dp_flags |= DP_SEND_RECEIVE_ACK;
1646                /* During resync, request an explicit write ack,
1647                 * even in protocol != C */
1648                if (req->rq_state & RQ_EXP_WRITE_ACK
1649                || (dp_flags & DP_MAY_SET_IN_SYNC))
1650                        dp_flags |= DP_SEND_WRITE_ACK;
1651        }
1652        p->dp_flags = cpu_to_be32(dp_flags);
1653
1654        if (dp_flags & DP_DISCARD) {
1655                struct p_trim *t = (struct p_trim*)p;
1656                t->size = cpu_to_be32(req->i.size);
1657                err = __send_command(peer_device->connection, device->vnr, sock, P_TRIM, sizeof(*t), NULL, 0);
1658                goto out;
1659        }
1660
1661        /* our digest is still only over the payload.
1662         * TRIM does not carry any payload. */
1663        if (digest_size)
1664                drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, p + 1);
1665        err = __send_command(peer_device->connection, device->vnr, sock, P_DATA, sizeof(*p) + digest_size, NULL, req->i.size);
1666        if (!err) {
1667                /* For protocol A, we have to memcpy the payload into
1668                 * socket buffers, as we may complete right away
1669                 * as soon as we handed it over to tcp, at which point the data
1670                 * pages may become invalid.
1671                 *
1672                 * For data-integrity enabled, we copy it as well, so we can be
1673                 * sure that even if the bio pages may still be modified, it
1674                 * won't change the data on the wire, thus if the digest checks
1675                 * out ok after sending on this side, but does not fit on the
1676                 * receiving side, we sure have detected corruption elsewhere.
1677                 */
1678                if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || digest_size)
1679                        err = _drbd_send_bio(peer_device, req->master_bio);
1680                else
1681                        err = _drbd_send_zc_bio(peer_device, req->master_bio);
1682
1683                /* double check digest, sometimes buffers have been modified in flight. */
1684                if (digest_size > 0 && digest_size <= 64) {
1685                        /* 64 byte, 512 bit, is the largest digest size
1686                         * currently supported in kernel crypto. */
1687                        unsigned char digest[64];
1688                        drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest);
1689                        if (memcmp(p + 1, digest, digest_size)) {
1690                                drbd_warn(device,
1691                                        "Digest mismatch, buffer modified by upper layers during write: %llus +%u\n",
1692                                        (unsigned long long)req->i.sector, req->i.size);
1693                        }
1694                } /* else if (digest_size > 64) {
1695                     ... Be noisy about digest too large ...
1696                } */
1697        }
1698out:
1699        mutex_unlock(&sock->mutex);  /* locked by drbd_prepare_command() */
1700
1701        return err;
1702}
1703
1704/* answer packet, used to send data back for read requests:
1705 *  Peer       -> (diskless) R_PRIMARY   (P_DATA_REPLY)
1706 *  C_SYNC_SOURCE -> C_SYNC_TARGET         (P_RS_DATA_REPLY)
1707 */
1708int drbd_send_block(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1709                    struct drbd_peer_request *peer_req)
1710{
1711        struct drbd_device *device = peer_device->device;
1712        struct drbd_socket *sock;
1713        struct p_data *p;
1714        int err;
1715        int digest_size;
1716
1717        sock = &peer_device->connection->data;
1718        p = drbd_prepare_command(peer_device, sock);
1719
1720        digest_size = peer_device->connection->integrity_tfm ?
1721                      crypto_ahash_digestsize(peer_device->connection->integrity_tfm) : 0;
1722
1723        if (!p)
1724                return -EIO;
1725        p->sector = cpu_to_be64(peer_req->i.sector);
1726        p->block_id = peer_req->block_id;
1727        p->seq_num = 0;  /* unused */
1728        p->dp_flags = 0;
1729        if (digest_size)
1730                drbd_csum_ee(peer_device->connection->integrity_tfm, peer_req, p + 1);
1731        err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*p) + digest_size, NULL, peer_req->i.size);
1732        if (!err)
1733                err = _drbd_send_zc_ee(peer_device, peer_req);
1734        mutex_unlock(&sock->mutex);  /* locked by drbd_prepare_command() */
1735
1736        return err;
1737}
1738
1739int drbd_send_out_of_sync(struct drbd_peer_device *peer_device, struct drbd_request *req)
1740{
1741        struct drbd_socket *sock;
1742        struct p_block_desc *p;
1743
1744        sock = &peer_device->connection->data;
1745        p = drbd_prepare_command(peer_device, sock);
1746        if (!p)
1747                return -EIO;
1748        p->sector = cpu_to_be64(req->i.sector);
1749        p->blksize = cpu_to_be32(req->i.size);
1750        return drbd_send_command(peer_device, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0);
1751}
1752
1753/*
1754  drbd_send distinguishes two cases:
1755
1756  Packets sent via the data socket "sock"
1757  and packets sent via the meta data socket "msock"
1758
1759                    sock                      msock
1760  -----------------+-------------------------+------------------------------
1761  timeout           conf.timeout / 2          conf.timeout / 2
1762  timeout action    send a ping via msock     Abort communication
1763                                              and close all sockets
1764*/
1765
1766/*
1767 * you must have down()ed the appropriate [m]sock_mutex elsewhere!
1768 */
1769int drbd_send(struct drbd_connection *connection, struct socket *sock,
1770              void *buf, size_t size, unsigned msg_flags)
1771{
1772        struct kvec iov;
1773        struct msghdr msg;
1774        int rv, sent = 0;
1775
1776        if (!sock)
1777                return -EBADR;
1778
1779        /* THINK  if (signal_pending) return ... ? */
1780
1781        iov.iov_base = buf;
1782        iov.iov_len  = size;
1783
1784        msg.msg_name       = NULL;
1785        msg.msg_namelen    = 0;
1786        msg.msg_control    = NULL;
1787        msg.msg_controllen = 0;
1788        msg.msg_flags      = msg_flags | MSG_NOSIGNAL;
1789
1790        if (sock == connection->data.socket) {
1791                rcu_read_lock();
1792                connection->ko_count = rcu_dereference(connection->net_conf)->ko_count;
1793                rcu_read_unlock();
1794                drbd_update_congested(connection);
1795        }
1796        do {
1797                rv = kernel_sendmsg(sock, &msg, &iov, 1, size);
1798                if (rv == -EAGAIN) {
1799                        if (we_should_drop_the_connection(connection, sock))
1800                                break;
1801                        else
1802                                continue;
1803                }
1804                if (rv == -EINTR) {
1805                        flush_signals(current);
1806                        rv = 0;
1807                }
1808                if (rv < 0)
1809                        break;
1810                sent += rv;
1811                iov.iov_base += rv;
1812                iov.iov_len  -= rv;
1813        } while (sent < size);
1814
1815        if (sock == connection->data.socket)
1816                clear_bit(NET_CONGESTED, &connection->flags);
1817
1818        if (rv <= 0) {
1819                if (rv != -EAGAIN) {
1820                        drbd_err(connection, "%s_sendmsg returned %d\n",
1821                                 sock == connection->meta.socket ? "msock" : "sock",
1822                                 rv);
1823                        conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD);
1824                } else
1825                        conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD);
1826        }
1827
1828        return sent;
1829}
1830
1831/**
1832 * drbd_send_all  -  Send an entire buffer
1833 *
1834 * Returns 0 upon success and a negative error value otherwise.
1835 */
1836int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer,
1837                  size_t size, unsigned msg_flags)
1838{
1839        int err;
1840
1841        err = drbd_send(connection, sock, buffer, size, msg_flags);
1842        if (err < 0)
1843                return err;
1844        if (err != size)
1845                return -EIO;
1846        return 0;
1847}
1848
1849static int drbd_open(struct block_device *bdev, fmode_t mode)
1850{
1851        struct drbd_device *device = bdev->bd_disk->private_data;
1852        unsigned long flags;
1853        int rv = 0;
1854
1855        mutex_lock(&drbd_main_mutex);
1856        spin_lock_irqsave(&device->resource->req_lock, flags);
1857        /* to have a stable device->state.role
1858         * and no race with updating open_cnt */
1859
1860        if (device->state.role != R_PRIMARY) {
1861                if (mode & FMODE_WRITE)
1862                        rv = -EROFS;
1863                else if (!allow_oos)
1864                        rv = -EMEDIUMTYPE;
1865        }
1866
1867        if (!rv)
1868                device->open_cnt++;
1869        spin_unlock_irqrestore(&device->resource->req_lock, flags);
1870        mutex_unlock(&drbd_main_mutex);
1871
1872        return rv;
1873}
1874
1875static void drbd_release(struct gendisk *gd, fmode_t mode)
1876{
1877        struct drbd_device *device = gd->private_data;
1878        mutex_lock(&drbd_main_mutex);
1879        device->open_cnt--;
1880        mutex_unlock(&drbd_main_mutex);
1881}
1882
1883static void drbd_set_defaults(struct drbd_device *device)
1884{
1885        /* Beware! The actual layout differs
1886         * between big endian and little endian */
1887        device->state = (union drbd_dev_state) {
1888                { .role = R_SECONDARY,
1889                  .peer = R_UNKNOWN,
1890                  .conn = C_STANDALONE,
1891                  .disk = D_DISKLESS,
1892                  .pdsk = D_UNKNOWN,
1893                } };
1894}
1895
1896void drbd_init_set_defaults(struct drbd_device *device)
1897{
1898        /* the memset(,0,) did most of this.
1899         * note: only assignments, no allocation in here */
1900
1901        drbd_set_defaults(device);
1902
1903        atomic_set(&device->ap_bio_cnt, 0);
1904        atomic_set(&device->ap_actlog_cnt, 0);
1905        atomic_set(&device->ap_pending_cnt, 0);
1906        atomic_set(&device->rs_pending_cnt, 0);
1907        atomic_set(&device->unacked_cnt, 0);
1908        atomic_set(&device->local_cnt, 0);
1909        atomic_set(&device->pp_in_use_by_net, 0);
1910        atomic_set(&device->rs_sect_in, 0);
1911        atomic_set(&device->rs_sect_ev, 0);
1912        atomic_set(&device->ap_in_flight, 0);
1913        atomic_set(&device->md_io.in_use, 0);
1914
1915        mutex_init(&device->own_state_mutex);
1916        device->state_mutex = &device->own_state_mutex;
1917
1918        spin_lock_init(&device->al_lock);
1919        spin_lock_init(&device->peer_seq_lock);
1920
1921        INIT_LIST_HEAD(&device->active_ee);
1922        INIT_LIST_HEAD(&device->sync_ee);
1923        INIT_LIST_HEAD(&device->done_ee);
1924        INIT_LIST_HEAD(&device->read_ee);
1925        INIT_LIST_HEAD(&device->net_ee);
1926        INIT_LIST_HEAD(&device->resync_reads);
1927        INIT_LIST_HEAD(&device->resync_work.list);
1928        INIT_LIST_HEAD(&device->unplug_work.list);
1929        INIT_LIST_HEAD(&device->bm_io_work.w.list);
1930        INIT_LIST_HEAD(&device->pending_master_completion[0]);
1931        INIT_LIST_HEAD(&device->pending_master_completion[1]);
1932        INIT_LIST_HEAD(&device->pending_completion[0]);
1933        INIT_LIST_HEAD(&device->pending_completion[1]);
1934
1935        device->resync_work.cb  = w_resync_timer;
1936        device->unplug_work.cb  = w_send_write_hint;
1937        device->bm_io_work.w.cb = w_bitmap_io;
1938
1939        init_timer(&device->resync_timer);
1940        init_timer(&device->md_sync_timer);
1941        init_timer(&device->start_resync_timer);
1942        init_timer(&device->request_timer);
1943        device->resync_timer.function = resync_timer_fn;
1944        device->resync_timer.data = (unsigned long) device;
1945        device->md_sync_timer.function = md_sync_timer_fn;
1946        device->md_sync_timer.data = (unsigned long) device;
1947        device->start_resync_timer.function = start_resync_timer_fn;
1948        device->start_resync_timer.data = (unsigned long) device;
1949        device->request_timer.function = request_timer_fn;
1950        device->request_timer.data = (unsigned long) device;
1951
1952        init_waitqueue_head(&device->misc_wait);
1953        init_waitqueue_head(&device->state_wait);
1954        init_waitqueue_head(&device->ee_wait);
1955        init_waitqueue_head(&device->al_wait);
1956        init_waitqueue_head(&device->seq_wait);
1957
1958        device->resync_wenr = LC_FREE;
1959        device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
1960        device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
1961}
1962
1963void drbd_device_cleanup(struct drbd_device *device)
1964{
1965        int i;
1966        if (first_peer_device(device)->connection->receiver.t_state != NONE)
1967                drbd_err(device, "ASSERT FAILED: receiver t_state == %d expected 0.\n",
1968                                first_peer_device(device)->connection->receiver.t_state);
1969
1970        device->al_writ_cnt  =
1971        device->bm_writ_cnt  =
1972        device->read_cnt     =
1973        device->recv_cnt     =
1974        device->send_cnt     =
1975        device->writ_cnt     =
1976        device->p_size       =
1977        device->rs_start     =
1978        device->rs_total     =
1979        device->rs_failed    = 0;
1980        device->rs_last_events = 0;
1981        device->rs_last_sect_ev = 0;
1982        for (i = 0; i < DRBD_SYNC_MARKS; i++) {
1983                device->rs_mark_left[i] = 0;
1984                device->rs_mark_time[i] = 0;
1985        }
1986        D_ASSERT(device, first_peer_device(device)->connection->net_conf == NULL);
1987
1988        drbd_set_my_capacity(device, 0);
1989        if (device->bitmap) {
1990                /* maybe never allocated. */
1991                drbd_bm_resize(device, 0, 1);
1992                drbd_bm_cleanup(device);
1993        }
1994
1995        drbd_backing_dev_free(device, device->ldev);
1996        device->ldev = NULL;
1997
1998        clear_bit(AL_SUSPENDED, &device->flags);
1999
2000        D_ASSERT(device, list_empty(&device->active_ee));
2001        D_ASSERT(device, list_empty(&device->sync_ee));
2002        D_ASSERT(device, list_empty(&device->done_ee));
2003        D_ASSERT(device, list_empty(&device->read_ee));
2004        D_ASSERT(device, list_empty(&device->net_ee));
2005        D_ASSERT(device, list_empty(&device->resync_reads));
2006        D_ASSERT(device, list_empty(&first_peer_device(device)->connection->sender_work.q));
2007        D_ASSERT(device, list_empty(&device->resync_work.list));
2008        D_ASSERT(device, list_empty(&device->unplug_work.list));
2009
2010        drbd_set_defaults(device);
2011}
2012
2013
2014static void drbd_destroy_mempools(void)
2015{
2016        struct page *page;
2017
2018        while (drbd_pp_pool) {
2019                page = drbd_pp_pool;
2020                drbd_pp_pool = (struct page *)page_private(page);
2021                __free_page(page);
2022                drbd_pp_vacant--;
2023        }
2024
2025        /* D_ASSERT(device, atomic_read(&drbd_pp_vacant)==0); */
2026
2027        if (drbd_md_io_bio_set)
2028                bioset_free(drbd_md_io_bio_set);
2029        if (drbd_md_io_page_pool)
2030                mempool_destroy(drbd_md_io_page_pool);
2031        if (drbd_ee_mempool)
2032                mempool_destroy(drbd_ee_mempool);
2033        if (drbd_request_mempool)
2034                mempool_destroy(drbd_request_mempool);
2035        if (drbd_ee_cache)
2036                kmem_cache_destroy(drbd_ee_cache);
2037        if (drbd_request_cache)
2038                kmem_cache_destroy(drbd_request_cache);
2039        if (drbd_bm_ext_cache)
2040                kmem_cache_destroy(drbd_bm_ext_cache);
2041        if (drbd_al_ext_cache)
2042                kmem_cache_destroy(drbd_al_ext_cache);
2043
2044        drbd_md_io_bio_set   = NULL;
2045        drbd_md_io_page_pool = NULL;
2046        drbd_ee_mempool      = NULL;
2047        drbd_request_mempool = NULL;
2048        drbd_ee_cache        = NULL;
2049        drbd_request_cache   = NULL;
2050        drbd_bm_ext_cache    = NULL;
2051        drbd_al_ext_cache    = NULL;
2052
2053        return;
2054}
2055
2056static int drbd_create_mempools(void)
2057{
2058        struct page *page;
2059        const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * minor_count;
2060        int i;
2061
2062        /* prepare our caches and mempools */
2063        drbd_request_mempool = NULL;
2064        drbd_ee_cache        = NULL;
2065        drbd_request_cache   = NULL;
2066        drbd_bm_ext_cache    = NULL;
2067        drbd_al_ext_cache    = NULL;
2068        drbd_pp_pool         = NULL;
2069        drbd_md_io_page_pool = NULL;
2070        drbd_md_io_bio_set   = NULL;
2071
2072        /* caches */
2073        drbd_request_cache = kmem_cache_create(
2074                "drbd_req", sizeof(struct drbd_request), 0, 0, NULL);
2075        if (drbd_request_cache == NULL)
2076                goto Enomem;
2077
2078        drbd_ee_cache = kmem_cache_create(
2079                "drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL);
2080        if (drbd_ee_cache == NULL)
2081                goto Enomem;
2082
2083        drbd_bm_ext_cache = kmem_cache_create(
2084                "drbd_bm", sizeof(struct bm_extent), 0, 0, NULL);
2085        if (drbd_bm_ext_cache == NULL)
2086                goto Enomem;
2087
2088        drbd_al_ext_cache = kmem_cache_create(
2089                "drbd_al", sizeof(struct lc_element), 0, 0, NULL);
2090        if (drbd_al_ext_cache == NULL)
2091                goto Enomem;
2092
2093        /* mempools */
2094        drbd_md_io_bio_set = bioset_create(DRBD_MIN_POOL_PAGES, 0);
2095        if (drbd_md_io_bio_set == NULL)
2096                goto Enomem;
2097
2098        drbd_md_io_page_pool = mempool_create_page_pool(DRBD_MIN_POOL_PAGES, 0);
2099        if (drbd_md_io_page_pool == NULL)
2100                goto Enomem;
2101
2102        drbd_request_mempool = mempool_create_slab_pool(number,
2103                drbd_request_cache);
2104        if (drbd_request_mempool == NULL)
2105                goto Enomem;
2106
2107        drbd_ee_mempool = mempool_create_slab_pool(number, drbd_ee_cache);
2108        if (drbd_ee_mempool == NULL)
2109                goto Enomem;
2110
2111        /* drbd's page pool */
2112        spin_lock_init(&drbd_pp_lock);
2113
2114        for (i = 0; i < number; i++) {
2115                page = alloc_page(GFP_HIGHUSER);
2116                if (!page)
2117                        goto Enomem;
2118                set_page_private(page, (unsigned long)drbd_pp_pool);
2119                drbd_pp_pool = page;
2120        }
2121        drbd_pp_vacant = number;
2122
2123        return 0;
2124
2125Enomem:
2126        drbd_destroy_mempools(); /* in case we allocated some */
2127        return -ENOMEM;
2128}
2129
2130static void drbd_release_all_peer_reqs(struct drbd_device *device)
2131{
2132        int rr;
2133
2134        rr = drbd_free_peer_reqs(device, &device->active_ee);
2135        if (rr)
2136                drbd_err(device, "%d EEs in active list found!\n", rr);
2137
2138        rr = drbd_free_peer_reqs(device, &device->sync_ee);
2139        if (rr)
2140                drbd_err(device, "%d EEs in sync list found!\n", rr);
2141
2142        rr = drbd_free_peer_reqs(device, &device->read_ee);
2143        if (rr)
2144                drbd_err(device, "%d EEs in read list found!\n", rr);
2145
2146        rr = drbd_free_peer_reqs(device, &device->done_ee);
2147        if (rr)
2148                drbd_err(device, "%d EEs in done list found!\n", rr);
2149
2150        rr = drbd_free_peer_reqs(device, &device->net_ee);
2151        if (rr)
2152                drbd_err(device, "%d EEs in net list found!\n", rr);
2153}
2154
2155/* caution. no locking. */
2156void drbd_destroy_device(struct kref *kref)
2157{
2158        struct drbd_device *device = container_of(kref, struct drbd_device, kref);
2159        struct drbd_resource *resource = device->resource;
2160        struct drbd_peer_device *peer_device, *tmp_peer_device;
2161
2162        del_timer_sync(&device->request_timer);
2163
2164        /* paranoia asserts */
2165        D_ASSERT(device, device->open_cnt == 0);
2166        /* end paranoia asserts */
2167
2168        /* cleanup stuff that may have been allocated during
2169         * device (re-)configuration or state changes */
2170
2171        if (device->this_bdev)
2172                bdput(device->this_bdev);
2173
2174        drbd_backing_dev_free(device, device->ldev);
2175        device->ldev = NULL;
2176
2177        drbd_release_all_peer_reqs(device);
2178
2179        lc_destroy(device->act_log);
2180        lc_destroy(device->resync);
2181
2182        kfree(device->p_uuid);
2183        /* device->p_uuid = NULL; */
2184
2185        if (device->bitmap) /* should no longer be there. */
2186                drbd_bm_cleanup(device);
2187        __free_page(device->md_io.page);
2188        put_disk(device->vdisk);
2189        blk_cleanup_queue(device->rq_queue);
2190        kfree(device->rs_plan_s);
2191
2192        /* not for_each_connection(connection, resource):
2193         * those may have been cleaned up and disassociated already.
2194         */
2195        for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2196                kref_put(&peer_device->connection->kref, drbd_destroy_connection);
2197                kfree(peer_device);
2198        }
2199        memset(device, 0xfd, sizeof(*device));
2200        kfree(device);
2201        kref_put(&resource->kref, drbd_destroy_resource);
2202}
2203
2204/* One global retry thread, if we need to push back some bio and have it
2205 * reinserted through our make request function.
2206 */
2207static struct retry_worker {
2208        struct workqueue_struct *wq;
2209        struct work_struct worker;
2210
2211        spinlock_t lock;
2212        struct list_head writes;
2213} retry;
2214
2215static void do_retry(struct work_struct *ws)
2216{
2217        struct retry_worker *retry = container_of(ws, struct retry_worker, worker);
2218        LIST_HEAD(writes);
2219        struct drbd_request *req, *tmp;
2220
2221        spin_lock_irq(&retry->lock);
2222        list_splice_init(&retry->writes, &writes);
2223        spin_unlock_irq(&retry->lock);
2224
2225        list_for_each_entry_safe(req, tmp, &writes, tl_requests) {
2226                struct drbd_device *device = req->device;
2227                struct bio *bio = req->master_bio;
2228                unsigned long start_jif = req->start_jif;
2229                bool expected;
2230
2231                expected =
2232                        expect(atomic_read(&req->completion_ref) == 0) &&
2233                        expect(req->rq_state & RQ_POSTPONED) &&
2234                        expect((req->rq_state & RQ_LOCAL_PENDING) == 0 ||
2235                                (req->rq_state & RQ_LOCAL_ABORTED) != 0);
2236
2237                if (!expected)
2238                        drbd_err(device, "req=%p completion_ref=%d rq_state=%x\n",
2239                                req, atomic_read(&req->completion_ref),
2240                                req->rq_state);
2241
2242                /* We still need to put one kref associated with the
2243                 * "completion_ref" going zero in the code path that queued it
2244                 * here.  The request object may still be referenced by a
2245                 * frozen local req->private_bio, in case we force-detached.
2246                 */
2247                kref_put(&req->kref, drbd_req_destroy);
2248
2249                /* A single suspended or otherwise blocking device may stall
2250                 * all others as well.  Fortunately, this code path is to
2251                 * recover from a situation that "should not happen":
2252                 * concurrent writes in multi-primary setup.
2253                 * In a "normal" lifecycle, this workqueue is supposed to be
2254                 * destroyed without ever doing anything.
2255                 * If it turns out to be an issue anyways, we can do per
2256                 * resource (replication group) or per device (minor) retry
2257                 * workqueues instead.
2258                 */
2259
2260                /* We are not just doing generic_make_request(),
2261                 * as we want to keep the start_time information. */
2262                inc_ap_bio(device);
2263                __drbd_make_request(device, bio, start_jif);
2264        }
2265}
2266
2267/* called via drbd_req_put_completion_ref(),
2268 * holds resource->req_lock */
2269void drbd_restart_request(struct drbd_request *req)
2270{
2271        unsigned long flags;
2272        spin_lock_irqsave(&retry.lock, flags);
2273        list_move_tail(&req->tl_requests, &retry.writes);
2274        spin_unlock_irqrestore(&retry.lock, flags);
2275
2276        /* Drop the extra reference that would otherwise
2277         * have been dropped by complete_master_bio.
2278         * do_retry() needs to grab a new one. */
2279        dec_ap_bio(req->device);
2280
2281        queue_work(retry.wq, &retry.worker);
2282}
2283
2284void drbd_destroy_resource(struct kref *kref)
2285{
2286        struct drbd_resource *resource =
2287                container_of(kref, struct drbd_resource, kref);
2288
2289        idr_destroy(&resource->devices);
2290        free_cpumask_var(resource->cpu_mask);
2291        kfree(resource->name);
2292        memset(resource, 0xf2, sizeof(*resource));
2293        kfree(resource);
2294}
2295
2296void drbd_free_resource(struct drbd_resource *resource)
2297{
2298        struct drbd_connection *connection, *tmp;
2299
2300        for_each_connection_safe(connection, tmp, resource) {
2301                list_del(&connection->connections);
2302                drbd_debugfs_connection_cleanup(connection);
2303                kref_put(&connection->kref, drbd_destroy_connection);
2304        }
2305        drbd_debugfs_resource_cleanup(resource);
2306        kref_put(&resource->kref, drbd_destroy_resource);
2307}
2308
2309static void drbd_cleanup(void)
2310{
2311        unsigned int i;
2312        struct drbd_device *device;
2313        struct drbd_resource *resource, *tmp;
2314
2315        /* first remove proc,
2316         * drbdsetup uses it's presence to detect
2317         * whether DRBD is loaded.
2318         * If we would get stuck in proc removal,
2319         * but have netlink already deregistered,
2320         * some drbdsetup commands may wait forever
2321         * for an answer.
2322         */
2323        if (drbd_proc)
2324                remove_proc_entry("drbd", NULL);
2325
2326        if (retry.wq)
2327                destroy_workqueue(retry.wq);
2328
2329        drbd_genl_unregister();
2330        drbd_debugfs_cleanup();
2331
2332        idr_for_each_entry(&drbd_devices, device, i)
2333                drbd_delete_device(device);
2334
2335        /* not _rcu since, no other updater anymore. Genl already unregistered */
2336        for_each_resource_safe(resource, tmp, &drbd_resources) {
2337                list_del(&resource->resources);
2338                drbd_free_resource(resource);
2339        }
2340
2341        drbd_destroy_mempools();
2342        unregister_blkdev(DRBD_MAJOR, "drbd");
2343
2344        idr_destroy(&drbd_devices);
2345
2346        pr_info("module cleanup done.\n");
2347}
2348
2349/**
2350 * drbd_congested() - Callback for the flusher thread
2351 * @congested_data:     User data
2352 * @bdi_bits:           Bits the BDI flusher thread is currently interested in
2353 *
2354 * Returns 1<<WB_async_congested and/or 1<<WB_sync_congested if we are congested.
2355 */
2356static int drbd_congested(void *congested_data, int bdi_bits)
2357{
2358        struct drbd_device *device = congested_data;
2359        struct request_queue *q;
2360        char reason = '-';
2361        int r = 0;
2362
2363        if (!may_inc_ap_bio(device)) {
2364                /* DRBD has frozen IO */
2365                r = bdi_bits;
2366                reason = 'd';
2367                goto out;
2368        }
2369
2370        if (test_bit(CALLBACK_PENDING, &first_peer_device(device)->connection->flags)) {
2371                r |= (1 << WB_async_congested);
2372                /* Without good local data, we would need to read from remote,
2373                 * and that would need the worker thread as well, which is
2374                 * currently blocked waiting for that usermode helper to
2375                 * finish.
2376                 */
2377                if (!get_ldev_if_state(device, D_UP_TO_DATE))
2378                        r |= (1 << WB_sync_congested);
2379                else
2380                        put_ldev(device);
2381                r &= bdi_bits;
2382                reason = 'c';
2383                goto out;
2384        }
2385
2386        if (get_ldev(device)) {
2387                q = bdev_get_queue(device->ldev->backing_bdev);
2388                r = bdi_congested(&q->backing_dev_info, bdi_bits);
2389                put_ldev(device);
2390                if (r)
2391                        reason = 'b';
2392        }
2393
2394        if (bdi_bits & (1 << WB_async_congested) &&
2395            test_bit(NET_CONGESTED, &first_peer_device(device)->connection->flags)) {
2396                r |= (1 << WB_async_congested);
2397                reason = reason == 'b' ? 'a' : 'n';
2398        }
2399
2400out:
2401        device->congestion_reason = reason;
2402        return r;
2403}
2404
2405static void drbd_init_workqueue(struct drbd_work_queue* wq)
2406{
2407        spin_lock_init(&wq->q_lock);
2408        INIT_LIST_HEAD(&wq->q);
2409        init_waitqueue_head(&wq->q_wait);
2410}
2411
2412struct completion_work {
2413        struct drbd_work w;
2414        struct completion done;
2415};
2416
2417static int w_complete(struct drbd_work *w, int cancel)
2418{
2419        struct completion_work *completion_work =
2420                container_of(w, struct completion_work, w);
2421
2422        complete(&completion_work->done);
2423        return 0;
2424}
2425
2426void drbd_flush_workqueue(struct drbd_work_queue *work_queue)
2427{
2428        struct completion_work completion_work;
2429
2430        completion_work.w.cb = w_complete;
2431        init_completion(&completion_work.done);
2432        drbd_queue_work(work_queue, &completion_work.w);
2433        wait_for_completion(&completion_work.done);
2434}
2435
2436struct drbd_resource *drbd_find_resource(const char *name)
2437{
2438        struct drbd_resource *resource;
2439
2440        if (!name || !name[0])
2441                return NULL;
2442
2443        rcu_read_lock();
2444        for_each_resource_rcu(resource, &drbd_resources) {
2445                if (!strcmp(resource->name, name)) {
2446                        kref_get(&resource->kref);
2447                        goto found;
2448                }
2449        }
2450        resource = NULL;
2451found:
2452        rcu_read_unlock();
2453        return resource;
2454}
2455
2456struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len,
2457                                     void *peer_addr, int peer_addr_len)
2458{
2459        struct drbd_resource *resource;
2460        struct drbd_connection *connection;
2461
2462        rcu_read_lock();
2463        for_each_resource_rcu(resource, &drbd_resources) {
2464                for_each_connection_rcu(connection, resource) {
2465                        if (connection->my_addr_len == my_addr_len &&
2466                            connection->peer_addr_len == peer_addr_len &&
2467                            !memcmp(&connection->my_addr, my_addr, my_addr_len) &&
2468                            !memcmp(&connection->peer_addr, peer_addr, peer_addr_len)) {
2469                                kref_get(&connection->kref);
2470                                goto found;
2471                        }
2472                }
2473        }
2474        connection = NULL;
2475found:
2476        rcu_read_unlock();
2477        return connection;
2478}
2479
2480static int drbd_alloc_socket(struct drbd_socket *socket)
2481{
2482        socket->rbuf = (void *) __get_free_page(GFP_KERNEL);
2483        if (!socket->rbuf)
2484                return -ENOMEM;
2485        socket->sbuf = (void *) __get_free_page(GFP_KERNEL);
2486        if (!socket->sbuf)
2487                return -ENOMEM;
2488        return 0;
2489}
2490
2491static void drbd_free_socket(struct drbd_socket *socket)
2492{
2493        free_page((unsigned long) socket->sbuf);
2494        free_page((unsigned long) socket->rbuf);
2495}
2496
2497void conn_free_crypto(struct drbd_connection *connection)
2498{
2499        drbd_free_sock(connection);
2500
2501        crypto_free_ahash(connection->csums_tfm);
2502        crypto_free_ahash(connection->verify_tfm);
2503        crypto_free_shash(connection->cram_hmac_tfm);
2504        crypto_free_ahash(connection->integrity_tfm);
2505        crypto_free_ahash(connection->peer_integrity_tfm);
2506        kfree(connection->int_dig_in);
2507        kfree(connection->int_dig_vv);
2508
2509        connection->csums_tfm = NULL;
2510        connection->verify_tfm = NULL;
2511        connection->cram_hmac_tfm = NULL;
2512        connection->integrity_tfm = NULL;
2513        connection->peer_integrity_tfm = NULL;
2514        connection->int_dig_in = NULL;
2515        connection->int_dig_vv = NULL;
2516}
2517
2518int set_resource_options(struct drbd_resource *resource, struct res_opts *res_opts)
2519{
2520        struct drbd_connection *connection;
2521        cpumask_var_t new_cpu_mask;
2522        int err;
2523
2524        if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL))
2525                return -ENOMEM;
2526
2527        /* silently ignore cpu mask on UP kernel */
2528        if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) {
2529                err = bitmap_parse(res_opts->cpu_mask, DRBD_CPU_MASK_SIZE,
2530                                   cpumask_bits(new_cpu_mask), nr_cpu_ids);
2531                if (err == -EOVERFLOW) {
2532                        /* So what. mask it out. */
2533                        cpumask_var_t tmp_cpu_mask;
2534                        if (zalloc_cpumask_var(&tmp_cpu_mask, GFP_KERNEL)) {
2535                                cpumask_setall(tmp_cpu_mask);
2536                                cpumask_and(new_cpu_mask, new_cpu_mask, tmp_cpu_mask);
2537                                drbd_warn(resource, "Overflow in bitmap_parse(%.12s%s), truncating to %u bits\n",
2538                                        res_opts->cpu_mask,
2539                                        strlen(res_opts->cpu_mask) > 12 ? "..." : "",
2540                                        nr_cpu_ids);
2541                                free_cpumask_var(tmp_cpu_mask);
2542                                err = 0;
2543                        }
2544                }
2545                if (err) {
2546                        drbd_warn(resource, "bitmap_parse() failed with %d\n", err);
2547                        /* retcode = ERR_CPU_MASK_PARSE; */
2548                        goto fail;
2549                }
2550        }
2551        resource->res_opts = *res_opts;
2552        if (cpumask_empty(new_cpu_mask))
2553                drbd_calc_cpu_mask(&new_cpu_mask);
2554        if (!cpumask_equal(resource->cpu_mask, new_cpu_mask)) {
2555                cpumask_copy(resource->cpu_mask, new_cpu_mask);
2556                for_each_connection_rcu(connection, resource) {
2557                        connection->receiver.reset_cpu_mask = 1;
2558                        connection->ack_receiver.reset_cpu_mask = 1;
2559                        connection->worker.reset_cpu_mask = 1;
2560                }
2561        }
2562        err = 0;
2563
2564fail:
2565        free_cpumask_var(new_cpu_mask);
2566        return err;
2567
2568}
2569
2570struct drbd_resource *drbd_create_resource(const char *name)
2571{
2572        struct drbd_resource *resource;
2573
2574        resource = kzalloc(sizeof(struct drbd_resource), GFP_KERNEL);
2575        if (!resource)
2576                goto fail;
2577        resource->name = kstrdup(name, GFP_KERNEL);
2578        if (!resource->name)
2579                goto fail_free_resource;
2580        if (!zalloc_cpumask_var(&resource->cpu_mask, GFP_KERNEL))
2581                goto fail_free_name;
2582        kref_init(&resource->kref);
2583        idr_init(&resource->devices);
2584        INIT_LIST_HEAD(&resource->connections);
2585        resource->write_ordering = WO_BDEV_FLUSH;
2586        list_add_tail_rcu(&resource->resources, &drbd_resources);
2587        mutex_init(&resource->conf_update);
2588        mutex_init(&resource->adm_mutex);
2589        spin_lock_init(&resource->req_lock);
2590        drbd_debugfs_resource_add(resource);
2591        return resource;
2592
2593fail_free_name:
2594        kfree(resource->name);
2595fail_free_resource:
2596        kfree(resource);
2597fail:
2598        return NULL;
2599}
2600
2601/* caller must be under adm_mutex */
2602struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts)
2603{
2604        struct drbd_resource *resource;
2605        struct drbd_connection *connection;
2606
2607        connection = kzalloc(sizeof(struct drbd_connection), GFP_KERNEL);
2608        if (!connection)
2609                return NULL;
2610
2611        if (drbd_alloc_socket(&connection->data))
2612                goto fail;
2613        if (drbd_alloc_socket(&connection->meta))
2614                goto fail;
2615
2616        connection->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL);
2617        if (!connection->current_epoch)
2618                goto fail;
2619
2620        INIT_LIST_HEAD(&connection->transfer_log);
2621
2622        INIT_LIST_HEAD(&connection->current_epoch->list);
2623        connection->epochs = 1;
2624        spin_lock_init(&connection->epoch_lock);
2625
2626        connection->send.seen_any_write_yet = false;
2627        connection->send.current_epoch_nr = 0;
2628        connection->send.current_epoch_writes = 0;
2629
2630        resource = drbd_create_resource(name);
2631        if (!resource)
2632                goto fail;
2633
2634        connection->cstate = C_STANDALONE;
2635        mutex_init(&connection->cstate_mutex);
2636        init_waitqueue_head(&connection->ping_wait);
2637        idr_init(&connection->peer_devices);
2638
2639        drbd_init_workqueue(&connection->sender_work);
2640        mutex_init(&connection->data.mutex);
2641        mutex_init(&connection->meta.mutex);
2642
2643        drbd_thread_init(resource, &connection->receiver, drbd_receiver, "receiver");
2644        connection->receiver.connection = connection;
2645        drbd_thread_init(resource, &connection->worker, drbd_worker, "worker");
2646        connection->worker.connection = connection;
2647        drbd_thread_init(resource, &connection->ack_receiver, drbd_ack_receiver, "ack_recv");
2648        connection->ack_receiver.connection = connection;
2649
2650        kref_init(&connection->kref);
2651
2652        connection->resource = resource;
2653
2654        if (set_resource_options(resource, res_opts))
2655                goto fail_resource;
2656
2657        kref_get(&resource->kref);
2658        list_add_tail_rcu(&connection->connections, &resource->connections);
2659        drbd_debugfs_connection_add(connection);
2660        return connection;
2661
2662fail_resource:
2663        list_del(&resource->resources);
2664        drbd_free_resource(resource);
2665fail:
2666        kfree(connection->current_epoch);
2667        drbd_free_socket(&connection->meta);
2668        drbd_free_socket(&connection->data);
2669        kfree(connection);
2670        return NULL;
2671}
2672
2673void drbd_destroy_connection(struct kref *kref)
2674{
2675        struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref);
2676        struct drbd_resource *resource = connection->resource;
2677
2678        if (atomic_read(&connection->current_epoch->epoch_size) !=  0)
2679                drbd_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size));
2680        kfree(connection->current_epoch);
2681
2682        idr_destroy(&connection->peer_devices);
2683
2684        drbd_free_socket(&connection->meta);
2685        drbd_free_socket(&connection->data);
2686        kfree(connection->int_dig_in);
2687        kfree(connection->int_dig_vv);
2688        memset(connection, 0xfc, sizeof(*connection));
2689        kfree(connection);
2690        kref_put(&resource->kref, drbd_destroy_resource);
2691}
2692
2693static int init_submitter(struct drbd_device *device)
2694{
2695        /* opencoded create_singlethread_workqueue(),
2696         * to be able to say "drbd%d", ..., minor */
2697        device->submit.wq =
2698                alloc_ordered_workqueue("drbd%u_submit", WQ_MEM_RECLAIM, device->minor);
2699        if (!device->submit.wq)
2700                return -ENOMEM;
2701
2702        INIT_WORK(&device->submit.worker, do_submit);
2703        INIT_LIST_HEAD(&device->submit.writes);
2704        return 0;
2705}
2706
2707enum drbd_ret_code drbd_create_device(struct drbd_config_context *adm_ctx, unsigned int minor)
2708{
2709        struct drbd_resource *resource = adm_ctx->resource;
2710        struct drbd_connection *connection;
2711        struct drbd_device *device;
2712        struct drbd_peer_device *peer_device, *tmp_peer_device;
2713        struct gendisk *disk;
2714        struct request_queue *q;
2715        int id;
2716        int vnr = adm_ctx->volume;
2717        enum drbd_ret_code err = ERR_NOMEM;
2718
2719        device = minor_to_device(minor);
2720        if (device)
2721                return ERR_MINOR_OR_VOLUME_EXISTS;
2722
2723        /* GFP_KERNEL, we are outside of all write-out paths */
2724        device = kzalloc(sizeof(struct drbd_device), GFP_KERNEL);
2725        if (!device)
2726                return ERR_NOMEM;
2727        kref_init(&device->kref);
2728
2729        kref_get(&resource->kref);
2730        device->resource = resource;
2731        device->minor = minor;
2732        device->vnr = vnr;
2733
2734        drbd_init_set_defaults(device);
2735
2736        q = blk_alloc_queue(GFP_KERNEL);
2737        if (!q)
2738                goto out_no_q;
2739        device->rq_queue = q;
2740        q->queuedata   = device;
2741
2742        disk = alloc_disk(1);
2743        if (!disk)
2744                goto out_no_disk;
2745        device->vdisk = disk;
2746
2747        set_disk_ro(disk, true);
2748
2749        disk->queue = q;
2750        disk->major = DRBD_MAJOR;
2751        disk->first_minor = minor;
2752        disk->fops = &drbd_ops;
2753        sprintf(disk->disk_name, "drbd%d", minor);
2754        disk->private_data = device;
2755
2756        device->this_bdev = bdget(MKDEV(DRBD_MAJOR, minor));
2757        /* we have no partitions. we contain only ourselves. */
2758        device->this_bdev->bd_contains = device->this_bdev;
2759
2760        q->backing_dev_info.congested_fn = drbd_congested;
2761        q->backing_dev_info.congested_data = device;
2762
2763        blk_queue_make_request(q, drbd_make_request);
2764        blk_queue_flush(q, REQ_FLUSH | REQ_FUA);
2765        /* Setting the max_hw_sectors to an odd value of 8kibyte here
2766           This triggers a max_bio_size message upon first attach or connect */
2767        blk_queue_max_hw_sectors(q, DRBD_MAX_BIO_SIZE_SAFE >> 8);
2768        blk_queue_bounce_limit(q, BLK_BOUNCE_ANY);
2769        q->queue_lock = &resource->req_lock;
2770
2771        device->md_io.page = alloc_page(GFP_KERNEL);
2772        if (!device->md_io.page)
2773                goto out_no_io_page;
2774
2775        if (drbd_bm_init(device))
2776                goto out_no_bitmap;
2777        device->read_requests = RB_ROOT;
2778        device->write_requests = RB_ROOT;
2779
2780        id = idr_alloc(&drbd_devices, device, minor, minor + 1, GFP_KERNEL);
2781        if (id < 0) {
2782                if (id == -ENOSPC)
2783                        err = ERR_MINOR_OR_VOLUME_EXISTS;
2784                goto out_no_minor_idr;
2785        }
2786        kref_get(&device->kref);
2787
2788        id = idr_alloc(&resource->devices, device, vnr, vnr + 1, GFP_KERNEL);
2789        if (id < 0) {
2790                if (id == -ENOSPC)
2791                        err = ERR_MINOR_OR_VOLUME_EXISTS;
2792                goto out_idr_remove_minor;
2793        }
2794        kref_get(&device->kref);
2795
2796        INIT_LIST_HEAD(&device->peer_devices);
2797        INIT_LIST_HEAD(&device->pending_bitmap_io);
2798        for_each_connection(connection, resource) {
2799                peer_device = kzalloc(sizeof(struct drbd_peer_device), GFP_KERNEL);
2800                if (!peer_device)
2801                        goto out_idr_remove_from_resource;
2802                peer_device->connection = connection;
2803                peer_device->device = device;
2804
2805                list_add(&peer_device->peer_devices, &device->peer_devices);
2806                kref_get(&device->kref);
2807
2808                id = idr_alloc(&connection->peer_devices, peer_device, vnr, vnr + 1, GFP_KERNEL);
2809                if (id < 0) {
2810                        if (id == -ENOSPC)
2811                                err = ERR_INVALID_REQUEST;
2812                        goto out_idr_remove_from_resource;
2813                }
2814                kref_get(&connection->kref);
2815                INIT_WORK(&peer_device->send_acks_work, drbd_send_acks_wf);
2816        }
2817
2818        if (init_submitter(device)) {
2819                err = ERR_NOMEM;
2820                goto out_idr_remove_vol;
2821        }
2822
2823        add_disk(disk);
2824
2825        /* inherit the connection state */
2826        device->state.conn = first_connection(resource)->cstate;
2827        if (device->state.conn == C_WF_REPORT_PARAMS) {
2828                for_each_peer_device(peer_device, device)
2829                        drbd_connected(peer_device);
2830        }
2831        /* move to create_peer_device() */
2832        for_each_peer_device(peer_device, device)
2833                drbd_debugfs_peer_device_add(peer_device);
2834        drbd_debugfs_device_add(device);
2835        return NO_ERROR;
2836
2837out_idr_remove_vol:
2838        idr_remove(&connection->peer_devices, vnr);
2839out_idr_remove_from_resource:
2840        for_each_connection(connection, resource) {
2841                peer_device = idr_find(&connection->peer_devices, vnr);
2842                if (peer_device) {
2843                        idr_remove(&connection->peer_devices, vnr);
2844                        kref_put(&connection->kref, drbd_destroy_connection);
2845                }
2846        }
2847        for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2848                list_del(&peer_device->peer_devices);
2849                kfree(peer_device);
2850        }
2851        idr_remove(&resource->devices, vnr);
2852out_idr_remove_minor:
2853        idr_remove(&drbd_devices, minor);
2854        synchronize_rcu();
2855out_no_minor_idr:
2856        drbd_bm_cleanup(device);
2857out_no_bitmap:
2858        __free_page(device->md_io.page);
2859out_no_io_page:
2860        put_disk(disk);
2861out_no_disk:
2862        blk_cleanup_queue(q);
2863out_no_q:
2864        kref_put(&resource->kref, drbd_destroy_resource);
2865        kfree(device);
2866        return err;
2867}
2868
2869void drbd_delete_device(struct drbd_device *device)
2870{
2871        struct drbd_resource *resource = device->resource;
2872        struct drbd_connection *connection;
2873        struct drbd_peer_device *peer_device;
2874        int refs = 3;
2875
2876        /* move to free_peer_device() */
2877        for_each_peer_device(peer_device, device)
2878                drbd_debugfs_peer_device_cleanup(peer_device);
2879        drbd_debugfs_device_cleanup(device);
2880        for_each_connection(connection, resource) {
2881                idr_remove(&connection->peer_devices, device->vnr);
2882                refs++;
2883        }
2884        idr_remove(&resource->devices, device->vnr);
2885        idr_remove(&drbd_devices, device_to_minor(device));
2886        del_gendisk(device->vdisk);
2887        synchronize_rcu();
2888        kref_sub(&device->kref, refs, drbd_destroy_device);
2889}
2890
2891static int __init drbd_init(void)
2892{
2893        int err;
2894
2895        if (minor_count < DRBD_MINOR_COUNT_MIN || minor_count > DRBD_MINOR_COUNT_MAX) {
2896                pr_err("invalid minor_count (%d)\n", minor_count);
2897#ifdef MODULE
2898                return -EINVAL;
2899#else
2900                minor_count = DRBD_MINOR_COUNT_DEF;
2901#endif
2902        }
2903
2904        err = register_blkdev(DRBD_MAJOR, "drbd");
2905        if (err) {
2906                pr_err("unable to register block device major %d\n",
2907                       DRBD_MAJOR);
2908                return err;
2909        }
2910
2911        /*
2912         * allocate all necessary structs
2913         */
2914        init_waitqueue_head(&drbd_pp_wait);
2915
2916        drbd_proc = NULL; /* play safe for drbd_cleanup */
2917        idr_init(&drbd_devices);
2918
2919        mutex_init(&resources_mutex);
2920        INIT_LIST_HEAD(&drbd_resources);
2921
2922        err = drbd_genl_register();
2923        if (err) {
2924                pr_err("unable to register generic netlink family\n");
2925                goto fail;
2926        }
2927
2928        err = drbd_create_mempools();
2929        if (err)
2930                goto fail;
2931
2932        err = -ENOMEM;
2933        drbd_proc = proc_create_data("drbd", S_IFREG | S_IRUGO , NULL, &drbd_proc_fops, NULL);
2934        if (!drbd_proc) {
2935                pr_err("unable to register proc file\n");
2936                goto fail;
2937        }
2938
2939        retry.wq = create_singlethread_workqueue("drbd-reissue");
2940        if (!retry.wq) {
2941                pr_err("unable to create retry workqueue\n");
2942                goto fail;
2943        }
2944        INIT_WORK(&retry.worker, do_retry);
2945        spin_lock_init(&retry.lock);
2946        INIT_LIST_HEAD(&retry.writes);
2947
2948        if (drbd_debugfs_init())
2949                pr_notice("failed to initialize debugfs -- will not be available\n");
2950
2951        pr_info("initialized. "
2952               "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n",
2953               API_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX);
2954        pr_info("%s\n", drbd_buildtag());
2955        pr_info("registered as block device major %d\n", DRBD_MAJOR);
2956        return 0; /* Success! */
2957
2958fail:
2959        drbd_cleanup();
2960        if (err == -ENOMEM)
2961                pr_err("ran out of memory\n");
2962        else
2963                pr_err("initialization failure\n");
2964        return err;
2965}
2966
2967static void drbd_free_one_sock(struct drbd_socket *ds)
2968{
2969        struct socket *s;
2970        mutex_lock(&ds->mutex);
2971        s = ds->socket;
2972        ds->socket = NULL;
2973        mutex_unlock(&ds->mutex);
2974        if (s) {
2975                /* so debugfs does not need to mutex_lock() */
2976                synchronize_rcu();
2977                kernel_sock_shutdown(s, SHUT_RDWR);
2978                sock_release(s);
2979        }
2980}
2981
2982void drbd_free_sock(struct drbd_connection *connection)
2983{
2984        if (connection->data.socket)
2985                drbd_free_one_sock(&connection->data);
2986        if (connection->meta.socket)
2987                drbd_free_one_sock(&connection->meta);
2988}
2989
2990/* meta data management */
2991
2992void conn_md_sync(struct drbd_connection *connection)
2993{
2994        struct drbd_peer_device *peer_device;
2995        int vnr;
2996
2997        rcu_read_lock();
2998        idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
2999                struct drbd_device *device = peer_device->device;
3000
3001                kref_get(&device->kref);
3002                rcu_read_unlock();
3003                drbd_md_sync(device);
3004                kref_put(&device->kref, drbd_destroy_device);
3005                rcu_read_lock();
3006        }
3007        rcu_read_unlock();
3008}
3009
3010/* aligned 4kByte */
3011struct meta_data_on_disk {
3012        u64 la_size_sect;      /* last agreed size. */
3013        u64 uuid[UI_SIZE];   /* UUIDs. */
3014        u64 device_uuid;
3015        u64 reserved_u64_1;
3016        u32 flags;             /* MDF */
3017        u32 magic;
3018        u32 md_size_sect;
3019        u32 al_offset;         /* offset to this block */
3020        u32 al_nr_extents;     /* important for restoring the AL (userspace) */
3021              /* `-- act_log->nr_elements <-- ldev->dc.al_extents */
3022        u32 bm_offset;         /* offset to the bitmap, from here */
3023        u32 bm_bytes_per_bit;  /* BM_BLOCK_SIZE */
3024        u32 la_peer_max_bio_size;   /* last peer max_bio_size */
3025
3026        /* see al_tr_number_to_on_disk_sector() */
3027        u32 al_stripes;
3028        u32 al_stripe_size_4k;
3029
3030        u8 reserved_u8[4096 - (7*8 + 10*4)];
3031} __packed;
3032
3033
3034
3035void drbd_md_write(struct drbd_device *device, void *b)
3036{
3037        struct meta_data_on_disk *buffer = b;
3038        sector_t sector;
3039        int i;
3040
3041        memset(buffer, 0, sizeof(*buffer));
3042
3043        buffer->la_size_sect = cpu_to_be64(drbd_get_capacity(device->this_bdev));
3044        for (i = UI_CURRENT; i < UI_SIZE; i++)
3045                buffer->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
3046        buffer->flags = cpu_to_be32(device->ldev->md.flags);
3047        buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN);
3048
3049        buffer->md_size_sect  = cpu_to_be32(device->ldev->md.md_size_sect);
3050        buffer->al_offset     = cpu_to_be32(device->ldev->md.al_offset);
3051        buffer->al_nr_extents = cpu_to_be32(device->act_log->nr_elements);
3052        buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE);
3053        buffer->device_uuid = cpu_to_be64(device->ldev->md.device_uuid);
3054
3055        buffer->bm_offset = cpu_to_be32(device->ldev->md.bm_offset);
3056        buffer->la_peer_max_bio_size = cpu_to_be32(device->peer_max_bio_size);
3057
3058        buffer->al_stripes = cpu_to_be32(device->ldev->md.al_stripes);
3059        buffer->al_stripe_size_4k = cpu_to_be32(device->ldev->md.al_stripe_size_4k);
3060
3061        D_ASSERT(device, drbd_md_ss(device->ldev) == device->ldev->md.md_offset);
3062        sector = device->ldev->md.md_offset;
3063
3064        if (drbd_md_sync_page_io(device, device->ldev, sector, WRITE)) {
3065                /* this was a try anyways ... */
3066                drbd_err(device, "meta data update failed!\n");
3067                drbd_chk_io_error(device, 1, DRBD_META_IO_ERROR);
3068        }
3069}
3070
3071/**
3072 * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set
3073 * @device:     DRBD device.
3074 */
3075void drbd_md_sync(struct drbd_device *device)
3076{
3077        struct meta_data_on_disk *buffer;
3078
3079        /* Don't accidentally change the DRBD meta data layout. */
3080        BUILD_BUG_ON(UI_SIZE != 4);
3081        BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096);
3082
3083        del_timer(&device->md_sync_timer);
3084        /* timer may be rearmed by drbd_md_mark_dirty() now. */
3085        if (!test_and_clear_bit(MD_DIRTY, &device->flags))
3086                return;
3087
3088        /* We use here D_FAILED and not D_ATTACHING because we try to write
3089         * metadata even if we detach due to a disk failure! */
3090        if (!get_ldev_if_state(device, D_FAILED))
3091                return;
3092
3093        buffer = drbd_md_get_buffer(device, __func__);
3094        if (!buffer)
3095                goto out;
3096
3097        drbd_md_write(device, buffer);
3098
3099        /* Update device->ldev->md.la_size_sect,
3100         * since we updated it on metadata. */
3101        device->ldev->md.la_size_sect = drbd_get_capacity(device->this_bdev);
3102
3103        drbd_md_put_buffer(device);
3104out:
3105        put_ldev(device);
3106}
3107
3108static int check_activity_log_stripe_size(struct drbd_device *device,
3109                struct meta_data_on_disk *on_disk,
3110                struct drbd_md *in_core)
3111{
3112        u32 al_stripes = be32_to_cpu(on_disk->al_stripes);
3113        u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k);
3114        u64 al_size_4k;
3115
3116        /* both not set: default to old fixed size activity log */
3117        if (al_stripes == 0 && al_stripe_size_4k == 0) {
3118                al_stripes = 1;
3119                al_stripe_size_4k = MD_32kB_SECT/8;
3120        }
3121
3122        /* some paranoia plausibility checks */
3123
3124        /* we need both values to be set */
3125        if (al_stripes == 0 || al_stripe_size_4k == 0)
3126                goto err;
3127
3128        al_size_4k = (u64)al_stripes * al_stripe_size_4k;
3129
3130        /* Upper limit of activity log area, to avoid potential overflow
3131         * problems in al_tr_number_to_on_disk_sector(). As right now, more
3132         * than 72 * 4k blocks total only increases the amount of history,
3133         * limiting this arbitrarily to 16 GB is not a real limitation ;-)  */
3134        if (al_size_4k > (16 * 1024 * 1024/4))
3135                goto err;
3136
3137        /* Lower limit: we need at least 8 transaction slots (32kB)
3138         * to not break existing setups */
3139        if (al_size_4k < MD_32kB_SECT/8)
3140                goto err;
3141
3142        in_core->al_stripe_size_4k = al_stripe_size_4k;
3143        in_core->al_stripes = al_stripes;
3144        in_core->al_size_4k = al_size_4k;
3145
3146        return 0;
3147err:
3148        drbd_err(device, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n",
3149                        al_stripes, al_stripe_size_4k);
3150        return -EINVAL;
3151}
3152
3153static int check_offsets_and_sizes(struct drbd_device *device, struct drbd_backing_dev *bdev)
3154{
3155        sector_t capacity = drbd_get_capacity(bdev->md_bdev);
3156        struct drbd_md *in_core = &bdev->md;
3157        s32 on_disk_al_sect;
3158        s32 on_disk_bm_sect;
3159
3160        /* The on-disk size of the activity log, calculated from offsets, and
3161         * the size of the activity log calculated from the stripe settings,
3162         * should match.
3163         * Though we could relax this a bit: it is ok, if the striped activity log
3164         * fits in the available on-disk activity log size.
3165         * Right now, that would break how resize is implemented.
3166         * TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware
3167         * of possible unused padding space in the on disk layout. */
3168        if (in_core->al_offset < 0) {
3169                if (in_core->bm_offset > in_core->al_offset)
3170                        goto err;
3171                on_disk_al_sect = -in_core->al_offset;
3172                on_disk_bm_sect = in_core->al_offset - in_core->bm_offset;
3173        } else {
3174                if (in_core->al_offset != MD_4kB_SECT)
3175                        goto err;
3176                if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT)
3177                        goto err;
3178
3179                on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT;
3180                on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset;
3181        }
3182
3183        /* old fixed size meta data is exactly that: fixed. */
3184        if (in_core->meta_dev_idx >= 0) {
3185                if (in_core->md_size_sect != MD_128MB_SECT
3186                ||  in_core->al_offset != MD_4kB_SECT
3187                ||  in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT
3188                ||  in_core->al_stripes != 1
3189                ||  in_core->al_stripe_size_4k != MD_32kB_SECT/8)
3190                        goto err;
3191        }
3192
3193        if (capacity < in_core->md_size_sect)
3194                goto err;
3195        if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev))
3196                goto err;
3197
3198        /* should be aligned, and at least 32k */
3199        if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT))
3200                goto err;
3201
3202        /* should fit (for now: exactly) into the available on-disk space;
3203         * overflow prevention is in check_activity_log_stripe_size() above. */
3204        if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT)
3205                goto err;
3206
3207        /* again, should be aligned */
3208        if (in_core->bm_offset & 7)
3209                goto err;
3210
3211        /* FIXME check for device grow with flex external meta data? */
3212
3213        /* can the available bitmap space cover the last agreed device size? */
3214        if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512)
3215                goto err;
3216
3217        return 0;
3218
3219err:
3220        drbd_err(device, "meta data offsets don't make sense: idx=%d "
3221                        "al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, "
3222                        "md_size_sect=%u, la_size=%llu, md_capacity=%llu\n",
3223                        in_core->meta_dev_idx,
3224                        in_core->al_stripes, in_core->al_stripe_size_4k,
3225                        in_core->al_offset, in_core->bm_offset, in_core->md_size_sect,
3226                        (unsigned long long)in_core->la_size_sect,
3227                        (unsigned long long)capacity);
3228
3229        return -EINVAL;
3230}
3231
3232
3233/**
3234 * drbd_md_read() - Reads in the meta data super block
3235 * @device:     DRBD device.
3236 * @bdev:       Device from which the meta data should be read in.
3237 *
3238 * Return NO_ERROR on success, and an enum drbd_ret_code in case
3239 * something goes wrong.
3240 *
3241 * Called exactly once during drbd_adm_attach(), while still being D_DISKLESS,
3242 * even before @bdev is assigned to @device->ldev.
3243 */
3244int drbd_md_read(struct drbd_device *device, struct drbd_backing_dev *bdev)
3245{
3246        struct meta_data_on_disk *buffer;
3247        u32 magic, flags;
3248        int i, rv = NO_ERROR;
3249
3250        if (device->state.disk != D_DISKLESS)
3251                return ERR_DISK_CONFIGURED;
3252
3253        buffer = drbd_md_get_buffer(device, __func__);
3254        if (!buffer)
3255                return ERR_NOMEM;
3256
3257        /* First, figure out where our meta data superblock is located,
3258         * and read it. */
3259        bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx;
3260        bdev->md.md_offset = drbd_md_ss(bdev);
3261        /* Even for (flexible or indexed) external meta data,
3262         * initially restrict us to the 4k superblock for now.
3263         * Affects the paranoia out-of-range access check in drbd_md_sync_page_io(). */
3264        bdev->md.md_size_sect = 8;
3265
3266        if (drbd_md_sync_page_io(device, bdev, bdev->md.md_offset, READ)) {
3267                /* NOTE: can't do normal error processing here as this is
3268                   called BEFORE disk is attached */
3269                drbd_err(device, "Error while reading metadata.\n");
3270                rv = ERR_IO_MD_DISK;
3271                goto err;
3272        }
3273
3274        magic = be32_to_cpu(buffer->magic);
3275        flags = be32_to_cpu(buffer->flags);
3276        if (magic == DRBD_MD_MAGIC_84_UNCLEAN ||
3277            (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) {
3278                        /* btw: that's Activity Log clean, not "all" clean. */
3279                drbd_err(device, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n");
3280                rv = ERR_MD_UNCLEAN;
3281                goto err;
3282        }
3283
3284        rv = ERR_MD_INVALID;
3285        if (magic != DRBD_MD_MAGIC_08) {
3286                if (magic == DRBD_MD_MAGIC_07)
3287                        drbd_err(device, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n");
3288                else
3289                        drbd_err(device, "Meta data magic not found. Did you \"drbdadm create-md\"?\n");
3290                goto err;
3291        }
3292
3293        if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) {
3294                drbd_err(device, "unexpected bm_bytes_per_bit: %u (expected %u)\n",
3295                    be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE);
3296                goto err;
3297        }
3298
3299
3300        /* convert to in_core endian */
3301        bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect);
3302        for (i = UI_CURRENT; i < UI_SIZE; i++)
3303                bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]);
3304        bdev->md.flags = be32_to_cpu(buffer->flags);
3305        bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid);
3306
3307        bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect);
3308        bdev->md.al_offset = be32_to_cpu(buffer->al_offset);
3309        bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset);
3310
3311        if (check_activity_log_stripe_size(device, buffer, &bdev->md))
3312                goto err;
3313        if (check_offsets_and_sizes(device, bdev))
3314                goto err;
3315
3316        if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) {
3317                drbd_err(device, "unexpected bm_offset: %d (expected %d)\n",
3318                    be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset);
3319                goto err;
3320        }
3321        if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) {
3322                drbd_err(device, "unexpected md_size: %u (expected %u)\n",
3323                    be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect);
3324                goto err;
3325        }
3326
3327        rv = NO_ERROR;
3328
3329        spin_lock_irq(&device->resource->req_lock);
3330        if (device->state.conn < C_CONNECTED) {
3331                unsigned int peer;
3332                peer = be32_to_cpu(buffer->la_peer_max_bio_size);
3333                peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE);
3334                device->peer_max_bio_size = peer;
3335        }
3336        spin_unlock_irq(&device->resource->req_lock);
3337
3338 err:
3339        drbd_md_put_buffer(device);
3340
3341        return rv;
3342}
3343
3344/**
3345 * drbd_md_mark_dirty() - Mark meta data super block as dirty
3346 * @device:     DRBD device.
3347 *
3348 * Call this function if you change anything that should be written to
3349 * the meta-data super block. This function sets MD_DIRTY, and starts a
3350 * timer that ensures that within five seconds you have to call drbd_md_sync().
3351 */
3352#ifdef DEBUG
3353void drbd_md_mark_dirty_(struct drbd_device *device, unsigned int line, const char *func)
3354{
3355        if (!test_and_set_bit(MD_DIRTY, &device->flags)) {
3356                mod_timer(&device->md_sync_timer, jiffies + HZ);
3357                device->last_md_mark_dirty.line = line;
3358                device->last_md_mark_dirty.func = func;
3359        }
3360}
3361#else
3362void drbd_md_mark_dirty(struct drbd_device *device)
3363{
3364        if (!test_and_set_bit(MD_DIRTY, &device->flags))
3365                mod_timer(&device->md_sync_timer, jiffies + 5*HZ);
3366}
3367#endif
3368
3369void drbd_uuid_move_history(struct drbd_device *device) __must_hold(local)
3370{
3371        int i;
3372
3373        for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++)
3374                device->ldev->md.uuid[i+1] = device->ldev->md.uuid[i];
3375}
3376
3377void __drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3378{
3379        if (idx == UI_CURRENT) {
3380                if (device->state.role == R_PRIMARY)
3381                        val |= 1;
3382                else
3383                        val &= ~((u64)1);
3384
3385                drbd_set_ed_uuid(device, val);
3386        }
3387
3388        device->ldev->md.uuid[idx] = val;
3389        drbd_md_mark_dirty(device);
3390}
3391
3392void _drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3393{
3394        unsigned long flags;
3395        spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3396        __drbd_uuid_set(device, idx, val);
3397        spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3398}
3399
3400void drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3401{
3402        unsigned long flags;
3403        spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3404        if (device->ldev->md.uuid[idx]) {
3405                drbd_uuid_move_history(device);
3406                device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[idx];
3407        }
3408        __drbd_uuid_set(device, idx, val);
3409        spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3410}
3411
3412/**
3413 * drbd_uuid_new_current() - Creates a new current UUID
3414 * @device:     DRBD device.
3415 *
3416 * Creates a new current UUID, and rotates the old current UUID into
3417 * the bitmap slot. Causes an incremental resync upon next connect.
3418 */
3419void drbd_uuid_new_current(struct drbd_device *device) __must_hold(local)
3420{
3421        u64 val;
3422        unsigned long long bm_uuid;
3423
3424        get_random_bytes(&val, sizeof(u64));
3425
3426        spin_lock_irq(&device->ldev->md.uuid_lock);
3427        bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3428
3429        if (bm_uuid)
3430                drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3431
3432        device->ldev->md.uuid[UI_BITMAP] = device->ldev->md.uuid[UI_CURRENT];
3433        __drbd_uuid_set(device, UI_CURRENT, val);
3434        spin_unlock_irq(&device->ldev->md.uuid_lock);
3435
3436        drbd_print_uuids(device, "new current UUID");
3437        /* get it to stable storage _now_ */
3438        drbd_md_sync(device);
3439}
3440
3441void drbd_uuid_set_bm(struct drbd_device *device, u64 val) __must_hold(local)
3442{
3443        unsigned long flags;
3444        if (device->ldev->md.uuid[UI_BITMAP] == 0 && val == 0)
3445                return;
3446
3447        spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3448        if (val == 0) {
3449                drbd_uuid_move_history(device);
3450                device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP];
3451                device->ldev->md.uuid[UI_BITMAP] = 0;
3452        } else {
3453                unsigned long long bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3454                if (bm_uuid)
3455                        drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3456
3457                device->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1);
3458        }
3459        spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3460
3461        drbd_md_mark_dirty(device);
3462}
3463
3464/**
3465 * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3466 * @device:     DRBD device.
3467 *
3468 * Sets all bits in the bitmap and writes the whole bitmap to stable storage.
3469 */
3470int drbd_bmio_set_n_write(struct drbd_device *device) __must_hold(local)
3471{
3472        int rv = -EIO;
3473
3474        drbd_md_set_flag(device, MDF_FULL_SYNC);
3475        drbd_md_sync(device);
3476        drbd_bm_set_all(device);
3477
3478        rv = drbd_bm_write(device);
3479
3480        if (!rv) {
3481                drbd_md_clear_flag(device, MDF_FULL_SYNC);
3482                drbd_md_sync(device);
3483        }
3484
3485        return rv;
3486}
3487
3488/**
3489 * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3490 * @device:     DRBD device.
3491 *
3492 * Clears all bits in the bitmap and writes the whole bitmap to stable storage.
3493 */
3494int drbd_bmio_clear_n_write(struct drbd_device *device) __must_hold(local)
3495{
3496        drbd_resume_al(device);
3497        drbd_bm_clear_all(device);
3498        return drbd_bm_write(device);
3499}
3500
3501static int w_bitmap_io(struct drbd_work *w, int unused)
3502{
3503        struct drbd_device *device =
3504                container_of(w, struct drbd_device, bm_io_work.w);
3505        struct bm_io_work *work = &device->bm_io_work;
3506        int rv = -EIO;
3507
3508        D_ASSERT(device, atomic_read(&device->ap_bio_cnt) == 0);
3509
3510        if (get_ldev(device)) {
3511                drbd_bm_lock(device, work->why, work->flags);
3512                rv = work->io_fn(device);
3513                drbd_bm_unlock(device);
3514                put_ldev(device);
3515        }
3516
3517        clear_bit_unlock(BITMAP_IO, &device->flags);
3518        wake_up(&device->misc_wait);
3519
3520        if (work->done)
3521                work->done(device, rv);
3522
3523        clear_bit(BITMAP_IO_QUEUED, &device->flags);
3524        work->why = NULL;
3525        work->flags = 0;
3526
3527        return 0;
3528}
3529
3530/**
3531 * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap
3532 * @device:     DRBD device.
3533 * @io_fn:      IO callback to be called when bitmap IO is possible
3534 * @done:       callback to be called after the bitmap IO was performed
3535 * @why:        Descriptive text of the reason for doing the IO
3536 *
3537 * While IO on the bitmap happens we freeze application IO thus we ensure
3538 * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be
3539 * called from worker context. It MUST NOT be used while a previous such
3540 * work is still pending!
3541 *
3542 * Its worker function encloses the call of io_fn() by get_ldev() and
3543 * put_ldev().
3544 */
3545void drbd_queue_bitmap_io(struct drbd_device *device,
3546                          int (*io_fn)(struct drbd_device *),
3547                          void (*done)(struct drbd_device *, int),
3548                          char *why, enum bm_flag flags)
3549{
3550        D_ASSERT(device, current == first_peer_device(device)->connection->worker.task);
3551
3552        D_ASSERT(device, !test_bit(BITMAP_IO_QUEUED, &device->flags));
3553        D_ASSERT(device, !test_bit(BITMAP_IO, &device->flags));
3554        D_ASSERT(device, list_empty(&device->bm_io_work.w.list));
3555        if (device->bm_io_work.why)
3556                drbd_err(device, "FIXME going to queue '%s' but '%s' still pending?\n",
3557                        why, device->bm_io_work.why);
3558
3559        device->bm_io_work.io_fn = io_fn;
3560        device->bm_io_work.done = done;
3561        device->bm_io_work.why = why;
3562        device->bm_io_work.flags = flags;
3563
3564        spin_lock_irq(&device->resource->req_lock);
3565        set_bit(BITMAP_IO, &device->flags);
3566        /* don't wait for pending application IO if the caller indicates that
3567         * application IO does not conflict anyways. */
3568        if (flags == BM_LOCKED_CHANGE_ALLOWED || atomic_read(&device->ap_bio_cnt) == 0) {
3569                if (!test_and_set_bit(BITMAP_IO_QUEUED, &device->flags))
3570                        drbd_queue_work(&first_peer_device(device)->connection->sender_work,
3571                                        &device->bm_io_work.w);
3572        }
3573        spin_unlock_irq(&device->resource->req_lock);
3574}
3575
3576/**
3577 * drbd_bitmap_io() -  Does an IO operation on the whole bitmap
3578 * @device:     DRBD device.
3579 * @io_fn:      IO callback to be called when bitmap IO is possible
3580 * @why:        Descriptive text of the reason for doing the IO
3581 *
3582 * freezes application IO while that the actual IO operations runs. This
3583 * functions MAY NOT be called from worker context.
3584 */
3585int drbd_bitmap_io(struct drbd_device *device, int (*io_fn)(struct drbd_device *),
3586                char *why, enum bm_flag flags)
3587{
3588        int rv;
3589
3590        D_ASSERT(device, current != first_peer_device(device)->connection->worker.task);
3591
3592        if ((flags & BM_LOCKED_SET_ALLOWED) == 0)
3593                drbd_suspend_io(device);
3594
3595        drbd_bm_lock(device, why, flags);
3596        rv = io_fn(device);
3597        drbd_bm_unlock(device);
3598
3599        if ((flags & BM_LOCKED_SET_ALLOWED) == 0)
3600                drbd_resume_io(device);
3601
3602        return rv;
3603}
3604
3605void drbd_md_set_flag(struct drbd_device *device, int flag) __must_hold(local)
3606{
3607        if ((device->ldev->md.flags & flag) != flag) {
3608                drbd_md_mark_dirty(device);
3609                device->ldev->md.flags |= flag;
3610        }
3611}
3612
3613void drbd_md_clear_flag(struct drbd_device *device, int flag) __must_hold(local)
3614{
3615        if ((device->ldev->md.flags & flag) != 0) {
3616                drbd_md_mark_dirty(device);
3617                device->ldev->md.flags &= ~flag;
3618        }
3619}
3620int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag)
3621{
3622        return (bdev->md.flags & flag) != 0;
3623}
3624
3625static void md_sync_timer_fn(unsigned long data)
3626{
3627        struct drbd_device *device = (struct drbd_device *) data;
3628        drbd_device_post_work(device, MD_SYNC);
3629}
3630
3631const char *cmdname(enum drbd_packet cmd)
3632{
3633        /* THINK may need to become several global tables
3634         * when we want to support more than
3635         * one PRO_VERSION */
3636        static const char *cmdnames[] = {
3637                [P_DATA]                = "Data",
3638                [P_DATA_REPLY]          = "DataReply",
3639                [P_RS_DATA_REPLY]       = "RSDataReply",
3640                [P_BARRIER]             = "Barrier",
3641                [P_BITMAP]              = "ReportBitMap",
3642                [P_BECOME_SYNC_TARGET]  = "BecomeSyncTarget",
3643                [P_BECOME_SYNC_SOURCE]  = "BecomeSyncSource",
3644                [P_UNPLUG_REMOTE]       = "UnplugRemote",
3645                [P_DATA_REQUEST]        = "DataRequest",
3646                [P_RS_DATA_REQUEST]     = "RSDataRequest",
3647                [P_SYNC_PARAM]          = "SyncParam",
3648                [P_SYNC_PARAM89]        = "SyncParam89",
3649                [P_PROTOCOL]            = "ReportProtocol",
3650                [P_UUIDS]               = "ReportUUIDs",
3651                [P_SIZES]               = "ReportSizes",
3652                [P_STATE]               = "ReportState",
3653                [P_SYNC_UUID]           = "ReportSyncUUID",
3654                [P_AUTH_CHALLENGE]      = "AuthChallenge",
3655                [P_AUTH_RESPONSE]       = "AuthResponse",
3656                [P_PING]                = "Ping",
3657                [P_PING_ACK]            = "PingAck",
3658                [P_RECV_ACK]            = "RecvAck",
3659                [P_WRITE_ACK]           = "WriteAck",
3660                [P_RS_WRITE_ACK]        = "RSWriteAck",
3661                [P_SUPERSEDED]          = "Superseded",
3662                [P_NEG_ACK]             = "NegAck",
3663                [P_NEG_DREPLY]          = "NegDReply",
3664                [P_NEG_RS_DREPLY]       = "NegRSDReply",
3665                [P_BARRIER_ACK]         = "BarrierAck",
3666                [P_STATE_CHG_REQ]       = "StateChgRequest",
3667                [P_STATE_CHG_REPLY]     = "StateChgReply",
3668                [P_OV_REQUEST]          = "OVRequest",
3669                [P_OV_REPLY]            = "OVReply",
3670                [P_OV_RESULT]           = "OVResult",
3671                [P_CSUM_RS_REQUEST]     = "CsumRSRequest",
3672                [P_RS_IS_IN_SYNC]       = "CsumRSIsInSync",
3673                [P_COMPRESSED_BITMAP]   = "CBitmap",
3674                [P_DELAY_PROBE]         = "DelayProbe",
3675                [P_OUT_OF_SYNC]         = "OutOfSync",
3676                [P_RETRY_WRITE]         = "RetryWrite",
3677                [P_RS_CANCEL]           = "RSCancel",
3678                [P_CONN_ST_CHG_REQ]     = "conn_st_chg_req",
3679                [P_CONN_ST_CHG_REPLY]   = "conn_st_chg_reply",
3680                [P_RETRY_WRITE]         = "retry_write",
3681                [P_PROTOCOL_UPDATE]     = "protocol_update",
3682
3683                /* enum drbd_packet, but not commands - obsoleted flags:
3684                 *      P_MAY_IGNORE
3685                 *      P_MAX_OPT_CMD
3686                 */
3687        };
3688
3689        /* too big for the array: 0xfffX */
3690        if (cmd == P_INITIAL_META)
3691                return "InitialMeta";
3692        if (cmd == P_INITIAL_DATA)
3693                return "InitialData";
3694        if (cmd == P_CONNECTION_FEATURES)
3695                return "ConnectionFeatures";
3696        if (cmd >= ARRAY_SIZE(cmdnames))
3697                return "Unknown";
3698        return cmdnames[cmd];
3699}
3700
3701/**
3702 * drbd_wait_misc  -  wait for a request to make progress
3703 * @device:     device associated with the request
3704 * @i:          the struct drbd_interval embedded in struct drbd_request or
3705 *              struct drbd_peer_request
3706 */
3707int drbd_wait_misc(struct drbd_device *device, struct drbd_interval *i)
3708{
3709        struct net_conf *nc;
3710        DEFINE_WAIT(wait);
3711        long timeout;
3712
3713        rcu_read_lock();
3714        nc = rcu_dereference(first_peer_device(device)->connection->net_conf);
3715        if (!nc) {
3716                rcu_read_unlock();
3717                return -ETIMEDOUT;
3718        }
3719        timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT;
3720        rcu_read_unlock();
3721
3722        /* Indicate to wake up device->misc_wait on progress.  */
3723        i->waiting = true;
3724        prepare_to_wait(&device->misc_wait, &wait, TASK_INTERRUPTIBLE);
3725        spin_unlock_irq(&device->resource->req_lock);
3726        timeout = schedule_timeout(timeout);
3727        finish_wait(&device->misc_wait, &wait);
3728        spin_lock_irq(&device->resource->req_lock);
3729        if (!timeout || device->state.conn < C_CONNECTED)
3730                return -ETIMEDOUT;
3731        if (signal_pending(current))
3732                return -ERESTARTSYS;
3733        return 0;
3734}
3735
3736void lock_all_resources(void)
3737{
3738        struct drbd_resource *resource;
3739        int __maybe_unused i = 0;
3740
3741        mutex_lock(&resources_mutex);
3742        local_irq_disable();
3743        for_each_resource(resource, &drbd_resources)
3744                spin_lock_nested(&resource->req_lock, i++);
3745}
3746
3747void unlock_all_resources(void)
3748{
3749        struct drbd_resource *resource;
3750
3751        for_each_resource(resource, &drbd_resources)
3752                spin_unlock(&resource->req_lock);
3753        local_irq_enable();
3754        mutex_unlock(&resources_mutex);
3755}
3756
3757#ifdef CONFIG_DRBD_FAULT_INJECTION
3758/* Fault insertion support including random number generator shamelessly
3759 * stolen from kernel/rcutorture.c */
3760struct fault_random_state {
3761        unsigned long state;
3762        unsigned long count;
3763};
3764
3765#define FAULT_RANDOM_MULT 39916801  /* prime */
3766#define FAULT_RANDOM_ADD        479001701 /* prime */
3767#define FAULT_RANDOM_REFRESH 10000
3768
3769/*
3770 * Crude but fast random-number generator.  Uses a linear congruential
3771 * generator, with occasional help from get_random_bytes().
3772 */
3773static unsigned long
3774_drbd_fault_random(struct fault_random_state *rsp)
3775{
3776        long refresh;
3777
3778        if (!rsp->count--) {
3779                get_random_bytes(&refresh, sizeof(refresh));
3780                rsp->state += refresh;
3781                rsp->count = FAULT_RANDOM_REFRESH;
3782        }
3783        rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD;
3784        return swahw32(rsp->state);
3785}
3786
3787static char *
3788_drbd_fault_str(unsigned int type) {
3789        static char *_faults[] = {
3790                [DRBD_FAULT_MD_WR] = "Meta-data write",
3791                [DRBD_FAULT_MD_RD] = "Meta-data read",
3792                [DRBD_FAULT_RS_WR] = "Resync write",
3793                [DRBD_FAULT_RS_RD] = "Resync read",
3794                [DRBD_FAULT_DT_WR] = "Data write",
3795                [DRBD_FAULT_DT_RD] = "Data read",
3796                [DRBD_FAULT_DT_RA] = "Data read ahead",
3797                [DRBD_FAULT_BM_ALLOC] = "BM allocation",
3798                [DRBD_FAULT_AL_EE] = "EE allocation",
3799                [DRBD_FAULT_RECEIVE] = "receive data corruption",
3800        };
3801
3802        return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**";
3803}
3804
3805unsigned int
3806_drbd_insert_fault(struct drbd_device *device, unsigned int type)
3807{
3808        static struct fault_random_state rrs = {0, 0};
3809
3810        unsigned int ret = (
3811                (fault_devs == 0 ||
3812                        ((1 << device_to_minor(device)) & fault_devs) != 0) &&
3813                (((_drbd_fault_random(&rrs) % 100) + 1) <= fault_rate));
3814
3815        if (ret) {
3816                fault_count++;
3817
3818                if (__ratelimit(&drbd_ratelimit_state))
3819                        drbd_warn(device, "***Simulating %s failure\n",
3820                                _drbd_fault_str(type));
3821        }
3822
3823        return ret;
3824}
3825#endif
3826
3827const char *drbd_buildtag(void)
3828{
3829        /* DRBD built from external sources has here a reference to the
3830           git hash of the source code. */
3831
3832        static char buildtag[38] = "\0uilt-in";
3833
3834        if (buildtag[0] == 0) {
3835#ifdef MODULE
3836                sprintf(buildtag, "srcversion: %-24s", THIS_MODULE->srcversion);
3837#else
3838                buildtag[0] = 'b';
3839#endif
3840        }
3841
3842        return buildtag;
3843}
3844
3845module_init(drbd_init)
3846module_exit(drbd_cleanup)
3847
3848EXPORT_SYMBOL(drbd_conn_str);
3849EXPORT_SYMBOL(drbd_role_str);
3850EXPORT_SYMBOL(drbd_disk_str);
3851EXPORT_SYMBOL(drbd_set_st_err_str);
3852