linux/drivers/char/ipmi/ipmi_si_intf.c
<<
>>
Prefs
   1/*
   2 * ipmi_si.c
   3 *
   4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
   5 * BT).
   6 *
   7 * Author: MontaVista Software, Inc.
   8 *         Corey Minyard <minyard@mvista.com>
   9 *         source@mvista.com
  10 *
  11 * Copyright 2002 MontaVista Software Inc.
  12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
  13 *
  14 *  This program is free software; you can redistribute it and/or modify it
  15 *  under the terms of the GNU General Public License as published by the
  16 *  Free Software Foundation; either version 2 of the License, or (at your
  17 *  option) any later version.
  18 *
  19 *
  20 *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  21 *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
  22 *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
  23 *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  24 *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
  25 *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
  26 *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  27 *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
  28 *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  29 *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  30 *
  31 *  You should have received a copy of the GNU General Public License along
  32 *  with this program; if not, write to the Free Software Foundation, Inc.,
  33 *  675 Mass Ave, Cambridge, MA 02139, USA.
  34 */
  35
  36/*
  37 * This file holds the "policy" for the interface to the SMI state
  38 * machine.  It does the configuration, handles timers and interrupts,
  39 * and drives the real SMI state machine.
  40 */
  41
  42#include <linux/module.h>
  43#include <linux/moduleparam.h>
  44#include <linux/sched.h>
  45#include <linux/seq_file.h>
  46#include <linux/timer.h>
  47#include <linux/errno.h>
  48#include <linux/spinlock.h>
  49#include <linux/slab.h>
  50#include <linux/delay.h>
  51#include <linux/list.h>
  52#include <linux/pci.h>
  53#include <linux/ioport.h>
  54#include <linux/notifier.h>
  55#include <linux/mutex.h>
  56#include <linux/kthread.h>
  57#include <asm/irq.h>
  58#include <linux/interrupt.h>
  59#include <linux/rcupdate.h>
  60#include <linux/ipmi.h>
  61#include <linux/ipmi_smi.h>
  62#include <asm/io.h>
  63#include "ipmi_si_sm.h"
  64#include <linux/dmi.h>
  65#include <linux/string.h>
  66#include <linux/ctype.h>
  67#include <linux/of_device.h>
  68#include <linux/of_platform.h>
  69#include <linux/of_address.h>
  70#include <linux/of_irq.h>
  71#include <linux/acpi.h>
  72
  73#ifdef CONFIG_PARISC
  74#include <asm/hardware.h>       /* for register_parisc_driver() stuff */
  75#include <asm/parisc-device.h>
  76#endif
  77
  78#define PFX "ipmi_si: "
  79
  80/* Measure times between events in the driver. */
  81#undef DEBUG_TIMING
  82
  83/* Call every 10 ms. */
  84#define SI_TIMEOUT_TIME_USEC    10000
  85#define SI_USEC_PER_JIFFY       (1000000/HZ)
  86#define SI_TIMEOUT_JIFFIES      (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
  87#define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
  88                                      short timeout */
  89
  90enum si_intf_state {
  91        SI_NORMAL,
  92        SI_GETTING_FLAGS,
  93        SI_GETTING_EVENTS,
  94        SI_CLEARING_FLAGS,
  95        SI_GETTING_MESSAGES,
  96        SI_CHECKING_ENABLES,
  97        SI_SETTING_ENABLES
  98        /* FIXME - add watchdog stuff. */
  99};
 100
 101/* Some BT-specific defines we need here. */
 102#define IPMI_BT_INTMASK_REG             2
 103#define IPMI_BT_INTMASK_CLEAR_IRQ_BIT   2
 104#define IPMI_BT_INTMASK_ENABLE_IRQ_BIT  1
 105
 106enum si_type {
 107    SI_KCS, SI_SMIC, SI_BT
 108};
 109
 110static const char * const si_to_str[] = { "kcs", "smic", "bt" };
 111
 112#define DEVICE_NAME "ipmi_si"
 113
 114static struct platform_driver ipmi_driver;
 115
 116/*
 117 * Indexes into stats[] in smi_info below.
 118 */
 119enum si_stat_indexes {
 120        /*
 121         * Number of times the driver requested a timer while an operation
 122         * was in progress.
 123         */
 124        SI_STAT_short_timeouts = 0,
 125
 126        /*
 127         * Number of times the driver requested a timer while nothing was in
 128         * progress.
 129         */
 130        SI_STAT_long_timeouts,
 131
 132        /* Number of times the interface was idle while being polled. */
 133        SI_STAT_idles,
 134
 135        /* Number of interrupts the driver handled. */
 136        SI_STAT_interrupts,
 137
 138        /* Number of time the driver got an ATTN from the hardware. */
 139        SI_STAT_attentions,
 140
 141        /* Number of times the driver requested flags from the hardware. */
 142        SI_STAT_flag_fetches,
 143
 144        /* Number of times the hardware didn't follow the state machine. */
 145        SI_STAT_hosed_count,
 146
 147        /* Number of completed messages. */
 148        SI_STAT_complete_transactions,
 149
 150        /* Number of IPMI events received from the hardware. */
 151        SI_STAT_events,
 152
 153        /* Number of watchdog pretimeouts. */
 154        SI_STAT_watchdog_pretimeouts,
 155
 156        /* Number of asynchronous messages received. */
 157        SI_STAT_incoming_messages,
 158
 159
 160        /* This *must* remain last, add new values above this. */
 161        SI_NUM_STATS
 162};
 163
 164struct smi_info {
 165        int                    intf_num;
 166        ipmi_smi_t             intf;
 167        struct si_sm_data      *si_sm;
 168        const struct si_sm_handlers *handlers;
 169        enum si_type           si_type;
 170        spinlock_t             si_lock;
 171        struct ipmi_smi_msg    *waiting_msg;
 172        struct ipmi_smi_msg    *curr_msg;
 173        enum si_intf_state     si_state;
 174
 175        /*
 176         * Used to handle the various types of I/O that can occur with
 177         * IPMI
 178         */
 179        struct si_sm_io io;
 180        int (*io_setup)(struct smi_info *info);
 181        void (*io_cleanup)(struct smi_info *info);
 182        int (*irq_setup)(struct smi_info *info);
 183        void (*irq_cleanup)(struct smi_info *info);
 184        unsigned int io_size;
 185        enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
 186        void (*addr_source_cleanup)(struct smi_info *info);
 187        void *addr_source_data;
 188
 189        /*
 190         * Per-OEM handler, called from handle_flags().  Returns 1
 191         * when handle_flags() needs to be re-run or 0 indicating it
 192         * set si_state itself.
 193         */
 194        int (*oem_data_avail_handler)(struct smi_info *smi_info);
 195
 196        /*
 197         * Flags from the last GET_MSG_FLAGS command, used when an ATTN
 198         * is set to hold the flags until we are done handling everything
 199         * from the flags.
 200         */
 201#define RECEIVE_MSG_AVAIL       0x01
 202#define EVENT_MSG_BUFFER_FULL   0x02
 203#define WDT_PRE_TIMEOUT_INT     0x08
 204#define OEM0_DATA_AVAIL     0x20
 205#define OEM1_DATA_AVAIL     0x40
 206#define OEM2_DATA_AVAIL     0x80
 207#define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
 208                             OEM1_DATA_AVAIL | \
 209                             OEM2_DATA_AVAIL)
 210        unsigned char       msg_flags;
 211
 212        /* Does the BMC have an event buffer? */
 213        bool                has_event_buffer;
 214
 215        /*
 216         * If set to true, this will request events the next time the
 217         * state machine is idle.
 218         */
 219        atomic_t            req_events;
 220
 221        /*
 222         * If true, run the state machine to completion on every send
 223         * call.  Generally used after a panic to make sure stuff goes
 224         * out.
 225         */
 226        bool                run_to_completion;
 227
 228        /* The I/O port of an SI interface. */
 229        int                 port;
 230
 231        /*
 232         * The space between start addresses of the two ports.  For
 233         * instance, if the first port is 0xca2 and the spacing is 4, then
 234         * the second port is 0xca6.
 235         */
 236        unsigned int        spacing;
 237
 238        /* zero if no irq; */
 239        int                 irq;
 240
 241        /* The timer for this si. */
 242        struct timer_list   si_timer;
 243
 244        /* This flag is set, if the timer is running (timer_pending() isn't enough) */
 245        bool                timer_running;
 246
 247        /* The time (in jiffies) the last timeout occurred at. */
 248        unsigned long       last_timeout_jiffies;
 249
 250        /* Are we waiting for the events, pretimeouts, received msgs? */
 251        atomic_t            need_watch;
 252
 253        /*
 254         * The driver will disable interrupts when it gets into a
 255         * situation where it cannot handle messages due to lack of
 256         * memory.  Once that situation clears up, it will re-enable
 257         * interrupts.
 258         */
 259        bool interrupt_disabled;
 260
 261        /*
 262         * Does the BMC support events?
 263         */
 264        bool supports_event_msg_buff;
 265
 266        /*
 267         * Can we disable interrupts the global enables receive irq
 268         * bit?  There are currently two forms of brokenness, some
 269         * systems cannot disable the bit (which is technically within
 270         * the spec but a bad idea) and some systems have the bit
 271         * forced to zero even though interrupts work (which is
 272         * clearly outside the spec).  The next bool tells which form
 273         * of brokenness is present.
 274         */
 275        bool cannot_disable_irq;
 276
 277        /*
 278         * Some systems are broken and cannot set the irq enable
 279         * bit, even if they support interrupts.
 280         */
 281        bool irq_enable_broken;
 282
 283        /*
 284         * Did we get an attention that we did not handle?
 285         */
 286        bool got_attn;
 287
 288        /* From the get device id response... */
 289        struct ipmi_device_id device_id;
 290
 291        /* Driver model stuff. */
 292        struct device *dev;
 293        struct platform_device *pdev;
 294
 295        /*
 296         * True if we allocated the device, false if it came from
 297         * someplace else (like PCI).
 298         */
 299        bool dev_registered;
 300
 301        /* Slave address, could be reported from DMI. */
 302        unsigned char slave_addr;
 303
 304        /* Counters and things for the proc filesystem. */
 305        atomic_t stats[SI_NUM_STATS];
 306
 307        struct task_struct *thread;
 308
 309        struct list_head link;
 310        union ipmi_smi_info_union addr_info;
 311};
 312
 313#define smi_inc_stat(smi, stat) \
 314        atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
 315#define smi_get_stat(smi, stat) \
 316        ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
 317
 318#define SI_MAX_PARMS 4
 319
 320static int force_kipmid[SI_MAX_PARMS];
 321static int num_force_kipmid;
 322#ifdef CONFIG_PCI
 323static bool pci_registered;
 324#endif
 325#ifdef CONFIG_PARISC
 326static bool parisc_registered;
 327#endif
 328
 329static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
 330static int num_max_busy_us;
 331
 332static bool unload_when_empty = true;
 333
 334static int add_smi(struct smi_info *smi);
 335static int try_smi_init(struct smi_info *smi);
 336static void cleanup_one_si(struct smi_info *to_clean);
 337static void cleanup_ipmi_si(void);
 338
 339#ifdef DEBUG_TIMING
 340void debug_timestamp(char *msg)
 341{
 342        struct timespec64 t;
 343
 344        getnstimeofday64(&t);
 345        pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec);
 346}
 347#else
 348#define debug_timestamp(x)
 349#endif
 350
 351static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
 352static int register_xaction_notifier(struct notifier_block *nb)
 353{
 354        return atomic_notifier_chain_register(&xaction_notifier_list, nb);
 355}
 356
 357static void deliver_recv_msg(struct smi_info *smi_info,
 358                             struct ipmi_smi_msg *msg)
 359{
 360        /* Deliver the message to the upper layer. */
 361        if (smi_info->intf)
 362                ipmi_smi_msg_received(smi_info->intf, msg);
 363        else
 364                ipmi_free_smi_msg(msg);
 365}
 366
 367static void return_hosed_msg(struct smi_info *smi_info, int cCode)
 368{
 369        struct ipmi_smi_msg *msg = smi_info->curr_msg;
 370
 371        if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
 372                cCode = IPMI_ERR_UNSPECIFIED;
 373        /* else use it as is */
 374
 375        /* Make it a response */
 376        msg->rsp[0] = msg->data[0] | 4;
 377        msg->rsp[1] = msg->data[1];
 378        msg->rsp[2] = cCode;
 379        msg->rsp_size = 3;
 380
 381        smi_info->curr_msg = NULL;
 382        deliver_recv_msg(smi_info, msg);
 383}
 384
 385static enum si_sm_result start_next_msg(struct smi_info *smi_info)
 386{
 387        int              rv;
 388
 389        if (!smi_info->waiting_msg) {
 390                smi_info->curr_msg = NULL;
 391                rv = SI_SM_IDLE;
 392        } else {
 393                int err;
 394
 395                smi_info->curr_msg = smi_info->waiting_msg;
 396                smi_info->waiting_msg = NULL;
 397                debug_timestamp("Start2");
 398                err = atomic_notifier_call_chain(&xaction_notifier_list,
 399                                0, smi_info);
 400                if (err & NOTIFY_STOP_MASK) {
 401                        rv = SI_SM_CALL_WITHOUT_DELAY;
 402                        goto out;
 403                }
 404                err = smi_info->handlers->start_transaction(
 405                        smi_info->si_sm,
 406                        smi_info->curr_msg->data,
 407                        smi_info->curr_msg->data_size);
 408                if (err)
 409                        return_hosed_msg(smi_info, err);
 410
 411                rv = SI_SM_CALL_WITHOUT_DELAY;
 412        }
 413 out:
 414        return rv;
 415}
 416
 417static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
 418{
 419        smi_info->last_timeout_jiffies = jiffies;
 420        mod_timer(&smi_info->si_timer, new_val);
 421        smi_info->timer_running = true;
 422}
 423
 424/*
 425 * Start a new message and (re)start the timer and thread.
 426 */
 427static void start_new_msg(struct smi_info *smi_info, unsigned char *msg,
 428                          unsigned int size)
 429{
 430        smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
 431
 432        if (smi_info->thread)
 433                wake_up_process(smi_info->thread);
 434
 435        smi_info->handlers->start_transaction(smi_info->si_sm, msg, size);
 436}
 437
 438static void start_check_enables(struct smi_info *smi_info, bool start_timer)
 439{
 440        unsigned char msg[2];
 441
 442        msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
 443        msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
 444
 445        if (start_timer)
 446                start_new_msg(smi_info, msg, 2);
 447        else
 448                smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
 449        smi_info->si_state = SI_CHECKING_ENABLES;
 450}
 451
 452static void start_clear_flags(struct smi_info *smi_info, bool start_timer)
 453{
 454        unsigned char msg[3];
 455
 456        /* Make sure the watchdog pre-timeout flag is not set at startup. */
 457        msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
 458        msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
 459        msg[2] = WDT_PRE_TIMEOUT_INT;
 460
 461        if (start_timer)
 462                start_new_msg(smi_info, msg, 3);
 463        else
 464                smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
 465        smi_info->si_state = SI_CLEARING_FLAGS;
 466}
 467
 468static void start_getting_msg_queue(struct smi_info *smi_info)
 469{
 470        smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
 471        smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
 472        smi_info->curr_msg->data_size = 2;
 473
 474        start_new_msg(smi_info, smi_info->curr_msg->data,
 475                      smi_info->curr_msg->data_size);
 476        smi_info->si_state = SI_GETTING_MESSAGES;
 477}
 478
 479static void start_getting_events(struct smi_info *smi_info)
 480{
 481        smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
 482        smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
 483        smi_info->curr_msg->data_size = 2;
 484
 485        start_new_msg(smi_info, smi_info->curr_msg->data,
 486                      smi_info->curr_msg->data_size);
 487        smi_info->si_state = SI_GETTING_EVENTS;
 488}
 489
 490/*
 491 * When we have a situtaion where we run out of memory and cannot
 492 * allocate messages, we just leave them in the BMC and run the system
 493 * polled until we can allocate some memory.  Once we have some
 494 * memory, we will re-enable the interrupt.
 495 *
 496 * Note that we cannot just use disable_irq(), since the interrupt may
 497 * be shared.
 498 */
 499static inline bool disable_si_irq(struct smi_info *smi_info, bool start_timer)
 500{
 501        if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
 502                smi_info->interrupt_disabled = true;
 503                start_check_enables(smi_info, start_timer);
 504                return true;
 505        }
 506        return false;
 507}
 508
 509static inline bool enable_si_irq(struct smi_info *smi_info)
 510{
 511        if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
 512                smi_info->interrupt_disabled = false;
 513                start_check_enables(smi_info, true);
 514                return true;
 515        }
 516        return false;
 517}
 518
 519/*
 520 * Allocate a message.  If unable to allocate, start the interrupt
 521 * disable process and return NULL.  If able to allocate but
 522 * interrupts are disabled, free the message and return NULL after
 523 * starting the interrupt enable process.
 524 */
 525static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
 526{
 527        struct ipmi_smi_msg *msg;
 528
 529        msg = ipmi_alloc_smi_msg();
 530        if (!msg) {
 531                if (!disable_si_irq(smi_info, true))
 532                        smi_info->si_state = SI_NORMAL;
 533        } else if (enable_si_irq(smi_info)) {
 534                ipmi_free_smi_msg(msg);
 535                msg = NULL;
 536        }
 537        return msg;
 538}
 539
 540static void handle_flags(struct smi_info *smi_info)
 541{
 542 retry:
 543        if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
 544                /* Watchdog pre-timeout */
 545                smi_inc_stat(smi_info, watchdog_pretimeouts);
 546
 547                start_clear_flags(smi_info, true);
 548                smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
 549                if (smi_info->intf)
 550                        ipmi_smi_watchdog_pretimeout(smi_info->intf);
 551        } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
 552                /* Messages available. */
 553                smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
 554                if (!smi_info->curr_msg)
 555                        return;
 556
 557                start_getting_msg_queue(smi_info);
 558        } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
 559                /* Events available. */
 560                smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
 561                if (!smi_info->curr_msg)
 562                        return;
 563
 564                start_getting_events(smi_info);
 565        } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
 566                   smi_info->oem_data_avail_handler) {
 567                if (smi_info->oem_data_avail_handler(smi_info))
 568                        goto retry;
 569        } else
 570                smi_info->si_state = SI_NORMAL;
 571}
 572
 573/*
 574 * Global enables we care about.
 575 */
 576#define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
 577                             IPMI_BMC_EVT_MSG_INTR)
 578
 579static u8 current_global_enables(struct smi_info *smi_info, u8 base,
 580                                 bool *irq_on)
 581{
 582        u8 enables = 0;
 583
 584        if (smi_info->supports_event_msg_buff)
 585                enables |= IPMI_BMC_EVT_MSG_BUFF;
 586
 587        if (((smi_info->irq && !smi_info->interrupt_disabled) ||
 588             smi_info->cannot_disable_irq) &&
 589            !smi_info->irq_enable_broken)
 590                enables |= IPMI_BMC_RCV_MSG_INTR;
 591
 592        if (smi_info->supports_event_msg_buff &&
 593            smi_info->irq && !smi_info->interrupt_disabled &&
 594            !smi_info->irq_enable_broken)
 595                enables |= IPMI_BMC_EVT_MSG_INTR;
 596
 597        *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
 598
 599        return enables;
 600}
 601
 602static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
 603{
 604        u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
 605
 606        irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
 607
 608        if ((bool)irqstate == irq_on)
 609                return;
 610
 611        if (irq_on)
 612                smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
 613                                     IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
 614        else
 615                smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
 616}
 617
 618static void handle_transaction_done(struct smi_info *smi_info)
 619{
 620        struct ipmi_smi_msg *msg;
 621
 622        debug_timestamp("Done");
 623        switch (smi_info->si_state) {
 624        case SI_NORMAL:
 625                if (!smi_info->curr_msg)
 626                        break;
 627
 628                smi_info->curr_msg->rsp_size
 629                        = smi_info->handlers->get_result(
 630                                smi_info->si_sm,
 631                                smi_info->curr_msg->rsp,
 632                                IPMI_MAX_MSG_LENGTH);
 633
 634                /*
 635                 * Do this here becase deliver_recv_msg() releases the
 636                 * lock, and a new message can be put in during the
 637                 * time the lock is released.
 638                 */
 639                msg = smi_info->curr_msg;
 640                smi_info->curr_msg = NULL;
 641                deliver_recv_msg(smi_info, msg);
 642                break;
 643
 644        case SI_GETTING_FLAGS:
 645        {
 646                unsigned char msg[4];
 647                unsigned int  len;
 648
 649                /* We got the flags from the SMI, now handle them. */
 650                len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
 651                if (msg[2] != 0) {
 652                        /* Error fetching flags, just give up for now. */
 653                        smi_info->si_state = SI_NORMAL;
 654                } else if (len < 4) {
 655                        /*
 656                         * Hmm, no flags.  That's technically illegal, but
 657                         * don't use uninitialized data.
 658                         */
 659                        smi_info->si_state = SI_NORMAL;
 660                } else {
 661                        smi_info->msg_flags = msg[3];
 662                        handle_flags(smi_info);
 663                }
 664                break;
 665        }
 666
 667        case SI_CLEARING_FLAGS:
 668        {
 669                unsigned char msg[3];
 670
 671                /* We cleared the flags. */
 672                smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
 673                if (msg[2] != 0) {
 674                        /* Error clearing flags */
 675                        dev_warn(smi_info->dev,
 676                                 "Error clearing flags: %2.2x\n", msg[2]);
 677                }
 678                smi_info->si_state = SI_NORMAL;
 679                break;
 680        }
 681
 682        case SI_GETTING_EVENTS:
 683        {
 684                smi_info->curr_msg->rsp_size
 685                        = smi_info->handlers->get_result(
 686                                smi_info->si_sm,
 687                                smi_info->curr_msg->rsp,
 688                                IPMI_MAX_MSG_LENGTH);
 689
 690                /*
 691                 * Do this here becase deliver_recv_msg() releases the
 692                 * lock, and a new message can be put in during the
 693                 * time the lock is released.
 694                 */
 695                msg = smi_info->curr_msg;
 696                smi_info->curr_msg = NULL;
 697                if (msg->rsp[2] != 0) {
 698                        /* Error getting event, probably done. */
 699                        msg->done(msg);
 700
 701                        /* Take off the event flag. */
 702                        smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
 703                        handle_flags(smi_info);
 704                } else {
 705                        smi_inc_stat(smi_info, events);
 706
 707                        /*
 708                         * Do this before we deliver the message
 709                         * because delivering the message releases the
 710                         * lock and something else can mess with the
 711                         * state.
 712                         */
 713                        handle_flags(smi_info);
 714
 715                        deliver_recv_msg(smi_info, msg);
 716                }
 717                break;
 718        }
 719
 720        case SI_GETTING_MESSAGES:
 721        {
 722                smi_info->curr_msg->rsp_size
 723                        = smi_info->handlers->get_result(
 724                                smi_info->si_sm,
 725                                smi_info->curr_msg->rsp,
 726                                IPMI_MAX_MSG_LENGTH);
 727
 728                /*
 729                 * Do this here becase deliver_recv_msg() releases the
 730                 * lock, and a new message can be put in during the
 731                 * time the lock is released.
 732                 */
 733                msg = smi_info->curr_msg;
 734                smi_info->curr_msg = NULL;
 735                if (msg->rsp[2] != 0) {
 736                        /* Error getting event, probably done. */
 737                        msg->done(msg);
 738
 739                        /* Take off the msg flag. */
 740                        smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
 741                        handle_flags(smi_info);
 742                } else {
 743                        smi_inc_stat(smi_info, incoming_messages);
 744
 745                        /*
 746                         * Do this before we deliver the message
 747                         * because delivering the message releases the
 748                         * lock and something else can mess with the
 749                         * state.
 750                         */
 751                        handle_flags(smi_info);
 752
 753                        deliver_recv_msg(smi_info, msg);
 754                }
 755                break;
 756        }
 757
 758        case SI_CHECKING_ENABLES:
 759        {
 760                unsigned char msg[4];
 761                u8 enables;
 762                bool irq_on;
 763
 764                /* We got the flags from the SMI, now handle them. */
 765                smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
 766                if (msg[2] != 0) {
 767                        dev_warn(smi_info->dev,
 768                                 "Couldn't get irq info: %x.\n", msg[2]);
 769                        dev_warn(smi_info->dev,
 770                                 "Maybe ok, but ipmi might run very slowly.\n");
 771                        smi_info->si_state = SI_NORMAL;
 772                        break;
 773                }
 774                enables = current_global_enables(smi_info, 0, &irq_on);
 775                if (smi_info->si_type == SI_BT)
 776                        /* BT has its own interrupt enable bit. */
 777                        check_bt_irq(smi_info, irq_on);
 778                if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
 779                        /* Enables are not correct, fix them. */
 780                        msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
 781                        msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
 782                        msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
 783                        smi_info->handlers->start_transaction(
 784                                smi_info->si_sm, msg, 3);
 785                        smi_info->si_state = SI_SETTING_ENABLES;
 786                } else if (smi_info->supports_event_msg_buff) {
 787                        smi_info->curr_msg = ipmi_alloc_smi_msg();
 788                        if (!smi_info->curr_msg) {
 789                                smi_info->si_state = SI_NORMAL;
 790                                break;
 791                        }
 792                        start_getting_msg_queue(smi_info);
 793                } else {
 794                        smi_info->si_state = SI_NORMAL;
 795                }
 796                break;
 797        }
 798
 799        case SI_SETTING_ENABLES:
 800        {
 801                unsigned char msg[4];
 802
 803                smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
 804                if (msg[2] != 0)
 805                        dev_warn(smi_info->dev,
 806                                 "Could not set the global enables: 0x%x.\n",
 807                                 msg[2]);
 808
 809                if (smi_info->supports_event_msg_buff) {
 810                        smi_info->curr_msg = ipmi_alloc_smi_msg();
 811                        if (!smi_info->curr_msg) {
 812                                smi_info->si_state = SI_NORMAL;
 813                                break;
 814                        }
 815                        start_getting_msg_queue(smi_info);
 816                } else {
 817                        smi_info->si_state = SI_NORMAL;
 818                }
 819                break;
 820        }
 821        }
 822}
 823
 824/*
 825 * Called on timeouts and events.  Timeouts should pass the elapsed
 826 * time, interrupts should pass in zero.  Must be called with
 827 * si_lock held and interrupts disabled.
 828 */
 829static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
 830                                           int time)
 831{
 832        enum si_sm_result si_sm_result;
 833
 834 restart:
 835        /*
 836         * There used to be a loop here that waited a little while
 837         * (around 25us) before giving up.  That turned out to be
 838         * pointless, the minimum delays I was seeing were in the 300us
 839         * range, which is far too long to wait in an interrupt.  So
 840         * we just run until the state machine tells us something
 841         * happened or it needs a delay.
 842         */
 843        si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
 844        time = 0;
 845        while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
 846                si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
 847
 848        if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
 849                smi_inc_stat(smi_info, complete_transactions);
 850
 851                handle_transaction_done(smi_info);
 852                goto restart;
 853        } else if (si_sm_result == SI_SM_HOSED) {
 854                smi_inc_stat(smi_info, hosed_count);
 855
 856                /*
 857                 * Do the before return_hosed_msg, because that
 858                 * releases the lock.
 859                 */
 860                smi_info->si_state = SI_NORMAL;
 861                if (smi_info->curr_msg != NULL) {
 862                        /*
 863                         * If we were handling a user message, format
 864                         * a response to send to the upper layer to
 865                         * tell it about the error.
 866                         */
 867                        return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
 868                }
 869                goto restart;
 870        }
 871
 872        /*
 873         * We prefer handling attn over new messages.  But don't do
 874         * this if there is not yet an upper layer to handle anything.
 875         */
 876        if (likely(smi_info->intf) &&
 877            (si_sm_result == SI_SM_ATTN || smi_info->got_attn)) {
 878                unsigned char msg[2];
 879
 880                if (smi_info->si_state != SI_NORMAL) {
 881                        /*
 882                         * We got an ATTN, but we are doing something else.
 883                         * Handle the ATTN later.
 884                         */
 885                        smi_info->got_attn = true;
 886                } else {
 887                        smi_info->got_attn = false;
 888                        smi_inc_stat(smi_info, attentions);
 889
 890                        /*
 891                         * Got a attn, send down a get message flags to see
 892                         * what's causing it.  It would be better to handle
 893                         * this in the upper layer, but due to the way
 894                         * interrupts work with the SMI, that's not really
 895                         * possible.
 896                         */
 897                        msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
 898                        msg[1] = IPMI_GET_MSG_FLAGS_CMD;
 899
 900                        start_new_msg(smi_info, msg, 2);
 901                        smi_info->si_state = SI_GETTING_FLAGS;
 902                        goto restart;
 903                }
 904        }
 905
 906        /* If we are currently idle, try to start the next message. */
 907        if (si_sm_result == SI_SM_IDLE) {
 908                smi_inc_stat(smi_info, idles);
 909
 910                si_sm_result = start_next_msg(smi_info);
 911                if (si_sm_result != SI_SM_IDLE)
 912                        goto restart;
 913        }
 914
 915        if ((si_sm_result == SI_SM_IDLE)
 916            && (atomic_read(&smi_info->req_events))) {
 917                /*
 918                 * We are idle and the upper layer requested that I fetch
 919                 * events, so do so.
 920                 */
 921                atomic_set(&smi_info->req_events, 0);
 922
 923                /*
 924                 * Take this opportunity to check the interrupt and
 925                 * message enable state for the BMC.  The BMC can be
 926                 * asynchronously reset, and may thus get interrupts
 927                 * disable and messages disabled.
 928                 */
 929                if (smi_info->supports_event_msg_buff || smi_info->irq) {
 930                        start_check_enables(smi_info, true);
 931                } else {
 932                        smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
 933                        if (!smi_info->curr_msg)
 934                                goto out;
 935
 936                        start_getting_events(smi_info);
 937                }
 938                goto restart;
 939        }
 940
 941        if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) {
 942                /* Ok it if fails, the timer will just go off. */
 943                if (del_timer(&smi_info->si_timer))
 944                        smi_info->timer_running = false;
 945        }
 946
 947 out:
 948        return si_sm_result;
 949}
 950
 951static void check_start_timer_thread(struct smi_info *smi_info)
 952{
 953        if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
 954                smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
 955
 956                if (smi_info->thread)
 957                        wake_up_process(smi_info->thread);
 958
 959                start_next_msg(smi_info);
 960                smi_event_handler(smi_info, 0);
 961        }
 962}
 963
 964static void flush_messages(void *send_info)
 965{
 966        struct smi_info *smi_info = send_info;
 967        enum si_sm_result result;
 968
 969        /*
 970         * Currently, this function is called only in run-to-completion
 971         * mode.  This means we are single-threaded, no need for locks.
 972         */
 973        result = smi_event_handler(smi_info, 0);
 974        while (result != SI_SM_IDLE) {
 975                udelay(SI_SHORT_TIMEOUT_USEC);
 976                result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC);
 977        }
 978}
 979
 980static void sender(void                *send_info,
 981                   struct ipmi_smi_msg *msg)
 982{
 983        struct smi_info   *smi_info = send_info;
 984        unsigned long     flags;
 985
 986        debug_timestamp("Enqueue");
 987
 988        if (smi_info->run_to_completion) {
 989                /*
 990                 * If we are running to completion, start it.  Upper
 991                 * layer will call flush_messages to clear it out.
 992                 */
 993                smi_info->waiting_msg = msg;
 994                return;
 995        }
 996
 997        spin_lock_irqsave(&smi_info->si_lock, flags);
 998        /*
 999         * The following two lines don't need to be under the lock for
1000         * the lock's sake, but they do need SMP memory barriers to
1001         * avoid getting things out of order.  We are already claiming
1002         * the lock, anyway, so just do it under the lock to avoid the
1003         * ordering problem.
1004         */
1005        BUG_ON(smi_info->waiting_msg);
1006        smi_info->waiting_msg = msg;
1007        check_start_timer_thread(smi_info);
1008        spin_unlock_irqrestore(&smi_info->si_lock, flags);
1009}
1010
1011static void set_run_to_completion(void *send_info, bool i_run_to_completion)
1012{
1013        struct smi_info   *smi_info = send_info;
1014
1015        smi_info->run_to_completion = i_run_to_completion;
1016        if (i_run_to_completion)
1017                flush_messages(smi_info);
1018}
1019
1020/*
1021 * Use -1 in the nsec value of the busy waiting timespec to tell that
1022 * we are spinning in kipmid looking for something and not delaying
1023 * between checks
1024 */
1025static inline void ipmi_si_set_not_busy(struct timespec64 *ts)
1026{
1027        ts->tv_nsec = -1;
1028}
1029static inline int ipmi_si_is_busy(struct timespec64 *ts)
1030{
1031        return ts->tv_nsec != -1;
1032}
1033
1034static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result,
1035                                        const struct smi_info *smi_info,
1036                                        struct timespec64 *busy_until)
1037{
1038        unsigned int max_busy_us = 0;
1039
1040        if (smi_info->intf_num < num_max_busy_us)
1041                max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
1042        if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
1043                ipmi_si_set_not_busy(busy_until);
1044        else if (!ipmi_si_is_busy(busy_until)) {
1045                getnstimeofday64(busy_until);
1046                timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
1047        } else {
1048                struct timespec64 now;
1049
1050                getnstimeofday64(&now);
1051                if (unlikely(timespec64_compare(&now, busy_until) > 0)) {
1052                        ipmi_si_set_not_busy(busy_until);
1053                        return 0;
1054                }
1055        }
1056        return 1;
1057}
1058
1059
1060/*
1061 * A busy-waiting loop for speeding up IPMI operation.
1062 *
1063 * Lousy hardware makes this hard.  This is only enabled for systems
1064 * that are not BT and do not have interrupts.  It starts spinning
1065 * when an operation is complete or until max_busy tells it to stop
1066 * (if that is enabled).  See the paragraph on kimid_max_busy_us in
1067 * Documentation/IPMI.txt for details.
1068 */
1069static int ipmi_thread(void *data)
1070{
1071        struct smi_info *smi_info = data;
1072        unsigned long flags;
1073        enum si_sm_result smi_result;
1074        struct timespec64 busy_until;
1075
1076        ipmi_si_set_not_busy(&busy_until);
1077        set_user_nice(current, MAX_NICE);
1078        while (!kthread_should_stop()) {
1079                int busy_wait;
1080
1081                spin_lock_irqsave(&(smi_info->si_lock), flags);
1082                smi_result = smi_event_handler(smi_info, 0);
1083
1084                /*
1085                 * If the driver is doing something, there is a possible
1086                 * race with the timer.  If the timer handler see idle,
1087                 * and the thread here sees something else, the timer
1088                 * handler won't restart the timer even though it is
1089                 * required.  So start it here if necessary.
1090                 */
1091                if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1092                        smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1093
1094                spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1095                busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1096                                                  &busy_until);
1097                if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1098                        ; /* do nothing */
1099                else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1100                        schedule();
1101                else if (smi_result == SI_SM_IDLE) {
1102                        if (atomic_read(&smi_info->need_watch)) {
1103                                schedule_timeout_interruptible(100);
1104                        } else {
1105                                /* Wait to be woken up when we are needed. */
1106                                __set_current_state(TASK_INTERRUPTIBLE);
1107                                schedule();
1108                        }
1109                } else
1110                        schedule_timeout_interruptible(1);
1111        }
1112        return 0;
1113}
1114
1115
1116static void poll(void *send_info)
1117{
1118        struct smi_info *smi_info = send_info;
1119        unsigned long flags = 0;
1120        bool run_to_completion = smi_info->run_to_completion;
1121
1122        /*
1123         * Make sure there is some delay in the poll loop so we can
1124         * drive time forward and timeout things.
1125         */
1126        udelay(10);
1127        if (!run_to_completion)
1128                spin_lock_irqsave(&smi_info->si_lock, flags);
1129        smi_event_handler(smi_info, 10);
1130        if (!run_to_completion)
1131                spin_unlock_irqrestore(&smi_info->si_lock, flags);
1132}
1133
1134static void request_events(void *send_info)
1135{
1136        struct smi_info *smi_info = send_info;
1137
1138        if (!smi_info->has_event_buffer)
1139                return;
1140
1141        atomic_set(&smi_info->req_events, 1);
1142}
1143
1144static void set_need_watch(void *send_info, bool enable)
1145{
1146        struct smi_info *smi_info = send_info;
1147        unsigned long flags;
1148
1149        atomic_set(&smi_info->need_watch, enable);
1150        spin_lock_irqsave(&smi_info->si_lock, flags);
1151        check_start_timer_thread(smi_info);
1152        spin_unlock_irqrestore(&smi_info->si_lock, flags);
1153}
1154
1155static int initialized;
1156
1157static void smi_timeout(unsigned long data)
1158{
1159        struct smi_info   *smi_info = (struct smi_info *) data;
1160        enum si_sm_result smi_result;
1161        unsigned long     flags;
1162        unsigned long     jiffies_now;
1163        long              time_diff;
1164        long              timeout;
1165
1166        spin_lock_irqsave(&(smi_info->si_lock), flags);
1167        debug_timestamp("Timer");
1168
1169        jiffies_now = jiffies;
1170        time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1171                     * SI_USEC_PER_JIFFY);
1172        smi_result = smi_event_handler(smi_info, time_diff);
1173
1174        if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1175                /* Running with interrupts, only do long timeouts. */
1176                timeout = jiffies + SI_TIMEOUT_JIFFIES;
1177                smi_inc_stat(smi_info, long_timeouts);
1178                goto do_mod_timer;
1179        }
1180
1181        /*
1182         * If the state machine asks for a short delay, then shorten
1183         * the timer timeout.
1184         */
1185        if (smi_result == SI_SM_CALL_WITH_DELAY) {
1186                smi_inc_stat(smi_info, short_timeouts);
1187                timeout = jiffies + 1;
1188        } else {
1189                smi_inc_stat(smi_info, long_timeouts);
1190                timeout = jiffies + SI_TIMEOUT_JIFFIES;
1191        }
1192
1193 do_mod_timer:
1194        if (smi_result != SI_SM_IDLE)
1195                smi_mod_timer(smi_info, timeout);
1196        else
1197                smi_info->timer_running = false;
1198        spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1199}
1200
1201static irqreturn_t si_irq_handler(int irq, void *data)
1202{
1203        struct smi_info *smi_info = data;
1204        unsigned long   flags;
1205
1206        spin_lock_irqsave(&(smi_info->si_lock), flags);
1207
1208        smi_inc_stat(smi_info, interrupts);
1209
1210        debug_timestamp("Interrupt");
1211
1212        smi_event_handler(smi_info, 0);
1213        spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1214        return IRQ_HANDLED;
1215}
1216
1217static irqreturn_t si_bt_irq_handler(int irq, void *data)
1218{
1219        struct smi_info *smi_info = data;
1220        /* We need to clear the IRQ flag for the BT interface. */
1221        smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1222                             IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1223                             | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1224        return si_irq_handler(irq, data);
1225}
1226
1227static int smi_start_processing(void       *send_info,
1228                                ipmi_smi_t intf)
1229{
1230        struct smi_info *new_smi = send_info;
1231        int             enable = 0;
1232
1233        new_smi->intf = intf;
1234
1235        /* Set up the timer that drives the interface. */
1236        setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1237        smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1238
1239        /* Try to claim any interrupts. */
1240        if (new_smi->irq_setup)
1241                new_smi->irq_setup(new_smi);
1242
1243        /*
1244         * Check if the user forcefully enabled the daemon.
1245         */
1246        if (new_smi->intf_num < num_force_kipmid)
1247                enable = force_kipmid[new_smi->intf_num];
1248        /*
1249         * The BT interface is efficient enough to not need a thread,
1250         * and there is no need for a thread if we have interrupts.
1251         */
1252        else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1253                enable = 1;
1254
1255        if (enable) {
1256                new_smi->thread = kthread_run(ipmi_thread, new_smi,
1257                                              "kipmi%d", new_smi->intf_num);
1258                if (IS_ERR(new_smi->thread)) {
1259                        dev_notice(new_smi->dev, "Could not start"
1260                                   " kernel thread due to error %ld, only using"
1261                                   " timers to drive the interface\n",
1262                                   PTR_ERR(new_smi->thread));
1263                        new_smi->thread = NULL;
1264                }
1265        }
1266
1267        return 0;
1268}
1269
1270static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1271{
1272        struct smi_info *smi = send_info;
1273
1274        data->addr_src = smi->addr_source;
1275        data->dev = smi->dev;
1276        data->addr_info = smi->addr_info;
1277        get_device(smi->dev);
1278
1279        return 0;
1280}
1281
1282static void set_maintenance_mode(void *send_info, bool enable)
1283{
1284        struct smi_info   *smi_info = send_info;
1285
1286        if (!enable)
1287                atomic_set(&smi_info->req_events, 0);
1288}
1289
1290static const struct ipmi_smi_handlers handlers = {
1291        .owner                  = THIS_MODULE,
1292        .start_processing       = smi_start_processing,
1293        .get_smi_info           = get_smi_info,
1294        .sender                 = sender,
1295        .request_events         = request_events,
1296        .set_need_watch         = set_need_watch,
1297        .set_maintenance_mode   = set_maintenance_mode,
1298        .set_run_to_completion  = set_run_to_completion,
1299        .flush_messages         = flush_messages,
1300        .poll                   = poll,
1301};
1302
1303/*
1304 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1305 * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1306 */
1307
1308static LIST_HEAD(smi_infos);
1309static DEFINE_MUTEX(smi_infos_lock);
1310static int smi_num; /* Used to sequence the SMIs */
1311
1312#define DEFAULT_REGSPACING      1
1313#define DEFAULT_REGSIZE         1
1314
1315#ifdef CONFIG_ACPI
1316static bool          si_tryacpi = true;
1317#endif
1318#ifdef CONFIG_DMI
1319static bool          si_trydmi = true;
1320#endif
1321static bool          si_tryplatform = true;
1322#ifdef CONFIG_PCI
1323static bool          si_trypci = true;
1324#endif
1325static bool          si_trydefaults = IS_ENABLED(CONFIG_IPMI_SI_PROBE_DEFAULTS);
1326static char          *si_type[SI_MAX_PARMS];
1327#define MAX_SI_TYPE_STR 30
1328static char          si_type_str[MAX_SI_TYPE_STR];
1329static unsigned long addrs[SI_MAX_PARMS];
1330static unsigned int num_addrs;
1331static unsigned int  ports[SI_MAX_PARMS];
1332static unsigned int num_ports;
1333static int           irqs[SI_MAX_PARMS];
1334static unsigned int num_irqs;
1335static int           regspacings[SI_MAX_PARMS];
1336static unsigned int num_regspacings;
1337static int           regsizes[SI_MAX_PARMS];
1338static unsigned int num_regsizes;
1339static int           regshifts[SI_MAX_PARMS];
1340static unsigned int num_regshifts;
1341static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1342static unsigned int num_slave_addrs;
1343
1344#define IPMI_IO_ADDR_SPACE  0
1345#define IPMI_MEM_ADDR_SPACE 1
1346static const char * const addr_space_to_str[] = { "i/o", "mem" };
1347
1348static int hotmod_handler(const char *val, struct kernel_param *kp);
1349
1350module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1351MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1352                 " Documentation/IPMI.txt in the kernel sources for the"
1353                 " gory details.");
1354
1355#ifdef CONFIG_ACPI
1356module_param_named(tryacpi, si_tryacpi, bool, 0);
1357MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1358                 " default scan of the interfaces identified via ACPI");
1359#endif
1360#ifdef CONFIG_DMI
1361module_param_named(trydmi, si_trydmi, bool, 0);
1362MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1363                 " default scan of the interfaces identified via DMI");
1364#endif
1365module_param_named(tryplatform, si_tryplatform, bool, 0);
1366MODULE_PARM_DESC(tryplatform, "Setting this to zero will disable the"
1367                 " default scan of the interfaces identified via platform"
1368                 " interfaces like openfirmware");
1369#ifdef CONFIG_PCI
1370module_param_named(trypci, si_trypci, bool, 0);
1371MODULE_PARM_DESC(trypci, "Setting this to zero will disable the"
1372                 " default scan of the interfaces identified via pci");
1373#endif
1374module_param_named(trydefaults, si_trydefaults, bool, 0);
1375MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1376                 " default scan of the KCS and SMIC interface at the standard"
1377                 " address");
1378module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1379MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1380                 " interface separated by commas.  The types are 'kcs',"
1381                 " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1382                 " the first interface to kcs and the second to bt");
1383module_param_array(addrs, ulong, &num_addrs, 0);
1384MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1385                 " addresses separated by commas.  Only use if an interface"
1386                 " is in memory.  Otherwise, set it to zero or leave"
1387                 " it blank.");
1388module_param_array(ports, uint, &num_ports, 0);
1389MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1390                 " addresses separated by commas.  Only use if an interface"
1391                 " is a port.  Otherwise, set it to zero or leave"
1392                 " it blank.");
1393module_param_array(irqs, int, &num_irqs, 0);
1394MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1395                 " addresses separated by commas.  Only use if an interface"
1396                 " has an interrupt.  Otherwise, set it to zero or leave"
1397                 " it blank.");
1398module_param_array(regspacings, int, &num_regspacings, 0);
1399MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1400                 " and each successive register used by the interface.  For"
1401                 " instance, if the start address is 0xca2 and the spacing"
1402                 " is 2, then the second address is at 0xca4.  Defaults"
1403                 " to 1.");
1404module_param_array(regsizes, int, &num_regsizes, 0);
1405MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1406                 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1407                 " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1408                 " the 8-bit IPMI register has to be read from a larger"
1409                 " register.");
1410module_param_array(regshifts, int, &num_regshifts, 0);
1411MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1412                 " IPMI register, in bits.  For instance, if the data"
1413                 " is read from a 32-bit word and the IPMI data is in"
1414                 " bit 8-15, then the shift would be 8");
1415module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1416MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1417                 " the controller.  Normally this is 0x20, but can be"
1418                 " overridden by this parm.  This is an array indexed"
1419                 " by interface number.");
1420module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1421MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1422                 " disabled(0).  Normally the IPMI driver auto-detects"
1423                 " this, but the value may be overridden by this parm.");
1424module_param(unload_when_empty, bool, 0);
1425MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1426                 " specified or found, default is 1.  Setting to 0"
1427                 " is useful for hot add of devices using hotmod.");
1428module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1429MODULE_PARM_DESC(kipmid_max_busy_us,
1430                 "Max time (in microseconds) to busy-wait for IPMI data before"
1431                 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1432                 " if kipmid is using up a lot of CPU time.");
1433
1434
1435static void std_irq_cleanup(struct smi_info *info)
1436{
1437        if (info->si_type == SI_BT)
1438                /* Disable the interrupt in the BT interface. */
1439                info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1440        free_irq(info->irq, info);
1441}
1442
1443static int std_irq_setup(struct smi_info *info)
1444{
1445        int rv;
1446
1447        if (!info->irq)
1448                return 0;
1449
1450        if (info->si_type == SI_BT) {
1451                rv = request_irq(info->irq,
1452                                 si_bt_irq_handler,
1453                                 IRQF_SHARED,
1454                                 DEVICE_NAME,
1455                                 info);
1456                if (!rv)
1457                        /* Enable the interrupt in the BT interface. */
1458                        info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1459                                         IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1460        } else
1461                rv = request_irq(info->irq,
1462                                 si_irq_handler,
1463                                 IRQF_SHARED,
1464                                 DEVICE_NAME,
1465                                 info);
1466        if (rv) {
1467                dev_warn(info->dev, "%s unable to claim interrupt %d,"
1468                         " running polled\n",
1469                         DEVICE_NAME, info->irq);
1470                info->irq = 0;
1471        } else {
1472                info->irq_cleanup = std_irq_cleanup;
1473                dev_info(info->dev, "Using irq %d\n", info->irq);
1474        }
1475
1476        return rv;
1477}
1478
1479static unsigned char port_inb(const struct si_sm_io *io, unsigned int offset)
1480{
1481        unsigned int addr = io->addr_data;
1482
1483        return inb(addr + (offset * io->regspacing));
1484}
1485
1486static void port_outb(const struct si_sm_io *io, unsigned int offset,
1487                      unsigned char b)
1488{
1489        unsigned int addr = io->addr_data;
1490
1491        outb(b, addr + (offset * io->regspacing));
1492}
1493
1494static unsigned char port_inw(const struct si_sm_io *io, unsigned int offset)
1495{
1496        unsigned int addr = io->addr_data;
1497
1498        return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1499}
1500
1501static void port_outw(const struct si_sm_io *io, unsigned int offset,
1502                      unsigned char b)
1503{
1504        unsigned int addr = io->addr_data;
1505
1506        outw(b << io->regshift, addr + (offset * io->regspacing));
1507}
1508
1509static unsigned char port_inl(const struct si_sm_io *io, unsigned int offset)
1510{
1511        unsigned int addr = io->addr_data;
1512
1513        return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1514}
1515
1516static void port_outl(const struct si_sm_io *io, unsigned int offset,
1517                      unsigned char b)
1518{
1519        unsigned int addr = io->addr_data;
1520
1521        outl(b << io->regshift, addr+(offset * io->regspacing));
1522}
1523
1524static void port_cleanup(struct smi_info *info)
1525{
1526        unsigned int addr = info->io.addr_data;
1527        int          idx;
1528
1529        if (addr) {
1530                for (idx = 0; idx < info->io_size; idx++)
1531                        release_region(addr + idx * info->io.regspacing,
1532                                       info->io.regsize);
1533        }
1534}
1535
1536static int port_setup(struct smi_info *info)
1537{
1538        unsigned int addr = info->io.addr_data;
1539        int          idx;
1540
1541        if (!addr)
1542                return -ENODEV;
1543
1544        info->io_cleanup = port_cleanup;
1545
1546        /*
1547         * Figure out the actual inb/inw/inl/etc routine to use based
1548         * upon the register size.
1549         */
1550        switch (info->io.regsize) {
1551        case 1:
1552                info->io.inputb = port_inb;
1553                info->io.outputb = port_outb;
1554                break;
1555        case 2:
1556                info->io.inputb = port_inw;
1557                info->io.outputb = port_outw;
1558                break;
1559        case 4:
1560                info->io.inputb = port_inl;
1561                info->io.outputb = port_outl;
1562                break;
1563        default:
1564                dev_warn(info->dev, "Invalid register size: %d\n",
1565                         info->io.regsize);
1566                return -EINVAL;
1567        }
1568
1569        /*
1570         * Some BIOSes reserve disjoint I/O regions in their ACPI
1571         * tables.  This causes problems when trying to register the
1572         * entire I/O region.  Therefore we must register each I/O
1573         * port separately.
1574         */
1575        for (idx = 0; idx < info->io_size; idx++) {
1576                if (request_region(addr + idx * info->io.regspacing,
1577                                   info->io.regsize, DEVICE_NAME) == NULL) {
1578                        /* Undo allocations */
1579                        while (idx--) {
1580                                release_region(addr + idx * info->io.regspacing,
1581                                               info->io.regsize);
1582                        }
1583                        return -EIO;
1584                }
1585        }
1586        return 0;
1587}
1588
1589static unsigned char intf_mem_inb(const struct si_sm_io *io,
1590                                  unsigned int offset)
1591{
1592        return readb((io->addr)+(offset * io->regspacing));
1593}
1594
1595static void intf_mem_outb(const struct si_sm_io *io, unsigned int offset,
1596                          unsigned char b)
1597{
1598        writeb(b, (io->addr)+(offset * io->regspacing));
1599}
1600
1601static unsigned char intf_mem_inw(const struct si_sm_io *io,
1602                                  unsigned int offset)
1603{
1604        return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1605                & 0xff;
1606}
1607
1608static void intf_mem_outw(const struct si_sm_io *io, unsigned int offset,
1609                          unsigned char b)
1610{
1611        writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1612}
1613
1614static unsigned char intf_mem_inl(const struct si_sm_io *io,
1615                                  unsigned int offset)
1616{
1617        return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1618                & 0xff;
1619}
1620
1621static void intf_mem_outl(const struct si_sm_io *io, unsigned int offset,
1622                          unsigned char b)
1623{
1624        writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1625}
1626
1627#ifdef readq
1628static unsigned char mem_inq(const struct si_sm_io *io, unsigned int offset)
1629{
1630        return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1631                & 0xff;
1632}
1633
1634static void mem_outq(const struct si_sm_io *io, unsigned int offset,
1635                     unsigned char b)
1636{
1637        writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1638}
1639#endif
1640
1641static void mem_cleanup(struct smi_info *info)
1642{
1643        unsigned long addr = info->io.addr_data;
1644        int           mapsize;
1645
1646        if (info->io.addr) {
1647                iounmap(info->io.addr);
1648
1649                mapsize = ((info->io_size * info->io.regspacing)
1650                           - (info->io.regspacing - info->io.regsize));
1651
1652                release_mem_region(addr, mapsize);
1653        }
1654}
1655
1656static int mem_setup(struct smi_info *info)
1657{
1658        unsigned long addr = info->io.addr_data;
1659        int           mapsize;
1660
1661        if (!addr)
1662                return -ENODEV;
1663
1664        info->io_cleanup = mem_cleanup;
1665
1666        /*
1667         * Figure out the actual readb/readw/readl/etc routine to use based
1668         * upon the register size.
1669         */
1670        switch (info->io.regsize) {
1671        case 1:
1672                info->io.inputb = intf_mem_inb;
1673                info->io.outputb = intf_mem_outb;
1674                break;
1675        case 2:
1676                info->io.inputb = intf_mem_inw;
1677                info->io.outputb = intf_mem_outw;
1678                break;
1679        case 4:
1680                info->io.inputb = intf_mem_inl;
1681                info->io.outputb = intf_mem_outl;
1682                break;
1683#ifdef readq
1684        case 8:
1685                info->io.inputb = mem_inq;
1686                info->io.outputb = mem_outq;
1687                break;
1688#endif
1689        default:
1690                dev_warn(info->dev, "Invalid register size: %d\n",
1691                         info->io.regsize);
1692                return -EINVAL;
1693        }
1694
1695        /*
1696         * Calculate the total amount of memory to claim.  This is an
1697         * unusual looking calculation, but it avoids claiming any
1698         * more memory than it has to.  It will claim everything
1699         * between the first address to the end of the last full
1700         * register.
1701         */
1702        mapsize = ((info->io_size * info->io.regspacing)
1703                   - (info->io.regspacing - info->io.regsize));
1704
1705        if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1706                return -EIO;
1707
1708        info->io.addr = ioremap(addr, mapsize);
1709        if (info->io.addr == NULL) {
1710                release_mem_region(addr, mapsize);
1711                return -EIO;
1712        }
1713        return 0;
1714}
1715
1716/*
1717 * Parms come in as <op1>[:op2[:op3...]].  ops are:
1718 *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1719 * Options are:
1720 *   rsp=<regspacing>
1721 *   rsi=<regsize>
1722 *   rsh=<regshift>
1723 *   irq=<irq>
1724 *   ipmb=<ipmb addr>
1725 */
1726enum hotmod_op { HM_ADD, HM_REMOVE };
1727struct hotmod_vals {
1728        const char *name;
1729        const int  val;
1730};
1731
1732static const struct hotmod_vals hotmod_ops[] = {
1733        { "add",        HM_ADD },
1734        { "remove",     HM_REMOVE },
1735        { NULL }
1736};
1737
1738static const struct hotmod_vals hotmod_si[] = {
1739        { "kcs",        SI_KCS },
1740        { "smic",       SI_SMIC },
1741        { "bt",         SI_BT },
1742        { NULL }
1743};
1744
1745static const struct hotmod_vals hotmod_as[] = {
1746        { "mem",        IPMI_MEM_ADDR_SPACE },
1747        { "i/o",        IPMI_IO_ADDR_SPACE },
1748        { NULL }
1749};
1750
1751static int parse_str(const struct hotmod_vals *v, int *val, char *name,
1752                     char **curr)
1753{
1754        char *s;
1755        int  i;
1756
1757        s = strchr(*curr, ',');
1758        if (!s) {
1759                printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1760                return -EINVAL;
1761        }
1762        *s = '\0';
1763        s++;
1764        for (i = 0; v[i].name; i++) {
1765                if (strcmp(*curr, v[i].name) == 0) {
1766                        *val = v[i].val;
1767                        *curr = s;
1768                        return 0;
1769                }
1770        }
1771
1772        printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1773        return -EINVAL;
1774}
1775
1776static int check_hotmod_int_op(const char *curr, const char *option,
1777                               const char *name, int *val)
1778{
1779        char *n;
1780
1781        if (strcmp(curr, name) == 0) {
1782                if (!option) {
1783                        printk(KERN_WARNING PFX
1784                               "No option given for '%s'\n",
1785                               curr);
1786                        return -EINVAL;
1787                }
1788                *val = simple_strtoul(option, &n, 0);
1789                if ((*n != '\0') || (*option == '\0')) {
1790                        printk(KERN_WARNING PFX
1791                               "Bad option given for '%s'\n",
1792                               curr);
1793                        return -EINVAL;
1794                }
1795                return 1;
1796        }
1797        return 0;
1798}
1799
1800static struct smi_info *smi_info_alloc(void)
1801{
1802        struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1803
1804        if (info)
1805                spin_lock_init(&info->si_lock);
1806        return info;
1807}
1808
1809static int hotmod_handler(const char *val, struct kernel_param *kp)
1810{
1811        char *str = kstrdup(val, GFP_KERNEL);
1812        int  rv;
1813        char *next, *curr, *s, *n, *o;
1814        enum hotmod_op op;
1815        enum si_type si_type;
1816        int  addr_space;
1817        unsigned long addr;
1818        int regspacing;
1819        int regsize;
1820        int regshift;
1821        int irq;
1822        int ipmb;
1823        int ival;
1824        int len;
1825        struct smi_info *info;
1826
1827        if (!str)
1828                return -ENOMEM;
1829
1830        /* Kill any trailing spaces, as we can get a "\n" from echo. */
1831        len = strlen(str);
1832        ival = len - 1;
1833        while ((ival >= 0) && isspace(str[ival])) {
1834                str[ival] = '\0';
1835                ival--;
1836        }
1837
1838        for (curr = str; curr; curr = next) {
1839                regspacing = 1;
1840                regsize = 1;
1841                regshift = 0;
1842                irq = 0;
1843                ipmb = 0; /* Choose the default if not specified */
1844
1845                next = strchr(curr, ':');
1846                if (next) {
1847                        *next = '\0';
1848                        next++;
1849                }
1850
1851                rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1852                if (rv)
1853                        break;
1854                op = ival;
1855
1856                rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1857                if (rv)
1858                        break;
1859                si_type = ival;
1860
1861                rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1862                if (rv)
1863                        break;
1864
1865                s = strchr(curr, ',');
1866                if (s) {
1867                        *s = '\0';
1868                        s++;
1869                }
1870                addr = simple_strtoul(curr, &n, 0);
1871                if ((*n != '\0') || (*curr == '\0')) {
1872                        printk(KERN_WARNING PFX "Invalid hotmod address"
1873                               " '%s'\n", curr);
1874                        break;
1875                }
1876
1877                while (s) {
1878                        curr = s;
1879                        s = strchr(curr, ',');
1880                        if (s) {
1881                                *s = '\0';
1882                                s++;
1883                        }
1884                        o = strchr(curr, '=');
1885                        if (o) {
1886                                *o = '\0';
1887                                o++;
1888                        }
1889                        rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1890                        if (rv < 0)
1891                                goto out;
1892                        else if (rv)
1893                                continue;
1894                        rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1895                        if (rv < 0)
1896                                goto out;
1897                        else if (rv)
1898                                continue;
1899                        rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1900                        if (rv < 0)
1901                                goto out;
1902                        else if (rv)
1903                                continue;
1904                        rv = check_hotmod_int_op(curr, o, "irq", &irq);
1905                        if (rv < 0)
1906                                goto out;
1907                        else if (rv)
1908                                continue;
1909                        rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1910                        if (rv < 0)
1911                                goto out;
1912                        else if (rv)
1913                                continue;
1914
1915                        rv = -EINVAL;
1916                        printk(KERN_WARNING PFX
1917                               "Invalid hotmod option '%s'\n",
1918                               curr);
1919                        goto out;
1920                }
1921
1922                if (op == HM_ADD) {
1923                        info = smi_info_alloc();
1924                        if (!info) {
1925                                rv = -ENOMEM;
1926                                goto out;
1927                        }
1928
1929                        info->addr_source = SI_HOTMOD;
1930                        info->si_type = si_type;
1931                        info->io.addr_data = addr;
1932                        info->io.addr_type = addr_space;
1933                        if (addr_space == IPMI_MEM_ADDR_SPACE)
1934                                info->io_setup = mem_setup;
1935                        else
1936                                info->io_setup = port_setup;
1937
1938                        info->io.addr = NULL;
1939                        info->io.regspacing = regspacing;
1940                        if (!info->io.regspacing)
1941                                info->io.regspacing = DEFAULT_REGSPACING;
1942                        info->io.regsize = regsize;
1943                        if (!info->io.regsize)
1944                                info->io.regsize = DEFAULT_REGSPACING;
1945                        info->io.regshift = regshift;
1946                        info->irq = irq;
1947                        if (info->irq)
1948                                info->irq_setup = std_irq_setup;
1949                        info->slave_addr = ipmb;
1950
1951                        rv = add_smi(info);
1952                        if (rv) {
1953                                kfree(info);
1954                                goto out;
1955                        }
1956                        rv = try_smi_init(info);
1957                        if (rv) {
1958                                cleanup_one_si(info);
1959                                goto out;
1960                        }
1961                } else {
1962                        /* remove */
1963                        struct smi_info *e, *tmp_e;
1964
1965                        mutex_lock(&smi_infos_lock);
1966                        list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1967                                if (e->io.addr_type != addr_space)
1968                                        continue;
1969                                if (e->si_type != si_type)
1970                                        continue;
1971                                if (e->io.addr_data == addr)
1972                                        cleanup_one_si(e);
1973                        }
1974                        mutex_unlock(&smi_infos_lock);
1975                }
1976        }
1977        rv = len;
1978 out:
1979        kfree(str);
1980        return rv;
1981}
1982
1983static int hardcode_find_bmc(void)
1984{
1985        int ret = -ENODEV;
1986        int             i;
1987        struct smi_info *info;
1988
1989        for (i = 0; i < SI_MAX_PARMS; i++) {
1990                if (!ports[i] && !addrs[i])
1991                        continue;
1992
1993                info = smi_info_alloc();
1994                if (!info)
1995                        return -ENOMEM;
1996
1997                info->addr_source = SI_HARDCODED;
1998                printk(KERN_INFO PFX "probing via hardcoded address\n");
1999
2000                if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
2001                        info->si_type = SI_KCS;
2002                } else if (strcmp(si_type[i], "smic") == 0) {
2003                        info->si_type = SI_SMIC;
2004                } else if (strcmp(si_type[i], "bt") == 0) {
2005                        info->si_type = SI_BT;
2006                } else {
2007                        printk(KERN_WARNING PFX "Interface type specified "
2008                               "for interface %d, was invalid: %s\n",
2009                               i, si_type[i]);
2010                        kfree(info);
2011                        continue;
2012                }
2013
2014                if (ports[i]) {
2015                        /* An I/O port */
2016                        info->io_setup = port_setup;
2017                        info->io.addr_data = ports[i];
2018                        info->io.addr_type = IPMI_IO_ADDR_SPACE;
2019                } else if (addrs[i]) {
2020                        /* A memory port */
2021                        info->io_setup = mem_setup;
2022                        info->io.addr_data = addrs[i];
2023                        info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2024                } else {
2025                        printk(KERN_WARNING PFX "Interface type specified "
2026                               "for interface %d, but port and address were "
2027                               "not set or set to zero.\n", i);
2028                        kfree(info);
2029                        continue;
2030                }
2031
2032                info->io.addr = NULL;
2033                info->io.regspacing = regspacings[i];
2034                if (!info->io.regspacing)
2035                        info->io.regspacing = DEFAULT_REGSPACING;
2036                info->io.regsize = regsizes[i];
2037                if (!info->io.regsize)
2038                        info->io.regsize = DEFAULT_REGSPACING;
2039                info->io.regshift = regshifts[i];
2040                info->irq = irqs[i];
2041                if (info->irq)
2042                        info->irq_setup = std_irq_setup;
2043                info->slave_addr = slave_addrs[i];
2044
2045                if (!add_smi(info)) {
2046                        if (try_smi_init(info))
2047                                cleanup_one_si(info);
2048                        ret = 0;
2049                } else {
2050                        kfree(info);
2051                }
2052        }
2053        return ret;
2054}
2055
2056#ifdef CONFIG_ACPI
2057
2058/*
2059 * Once we get an ACPI failure, we don't try any more, because we go
2060 * through the tables sequentially.  Once we don't find a table, there
2061 * are no more.
2062 */
2063static int acpi_failure;
2064
2065/* For GPE-type interrupts. */
2066static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
2067        u32 gpe_number, void *context)
2068{
2069        struct smi_info *smi_info = context;
2070        unsigned long   flags;
2071
2072        spin_lock_irqsave(&(smi_info->si_lock), flags);
2073
2074        smi_inc_stat(smi_info, interrupts);
2075
2076        debug_timestamp("ACPI_GPE");
2077
2078        smi_event_handler(smi_info, 0);
2079        spin_unlock_irqrestore(&(smi_info->si_lock), flags);
2080
2081        return ACPI_INTERRUPT_HANDLED;
2082}
2083
2084static void acpi_gpe_irq_cleanup(struct smi_info *info)
2085{
2086        if (!info->irq)
2087                return;
2088
2089        acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
2090}
2091
2092static int acpi_gpe_irq_setup(struct smi_info *info)
2093{
2094        acpi_status status;
2095
2096        if (!info->irq)
2097                return 0;
2098
2099        status = acpi_install_gpe_handler(NULL,
2100                                          info->irq,
2101                                          ACPI_GPE_LEVEL_TRIGGERED,
2102                                          &ipmi_acpi_gpe,
2103                                          info);
2104        if (status != AE_OK) {
2105                dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
2106                         " running polled\n", DEVICE_NAME, info->irq);
2107                info->irq = 0;
2108                return -EINVAL;
2109        } else {
2110                info->irq_cleanup = acpi_gpe_irq_cleanup;
2111                dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2112                return 0;
2113        }
2114}
2115
2116/*
2117 * Defined at
2118 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2119 */
2120struct SPMITable {
2121        s8      Signature[4];
2122        u32     Length;
2123        u8      Revision;
2124        u8      Checksum;
2125        s8      OEMID[6];
2126        s8      OEMTableID[8];
2127        s8      OEMRevision[4];
2128        s8      CreatorID[4];
2129        s8      CreatorRevision[4];
2130        u8      InterfaceType;
2131        u8      IPMIlegacy;
2132        s16     SpecificationRevision;
2133
2134        /*
2135         * Bit 0 - SCI interrupt supported
2136         * Bit 1 - I/O APIC/SAPIC
2137         */
2138        u8      InterruptType;
2139
2140        /*
2141         * If bit 0 of InterruptType is set, then this is the SCI
2142         * interrupt in the GPEx_STS register.
2143         */
2144        u8      GPE;
2145
2146        s16     Reserved;
2147
2148        /*
2149         * If bit 1 of InterruptType is set, then this is the I/O
2150         * APIC/SAPIC interrupt.
2151         */
2152        u32     GlobalSystemInterrupt;
2153
2154        /* The actual register address. */
2155        struct acpi_generic_address addr;
2156
2157        u8      UID[4];
2158
2159        s8      spmi_id[1]; /* A '\0' terminated array starts here. */
2160};
2161
2162static int try_init_spmi(struct SPMITable *spmi)
2163{
2164        struct smi_info  *info;
2165        int rv;
2166
2167        if (spmi->IPMIlegacy != 1) {
2168                printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2169                return -ENODEV;
2170        }
2171
2172        info = smi_info_alloc();
2173        if (!info) {
2174                printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2175                return -ENOMEM;
2176        }
2177
2178        info->addr_source = SI_SPMI;
2179        printk(KERN_INFO PFX "probing via SPMI\n");
2180
2181        /* Figure out the interface type. */
2182        switch (spmi->InterfaceType) {
2183        case 1: /* KCS */
2184                info->si_type = SI_KCS;
2185                break;
2186        case 2: /* SMIC */
2187                info->si_type = SI_SMIC;
2188                break;
2189        case 3: /* BT */
2190                info->si_type = SI_BT;
2191                break;
2192        case 4: /* SSIF, just ignore */
2193                kfree(info);
2194                return -EIO;
2195        default:
2196                printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2197                       spmi->InterfaceType);
2198                kfree(info);
2199                return -EIO;
2200        }
2201
2202        if (spmi->InterruptType & 1) {
2203                /* We've got a GPE interrupt. */
2204                info->irq = spmi->GPE;
2205                info->irq_setup = acpi_gpe_irq_setup;
2206        } else if (spmi->InterruptType & 2) {
2207                /* We've got an APIC/SAPIC interrupt. */
2208                info->irq = spmi->GlobalSystemInterrupt;
2209                info->irq_setup = std_irq_setup;
2210        } else {
2211                /* Use the default interrupt setting. */
2212                info->irq = 0;
2213                info->irq_setup = NULL;
2214        }
2215
2216        if (spmi->addr.bit_width) {
2217                /* A (hopefully) properly formed register bit width. */
2218                info->io.regspacing = spmi->addr.bit_width / 8;
2219        } else {
2220                info->io.regspacing = DEFAULT_REGSPACING;
2221        }
2222        info->io.regsize = info->io.regspacing;
2223        info->io.regshift = spmi->addr.bit_offset;
2224
2225        if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2226                info->io_setup = mem_setup;
2227                info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2228        } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2229                info->io_setup = port_setup;
2230                info->io.addr_type = IPMI_IO_ADDR_SPACE;
2231        } else {
2232                kfree(info);
2233                printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2234                return -EIO;
2235        }
2236        info->io.addr_data = spmi->addr.address;
2237
2238        pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2239                 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2240                 info->io.addr_data, info->io.regsize, info->io.regspacing,
2241                 info->irq);
2242
2243        rv = add_smi(info);
2244        if (rv)
2245                kfree(info);
2246
2247        return rv;
2248}
2249
2250static void spmi_find_bmc(void)
2251{
2252        acpi_status      status;
2253        struct SPMITable *spmi;
2254        int              i;
2255
2256        if (acpi_disabled)
2257                return;
2258
2259        if (acpi_failure)
2260                return;
2261
2262        for (i = 0; ; i++) {
2263                status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2264                                        (struct acpi_table_header **)&spmi);
2265                if (status != AE_OK)
2266                        return;
2267
2268                try_init_spmi(spmi);
2269        }
2270}
2271#endif
2272
2273#ifdef CONFIG_DMI
2274struct dmi_ipmi_data {
2275        u8              type;
2276        u8              addr_space;
2277        unsigned long   base_addr;
2278        u8              irq;
2279        u8              offset;
2280        u8              slave_addr;
2281};
2282
2283static int decode_dmi(const struct dmi_header *dm,
2284                                struct dmi_ipmi_data *dmi)
2285{
2286        const u8        *data = (const u8 *)dm;
2287        unsigned long   base_addr;
2288        u8              reg_spacing;
2289        u8              len = dm->length;
2290
2291        dmi->type = data[4];
2292
2293        memcpy(&base_addr, data+8, sizeof(unsigned long));
2294        if (len >= 0x11) {
2295                if (base_addr & 1) {
2296                        /* I/O */
2297                        base_addr &= 0xFFFE;
2298                        dmi->addr_space = IPMI_IO_ADDR_SPACE;
2299                } else
2300                        /* Memory */
2301                        dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2302
2303                /* If bit 4 of byte 0x10 is set, then the lsb for the address
2304                   is odd. */
2305                dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2306
2307                dmi->irq = data[0x11];
2308
2309                /* The top two bits of byte 0x10 hold the register spacing. */
2310                reg_spacing = (data[0x10] & 0xC0) >> 6;
2311                switch (reg_spacing) {
2312                case 0x00: /* Byte boundaries */
2313                    dmi->offset = 1;
2314                    break;
2315                case 0x01: /* 32-bit boundaries */
2316                    dmi->offset = 4;
2317                    break;
2318                case 0x02: /* 16-byte boundaries */
2319                    dmi->offset = 16;
2320                    break;
2321                default:
2322                    /* Some other interface, just ignore it. */
2323                    return -EIO;
2324                }
2325        } else {
2326                /* Old DMI spec. */
2327                /*
2328                 * Note that technically, the lower bit of the base
2329                 * address should be 1 if the address is I/O and 0 if
2330                 * the address is in memory.  So many systems get that
2331                 * wrong (and all that I have seen are I/O) so we just
2332                 * ignore that bit and assume I/O.  Systems that use
2333                 * memory should use the newer spec, anyway.
2334                 */
2335                dmi->base_addr = base_addr & 0xfffe;
2336                dmi->addr_space = IPMI_IO_ADDR_SPACE;
2337                dmi->offset = 1;
2338        }
2339
2340        dmi->slave_addr = data[6];
2341
2342        return 0;
2343}
2344
2345static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2346{
2347        struct smi_info *info;
2348
2349        info = smi_info_alloc();
2350        if (!info) {
2351                printk(KERN_ERR PFX "Could not allocate SI data\n");
2352                return;
2353        }
2354
2355        info->addr_source = SI_SMBIOS;
2356        printk(KERN_INFO PFX "probing via SMBIOS\n");
2357
2358        switch (ipmi_data->type) {
2359        case 0x01: /* KCS */
2360                info->si_type = SI_KCS;
2361                break;
2362        case 0x02: /* SMIC */
2363                info->si_type = SI_SMIC;
2364                break;
2365        case 0x03: /* BT */
2366                info->si_type = SI_BT;
2367                break;
2368        default:
2369                kfree(info);
2370                return;
2371        }
2372
2373        switch (ipmi_data->addr_space) {
2374        case IPMI_MEM_ADDR_SPACE:
2375                info->io_setup = mem_setup;
2376                info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2377                break;
2378
2379        case IPMI_IO_ADDR_SPACE:
2380                info->io_setup = port_setup;
2381                info->io.addr_type = IPMI_IO_ADDR_SPACE;
2382                break;
2383
2384        default:
2385                kfree(info);
2386                printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2387                       ipmi_data->addr_space);
2388                return;
2389        }
2390        info->io.addr_data = ipmi_data->base_addr;
2391
2392        info->io.regspacing = ipmi_data->offset;
2393        if (!info->io.regspacing)
2394                info->io.regspacing = DEFAULT_REGSPACING;
2395        info->io.regsize = DEFAULT_REGSPACING;
2396        info->io.regshift = 0;
2397
2398        info->slave_addr = ipmi_data->slave_addr;
2399
2400        info->irq = ipmi_data->irq;
2401        if (info->irq)
2402                info->irq_setup = std_irq_setup;
2403
2404        pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2405                 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2406                 info->io.addr_data, info->io.regsize, info->io.regspacing,
2407                 info->irq);
2408
2409        if (add_smi(info))
2410                kfree(info);
2411}
2412
2413static void dmi_find_bmc(void)
2414{
2415        const struct dmi_device *dev = NULL;
2416        struct dmi_ipmi_data data;
2417        int                  rv;
2418
2419        while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2420                memset(&data, 0, sizeof(data));
2421                rv = decode_dmi((const struct dmi_header *) dev->device_data,
2422                                &data);
2423                if (!rv)
2424                        try_init_dmi(&data);
2425        }
2426}
2427#endif /* CONFIG_DMI */
2428
2429#ifdef CONFIG_PCI
2430
2431#define PCI_ERMC_CLASSCODE              0x0C0700
2432#define PCI_ERMC_CLASSCODE_MASK         0xffffff00
2433#define PCI_ERMC_CLASSCODE_TYPE_MASK    0xff
2434#define PCI_ERMC_CLASSCODE_TYPE_SMIC    0x00
2435#define PCI_ERMC_CLASSCODE_TYPE_KCS     0x01
2436#define PCI_ERMC_CLASSCODE_TYPE_BT      0x02
2437
2438#define PCI_HP_VENDOR_ID    0x103C
2439#define PCI_MMC_DEVICE_ID   0x121A
2440#define PCI_MMC_ADDR_CW     0x10
2441
2442static void ipmi_pci_cleanup(struct smi_info *info)
2443{
2444        struct pci_dev *pdev = info->addr_source_data;
2445
2446        pci_disable_device(pdev);
2447}
2448
2449static int ipmi_pci_probe_regspacing(struct smi_info *info)
2450{
2451        if (info->si_type == SI_KCS) {
2452                unsigned char   status;
2453                int             regspacing;
2454
2455                info->io.regsize = DEFAULT_REGSIZE;
2456                info->io.regshift = 0;
2457                info->io_size = 2;
2458                info->handlers = &kcs_smi_handlers;
2459
2460                /* detect 1, 4, 16byte spacing */
2461                for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2462                        info->io.regspacing = regspacing;
2463                        if (info->io_setup(info)) {
2464                                dev_err(info->dev,
2465                                        "Could not setup I/O space\n");
2466                                return DEFAULT_REGSPACING;
2467                        }
2468                        /* write invalid cmd */
2469                        info->io.outputb(&info->io, 1, 0x10);
2470                        /* read status back */
2471                        status = info->io.inputb(&info->io, 1);
2472                        info->io_cleanup(info);
2473                        if (status)
2474                                return regspacing;
2475                        regspacing *= 4;
2476                }
2477        }
2478        return DEFAULT_REGSPACING;
2479}
2480
2481static int ipmi_pci_probe(struct pci_dev *pdev,
2482                                    const struct pci_device_id *ent)
2483{
2484        int rv;
2485        int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2486        struct smi_info *info;
2487
2488        info = smi_info_alloc();
2489        if (!info)
2490                return -ENOMEM;
2491
2492        info->addr_source = SI_PCI;
2493        dev_info(&pdev->dev, "probing via PCI");
2494
2495        switch (class_type) {
2496        case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2497                info->si_type = SI_SMIC;
2498                break;
2499
2500        case PCI_ERMC_CLASSCODE_TYPE_KCS:
2501                info->si_type = SI_KCS;
2502                break;
2503
2504        case PCI_ERMC_CLASSCODE_TYPE_BT:
2505                info->si_type = SI_BT;
2506                break;
2507
2508        default:
2509                kfree(info);
2510                dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2511                return -ENOMEM;
2512        }
2513
2514        rv = pci_enable_device(pdev);
2515        if (rv) {
2516                dev_err(&pdev->dev, "couldn't enable PCI device\n");
2517                kfree(info);
2518                return rv;
2519        }
2520
2521        info->addr_source_cleanup = ipmi_pci_cleanup;
2522        info->addr_source_data = pdev;
2523
2524        if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2525                info->io_setup = port_setup;
2526                info->io.addr_type = IPMI_IO_ADDR_SPACE;
2527        } else {
2528                info->io_setup = mem_setup;
2529                info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2530        }
2531        info->io.addr_data = pci_resource_start(pdev, 0);
2532
2533        info->io.regspacing = ipmi_pci_probe_regspacing(info);
2534        info->io.regsize = DEFAULT_REGSIZE;
2535        info->io.regshift = 0;
2536
2537        info->irq = pdev->irq;
2538        if (info->irq)
2539                info->irq_setup = std_irq_setup;
2540
2541        info->dev = &pdev->dev;
2542        pci_set_drvdata(pdev, info);
2543
2544        dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2545                &pdev->resource[0], info->io.regsize, info->io.regspacing,
2546                info->irq);
2547
2548        rv = add_smi(info);
2549        if (rv) {
2550                kfree(info);
2551                pci_disable_device(pdev);
2552        }
2553
2554        return rv;
2555}
2556
2557static void ipmi_pci_remove(struct pci_dev *pdev)
2558{
2559        struct smi_info *info = pci_get_drvdata(pdev);
2560        cleanup_one_si(info);
2561}
2562
2563static const struct pci_device_id ipmi_pci_devices[] = {
2564        { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2565        { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2566        { 0, }
2567};
2568MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2569
2570static struct pci_driver ipmi_pci_driver = {
2571        .name =         DEVICE_NAME,
2572        .id_table =     ipmi_pci_devices,
2573        .probe =        ipmi_pci_probe,
2574        .remove =       ipmi_pci_remove,
2575};
2576#endif /* CONFIG_PCI */
2577
2578#ifdef CONFIG_OF
2579static const struct of_device_id of_ipmi_match[] = {
2580        { .type = "ipmi", .compatible = "ipmi-kcs",
2581          .data = (void *)(unsigned long) SI_KCS },
2582        { .type = "ipmi", .compatible = "ipmi-smic",
2583          .data = (void *)(unsigned long) SI_SMIC },
2584        { .type = "ipmi", .compatible = "ipmi-bt",
2585          .data = (void *)(unsigned long) SI_BT },
2586        {},
2587};
2588MODULE_DEVICE_TABLE(of, of_ipmi_match);
2589
2590static int of_ipmi_probe(struct platform_device *dev)
2591{
2592        const struct of_device_id *match;
2593        struct smi_info *info;
2594        struct resource resource;
2595        const __be32 *regsize, *regspacing, *regshift;
2596        struct device_node *np = dev->dev.of_node;
2597        int ret;
2598        int proplen;
2599
2600        dev_info(&dev->dev, "probing via device tree\n");
2601
2602        match = of_match_device(of_ipmi_match, &dev->dev);
2603        if (!match)
2604                return -ENODEV;
2605
2606        if (!of_device_is_available(np))
2607                return -EINVAL;
2608
2609        ret = of_address_to_resource(np, 0, &resource);
2610        if (ret) {
2611                dev_warn(&dev->dev, PFX "invalid address from OF\n");
2612                return ret;
2613        }
2614
2615        regsize = of_get_property(np, "reg-size", &proplen);
2616        if (regsize && proplen != 4) {
2617                dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2618                return -EINVAL;
2619        }
2620
2621        regspacing = of_get_property(np, "reg-spacing", &proplen);
2622        if (regspacing && proplen != 4) {
2623                dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2624                return -EINVAL;
2625        }
2626
2627        regshift = of_get_property(np, "reg-shift", &proplen);
2628        if (regshift && proplen != 4) {
2629                dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2630                return -EINVAL;
2631        }
2632
2633        info = smi_info_alloc();
2634
2635        if (!info) {
2636                dev_err(&dev->dev,
2637                        "could not allocate memory for OF probe\n");
2638                return -ENOMEM;
2639        }
2640
2641        info->si_type           = (enum si_type) match->data;
2642        info->addr_source       = SI_DEVICETREE;
2643        info->irq_setup         = std_irq_setup;
2644
2645        if (resource.flags & IORESOURCE_IO) {
2646                info->io_setup          = port_setup;
2647                info->io.addr_type      = IPMI_IO_ADDR_SPACE;
2648        } else {
2649                info->io_setup          = mem_setup;
2650                info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2651        }
2652
2653        info->io.addr_data      = resource.start;
2654
2655        info->io.regsize        = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2656        info->io.regspacing     = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2657        info->io.regshift       = regshift ? be32_to_cpup(regshift) : 0;
2658
2659        info->irq               = irq_of_parse_and_map(dev->dev.of_node, 0);
2660        info->dev               = &dev->dev;
2661
2662        dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2663                info->io.addr_data, info->io.regsize, info->io.regspacing,
2664                info->irq);
2665
2666        dev_set_drvdata(&dev->dev, info);
2667
2668        ret = add_smi(info);
2669        if (ret) {
2670                kfree(info);
2671                return ret;
2672        }
2673        return 0;
2674}
2675#else
2676#define of_ipmi_match NULL
2677static int of_ipmi_probe(struct platform_device *dev)
2678{
2679        return -ENODEV;
2680}
2681#endif
2682
2683#ifdef CONFIG_ACPI
2684static int acpi_ipmi_probe(struct platform_device *dev)
2685{
2686        struct smi_info *info;
2687        struct resource *res, *res_second;
2688        acpi_handle handle;
2689        acpi_status status;
2690        unsigned long long tmp;
2691        int rv = -EINVAL;
2692
2693        if (!si_tryacpi)
2694               return 0;
2695
2696        handle = ACPI_HANDLE(&dev->dev);
2697        if (!handle)
2698                return -ENODEV;
2699
2700        info = smi_info_alloc();
2701        if (!info)
2702                return -ENOMEM;
2703
2704        info->addr_source = SI_ACPI;
2705        dev_info(&dev->dev, PFX "probing via ACPI\n");
2706
2707        info->addr_info.acpi_info.acpi_handle = handle;
2708
2709        /* _IFT tells us the interface type: KCS, BT, etc */
2710        status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2711        if (ACPI_FAILURE(status)) {
2712                dev_err(&dev->dev, "Could not find ACPI IPMI interface type\n");
2713                goto err_free;
2714        }
2715
2716        switch (tmp) {
2717        case 1:
2718                info->si_type = SI_KCS;
2719                break;
2720        case 2:
2721                info->si_type = SI_SMIC;
2722                break;
2723        case 3:
2724                info->si_type = SI_BT;
2725                break;
2726        case 4: /* SSIF, just ignore */
2727                rv = -ENODEV;
2728                goto err_free;
2729        default:
2730                dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2731                goto err_free;
2732        }
2733
2734        res = platform_get_resource(dev, IORESOURCE_IO, 0);
2735        if (res) {
2736                info->io_setup = port_setup;
2737                info->io.addr_type = IPMI_IO_ADDR_SPACE;
2738        } else {
2739                res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2740                if (res) {
2741                        info->io_setup = mem_setup;
2742                        info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2743                }
2744        }
2745        if (!res) {
2746                dev_err(&dev->dev, "no I/O or memory address\n");
2747                goto err_free;
2748        }
2749        info->io.addr_data = res->start;
2750
2751        info->io.regspacing = DEFAULT_REGSPACING;
2752        res_second = platform_get_resource(dev,
2753                               (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2754                                        IORESOURCE_IO : IORESOURCE_MEM,
2755                               1);
2756        if (res_second) {
2757                if (res_second->start > info->io.addr_data)
2758                        info->io.regspacing =
2759                                res_second->start - info->io.addr_data;
2760        }
2761        info->io.regsize = DEFAULT_REGSPACING;
2762        info->io.regshift = 0;
2763
2764        /* If _GPE exists, use it; otherwise use standard interrupts */
2765        status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2766        if (ACPI_SUCCESS(status)) {
2767                info->irq = tmp;
2768                info->irq_setup = acpi_gpe_irq_setup;
2769        } else {
2770                int irq = platform_get_irq(dev, 0);
2771
2772                if (irq > 0) {
2773                        info->irq = irq;
2774                        info->irq_setup = std_irq_setup;
2775                }
2776        }
2777
2778        info->dev = &dev->dev;
2779        platform_set_drvdata(dev, info);
2780
2781        dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2782                 res, info->io.regsize, info->io.regspacing,
2783                 info->irq);
2784
2785        rv = add_smi(info);
2786        if (rv)
2787                kfree(info);
2788
2789        return rv;
2790
2791err_free:
2792        kfree(info);
2793        return rv;
2794}
2795
2796static const struct acpi_device_id acpi_ipmi_match[] = {
2797        { "IPI0001", 0 },
2798        { },
2799};
2800MODULE_DEVICE_TABLE(acpi, acpi_ipmi_match);
2801#else
2802static int acpi_ipmi_probe(struct platform_device *dev)
2803{
2804        return -ENODEV;
2805}
2806#endif
2807
2808static int ipmi_probe(struct platform_device *dev)
2809{
2810        if (of_ipmi_probe(dev) == 0)
2811                return 0;
2812
2813        return acpi_ipmi_probe(dev);
2814}
2815
2816static int ipmi_remove(struct platform_device *dev)
2817{
2818        struct smi_info *info = dev_get_drvdata(&dev->dev);
2819
2820        cleanup_one_si(info);
2821        return 0;
2822}
2823
2824static struct platform_driver ipmi_driver = {
2825        .driver = {
2826                .name = DEVICE_NAME,
2827                .of_match_table = of_ipmi_match,
2828                .acpi_match_table = ACPI_PTR(acpi_ipmi_match),
2829        },
2830        .probe          = ipmi_probe,
2831        .remove         = ipmi_remove,
2832};
2833
2834#ifdef CONFIG_PARISC
2835static int ipmi_parisc_probe(struct parisc_device *dev)
2836{
2837        struct smi_info *info;
2838        int rv;
2839
2840        info = smi_info_alloc();
2841
2842        if (!info) {
2843                dev_err(&dev->dev,
2844                        "could not allocate memory for PARISC probe\n");
2845                return -ENOMEM;
2846        }
2847
2848        info->si_type           = SI_KCS;
2849        info->addr_source       = SI_DEVICETREE;
2850        info->io_setup          = mem_setup;
2851        info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2852        info->io.addr_data      = dev->hpa.start;
2853        info->io.regsize        = 1;
2854        info->io.regspacing     = 1;
2855        info->io.regshift       = 0;
2856        info->irq               = 0; /* no interrupt */
2857        info->irq_setup         = NULL;
2858        info->dev               = &dev->dev;
2859
2860        dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data);
2861
2862        dev_set_drvdata(&dev->dev, info);
2863
2864        rv = add_smi(info);
2865        if (rv) {
2866                kfree(info);
2867                return rv;
2868        }
2869
2870        return 0;
2871}
2872
2873static int ipmi_parisc_remove(struct parisc_device *dev)
2874{
2875        cleanup_one_si(dev_get_drvdata(&dev->dev));
2876        return 0;
2877}
2878
2879static const struct parisc_device_id ipmi_parisc_tbl[] = {
2880        { HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 },
2881        { 0, }
2882};
2883
2884static struct parisc_driver ipmi_parisc_driver = {
2885        .name =         "ipmi",
2886        .id_table =     ipmi_parisc_tbl,
2887        .probe =        ipmi_parisc_probe,
2888        .remove =       ipmi_parisc_remove,
2889};
2890#endif /* CONFIG_PARISC */
2891
2892static int wait_for_msg_done(struct smi_info *smi_info)
2893{
2894        enum si_sm_result     smi_result;
2895
2896        smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2897        for (;;) {
2898                if (smi_result == SI_SM_CALL_WITH_DELAY ||
2899                    smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2900                        schedule_timeout_uninterruptible(1);
2901                        smi_result = smi_info->handlers->event(
2902                                smi_info->si_sm, jiffies_to_usecs(1));
2903                } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2904                        smi_result = smi_info->handlers->event(
2905                                smi_info->si_sm, 0);
2906                } else
2907                        break;
2908        }
2909        if (smi_result == SI_SM_HOSED)
2910                /*
2911                 * We couldn't get the state machine to run, so whatever's at
2912                 * the port is probably not an IPMI SMI interface.
2913                 */
2914                return -ENODEV;
2915
2916        return 0;
2917}
2918
2919static int try_get_dev_id(struct smi_info *smi_info)
2920{
2921        unsigned char         msg[2];
2922        unsigned char         *resp;
2923        unsigned long         resp_len;
2924        int                   rv = 0;
2925
2926        resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2927        if (!resp)
2928                return -ENOMEM;
2929
2930        /*
2931         * Do a Get Device ID command, since it comes back with some
2932         * useful info.
2933         */
2934        msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2935        msg[1] = IPMI_GET_DEVICE_ID_CMD;
2936        smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2937
2938        rv = wait_for_msg_done(smi_info);
2939        if (rv)
2940                goto out;
2941
2942        resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2943                                                  resp, IPMI_MAX_MSG_LENGTH);
2944
2945        /* Check and record info from the get device id, in case we need it. */
2946        rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2947
2948 out:
2949        kfree(resp);
2950        return rv;
2951}
2952
2953static int get_global_enables(struct smi_info *smi_info, u8 *enables)
2954{
2955        unsigned char         msg[3];
2956        unsigned char         *resp;
2957        unsigned long         resp_len;
2958        int                   rv;
2959
2960        resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2961        if (!resp)
2962                return -ENOMEM;
2963
2964        msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2965        msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2966        smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2967
2968        rv = wait_for_msg_done(smi_info);
2969        if (rv) {
2970                dev_warn(smi_info->dev,
2971                         "Error getting response from get global enables command: %d\n",
2972                         rv);
2973                goto out;
2974        }
2975
2976        resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2977                                                  resp, IPMI_MAX_MSG_LENGTH);
2978
2979        if (resp_len < 4 ||
2980                        resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2981                        resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2982                        resp[2] != 0) {
2983                dev_warn(smi_info->dev,
2984                         "Invalid return from get global enables command: %ld %x %x %x\n",
2985                         resp_len, resp[0], resp[1], resp[2]);
2986                rv = -EINVAL;
2987                goto out;
2988        } else {
2989                *enables = resp[3];
2990        }
2991
2992out:
2993        kfree(resp);
2994        return rv;
2995}
2996
2997/*
2998 * Returns 1 if it gets an error from the command.
2999 */
3000static int set_global_enables(struct smi_info *smi_info, u8 enables)
3001{
3002        unsigned char         msg[3];
3003        unsigned char         *resp;
3004        unsigned long         resp_len;
3005        int                   rv;
3006
3007        resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3008        if (!resp)
3009                return -ENOMEM;
3010
3011        msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3012        msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3013        msg[2] = enables;
3014        smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3015
3016        rv = wait_for_msg_done(smi_info);
3017        if (rv) {
3018                dev_warn(smi_info->dev,
3019                         "Error getting response from set global enables command: %d\n",
3020                         rv);
3021                goto out;
3022        }
3023
3024        resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3025                                                  resp, IPMI_MAX_MSG_LENGTH);
3026
3027        if (resp_len < 3 ||
3028                        resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3029                        resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3030                dev_warn(smi_info->dev,
3031                         "Invalid return from set global enables command: %ld %x %x\n",
3032                         resp_len, resp[0], resp[1]);
3033                rv = -EINVAL;
3034                goto out;
3035        }
3036
3037        if (resp[2] != 0)
3038                rv = 1;
3039
3040out:
3041        kfree(resp);
3042        return rv;
3043}
3044
3045/*
3046 * Some BMCs do not support clearing the receive irq bit in the global
3047 * enables (even if they don't support interrupts on the BMC).  Check
3048 * for this and handle it properly.
3049 */
3050static void check_clr_rcv_irq(struct smi_info *smi_info)
3051{
3052        u8 enables = 0;
3053        int rv;
3054
3055        rv = get_global_enables(smi_info, &enables);
3056        if (!rv) {
3057                if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0)
3058                        /* Already clear, should work ok. */
3059                        return;
3060
3061                enables &= ~IPMI_BMC_RCV_MSG_INTR;
3062                rv = set_global_enables(smi_info, enables);
3063        }
3064
3065        if (rv < 0) {
3066                dev_err(smi_info->dev,
3067                        "Cannot check clearing the rcv irq: %d\n", rv);
3068                return;
3069        }
3070
3071        if (rv) {
3072                /*
3073                 * An error when setting the event buffer bit means
3074                 * clearing the bit is not supported.
3075                 */
3076                dev_warn(smi_info->dev,
3077                         "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3078                smi_info->cannot_disable_irq = true;
3079        }
3080}
3081
3082/*
3083 * Some BMCs do not support setting the interrupt bits in the global
3084 * enables even if they support interrupts.  Clearly bad, but we can
3085 * compensate.
3086 */
3087static void check_set_rcv_irq(struct smi_info *smi_info)
3088{
3089        u8 enables = 0;
3090        int rv;
3091
3092        if (!smi_info->irq)
3093                return;
3094
3095        rv = get_global_enables(smi_info, &enables);
3096        if (!rv) {
3097                enables |= IPMI_BMC_RCV_MSG_INTR;
3098                rv = set_global_enables(smi_info, enables);
3099        }
3100
3101        if (rv < 0) {
3102                dev_err(smi_info->dev,
3103                        "Cannot check setting the rcv irq: %d\n", rv);
3104                return;
3105        }
3106
3107        if (rv) {
3108                /*
3109                 * An error when setting the event buffer bit means
3110                 * setting the bit is not supported.
3111                 */
3112                dev_warn(smi_info->dev,
3113                         "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3114                smi_info->cannot_disable_irq = true;
3115                smi_info->irq_enable_broken = true;
3116        }
3117}
3118
3119static int try_enable_event_buffer(struct smi_info *smi_info)
3120{
3121        unsigned char         msg[3];
3122        unsigned char         *resp;
3123        unsigned long         resp_len;
3124        int                   rv = 0;
3125
3126        resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3127        if (!resp)
3128                return -ENOMEM;
3129
3130        msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3131        msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
3132        smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
3133
3134        rv = wait_for_msg_done(smi_info);
3135        if (rv) {
3136                printk(KERN_WARNING PFX "Error getting response from get"
3137                       " global enables command, the event buffer is not"
3138                       " enabled.\n");
3139                goto out;
3140        }
3141
3142        resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3143                                                  resp, IPMI_MAX_MSG_LENGTH);
3144
3145        if (resp_len < 4 ||
3146                        resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3147                        resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
3148                        resp[2] != 0) {
3149                printk(KERN_WARNING PFX "Invalid return from get global"
3150                       " enables command, cannot enable the event buffer.\n");
3151                rv = -EINVAL;
3152                goto out;
3153        }
3154
3155        if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
3156                /* buffer is already enabled, nothing to do. */
3157                smi_info->supports_event_msg_buff = true;
3158                goto out;
3159        }
3160
3161        msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3162        msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3163        msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
3164        smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3165
3166        rv = wait_for_msg_done(smi_info);
3167        if (rv) {
3168                printk(KERN_WARNING PFX "Error getting response from set"
3169                       " global, enables command, the event buffer is not"
3170                       " enabled.\n");
3171                goto out;
3172        }
3173
3174        resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3175                                                  resp, IPMI_MAX_MSG_LENGTH);
3176
3177        if (resp_len < 3 ||
3178                        resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3179                        resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3180                printk(KERN_WARNING PFX "Invalid return from get global,"
3181                       "enables command, not enable the event buffer.\n");
3182                rv = -EINVAL;
3183                goto out;
3184        }
3185
3186        if (resp[2] != 0)
3187                /*
3188                 * An error when setting the event buffer bit means
3189                 * that the event buffer is not supported.
3190                 */
3191                rv = -ENOENT;
3192        else
3193                smi_info->supports_event_msg_buff = true;
3194
3195 out:
3196        kfree(resp);
3197        return rv;
3198}
3199
3200static int smi_type_proc_show(struct seq_file *m, void *v)
3201{
3202        struct smi_info *smi = m->private;
3203
3204        seq_printf(m, "%s\n", si_to_str[smi->si_type]);
3205
3206        return 0;
3207}
3208
3209static int smi_type_proc_open(struct inode *inode, struct file *file)
3210{
3211        return single_open(file, smi_type_proc_show, PDE_DATA(inode));
3212}
3213
3214static const struct file_operations smi_type_proc_ops = {
3215        .open           = smi_type_proc_open,
3216        .read           = seq_read,
3217        .llseek         = seq_lseek,
3218        .release        = single_release,
3219};
3220
3221static int smi_si_stats_proc_show(struct seq_file *m, void *v)
3222{
3223        struct smi_info *smi = m->private;
3224
3225        seq_printf(m, "interrupts_enabled:    %d\n",
3226                       smi->irq && !smi->interrupt_disabled);
3227        seq_printf(m, "short_timeouts:        %u\n",
3228                       smi_get_stat(smi, short_timeouts));
3229        seq_printf(m, "long_timeouts:         %u\n",
3230                       smi_get_stat(smi, long_timeouts));
3231        seq_printf(m, "idles:                 %u\n",
3232                       smi_get_stat(smi, idles));
3233        seq_printf(m, "interrupts:            %u\n",
3234                       smi_get_stat(smi, interrupts));
3235        seq_printf(m, "attentions:            %u\n",
3236                       smi_get_stat(smi, attentions));
3237        seq_printf(m, "flag_fetches:          %u\n",
3238                       smi_get_stat(smi, flag_fetches));
3239        seq_printf(m, "hosed_count:           %u\n",
3240                       smi_get_stat(smi, hosed_count));
3241        seq_printf(m, "complete_transactions: %u\n",
3242                       smi_get_stat(smi, complete_transactions));
3243        seq_printf(m, "events:                %u\n",
3244                       smi_get_stat(smi, events));
3245        seq_printf(m, "watchdog_pretimeouts:  %u\n",
3246                       smi_get_stat(smi, watchdog_pretimeouts));
3247        seq_printf(m, "incoming_messages:     %u\n",
3248                       smi_get_stat(smi, incoming_messages));
3249        return 0;
3250}
3251
3252static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
3253{
3254        return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
3255}
3256
3257static const struct file_operations smi_si_stats_proc_ops = {
3258        .open           = smi_si_stats_proc_open,
3259        .read           = seq_read,
3260        .llseek         = seq_lseek,
3261        .release        = single_release,
3262};
3263
3264static int smi_params_proc_show(struct seq_file *m, void *v)
3265{
3266        struct smi_info *smi = m->private;
3267
3268        seq_printf(m,
3269                   "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
3270                   si_to_str[smi->si_type],
3271                   addr_space_to_str[smi->io.addr_type],
3272                   smi->io.addr_data,
3273                   smi->io.regspacing,
3274                   smi->io.regsize,
3275                   smi->io.regshift,
3276                   smi->irq,
3277                   smi->slave_addr);
3278
3279        return 0;
3280}
3281
3282static int smi_params_proc_open(struct inode *inode, struct file *file)
3283{
3284        return single_open(file, smi_params_proc_show, PDE_DATA(inode));
3285}
3286
3287static const struct file_operations smi_params_proc_ops = {
3288        .open           = smi_params_proc_open,
3289        .read           = seq_read,
3290        .llseek         = seq_lseek,
3291        .release        = single_release,
3292};
3293
3294/*
3295 * oem_data_avail_to_receive_msg_avail
3296 * @info - smi_info structure with msg_flags set
3297 *
3298 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
3299 * Returns 1 indicating need to re-run handle_flags().
3300 */
3301static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
3302{
3303        smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
3304                               RECEIVE_MSG_AVAIL);
3305        return 1;
3306}
3307
3308/*
3309 * setup_dell_poweredge_oem_data_handler
3310 * @info - smi_info.device_id must be populated
3311 *
3312 * Systems that match, but have firmware version < 1.40 may assert
3313 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
3314 * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
3315 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
3316 * as RECEIVE_MSG_AVAIL instead.
3317 *
3318 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
3319 * assert the OEM[012] bits, and if it did, the driver would have to
3320 * change to handle that properly, we don't actually check for the
3321 * firmware version.
3322 * Device ID = 0x20                BMC on PowerEdge 8G servers
3323 * Device Revision = 0x80
3324 * Firmware Revision1 = 0x01       BMC version 1.40
3325 * Firmware Revision2 = 0x40       BCD encoded
3326 * IPMI Version = 0x51             IPMI 1.5
3327 * Manufacturer ID = A2 02 00      Dell IANA
3328 *
3329 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
3330 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
3331 *
3332 */
3333#define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
3334#define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
3335#define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
3336#define DELL_IANA_MFR_ID 0x0002a2
3337static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
3338{
3339        struct ipmi_device_id *id = &smi_info->device_id;
3340        if (id->manufacturer_id == DELL_IANA_MFR_ID) {
3341                if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
3342                    id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
3343                    id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
3344                        smi_info->oem_data_avail_handler =
3345                                oem_data_avail_to_receive_msg_avail;
3346                } else if (ipmi_version_major(id) < 1 ||
3347                           (ipmi_version_major(id) == 1 &&
3348                            ipmi_version_minor(id) < 5)) {
3349                        smi_info->oem_data_avail_handler =
3350                                oem_data_avail_to_receive_msg_avail;
3351                }
3352        }
3353}
3354
3355#define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
3356static void return_hosed_msg_badsize(struct smi_info *smi_info)
3357{
3358        struct ipmi_smi_msg *msg = smi_info->curr_msg;
3359
3360        /* Make it a response */
3361        msg->rsp[0] = msg->data[0] | 4;
3362        msg->rsp[1] = msg->data[1];
3363        msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
3364        msg->rsp_size = 3;
3365        smi_info->curr_msg = NULL;
3366        deliver_recv_msg(smi_info, msg);
3367}
3368
3369/*
3370 * dell_poweredge_bt_xaction_handler
3371 * @info - smi_info.device_id must be populated
3372 *
3373 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3374 * not respond to a Get SDR command if the length of the data
3375 * requested is exactly 0x3A, which leads to command timeouts and no
3376 * data returned.  This intercepts such commands, and causes userspace
3377 * callers to try again with a different-sized buffer, which succeeds.
3378 */
3379
3380#define STORAGE_NETFN 0x0A
3381#define STORAGE_CMD_GET_SDR 0x23
3382static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3383                                             unsigned long unused,
3384                                             void *in)
3385{
3386        struct smi_info *smi_info = in;
3387        unsigned char *data = smi_info->curr_msg->data;
3388        unsigned int size   = smi_info->curr_msg->data_size;
3389        if (size >= 8 &&
3390            (data[0]>>2) == STORAGE_NETFN &&
3391            data[1] == STORAGE_CMD_GET_SDR &&
3392            data[7] == 0x3A) {
3393                return_hosed_msg_badsize(smi_info);
3394                return NOTIFY_STOP;
3395        }
3396        return NOTIFY_DONE;
3397}
3398
3399static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3400        .notifier_call  = dell_poweredge_bt_xaction_handler,
3401};
3402
3403/*
3404 * setup_dell_poweredge_bt_xaction_handler
3405 * @info - smi_info.device_id must be filled in already
3406 *
3407 * Fills in smi_info.device_id.start_transaction_pre_hook
3408 * when we know what function to use there.
3409 */
3410static void
3411setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3412{
3413        struct ipmi_device_id *id = &smi_info->device_id;
3414        if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3415            smi_info->si_type == SI_BT)
3416                register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3417}
3418
3419/*
3420 * setup_oem_data_handler
3421 * @info - smi_info.device_id must be filled in already
3422 *
3423 * Fills in smi_info.device_id.oem_data_available_handler
3424 * when we know what function to use there.
3425 */
3426
3427static void setup_oem_data_handler(struct smi_info *smi_info)
3428{
3429        setup_dell_poweredge_oem_data_handler(smi_info);
3430}
3431
3432static void setup_xaction_handlers(struct smi_info *smi_info)
3433{
3434        setup_dell_poweredge_bt_xaction_handler(smi_info);
3435}
3436
3437static void check_for_broken_irqs(struct smi_info *smi_info)
3438{
3439        check_clr_rcv_irq(smi_info);
3440        check_set_rcv_irq(smi_info);
3441}
3442
3443static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3444{
3445        if (smi_info->thread != NULL)
3446                kthread_stop(smi_info->thread);
3447        if (smi_info->timer_running)
3448                del_timer_sync(&smi_info->si_timer);
3449}
3450
3451static const struct ipmi_default_vals
3452{
3453        const int type;
3454        const int port;
3455} ipmi_defaults[] =
3456{
3457        { .type = SI_KCS, .port = 0xca2 },
3458        { .type = SI_SMIC, .port = 0xca9 },
3459        { .type = SI_BT, .port = 0xe4 },
3460        { .port = 0 }
3461};
3462
3463static void default_find_bmc(void)
3464{
3465        struct smi_info *info;
3466        int             i;
3467
3468        for (i = 0; ; i++) {
3469                if (!ipmi_defaults[i].port)
3470                        break;
3471#ifdef CONFIG_PPC
3472                if (check_legacy_ioport(ipmi_defaults[i].port))
3473                        continue;
3474#endif
3475                info = smi_info_alloc();
3476                if (!info)
3477                        return;
3478
3479                info->addr_source = SI_DEFAULT;
3480
3481                info->si_type = ipmi_defaults[i].type;
3482                info->io_setup = port_setup;
3483                info->io.addr_data = ipmi_defaults[i].port;
3484                info->io.addr_type = IPMI_IO_ADDR_SPACE;
3485
3486                info->io.addr = NULL;
3487                info->io.regspacing = DEFAULT_REGSPACING;
3488                info->io.regsize = DEFAULT_REGSPACING;
3489                info->io.regshift = 0;
3490
3491                if (add_smi(info) == 0) {
3492                        if ((try_smi_init(info)) == 0) {
3493                                /* Found one... */
3494                                printk(KERN_INFO PFX "Found default %s"
3495                                " state machine at %s address 0x%lx\n",
3496                                si_to_str[info->si_type],
3497                                addr_space_to_str[info->io.addr_type],
3498                                info->io.addr_data);
3499                        } else
3500                                cleanup_one_si(info);
3501                } else {
3502                        kfree(info);
3503                }
3504        }
3505}
3506
3507static int is_new_interface(struct smi_info *info)
3508{
3509        struct smi_info *e;
3510
3511        list_for_each_entry(e, &smi_infos, link) {
3512                if (e->io.addr_type != info->io.addr_type)
3513                        continue;
3514                if (e->io.addr_data == info->io.addr_data)
3515                        return 0;
3516        }
3517
3518        return 1;
3519}
3520
3521static int add_smi(struct smi_info *new_smi)
3522{
3523        int rv = 0;
3524
3525        printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3526               ipmi_addr_src_to_str(new_smi->addr_source),
3527               si_to_str[new_smi->si_type]);
3528        mutex_lock(&smi_infos_lock);
3529        if (!is_new_interface(new_smi)) {
3530                printk(KERN_CONT " duplicate interface\n");
3531                rv = -EBUSY;
3532                goto out_err;
3533        }
3534
3535        printk(KERN_CONT "\n");
3536
3537        /* So we know not to free it unless we have allocated one. */
3538        new_smi->intf = NULL;
3539        new_smi->si_sm = NULL;
3540        new_smi->handlers = NULL;
3541
3542        list_add_tail(&new_smi->link, &smi_infos);
3543
3544out_err:
3545        mutex_unlock(&smi_infos_lock);
3546        return rv;
3547}
3548
3549static int try_smi_init(struct smi_info *new_smi)
3550{
3551        int rv = 0;
3552        int i;
3553
3554        printk(KERN_INFO PFX "Trying %s-specified %s state"
3555               " machine at %s address 0x%lx, slave address 0x%x,"
3556               " irq %d\n",
3557               ipmi_addr_src_to_str(new_smi->addr_source),
3558               si_to_str[new_smi->si_type],
3559               addr_space_to_str[new_smi->io.addr_type],
3560               new_smi->io.addr_data,
3561               new_smi->slave_addr, new_smi->irq);
3562
3563        switch (new_smi->si_type) {
3564        case SI_KCS:
3565                new_smi->handlers = &kcs_smi_handlers;
3566                break;
3567
3568        case SI_SMIC:
3569                new_smi->handlers = &smic_smi_handlers;
3570                break;
3571
3572        case SI_BT:
3573                new_smi->handlers = &bt_smi_handlers;
3574                break;
3575
3576        default:
3577                /* No support for anything else yet. */
3578                rv = -EIO;
3579                goto out_err;
3580        }
3581
3582        /* Allocate the state machine's data and initialize it. */
3583        new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3584        if (!new_smi->si_sm) {
3585                printk(KERN_ERR PFX
3586                       "Could not allocate state machine memory\n");
3587                rv = -ENOMEM;
3588                goto out_err;
3589        }
3590        new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3591                                                        &new_smi->io);
3592
3593        /* Now that we know the I/O size, we can set up the I/O. */
3594        rv = new_smi->io_setup(new_smi);
3595        if (rv) {
3596                printk(KERN_ERR PFX "Could not set up I/O space\n");
3597                goto out_err;
3598        }
3599
3600        /* Do low-level detection first. */
3601        if (new_smi->handlers->detect(new_smi->si_sm)) {
3602                if (new_smi->addr_source)
3603                        printk(KERN_INFO PFX "Interface detection failed\n");
3604                rv = -ENODEV;
3605                goto out_err;
3606        }
3607
3608        /*
3609         * Attempt a get device id command.  If it fails, we probably
3610         * don't have a BMC here.
3611         */
3612        rv = try_get_dev_id(new_smi);
3613        if (rv) {
3614                if (new_smi->addr_source)
3615                        printk(KERN_INFO PFX "There appears to be no BMC"
3616                               " at this location\n");
3617                goto out_err;
3618        }
3619
3620        setup_oem_data_handler(new_smi);
3621        setup_xaction_handlers(new_smi);
3622        check_for_broken_irqs(new_smi);
3623
3624        new_smi->waiting_msg = NULL;
3625        new_smi->curr_msg = NULL;
3626        atomic_set(&new_smi->req_events, 0);
3627        new_smi->run_to_completion = false;
3628        for (i = 0; i < SI_NUM_STATS; i++)
3629                atomic_set(&new_smi->stats[i], 0);
3630
3631        new_smi->interrupt_disabled = true;
3632        atomic_set(&new_smi->need_watch, 0);
3633        new_smi->intf_num = smi_num;
3634        smi_num++;
3635
3636        rv = try_enable_event_buffer(new_smi);
3637        if (rv == 0)
3638                new_smi->has_event_buffer = true;
3639
3640        /*
3641         * Start clearing the flags before we enable interrupts or the
3642         * timer to avoid racing with the timer.
3643         */
3644        start_clear_flags(new_smi, false);
3645
3646        /*
3647         * IRQ is defined to be set when non-zero.  req_events will
3648         * cause a global flags check that will enable interrupts.
3649         */
3650        if (new_smi->irq) {
3651                new_smi->interrupt_disabled = false;
3652                atomic_set(&new_smi->req_events, 1);
3653        }
3654
3655        if (!new_smi->dev) {
3656                /*
3657                 * If we don't already have a device from something
3658                 * else (like PCI), then register a new one.
3659                 */
3660                new_smi->pdev = platform_device_alloc("ipmi_si",
3661                                                      new_smi->intf_num);
3662                if (!new_smi->pdev) {
3663                        printk(KERN_ERR PFX
3664                               "Unable to allocate platform device\n");
3665                        goto out_err;
3666                }
3667                new_smi->dev = &new_smi->pdev->dev;
3668                new_smi->dev->driver = &ipmi_driver.driver;
3669
3670                rv = platform_device_add(new_smi->pdev);
3671                if (rv) {
3672                        printk(KERN_ERR PFX
3673                               "Unable to register system interface device:"
3674                               " %d\n",
3675                               rv);
3676                        goto out_err;
3677                }
3678                new_smi->dev_registered = true;
3679        }
3680
3681        rv = ipmi_register_smi(&handlers,
3682                               new_smi,
3683                               &new_smi->device_id,
3684                               new_smi->dev,
3685                               new_smi->slave_addr);
3686        if (rv) {
3687                dev_err(new_smi->dev, "Unable to register device: error %d\n",
3688                        rv);
3689                goto out_err_stop_timer;
3690        }
3691
3692        rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3693                                     &smi_type_proc_ops,
3694                                     new_smi);
3695        if (rv) {
3696                dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3697                goto out_err_stop_timer;
3698        }
3699
3700        rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3701                                     &smi_si_stats_proc_ops,
3702                                     new_smi);
3703        if (rv) {
3704                dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3705                goto out_err_stop_timer;
3706        }
3707
3708        rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3709                                     &smi_params_proc_ops,
3710                                     new_smi);
3711        if (rv) {
3712                dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3713                goto out_err_stop_timer;
3714        }
3715
3716        dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3717                 si_to_str[new_smi->si_type]);
3718
3719        return 0;
3720
3721 out_err_stop_timer:
3722        wait_for_timer_and_thread(new_smi);
3723
3724 out_err:
3725        new_smi->interrupt_disabled = true;
3726
3727        if (new_smi->intf) {
3728                ipmi_smi_t intf = new_smi->intf;
3729                new_smi->intf = NULL;
3730                ipmi_unregister_smi(intf);
3731        }
3732
3733        if (new_smi->irq_cleanup) {
3734                new_smi->irq_cleanup(new_smi);
3735                new_smi->irq_cleanup = NULL;
3736        }
3737
3738        /*
3739         * Wait until we know that we are out of any interrupt
3740         * handlers might have been running before we freed the
3741         * interrupt.
3742         */
3743        synchronize_sched();
3744
3745        if (new_smi->si_sm) {
3746                if (new_smi->handlers)
3747                        new_smi->handlers->cleanup(new_smi->si_sm);
3748                kfree(new_smi->si_sm);
3749                new_smi->si_sm = NULL;
3750        }
3751        if (new_smi->addr_source_cleanup) {
3752                new_smi->addr_source_cleanup(new_smi);
3753                new_smi->addr_source_cleanup = NULL;
3754        }
3755        if (new_smi->io_cleanup) {
3756                new_smi->io_cleanup(new_smi);
3757                new_smi->io_cleanup = NULL;
3758        }
3759
3760        if (new_smi->dev_registered) {
3761                platform_device_unregister(new_smi->pdev);
3762                new_smi->dev_registered = false;
3763        }
3764
3765        return rv;
3766}
3767
3768static int init_ipmi_si(void)
3769{
3770        int  i;
3771        char *str;
3772        int  rv;
3773        struct smi_info *e;
3774        enum ipmi_addr_src type = SI_INVALID;
3775
3776        if (initialized)
3777                return 0;
3778        initialized = 1;
3779
3780        if (si_tryplatform) {
3781                rv = platform_driver_register(&ipmi_driver);
3782                if (rv) {
3783                        printk(KERN_ERR PFX "Unable to register "
3784                               "driver: %d\n", rv);
3785                        return rv;
3786                }
3787        }
3788
3789        /* Parse out the si_type string into its components. */
3790        str = si_type_str;
3791        if (*str != '\0') {
3792                for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3793                        si_type[i] = str;
3794                        str = strchr(str, ',');
3795                        if (str) {
3796                                *str = '\0';
3797                                str++;
3798                        } else {
3799                                break;
3800                        }
3801                }
3802        }
3803
3804        printk(KERN_INFO "IPMI System Interface driver.\n");
3805
3806        /* If the user gave us a device, they presumably want us to use it */
3807        if (!hardcode_find_bmc())
3808                return 0;
3809
3810#ifdef CONFIG_PCI
3811        if (si_trypci) {
3812                rv = pci_register_driver(&ipmi_pci_driver);
3813                if (rv)
3814                        printk(KERN_ERR PFX "Unable to register "
3815                               "PCI driver: %d\n", rv);
3816                else
3817                        pci_registered = true;
3818        }
3819#endif
3820
3821#ifdef CONFIG_DMI
3822        if (si_trydmi)
3823                dmi_find_bmc();
3824#endif
3825
3826#ifdef CONFIG_ACPI
3827        if (si_tryacpi)
3828                spmi_find_bmc();
3829#endif
3830
3831#ifdef CONFIG_PARISC
3832        register_parisc_driver(&ipmi_parisc_driver);
3833        parisc_registered = true;
3834        /* poking PC IO addresses will crash machine, don't do it */
3835        si_trydefaults = 0;
3836#endif
3837
3838        /* We prefer devices with interrupts, but in the case of a machine
3839           with multiple BMCs we assume that there will be several instances
3840           of a given type so if we succeed in registering a type then also
3841           try to register everything else of the same type */
3842
3843        mutex_lock(&smi_infos_lock);
3844        list_for_each_entry(e, &smi_infos, link) {
3845                /* Try to register a device if it has an IRQ and we either
3846                   haven't successfully registered a device yet or this
3847                   device has the same type as one we successfully registered */
3848                if (e->irq && (!type || e->addr_source == type)) {
3849                        if (!try_smi_init(e)) {
3850                                type = e->addr_source;
3851                        }
3852                }
3853        }
3854
3855        /* type will only have been set if we successfully registered an si */
3856        if (type) {
3857                mutex_unlock(&smi_infos_lock);
3858                return 0;
3859        }
3860
3861        /* Fall back to the preferred device */
3862
3863        list_for_each_entry(e, &smi_infos, link) {
3864                if (!e->irq && (!type || e->addr_source == type)) {
3865                        if (!try_smi_init(e)) {
3866                                type = e->addr_source;
3867                        }
3868                }
3869        }
3870        mutex_unlock(&smi_infos_lock);
3871
3872        if (type)
3873                return 0;
3874
3875        if (si_trydefaults) {
3876                mutex_lock(&smi_infos_lock);
3877                if (list_empty(&smi_infos)) {
3878                        /* No BMC was found, try defaults. */
3879                        mutex_unlock(&smi_infos_lock);
3880                        default_find_bmc();
3881                } else
3882                        mutex_unlock(&smi_infos_lock);
3883        }
3884
3885        mutex_lock(&smi_infos_lock);
3886        if (unload_when_empty && list_empty(&smi_infos)) {
3887                mutex_unlock(&smi_infos_lock);
3888                cleanup_ipmi_si();
3889                printk(KERN_WARNING PFX
3890                       "Unable to find any System Interface(s)\n");
3891                return -ENODEV;
3892        } else {
3893                mutex_unlock(&smi_infos_lock);
3894                return 0;
3895        }
3896}
3897module_init(init_ipmi_si);
3898
3899static void cleanup_one_si(struct smi_info *to_clean)
3900{
3901        int           rv = 0;
3902
3903        if (!to_clean)
3904                return;
3905
3906        if (to_clean->intf) {
3907                ipmi_smi_t intf = to_clean->intf;
3908
3909                to_clean->intf = NULL;
3910                rv = ipmi_unregister_smi(intf);
3911                if (rv) {
3912                        pr_err(PFX "Unable to unregister device: errno=%d\n",
3913                               rv);
3914                }
3915        }
3916
3917        if (to_clean->dev)
3918                dev_set_drvdata(to_clean->dev, NULL);
3919
3920        list_del(&to_clean->link);
3921
3922        /*
3923         * Make sure that interrupts, the timer and the thread are
3924         * stopped and will not run again.
3925         */
3926        if (to_clean->irq_cleanup)
3927                to_clean->irq_cleanup(to_clean);
3928        wait_for_timer_and_thread(to_clean);
3929
3930        /*
3931         * Timeouts are stopped, now make sure the interrupts are off
3932         * in the BMC.  Note that timers and CPU interrupts are off,
3933         * so no need for locks.
3934         */
3935        while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3936                poll(to_clean);
3937                schedule_timeout_uninterruptible(1);
3938        }
3939        disable_si_irq(to_clean, false);
3940        while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3941                poll(to_clean);
3942                schedule_timeout_uninterruptible(1);
3943        }
3944
3945        if (to_clean->handlers)
3946                to_clean->handlers->cleanup(to_clean->si_sm);
3947
3948        kfree(to_clean->si_sm);
3949
3950        if (to_clean->addr_source_cleanup)
3951                to_clean->addr_source_cleanup(to_clean);
3952        if (to_clean->io_cleanup)
3953                to_clean->io_cleanup(to_clean);
3954
3955        if (to_clean->dev_registered)
3956                platform_device_unregister(to_clean->pdev);
3957
3958        kfree(to_clean);
3959}
3960
3961static void cleanup_ipmi_si(void)
3962{
3963        struct smi_info *e, *tmp_e;
3964
3965        if (!initialized)
3966                return;
3967
3968#ifdef CONFIG_PCI
3969        if (pci_registered)
3970                pci_unregister_driver(&ipmi_pci_driver);
3971#endif
3972#ifdef CONFIG_PARISC
3973        if (parisc_registered)
3974                unregister_parisc_driver(&ipmi_parisc_driver);
3975#endif
3976
3977        platform_driver_unregister(&ipmi_driver);
3978
3979        mutex_lock(&smi_infos_lock);
3980        list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3981                cleanup_one_si(e);
3982        mutex_unlock(&smi_infos_lock);
3983}
3984module_exit(cleanup_ipmi_si);
3985
3986MODULE_LICENSE("GPL");
3987MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3988MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3989                   " system interfaces.");
3990