linux/drivers/char/random.c
<<
>>
Prefs
   1/*
   2 * random.c -- A strong random number generator
   3 *
   4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
   5 *
   6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
   7 * rights reserved.
   8 *
   9 * Redistribution and use in source and binary forms, with or without
  10 * modification, are permitted provided that the following conditions
  11 * are met:
  12 * 1. Redistributions of source code must retain the above copyright
  13 *    notice, and the entire permission notice in its entirety,
  14 *    including the disclaimer of warranties.
  15 * 2. Redistributions in binary form must reproduce the above copyright
  16 *    notice, this list of conditions and the following disclaimer in the
  17 *    documentation and/or other materials provided with the distribution.
  18 * 3. The name of the author may not be used to endorse or promote
  19 *    products derived from this software without specific prior
  20 *    written permission.
  21 *
  22 * ALTERNATIVELY, this product may be distributed under the terms of
  23 * the GNU General Public License, in which case the provisions of the GPL are
  24 * required INSTEAD OF the above restrictions.  (This clause is
  25 * necessary due to a potential bad interaction between the GPL and
  26 * the restrictions contained in a BSD-style copyright.)
  27 *
  28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
  31 * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
  32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
  34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
  35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
  39 * DAMAGE.
  40 */
  41
  42/*
  43 * (now, with legal B.S. out of the way.....)
  44 *
  45 * This routine gathers environmental noise from device drivers, etc.,
  46 * and returns good random numbers, suitable for cryptographic use.
  47 * Besides the obvious cryptographic uses, these numbers are also good
  48 * for seeding TCP sequence numbers, and other places where it is
  49 * desirable to have numbers which are not only random, but hard to
  50 * predict by an attacker.
  51 *
  52 * Theory of operation
  53 * ===================
  54 *
  55 * Computers are very predictable devices.  Hence it is extremely hard
  56 * to produce truly random numbers on a computer --- as opposed to
  57 * pseudo-random numbers, which can easily generated by using a
  58 * algorithm.  Unfortunately, it is very easy for attackers to guess
  59 * the sequence of pseudo-random number generators, and for some
  60 * applications this is not acceptable.  So instead, we must try to
  61 * gather "environmental noise" from the computer's environment, which
  62 * must be hard for outside attackers to observe, and use that to
  63 * generate random numbers.  In a Unix environment, this is best done
  64 * from inside the kernel.
  65 *
  66 * Sources of randomness from the environment include inter-keyboard
  67 * timings, inter-interrupt timings from some interrupts, and other
  68 * events which are both (a) non-deterministic and (b) hard for an
  69 * outside observer to measure.  Randomness from these sources are
  70 * added to an "entropy pool", which is mixed using a CRC-like function.
  71 * This is not cryptographically strong, but it is adequate assuming
  72 * the randomness is not chosen maliciously, and it is fast enough that
  73 * the overhead of doing it on every interrupt is very reasonable.
  74 * As random bytes are mixed into the entropy pool, the routines keep
  75 * an *estimate* of how many bits of randomness have been stored into
  76 * the random number generator's internal state.
  77 *
  78 * When random bytes are desired, they are obtained by taking the SHA
  79 * hash of the contents of the "entropy pool".  The SHA hash avoids
  80 * exposing the internal state of the entropy pool.  It is believed to
  81 * be computationally infeasible to derive any useful information
  82 * about the input of SHA from its output.  Even if it is possible to
  83 * analyze SHA in some clever way, as long as the amount of data
  84 * returned from the generator is less than the inherent entropy in
  85 * the pool, the output data is totally unpredictable.  For this
  86 * reason, the routine decreases its internal estimate of how many
  87 * bits of "true randomness" are contained in the entropy pool as it
  88 * outputs random numbers.
  89 *
  90 * If this estimate goes to zero, the routine can still generate
  91 * random numbers; however, an attacker may (at least in theory) be
  92 * able to infer the future output of the generator from prior
  93 * outputs.  This requires successful cryptanalysis of SHA, which is
  94 * not believed to be feasible, but there is a remote possibility.
  95 * Nonetheless, these numbers should be useful for the vast majority
  96 * of purposes.
  97 *
  98 * Exported interfaces ---- output
  99 * ===============================
 100 *
 101 * There are three exported interfaces; the first is one designed to
 102 * be used from within the kernel:
 103 *
 104 *      void get_random_bytes(void *buf, int nbytes);
 105 *
 106 * This interface will return the requested number of random bytes,
 107 * and place it in the requested buffer.
 108 *
 109 * The two other interfaces are two character devices /dev/random and
 110 * /dev/urandom.  /dev/random is suitable for use when very high
 111 * quality randomness is desired (for example, for key generation or
 112 * one-time pads), as it will only return a maximum of the number of
 113 * bits of randomness (as estimated by the random number generator)
 114 * contained in the entropy pool.
 115 *
 116 * The /dev/urandom device does not have this limit, and will return
 117 * as many bytes as are requested.  As more and more random bytes are
 118 * requested without giving time for the entropy pool to recharge,
 119 * this will result in random numbers that are merely cryptographically
 120 * strong.  For many applications, however, this is acceptable.
 121 *
 122 * Exported interfaces ---- input
 123 * ==============================
 124 *
 125 * The current exported interfaces for gathering environmental noise
 126 * from the devices are:
 127 *
 128 *      void add_device_randomness(const void *buf, unsigned int size);
 129 *      void add_input_randomness(unsigned int type, unsigned int code,
 130 *                                unsigned int value);
 131 *      void add_interrupt_randomness(int irq, int irq_flags);
 132 *      void add_disk_randomness(struct gendisk *disk);
 133 *
 134 * add_device_randomness() is for adding data to the random pool that
 135 * is likely to differ between two devices (or possibly even per boot).
 136 * This would be things like MAC addresses or serial numbers, or the
 137 * read-out of the RTC. This does *not* add any actual entropy to the
 138 * pool, but it initializes the pool to different values for devices
 139 * that might otherwise be identical and have very little entropy
 140 * available to them (particularly common in the embedded world).
 141 *
 142 * add_input_randomness() uses the input layer interrupt timing, as well as
 143 * the event type information from the hardware.
 144 *
 145 * add_interrupt_randomness() uses the interrupt timing as random
 146 * inputs to the entropy pool. Using the cycle counters and the irq source
 147 * as inputs, it feeds the randomness roughly once a second.
 148 *
 149 * add_disk_randomness() uses what amounts to the seek time of block
 150 * layer request events, on a per-disk_devt basis, as input to the
 151 * entropy pool. Note that high-speed solid state drives with very low
 152 * seek times do not make for good sources of entropy, as their seek
 153 * times are usually fairly consistent.
 154 *
 155 * All of these routines try to estimate how many bits of randomness a
 156 * particular randomness source.  They do this by keeping track of the
 157 * first and second order deltas of the event timings.
 158 *
 159 * Ensuring unpredictability at system startup
 160 * ============================================
 161 *
 162 * When any operating system starts up, it will go through a sequence
 163 * of actions that are fairly predictable by an adversary, especially
 164 * if the start-up does not involve interaction with a human operator.
 165 * This reduces the actual number of bits of unpredictability in the
 166 * entropy pool below the value in entropy_count.  In order to
 167 * counteract this effect, it helps to carry information in the
 168 * entropy pool across shut-downs and start-ups.  To do this, put the
 169 * following lines an appropriate script which is run during the boot
 170 * sequence:
 171 *
 172 *      echo "Initializing random number generator..."
 173 *      random_seed=/var/run/random-seed
 174 *      # Carry a random seed from start-up to start-up
 175 *      # Load and then save the whole entropy pool
 176 *      if [ -f $random_seed ]; then
 177 *              cat $random_seed >/dev/urandom
 178 *      else
 179 *              touch $random_seed
 180 *      fi
 181 *      chmod 600 $random_seed
 182 *      dd if=/dev/urandom of=$random_seed count=1 bs=512
 183 *
 184 * and the following lines in an appropriate script which is run as
 185 * the system is shutdown:
 186 *
 187 *      # Carry a random seed from shut-down to start-up
 188 *      # Save the whole entropy pool
 189 *      echo "Saving random seed..."
 190 *      random_seed=/var/run/random-seed
 191 *      touch $random_seed
 192 *      chmod 600 $random_seed
 193 *      dd if=/dev/urandom of=$random_seed count=1 bs=512
 194 *
 195 * For example, on most modern systems using the System V init
 196 * scripts, such code fragments would be found in
 197 * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
 198 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
 199 *
 200 * Effectively, these commands cause the contents of the entropy pool
 201 * to be saved at shut-down time and reloaded into the entropy pool at
 202 * start-up.  (The 'dd' in the addition to the bootup script is to
 203 * make sure that /etc/random-seed is different for every start-up,
 204 * even if the system crashes without executing rc.0.)  Even with
 205 * complete knowledge of the start-up activities, predicting the state
 206 * of the entropy pool requires knowledge of the previous history of
 207 * the system.
 208 *
 209 * Configuring the /dev/random driver under Linux
 210 * ==============================================
 211 *
 212 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
 213 * the /dev/mem major number (#1).  So if your system does not have
 214 * /dev/random and /dev/urandom created already, they can be created
 215 * by using the commands:
 216 *
 217 *      mknod /dev/random c 1 8
 218 *      mknod /dev/urandom c 1 9
 219 *
 220 * Acknowledgements:
 221 * =================
 222 *
 223 * Ideas for constructing this random number generator were derived
 224 * from Pretty Good Privacy's random number generator, and from private
 225 * discussions with Phil Karn.  Colin Plumb provided a faster random
 226 * number generator, which speed up the mixing function of the entropy
 227 * pool, taken from PGPfone.  Dale Worley has also contributed many
 228 * useful ideas and suggestions to improve this driver.
 229 *
 230 * Any flaws in the design are solely my responsibility, and should
 231 * not be attributed to the Phil, Colin, or any of authors of PGP.
 232 *
 233 * Further background information on this topic may be obtained from
 234 * RFC 1750, "Randomness Recommendations for Security", by Donald
 235 * Eastlake, Steve Crocker, and Jeff Schiller.
 236 */
 237
 238#include <linux/utsname.h>
 239#include <linux/module.h>
 240#include <linux/kernel.h>
 241#include <linux/major.h>
 242#include <linux/string.h>
 243#include <linux/fcntl.h>
 244#include <linux/slab.h>
 245#include <linux/random.h>
 246#include <linux/poll.h>
 247#include <linux/init.h>
 248#include <linux/fs.h>
 249#include <linux/genhd.h>
 250#include <linux/interrupt.h>
 251#include <linux/mm.h>
 252#include <linux/spinlock.h>
 253#include <linux/kthread.h>
 254#include <linux/percpu.h>
 255#include <linux/cryptohash.h>
 256#include <linux/fips.h>
 257#include <linux/ptrace.h>
 258#include <linux/kmemcheck.h>
 259#include <linux/workqueue.h>
 260#include <linux/irq.h>
 261#include <linux/syscalls.h>
 262#include <linux/completion.h>
 263
 264#include <asm/processor.h>
 265#include <asm/uaccess.h>
 266#include <asm/irq.h>
 267#include <asm/irq_regs.h>
 268#include <asm/io.h>
 269
 270#define CREATE_TRACE_POINTS
 271#include <trace/events/random.h>
 272
 273/* #define ADD_INTERRUPT_BENCH */
 274
 275/*
 276 * Configuration information
 277 */
 278#define INPUT_POOL_SHIFT        12
 279#define INPUT_POOL_WORDS        (1 << (INPUT_POOL_SHIFT-5))
 280#define OUTPUT_POOL_SHIFT       10
 281#define OUTPUT_POOL_WORDS       (1 << (OUTPUT_POOL_SHIFT-5))
 282#define SEC_XFER_SIZE           512
 283#define EXTRACT_SIZE            10
 284
 285#define DEBUG_RANDOM_BOOT 0
 286
 287#define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
 288
 289/*
 290 * To allow fractional bits to be tracked, the entropy_count field is
 291 * denominated in units of 1/8th bits.
 292 *
 293 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
 294 * credit_entropy_bits() needs to be 64 bits wide.
 295 */
 296#define ENTROPY_SHIFT 3
 297#define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
 298
 299/*
 300 * The minimum number of bits of entropy before we wake up a read on
 301 * /dev/random.  Should be enough to do a significant reseed.
 302 */
 303static int random_read_wakeup_bits = 64;
 304
 305/*
 306 * If the entropy count falls under this number of bits, then we
 307 * should wake up processes which are selecting or polling on write
 308 * access to /dev/random.
 309 */
 310static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
 311
 312/*
 313 * The minimum number of seconds between urandom pool reseeding.  We
 314 * do this to limit the amount of entropy that can be drained from the
 315 * input pool even if there are heavy demands on /dev/urandom.
 316 */
 317static int random_min_urandom_seed = 60;
 318
 319/*
 320 * Originally, we used a primitive polynomial of degree .poolwords
 321 * over GF(2).  The taps for various sizes are defined below.  They
 322 * were chosen to be evenly spaced except for the last tap, which is 1
 323 * to get the twisting happening as fast as possible.
 324 *
 325 * For the purposes of better mixing, we use the CRC-32 polynomial as
 326 * well to make a (modified) twisted Generalized Feedback Shift
 327 * Register.  (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR
 328 * generators.  ACM Transactions on Modeling and Computer Simulation
 329 * 2(3):179-194.  Also see M. Matsumoto & Y. Kurita, 1994.  Twisted
 330 * GFSR generators II.  ACM Transactions on Modeling and Computer
 331 * Simulation 4:254-266)
 332 *
 333 * Thanks to Colin Plumb for suggesting this.
 334 *
 335 * The mixing operation is much less sensitive than the output hash,
 336 * where we use SHA-1.  All that we want of mixing operation is that
 337 * it be a good non-cryptographic hash; i.e. it not produce collisions
 338 * when fed "random" data of the sort we expect to see.  As long as
 339 * the pool state differs for different inputs, we have preserved the
 340 * input entropy and done a good job.  The fact that an intelligent
 341 * attacker can construct inputs that will produce controlled
 342 * alterations to the pool's state is not important because we don't
 343 * consider such inputs to contribute any randomness.  The only
 344 * property we need with respect to them is that the attacker can't
 345 * increase his/her knowledge of the pool's state.  Since all
 346 * additions are reversible (knowing the final state and the input,
 347 * you can reconstruct the initial state), if an attacker has any
 348 * uncertainty about the initial state, he/she can only shuffle that
 349 * uncertainty about, but never cause any collisions (which would
 350 * decrease the uncertainty).
 351 *
 352 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
 353 * Videau in their paper, "The Linux Pseudorandom Number Generator
 354 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf).  In their
 355 * paper, they point out that we are not using a true Twisted GFSR,
 356 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
 357 * is, with only three taps, instead of the six that we are using).
 358 * As a result, the resulting polynomial is neither primitive nor
 359 * irreducible, and hence does not have a maximal period over
 360 * GF(2**32).  They suggest a slight change to the generator
 361 * polynomial which improves the resulting TGFSR polynomial to be
 362 * irreducible, which we have made here.
 363 */
 364static struct poolinfo {
 365        int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
 366#define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
 367        int tap1, tap2, tap3, tap4, tap5;
 368} poolinfo_table[] = {
 369        /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
 370        /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
 371        { S(128),       104,    76,     51,     25,     1 },
 372        /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
 373        /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
 374        { S(32),        26,     19,     14,     7,      1 },
 375#if 0
 376        /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1  -- 115 */
 377        { S(2048),      1638,   1231,   819,    411,    1 },
 378
 379        /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
 380        { S(1024),      817,    615,    412,    204,    1 },
 381
 382        /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
 383        { S(1024),      819,    616,    410,    207,    2 },
 384
 385        /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
 386        { S(512),       411,    308,    208,    104,    1 },
 387
 388        /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
 389        { S(512),       409,    307,    206,    102,    2 },
 390        /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
 391        { S(512),       409,    309,    205,    103,    2 },
 392
 393        /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
 394        { S(256),       205,    155,    101,    52,     1 },
 395
 396        /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
 397        { S(128),       103,    78,     51,     27,     2 },
 398
 399        /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
 400        { S(64),        52,     39,     26,     14,     1 },
 401#endif
 402};
 403
 404/*
 405 * Static global variables
 406 */
 407static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
 408static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
 409static DECLARE_WAIT_QUEUE_HEAD(urandom_init_wait);
 410static struct fasync_struct *fasync;
 411
 412static DEFINE_SPINLOCK(random_ready_list_lock);
 413static LIST_HEAD(random_ready_list);
 414
 415/**********************************************************************
 416 *
 417 * OS independent entropy store.   Here are the functions which handle
 418 * storing entropy in an entropy pool.
 419 *
 420 **********************************************************************/
 421
 422struct entropy_store;
 423struct entropy_store {
 424        /* read-only data: */
 425        const struct poolinfo *poolinfo;
 426        __u32 *pool;
 427        const char *name;
 428        struct entropy_store *pull;
 429        struct work_struct push_work;
 430
 431        /* read-write data: */
 432        unsigned long last_pulled;
 433        spinlock_t lock;
 434        unsigned short add_ptr;
 435        unsigned short input_rotate;
 436        int entropy_count;
 437        int entropy_total;
 438        unsigned int initialized:1;
 439        unsigned int limit:1;
 440        unsigned int last_data_init:1;
 441        __u8 last_data[EXTRACT_SIZE];
 442};
 443
 444static void push_to_pool(struct work_struct *work);
 445static __u32 input_pool_data[INPUT_POOL_WORDS];
 446static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
 447static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
 448
 449static struct entropy_store input_pool = {
 450        .poolinfo = &poolinfo_table[0],
 451        .name = "input",
 452        .limit = 1,
 453        .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
 454        .pool = input_pool_data
 455};
 456
 457static struct entropy_store blocking_pool = {
 458        .poolinfo = &poolinfo_table[1],
 459        .name = "blocking",
 460        .limit = 1,
 461        .pull = &input_pool,
 462        .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
 463        .pool = blocking_pool_data,
 464        .push_work = __WORK_INITIALIZER(blocking_pool.push_work,
 465                                        push_to_pool),
 466};
 467
 468static struct entropy_store nonblocking_pool = {
 469        .poolinfo = &poolinfo_table[1],
 470        .name = "nonblocking",
 471        .pull = &input_pool,
 472        .lock = __SPIN_LOCK_UNLOCKED(nonblocking_pool.lock),
 473        .pool = nonblocking_pool_data,
 474        .push_work = __WORK_INITIALIZER(nonblocking_pool.push_work,
 475                                        push_to_pool),
 476};
 477
 478static __u32 const twist_table[8] = {
 479        0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
 480        0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
 481
 482/*
 483 * This function adds bytes into the entropy "pool".  It does not
 484 * update the entropy estimate.  The caller should call
 485 * credit_entropy_bits if this is appropriate.
 486 *
 487 * The pool is stirred with a primitive polynomial of the appropriate
 488 * degree, and then twisted.  We twist by three bits at a time because
 489 * it's cheap to do so and helps slightly in the expected case where
 490 * the entropy is concentrated in the low-order bits.
 491 */
 492static void _mix_pool_bytes(struct entropy_store *r, const void *in,
 493                            int nbytes)
 494{
 495        unsigned long i, tap1, tap2, tap3, tap4, tap5;
 496        int input_rotate;
 497        int wordmask = r->poolinfo->poolwords - 1;
 498        const char *bytes = in;
 499        __u32 w;
 500
 501        tap1 = r->poolinfo->tap1;
 502        tap2 = r->poolinfo->tap2;
 503        tap3 = r->poolinfo->tap3;
 504        tap4 = r->poolinfo->tap4;
 505        tap5 = r->poolinfo->tap5;
 506
 507        input_rotate = r->input_rotate;
 508        i = r->add_ptr;
 509
 510        /* mix one byte at a time to simplify size handling and churn faster */
 511        while (nbytes--) {
 512                w = rol32(*bytes++, input_rotate);
 513                i = (i - 1) & wordmask;
 514
 515                /* XOR in the various taps */
 516                w ^= r->pool[i];
 517                w ^= r->pool[(i + tap1) & wordmask];
 518                w ^= r->pool[(i + tap2) & wordmask];
 519                w ^= r->pool[(i + tap3) & wordmask];
 520                w ^= r->pool[(i + tap4) & wordmask];
 521                w ^= r->pool[(i + tap5) & wordmask];
 522
 523                /* Mix the result back in with a twist */
 524                r->pool[i] = (w >> 3) ^ twist_table[w & 7];
 525
 526                /*
 527                 * Normally, we add 7 bits of rotation to the pool.
 528                 * At the beginning of the pool, add an extra 7 bits
 529                 * rotation, so that successive passes spread the
 530                 * input bits across the pool evenly.
 531                 */
 532                input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
 533        }
 534
 535        r->input_rotate = input_rotate;
 536        r->add_ptr = i;
 537}
 538
 539static void __mix_pool_bytes(struct entropy_store *r, const void *in,
 540                             int nbytes)
 541{
 542        trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
 543        _mix_pool_bytes(r, in, nbytes);
 544}
 545
 546static void mix_pool_bytes(struct entropy_store *r, const void *in,
 547                           int nbytes)
 548{
 549        unsigned long flags;
 550
 551        trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
 552        spin_lock_irqsave(&r->lock, flags);
 553        _mix_pool_bytes(r, in, nbytes);
 554        spin_unlock_irqrestore(&r->lock, flags);
 555}
 556
 557struct fast_pool {
 558        __u32           pool[4];
 559        unsigned long   last;
 560        unsigned short  reg_idx;
 561        unsigned char   count;
 562};
 563
 564/*
 565 * This is a fast mixing routine used by the interrupt randomness
 566 * collector.  It's hardcoded for an 128 bit pool and assumes that any
 567 * locks that might be needed are taken by the caller.
 568 */
 569static void fast_mix(struct fast_pool *f)
 570{
 571        __u32 a = f->pool[0],   b = f->pool[1];
 572        __u32 c = f->pool[2],   d = f->pool[3];
 573
 574        a += b;                 c += d;
 575        b = rol32(b, 6);        d = rol32(d, 27);
 576        d ^= a;                 b ^= c;
 577
 578        a += b;                 c += d;
 579        b = rol32(b, 16);       d = rol32(d, 14);
 580        d ^= a;                 b ^= c;
 581
 582        a += b;                 c += d;
 583        b = rol32(b, 6);        d = rol32(d, 27);
 584        d ^= a;                 b ^= c;
 585
 586        a += b;                 c += d;
 587        b = rol32(b, 16);       d = rol32(d, 14);
 588        d ^= a;                 b ^= c;
 589
 590        f->pool[0] = a;  f->pool[1] = b;
 591        f->pool[2] = c;  f->pool[3] = d;
 592        f->count++;
 593}
 594
 595static void process_random_ready_list(void)
 596{
 597        unsigned long flags;
 598        struct random_ready_callback *rdy, *tmp;
 599
 600        spin_lock_irqsave(&random_ready_list_lock, flags);
 601        list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
 602                struct module *owner = rdy->owner;
 603
 604                list_del_init(&rdy->list);
 605                rdy->func(rdy);
 606                module_put(owner);
 607        }
 608        spin_unlock_irqrestore(&random_ready_list_lock, flags);
 609}
 610
 611/*
 612 * Credit (or debit) the entropy store with n bits of entropy.
 613 * Use credit_entropy_bits_safe() if the value comes from userspace
 614 * or otherwise should be checked for extreme values.
 615 */
 616static void credit_entropy_bits(struct entropy_store *r, int nbits)
 617{
 618        int entropy_count, orig;
 619        const int pool_size = r->poolinfo->poolfracbits;
 620        int nfrac = nbits << ENTROPY_SHIFT;
 621
 622        if (!nbits)
 623                return;
 624
 625retry:
 626        entropy_count = orig = ACCESS_ONCE(r->entropy_count);
 627        if (nfrac < 0) {
 628                /* Debit */
 629                entropy_count += nfrac;
 630        } else {
 631                /*
 632                 * Credit: we have to account for the possibility of
 633                 * overwriting already present entropy.  Even in the
 634                 * ideal case of pure Shannon entropy, new contributions
 635                 * approach the full value asymptotically:
 636                 *
 637                 * entropy <- entropy + (pool_size - entropy) *
 638                 *      (1 - exp(-add_entropy/pool_size))
 639                 *
 640                 * For add_entropy <= pool_size/2 then
 641                 * (1 - exp(-add_entropy/pool_size)) >=
 642                 *    (add_entropy/pool_size)*0.7869...
 643                 * so we can approximate the exponential with
 644                 * 3/4*add_entropy/pool_size and still be on the
 645                 * safe side by adding at most pool_size/2 at a time.
 646                 *
 647                 * The use of pool_size-2 in the while statement is to
 648                 * prevent rounding artifacts from making the loop
 649                 * arbitrarily long; this limits the loop to log2(pool_size)*2
 650                 * turns no matter how large nbits is.
 651                 */
 652                int pnfrac = nfrac;
 653                const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
 654                /* The +2 corresponds to the /4 in the denominator */
 655
 656                do {
 657                        unsigned int anfrac = min(pnfrac, pool_size/2);
 658                        unsigned int add =
 659                                ((pool_size - entropy_count)*anfrac*3) >> s;
 660
 661                        entropy_count += add;
 662                        pnfrac -= anfrac;
 663                } while (unlikely(entropy_count < pool_size-2 && pnfrac));
 664        }
 665
 666        if (unlikely(entropy_count < 0)) {
 667                pr_warn("random: negative entropy/overflow: pool %s count %d\n",
 668                        r->name, entropy_count);
 669                WARN_ON(1);
 670                entropy_count = 0;
 671        } else if (entropy_count > pool_size)
 672                entropy_count = pool_size;
 673        if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
 674                goto retry;
 675
 676        r->entropy_total += nbits;
 677        if (!r->initialized && r->entropy_total > 128) {
 678                r->initialized = 1;
 679                r->entropy_total = 0;
 680                if (r == &nonblocking_pool) {
 681                        prandom_reseed_late();
 682                        process_random_ready_list();
 683                        wake_up_all(&urandom_init_wait);
 684                        pr_notice("random: %s pool is initialized\n", r->name);
 685                }
 686        }
 687
 688        trace_credit_entropy_bits(r->name, nbits,
 689                                  entropy_count >> ENTROPY_SHIFT,
 690                                  r->entropy_total, _RET_IP_);
 691
 692        if (r == &input_pool) {
 693                int entropy_bits = entropy_count >> ENTROPY_SHIFT;
 694
 695                /* should we wake readers? */
 696                if (entropy_bits >= random_read_wakeup_bits) {
 697                        wake_up_interruptible(&random_read_wait);
 698                        kill_fasync(&fasync, SIGIO, POLL_IN);
 699                }
 700                /* If the input pool is getting full, send some
 701                 * entropy to the two output pools, flipping back and
 702                 * forth between them, until the output pools are 75%
 703                 * full.
 704                 */
 705                if (entropy_bits > random_write_wakeup_bits &&
 706                    r->initialized &&
 707                    r->entropy_total >= 2*random_read_wakeup_bits) {
 708                        static struct entropy_store *last = &blocking_pool;
 709                        struct entropy_store *other = &blocking_pool;
 710
 711                        if (last == &blocking_pool)
 712                                other = &nonblocking_pool;
 713                        if (other->entropy_count <=
 714                            3 * other->poolinfo->poolfracbits / 4)
 715                                last = other;
 716                        if (last->entropy_count <=
 717                            3 * last->poolinfo->poolfracbits / 4) {
 718                                schedule_work(&last->push_work);
 719                                r->entropy_total = 0;
 720                        }
 721                }
 722        }
 723}
 724
 725static void credit_entropy_bits_safe(struct entropy_store *r, int nbits)
 726{
 727        const int nbits_max = (int)(~0U >> (ENTROPY_SHIFT + 1));
 728
 729        /* Cap the value to avoid overflows */
 730        nbits = min(nbits,  nbits_max);
 731        nbits = max(nbits, -nbits_max);
 732
 733        credit_entropy_bits(r, nbits);
 734}
 735
 736/*********************************************************************
 737 *
 738 * Entropy input management
 739 *
 740 *********************************************************************/
 741
 742/* There is one of these per entropy source */
 743struct timer_rand_state {
 744        cycles_t last_time;
 745        long last_delta, last_delta2;
 746        unsigned dont_count_entropy:1;
 747};
 748
 749#define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
 750
 751/*
 752 * Add device- or boot-specific data to the input and nonblocking
 753 * pools to help initialize them to unique values.
 754 *
 755 * None of this adds any entropy, it is meant to avoid the
 756 * problem of the nonblocking pool having similar initial state
 757 * across largely identical devices.
 758 */
 759void add_device_randomness(const void *buf, unsigned int size)
 760{
 761        unsigned long time = random_get_entropy() ^ jiffies;
 762        unsigned long flags;
 763
 764        trace_add_device_randomness(size, _RET_IP_);
 765        spin_lock_irqsave(&input_pool.lock, flags);
 766        _mix_pool_bytes(&input_pool, buf, size);
 767        _mix_pool_bytes(&input_pool, &time, sizeof(time));
 768        spin_unlock_irqrestore(&input_pool.lock, flags);
 769
 770        spin_lock_irqsave(&nonblocking_pool.lock, flags);
 771        _mix_pool_bytes(&nonblocking_pool, buf, size);
 772        _mix_pool_bytes(&nonblocking_pool, &time, sizeof(time));
 773        spin_unlock_irqrestore(&nonblocking_pool.lock, flags);
 774}
 775EXPORT_SYMBOL(add_device_randomness);
 776
 777static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
 778
 779/*
 780 * This function adds entropy to the entropy "pool" by using timing
 781 * delays.  It uses the timer_rand_state structure to make an estimate
 782 * of how many bits of entropy this call has added to the pool.
 783 *
 784 * The number "num" is also added to the pool - it should somehow describe
 785 * the type of event which just happened.  This is currently 0-255 for
 786 * keyboard scan codes, and 256 upwards for interrupts.
 787 *
 788 */
 789static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
 790{
 791        struct entropy_store    *r;
 792        struct {
 793                long jiffies;
 794                unsigned cycles;
 795                unsigned num;
 796        } sample;
 797        long delta, delta2, delta3;
 798
 799        preempt_disable();
 800
 801        sample.jiffies = jiffies;
 802        sample.cycles = random_get_entropy();
 803        sample.num = num;
 804        r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
 805        mix_pool_bytes(r, &sample, sizeof(sample));
 806
 807        /*
 808         * Calculate number of bits of randomness we probably added.
 809         * We take into account the first, second and third-order deltas
 810         * in order to make our estimate.
 811         */
 812
 813        if (!state->dont_count_entropy) {
 814                delta = sample.jiffies - state->last_time;
 815                state->last_time = sample.jiffies;
 816
 817                delta2 = delta - state->last_delta;
 818                state->last_delta = delta;
 819
 820                delta3 = delta2 - state->last_delta2;
 821                state->last_delta2 = delta2;
 822
 823                if (delta < 0)
 824                        delta = -delta;
 825                if (delta2 < 0)
 826                        delta2 = -delta2;
 827                if (delta3 < 0)
 828                        delta3 = -delta3;
 829                if (delta > delta2)
 830                        delta = delta2;
 831                if (delta > delta3)
 832                        delta = delta3;
 833
 834                /*
 835                 * delta is now minimum absolute delta.
 836                 * Round down by 1 bit on general principles,
 837                 * and limit entropy entimate to 12 bits.
 838                 */
 839                credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
 840        }
 841        preempt_enable();
 842}
 843
 844void add_input_randomness(unsigned int type, unsigned int code,
 845                                 unsigned int value)
 846{
 847        static unsigned char last_value;
 848
 849        /* ignore autorepeat and the like */
 850        if (value == last_value)
 851                return;
 852
 853        last_value = value;
 854        add_timer_randomness(&input_timer_state,
 855                             (type << 4) ^ code ^ (code >> 4) ^ value);
 856        trace_add_input_randomness(ENTROPY_BITS(&input_pool));
 857}
 858EXPORT_SYMBOL_GPL(add_input_randomness);
 859
 860static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
 861
 862#ifdef ADD_INTERRUPT_BENCH
 863static unsigned long avg_cycles, avg_deviation;
 864
 865#define AVG_SHIFT 8     /* Exponential average factor k=1/256 */
 866#define FIXED_1_2 (1 << (AVG_SHIFT-1))
 867
 868static void add_interrupt_bench(cycles_t start)
 869{
 870        long delta = random_get_entropy() - start;
 871
 872        /* Use a weighted moving average */
 873        delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
 874        avg_cycles += delta;
 875        /* And average deviation */
 876        delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
 877        avg_deviation += delta;
 878}
 879#else
 880#define add_interrupt_bench(x)
 881#endif
 882
 883static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
 884{
 885        __u32 *ptr = (__u32 *) regs;
 886
 887        if (regs == NULL)
 888                return 0;
 889        if (f->reg_idx >= sizeof(struct pt_regs) / sizeof(__u32))
 890                f->reg_idx = 0;
 891        return *(ptr + f->reg_idx++);
 892}
 893
 894void add_interrupt_randomness(int irq, int irq_flags)
 895{
 896        struct entropy_store    *r;
 897        struct fast_pool        *fast_pool = this_cpu_ptr(&irq_randomness);
 898        struct pt_regs          *regs = get_irq_regs();
 899        unsigned long           now = jiffies;
 900        cycles_t                cycles = random_get_entropy();
 901        __u32                   c_high, j_high;
 902        __u64                   ip;
 903        unsigned long           seed;
 904        int                     credit = 0;
 905
 906        if (cycles == 0)
 907                cycles = get_reg(fast_pool, regs);
 908        c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
 909        j_high = (sizeof(now) > 4) ? now >> 32 : 0;
 910        fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
 911        fast_pool->pool[1] ^= now ^ c_high;
 912        ip = regs ? instruction_pointer(regs) : _RET_IP_;
 913        fast_pool->pool[2] ^= ip;
 914        fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
 915                get_reg(fast_pool, regs);
 916
 917        fast_mix(fast_pool);
 918        add_interrupt_bench(cycles);
 919
 920        if ((fast_pool->count < 64) &&
 921            !time_after(now, fast_pool->last + HZ))
 922                return;
 923
 924        r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
 925        if (!spin_trylock(&r->lock))
 926                return;
 927
 928        fast_pool->last = now;
 929        __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
 930
 931        /*
 932         * If we have architectural seed generator, produce a seed and
 933         * add it to the pool.  For the sake of paranoia don't let the
 934         * architectural seed generator dominate the input from the
 935         * interrupt noise.
 936         */
 937        if (arch_get_random_seed_long(&seed)) {
 938                __mix_pool_bytes(r, &seed, sizeof(seed));
 939                credit = 1;
 940        }
 941        spin_unlock(&r->lock);
 942
 943        fast_pool->count = 0;
 944
 945        /* award one bit for the contents of the fast pool */
 946        credit_entropy_bits(r, credit + 1);
 947}
 948
 949#ifdef CONFIG_BLOCK
 950void add_disk_randomness(struct gendisk *disk)
 951{
 952        if (!disk || !disk->random)
 953                return;
 954        /* first major is 1, so we get >= 0x200 here */
 955        add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
 956        trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
 957}
 958EXPORT_SYMBOL_GPL(add_disk_randomness);
 959#endif
 960
 961/*********************************************************************
 962 *
 963 * Entropy extraction routines
 964 *
 965 *********************************************************************/
 966
 967static ssize_t extract_entropy(struct entropy_store *r, void *buf,
 968                               size_t nbytes, int min, int rsvd);
 969
 970/*
 971 * This utility inline function is responsible for transferring entropy
 972 * from the primary pool to the secondary extraction pool. We make
 973 * sure we pull enough for a 'catastrophic reseed'.
 974 */
 975static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
 976static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
 977{
 978        if (!r->pull ||
 979            r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) ||
 980            r->entropy_count > r->poolinfo->poolfracbits)
 981                return;
 982
 983        if (r->limit == 0 && random_min_urandom_seed) {
 984                unsigned long now = jiffies;
 985
 986                if (time_before(now,
 987                                r->last_pulled + random_min_urandom_seed * HZ))
 988                        return;
 989                r->last_pulled = now;
 990        }
 991
 992        _xfer_secondary_pool(r, nbytes);
 993}
 994
 995static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
 996{
 997        __u32   tmp[OUTPUT_POOL_WORDS];
 998
 999        /* For /dev/random's pool, always leave two wakeups' worth */
1000        int rsvd_bytes = r->limit ? 0 : random_read_wakeup_bits / 4;
1001        int bytes = nbytes;
1002
1003        /* pull at least as much as a wakeup */
1004        bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
1005        /* but never more than the buffer size */
1006        bytes = min_t(int, bytes, sizeof(tmp));
1007
1008        trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
1009                                  ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
1010        bytes = extract_entropy(r->pull, tmp, bytes,
1011                                random_read_wakeup_bits / 8, rsvd_bytes);
1012        mix_pool_bytes(r, tmp, bytes);
1013        credit_entropy_bits(r, bytes*8);
1014}
1015
1016/*
1017 * Used as a workqueue function so that when the input pool is getting
1018 * full, we can "spill over" some entropy to the output pools.  That
1019 * way the output pools can store some of the excess entropy instead
1020 * of letting it go to waste.
1021 */
1022static void push_to_pool(struct work_struct *work)
1023{
1024        struct entropy_store *r = container_of(work, struct entropy_store,
1025                                              push_work);
1026        BUG_ON(!r);
1027        _xfer_secondary_pool(r, random_read_wakeup_bits/8);
1028        trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
1029                           r->pull->entropy_count >> ENTROPY_SHIFT);
1030}
1031
1032/*
1033 * This function decides how many bytes to actually take from the
1034 * given pool, and also debits the entropy count accordingly.
1035 */
1036static size_t account(struct entropy_store *r, size_t nbytes, int min,
1037                      int reserved)
1038{
1039        int entropy_count, orig;
1040        size_t ibytes, nfrac;
1041
1042        BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
1043
1044        /* Can we pull enough? */
1045retry:
1046        entropy_count = orig = ACCESS_ONCE(r->entropy_count);
1047        ibytes = nbytes;
1048        /* If limited, never pull more than available */
1049        if (r->limit) {
1050                int have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
1051
1052                if ((have_bytes -= reserved) < 0)
1053                        have_bytes = 0;
1054                ibytes = min_t(size_t, ibytes, have_bytes);
1055        }
1056        if (ibytes < min)
1057                ibytes = 0;
1058
1059        if (unlikely(entropy_count < 0)) {
1060                pr_warn("random: negative entropy count: pool %s count %d\n",
1061                        r->name, entropy_count);
1062                WARN_ON(1);
1063                entropy_count = 0;
1064        }
1065        nfrac = ibytes << (ENTROPY_SHIFT + 3);
1066        if ((size_t) entropy_count > nfrac)
1067                entropy_count -= nfrac;
1068        else
1069                entropy_count = 0;
1070
1071        if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1072                goto retry;
1073
1074        trace_debit_entropy(r->name, 8 * ibytes);
1075        if (ibytes &&
1076            (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
1077                wake_up_interruptible(&random_write_wait);
1078                kill_fasync(&fasync, SIGIO, POLL_OUT);
1079        }
1080
1081        return ibytes;
1082}
1083
1084/*
1085 * This function does the actual extraction for extract_entropy and
1086 * extract_entropy_user.
1087 *
1088 * Note: we assume that .poolwords is a multiple of 16 words.
1089 */
1090static void extract_buf(struct entropy_store *r, __u8 *out)
1091{
1092        int i;
1093        union {
1094                __u32 w[5];
1095                unsigned long l[LONGS(20)];
1096        } hash;
1097        __u32 workspace[SHA_WORKSPACE_WORDS];
1098        unsigned long flags;
1099
1100        /*
1101         * If we have an architectural hardware random number
1102         * generator, use it for SHA's initial vector
1103         */
1104        sha_init(hash.w);
1105        for (i = 0; i < LONGS(20); i++) {
1106                unsigned long v;
1107                if (!arch_get_random_long(&v))
1108                        break;
1109                hash.l[i] = v;
1110        }
1111
1112        /* Generate a hash across the pool, 16 words (512 bits) at a time */
1113        spin_lock_irqsave(&r->lock, flags);
1114        for (i = 0; i < r->poolinfo->poolwords; i += 16)
1115                sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1116
1117        /*
1118         * We mix the hash back into the pool to prevent backtracking
1119         * attacks (where the attacker knows the state of the pool
1120         * plus the current outputs, and attempts to find previous
1121         * ouputs), unless the hash function can be inverted. By
1122         * mixing at least a SHA1 worth of hash data back, we make
1123         * brute-forcing the feedback as hard as brute-forcing the
1124         * hash.
1125         */
1126        __mix_pool_bytes(r, hash.w, sizeof(hash.w));
1127        spin_unlock_irqrestore(&r->lock, flags);
1128
1129        memzero_explicit(workspace, sizeof(workspace));
1130
1131        /*
1132         * In case the hash function has some recognizable output
1133         * pattern, we fold it in half. Thus, we always feed back
1134         * twice as much data as we output.
1135         */
1136        hash.w[0] ^= hash.w[3];
1137        hash.w[1] ^= hash.w[4];
1138        hash.w[2] ^= rol32(hash.w[2], 16);
1139
1140        memcpy(out, &hash, EXTRACT_SIZE);
1141        memzero_explicit(&hash, sizeof(hash));
1142}
1143
1144/*
1145 * This function extracts randomness from the "entropy pool", and
1146 * returns it in a buffer.
1147 *
1148 * The min parameter specifies the minimum amount we can pull before
1149 * failing to avoid races that defeat catastrophic reseeding while the
1150 * reserved parameter indicates how much entropy we must leave in the
1151 * pool after each pull to avoid starving other readers.
1152 */
1153static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1154                                 size_t nbytes, int min, int reserved)
1155{
1156        ssize_t ret = 0, i;
1157        __u8 tmp[EXTRACT_SIZE];
1158        unsigned long flags;
1159
1160        /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1161        if (fips_enabled) {
1162                spin_lock_irqsave(&r->lock, flags);
1163                if (!r->last_data_init) {
1164                        r->last_data_init = 1;
1165                        spin_unlock_irqrestore(&r->lock, flags);
1166                        trace_extract_entropy(r->name, EXTRACT_SIZE,
1167                                              ENTROPY_BITS(r), _RET_IP_);
1168                        xfer_secondary_pool(r, EXTRACT_SIZE);
1169                        extract_buf(r, tmp);
1170                        spin_lock_irqsave(&r->lock, flags);
1171                        memcpy(r->last_data, tmp, EXTRACT_SIZE);
1172                }
1173                spin_unlock_irqrestore(&r->lock, flags);
1174        }
1175
1176        trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1177        xfer_secondary_pool(r, nbytes);
1178        nbytes = account(r, nbytes, min, reserved);
1179
1180        while (nbytes) {
1181                extract_buf(r, tmp);
1182
1183                if (fips_enabled) {
1184                        spin_lock_irqsave(&r->lock, flags);
1185                        if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1186                                panic("Hardware RNG duplicated output!\n");
1187                        memcpy(r->last_data, tmp, EXTRACT_SIZE);
1188                        spin_unlock_irqrestore(&r->lock, flags);
1189                }
1190                i = min_t(int, nbytes, EXTRACT_SIZE);
1191                memcpy(buf, tmp, i);
1192                nbytes -= i;
1193                buf += i;
1194                ret += i;
1195        }
1196
1197        /* Wipe data just returned from memory */
1198        memzero_explicit(tmp, sizeof(tmp));
1199
1200        return ret;
1201}
1202
1203/*
1204 * This function extracts randomness from the "entropy pool", and
1205 * returns it in a userspace buffer.
1206 */
1207static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1208                                    size_t nbytes)
1209{
1210        ssize_t ret = 0, i;
1211        __u8 tmp[EXTRACT_SIZE];
1212        int large_request = (nbytes > 256);
1213
1214        trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1215        xfer_secondary_pool(r, nbytes);
1216        nbytes = account(r, nbytes, 0, 0);
1217
1218        while (nbytes) {
1219                if (large_request && need_resched()) {
1220                        if (signal_pending(current)) {
1221                                if (ret == 0)
1222                                        ret = -ERESTARTSYS;
1223                                break;
1224                        }
1225                        schedule();
1226                }
1227
1228                extract_buf(r, tmp);
1229                i = min_t(int, nbytes, EXTRACT_SIZE);
1230                if (copy_to_user(buf, tmp, i)) {
1231                        ret = -EFAULT;
1232                        break;
1233                }
1234
1235                nbytes -= i;
1236                buf += i;
1237                ret += i;
1238        }
1239
1240        /* Wipe data just returned from memory */
1241        memzero_explicit(tmp, sizeof(tmp));
1242
1243        return ret;
1244}
1245
1246/*
1247 * This function is the exported kernel interface.  It returns some
1248 * number of good random numbers, suitable for key generation, seeding
1249 * TCP sequence numbers, etc.  It does not rely on the hardware random
1250 * number generator.  For random bytes direct from the hardware RNG
1251 * (when available), use get_random_bytes_arch().
1252 */
1253void get_random_bytes(void *buf, int nbytes)
1254{
1255#if DEBUG_RANDOM_BOOT > 0
1256        if (unlikely(nonblocking_pool.initialized == 0))
1257                printk(KERN_NOTICE "random: %pF get_random_bytes called "
1258                       "with %d bits of entropy available\n",
1259                       (void *) _RET_IP_,
1260                       nonblocking_pool.entropy_total);
1261#endif
1262        trace_get_random_bytes(nbytes, _RET_IP_);
1263        extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
1264}
1265EXPORT_SYMBOL(get_random_bytes);
1266
1267/*
1268 * Add a callback function that will be invoked when the nonblocking
1269 * pool is initialised.
1270 *
1271 * returns: 0 if callback is successfully added
1272 *          -EALREADY if pool is already initialised (callback not called)
1273 *          -ENOENT if module for callback is not alive
1274 */
1275int add_random_ready_callback(struct random_ready_callback *rdy)
1276{
1277        struct module *owner;
1278        unsigned long flags;
1279        int err = -EALREADY;
1280
1281        if (likely(nonblocking_pool.initialized))
1282                return err;
1283
1284        owner = rdy->owner;
1285        if (!try_module_get(owner))
1286                return -ENOENT;
1287
1288        spin_lock_irqsave(&random_ready_list_lock, flags);
1289        if (nonblocking_pool.initialized)
1290                goto out;
1291
1292        owner = NULL;
1293
1294        list_add(&rdy->list, &random_ready_list);
1295        err = 0;
1296
1297out:
1298        spin_unlock_irqrestore(&random_ready_list_lock, flags);
1299
1300        module_put(owner);
1301
1302        return err;
1303}
1304EXPORT_SYMBOL(add_random_ready_callback);
1305
1306/*
1307 * Delete a previously registered readiness callback function.
1308 */
1309void del_random_ready_callback(struct random_ready_callback *rdy)
1310{
1311        unsigned long flags;
1312        struct module *owner = NULL;
1313
1314        spin_lock_irqsave(&random_ready_list_lock, flags);
1315        if (!list_empty(&rdy->list)) {
1316                list_del_init(&rdy->list);
1317                owner = rdy->owner;
1318        }
1319        spin_unlock_irqrestore(&random_ready_list_lock, flags);
1320
1321        module_put(owner);
1322}
1323EXPORT_SYMBOL(del_random_ready_callback);
1324
1325/*
1326 * This function will use the architecture-specific hardware random
1327 * number generator if it is available.  The arch-specific hw RNG will
1328 * almost certainly be faster than what we can do in software, but it
1329 * is impossible to verify that it is implemented securely (as
1330 * opposed, to, say, the AES encryption of a sequence number using a
1331 * key known by the NSA).  So it's useful if we need the speed, but
1332 * only if we're willing to trust the hardware manufacturer not to
1333 * have put in a back door.
1334 */
1335void get_random_bytes_arch(void *buf, int nbytes)
1336{
1337        char *p = buf;
1338
1339        trace_get_random_bytes_arch(nbytes, _RET_IP_);
1340        while (nbytes) {
1341                unsigned long v;
1342                int chunk = min(nbytes, (int)sizeof(unsigned long));
1343
1344                if (!arch_get_random_long(&v))
1345                        break;
1346                
1347                memcpy(p, &v, chunk);
1348                p += chunk;
1349                nbytes -= chunk;
1350        }
1351
1352        if (nbytes)
1353                extract_entropy(&nonblocking_pool, p, nbytes, 0, 0);
1354}
1355EXPORT_SYMBOL(get_random_bytes_arch);
1356
1357
1358/*
1359 * init_std_data - initialize pool with system data
1360 *
1361 * @r: pool to initialize
1362 *
1363 * This function clears the pool's entropy count and mixes some system
1364 * data into the pool to prepare it for use. The pool is not cleared
1365 * as that can only decrease the entropy in the pool.
1366 */
1367static void init_std_data(struct entropy_store *r)
1368{
1369        int i;
1370        ktime_t now = ktime_get_real();
1371        unsigned long rv;
1372
1373        r->last_pulled = jiffies;
1374        mix_pool_bytes(r, &now, sizeof(now));
1375        for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
1376                if (!arch_get_random_seed_long(&rv) &&
1377                    !arch_get_random_long(&rv))
1378                        rv = random_get_entropy();
1379                mix_pool_bytes(r, &rv, sizeof(rv));
1380        }
1381        mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1382}
1383
1384/*
1385 * Note that setup_arch() may call add_device_randomness()
1386 * long before we get here. This allows seeding of the pools
1387 * with some platform dependent data very early in the boot
1388 * process. But it limits our options here. We must use
1389 * statically allocated structures that already have all
1390 * initializations complete at compile time. We should also
1391 * take care not to overwrite the precious per platform data
1392 * we were given.
1393 */
1394static int rand_initialize(void)
1395{
1396        init_std_data(&input_pool);
1397        init_std_data(&blocking_pool);
1398        init_std_data(&nonblocking_pool);
1399        return 0;
1400}
1401early_initcall(rand_initialize);
1402
1403#ifdef CONFIG_BLOCK
1404void rand_initialize_disk(struct gendisk *disk)
1405{
1406        struct timer_rand_state *state;
1407
1408        /*
1409         * If kzalloc returns null, we just won't use that entropy
1410         * source.
1411         */
1412        state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1413        if (state) {
1414                state->last_time = INITIAL_JIFFIES;
1415                disk->random = state;
1416        }
1417}
1418#endif
1419
1420static ssize_t
1421_random_read(int nonblock, char __user *buf, size_t nbytes)
1422{
1423        ssize_t n;
1424
1425        if (nbytes == 0)
1426                return 0;
1427
1428        nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
1429        while (1) {
1430                n = extract_entropy_user(&blocking_pool, buf, nbytes);
1431                if (n < 0)
1432                        return n;
1433                trace_random_read(n*8, (nbytes-n)*8,
1434                                  ENTROPY_BITS(&blocking_pool),
1435                                  ENTROPY_BITS(&input_pool));
1436                if (n > 0)
1437                        return n;
1438
1439                /* Pool is (near) empty.  Maybe wait and retry. */
1440                if (nonblock)
1441                        return -EAGAIN;
1442
1443                wait_event_interruptible(random_read_wait,
1444                        ENTROPY_BITS(&input_pool) >=
1445                        random_read_wakeup_bits);
1446                if (signal_pending(current))
1447                        return -ERESTARTSYS;
1448        }
1449}
1450
1451static ssize_t
1452random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1453{
1454        return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
1455}
1456
1457static ssize_t
1458urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1459{
1460        int ret;
1461
1462        if (unlikely(nonblocking_pool.initialized == 0))
1463                printk_once(KERN_NOTICE "random: %s urandom read "
1464                            "with %d bits of entropy available\n",
1465                            current->comm, nonblocking_pool.entropy_total);
1466
1467        nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
1468        ret = extract_entropy_user(&nonblocking_pool, buf, nbytes);
1469
1470        trace_urandom_read(8 * nbytes, ENTROPY_BITS(&nonblocking_pool),
1471                           ENTROPY_BITS(&input_pool));
1472        return ret;
1473}
1474
1475static unsigned int
1476random_poll(struct file *file, poll_table * wait)
1477{
1478        unsigned int mask;
1479
1480        poll_wait(file, &random_read_wait, wait);
1481        poll_wait(file, &random_write_wait, wait);
1482        mask = 0;
1483        if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
1484                mask |= POLLIN | POLLRDNORM;
1485        if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1486                mask |= POLLOUT | POLLWRNORM;
1487        return mask;
1488}
1489
1490static int
1491write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1492{
1493        size_t bytes;
1494        __u32 buf[16];
1495        const char __user *p = buffer;
1496
1497        while (count > 0) {
1498                bytes = min(count, sizeof(buf));
1499                if (copy_from_user(&buf, p, bytes))
1500                        return -EFAULT;
1501
1502                count -= bytes;
1503                p += bytes;
1504
1505                mix_pool_bytes(r, buf, bytes);
1506                cond_resched();
1507        }
1508
1509        return 0;
1510}
1511
1512static ssize_t random_write(struct file *file, const char __user *buffer,
1513                            size_t count, loff_t *ppos)
1514{
1515        size_t ret;
1516
1517        ret = write_pool(&blocking_pool, buffer, count);
1518        if (ret)
1519                return ret;
1520        ret = write_pool(&nonblocking_pool, buffer, count);
1521        if (ret)
1522                return ret;
1523
1524        return (ssize_t)count;
1525}
1526
1527static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1528{
1529        int size, ent_count;
1530        int __user *p = (int __user *)arg;
1531        int retval;
1532
1533        switch (cmd) {
1534        case RNDGETENTCNT:
1535                /* inherently racy, no point locking */
1536                ent_count = ENTROPY_BITS(&input_pool);
1537                if (put_user(ent_count, p))
1538                        return -EFAULT;
1539                return 0;
1540        case RNDADDTOENTCNT:
1541                if (!capable(CAP_SYS_ADMIN))
1542                        return -EPERM;
1543                if (get_user(ent_count, p))
1544                        return -EFAULT;
1545                credit_entropy_bits_safe(&input_pool, ent_count);
1546                return 0;
1547        case RNDADDENTROPY:
1548                if (!capable(CAP_SYS_ADMIN))
1549                        return -EPERM;
1550                if (get_user(ent_count, p++))
1551                        return -EFAULT;
1552                if (ent_count < 0)
1553                        return -EINVAL;
1554                if (get_user(size, p++))
1555                        return -EFAULT;
1556                retval = write_pool(&input_pool, (const char __user *)p,
1557                                    size);
1558                if (retval < 0)
1559                        return retval;
1560                credit_entropy_bits_safe(&input_pool, ent_count);
1561                return 0;
1562        case RNDZAPENTCNT:
1563        case RNDCLEARPOOL:
1564                /*
1565                 * Clear the entropy pool counters. We no longer clear
1566                 * the entropy pool, as that's silly.
1567                 */
1568                if (!capable(CAP_SYS_ADMIN))
1569                        return -EPERM;
1570                input_pool.entropy_count = 0;
1571                nonblocking_pool.entropy_count = 0;
1572                blocking_pool.entropy_count = 0;
1573                return 0;
1574        default:
1575                return -EINVAL;
1576        }
1577}
1578
1579static int random_fasync(int fd, struct file *filp, int on)
1580{
1581        return fasync_helper(fd, filp, on, &fasync);
1582}
1583
1584const struct file_operations random_fops = {
1585        .read  = random_read,
1586        .write = random_write,
1587        .poll  = random_poll,
1588        .unlocked_ioctl = random_ioctl,
1589        .fasync = random_fasync,
1590        .llseek = noop_llseek,
1591};
1592
1593const struct file_operations urandom_fops = {
1594        .read  = urandom_read,
1595        .write = random_write,
1596        .unlocked_ioctl = random_ioctl,
1597        .fasync = random_fasync,
1598        .llseek = noop_llseek,
1599};
1600
1601SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
1602                unsigned int, flags)
1603{
1604        if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
1605                return -EINVAL;
1606
1607        if (count > INT_MAX)
1608                count = INT_MAX;
1609
1610        if (flags & GRND_RANDOM)
1611                return _random_read(flags & GRND_NONBLOCK, buf, count);
1612
1613        if (unlikely(nonblocking_pool.initialized == 0)) {
1614                if (flags & GRND_NONBLOCK)
1615                        return -EAGAIN;
1616                wait_event_interruptible(urandom_init_wait,
1617                                         nonblocking_pool.initialized);
1618                if (signal_pending(current))
1619                        return -ERESTARTSYS;
1620        }
1621        return urandom_read(NULL, buf, count, NULL);
1622}
1623
1624/***************************************************************
1625 * Random UUID interface
1626 *
1627 * Used here for a Boot ID, but can be useful for other kernel
1628 * drivers.
1629 ***************************************************************/
1630
1631/*
1632 * Generate random UUID
1633 */
1634void generate_random_uuid(unsigned char uuid_out[16])
1635{
1636        get_random_bytes(uuid_out, 16);
1637        /* Set UUID version to 4 --- truly random generation */
1638        uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
1639        /* Set the UUID variant to DCE */
1640        uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
1641}
1642EXPORT_SYMBOL(generate_random_uuid);
1643
1644/********************************************************************
1645 *
1646 * Sysctl interface
1647 *
1648 ********************************************************************/
1649
1650#ifdef CONFIG_SYSCTL
1651
1652#include <linux/sysctl.h>
1653
1654static int min_read_thresh = 8, min_write_thresh;
1655static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
1656static int max_write_thresh = INPUT_POOL_WORDS * 32;
1657static char sysctl_bootid[16];
1658
1659/*
1660 * This function is used to return both the bootid UUID, and random
1661 * UUID.  The difference is in whether table->data is NULL; if it is,
1662 * then a new UUID is generated and returned to the user.
1663 *
1664 * If the user accesses this via the proc interface, the UUID will be
1665 * returned as an ASCII string in the standard UUID format; if via the
1666 * sysctl system call, as 16 bytes of binary data.
1667 */
1668static int proc_do_uuid(struct ctl_table *table, int write,
1669                        void __user *buffer, size_t *lenp, loff_t *ppos)
1670{
1671        struct ctl_table fake_table;
1672        unsigned char buf[64], tmp_uuid[16], *uuid;
1673
1674        uuid = table->data;
1675        if (!uuid) {
1676                uuid = tmp_uuid;
1677                generate_random_uuid(uuid);
1678        } else {
1679                static DEFINE_SPINLOCK(bootid_spinlock);
1680
1681                spin_lock(&bootid_spinlock);
1682                if (!uuid[8])
1683                        generate_random_uuid(uuid);
1684                spin_unlock(&bootid_spinlock);
1685        }
1686
1687        sprintf(buf, "%pU", uuid);
1688
1689        fake_table.data = buf;
1690        fake_table.maxlen = sizeof(buf);
1691
1692        return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1693}
1694
1695/*
1696 * Return entropy available scaled to integral bits
1697 */
1698static int proc_do_entropy(struct ctl_table *table, int write,
1699                           void __user *buffer, size_t *lenp, loff_t *ppos)
1700{
1701        struct ctl_table fake_table;
1702        int entropy_count;
1703
1704        entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
1705
1706        fake_table.data = &entropy_count;
1707        fake_table.maxlen = sizeof(entropy_count);
1708
1709        return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
1710}
1711
1712static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
1713extern struct ctl_table random_table[];
1714struct ctl_table random_table[] = {
1715        {
1716                .procname       = "poolsize",
1717                .data           = &sysctl_poolsize,
1718                .maxlen         = sizeof(int),
1719                .mode           = 0444,
1720                .proc_handler   = proc_dointvec,
1721        },
1722        {
1723                .procname       = "entropy_avail",
1724                .maxlen         = sizeof(int),
1725                .mode           = 0444,
1726                .proc_handler   = proc_do_entropy,
1727                .data           = &input_pool.entropy_count,
1728        },
1729        {
1730                .procname       = "read_wakeup_threshold",
1731                .data           = &random_read_wakeup_bits,
1732                .maxlen         = sizeof(int),
1733                .mode           = 0644,
1734                .proc_handler   = proc_dointvec_minmax,
1735                .extra1         = &min_read_thresh,
1736                .extra2         = &max_read_thresh,
1737        },
1738        {
1739                .procname       = "write_wakeup_threshold",
1740                .data           = &random_write_wakeup_bits,
1741                .maxlen         = sizeof(int),
1742                .mode           = 0644,
1743                .proc_handler   = proc_dointvec_minmax,
1744                .extra1         = &min_write_thresh,
1745                .extra2         = &max_write_thresh,
1746        },
1747        {
1748                .procname       = "urandom_min_reseed_secs",
1749                .data           = &random_min_urandom_seed,
1750                .maxlen         = sizeof(int),
1751                .mode           = 0644,
1752                .proc_handler   = proc_dointvec,
1753        },
1754        {
1755                .procname       = "boot_id",
1756                .data           = &sysctl_bootid,
1757                .maxlen         = 16,
1758                .mode           = 0444,
1759                .proc_handler   = proc_do_uuid,
1760        },
1761        {
1762                .procname       = "uuid",
1763                .maxlen         = 16,
1764                .mode           = 0444,
1765                .proc_handler   = proc_do_uuid,
1766        },
1767#ifdef ADD_INTERRUPT_BENCH
1768        {
1769                .procname       = "add_interrupt_avg_cycles",
1770                .data           = &avg_cycles,
1771                .maxlen         = sizeof(avg_cycles),
1772                .mode           = 0444,
1773                .proc_handler   = proc_doulongvec_minmax,
1774        },
1775        {
1776                .procname       = "add_interrupt_avg_deviation",
1777                .data           = &avg_deviation,
1778                .maxlen         = sizeof(avg_deviation),
1779                .mode           = 0444,
1780                .proc_handler   = proc_doulongvec_minmax,
1781        },
1782#endif
1783        { }
1784};
1785#endif  /* CONFIG_SYSCTL */
1786
1787static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
1788
1789int random_int_secret_init(void)
1790{
1791        get_random_bytes(random_int_secret, sizeof(random_int_secret));
1792        return 0;
1793}
1794
1795/*
1796 * Get a random word for internal kernel use only. Similar to urandom but
1797 * with the goal of minimal entropy pool depletion. As a result, the random
1798 * value is not cryptographically secure but for several uses the cost of
1799 * depleting entropy is too high
1800 */
1801static DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash);
1802unsigned int get_random_int(void)
1803{
1804        __u32 *hash;
1805        unsigned int ret;
1806
1807        if (arch_get_random_int(&ret))
1808                return ret;
1809
1810        hash = get_cpu_var(get_random_int_hash);
1811
1812        hash[0] += current->pid + jiffies + random_get_entropy();
1813        md5_transform(hash, random_int_secret);
1814        ret = hash[0];
1815        put_cpu_var(get_random_int_hash);
1816
1817        return ret;
1818}
1819EXPORT_SYMBOL(get_random_int);
1820
1821/*
1822 * Same as get_random_int(), but returns unsigned long.
1823 */
1824unsigned long get_random_long(void)
1825{
1826        __u32 *hash;
1827        unsigned long ret;
1828
1829        if (arch_get_random_long(&ret))
1830                return ret;
1831
1832        hash = get_cpu_var(get_random_int_hash);
1833
1834        hash[0] += current->pid + jiffies + random_get_entropy();
1835        md5_transform(hash, random_int_secret);
1836        ret = *(unsigned long *)hash;
1837        put_cpu_var(get_random_int_hash);
1838
1839        return ret;
1840}
1841EXPORT_SYMBOL(get_random_long);
1842
1843/*
1844 * randomize_range() returns a start address such that
1845 *
1846 *    [...... <range> .....]
1847 *  start                  end
1848 *
1849 * a <range> with size "len" starting at the return value is inside in the
1850 * area defined by [start, end], but is otherwise randomized.
1851 */
1852unsigned long
1853randomize_range(unsigned long start, unsigned long end, unsigned long len)
1854{
1855        unsigned long range = end - len - start;
1856
1857        if (end <= start + len)
1858                return 0;
1859        return PAGE_ALIGN(get_random_int() % range + start);
1860}
1861
1862/* Interface for in-kernel drivers of true hardware RNGs.
1863 * Those devices may produce endless random bits and will be throttled
1864 * when our pool is full.
1865 */
1866void add_hwgenerator_randomness(const char *buffer, size_t count,
1867                                size_t entropy)
1868{
1869        struct entropy_store *poolp = &input_pool;
1870
1871        /* Suspend writing if we're above the trickle threshold.
1872         * We'll be woken up again once below random_write_wakeup_thresh,
1873         * or when the calling thread is about to terminate.
1874         */
1875        wait_event_interruptible(random_write_wait, kthread_should_stop() ||
1876                        ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
1877        mix_pool_bytes(poolp, buffer, count);
1878        credit_entropy_bits(poolp, entropy);
1879}
1880EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
1881