linux/drivers/crypto/ccp/ccp-crypto-sha.c
<<
>>
Prefs
   1/*
   2 * AMD Cryptographic Coprocessor (CCP) SHA crypto API support
   3 *
   4 * Copyright (C) 2013,2016 Advanced Micro Devices, Inc.
   5 *
   6 * Author: Tom Lendacky <thomas.lendacky@amd.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License version 2 as
  10 * published by the Free Software Foundation.
  11 */
  12
  13#include <linux/module.h>
  14#include <linux/sched.h>
  15#include <linux/delay.h>
  16#include <linux/scatterlist.h>
  17#include <linux/crypto.h>
  18#include <crypto/algapi.h>
  19#include <crypto/hash.h>
  20#include <crypto/internal/hash.h>
  21#include <crypto/sha.h>
  22#include <crypto/scatterwalk.h>
  23
  24#include "ccp-crypto.h"
  25
  26static int ccp_sha_complete(struct crypto_async_request *async_req, int ret)
  27{
  28        struct ahash_request *req = ahash_request_cast(async_req);
  29        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  30        struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
  31        unsigned int digest_size = crypto_ahash_digestsize(tfm);
  32
  33        if (ret)
  34                goto e_free;
  35
  36        if (rctx->hash_rem) {
  37                /* Save remaining data to buffer */
  38                unsigned int offset = rctx->nbytes - rctx->hash_rem;
  39
  40                scatterwalk_map_and_copy(rctx->buf, rctx->src,
  41                                         offset, rctx->hash_rem, 0);
  42                rctx->buf_count = rctx->hash_rem;
  43        } else {
  44                rctx->buf_count = 0;
  45        }
  46
  47        /* Update result area if supplied */
  48        if (req->result)
  49                memcpy(req->result, rctx->ctx, digest_size);
  50
  51e_free:
  52        sg_free_table(&rctx->data_sg);
  53
  54        return ret;
  55}
  56
  57static int ccp_do_sha_update(struct ahash_request *req, unsigned int nbytes,
  58                             unsigned int final)
  59{
  60        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  61        struct ccp_ctx *ctx = crypto_ahash_ctx(tfm);
  62        struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
  63        struct scatterlist *sg;
  64        unsigned int block_size =
  65                crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
  66        unsigned int sg_count;
  67        gfp_t gfp;
  68        u64 len;
  69        int ret;
  70
  71        len = (u64)rctx->buf_count + (u64)nbytes;
  72
  73        if (!final && (len <= block_size)) {
  74                scatterwalk_map_and_copy(rctx->buf + rctx->buf_count, req->src,
  75                                         0, nbytes, 0);
  76                rctx->buf_count += nbytes;
  77
  78                return 0;
  79        }
  80
  81        rctx->src = req->src;
  82        rctx->nbytes = nbytes;
  83
  84        rctx->final = final;
  85        rctx->hash_rem = final ? 0 : len & (block_size - 1);
  86        rctx->hash_cnt = len - rctx->hash_rem;
  87        if (!final && !rctx->hash_rem) {
  88                /* CCP can't do zero length final, so keep some data around */
  89                rctx->hash_cnt -= block_size;
  90                rctx->hash_rem = block_size;
  91        }
  92
  93        /* Initialize the context scatterlist */
  94        sg_init_one(&rctx->ctx_sg, rctx->ctx, sizeof(rctx->ctx));
  95
  96        sg = NULL;
  97        if (rctx->buf_count && nbytes) {
  98                /* Build the data scatterlist table - allocate enough entries
  99                 * for both data pieces (buffer and input data)
 100                 */
 101                gfp = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
 102                        GFP_KERNEL : GFP_ATOMIC;
 103                sg_count = sg_nents(req->src) + 1;
 104                ret = sg_alloc_table(&rctx->data_sg, sg_count, gfp);
 105                if (ret)
 106                        return ret;
 107
 108                sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count);
 109                sg = ccp_crypto_sg_table_add(&rctx->data_sg, &rctx->buf_sg);
 110                if (!sg) {
 111                        ret = -EINVAL;
 112                        goto e_free;
 113                }
 114                sg = ccp_crypto_sg_table_add(&rctx->data_sg, req->src);
 115                if (!sg) {
 116                        ret = -EINVAL;
 117                        goto e_free;
 118                }
 119                sg_mark_end(sg);
 120
 121                sg = rctx->data_sg.sgl;
 122        } else if (rctx->buf_count) {
 123                sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count);
 124
 125                sg = &rctx->buf_sg;
 126        } else if (nbytes) {
 127                sg = req->src;
 128        }
 129
 130        rctx->msg_bits += (rctx->hash_cnt << 3);        /* Total in bits */
 131
 132        memset(&rctx->cmd, 0, sizeof(rctx->cmd));
 133        INIT_LIST_HEAD(&rctx->cmd.entry);
 134        rctx->cmd.engine = CCP_ENGINE_SHA;
 135        rctx->cmd.u.sha.type = rctx->type;
 136        rctx->cmd.u.sha.ctx = &rctx->ctx_sg;
 137        rctx->cmd.u.sha.ctx_len = sizeof(rctx->ctx);
 138        rctx->cmd.u.sha.src = sg;
 139        rctx->cmd.u.sha.src_len = rctx->hash_cnt;
 140        rctx->cmd.u.sha.opad = ctx->u.sha.key_len ?
 141                &ctx->u.sha.opad_sg : NULL;
 142        rctx->cmd.u.sha.opad_len = ctx->u.sha.key_len ?
 143                ctx->u.sha.opad_count : 0;
 144        rctx->cmd.u.sha.first = rctx->first;
 145        rctx->cmd.u.sha.final = rctx->final;
 146        rctx->cmd.u.sha.msg_bits = rctx->msg_bits;
 147
 148        rctx->first = 0;
 149
 150        ret = ccp_crypto_enqueue_request(&req->base, &rctx->cmd);
 151
 152        return ret;
 153
 154e_free:
 155        sg_free_table(&rctx->data_sg);
 156
 157        return ret;
 158}
 159
 160static int ccp_sha_init(struct ahash_request *req)
 161{
 162        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 163        struct ccp_ctx *ctx = crypto_ahash_ctx(tfm);
 164        struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
 165        struct ccp_crypto_ahash_alg *alg =
 166                ccp_crypto_ahash_alg(crypto_ahash_tfm(tfm));
 167        unsigned int block_size =
 168                crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
 169
 170        memset(rctx, 0, sizeof(*rctx));
 171
 172        rctx->type = alg->type;
 173        rctx->first = 1;
 174
 175        if (ctx->u.sha.key_len) {
 176                /* Buffer the HMAC key for first update */
 177                memcpy(rctx->buf, ctx->u.sha.ipad, block_size);
 178                rctx->buf_count = block_size;
 179        }
 180
 181        return 0;
 182}
 183
 184static int ccp_sha_update(struct ahash_request *req)
 185{
 186        return ccp_do_sha_update(req, req->nbytes, 0);
 187}
 188
 189static int ccp_sha_final(struct ahash_request *req)
 190{
 191        return ccp_do_sha_update(req, 0, 1);
 192}
 193
 194static int ccp_sha_finup(struct ahash_request *req)
 195{
 196        return ccp_do_sha_update(req, req->nbytes, 1);
 197}
 198
 199static int ccp_sha_digest(struct ahash_request *req)
 200{
 201        int ret;
 202
 203        ret = ccp_sha_init(req);
 204        if (ret)
 205                return ret;
 206
 207        return ccp_sha_finup(req);
 208}
 209
 210static int ccp_sha_export(struct ahash_request *req, void *out)
 211{
 212        struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
 213        struct ccp_sha_exp_ctx state;
 214
 215        /* Don't let anything leak to 'out' */
 216        memset(&state, 0, sizeof(state));
 217
 218        state.type = rctx->type;
 219        state.msg_bits = rctx->msg_bits;
 220        state.first = rctx->first;
 221        memcpy(state.ctx, rctx->ctx, sizeof(state.ctx));
 222        state.buf_count = rctx->buf_count;
 223        memcpy(state.buf, rctx->buf, sizeof(state.buf));
 224
 225        /* 'out' may not be aligned so memcpy from local variable */
 226        memcpy(out, &state, sizeof(state));
 227
 228        return 0;
 229}
 230
 231static int ccp_sha_import(struct ahash_request *req, const void *in)
 232{
 233        struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
 234        struct ccp_sha_exp_ctx state;
 235
 236        /* 'in' may not be aligned so memcpy to local variable */
 237        memcpy(&state, in, sizeof(state));
 238
 239        memset(rctx, 0, sizeof(*rctx));
 240        rctx->type = state.type;
 241        rctx->msg_bits = state.msg_bits;
 242        rctx->first = state.first;
 243        memcpy(rctx->ctx, state.ctx, sizeof(rctx->ctx));
 244        rctx->buf_count = state.buf_count;
 245        memcpy(rctx->buf, state.buf, sizeof(rctx->buf));
 246
 247        return 0;
 248}
 249
 250static int ccp_sha_setkey(struct crypto_ahash *tfm, const u8 *key,
 251                          unsigned int key_len)
 252{
 253        struct ccp_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
 254        struct crypto_shash *shash = ctx->u.sha.hmac_tfm;
 255
 256        SHASH_DESC_ON_STACK(sdesc, shash);
 257
 258        unsigned int block_size = crypto_shash_blocksize(shash);
 259        unsigned int digest_size = crypto_shash_digestsize(shash);
 260        int i, ret;
 261
 262        /* Set to zero until complete */
 263        ctx->u.sha.key_len = 0;
 264
 265        /* Clear key area to provide zero padding for keys smaller
 266         * than the block size
 267         */
 268        memset(ctx->u.sha.key, 0, sizeof(ctx->u.sha.key));
 269
 270        if (key_len > block_size) {
 271                /* Must hash the input key */
 272                sdesc->tfm = shash;
 273                sdesc->flags = crypto_ahash_get_flags(tfm) &
 274                        CRYPTO_TFM_REQ_MAY_SLEEP;
 275
 276                ret = crypto_shash_digest(sdesc, key, key_len,
 277                                          ctx->u.sha.key);
 278                if (ret) {
 279                        crypto_ahash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
 280                        return -EINVAL;
 281                }
 282
 283                key_len = digest_size;
 284        } else {
 285                memcpy(ctx->u.sha.key, key, key_len);
 286        }
 287
 288        for (i = 0; i < block_size; i++) {
 289                ctx->u.sha.ipad[i] = ctx->u.sha.key[i] ^ 0x36;
 290                ctx->u.sha.opad[i] = ctx->u.sha.key[i] ^ 0x5c;
 291        }
 292
 293        sg_init_one(&ctx->u.sha.opad_sg, ctx->u.sha.opad, block_size);
 294        ctx->u.sha.opad_count = block_size;
 295
 296        ctx->u.sha.key_len = key_len;
 297
 298        return 0;
 299}
 300
 301static int ccp_sha_cra_init(struct crypto_tfm *tfm)
 302{
 303        struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
 304        struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
 305
 306        ctx->complete = ccp_sha_complete;
 307        ctx->u.sha.key_len = 0;
 308
 309        crypto_ahash_set_reqsize(ahash, sizeof(struct ccp_sha_req_ctx));
 310
 311        return 0;
 312}
 313
 314static void ccp_sha_cra_exit(struct crypto_tfm *tfm)
 315{
 316}
 317
 318static int ccp_hmac_sha_cra_init(struct crypto_tfm *tfm)
 319{
 320        struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
 321        struct ccp_crypto_ahash_alg *alg = ccp_crypto_ahash_alg(tfm);
 322        struct crypto_shash *hmac_tfm;
 323
 324        hmac_tfm = crypto_alloc_shash(alg->child_alg, 0, 0);
 325        if (IS_ERR(hmac_tfm)) {
 326                pr_warn("could not load driver %s need for HMAC support\n",
 327                        alg->child_alg);
 328                return PTR_ERR(hmac_tfm);
 329        }
 330
 331        ctx->u.sha.hmac_tfm = hmac_tfm;
 332
 333        return ccp_sha_cra_init(tfm);
 334}
 335
 336static void ccp_hmac_sha_cra_exit(struct crypto_tfm *tfm)
 337{
 338        struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
 339
 340        if (ctx->u.sha.hmac_tfm)
 341                crypto_free_shash(ctx->u.sha.hmac_tfm);
 342
 343        ccp_sha_cra_exit(tfm);
 344}
 345
 346struct ccp_sha_def {
 347        unsigned int version;
 348        const char *name;
 349        const char *drv_name;
 350        enum ccp_sha_type type;
 351        u32 digest_size;
 352        u32 block_size;
 353};
 354
 355static struct ccp_sha_def sha_algs[] = {
 356        {
 357                .version        = CCP_VERSION(3, 0),
 358                .name           = "sha1",
 359                .drv_name       = "sha1-ccp",
 360                .type           = CCP_SHA_TYPE_1,
 361                .digest_size    = SHA1_DIGEST_SIZE,
 362                .block_size     = SHA1_BLOCK_SIZE,
 363        },
 364        {
 365                .version        = CCP_VERSION(3, 0),
 366                .name           = "sha224",
 367                .drv_name       = "sha224-ccp",
 368                .type           = CCP_SHA_TYPE_224,
 369                .digest_size    = SHA224_DIGEST_SIZE,
 370                .block_size     = SHA224_BLOCK_SIZE,
 371        },
 372        {
 373                .version        = CCP_VERSION(3, 0),
 374                .name           = "sha256",
 375                .drv_name       = "sha256-ccp",
 376                .type           = CCP_SHA_TYPE_256,
 377                .digest_size    = SHA256_DIGEST_SIZE,
 378                .block_size     = SHA256_BLOCK_SIZE,
 379        },
 380};
 381
 382static int ccp_register_hmac_alg(struct list_head *head,
 383                                 const struct ccp_sha_def *def,
 384                                 const struct ccp_crypto_ahash_alg *base_alg)
 385{
 386        struct ccp_crypto_ahash_alg *ccp_alg;
 387        struct ahash_alg *alg;
 388        struct hash_alg_common *halg;
 389        struct crypto_alg *base;
 390        int ret;
 391
 392        ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
 393        if (!ccp_alg)
 394                return -ENOMEM;
 395
 396        /* Copy the base algorithm and only change what's necessary */
 397        *ccp_alg = *base_alg;
 398        INIT_LIST_HEAD(&ccp_alg->entry);
 399
 400        strncpy(ccp_alg->child_alg, def->name, CRYPTO_MAX_ALG_NAME);
 401
 402        alg = &ccp_alg->alg;
 403        alg->setkey = ccp_sha_setkey;
 404
 405        halg = &alg->halg;
 406
 407        base = &halg->base;
 408        snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", def->name);
 409        snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s",
 410                 def->drv_name);
 411        base->cra_init = ccp_hmac_sha_cra_init;
 412        base->cra_exit = ccp_hmac_sha_cra_exit;
 413
 414        ret = crypto_register_ahash(alg);
 415        if (ret) {
 416                pr_err("%s ahash algorithm registration error (%d)\n",
 417                       base->cra_name, ret);
 418                kfree(ccp_alg);
 419                return ret;
 420        }
 421
 422        list_add(&ccp_alg->entry, head);
 423
 424        return ret;
 425}
 426
 427static int ccp_register_sha_alg(struct list_head *head,
 428                                const struct ccp_sha_def *def)
 429{
 430        struct ccp_crypto_ahash_alg *ccp_alg;
 431        struct ahash_alg *alg;
 432        struct hash_alg_common *halg;
 433        struct crypto_alg *base;
 434        int ret;
 435
 436        ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
 437        if (!ccp_alg)
 438                return -ENOMEM;
 439
 440        INIT_LIST_HEAD(&ccp_alg->entry);
 441
 442        ccp_alg->type = def->type;
 443
 444        alg = &ccp_alg->alg;
 445        alg->init = ccp_sha_init;
 446        alg->update = ccp_sha_update;
 447        alg->final = ccp_sha_final;
 448        alg->finup = ccp_sha_finup;
 449        alg->digest = ccp_sha_digest;
 450        alg->export = ccp_sha_export;
 451        alg->import = ccp_sha_import;
 452
 453        halg = &alg->halg;
 454        halg->digestsize = def->digest_size;
 455        halg->statesize = sizeof(struct ccp_sha_exp_ctx);
 456
 457        base = &halg->base;
 458        snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
 459        snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
 460                 def->drv_name);
 461        base->cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC |
 462                          CRYPTO_ALG_KERN_DRIVER_ONLY |
 463                          CRYPTO_ALG_NEED_FALLBACK;
 464        base->cra_blocksize = def->block_size;
 465        base->cra_ctxsize = sizeof(struct ccp_ctx);
 466        base->cra_priority = CCP_CRA_PRIORITY;
 467        base->cra_type = &crypto_ahash_type;
 468        base->cra_init = ccp_sha_cra_init;
 469        base->cra_exit = ccp_sha_cra_exit;
 470        base->cra_module = THIS_MODULE;
 471
 472        ret = crypto_register_ahash(alg);
 473        if (ret) {
 474                pr_err("%s ahash algorithm registration error (%d)\n",
 475                       base->cra_name, ret);
 476                kfree(ccp_alg);
 477                return ret;
 478        }
 479
 480        list_add(&ccp_alg->entry, head);
 481
 482        ret = ccp_register_hmac_alg(head, def, ccp_alg);
 483
 484        return ret;
 485}
 486
 487int ccp_register_sha_algs(struct list_head *head)
 488{
 489        int i, ret;
 490        unsigned int ccpversion = ccp_version();
 491
 492        for (i = 0; i < ARRAY_SIZE(sha_algs); i++) {
 493                if (sha_algs[i].version > ccpversion)
 494                        continue;
 495                ret = ccp_register_sha_alg(head, &sha_algs[i]);
 496                if (ret)
 497                        return ret;
 498        }
 499
 500        return 0;
 501}
 502