linux/drivers/dma/at_hdmac.c
<<
>>
Prefs
   1/*
   2 * Driver for the Atmel AHB DMA Controller (aka HDMA or DMAC on AT91 systems)
   3 *
   4 * Copyright (C) 2008 Atmel Corporation
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 *
  12 * This supports the Atmel AHB DMA Controller found in several Atmel SoCs.
  13 * The only Atmel DMA Controller that is not covered by this driver is the one
  14 * found on AT91SAM9263.
  15 */
  16
  17#include <dt-bindings/dma/at91.h>
  18#include <linux/clk.h>
  19#include <linux/dmaengine.h>
  20#include <linux/dma-mapping.h>
  21#include <linux/dmapool.h>
  22#include <linux/interrupt.h>
  23#include <linux/module.h>
  24#include <linux/platform_device.h>
  25#include <linux/slab.h>
  26#include <linux/of.h>
  27#include <linux/of_device.h>
  28#include <linux/of_dma.h>
  29
  30#include "at_hdmac_regs.h"
  31#include "dmaengine.h"
  32
  33/*
  34 * Glossary
  35 * --------
  36 *
  37 * at_hdmac             : Name of the ATmel AHB DMA Controller
  38 * at_dma_ / atdma      : ATmel DMA controller entity related
  39 * atc_ / atchan        : ATmel DMA Channel entity related
  40 */
  41
  42#define ATC_DEFAULT_CFG         (ATC_FIFOCFG_HALFFIFO)
  43#define ATC_DEFAULT_CTRLB       (ATC_SIF(AT_DMA_MEM_IF) \
  44                                |ATC_DIF(AT_DMA_MEM_IF))
  45#define ATC_DMA_BUSWIDTHS\
  46        (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
  47        BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
  48        BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
  49        BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
  50
  51#define ATC_MAX_DSCR_TRIALS     10
  52
  53/*
  54 * Initial number of descriptors to allocate for each channel. This could
  55 * be increased during dma usage.
  56 */
  57static unsigned int init_nr_desc_per_channel = 64;
  58module_param(init_nr_desc_per_channel, uint, 0644);
  59MODULE_PARM_DESC(init_nr_desc_per_channel,
  60                 "initial descriptors per channel (default: 64)");
  61
  62
  63/* prototypes */
  64static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx);
  65static void atc_issue_pending(struct dma_chan *chan);
  66
  67
  68/*----------------------------------------------------------------------*/
  69
  70static inline unsigned int atc_get_xfer_width(dma_addr_t src, dma_addr_t dst,
  71                                                size_t len)
  72{
  73        unsigned int width;
  74
  75        if (!((src | dst  | len) & 3))
  76                width = 2;
  77        else if (!((src | dst | len) & 1))
  78                width = 1;
  79        else
  80                width = 0;
  81
  82        return width;
  83}
  84
  85static struct at_desc *atc_first_active(struct at_dma_chan *atchan)
  86{
  87        return list_first_entry(&atchan->active_list,
  88                                struct at_desc, desc_node);
  89}
  90
  91static struct at_desc *atc_first_queued(struct at_dma_chan *atchan)
  92{
  93        return list_first_entry(&atchan->queue,
  94                                struct at_desc, desc_node);
  95}
  96
  97/**
  98 * atc_alloc_descriptor - allocate and return an initialized descriptor
  99 * @chan: the channel to allocate descriptors for
 100 * @gfp_flags: GFP allocation flags
 101 *
 102 * Note: The ack-bit is positioned in the descriptor flag at creation time
 103 *       to make initial allocation more convenient. This bit will be cleared
 104 *       and control will be given to client at usage time (during
 105 *       preparation functions).
 106 */
 107static struct at_desc *atc_alloc_descriptor(struct dma_chan *chan,
 108                                            gfp_t gfp_flags)
 109{
 110        struct at_desc  *desc = NULL;
 111        struct at_dma   *atdma = to_at_dma(chan->device);
 112        dma_addr_t phys;
 113
 114        desc = dma_pool_alloc(atdma->dma_desc_pool, gfp_flags, &phys);
 115        if (desc) {
 116                memset(desc, 0, sizeof(struct at_desc));
 117                INIT_LIST_HEAD(&desc->tx_list);
 118                dma_async_tx_descriptor_init(&desc->txd, chan);
 119                /* txd.flags will be overwritten in prep functions */
 120                desc->txd.flags = DMA_CTRL_ACK;
 121                desc->txd.tx_submit = atc_tx_submit;
 122                desc->txd.phys = phys;
 123        }
 124
 125        return desc;
 126}
 127
 128/**
 129 * atc_desc_get - get an unused descriptor from free_list
 130 * @atchan: channel we want a new descriptor for
 131 */
 132static struct at_desc *atc_desc_get(struct at_dma_chan *atchan)
 133{
 134        struct at_desc *desc, *_desc;
 135        struct at_desc *ret = NULL;
 136        unsigned long flags;
 137        unsigned int i = 0;
 138        LIST_HEAD(tmp_list);
 139
 140        spin_lock_irqsave(&atchan->lock, flags);
 141        list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
 142                i++;
 143                if (async_tx_test_ack(&desc->txd)) {
 144                        list_del(&desc->desc_node);
 145                        ret = desc;
 146                        break;
 147                }
 148                dev_dbg(chan2dev(&atchan->chan_common),
 149                                "desc %p not ACKed\n", desc);
 150        }
 151        spin_unlock_irqrestore(&atchan->lock, flags);
 152        dev_vdbg(chan2dev(&atchan->chan_common),
 153                "scanned %u descriptors on freelist\n", i);
 154
 155        /* no more descriptor available in initial pool: create one more */
 156        if (!ret) {
 157                ret = atc_alloc_descriptor(&atchan->chan_common, GFP_ATOMIC);
 158                if (ret) {
 159                        spin_lock_irqsave(&atchan->lock, flags);
 160                        atchan->descs_allocated++;
 161                        spin_unlock_irqrestore(&atchan->lock, flags);
 162                } else {
 163                        dev_err(chan2dev(&atchan->chan_common),
 164                                        "not enough descriptors available\n");
 165                }
 166        }
 167
 168        return ret;
 169}
 170
 171/**
 172 * atc_desc_put - move a descriptor, including any children, to the free list
 173 * @atchan: channel we work on
 174 * @desc: descriptor, at the head of a chain, to move to free list
 175 */
 176static void atc_desc_put(struct at_dma_chan *atchan, struct at_desc *desc)
 177{
 178        if (desc) {
 179                struct at_desc *child;
 180                unsigned long flags;
 181
 182                spin_lock_irqsave(&atchan->lock, flags);
 183                list_for_each_entry(child, &desc->tx_list, desc_node)
 184                        dev_vdbg(chan2dev(&atchan->chan_common),
 185                                        "moving child desc %p to freelist\n",
 186                                        child);
 187                list_splice_init(&desc->tx_list, &atchan->free_list);
 188                dev_vdbg(chan2dev(&atchan->chan_common),
 189                         "moving desc %p to freelist\n", desc);
 190                list_add(&desc->desc_node, &atchan->free_list);
 191                spin_unlock_irqrestore(&atchan->lock, flags);
 192        }
 193}
 194
 195/**
 196 * atc_desc_chain - build chain adding a descriptor
 197 * @first: address of first descriptor of the chain
 198 * @prev: address of previous descriptor of the chain
 199 * @desc: descriptor to queue
 200 *
 201 * Called from prep_* functions
 202 */
 203static void atc_desc_chain(struct at_desc **first, struct at_desc **prev,
 204                           struct at_desc *desc)
 205{
 206        if (!(*first)) {
 207                *first = desc;
 208        } else {
 209                /* inform the HW lli about chaining */
 210                (*prev)->lli.dscr = desc->txd.phys;
 211                /* insert the link descriptor to the LD ring */
 212                list_add_tail(&desc->desc_node,
 213                                &(*first)->tx_list);
 214        }
 215        *prev = desc;
 216}
 217
 218/**
 219 * atc_dostart - starts the DMA engine for real
 220 * @atchan: the channel we want to start
 221 * @first: first descriptor in the list we want to begin with
 222 *
 223 * Called with atchan->lock held and bh disabled
 224 */
 225static void atc_dostart(struct at_dma_chan *atchan, struct at_desc *first)
 226{
 227        struct at_dma   *atdma = to_at_dma(atchan->chan_common.device);
 228
 229        /* ASSERT:  channel is idle */
 230        if (atc_chan_is_enabled(atchan)) {
 231                dev_err(chan2dev(&atchan->chan_common),
 232                        "BUG: Attempted to start non-idle channel\n");
 233                dev_err(chan2dev(&atchan->chan_common),
 234                        "  channel: s0x%x d0x%x ctrl0x%x:0x%x l0x%x\n",
 235                        channel_readl(atchan, SADDR),
 236                        channel_readl(atchan, DADDR),
 237                        channel_readl(atchan, CTRLA),
 238                        channel_readl(atchan, CTRLB),
 239                        channel_readl(atchan, DSCR));
 240
 241                /* The tasklet will hopefully advance the queue... */
 242                return;
 243        }
 244
 245        vdbg_dump_regs(atchan);
 246
 247        channel_writel(atchan, SADDR, 0);
 248        channel_writel(atchan, DADDR, 0);
 249        channel_writel(atchan, CTRLA, 0);
 250        channel_writel(atchan, CTRLB, 0);
 251        channel_writel(atchan, DSCR, first->txd.phys);
 252        channel_writel(atchan, SPIP, ATC_SPIP_HOLE(first->src_hole) |
 253                       ATC_SPIP_BOUNDARY(first->boundary));
 254        channel_writel(atchan, DPIP, ATC_DPIP_HOLE(first->dst_hole) |
 255                       ATC_DPIP_BOUNDARY(first->boundary));
 256        dma_writel(atdma, CHER, atchan->mask);
 257
 258        vdbg_dump_regs(atchan);
 259}
 260
 261/*
 262 * atc_get_desc_by_cookie - get the descriptor of a cookie
 263 * @atchan: the DMA channel
 264 * @cookie: the cookie to get the descriptor for
 265 */
 266static struct at_desc *atc_get_desc_by_cookie(struct at_dma_chan *atchan,
 267                                                dma_cookie_t cookie)
 268{
 269        struct at_desc *desc, *_desc;
 270
 271        list_for_each_entry_safe(desc, _desc, &atchan->queue, desc_node) {
 272                if (desc->txd.cookie == cookie)
 273                        return desc;
 274        }
 275
 276        list_for_each_entry_safe(desc, _desc, &atchan->active_list, desc_node) {
 277                if (desc->txd.cookie == cookie)
 278                        return desc;
 279        }
 280
 281        return NULL;
 282}
 283
 284/**
 285 * atc_calc_bytes_left - calculates the number of bytes left according to the
 286 * value read from CTRLA.
 287 *
 288 * @current_len: the number of bytes left before reading CTRLA
 289 * @ctrla: the value of CTRLA
 290 */
 291static inline int atc_calc_bytes_left(int current_len, u32 ctrla)
 292{
 293        u32 btsize = (ctrla & ATC_BTSIZE_MAX);
 294        u32 src_width = ATC_REG_TO_SRC_WIDTH(ctrla);
 295
 296        /*
 297         * According to the datasheet, when reading the Control A Register
 298         * (ctrla), the Buffer Transfer Size (btsize) bitfield refers to the
 299         * number of transfers completed on the Source Interface.
 300         * So btsize is always a number of source width transfers.
 301         */
 302        return current_len - (btsize << src_width);
 303}
 304
 305/**
 306 * atc_get_bytes_left - get the number of bytes residue for a cookie
 307 * @chan: DMA channel
 308 * @cookie: transaction identifier to check status of
 309 */
 310static int atc_get_bytes_left(struct dma_chan *chan, dma_cookie_t cookie)
 311{
 312        struct at_dma_chan      *atchan = to_at_dma_chan(chan);
 313        struct at_desc *desc_first = atc_first_active(atchan);
 314        struct at_desc *desc;
 315        int ret;
 316        u32 ctrla, dscr, trials;
 317
 318        /*
 319         * If the cookie doesn't match to the currently running transfer then
 320         * we can return the total length of the associated DMA transfer,
 321         * because it is still queued.
 322         */
 323        desc = atc_get_desc_by_cookie(atchan, cookie);
 324        if (desc == NULL)
 325                return -EINVAL;
 326        else if (desc != desc_first)
 327                return desc->total_len;
 328
 329        /* cookie matches to the currently running transfer */
 330        ret = desc_first->total_len;
 331
 332        if (desc_first->lli.dscr) {
 333                /* hardware linked list transfer */
 334
 335                /*
 336                 * Calculate the residue by removing the length of the child
 337                 * descriptors already transferred from the total length.
 338                 * To get the current child descriptor we can use the value of
 339                 * the channel's DSCR register and compare it against the value
 340                 * of the hardware linked list structure of each child
 341                 * descriptor.
 342                 *
 343                 * The CTRLA register provides us with the amount of data
 344                 * already read from the source for the current child
 345                 * descriptor. So we can compute a more accurate residue by also
 346                 * removing the number of bytes corresponding to this amount of
 347                 * data.
 348                 *
 349                 * However, the DSCR and CTRLA registers cannot be read both
 350                 * atomically. Hence a race condition may occur: the first read
 351                 * register may refer to one child descriptor whereas the second
 352                 * read may refer to a later child descriptor in the list
 353                 * because of the DMA transfer progression inbetween the two
 354                 * reads.
 355                 *
 356                 * One solution could have been to pause the DMA transfer, read
 357                 * the DSCR and CTRLA then resume the DMA transfer. Nonetheless,
 358                 * this approach presents some drawbacks:
 359                 * - If the DMA transfer is paused, RX overruns or TX underruns
 360                 *   are more likey to occur depending on the system latency.
 361                 *   Taking the USART driver as an example, it uses a cyclic DMA
 362                 *   transfer to read data from the Receive Holding Register
 363                 *   (RHR) to avoid RX overruns since the RHR is not protected
 364                 *   by any FIFO on most Atmel SoCs. So pausing the DMA transfer
 365                 *   to compute the residue would break the USART driver design.
 366                 * - The atc_pause() function masks interrupts but we'd rather
 367                 *   avoid to do so for system latency purpose.
 368                 *
 369                 * Then we'd rather use another solution: the DSCR is read a
 370                 * first time, the CTRLA is read in turn, next the DSCR is read
 371                 * a second time. If the two consecutive read values of the DSCR
 372                 * are the same then we assume both refers to the very same
 373                 * child descriptor as well as the CTRLA value read inbetween
 374                 * does. For cyclic tranfers, the assumption is that a full loop
 375                 * is "not so fast".
 376                 * If the two DSCR values are different, we read again the CTRLA
 377                 * then the DSCR till two consecutive read values from DSCR are
 378                 * equal or till the maxium trials is reach.
 379                 * This algorithm is very unlikely not to find a stable value for
 380                 * DSCR.
 381                 */
 382
 383                dscr = channel_readl(atchan, DSCR);
 384                rmb(); /* ensure DSCR is read before CTRLA */
 385                ctrla = channel_readl(atchan, CTRLA);
 386                for (trials = 0; trials < ATC_MAX_DSCR_TRIALS; ++trials) {
 387                        u32 new_dscr;
 388
 389                        rmb(); /* ensure DSCR is read after CTRLA */
 390                        new_dscr = channel_readl(atchan, DSCR);
 391
 392                        /*
 393                         * If the DSCR register value has not changed inside the
 394                         * DMA controller since the previous read, we assume
 395                         * that both the dscr and ctrla values refers to the
 396                         * very same descriptor.
 397                         */
 398                        if (likely(new_dscr == dscr))
 399                                break;
 400
 401                        /*
 402                         * DSCR has changed inside the DMA controller, so the
 403                         * previouly read value of CTRLA may refer to an already
 404                         * processed descriptor hence could be outdated.
 405                         * We need to update ctrla to match the current
 406                         * descriptor.
 407                         */
 408                        dscr = new_dscr;
 409                        rmb(); /* ensure DSCR is read before CTRLA */
 410                        ctrla = channel_readl(atchan, CTRLA);
 411                }
 412                if (unlikely(trials >= ATC_MAX_DSCR_TRIALS))
 413                        return -ETIMEDOUT;
 414
 415                /* for the first descriptor we can be more accurate */
 416                if (desc_first->lli.dscr == dscr)
 417                        return atc_calc_bytes_left(ret, ctrla);
 418
 419                ret -= desc_first->len;
 420                list_for_each_entry(desc, &desc_first->tx_list, desc_node) {
 421                        if (desc->lli.dscr == dscr)
 422                                break;
 423
 424                        ret -= desc->len;
 425                }
 426
 427                /*
 428                 * For the current descriptor in the chain we can calculate
 429                 * the remaining bytes using the channel's register.
 430                 */
 431                ret = atc_calc_bytes_left(ret, ctrla);
 432        } else {
 433                /* single transfer */
 434                ctrla = channel_readl(atchan, CTRLA);
 435                ret = atc_calc_bytes_left(ret, ctrla);
 436        }
 437
 438        return ret;
 439}
 440
 441/**
 442 * atc_chain_complete - finish work for one transaction chain
 443 * @atchan: channel we work on
 444 * @desc: descriptor at the head of the chain we want do complete
 445 *
 446 * Called with atchan->lock held and bh disabled */
 447static void
 448atc_chain_complete(struct at_dma_chan *atchan, struct at_desc *desc)
 449{
 450        struct dma_async_tx_descriptor  *txd = &desc->txd;
 451        struct at_dma                   *atdma = to_at_dma(atchan->chan_common.device);
 452
 453        dev_vdbg(chan2dev(&atchan->chan_common),
 454                "descriptor %u complete\n", txd->cookie);
 455
 456        /* mark the descriptor as complete for non cyclic cases only */
 457        if (!atc_chan_is_cyclic(atchan))
 458                dma_cookie_complete(txd);
 459
 460        /* If the transfer was a memset, free our temporary buffer */
 461        if (desc->memset_buffer) {
 462                dma_pool_free(atdma->memset_pool, desc->memset_vaddr,
 463                              desc->memset_paddr);
 464                desc->memset_buffer = false;
 465        }
 466
 467        /* move children to free_list */
 468        list_splice_init(&desc->tx_list, &atchan->free_list);
 469        /* move myself to free_list */
 470        list_move(&desc->desc_node, &atchan->free_list);
 471
 472        dma_descriptor_unmap(txd);
 473        /* for cyclic transfers,
 474         * no need to replay callback function while stopping */
 475        if (!atc_chan_is_cyclic(atchan)) {
 476                dma_async_tx_callback   callback = txd->callback;
 477                void                    *param = txd->callback_param;
 478
 479                /*
 480                 * The API requires that no submissions are done from a
 481                 * callback, so we don't need to drop the lock here
 482                 */
 483                if (callback)
 484                        callback(param);
 485        }
 486
 487        dma_run_dependencies(txd);
 488}
 489
 490/**
 491 * atc_complete_all - finish work for all transactions
 492 * @atchan: channel to complete transactions for
 493 *
 494 * Eventually submit queued descriptors if any
 495 *
 496 * Assume channel is idle while calling this function
 497 * Called with atchan->lock held and bh disabled
 498 */
 499static void atc_complete_all(struct at_dma_chan *atchan)
 500{
 501        struct at_desc *desc, *_desc;
 502        LIST_HEAD(list);
 503
 504        dev_vdbg(chan2dev(&atchan->chan_common), "complete all\n");
 505
 506        /*
 507         * Submit queued descriptors ASAP, i.e. before we go through
 508         * the completed ones.
 509         */
 510        if (!list_empty(&atchan->queue))
 511                atc_dostart(atchan, atc_first_queued(atchan));
 512        /* empty active_list now it is completed */
 513        list_splice_init(&atchan->active_list, &list);
 514        /* empty queue list by moving descriptors (if any) to active_list */
 515        list_splice_init(&atchan->queue, &atchan->active_list);
 516
 517        list_for_each_entry_safe(desc, _desc, &list, desc_node)
 518                atc_chain_complete(atchan, desc);
 519}
 520
 521/**
 522 * atc_advance_work - at the end of a transaction, move forward
 523 * @atchan: channel where the transaction ended
 524 *
 525 * Called with atchan->lock held and bh disabled
 526 */
 527static void atc_advance_work(struct at_dma_chan *atchan)
 528{
 529        dev_vdbg(chan2dev(&atchan->chan_common), "advance_work\n");
 530
 531        if (atc_chan_is_enabled(atchan))
 532                return;
 533
 534        if (list_empty(&atchan->active_list) ||
 535            list_is_singular(&atchan->active_list)) {
 536                atc_complete_all(atchan);
 537        } else {
 538                atc_chain_complete(atchan, atc_first_active(atchan));
 539                /* advance work */
 540                atc_dostart(atchan, atc_first_active(atchan));
 541        }
 542}
 543
 544
 545/**
 546 * atc_handle_error - handle errors reported by DMA controller
 547 * @atchan: channel where error occurs
 548 *
 549 * Called with atchan->lock held and bh disabled
 550 */
 551static void atc_handle_error(struct at_dma_chan *atchan)
 552{
 553        struct at_desc *bad_desc;
 554        struct at_desc *child;
 555
 556        /*
 557         * The descriptor currently at the head of the active list is
 558         * broked. Since we don't have any way to report errors, we'll
 559         * just have to scream loudly and try to carry on.
 560         */
 561        bad_desc = atc_first_active(atchan);
 562        list_del_init(&bad_desc->desc_node);
 563
 564        /* As we are stopped, take advantage to push queued descriptors
 565         * in active_list */
 566        list_splice_init(&atchan->queue, atchan->active_list.prev);
 567
 568        /* Try to restart the controller */
 569        if (!list_empty(&atchan->active_list))
 570                atc_dostart(atchan, atc_first_active(atchan));
 571
 572        /*
 573         * KERN_CRITICAL may seem harsh, but since this only happens
 574         * when someone submits a bad physical address in a
 575         * descriptor, we should consider ourselves lucky that the
 576         * controller flagged an error instead of scribbling over
 577         * random memory locations.
 578         */
 579        dev_crit(chan2dev(&atchan->chan_common),
 580                        "Bad descriptor submitted for DMA!\n");
 581        dev_crit(chan2dev(&atchan->chan_common),
 582                        "  cookie: %d\n", bad_desc->txd.cookie);
 583        atc_dump_lli(atchan, &bad_desc->lli);
 584        list_for_each_entry(child, &bad_desc->tx_list, desc_node)
 585                atc_dump_lli(atchan, &child->lli);
 586
 587        /* Pretend the descriptor completed successfully */
 588        atc_chain_complete(atchan, bad_desc);
 589}
 590
 591/**
 592 * atc_handle_cyclic - at the end of a period, run callback function
 593 * @atchan: channel used for cyclic operations
 594 *
 595 * Called with atchan->lock held and bh disabled
 596 */
 597static void atc_handle_cyclic(struct at_dma_chan *atchan)
 598{
 599        struct at_desc                  *first = atc_first_active(atchan);
 600        struct dma_async_tx_descriptor  *txd = &first->txd;
 601        dma_async_tx_callback           callback = txd->callback;
 602        void                            *param = txd->callback_param;
 603
 604        dev_vdbg(chan2dev(&atchan->chan_common),
 605                        "new cyclic period llp 0x%08x\n",
 606                        channel_readl(atchan, DSCR));
 607
 608        if (callback)
 609                callback(param);
 610}
 611
 612/*--  IRQ & Tasklet  ---------------------------------------------------*/
 613
 614static void atc_tasklet(unsigned long data)
 615{
 616        struct at_dma_chan *atchan = (struct at_dma_chan *)data;
 617        unsigned long flags;
 618
 619        spin_lock_irqsave(&atchan->lock, flags);
 620        if (test_and_clear_bit(ATC_IS_ERROR, &atchan->status))
 621                atc_handle_error(atchan);
 622        else if (atc_chan_is_cyclic(atchan))
 623                atc_handle_cyclic(atchan);
 624        else
 625                atc_advance_work(atchan);
 626
 627        spin_unlock_irqrestore(&atchan->lock, flags);
 628}
 629
 630static irqreturn_t at_dma_interrupt(int irq, void *dev_id)
 631{
 632        struct at_dma           *atdma = (struct at_dma *)dev_id;
 633        struct at_dma_chan      *atchan;
 634        int                     i;
 635        u32                     status, pending, imr;
 636        int                     ret = IRQ_NONE;
 637
 638        do {
 639                imr = dma_readl(atdma, EBCIMR);
 640                status = dma_readl(atdma, EBCISR);
 641                pending = status & imr;
 642
 643                if (!pending)
 644                        break;
 645
 646                dev_vdbg(atdma->dma_common.dev,
 647                        "interrupt: status = 0x%08x, 0x%08x, 0x%08x\n",
 648                         status, imr, pending);
 649
 650                for (i = 0; i < atdma->dma_common.chancnt; i++) {
 651                        atchan = &atdma->chan[i];
 652                        if (pending & (AT_DMA_BTC(i) | AT_DMA_ERR(i))) {
 653                                if (pending & AT_DMA_ERR(i)) {
 654                                        /* Disable channel on AHB error */
 655                                        dma_writel(atdma, CHDR,
 656                                                AT_DMA_RES(i) | atchan->mask);
 657                                        /* Give information to tasklet */
 658                                        set_bit(ATC_IS_ERROR, &atchan->status);
 659                                }
 660                                tasklet_schedule(&atchan->tasklet);
 661                                ret = IRQ_HANDLED;
 662                        }
 663                }
 664
 665        } while (pending);
 666
 667        return ret;
 668}
 669
 670
 671/*--  DMA Engine API  --------------------------------------------------*/
 672
 673/**
 674 * atc_tx_submit - set the prepared descriptor(s) to be executed by the engine
 675 * @desc: descriptor at the head of the transaction chain
 676 *
 677 * Queue chain if DMA engine is working already
 678 *
 679 * Cookie increment and adding to active_list or queue must be atomic
 680 */
 681static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx)
 682{
 683        struct at_desc          *desc = txd_to_at_desc(tx);
 684        struct at_dma_chan      *atchan = to_at_dma_chan(tx->chan);
 685        dma_cookie_t            cookie;
 686        unsigned long           flags;
 687
 688        spin_lock_irqsave(&atchan->lock, flags);
 689        cookie = dma_cookie_assign(tx);
 690
 691        if (list_empty(&atchan->active_list)) {
 692                dev_vdbg(chan2dev(tx->chan), "tx_submit: started %u\n",
 693                                desc->txd.cookie);
 694                atc_dostart(atchan, desc);
 695                list_add_tail(&desc->desc_node, &atchan->active_list);
 696        } else {
 697                dev_vdbg(chan2dev(tx->chan), "tx_submit: queued %u\n",
 698                                desc->txd.cookie);
 699                list_add_tail(&desc->desc_node, &atchan->queue);
 700        }
 701
 702        spin_unlock_irqrestore(&atchan->lock, flags);
 703
 704        return cookie;
 705}
 706
 707/**
 708 * atc_prep_dma_interleaved - prepare memory to memory interleaved operation
 709 * @chan: the channel to prepare operation on
 710 * @xt: Interleaved transfer template
 711 * @flags: tx descriptor status flags
 712 */
 713static struct dma_async_tx_descriptor *
 714atc_prep_dma_interleaved(struct dma_chan *chan,
 715                         struct dma_interleaved_template *xt,
 716                         unsigned long flags)
 717{
 718        struct at_dma_chan      *atchan = to_at_dma_chan(chan);
 719        struct data_chunk       *first = xt->sgl;
 720        struct at_desc          *desc = NULL;
 721        size_t                  xfer_count;
 722        unsigned int            dwidth;
 723        u32                     ctrla;
 724        u32                     ctrlb;
 725        size_t                  len = 0;
 726        int                     i;
 727
 728        if (unlikely(!xt || xt->numf != 1 || !xt->frame_size))
 729                return NULL;
 730
 731        dev_info(chan2dev(chan),
 732                 "%s: src=%pad, dest=%pad, numf=%d, frame_size=%d, flags=0x%lx\n",
 733                __func__, &xt->src_start, &xt->dst_start, xt->numf,
 734                xt->frame_size, flags);
 735
 736        /*
 737         * The controller can only "skip" X bytes every Y bytes, so we
 738         * need to make sure we are given a template that fit that
 739         * description, ie a template with chunks that always have the
 740         * same size, with the same ICGs.
 741         */
 742        for (i = 0; i < xt->frame_size; i++) {
 743                struct data_chunk *chunk = xt->sgl + i;
 744
 745                if ((chunk->size != xt->sgl->size) ||
 746                    (dmaengine_get_dst_icg(xt, chunk) != dmaengine_get_dst_icg(xt, first)) ||
 747                    (dmaengine_get_src_icg(xt, chunk) != dmaengine_get_src_icg(xt, first))) {
 748                        dev_err(chan2dev(chan),
 749                                "%s: the controller can transfer only identical chunks\n",
 750                                __func__);
 751                        return NULL;
 752                }
 753
 754                len += chunk->size;
 755        }
 756
 757        dwidth = atc_get_xfer_width(xt->src_start,
 758                                    xt->dst_start, len);
 759
 760        xfer_count = len >> dwidth;
 761        if (xfer_count > ATC_BTSIZE_MAX) {
 762                dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__);
 763                return NULL;
 764        }
 765
 766        ctrla = ATC_SRC_WIDTH(dwidth) |
 767                ATC_DST_WIDTH(dwidth);
 768
 769        ctrlb =   ATC_DEFAULT_CTRLB | ATC_IEN
 770                | ATC_SRC_ADDR_MODE_INCR
 771                | ATC_DST_ADDR_MODE_INCR
 772                | ATC_SRC_PIP
 773                | ATC_DST_PIP
 774                | ATC_FC_MEM2MEM;
 775
 776        /* create the transfer */
 777        desc = atc_desc_get(atchan);
 778        if (!desc) {
 779                dev_err(chan2dev(chan),
 780                        "%s: couldn't allocate our descriptor\n", __func__);
 781                return NULL;
 782        }
 783
 784        desc->lli.saddr = xt->src_start;
 785        desc->lli.daddr = xt->dst_start;
 786        desc->lli.ctrla = ctrla | xfer_count;
 787        desc->lli.ctrlb = ctrlb;
 788
 789        desc->boundary = first->size >> dwidth;
 790        desc->dst_hole = (dmaengine_get_dst_icg(xt, first) >> dwidth) + 1;
 791        desc->src_hole = (dmaengine_get_src_icg(xt, first) >> dwidth) + 1;
 792
 793        desc->txd.cookie = -EBUSY;
 794        desc->total_len = desc->len = len;
 795
 796        /* set end-of-link to the last link descriptor of list*/
 797        set_desc_eol(desc);
 798
 799        desc->txd.flags = flags; /* client is in control of this ack */
 800
 801        return &desc->txd;
 802}
 803
 804/**
 805 * atc_prep_dma_memcpy - prepare a memcpy operation
 806 * @chan: the channel to prepare operation on
 807 * @dest: operation virtual destination address
 808 * @src: operation virtual source address
 809 * @len: operation length
 810 * @flags: tx descriptor status flags
 811 */
 812static struct dma_async_tx_descriptor *
 813atc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
 814                size_t len, unsigned long flags)
 815{
 816        struct at_dma_chan      *atchan = to_at_dma_chan(chan);
 817        struct at_desc          *desc = NULL;
 818        struct at_desc          *first = NULL;
 819        struct at_desc          *prev = NULL;
 820        size_t                  xfer_count;
 821        size_t                  offset;
 822        unsigned int            src_width;
 823        unsigned int            dst_width;
 824        u32                     ctrla;
 825        u32                     ctrlb;
 826
 827        dev_vdbg(chan2dev(chan), "prep_dma_memcpy: d%pad s%pad l0x%zx f0x%lx\n",
 828                        &dest, &src, len, flags);
 829
 830        if (unlikely(!len)) {
 831                dev_dbg(chan2dev(chan), "prep_dma_memcpy: length is zero!\n");
 832                return NULL;
 833        }
 834
 835        ctrlb =   ATC_DEFAULT_CTRLB | ATC_IEN
 836                | ATC_SRC_ADDR_MODE_INCR
 837                | ATC_DST_ADDR_MODE_INCR
 838                | ATC_FC_MEM2MEM;
 839
 840        /*
 841         * We can be a lot more clever here, but this should take care
 842         * of the most common optimization.
 843         */
 844        src_width = dst_width = atc_get_xfer_width(src, dest, len);
 845
 846        ctrla = ATC_SRC_WIDTH(src_width) |
 847                ATC_DST_WIDTH(dst_width);
 848
 849        for (offset = 0; offset < len; offset += xfer_count << src_width) {
 850                xfer_count = min_t(size_t, (len - offset) >> src_width,
 851                                ATC_BTSIZE_MAX);
 852
 853                desc = atc_desc_get(atchan);
 854                if (!desc)
 855                        goto err_desc_get;
 856
 857                desc->lli.saddr = src + offset;
 858                desc->lli.daddr = dest + offset;
 859                desc->lli.ctrla = ctrla | xfer_count;
 860                desc->lli.ctrlb = ctrlb;
 861
 862                desc->txd.cookie = 0;
 863                desc->len = xfer_count << src_width;
 864
 865                atc_desc_chain(&first, &prev, desc);
 866        }
 867
 868        /* First descriptor of the chain embedds additional information */
 869        first->txd.cookie = -EBUSY;
 870        first->total_len = len;
 871
 872        /* set end-of-link to the last link descriptor of list*/
 873        set_desc_eol(desc);
 874
 875        first->txd.flags = flags; /* client is in control of this ack */
 876
 877        return &first->txd;
 878
 879err_desc_get:
 880        atc_desc_put(atchan, first);
 881        return NULL;
 882}
 883
 884static struct at_desc *atc_create_memset_desc(struct dma_chan *chan,
 885                                              dma_addr_t psrc,
 886                                              dma_addr_t pdst,
 887                                              size_t len)
 888{
 889        struct at_dma_chan *atchan = to_at_dma_chan(chan);
 890        struct at_desc *desc;
 891        size_t xfer_count;
 892
 893        u32 ctrla = ATC_SRC_WIDTH(2) | ATC_DST_WIDTH(2);
 894        u32 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN |
 895                ATC_SRC_ADDR_MODE_FIXED |
 896                ATC_DST_ADDR_MODE_INCR |
 897                ATC_FC_MEM2MEM;
 898
 899        xfer_count = len >> 2;
 900        if (xfer_count > ATC_BTSIZE_MAX) {
 901                dev_err(chan2dev(chan), "%s: buffer is too big\n",
 902                        __func__);
 903                return NULL;
 904        }
 905
 906        desc = atc_desc_get(atchan);
 907        if (!desc) {
 908                dev_err(chan2dev(chan), "%s: can't get a descriptor\n",
 909                        __func__);
 910                return NULL;
 911        }
 912
 913        desc->lli.saddr = psrc;
 914        desc->lli.daddr = pdst;
 915        desc->lli.ctrla = ctrla | xfer_count;
 916        desc->lli.ctrlb = ctrlb;
 917
 918        desc->txd.cookie = 0;
 919        desc->len = len;
 920
 921        return desc;
 922}
 923
 924/**
 925 * atc_prep_dma_memset - prepare a memcpy operation
 926 * @chan: the channel to prepare operation on
 927 * @dest: operation virtual destination address
 928 * @value: value to set memory buffer to
 929 * @len: operation length
 930 * @flags: tx descriptor status flags
 931 */
 932static struct dma_async_tx_descriptor *
 933atc_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
 934                    size_t len, unsigned long flags)
 935{
 936        struct at_dma           *atdma = to_at_dma(chan->device);
 937        struct at_desc          *desc;
 938        void __iomem            *vaddr;
 939        dma_addr_t              paddr;
 940
 941        dev_vdbg(chan2dev(chan), "%s: d%pad v0x%x l0x%zx f0x%lx\n", __func__,
 942                &dest, value, len, flags);
 943
 944        if (unlikely(!len)) {
 945                dev_dbg(chan2dev(chan), "%s: length is zero!\n", __func__);
 946                return NULL;
 947        }
 948
 949        if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
 950                dev_dbg(chan2dev(chan), "%s: buffer is not aligned\n",
 951                        __func__);
 952                return NULL;
 953        }
 954
 955        vaddr = dma_pool_alloc(atdma->memset_pool, GFP_ATOMIC, &paddr);
 956        if (!vaddr) {
 957                dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
 958                        __func__);
 959                return NULL;
 960        }
 961        *(u32*)vaddr = value;
 962
 963        desc = atc_create_memset_desc(chan, paddr, dest, len);
 964        if (!desc) {
 965                dev_err(chan2dev(chan), "%s: couldn't get a descriptor\n",
 966                        __func__);
 967                goto err_free_buffer;
 968        }
 969
 970        desc->memset_paddr = paddr;
 971        desc->memset_vaddr = vaddr;
 972        desc->memset_buffer = true;
 973
 974        desc->txd.cookie = -EBUSY;
 975        desc->total_len = len;
 976
 977        /* set end-of-link on the descriptor */
 978        set_desc_eol(desc);
 979
 980        desc->txd.flags = flags;
 981
 982        return &desc->txd;
 983
 984err_free_buffer:
 985        dma_pool_free(atdma->memset_pool, vaddr, paddr);
 986        return NULL;
 987}
 988
 989static struct dma_async_tx_descriptor *
 990atc_prep_dma_memset_sg(struct dma_chan *chan,
 991                       struct scatterlist *sgl,
 992                       unsigned int sg_len, int value,
 993                       unsigned long flags)
 994{
 995        struct at_dma_chan      *atchan = to_at_dma_chan(chan);
 996        struct at_dma           *atdma = to_at_dma(chan->device);
 997        struct at_desc          *desc = NULL, *first = NULL, *prev = NULL;
 998        struct scatterlist      *sg;
 999        void __iomem            *vaddr;
1000        dma_addr_t              paddr;
1001        size_t                  total_len = 0;
1002        int                     i;
1003
1004        dev_vdbg(chan2dev(chan), "%s: v0x%x l0x%zx f0x%lx\n", __func__,
1005                 value, sg_len, flags);
1006
1007        if (unlikely(!sgl || !sg_len)) {
1008                dev_dbg(chan2dev(chan), "%s: scatterlist is empty!\n",
1009                        __func__);
1010                return NULL;
1011        }
1012
1013        vaddr = dma_pool_alloc(atdma->memset_pool, GFP_ATOMIC, &paddr);
1014        if (!vaddr) {
1015                dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
1016                        __func__);
1017                return NULL;
1018        }
1019        *(u32*)vaddr = value;
1020
1021        for_each_sg(sgl, sg, sg_len, i) {
1022                dma_addr_t dest = sg_dma_address(sg);
1023                size_t len = sg_dma_len(sg);
1024
1025                dev_vdbg(chan2dev(chan), "%s: d%pad, l0x%zx\n",
1026                         __func__, &dest, len);
1027
1028                if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
1029                        dev_err(chan2dev(chan), "%s: buffer is not aligned\n",
1030                                __func__);
1031                        goto err_put_desc;
1032                }
1033
1034                desc = atc_create_memset_desc(chan, paddr, dest, len);
1035                if (!desc)
1036                        goto err_put_desc;
1037
1038                atc_desc_chain(&first, &prev, desc);
1039
1040                total_len += len;
1041        }
1042
1043        /*
1044         * Only set the buffer pointers on the last descriptor to
1045         * avoid free'ing while we have our transfer still going
1046         */
1047        desc->memset_paddr = paddr;
1048        desc->memset_vaddr = vaddr;
1049        desc->memset_buffer = true;
1050
1051        first->txd.cookie = -EBUSY;
1052        first->total_len = total_len;
1053
1054        /* set end-of-link on the descriptor */
1055        set_desc_eol(desc);
1056
1057        first->txd.flags = flags;
1058
1059        return &first->txd;
1060
1061err_put_desc:
1062        atc_desc_put(atchan, first);
1063        return NULL;
1064}
1065
1066/**
1067 * atc_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
1068 * @chan: DMA channel
1069 * @sgl: scatterlist to transfer to/from
1070 * @sg_len: number of entries in @scatterlist
1071 * @direction: DMA direction
1072 * @flags: tx descriptor status flags
1073 * @context: transaction context (ignored)
1074 */
1075static struct dma_async_tx_descriptor *
1076atc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1077                unsigned int sg_len, enum dma_transfer_direction direction,
1078                unsigned long flags, void *context)
1079{
1080        struct at_dma_chan      *atchan = to_at_dma_chan(chan);
1081        struct at_dma_slave     *atslave = chan->private;
1082        struct dma_slave_config *sconfig = &atchan->dma_sconfig;
1083        struct at_desc          *first = NULL;
1084        struct at_desc          *prev = NULL;
1085        u32                     ctrla;
1086        u32                     ctrlb;
1087        dma_addr_t              reg;
1088        unsigned int            reg_width;
1089        unsigned int            mem_width;
1090        unsigned int            i;
1091        struct scatterlist      *sg;
1092        size_t                  total_len = 0;
1093
1094        dev_vdbg(chan2dev(chan), "prep_slave_sg (%d): %s f0x%lx\n",
1095                        sg_len,
1096                        direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1097                        flags);
1098
1099        if (unlikely(!atslave || !sg_len)) {
1100                dev_dbg(chan2dev(chan), "prep_slave_sg: sg length is zero!\n");
1101                return NULL;
1102        }
1103
1104        ctrla =   ATC_SCSIZE(sconfig->src_maxburst)
1105                | ATC_DCSIZE(sconfig->dst_maxburst);
1106        ctrlb = ATC_IEN;
1107
1108        switch (direction) {
1109        case DMA_MEM_TO_DEV:
1110                reg_width = convert_buswidth(sconfig->dst_addr_width);
1111                ctrla |=  ATC_DST_WIDTH(reg_width);
1112                ctrlb |=  ATC_DST_ADDR_MODE_FIXED
1113                        | ATC_SRC_ADDR_MODE_INCR
1114                        | ATC_FC_MEM2PER
1115                        | ATC_SIF(atchan->mem_if) | ATC_DIF(atchan->per_if);
1116                reg = sconfig->dst_addr;
1117                for_each_sg(sgl, sg, sg_len, i) {
1118                        struct at_desc  *desc;
1119                        u32             len;
1120                        u32             mem;
1121
1122                        desc = atc_desc_get(atchan);
1123                        if (!desc)
1124                                goto err_desc_get;
1125
1126                        mem = sg_dma_address(sg);
1127                        len = sg_dma_len(sg);
1128                        if (unlikely(!len)) {
1129                                dev_dbg(chan2dev(chan),
1130                                        "prep_slave_sg: sg(%d) data length is zero\n", i);
1131                                goto err;
1132                        }
1133                        mem_width = 2;
1134                        if (unlikely(mem & 3 || len & 3))
1135                                mem_width = 0;
1136
1137                        desc->lli.saddr = mem;
1138                        desc->lli.daddr = reg;
1139                        desc->lli.ctrla = ctrla
1140                                        | ATC_SRC_WIDTH(mem_width)
1141                                        | len >> mem_width;
1142                        desc->lli.ctrlb = ctrlb;
1143                        desc->len = len;
1144
1145                        atc_desc_chain(&first, &prev, desc);
1146                        total_len += len;
1147                }
1148                break;
1149        case DMA_DEV_TO_MEM:
1150                reg_width = convert_buswidth(sconfig->src_addr_width);
1151                ctrla |=  ATC_SRC_WIDTH(reg_width);
1152                ctrlb |=  ATC_DST_ADDR_MODE_INCR
1153                        | ATC_SRC_ADDR_MODE_FIXED
1154                        | ATC_FC_PER2MEM
1155                        | ATC_SIF(atchan->per_if) | ATC_DIF(atchan->mem_if);
1156
1157                reg = sconfig->src_addr;
1158                for_each_sg(sgl, sg, sg_len, i) {
1159                        struct at_desc  *desc;
1160                        u32             len;
1161                        u32             mem;
1162
1163                        desc = atc_desc_get(atchan);
1164                        if (!desc)
1165                                goto err_desc_get;
1166
1167                        mem = sg_dma_address(sg);
1168                        len = sg_dma_len(sg);
1169                        if (unlikely(!len)) {
1170                                dev_dbg(chan2dev(chan),
1171                                        "prep_slave_sg: sg(%d) data length is zero\n", i);
1172                                goto err;
1173                        }
1174                        mem_width = 2;
1175                        if (unlikely(mem & 3 || len & 3))
1176                                mem_width = 0;
1177
1178                        desc->lli.saddr = reg;
1179                        desc->lli.daddr = mem;
1180                        desc->lli.ctrla = ctrla
1181                                        | ATC_DST_WIDTH(mem_width)
1182                                        | len >> reg_width;
1183                        desc->lli.ctrlb = ctrlb;
1184                        desc->len = len;
1185
1186                        atc_desc_chain(&first, &prev, desc);
1187                        total_len += len;
1188                }
1189                break;
1190        default:
1191                return NULL;
1192        }
1193
1194        /* set end-of-link to the last link descriptor of list*/
1195        set_desc_eol(prev);
1196
1197        /* First descriptor of the chain embedds additional information */
1198        first->txd.cookie = -EBUSY;
1199        first->total_len = total_len;
1200
1201        /* first link descriptor of list is responsible of flags */
1202        first->txd.flags = flags; /* client is in control of this ack */
1203
1204        return &first->txd;
1205
1206err_desc_get:
1207        dev_err(chan2dev(chan), "not enough descriptors available\n");
1208err:
1209        atc_desc_put(atchan, first);
1210        return NULL;
1211}
1212
1213/**
1214 * atc_prep_dma_sg - prepare memory to memory scather-gather operation
1215 * @chan: the channel to prepare operation on
1216 * @dst_sg: destination scatterlist
1217 * @dst_nents: number of destination scatterlist entries
1218 * @src_sg: source scatterlist
1219 * @src_nents: number of source scatterlist entries
1220 * @flags: tx descriptor status flags
1221 */
1222static struct dma_async_tx_descriptor *
1223atc_prep_dma_sg(struct dma_chan *chan,
1224                struct scatterlist *dst_sg, unsigned int dst_nents,
1225                struct scatterlist *src_sg, unsigned int src_nents,
1226                unsigned long flags)
1227{
1228        struct at_dma_chan      *atchan = to_at_dma_chan(chan);
1229        struct at_desc          *desc = NULL;
1230        struct at_desc          *first = NULL;
1231        struct at_desc          *prev = NULL;
1232        unsigned int            src_width;
1233        unsigned int            dst_width;
1234        size_t                  xfer_count;
1235        u32                     ctrla;
1236        u32                     ctrlb;
1237        size_t                  dst_len = 0, src_len = 0;
1238        dma_addr_t              dst = 0, src = 0;
1239        size_t                  len = 0, total_len = 0;
1240
1241        if (unlikely(dst_nents == 0 || src_nents == 0))
1242                return NULL;
1243
1244        if (unlikely(dst_sg == NULL || src_sg == NULL))
1245                return NULL;
1246
1247        ctrlb =   ATC_DEFAULT_CTRLB | ATC_IEN
1248                | ATC_SRC_ADDR_MODE_INCR
1249                | ATC_DST_ADDR_MODE_INCR
1250                | ATC_FC_MEM2MEM;
1251
1252        /*
1253         * loop until there is either no more source or no more destination
1254         * scatterlist entry
1255         */
1256        while (true) {
1257
1258                /* prepare the next transfer */
1259                if (dst_len == 0) {
1260
1261                        /* no more destination scatterlist entries */
1262                        if (!dst_sg || !dst_nents)
1263                                break;
1264
1265                        dst = sg_dma_address(dst_sg);
1266                        dst_len = sg_dma_len(dst_sg);
1267
1268                        dst_sg = sg_next(dst_sg);
1269                        dst_nents--;
1270                }
1271
1272                if (src_len == 0) {
1273
1274                        /* no more source scatterlist entries */
1275                        if (!src_sg || !src_nents)
1276                                break;
1277
1278                        src = sg_dma_address(src_sg);
1279                        src_len = sg_dma_len(src_sg);
1280
1281                        src_sg = sg_next(src_sg);
1282                        src_nents--;
1283                }
1284
1285                len = min_t(size_t, src_len, dst_len);
1286                if (len == 0)
1287                        continue;
1288
1289                /* take care for the alignment */
1290                src_width = dst_width = atc_get_xfer_width(src, dst, len);
1291
1292                ctrla = ATC_SRC_WIDTH(src_width) |
1293                        ATC_DST_WIDTH(dst_width);
1294
1295                /*
1296                 * The number of transfers to set up refer to the source width
1297                 * that depends on the alignment.
1298                 */
1299                xfer_count = len >> src_width;
1300                if (xfer_count > ATC_BTSIZE_MAX) {
1301                        xfer_count = ATC_BTSIZE_MAX;
1302                        len = ATC_BTSIZE_MAX << src_width;
1303                }
1304
1305                /* create the transfer */
1306                desc = atc_desc_get(atchan);
1307                if (!desc)
1308                        goto err_desc_get;
1309
1310                desc->lli.saddr = src;
1311                desc->lli.daddr = dst;
1312                desc->lli.ctrla = ctrla | xfer_count;
1313                desc->lli.ctrlb = ctrlb;
1314
1315                desc->txd.cookie = 0;
1316                desc->len = len;
1317
1318                atc_desc_chain(&first, &prev, desc);
1319
1320                /* update the lengths and addresses for the next loop cycle */
1321                dst_len -= len;
1322                src_len -= len;
1323                dst += len;
1324                src += len;
1325
1326                total_len += len;
1327        }
1328
1329        /* First descriptor of the chain embedds additional information */
1330        first->txd.cookie = -EBUSY;
1331        first->total_len = total_len;
1332
1333        /* set end-of-link to the last link descriptor of list*/
1334        set_desc_eol(desc);
1335
1336        first->txd.flags = flags; /* client is in control of this ack */
1337
1338        return &first->txd;
1339
1340err_desc_get:
1341        atc_desc_put(atchan, first);
1342        return NULL;
1343}
1344
1345/**
1346 * atc_dma_cyclic_check_values
1347 * Check for too big/unaligned periods and unaligned DMA buffer
1348 */
1349static int
1350atc_dma_cyclic_check_values(unsigned int reg_width, dma_addr_t buf_addr,
1351                size_t period_len)
1352{
1353        if (period_len > (ATC_BTSIZE_MAX << reg_width))
1354                goto err_out;
1355        if (unlikely(period_len & ((1 << reg_width) - 1)))
1356                goto err_out;
1357        if (unlikely(buf_addr & ((1 << reg_width) - 1)))
1358                goto err_out;
1359
1360        return 0;
1361
1362err_out:
1363        return -EINVAL;
1364}
1365
1366/**
1367 * atc_dma_cyclic_fill_desc - Fill one period descriptor
1368 */
1369static int
1370atc_dma_cyclic_fill_desc(struct dma_chan *chan, struct at_desc *desc,
1371                unsigned int period_index, dma_addr_t buf_addr,
1372                unsigned int reg_width, size_t period_len,
1373                enum dma_transfer_direction direction)
1374{
1375        struct at_dma_chan      *atchan = to_at_dma_chan(chan);
1376        struct dma_slave_config *sconfig = &atchan->dma_sconfig;
1377        u32                     ctrla;
1378
1379        /* prepare common CRTLA value */
1380        ctrla =   ATC_SCSIZE(sconfig->src_maxburst)
1381                | ATC_DCSIZE(sconfig->dst_maxburst)
1382                | ATC_DST_WIDTH(reg_width)
1383                | ATC_SRC_WIDTH(reg_width)
1384                | period_len >> reg_width;
1385
1386        switch (direction) {
1387        case DMA_MEM_TO_DEV:
1388                desc->lli.saddr = buf_addr + (period_len * period_index);
1389                desc->lli.daddr = sconfig->dst_addr;
1390                desc->lli.ctrla = ctrla;
1391                desc->lli.ctrlb = ATC_DST_ADDR_MODE_FIXED
1392                                | ATC_SRC_ADDR_MODE_INCR
1393                                | ATC_FC_MEM2PER
1394                                | ATC_SIF(atchan->mem_if)
1395                                | ATC_DIF(atchan->per_if);
1396                desc->len = period_len;
1397                break;
1398
1399        case DMA_DEV_TO_MEM:
1400                desc->lli.saddr = sconfig->src_addr;
1401                desc->lli.daddr = buf_addr + (period_len * period_index);
1402                desc->lli.ctrla = ctrla;
1403                desc->lli.ctrlb = ATC_DST_ADDR_MODE_INCR
1404                                | ATC_SRC_ADDR_MODE_FIXED
1405                                | ATC_FC_PER2MEM
1406                                | ATC_SIF(atchan->per_if)
1407                                | ATC_DIF(atchan->mem_if);
1408                desc->len = period_len;
1409                break;
1410
1411        default:
1412                return -EINVAL;
1413        }
1414
1415        return 0;
1416}
1417
1418/**
1419 * atc_prep_dma_cyclic - prepare the cyclic DMA transfer
1420 * @chan: the DMA channel to prepare
1421 * @buf_addr: physical DMA address where the buffer starts
1422 * @buf_len: total number of bytes for the entire buffer
1423 * @period_len: number of bytes for each period
1424 * @direction: transfer direction, to or from device
1425 * @flags: tx descriptor status flags
1426 */
1427static struct dma_async_tx_descriptor *
1428atc_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1429                size_t period_len, enum dma_transfer_direction direction,
1430                unsigned long flags)
1431{
1432        struct at_dma_chan      *atchan = to_at_dma_chan(chan);
1433        struct at_dma_slave     *atslave = chan->private;
1434        struct dma_slave_config *sconfig = &atchan->dma_sconfig;
1435        struct at_desc          *first = NULL;
1436        struct at_desc          *prev = NULL;
1437        unsigned long           was_cyclic;
1438        unsigned int            reg_width;
1439        unsigned int            periods = buf_len / period_len;
1440        unsigned int            i;
1441
1442        dev_vdbg(chan2dev(chan), "prep_dma_cyclic: %s buf@%pad - %d (%d/%d)\n",
1443                        direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1444                        &buf_addr,
1445                        periods, buf_len, period_len);
1446
1447        if (unlikely(!atslave || !buf_len || !period_len)) {
1448                dev_dbg(chan2dev(chan), "prep_dma_cyclic: length is zero!\n");
1449                return NULL;
1450        }
1451
1452        was_cyclic = test_and_set_bit(ATC_IS_CYCLIC, &atchan->status);
1453        if (was_cyclic) {
1454                dev_dbg(chan2dev(chan), "prep_dma_cyclic: channel in use!\n");
1455                return NULL;
1456        }
1457
1458        if (unlikely(!is_slave_direction(direction)))
1459                goto err_out;
1460
1461        if (sconfig->direction == DMA_MEM_TO_DEV)
1462                reg_width = convert_buswidth(sconfig->dst_addr_width);
1463        else
1464                reg_width = convert_buswidth(sconfig->src_addr_width);
1465
1466        /* Check for too big/unaligned periods and unaligned DMA buffer */
1467        if (atc_dma_cyclic_check_values(reg_width, buf_addr, period_len))
1468                goto err_out;
1469
1470        /* build cyclic linked list */
1471        for (i = 0; i < periods; i++) {
1472                struct at_desc  *desc;
1473
1474                desc = atc_desc_get(atchan);
1475                if (!desc)
1476                        goto err_desc_get;
1477
1478                if (atc_dma_cyclic_fill_desc(chan, desc, i, buf_addr,
1479                                             reg_width, period_len, direction))
1480                        goto err_desc_get;
1481
1482                atc_desc_chain(&first, &prev, desc);
1483        }
1484
1485        /* lets make a cyclic list */
1486        prev->lli.dscr = first->txd.phys;
1487
1488        /* First descriptor of the chain embedds additional information */
1489        first->txd.cookie = -EBUSY;
1490        first->total_len = buf_len;
1491
1492        return &first->txd;
1493
1494err_desc_get:
1495        dev_err(chan2dev(chan), "not enough descriptors available\n");
1496        atc_desc_put(atchan, first);
1497err_out:
1498        clear_bit(ATC_IS_CYCLIC, &atchan->status);
1499        return NULL;
1500}
1501
1502static int atc_config(struct dma_chan *chan,
1503                      struct dma_slave_config *sconfig)
1504{
1505        struct at_dma_chan      *atchan = to_at_dma_chan(chan);
1506
1507        dev_vdbg(chan2dev(chan), "%s\n", __func__);
1508
1509        /* Check if it is chan is configured for slave transfers */
1510        if (!chan->private)
1511                return -EINVAL;
1512
1513        memcpy(&atchan->dma_sconfig, sconfig, sizeof(*sconfig));
1514
1515        convert_burst(&atchan->dma_sconfig.src_maxburst);
1516        convert_burst(&atchan->dma_sconfig.dst_maxburst);
1517
1518        return 0;
1519}
1520
1521static int atc_pause(struct dma_chan *chan)
1522{
1523        struct at_dma_chan      *atchan = to_at_dma_chan(chan);
1524        struct at_dma           *atdma = to_at_dma(chan->device);
1525        int                     chan_id = atchan->chan_common.chan_id;
1526        unsigned long           flags;
1527
1528        LIST_HEAD(list);
1529
1530        dev_vdbg(chan2dev(chan), "%s\n", __func__);
1531
1532        spin_lock_irqsave(&atchan->lock, flags);
1533
1534        dma_writel(atdma, CHER, AT_DMA_SUSP(chan_id));
1535        set_bit(ATC_IS_PAUSED, &atchan->status);
1536
1537        spin_unlock_irqrestore(&atchan->lock, flags);
1538
1539        return 0;
1540}
1541
1542static int atc_resume(struct dma_chan *chan)
1543{
1544        struct at_dma_chan      *atchan = to_at_dma_chan(chan);
1545        struct at_dma           *atdma = to_at_dma(chan->device);
1546        int                     chan_id = atchan->chan_common.chan_id;
1547        unsigned long           flags;
1548
1549        LIST_HEAD(list);
1550
1551        dev_vdbg(chan2dev(chan), "%s\n", __func__);
1552
1553        if (!atc_chan_is_paused(atchan))
1554                return 0;
1555
1556        spin_lock_irqsave(&atchan->lock, flags);
1557
1558        dma_writel(atdma, CHDR, AT_DMA_RES(chan_id));
1559        clear_bit(ATC_IS_PAUSED, &atchan->status);
1560
1561        spin_unlock_irqrestore(&atchan->lock, flags);
1562
1563        return 0;
1564}
1565
1566static int atc_terminate_all(struct dma_chan *chan)
1567{
1568        struct at_dma_chan      *atchan = to_at_dma_chan(chan);
1569        struct at_dma           *atdma = to_at_dma(chan->device);
1570        int                     chan_id = atchan->chan_common.chan_id;
1571        struct at_desc          *desc, *_desc;
1572        unsigned long           flags;
1573
1574        LIST_HEAD(list);
1575
1576        dev_vdbg(chan2dev(chan), "%s\n", __func__);
1577
1578        /*
1579         * This is only called when something went wrong elsewhere, so
1580         * we don't really care about the data. Just disable the
1581         * channel. We still have to poll the channel enable bit due
1582         * to AHB/HSB limitations.
1583         */
1584        spin_lock_irqsave(&atchan->lock, flags);
1585
1586        /* disabling channel: must also remove suspend state */
1587        dma_writel(atdma, CHDR, AT_DMA_RES(chan_id) | atchan->mask);
1588
1589        /* confirm that this channel is disabled */
1590        while (dma_readl(atdma, CHSR) & atchan->mask)
1591                cpu_relax();
1592
1593        /* active_list entries will end up before queued entries */
1594        list_splice_init(&atchan->queue, &list);
1595        list_splice_init(&atchan->active_list, &list);
1596
1597        /* Flush all pending and queued descriptors */
1598        list_for_each_entry_safe(desc, _desc, &list, desc_node)
1599                atc_chain_complete(atchan, desc);
1600
1601        clear_bit(ATC_IS_PAUSED, &atchan->status);
1602        /* if channel dedicated to cyclic operations, free it */
1603        clear_bit(ATC_IS_CYCLIC, &atchan->status);
1604
1605        spin_unlock_irqrestore(&atchan->lock, flags);
1606
1607        return 0;
1608}
1609
1610/**
1611 * atc_tx_status - poll for transaction completion
1612 * @chan: DMA channel
1613 * @cookie: transaction identifier to check status of
1614 * @txstate: if not %NULL updated with transaction state
1615 *
1616 * If @txstate is passed in, upon return it reflect the driver
1617 * internal state and can be used with dma_async_is_complete() to check
1618 * the status of multiple cookies without re-checking hardware state.
1619 */
1620static enum dma_status
1621atc_tx_status(struct dma_chan *chan,
1622                dma_cookie_t cookie,
1623                struct dma_tx_state *txstate)
1624{
1625        struct at_dma_chan      *atchan = to_at_dma_chan(chan);
1626        unsigned long           flags;
1627        enum dma_status         ret;
1628        int bytes = 0;
1629
1630        ret = dma_cookie_status(chan, cookie, txstate);
1631        if (ret == DMA_COMPLETE)
1632                return ret;
1633        /*
1634         * There's no point calculating the residue if there's
1635         * no txstate to store the value.
1636         */
1637        if (!txstate)
1638                return DMA_ERROR;
1639
1640        spin_lock_irqsave(&atchan->lock, flags);
1641
1642        /*  Get number of bytes left in the active transactions */
1643        bytes = atc_get_bytes_left(chan, cookie);
1644
1645        spin_unlock_irqrestore(&atchan->lock, flags);
1646
1647        if (unlikely(bytes < 0)) {
1648                dev_vdbg(chan2dev(chan), "get residual bytes error\n");
1649                return DMA_ERROR;
1650        } else {
1651                dma_set_residue(txstate, bytes);
1652        }
1653
1654        dev_vdbg(chan2dev(chan), "tx_status %d: cookie = %d residue = %d\n",
1655                 ret, cookie, bytes);
1656
1657        return ret;
1658}
1659
1660/**
1661 * atc_issue_pending - try to finish work
1662 * @chan: target DMA channel
1663 */
1664static void atc_issue_pending(struct dma_chan *chan)
1665{
1666        struct at_dma_chan      *atchan = to_at_dma_chan(chan);
1667        unsigned long           flags;
1668
1669        dev_vdbg(chan2dev(chan), "issue_pending\n");
1670
1671        /* Not needed for cyclic transfers */
1672        if (atc_chan_is_cyclic(atchan))
1673                return;
1674
1675        spin_lock_irqsave(&atchan->lock, flags);
1676        atc_advance_work(atchan);
1677        spin_unlock_irqrestore(&atchan->lock, flags);
1678}
1679
1680/**
1681 * atc_alloc_chan_resources - allocate resources for DMA channel
1682 * @chan: allocate descriptor resources for this channel
1683 * @client: current client requesting the channel be ready for requests
1684 *
1685 * return - the number of allocated descriptors
1686 */
1687static int atc_alloc_chan_resources(struct dma_chan *chan)
1688{
1689        struct at_dma_chan      *atchan = to_at_dma_chan(chan);
1690        struct at_dma           *atdma = to_at_dma(chan->device);
1691        struct at_desc          *desc;
1692        struct at_dma_slave     *atslave;
1693        unsigned long           flags;
1694        int                     i;
1695        u32                     cfg;
1696        LIST_HEAD(tmp_list);
1697
1698        dev_vdbg(chan2dev(chan), "alloc_chan_resources\n");
1699
1700        /* ASSERT:  channel is idle */
1701        if (atc_chan_is_enabled(atchan)) {
1702                dev_dbg(chan2dev(chan), "DMA channel not idle ?\n");
1703                return -EIO;
1704        }
1705
1706        cfg = ATC_DEFAULT_CFG;
1707
1708        atslave = chan->private;
1709        if (atslave) {
1710                /*
1711                 * We need controller-specific data to set up slave
1712                 * transfers.
1713                 */
1714                BUG_ON(!atslave->dma_dev || atslave->dma_dev != atdma->dma_common.dev);
1715
1716                /* if cfg configuration specified take it instead of default */
1717                if (atslave->cfg)
1718                        cfg = atslave->cfg;
1719        }
1720
1721        /* have we already been set up?
1722         * reconfigure channel but no need to reallocate descriptors */
1723        if (!list_empty(&atchan->free_list))
1724                return atchan->descs_allocated;
1725
1726        /* Allocate initial pool of descriptors */
1727        for (i = 0; i < init_nr_desc_per_channel; i++) {
1728                desc = atc_alloc_descriptor(chan, GFP_KERNEL);
1729                if (!desc) {
1730                        dev_err(atdma->dma_common.dev,
1731                                "Only %d initial descriptors\n", i);
1732                        break;
1733                }
1734                list_add_tail(&desc->desc_node, &tmp_list);
1735        }
1736
1737        spin_lock_irqsave(&atchan->lock, flags);
1738        atchan->descs_allocated = i;
1739        list_splice(&tmp_list, &atchan->free_list);
1740        dma_cookie_init(chan);
1741        spin_unlock_irqrestore(&atchan->lock, flags);
1742
1743        /* channel parameters */
1744        channel_writel(atchan, CFG, cfg);
1745
1746        dev_dbg(chan2dev(chan),
1747                "alloc_chan_resources: allocated %d descriptors\n",
1748                atchan->descs_allocated);
1749
1750        return atchan->descs_allocated;
1751}
1752
1753/**
1754 * atc_free_chan_resources - free all channel resources
1755 * @chan: DMA channel
1756 */
1757static void atc_free_chan_resources(struct dma_chan *chan)
1758{
1759        struct at_dma_chan      *atchan = to_at_dma_chan(chan);
1760        struct at_dma           *atdma = to_at_dma(chan->device);
1761        struct at_desc          *desc, *_desc;
1762        LIST_HEAD(list);
1763
1764        dev_dbg(chan2dev(chan), "free_chan_resources: (descs allocated=%u)\n",
1765                atchan->descs_allocated);
1766
1767        /* ASSERT:  channel is idle */
1768        BUG_ON(!list_empty(&atchan->active_list));
1769        BUG_ON(!list_empty(&atchan->queue));
1770        BUG_ON(atc_chan_is_enabled(atchan));
1771
1772        list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
1773                dev_vdbg(chan2dev(chan), "  freeing descriptor %p\n", desc);
1774                list_del(&desc->desc_node);
1775                /* free link descriptor */
1776                dma_pool_free(atdma->dma_desc_pool, desc, desc->txd.phys);
1777        }
1778        list_splice_init(&atchan->free_list, &list);
1779        atchan->descs_allocated = 0;
1780        atchan->status = 0;
1781
1782        dev_vdbg(chan2dev(chan), "free_chan_resources: done\n");
1783}
1784
1785#ifdef CONFIG_OF
1786static bool at_dma_filter(struct dma_chan *chan, void *slave)
1787{
1788        struct at_dma_slave *atslave = slave;
1789
1790        if (atslave->dma_dev == chan->device->dev) {
1791                chan->private = atslave;
1792                return true;
1793        } else {
1794                return false;
1795        }
1796}
1797
1798static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1799                                     struct of_dma *of_dma)
1800{
1801        struct dma_chan *chan;
1802        struct at_dma_chan *atchan;
1803        struct at_dma_slave *atslave;
1804        dma_cap_mask_t mask;
1805        unsigned int per_id;
1806        struct platform_device *dmac_pdev;
1807
1808        if (dma_spec->args_count != 2)
1809                return NULL;
1810
1811        dmac_pdev = of_find_device_by_node(dma_spec->np);
1812
1813        dma_cap_zero(mask);
1814        dma_cap_set(DMA_SLAVE, mask);
1815
1816        atslave = devm_kzalloc(&dmac_pdev->dev, sizeof(*atslave), GFP_KERNEL);
1817        if (!atslave)
1818                return NULL;
1819
1820        atslave->cfg = ATC_DST_H2SEL_HW | ATC_SRC_H2SEL_HW;
1821        /*
1822         * We can fill both SRC_PER and DST_PER, one of these fields will be
1823         * ignored depending on DMA transfer direction.
1824         */
1825        per_id = dma_spec->args[1] & AT91_DMA_CFG_PER_ID_MASK;
1826        atslave->cfg |= ATC_DST_PER_MSB(per_id) | ATC_DST_PER(per_id)
1827                     | ATC_SRC_PER_MSB(per_id) | ATC_SRC_PER(per_id);
1828        /*
1829         * We have to translate the value we get from the device tree since
1830         * the half FIFO configuration value had to be 0 to keep backward
1831         * compatibility.
1832         */
1833        switch (dma_spec->args[1] & AT91_DMA_CFG_FIFOCFG_MASK) {
1834        case AT91_DMA_CFG_FIFOCFG_ALAP:
1835                atslave->cfg |= ATC_FIFOCFG_LARGESTBURST;
1836                break;
1837        case AT91_DMA_CFG_FIFOCFG_ASAP:
1838                atslave->cfg |= ATC_FIFOCFG_ENOUGHSPACE;
1839                break;
1840        case AT91_DMA_CFG_FIFOCFG_HALF:
1841        default:
1842                atslave->cfg |= ATC_FIFOCFG_HALFFIFO;
1843        }
1844        atslave->dma_dev = &dmac_pdev->dev;
1845
1846        chan = dma_request_channel(mask, at_dma_filter, atslave);
1847        if (!chan)
1848                return NULL;
1849
1850        atchan = to_at_dma_chan(chan);
1851        atchan->per_if = dma_spec->args[0] & 0xff;
1852        atchan->mem_if = (dma_spec->args[0] >> 16) & 0xff;
1853
1854        return chan;
1855}
1856#else
1857static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1858                                     struct of_dma *of_dma)
1859{
1860        return NULL;
1861}
1862#endif
1863
1864/*--  Module Management  -----------------------------------------------*/
1865
1866/* cap_mask is a multi-u32 bitfield, fill it with proper C code. */
1867static struct at_dma_platform_data at91sam9rl_config = {
1868        .nr_channels = 2,
1869};
1870static struct at_dma_platform_data at91sam9g45_config = {
1871        .nr_channels = 8,
1872};
1873
1874#if defined(CONFIG_OF)
1875static const struct of_device_id atmel_dma_dt_ids[] = {
1876        {
1877                .compatible = "atmel,at91sam9rl-dma",
1878                .data = &at91sam9rl_config,
1879        }, {
1880                .compatible = "atmel,at91sam9g45-dma",
1881                .data = &at91sam9g45_config,
1882        }, {
1883                /* sentinel */
1884        }
1885};
1886
1887MODULE_DEVICE_TABLE(of, atmel_dma_dt_ids);
1888#endif
1889
1890static const struct platform_device_id atdma_devtypes[] = {
1891        {
1892                .name = "at91sam9rl_dma",
1893                .driver_data = (unsigned long) &at91sam9rl_config,
1894        }, {
1895                .name = "at91sam9g45_dma",
1896                .driver_data = (unsigned long) &at91sam9g45_config,
1897        }, {
1898                /* sentinel */
1899        }
1900};
1901
1902static inline const struct at_dma_platform_data * __init at_dma_get_driver_data(
1903                                                struct platform_device *pdev)
1904{
1905        if (pdev->dev.of_node) {
1906                const struct of_device_id *match;
1907                match = of_match_node(atmel_dma_dt_ids, pdev->dev.of_node);
1908                if (match == NULL)
1909                        return NULL;
1910                return match->data;
1911        }
1912        return (struct at_dma_platform_data *)
1913                        platform_get_device_id(pdev)->driver_data;
1914}
1915
1916/**
1917 * at_dma_off - disable DMA controller
1918 * @atdma: the Atmel HDAMC device
1919 */
1920static void at_dma_off(struct at_dma *atdma)
1921{
1922        dma_writel(atdma, EN, 0);
1923
1924        /* disable all interrupts */
1925        dma_writel(atdma, EBCIDR, -1L);
1926
1927        /* confirm that all channels are disabled */
1928        while (dma_readl(atdma, CHSR) & atdma->all_chan_mask)
1929                cpu_relax();
1930}
1931
1932static int __init at_dma_probe(struct platform_device *pdev)
1933{
1934        struct resource         *io;
1935        struct at_dma           *atdma;
1936        size_t                  size;
1937        int                     irq;
1938        int                     err;
1939        int                     i;
1940        const struct at_dma_platform_data *plat_dat;
1941
1942        /* setup platform data for each SoC */
1943        dma_cap_set(DMA_MEMCPY, at91sam9rl_config.cap_mask);
1944        dma_cap_set(DMA_SG, at91sam9rl_config.cap_mask);
1945        dma_cap_set(DMA_INTERLEAVE, at91sam9g45_config.cap_mask);
1946        dma_cap_set(DMA_MEMCPY, at91sam9g45_config.cap_mask);
1947        dma_cap_set(DMA_MEMSET, at91sam9g45_config.cap_mask);
1948        dma_cap_set(DMA_MEMSET_SG, at91sam9g45_config.cap_mask);
1949        dma_cap_set(DMA_PRIVATE, at91sam9g45_config.cap_mask);
1950        dma_cap_set(DMA_SLAVE, at91sam9g45_config.cap_mask);
1951        dma_cap_set(DMA_SG, at91sam9g45_config.cap_mask);
1952
1953        /* get DMA parameters from controller type */
1954        plat_dat = at_dma_get_driver_data(pdev);
1955        if (!plat_dat)
1956                return -ENODEV;
1957
1958        io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1959        if (!io)
1960                return -EINVAL;
1961
1962        irq = platform_get_irq(pdev, 0);
1963        if (irq < 0)
1964                return irq;
1965
1966        size = sizeof(struct at_dma);
1967        size += plat_dat->nr_channels * sizeof(struct at_dma_chan);
1968        atdma = kzalloc(size, GFP_KERNEL);
1969        if (!atdma)
1970                return -ENOMEM;
1971
1972        /* discover transaction capabilities */
1973        atdma->dma_common.cap_mask = plat_dat->cap_mask;
1974        atdma->all_chan_mask = (1 << plat_dat->nr_channels) - 1;
1975
1976        size = resource_size(io);
1977        if (!request_mem_region(io->start, size, pdev->dev.driver->name)) {
1978                err = -EBUSY;
1979                goto err_kfree;
1980        }
1981
1982        atdma->regs = ioremap(io->start, size);
1983        if (!atdma->regs) {
1984                err = -ENOMEM;
1985                goto err_release_r;
1986        }
1987
1988        atdma->clk = clk_get(&pdev->dev, "dma_clk");
1989        if (IS_ERR(atdma->clk)) {
1990                err = PTR_ERR(atdma->clk);
1991                goto err_clk;
1992        }
1993        err = clk_prepare_enable(atdma->clk);
1994        if (err)
1995                goto err_clk_prepare;
1996
1997        /* force dma off, just in case */
1998        at_dma_off(atdma);
1999
2000        err = request_irq(irq, at_dma_interrupt, 0, "at_hdmac", atdma);
2001        if (err)
2002                goto err_irq;
2003
2004        platform_set_drvdata(pdev, atdma);
2005
2006        /* create a pool of consistent memory blocks for hardware descriptors */
2007        atdma->dma_desc_pool = dma_pool_create("at_hdmac_desc_pool",
2008                        &pdev->dev, sizeof(struct at_desc),
2009                        4 /* word alignment */, 0);
2010        if (!atdma->dma_desc_pool) {
2011                dev_err(&pdev->dev, "No memory for descriptors dma pool\n");
2012                err = -ENOMEM;
2013                goto err_desc_pool_create;
2014        }
2015
2016        /* create a pool of consistent memory blocks for memset blocks */
2017        atdma->memset_pool = dma_pool_create("at_hdmac_memset_pool",
2018                                             &pdev->dev, sizeof(int), 4, 0);
2019        if (!atdma->memset_pool) {
2020                dev_err(&pdev->dev, "No memory for memset dma pool\n");
2021                err = -ENOMEM;
2022                goto err_memset_pool_create;
2023        }
2024
2025        /* clear any pending interrupt */
2026        while (dma_readl(atdma, EBCISR))
2027                cpu_relax();
2028
2029        /* initialize channels related values */
2030        INIT_LIST_HEAD(&atdma->dma_common.channels);
2031        for (i = 0; i < plat_dat->nr_channels; i++) {
2032                struct at_dma_chan      *atchan = &atdma->chan[i];
2033
2034                atchan->mem_if = AT_DMA_MEM_IF;
2035                atchan->per_if = AT_DMA_PER_IF;
2036                atchan->chan_common.device = &atdma->dma_common;
2037                dma_cookie_init(&atchan->chan_common);
2038                list_add_tail(&atchan->chan_common.device_node,
2039                                &atdma->dma_common.channels);
2040
2041                atchan->ch_regs = atdma->regs + ch_regs(i);
2042                spin_lock_init(&atchan->lock);
2043                atchan->mask = 1 << i;
2044
2045                INIT_LIST_HEAD(&atchan->active_list);
2046                INIT_LIST_HEAD(&atchan->queue);
2047                INIT_LIST_HEAD(&atchan->free_list);
2048
2049                tasklet_init(&atchan->tasklet, atc_tasklet,
2050                                (unsigned long)atchan);
2051                atc_enable_chan_irq(atdma, i);
2052        }
2053
2054        /* set base routines */
2055        atdma->dma_common.device_alloc_chan_resources = atc_alloc_chan_resources;
2056        atdma->dma_common.device_free_chan_resources = atc_free_chan_resources;
2057        atdma->dma_common.device_tx_status = atc_tx_status;
2058        atdma->dma_common.device_issue_pending = atc_issue_pending;
2059        atdma->dma_common.dev = &pdev->dev;
2060
2061        /* set prep routines based on capability */
2062        if (dma_has_cap(DMA_INTERLEAVE, atdma->dma_common.cap_mask))
2063                atdma->dma_common.device_prep_interleaved_dma = atc_prep_dma_interleaved;
2064
2065        if (dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask))
2066                atdma->dma_common.device_prep_dma_memcpy = atc_prep_dma_memcpy;
2067
2068        if (dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask)) {
2069                atdma->dma_common.device_prep_dma_memset = atc_prep_dma_memset;
2070                atdma->dma_common.device_prep_dma_memset_sg = atc_prep_dma_memset_sg;
2071                atdma->dma_common.fill_align = DMAENGINE_ALIGN_4_BYTES;
2072        }
2073
2074        if (dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)) {
2075                atdma->dma_common.device_prep_slave_sg = atc_prep_slave_sg;
2076                /* controller can do slave DMA: can trigger cyclic transfers */
2077                dma_cap_set(DMA_CYCLIC, atdma->dma_common.cap_mask);
2078                atdma->dma_common.device_prep_dma_cyclic = atc_prep_dma_cyclic;
2079                atdma->dma_common.device_config = atc_config;
2080                atdma->dma_common.device_pause = atc_pause;
2081                atdma->dma_common.device_resume = atc_resume;
2082                atdma->dma_common.device_terminate_all = atc_terminate_all;
2083                atdma->dma_common.src_addr_widths = ATC_DMA_BUSWIDTHS;
2084                atdma->dma_common.dst_addr_widths = ATC_DMA_BUSWIDTHS;
2085                atdma->dma_common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2086                atdma->dma_common.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2087        }
2088
2089        if (dma_has_cap(DMA_SG, atdma->dma_common.cap_mask))
2090                atdma->dma_common.device_prep_dma_sg = atc_prep_dma_sg;
2091
2092        dma_writel(atdma, EN, AT_DMA_ENABLE);
2093
2094        dev_info(&pdev->dev, "Atmel AHB DMA Controller ( %s%s%s%s), %d channels\n",
2095          dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask) ? "cpy " : "",
2096          dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask) ? "set " : "",
2097          dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)  ? "slave " : "",
2098          dma_has_cap(DMA_SG, atdma->dma_common.cap_mask)  ? "sg-cpy " : "",
2099          plat_dat->nr_channels);
2100
2101        dma_async_device_register(&atdma->dma_common);
2102
2103        /*
2104         * Do not return an error if the dmac node is not present in order to
2105         * not break the existing way of requesting channel with
2106         * dma_request_channel().
2107         */
2108        if (pdev->dev.of_node) {
2109                err = of_dma_controller_register(pdev->dev.of_node,
2110                                                 at_dma_xlate, atdma);
2111                if (err) {
2112                        dev_err(&pdev->dev, "could not register of_dma_controller\n");
2113                        goto err_of_dma_controller_register;
2114                }
2115        }
2116
2117        return 0;
2118
2119err_of_dma_controller_register:
2120        dma_async_device_unregister(&atdma->dma_common);
2121        dma_pool_destroy(atdma->memset_pool);
2122err_memset_pool_create:
2123        dma_pool_destroy(atdma->dma_desc_pool);
2124err_desc_pool_create:
2125        free_irq(platform_get_irq(pdev, 0), atdma);
2126err_irq:
2127        clk_disable_unprepare(atdma->clk);
2128err_clk_prepare:
2129        clk_put(atdma->clk);
2130err_clk:
2131        iounmap(atdma->regs);
2132        atdma->regs = NULL;
2133err_release_r:
2134        release_mem_region(io->start, size);
2135err_kfree:
2136        kfree(atdma);
2137        return err;
2138}
2139
2140static int at_dma_remove(struct platform_device *pdev)
2141{
2142        struct at_dma           *atdma = platform_get_drvdata(pdev);
2143        struct dma_chan         *chan, *_chan;
2144        struct resource         *io;
2145
2146        at_dma_off(atdma);
2147        dma_async_device_unregister(&atdma->dma_common);
2148
2149        dma_pool_destroy(atdma->memset_pool);
2150        dma_pool_destroy(atdma->dma_desc_pool);
2151        free_irq(platform_get_irq(pdev, 0), atdma);
2152
2153        list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2154                        device_node) {
2155                struct at_dma_chan      *atchan = to_at_dma_chan(chan);
2156
2157                /* Disable interrupts */
2158                atc_disable_chan_irq(atdma, chan->chan_id);
2159
2160                tasklet_kill(&atchan->tasklet);
2161                list_del(&chan->device_node);
2162        }
2163
2164        clk_disable_unprepare(atdma->clk);
2165        clk_put(atdma->clk);
2166
2167        iounmap(atdma->regs);
2168        atdma->regs = NULL;
2169
2170        io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2171        release_mem_region(io->start, resource_size(io));
2172
2173        kfree(atdma);
2174
2175        return 0;
2176}
2177
2178static void at_dma_shutdown(struct platform_device *pdev)
2179{
2180        struct at_dma   *atdma = platform_get_drvdata(pdev);
2181
2182        at_dma_off(platform_get_drvdata(pdev));
2183        clk_disable_unprepare(atdma->clk);
2184}
2185
2186static int at_dma_prepare(struct device *dev)
2187{
2188        struct platform_device *pdev = to_platform_device(dev);
2189        struct at_dma *atdma = platform_get_drvdata(pdev);
2190        struct dma_chan *chan, *_chan;
2191
2192        list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2193                        device_node) {
2194                struct at_dma_chan *atchan = to_at_dma_chan(chan);
2195                /* wait for transaction completion (except in cyclic case) */
2196                if (atc_chan_is_enabled(atchan) && !atc_chan_is_cyclic(atchan))
2197                        return -EAGAIN;
2198        }
2199        return 0;
2200}
2201
2202static void atc_suspend_cyclic(struct at_dma_chan *atchan)
2203{
2204        struct dma_chan *chan = &atchan->chan_common;
2205
2206        /* Channel should be paused by user
2207         * do it anyway even if it is not done already */
2208        if (!atc_chan_is_paused(atchan)) {
2209                dev_warn(chan2dev(chan),
2210                "cyclic channel not paused, should be done by channel user\n");
2211                atc_pause(chan);
2212        }
2213
2214        /* now preserve additional data for cyclic operations */
2215        /* next descriptor address in the cyclic list */
2216        atchan->save_dscr = channel_readl(atchan, DSCR);
2217
2218        vdbg_dump_regs(atchan);
2219}
2220
2221static int at_dma_suspend_noirq(struct device *dev)
2222{
2223        struct platform_device *pdev = to_platform_device(dev);
2224        struct at_dma *atdma = platform_get_drvdata(pdev);
2225        struct dma_chan *chan, *_chan;
2226
2227        /* preserve data */
2228        list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2229                        device_node) {
2230                struct at_dma_chan *atchan = to_at_dma_chan(chan);
2231
2232                if (atc_chan_is_cyclic(atchan))
2233                        atc_suspend_cyclic(atchan);
2234                atchan->save_cfg = channel_readl(atchan, CFG);
2235        }
2236        atdma->save_imr = dma_readl(atdma, EBCIMR);
2237
2238        /* disable DMA controller */
2239        at_dma_off(atdma);
2240        clk_disable_unprepare(atdma->clk);
2241        return 0;
2242}
2243
2244static void atc_resume_cyclic(struct at_dma_chan *atchan)
2245{
2246        struct at_dma   *atdma = to_at_dma(atchan->chan_common.device);
2247
2248        /* restore channel status for cyclic descriptors list:
2249         * next descriptor in the cyclic list at the time of suspend */
2250        channel_writel(atchan, SADDR, 0);
2251        channel_writel(atchan, DADDR, 0);
2252        channel_writel(atchan, CTRLA, 0);
2253        channel_writel(atchan, CTRLB, 0);
2254        channel_writel(atchan, DSCR, atchan->save_dscr);
2255        dma_writel(atdma, CHER, atchan->mask);
2256
2257        /* channel pause status should be removed by channel user
2258         * We cannot take the initiative to do it here */
2259
2260        vdbg_dump_regs(atchan);
2261}
2262
2263static int at_dma_resume_noirq(struct device *dev)
2264{
2265        struct platform_device *pdev = to_platform_device(dev);
2266        struct at_dma *atdma = platform_get_drvdata(pdev);
2267        struct dma_chan *chan, *_chan;
2268
2269        /* bring back DMA controller */
2270        clk_prepare_enable(atdma->clk);
2271        dma_writel(atdma, EN, AT_DMA_ENABLE);
2272
2273        /* clear any pending interrupt */
2274        while (dma_readl(atdma, EBCISR))
2275                cpu_relax();
2276
2277        /* restore saved data */
2278        dma_writel(atdma, EBCIER, atdma->save_imr);
2279        list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2280                        device_node) {
2281                struct at_dma_chan *atchan = to_at_dma_chan(chan);
2282
2283                channel_writel(atchan, CFG, atchan->save_cfg);
2284                if (atc_chan_is_cyclic(atchan))
2285                        atc_resume_cyclic(atchan);
2286        }
2287        return 0;
2288}
2289
2290static const struct dev_pm_ops at_dma_dev_pm_ops = {
2291        .prepare = at_dma_prepare,
2292        .suspend_noirq = at_dma_suspend_noirq,
2293        .resume_noirq = at_dma_resume_noirq,
2294};
2295
2296static struct platform_driver at_dma_driver = {
2297        .remove         = at_dma_remove,
2298        .shutdown       = at_dma_shutdown,
2299        .id_table       = atdma_devtypes,
2300        .driver = {
2301                .name   = "at_hdmac",
2302                .pm     = &at_dma_dev_pm_ops,
2303                .of_match_table = of_match_ptr(atmel_dma_dt_ids),
2304        },
2305};
2306
2307static int __init at_dma_init(void)
2308{
2309        return platform_driver_probe(&at_dma_driver, at_dma_probe);
2310}
2311subsys_initcall(at_dma_init);
2312
2313static void __exit at_dma_exit(void)
2314{
2315        platform_driver_unregister(&at_dma_driver);
2316}
2317module_exit(at_dma_exit);
2318
2319MODULE_DESCRIPTION("Atmel AHB DMA Controller driver");
2320MODULE_AUTHOR("Nicolas Ferre <nicolas.ferre@atmel.com>");
2321MODULE_LICENSE("GPL");
2322MODULE_ALIAS("platform:at_hdmac");
2323