linux/drivers/dma/ep93xx_dma.c
<<
>>
Prefs
   1/*
   2 * Driver for the Cirrus Logic EP93xx DMA Controller
   3 *
   4 * Copyright (C) 2011 Mika Westerberg
   5 *
   6 * DMA M2P implementation is based on the original
   7 * arch/arm/mach-ep93xx/dma-m2p.c which has following copyrights:
   8 *
   9 *   Copyright (C) 2006 Lennert Buytenhek <buytenh@wantstofly.org>
  10 *   Copyright (C) 2006 Applied Data Systems
  11 *   Copyright (C) 2009 Ryan Mallon <rmallon@gmail.com>
  12 *
  13 * This driver is based on dw_dmac and amba-pl08x drivers.
  14 *
  15 * This program is free software; you can redistribute it and/or modify
  16 * it under the terms of the GNU General Public License as published by
  17 * the Free Software Foundation; either version 2 of the License, or
  18 * (at your option) any later version.
  19 */
  20
  21#include <linux/clk.h>
  22#include <linux/init.h>
  23#include <linux/interrupt.h>
  24#include <linux/dmaengine.h>
  25#include <linux/module.h>
  26#include <linux/platform_device.h>
  27#include <linux/slab.h>
  28
  29#include <linux/platform_data/dma-ep93xx.h>
  30
  31#include "dmaengine.h"
  32
  33/* M2P registers */
  34#define M2P_CONTROL                     0x0000
  35#define M2P_CONTROL_STALLINT            BIT(0)
  36#define M2P_CONTROL_NFBINT              BIT(1)
  37#define M2P_CONTROL_CH_ERROR_INT        BIT(3)
  38#define M2P_CONTROL_ENABLE              BIT(4)
  39#define M2P_CONTROL_ICE                 BIT(6)
  40
  41#define M2P_INTERRUPT                   0x0004
  42#define M2P_INTERRUPT_STALL             BIT(0)
  43#define M2P_INTERRUPT_NFB               BIT(1)
  44#define M2P_INTERRUPT_ERROR             BIT(3)
  45
  46#define M2P_PPALLOC                     0x0008
  47#define M2P_STATUS                      0x000c
  48
  49#define M2P_MAXCNT0                     0x0020
  50#define M2P_BASE0                       0x0024
  51#define M2P_MAXCNT1                     0x0030
  52#define M2P_BASE1                       0x0034
  53
  54#define M2P_STATE_IDLE                  0
  55#define M2P_STATE_STALL                 1
  56#define M2P_STATE_ON                    2
  57#define M2P_STATE_NEXT                  3
  58
  59/* M2M registers */
  60#define M2M_CONTROL                     0x0000
  61#define M2M_CONTROL_DONEINT             BIT(2)
  62#define M2M_CONTROL_ENABLE              BIT(3)
  63#define M2M_CONTROL_START               BIT(4)
  64#define M2M_CONTROL_DAH                 BIT(11)
  65#define M2M_CONTROL_SAH                 BIT(12)
  66#define M2M_CONTROL_PW_SHIFT            9
  67#define M2M_CONTROL_PW_8                (0 << M2M_CONTROL_PW_SHIFT)
  68#define M2M_CONTROL_PW_16               (1 << M2M_CONTROL_PW_SHIFT)
  69#define M2M_CONTROL_PW_32               (2 << M2M_CONTROL_PW_SHIFT)
  70#define M2M_CONTROL_PW_MASK             (3 << M2M_CONTROL_PW_SHIFT)
  71#define M2M_CONTROL_TM_SHIFT            13
  72#define M2M_CONTROL_TM_TX               (1 << M2M_CONTROL_TM_SHIFT)
  73#define M2M_CONTROL_TM_RX               (2 << M2M_CONTROL_TM_SHIFT)
  74#define M2M_CONTROL_NFBINT              BIT(21)
  75#define M2M_CONTROL_RSS_SHIFT           22
  76#define M2M_CONTROL_RSS_SSPRX           (1 << M2M_CONTROL_RSS_SHIFT)
  77#define M2M_CONTROL_RSS_SSPTX           (2 << M2M_CONTROL_RSS_SHIFT)
  78#define M2M_CONTROL_RSS_IDE             (3 << M2M_CONTROL_RSS_SHIFT)
  79#define M2M_CONTROL_NO_HDSK             BIT(24)
  80#define M2M_CONTROL_PWSC_SHIFT          25
  81
  82#define M2M_INTERRUPT                   0x0004
  83#define M2M_INTERRUPT_MASK              6
  84
  85#define M2M_STATUS                      0x000c
  86#define M2M_STATUS_CTL_SHIFT            1
  87#define M2M_STATUS_CTL_IDLE             (0 << M2M_STATUS_CTL_SHIFT)
  88#define M2M_STATUS_CTL_STALL            (1 << M2M_STATUS_CTL_SHIFT)
  89#define M2M_STATUS_CTL_MEMRD            (2 << M2M_STATUS_CTL_SHIFT)
  90#define M2M_STATUS_CTL_MEMWR            (3 << M2M_STATUS_CTL_SHIFT)
  91#define M2M_STATUS_CTL_BWCWAIT          (4 << M2M_STATUS_CTL_SHIFT)
  92#define M2M_STATUS_CTL_MASK             (7 << M2M_STATUS_CTL_SHIFT)
  93#define M2M_STATUS_BUF_SHIFT            4
  94#define M2M_STATUS_BUF_NO               (0 << M2M_STATUS_BUF_SHIFT)
  95#define M2M_STATUS_BUF_ON               (1 << M2M_STATUS_BUF_SHIFT)
  96#define M2M_STATUS_BUF_NEXT             (2 << M2M_STATUS_BUF_SHIFT)
  97#define M2M_STATUS_BUF_MASK             (3 << M2M_STATUS_BUF_SHIFT)
  98#define M2M_STATUS_DONE                 BIT(6)
  99
 100#define M2M_BCR0                        0x0010
 101#define M2M_BCR1                        0x0014
 102#define M2M_SAR_BASE0                   0x0018
 103#define M2M_SAR_BASE1                   0x001c
 104#define M2M_DAR_BASE0                   0x002c
 105#define M2M_DAR_BASE1                   0x0030
 106
 107#define DMA_MAX_CHAN_BYTES              0xffff
 108#define DMA_MAX_CHAN_DESCRIPTORS        32
 109
 110struct ep93xx_dma_engine;
 111
 112/**
 113 * struct ep93xx_dma_desc - EP93xx specific transaction descriptor
 114 * @src_addr: source address of the transaction
 115 * @dst_addr: destination address of the transaction
 116 * @size: size of the transaction (in bytes)
 117 * @complete: this descriptor is completed
 118 * @txd: dmaengine API descriptor
 119 * @tx_list: list of linked descriptors
 120 * @node: link used for putting this into a channel queue
 121 */
 122struct ep93xx_dma_desc {
 123        u32                             src_addr;
 124        u32                             dst_addr;
 125        size_t                          size;
 126        bool                            complete;
 127        struct dma_async_tx_descriptor  txd;
 128        struct list_head                tx_list;
 129        struct list_head                node;
 130};
 131
 132/**
 133 * struct ep93xx_dma_chan - an EP93xx DMA M2P/M2M channel
 134 * @chan: dmaengine API channel
 135 * @edma: pointer to to the engine device
 136 * @regs: memory mapped registers
 137 * @irq: interrupt number of the channel
 138 * @clk: clock used by this channel
 139 * @tasklet: channel specific tasklet used for callbacks
 140 * @lock: lock protecting the fields following
 141 * @flags: flags for the channel
 142 * @buffer: which buffer to use next (0/1)
 143 * @active: flattened chain of descriptors currently being processed
 144 * @queue: pending descriptors which are handled next
 145 * @free_list: list of free descriptors which can be used
 146 * @runtime_addr: physical address currently used as dest/src (M2M only). This
 147 *                is set via .device_config before slave operation is
 148 *                prepared
 149 * @runtime_ctrl: M2M runtime values for the control register.
 150 *
 151 * As EP93xx DMA controller doesn't support real chained DMA descriptors we
 152 * will have slightly different scheme here: @active points to a head of
 153 * flattened DMA descriptor chain.
 154 *
 155 * @queue holds pending transactions. These are linked through the first
 156 * descriptor in the chain. When a descriptor is moved to the @active queue,
 157 * the first and chained descriptors are flattened into a single list.
 158 *
 159 * @chan.private holds pointer to &struct ep93xx_dma_data which contains
 160 * necessary channel configuration information. For memcpy channels this must
 161 * be %NULL.
 162 */
 163struct ep93xx_dma_chan {
 164        struct dma_chan                 chan;
 165        const struct ep93xx_dma_engine  *edma;
 166        void __iomem                    *regs;
 167        int                             irq;
 168        struct clk                      *clk;
 169        struct tasklet_struct           tasklet;
 170        /* protects the fields following */
 171        spinlock_t                      lock;
 172        unsigned long                   flags;
 173/* Channel is configured for cyclic transfers */
 174#define EP93XX_DMA_IS_CYCLIC            0
 175
 176        int                             buffer;
 177        struct list_head                active;
 178        struct list_head                queue;
 179        struct list_head                free_list;
 180        u32                             runtime_addr;
 181        u32                             runtime_ctrl;
 182};
 183
 184/**
 185 * struct ep93xx_dma_engine - the EP93xx DMA engine instance
 186 * @dma_dev: holds the dmaengine device
 187 * @m2m: is this an M2M or M2P device
 188 * @hw_setup: method which sets the channel up for operation
 189 * @hw_shutdown: shuts the channel down and flushes whatever is left
 190 * @hw_submit: pushes active descriptor(s) to the hardware
 191 * @hw_interrupt: handle the interrupt
 192 * @num_channels: number of channels for this instance
 193 * @channels: array of channels
 194 *
 195 * There is one instance of this struct for the M2P channels and one for the
 196 * M2M channels. hw_xxx() methods are used to perform operations which are
 197 * different on M2M and M2P channels. These methods are called with channel
 198 * lock held and interrupts disabled so they cannot sleep.
 199 */
 200struct ep93xx_dma_engine {
 201        struct dma_device       dma_dev;
 202        bool                    m2m;
 203        int                     (*hw_setup)(struct ep93xx_dma_chan *);
 204        void                    (*hw_shutdown)(struct ep93xx_dma_chan *);
 205        void                    (*hw_submit)(struct ep93xx_dma_chan *);
 206        int                     (*hw_interrupt)(struct ep93xx_dma_chan *);
 207#define INTERRUPT_UNKNOWN       0
 208#define INTERRUPT_DONE          1
 209#define INTERRUPT_NEXT_BUFFER   2
 210
 211        size_t                  num_channels;
 212        struct ep93xx_dma_chan  channels[];
 213};
 214
 215static inline struct device *chan2dev(struct ep93xx_dma_chan *edmac)
 216{
 217        return &edmac->chan.dev->device;
 218}
 219
 220static struct ep93xx_dma_chan *to_ep93xx_dma_chan(struct dma_chan *chan)
 221{
 222        return container_of(chan, struct ep93xx_dma_chan, chan);
 223}
 224
 225/**
 226 * ep93xx_dma_set_active - set new active descriptor chain
 227 * @edmac: channel
 228 * @desc: head of the new active descriptor chain
 229 *
 230 * Sets @desc to be the head of the new active descriptor chain. This is the
 231 * chain which is processed next. The active list must be empty before calling
 232 * this function.
 233 *
 234 * Called with @edmac->lock held and interrupts disabled.
 235 */
 236static void ep93xx_dma_set_active(struct ep93xx_dma_chan *edmac,
 237                                  struct ep93xx_dma_desc *desc)
 238{
 239        BUG_ON(!list_empty(&edmac->active));
 240
 241        list_add_tail(&desc->node, &edmac->active);
 242
 243        /* Flatten the @desc->tx_list chain into @edmac->active list */
 244        while (!list_empty(&desc->tx_list)) {
 245                struct ep93xx_dma_desc *d = list_first_entry(&desc->tx_list,
 246                        struct ep93xx_dma_desc, node);
 247
 248                /*
 249                 * We copy the callback parameters from the first descriptor
 250                 * to all the chained descriptors. This way we can call the
 251                 * callback without having to find out the first descriptor in
 252                 * the chain. Useful for cyclic transfers.
 253                 */
 254                d->txd.callback = desc->txd.callback;
 255                d->txd.callback_param = desc->txd.callback_param;
 256
 257                list_move_tail(&d->node, &edmac->active);
 258        }
 259}
 260
 261/* Called with @edmac->lock held and interrupts disabled */
 262static struct ep93xx_dma_desc *
 263ep93xx_dma_get_active(struct ep93xx_dma_chan *edmac)
 264{
 265        if (list_empty(&edmac->active))
 266                return NULL;
 267
 268        return list_first_entry(&edmac->active, struct ep93xx_dma_desc, node);
 269}
 270
 271/**
 272 * ep93xx_dma_advance_active - advances to the next active descriptor
 273 * @edmac: channel
 274 *
 275 * Function advances active descriptor to the next in the @edmac->active and
 276 * returns %true if we still have descriptors in the chain to process.
 277 * Otherwise returns %false.
 278 *
 279 * When the channel is in cyclic mode always returns %true.
 280 *
 281 * Called with @edmac->lock held and interrupts disabled.
 282 */
 283static bool ep93xx_dma_advance_active(struct ep93xx_dma_chan *edmac)
 284{
 285        struct ep93xx_dma_desc *desc;
 286
 287        list_rotate_left(&edmac->active);
 288
 289        if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
 290                return true;
 291
 292        desc = ep93xx_dma_get_active(edmac);
 293        if (!desc)
 294                return false;
 295
 296        /*
 297         * If txd.cookie is set it means that we are back in the first
 298         * descriptor in the chain and hence done with it.
 299         */
 300        return !desc->txd.cookie;
 301}
 302
 303/*
 304 * M2P DMA implementation
 305 */
 306
 307static void m2p_set_control(struct ep93xx_dma_chan *edmac, u32 control)
 308{
 309        writel(control, edmac->regs + M2P_CONTROL);
 310        /*
 311         * EP93xx User's Guide states that we must perform a dummy read after
 312         * write to the control register.
 313         */
 314        readl(edmac->regs + M2P_CONTROL);
 315}
 316
 317static int m2p_hw_setup(struct ep93xx_dma_chan *edmac)
 318{
 319        struct ep93xx_dma_data *data = edmac->chan.private;
 320        u32 control;
 321
 322        writel(data->port & 0xf, edmac->regs + M2P_PPALLOC);
 323
 324        control = M2P_CONTROL_CH_ERROR_INT | M2P_CONTROL_ICE
 325                | M2P_CONTROL_ENABLE;
 326        m2p_set_control(edmac, control);
 327
 328        return 0;
 329}
 330
 331static inline u32 m2p_channel_state(struct ep93xx_dma_chan *edmac)
 332{
 333        return (readl(edmac->regs + M2P_STATUS) >> 4) & 0x3;
 334}
 335
 336static void m2p_hw_shutdown(struct ep93xx_dma_chan *edmac)
 337{
 338        u32 control;
 339
 340        control = readl(edmac->regs + M2P_CONTROL);
 341        control &= ~(M2P_CONTROL_STALLINT | M2P_CONTROL_NFBINT);
 342        m2p_set_control(edmac, control);
 343
 344        while (m2p_channel_state(edmac) >= M2P_STATE_ON)
 345                cpu_relax();
 346
 347        m2p_set_control(edmac, 0);
 348
 349        while (m2p_channel_state(edmac) == M2P_STATE_STALL)
 350                cpu_relax();
 351}
 352
 353static void m2p_fill_desc(struct ep93xx_dma_chan *edmac)
 354{
 355        struct ep93xx_dma_desc *desc;
 356        u32 bus_addr;
 357
 358        desc = ep93xx_dma_get_active(edmac);
 359        if (!desc) {
 360                dev_warn(chan2dev(edmac), "M2P: empty descriptor list\n");
 361                return;
 362        }
 363
 364        if (ep93xx_dma_chan_direction(&edmac->chan) == DMA_MEM_TO_DEV)
 365                bus_addr = desc->src_addr;
 366        else
 367                bus_addr = desc->dst_addr;
 368
 369        if (edmac->buffer == 0) {
 370                writel(desc->size, edmac->regs + M2P_MAXCNT0);
 371                writel(bus_addr, edmac->regs + M2P_BASE0);
 372        } else {
 373                writel(desc->size, edmac->regs + M2P_MAXCNT1);
 374                writel(bus_addr, edmac->regs + M2P_BASE1);
 375        }
 376
 377        edmac->buffer ^= 1;
 378}
 379
 380static void m2p_hw_submit(struct ep93xx_dma_chan *edmac)
 381{
 382        u32 control = readl(edmac->regs + M2P_CONTROL);
 383
 384        m2p_fill_desc(edmac);
 385        control |= M2P_CONTROL_STALLINT;
 386
 387        if (ep93xx_dma_advance_active(edmac)) {
 388                m2p_fill_desc(edmac);
 389                control |= M2P_CONTROL_NFBINT;
 390        }
 391
 392        m2p_set_control(edmac, control);
 393}
 394
 395static int m2p_hw_interrupt(struct ep93xx_dma_chan *edmac)
 396{
 397        u32 irq_status = readl(edmac->regs + M2P_INTERRUPT);
 398        u32 control;
 399
 400        if (irq_status & M2P_INTERRUPT_ERROR) {
 401                struct ep93xx_dma_desc *desc = ep93xx_dma_get_active(edmac);
 402
 403                /* Clear the error interrupt */
 404                writel(1, edmac->regs + M2P_INTERRUPT);
 405
 406                /*
 407                 * It seems that there is no easy way of reporting errors back
 408                 * to client so we just report the error here and continue as
 409                 * usual.
 410                 *
 411                 * Revisit this when there is a mechanism to report back the
 412                 * errors.
 413                 */
 414                dev_err(chan2dev(edmac),
 415                        "DMA transfer failed! Details:\n"
 416                        "\tcookie       : %d\n"
 417                        "\tsrc_addr     : 0x%08x\n"
 418                        "\tdst_addr     : 0x%08x\n"
 419                        "\tsize         : %zu\n",
 420                        desc->txd.cookie, desc->src_addr, desc->dst_addr,
 421                        desc->size);
 422        }
 423
 424        /*
 425         * Even latest E2 silicon revision sometimes assert STALL interrupt
 426         * instead of NFB. Therefore we treat them equally, basing on the
 427         * amount of data we still have to transfer.
 428         */
 429        if (!(irq_status & (M2P_INTERRUPT_STALL | M2P_INTERRUPT_NFB)))
 430                return INTERRUPT_UNKNOWN;
 431
 432        if (ep93xx_dma_advance_active(edmac)) {
 433                m2p_fill_desc(edmac);
 434                return INTERRUPT_NEXT_BUFFER;
 435        }
 436
 437        /* Disable interrupts */
 438        control = readl(edmac->regs + M2P_CONTROL);
 439        control &= ~(M2P_CONTROL_STALLINT | M2P_CONTROL_NFBINT);
 440        m2p_set_control(edmac, control);
 441
 442        return INTERRUPT_DONE;
 443}
 444
 445/*
 446 * M2M DMA implementation
 447 */
 448
 449static int m2m_hw_setup(struct ep93xx_dma_chan *edmac)
 450{
 451        const struct ep93xx_dma_data *data = edmac->chan.private;
 452        u32 control = 0;
 453
 454        if (!data) {
 455                /* This is memcpy channel, nothing to configure */
 456                writel(control, edmac->regs + M2M_CONTROL);
 457                return 0;
 458        }
 459
 460        switch (data->port) {
 461        case EP93XX_DMA_SSP:
 462                /*
 463                 * This was found via experimenting - anything less than 5
 464                 * causes the channel to perform only a partial transfer which
 465                 * leads to problems since we don't get DONE interrupt then.
 466                 */
 467                control = (5 << M2M_CONTROL_PWSC_SHIFT);
 468                control |= M2M_CONTROL_NO_HDSK;
 469
 470                if (data->direction == DMA_MEM_TO_DEV) {
 471                        control |= M2M_CONTROL_DAH;
 472                        control |= M2M_CONTROL_TM_TX;
 473                        control |= M2M_CONTROL_RSS_SSPTX;
 474                } else {
 475                        control |= M2M_CONTROL_SAH;
 476                        control |= M2M_CONTROL_TM_RX;
 477                        control |= M2M_CONTROL_RSS_SSPRX;
 478                }
 479                break;
 480
 481        case EP93XX_DMA_IDE:
 482                /*
 483                 * This IDE part is totally untested. Values below are taken
 484                 * from the EP93xx Users's Guide and might not be correct.
 485                 */
 486                if (data->direction == DMA_MEM_TO_DEV) {
 487                        /* Worst case from the UG */
 488                        control = (3 << M2M_CONTROL_PWSC_SHIFT);
 489                        control |= M2M_CONTROL_DAH;
 490                        control |= M2M_CONTROL_TM_TX;
 491                } else {
 492                        control = (2 << M2M_CONTROL_PWSC_SHIFT);
 493                        control |= M2M_CONTROL_SAH;
 494                        control |= M2M_CONTROL_TM_RX;
 495                }
 496
 497                control |= M2M_CONTROL_NO_HDSK;
 498                control |= M2M_CONTROL_RSS_IDE;
 499                control |= M2M_CONTROL_PW_16;
 500                break;
 501
 502        default:
 503                return -EINVAL;
 504        }
 505
 506        writel(control, edmac->regs + M2M_CONTROL);
 507        return 0;
 508}
 509
 510static void m2m_hw_shutdown(struct ep93xx_dma_chan *edmac)
 511{
 512        /* Just disable the channel */
 513        writel(0, edmac->regs + M2M_CONTROL);
 514}
 515
 516static void m2m_fill_desc(struct ep93xx_dma_chan *edmac)
 517{
 518        struct ep93xx_dma_desc *desc;
 519
 520        desc = ep93xx_dma_get_active(edmac);
 521        if (!desc) {
 522                dev_warn(chan2dev(edmac), "M2M: empty descriptor list\n");
 523                return;
 524        }
 525
 526        if (edmac->buffer == 0) {
 527                writel(desc->src_addr, edmac->regs + M2M_SAR_BASE0);
 528                writel(desc->dst_addr, edmac->regs + M2M_DAR_BASE0);
 529                writel(desc->size, edmac->regs + M2M_BCR0);
 530        } else {
 531                writel(desc->src_addr, edmac->regs + M2M_SAR_BASE1);
 532                writel(desc->dst_addr, edmac->regs + M2M_DAR_BASE1);
 533                writel(desc->size, edmac->regs + M2M_BCR1);
 534        }
 535
 536        edmac->buffer ^= 1;
 537}
 538
 539static void m2m_hw_submit(struct ep93xx_dma_chan *edmac)
 540{
 541        struct ep93xx_dma_data *data = edmac->chan.private;
 542        u32 control = readl(edmac->regs + M2M_CONTROL);
 543
 544        /*
 545         * Since we allow clients to configure PW (peripheral width) we always
 546         * clear PW bits here and then set them according what is given in
 547         * the runtime configuration.
 548         */
 549        control &= ~M2M_CONTROL_PW_MASK;
 550        control |= edmac->runtime_ctrl;
 551
 552        m2m_fill_desc(edmac);
 553        control |= M2M_CONTROL_DONEINT;
 554
 555        if (ep93xx_dma_advance_active(edmac)) {
 556                m2m_fill_desc(edmac);
 557                control |= M2M_CONTROL_NFBINT;
 558        }
 559
 560        /*
 561         * Now we can finally enable the channel. For M2M channel this must be
 562         * done _after_ the BCRx registers are programmed.
 563         */
 564        control |= M2M_CONTROL_ENABLE;
 565        writel(control, edmac->regs + M2M_CONTROL);
 566
 567        if (!data) {
 568                /*
 569                 * For memcpy channels the software trigger must be asserted
 570                 * in order to start the memcpy operation.
 571                 */
 572                control |= M2M_CONTROL_START;
 573                writel(control, edmac->regs + M2M_CONTROL);
 574        }
 575}
 576
 577/*
 578 * According to EP93xx User's Guide, we should receive DONE interrupt when all
 579 * M2M DMA controller transactions complete normally. This is not always the
 580 * case - sometimes EP93xx M2M DMA asserts DONE interrupt when the DMA channel
 581 * is still running (channel Buffer FSM in DMA_BUF_ON state, and channel
 582 * Control FSM in DMA_MEM_RD state, observed at least in IDE-DMA operation).
 583 * In effect, disabling the channel when only DONE bit is set could stop
 584 * currently running DMA transfer. To avoid this, we use Buffer FSM and
 585 * Control FSM to check current state of DMA channel.
 586 */
 587static int m2m_hw_interrupt(struct ep93xx_dma_chan *edmac)
 588{
 589        u32 status = readl(edmac->regs + M2M_STATUS);
 590        u32 ctl_fsm = status & M2M_STATUS_CTL_MASK;
 591        u32 buf_fsm = status & M2M_STATUS_BUF_MASK;
 592        bool done = status & M2M_STATUS_DONE;
 593        bool last_done;
 594        u32 control;
 595        struct ep93xx_dma_desc *desc;
 596
 597        /* Accept only DONE and NFB interrupts */
 598        if (!(readl(edmac->regs + M2M_INTERRUPT) & M2M_INTERRUPT_MASK))
 599                return INTERRUPT_UNKNOWN;
 600
 601        if (done) {
 602                /* Clear the DONE bit */
 603                writel(0, edmac->regs + M2M_INTERRUPT);
 604        }
 605
 606        /*
 607         * Check whether we are done with descriptors or not. This, together
 608         * with DMA channel state, determines action to take in interrupt.
 609         */
 610        desc = ep93xx_dma_get_active(edmac);
 611        last_done = !desc || desc->txd.cookie;
 612
 613        /*
 614         * Use M2M DMA Buffer FSM and Control FSM to check current state of
 615         * DMA channel. Using DONE and NFB bits from channel status register
 616         * or bits from channel interrupt register is not reliable.
 617         */
 618        if (!last_done &&
 619            (buf_fsm == M2M_STATUS_BUF_NO ||
 620             buf_fsm == M2M_STATUS_BUF_ON)) {
 621                /*
 622                 * Two buffers are ready for update when Buffer FSM is in
 623                 * DMA_NO_BUF state. Only one buffer can be prepared without
 624                 * disabling the channel or polling the DONE bit.
 625                 * To simplify things, always prepare only one buffer.
 626                 */
 627                if (ep93xx_dma_advance_active(edmac)) {
 628                        m2m_fill_desc(edmac);
 629                        if (done && !edmac->chan.private) {
 630                                /* Software trigger for memcpy channel */
 631                                control = readl(edmac->regs + M2M_CONTROL);
 632                                control |= M2M_CONTROL_START;
 633                                writel(control, edmac->regs + M2M_CONTROL);
 634                        }
 635                        return INTERRUPT_NEXT_BUFFER;
 636                } else {
 637                        last_done = true;
 638                }
 639        }
 640
 641        /*
 642         * Disable the channel only when Buffer FSM is in DMA_NO_BUF state
 643         * and Control FSM is in DMA_STALL state.
 644         */
 645        if (last_done &&
 646            buf_fsm == M2M_STATUS_BUF_NO &&
 647            ctl_fsm == M2M_STATUS_CTL_STALL) {
 648                /* Disable interrupts and the channel */
 649                control = readl(edmac->regs + M2M_CONTROL);
 650                control &= ~(M2M_CONTROL_DONEINT | M2M_CONTROL_NFBINT
 651                            | M2M_CONTROL_ENABLE);
 652                writel(control, edmac->regs + M2M_CONTROL);
 653                return INTERRUPT_DONE;
 654        }
 655
 656        /*
 657         * Nothing to do this time.
 658         */
 659        return INTERRUPT_NEXT_BUFFER;
 660}
 661
 662/*
 663 * DMA engine API implementation
 664 */
 665
 666static struct ep93xx_dma_desc *
 667ep93xx_dma_desc_get(struct ep93xx_dma_chan *edmac)
 668{
 669        struct ep93xx_dma_desc *desc, *_desc;
 670        struct ep93xx_dma_desc *ret = NULL;
 671        unsigned long flags;
 672
 673        spin_lock_irqsave(&edmac->lock, flags);
 674        list_for_each_entry_safe(desc, _desc, &edmac->free_list, node) {
 675                if (async_tx_test_ack(&desc->txd)) {
 676                        list_del_init(&desc->node);
 677
 678                        /* Re-initialize the descriptor */
 679                        desc->src_addr = 0;
 680                        desc->dst_addr = 0;
 681                        desc->size = 0;
 682                        desc->complete = false;
 683                        desc->txd.cookie = 0;
 684                        desc->txd.callback = NULL;
 685                        desc->txd.callback_param = NULL;
 686
 687                        ret = desc;
 688                        break;
 689                }
 690        }
 691        spin_unlock_irqrestore(&edmac->lock, flags);
 692        return ret;
 693}
 694
 695static void ep93xx_dma_desc_put(struct ep93xx_dma_chan *edmac,
 696                                struct ep93xx_dma_desc *desc)
 697{
 698        if (desc) {
 699                unsigned long flags;
 700
 701                spin_lock_irqsave(&edmac->lock, flags);
 702                list_splice_init(&desc->tx_list, &edmac->free_list);
 703                list_add(&desc->node, &edmac->free_list);
 704                spin_unlock_irqrestore(&edmac->lock, flags);
 705        }
 706}
 707
 708/**
 709 * ep93xx_dma_advance_work - start processing the next pending transaction
 710 * @edmac: channel
 711 *
 712 * If we have pending transactions queued and we are currently idling, this
 713 * function takes the next queued transaction from the @edmac->queue and
 714 * pushes it to the hardware for execution.
 715 */
 716static void ep93xx_dma_advance_work(struct ep93xx_dma_chan *edmac)
 717{
 718        struct ep93xx_dma_desc *new;
 719        unsigned long flags;
 720
 721        spin_lock_irqsave(&edmac->lock, flags);
 722        if (!list_empty(&edmac->active) || list_empty(&edmac->queue)) {
 723                spin_unlock_irqrestore(&edmac->lock, flags);
 724                return;
 725        }
 726
 727        /* Take the next descriptor from the pending queue */
 728        new = list_first_entry(&edmac->queue, struct ep93xx_dma_desc, node);
 729        list_del_init(&new->node);
 730
 731        ep93xx_dma_set_active(edmac, new);
 732
 733        /* Push it to the hardware */
 734        edmac->edma->hw_submit(edmac);
 735        spin_unlock_irqrestore(&edmac->lock, flags);
 736}
 737
 738static void ep93xx_dma_tasklet(unsigned long data)
 739{
 740        struct ep93xx_dma_chan *edmac = (struct ep93xx_dma_chan *)data;
 741        struct ep93xx_dma_desc *desc, *d;
 742        dma_async_tx_callback callback = NULL;
 743        void *callback_param = NULL;
 744        LIST_HEAD(list);
 745
 746        spin_lock_irq(&edmac->lock);
 747        /*
 748         * If dma_terminate_all() was called before we get to run, the active
 749         * list has become empty. If that happens we aren't supposed to do
 750         * anything more than call ep93xx_dma_advance_work().
 751         */
 752        desc = ep93xx_dma_get_active(edmac);
 753        if (desc) {
 754                if (desc->complete) {
 755                        /* mark descriptor complete for non cyclic case only */
 756                        if (!test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
 757                                dma_cookie_complete(&desc->txd);
 758                        list_splice_init(&edmac->active, &list);
 759                }
 760                callback = desc->txd.callback;
 761                callback_param = desc->txd.callback_param;
 762        }
 763        spin_unlock_irq(&edmac->lock);
 764
 765        /* Pick up the next descriptor from the queue */
 766        ep93xx_dma_advance_work(edmac);
 767
 768        /* Now we can release all the chained descriptors */
 769        list_for_each_entry_safe(desc, d, &list, node) {
 770                dma_descriptor_unmap(&desc->txd);
 771                ep93xx_dma_desc_put(edmac, desc);
 772        }
 773
 774        if (callback)
 775                callback(callback_param);
 776}
 777
 778static irqreturn_t ep93xx_dma_interrupt(int irq, void *dev_id)
 779{
 780        struct ep93xx_dma_chan *edmac = dev_id;
 781        struct ep93xx_dma_desc *desc;
 782        irqreturn_t ret = IRQ_HANDLED;
 783
 784        spin_lock(&edmac->lock);
 785
 786        desc = ep93xx_dma_get_active(edmac);
 787        if (!desc) {
 788                dev_warn(chan2dev(edmac),
 789                         "got interrupt while active list is empty\n");
 790                spin_unlock(&edmac->lock);
 791                return IRQ_NONE;
 792        }
 793
 794        switch (edmac->edma->hw_interrupt(edmac)) {
 795        case INTERRUPT_DONE:
 796                desc->complete = true;
 797                tasklet_schedule(&edmac->tasklet);
 798                break;
 799
 800        case INTERRUPT_NEXT_BUFFER:
 801                if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
 802                        tasklet_schedule(&edmac->tasklet);
 803                break;
 804
 805        default:
 806                dev_warn(chan2dev(edmac), "unknown interrupt!\n");
 807                ret = IRQ_NONE;
 808                break;
 809        }
 810
 811        spin_unlock(&edmac->lock);
 812        return ret;
 813}
 814
 815/**
 816 * ep93xx_dma_tx_submit - set the prepared descriptor(s) to be executed
 817 * @tx: descriptor to be executed
 818 *
 819 * Function will execute given descriptor on the hardware or if the hardware
 820 * is busy, queue the descriptor to be executed later on. Returns cookie which
 821 * can be used to poll the status of the descriptor.
 822 */
 823static dma_cookie_t ep93xx_dma_tx_submit(struct dma_async_tx_descriptor *tx)
 824{
 825        struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(tx->chan);
 826        struct ep93xx_dma_desc *desc;
 827        dma_cookie_t cookie;
 828        unsigned long flags;
 829
 830        spin_lock_irqsave(&edmac->lock, flags);
 831        cookie = dma_cookie_assign(tx);
 832
 833        desc = container_of(tx, struct ep93xx_dma_desc, txd);
 834
 835        /*
 836         * If nothing is currently prosessed, we push this descriptor
 837         * directly to the hardware. Otherwise we put the descriptor
 838         * to the pending queue.
 839         */
 840        if (list_empty(&edmac->active)) {
 841                ep93xx_dma_set_active(edmac, desc);
 842                edmac->edma->hw_submit(edmac);
 843        } else {
 844                list_add_tail(&desc->node, &edmac->queue);
 845        }
 846
 847        spin_unlock_irqrestore(&edmac->lock, flags);
 848        return cookie;
 849}
 850
 851/**
 852 * ep93xx_dma_alloc_chan_resources - allocate resources for the channel
 853 * @chan: channel to allocate resources
 854 *
 855 * Function allocates necessary resources for the given DMA channel and
 856 * returns number of allocated descriptors for the channel. Negative errno
 857 * is returned in case of failure.
 858 */
 859static int ep93xx_dma_alloc_chan_resources(struct dma_chan *chan)
 860{
 861        struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
 862        struct ep93xx_dma_data *data = chan->private;
 863        const char *name = dma_chan_name(chan);
 864        int ret, i;
 865
 866        /* Sanity check the channel parameters */
 867        if (!edmac->edma->m2m) {
 868                if (!data)
 869                        return -EINVAL;
 870                if (data->port < EP93XX_DMA_I2S1 ||
 871                    data->port > EP93XX_DMA_IRDA)
 872                        return -EINVAL;
 873                if (data->direction != ep93xx_dma_chan_direction(chan))
 874                        return -EINVAL;
 875        } else {
 876                if (data) {
 877                        switch (data->port) {
 878                        case EP93XX_DMA_SSP:
 879                        case EP93XX_DMA_IDE:
 880                                if (!is_slave_direction(data->direction))
 881                                        return -EINVAL;
 882                                break;
 883                        default:
 884                                return -EINVAL;
 885                        }
 886                }
 887        }
 888
 889        if (data && data->name)
 890                name = data->name;
 891
 892        ret = clk_enable(edmac->clk);
 893        if (ret)
 894                return ret;
 895
 896        ret = request_irq(edmac->irq, ep93xx_dma_interrupt, 0, name, edmac);
 897        if (ret)
 898                goto fail_clk_disable;
 899
 900        spin_lock_irq(&edmac->lock);
 901        dma_cookie_init(&edmac->chan);
 902        ret = edmac->edma->hw_setup(edmac);
 903        spin_unlock_irq(&edmac->lock);
 904
 905        if (ret)
 906                goto fail_free_irq;
 907
 908        for (i = 0; i < DMA_MAX_CHAN_DESCRIPTORS; i++) {
 909                struct ep93xx_dma_desc *desc;
 910
 911                desc = kzalloc(sizeof(*desc), GFP_KERNEL);
 912                if (!desc) {
 913                        dev_warn(chan2dev(edmac), "not enough descriptors\n");
 914                        break;
 915                }
 916
 917                INIT_LIST_HEAD(&desc->tx_list);
 918
 919                dma_async_tx_descriptor_init(&desc->txd, chan);
 920                desc->txd.flags = DMA_CTRL_ACK;
 921                desc->txd.tx_submit = ep93xx_dma_tx_submit;
 922
 923                ep93xx_dma_desc_put(edmac, desc);
 924        }
 925
 926        return i;
 927
 928fail_free_irq:
 929        free_irq(edmac->irq, edmac);
 930fail_clk_disable:
 931        clk_disable(edmac->clk);
 932
 933        return ret;
 934}
 935
 936/**
 937 * ep93xx_dma_free_chan_resources - release resources for the channel
 938 * @chan: channel
 939 *
 940 * Function releases all the resources allocated for the given channel.
 941 * The channel must be idle when this is called.
 942 */
 943static void ep93xx_dma_free_chan_resources(struct dma_chan *chan)
 944{
 945        struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
 946        struct ep93xx_dma_desc *desc, *d;
 947        unsigned long flags;
 948        LIST_HEAD(list);
 949
 950        BUG_ON(!list_empty(&edmac->active));
 951        BUG_ON(!list_empty(&edmac->queue));
 952
 953        spin_lock_irqsave(&edmac->lock, flags);
 954        edmac->edma->hw_shutdown(edmac);
 955        edmac->runtime_addr = 0;
 956        edmac->runtime_ctrl = 0;
 957        edmac->buffer = 0;
 958        list_splice_init(&edmac->free_list, &list);
 959        spin_unlock_irqrestore(&edmac->lock, flags);
 960
 961        list_for_each_entry_safe(desc, d, &list, node)
 962                kfree(desc);
 963
 964        clk_disable(edmac->clk);
 965        free_irq(edmac->irq, edmac);
 966}
 967
 968/**
 969 * ep93xx_dma_prep_dma_memcpy - prepare a memcpy DMA operation
 970 * @chan: channel
 971 * @dest: destination bus address
 972 * @src: source bus address
 973 * @len: size of the transaction
 974 * @flags: flags for the descriptor
 975 *
 976 * Returns a valid DMA descriptor or %NULL in case of failure.
 977 */
 978static struct dma_async_tx_descriptor *
 979ep93xx_dma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest,
 980                           dma_addr_t src, size_t len, unsigned long flags)
 981{
 982        struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
 983        struct ep93xx_dma_desc *desc, *first;
 984        size_t bytes, offset;
 985
 986        first = NULL;
 987        for (offset = 0; offset < len; offset += bytes) {
 988                desc = ep93xx_dma_desc_get(edmac);
 989                if (!desc) {
 990                        dev_warn(chan2dev(edmac), "couln't get descriptor\n");
 991                        goto fail;
 992                }
 993
 994                bytes = min_t(size_t, len - offset, DMA_MAX_CHAN_BYTES);
 995
 996                desc->src_addr = src + offset;
 997                desc->dst_addr = dest + offset;
 998                desc->size = bytes;
 999
1000                if (!first)
1001                        first = desc;
1002                else
1003                        list_add_tail(&desc->node, &first->tx_list);
1004        }
1005
1006        first->txd.cookie = -EBUSY;
1007        first->txd.flags = flags;
1008
1009        return &first->txd;
1010fail:
1011        ep93xx_dma_desc_put(edmac, first);
1012        return NULL;
1013}
1014
1015/**
1016 * ep93xx_dma_prep_slave_sg - prepare a slave DMA operation
1017 * @chan: channel
1018 * @sgl: list of buffers to transfer
1019 * @sg_len: number of entries in @sgl
1020 * @dir: direction of tha DMA transfer
1021 * @flags: flags for the descriptor
1022 * @context: operation context (ignored)
1023 *
1024 * Returns a valid DMA descriptor or %NULL in case of failure.
1025 */
1026static struct dma_async_tx_descriptor *
1027ep93xx_dma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1028                         unsigned int sg_len, enum dma_transfer_direction dir,
1029                         unsigned long flags, void *context)
1030{
1031        struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1032        struct ep93xx_dma_desc *desc, *first;
1033        struct scatterlist *sg;
1034        int i;
1035
1036        if (!edmac->edma->m2m && dir != ep93xx_dma_chan_direction(chan)) {
1037                dev_warn(chan2dev(edmac),
1038                         "channel was configured with different direction\n");
1039                return NULL;
1040        }
1041
1042        if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) {
1043                dev_warn(chan2dev(edmac),
1044                         "channel is already used for cyclic transfers\n");
1045                return NULL;
1046        }
1047
1048        first = NULL;
1049        for_each_sg(sgl, sg, sg_len, i) {
1050                size_t sg_len = sg_dma_len(sg);
1051
1052                if (sg_len > DMA_MAX_CHAN_BYTES) {
1053                        dev_warn(chan2dev(edmac), "too big transfer size %d\n",
1054                                 sg_len);
1055                        goto fail;
1056                }
1057
1058                desc = ep93xx_dma_desc_get(edmac);
1059                if (!desc) {
1060                        dev_warn(chan2dev(edmac), "couln't get descriptor\n");
1061                        goto fail;
1062                }
1063
1064                if (dir == DMA_MEM_TO_DEV) {
1065                        desc->src_addr = sg_dma_address(sg);
1066                        desc->dst_addr = edmac->runtime_addr;
1067                } else {
1068                        desc->src_addr = edmac->runtime_addr;
1069                        desc->dst_addr = sg_dma_address(sg);
1070                }
1071                desc->size = sg_len;
1072
1073                if (!first)
1074                        first = desc;
1075                else
1076                        list_add_tail(&desc->node, &first->tx_list);
1077        }
1078
1079        first->txd.cookie = -EBUSY;
1080        first->txd.flags = flags;
1081
1082        return &first->txd;
1083
1084fail:
1085        ep93xx_dma_desc_put(edmac, first);
1086        return NULL;
1087}
1088
1089/**
1090 * ep93xx_dma_prep_dma_cyclic - prepare a cyclic DMA operation
1091 * @chan: channel
1092 * @dma_addr: DMA mapped address of the buffer
1093 * @buf_len: length of the buffer (in bytes)
1094 * @period_len: length of a single period
1095 * @dir: direction of the operation
1096 * @flags: tx descriptor status flags
1097 *
1098 * Prepares a descriptor for cyclic DMA operation. This means that once the
1099 * descriptor is submitted, we will be submitting in a @period_len sized
1100 * buffers and calling callback once the period has been elapsed. Transfer
1101 * terminates only when client calls dmaengine_terminate_all() for this
1102 * channel.
1103 *
1104 * Returns a valid DMA descriptor or %NULL in case of failure.
1105 */
1106static struct dma_async_tx_descriptor *
1107ep93xx_dma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
1108                           size_t buf_len, size_t period_len,
1109                           enum dma_transfer_direction dir, unsigned long flags)
1110{
1111        struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1112        struct ep93xx_dma_desc *desc, *first;
1113        size_t offset = 0;
1114
1115        if (!edmac->edma->m2m && dir != ep93xx_dma_chan_direction(chan)) {
1116                dev_warn(chan2dev(edmac),
1117                         "channel was configured with different direction\n");
1118                return NULL;
1119        }
1120
1121        if (test_and_set_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) {
1122                dev_warn(chan2dev(edmac),
1123                         "channel is already used for cyclic transfers\n");
1124                return NULL;
1125        }
1126
1127        if (period_len > DMA_MAX_CHAN_BYTES) {
1128                dev_warn(chan2dev(edmac), "too big period length %d\n",
1129                         period_len);
1130                return NULL;
1131        }
1132
1133        /* Split the buffer into period size chunks */
1134        first = NULL;
1135        for (offset = 0; offset < buf_len; offset += period_len) {
1136                desc = ep93xx_dma_desc_get(edmac);
1137                if (!desc) {
1138                        dev_warn(chan2dev(edmac), "couln't get descriptor\n");
1139                        goto fail;
1140                }
1141
1142                if (dir == DMA_MEM_TO_DEV) {
1143                        desc->src_addr = dma_addr + offset;
1144                        desc->dst_addr = edmac->runtime_addr;
1145                } else {
1146                        desc->src_addr = edmac->runtime_addr;
1147                        desc->dst_addr = dma_addr + offset;
1148                }
1149
1150                desc->size = period_len;
1151
1152                if (!first)
1153                        first = desc;
1154                else
1155                        list_add_tail(&desc->node, &first->tx_list);
1156        }
1157
1158        first->txd.cookie = -EBUSY;
1159
1160        return &first->txd;
1161
1162fail:
1163        ep93xx_dma_desc_put(edmac, first);
1164        return NULL;
1165}
1166
1167/**
1168 * ep93xx_dma_terminate_all - terminate all transactions
1169 * @chan: channel
1170 *
1171 * Stops all DMA transactions. All descriptors are put back to the
1172 * @edmac->free_list and callbacks are _not_ called.
1173 */
1174static int ep93xx_dma_terminate_all(struct dma_chan *chan)
1175{
1176        struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1177        struct ep93xx_dma_desc *desc, *_d;
1178        unsigned long flags;
1179        LIST_HEAD(list);
1180
1181        spin_lock_irqsave(&edmac->lock, flags);
1182        /* First we disable and flush the DMA channel */
1183        edmac->edma->hw_shutdown(edmac);
1184        clear_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags);
1185        list_splice_init(&edmac->active, &list);
1186        list_splice_init(&edmac->queue, &list);
1187        /*
1188         * We then re-enable the channel. This way we can continue submitting
1189         * the descriptors by just calling ->hw_submit() again.
1190         */
1191        edmac->edma->hw_setup(edmac);
1192        spin_unlock_irqrestore(&edmac->lock, flags);
1193
1194        list_for_each_entry_safe(desc, _d, &list, node)
1195                ep93xx_dma_desc_put(edmac, desc);
1196
1197        return 0;
1198}
1199
1200static int ep93xx_dma_slave_config(struct dma_chan *chan,
1201                                   struct dma_slave_config *config)
1202{
1203        struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1204        enum dma_slave_buswidth width;
1205        unsigned long flags;
1206        u32 addr, ctrl;
1207
1208        if (!edmac->edma->m2m)
1209                return -EINVAL;
1210
1211        switch (config->direction) {
1212        case DMA_DEV_TO_MEM:
1213                width = config->src_addr_width;
1214                addr = config->src_addr;
1215                break;
1216
1217        case DMA_MEM_TO_DEV:
1218                width = config->dst_addr_width;
1219                addr = config->dst_addr;
1220                break;
1221
1222        default:
1223                return -EINVAL;
1224        }
1225
1226        switch (width) {
1227        case DMA_SLAVE_BUSWIDTH_1_BYTE:
1228                ctrl = 0;
1229                break;
1230        case DMA_SLAVE_BUSWIDTH_2_BYTES:
1231                ctrl = M2M_CONTROL_PW_16;
1232                break;
1233        case DMA_SLAVE_BUSWIDTH_4_BYTES:
1234                ctrl = M2M_CONTROL_PW_32;
1235                break;
1236        default:
1237                return -EINVAL;
1238        }
1239
1240        spin_lock_irqsave(&edmac->lock, flags);
1241        edmac->runtime_addr = addr;
1242        edmac->runtime_ctrl = ctrl;
1243        spin_unlock_irqrestore(&edmac->lock, flags);
1244
1245        return 0;
1246}
1247
1248/**
1249 * ep93xx_dma_tx_status - check if a transaction is completed
1250 * @chan: channel
1251 * @cookie: transaction specific cookie
1252 * @state: state of the transaction is stored here if given
1253 *
1254 * This function can be used to query state of a given transaction.
1255 */
1256static enum dma_status ep93xx_dma_tx_status(struct dma_chan *chan,
1257                                            dma_cookie_t cookie,
1258                                            struct dma_tx_state *state)
1259{
1260        return dma_cookie_status(chan, cookie, state);
1261}
1262
1263/**
1264 * ep93xx_dma_issue_pending - push pending transactions to the hardware
1265 * @chan: channel
1266 *
1267 * When this function is called, all pending transactions are pushed to the
1268 * hardware and executed.
1269 */
1270static void ep93xx_dma_issue_pending(struct dma_chan *chan)
1271{
1272        ep93xx_dma_advance_work(to_ep93xx_dma_chan(chan));
1273}
1274
1275static int __init ep93xx_dma_probe(struct platform_device *pdev)
1276{
1277        struct ep93xx_dma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1278        struct ep93xx_dma_engine *edma;
1279        struct dma_device *dma_dev;
1280        size_t edma_size;
1281        int ret, i;
1282
1283        edma_size = pdata->num_channels * sizeof(struct ep93xx_dma_chan);
1284        edma = kzalloc(sizeof(*edma) + edma_size, GFP_KERNEL);
1285        if (!edma)
1286                return -ENOMEM;
1287
1288        dma_dev = &edma->dma_dev;
1289        edma->m2m = platform_get_device_id(pdev)->driver_data;
1290        edma->num_channels = pdata->num_channels;
1291
1292        INIT_LIST_HEAD(&dma_dev->channels);
1293        for (i = 0; i < pdata->num_channels; i++) {
1294                const struct ep93xx_dma_chan_data *cdata = &pdata->channels[i];
1295                struct ep93xx_dma_chan *edmac = &edma->channels[i];
1296
1297                edmac->chan.device = dma_dev;
1298                edmac->regs = cdata->base;
1299                edmac->irq = cdata->irq;
1300                edmac->edma = edma;
1301
1302                edmac->clk = clk_get(NULL, cdata->name);
1303                if (IS_ERR(edmac->clk)) {
1304                        dev_warn(&pdev->dev, "failed to get clock for %s\n",
1305                                 cdata->name);
1306                        continue;
1307                }
1308
1309                spin_lock_init(&edmac->lock);
1310                INIT_LIST_HEAD(&edmac->active);
1311                INIT_LIST_HEAD(&edmac->queue);
1312                INIT_LIST_HEAD(&edmac->free_list);
1313                tasklet_init(&edmac->tasklet, ep93xx_dma_tasklet,
1314                             (unsigned long)edmac);
1315
1316                list_add_tail(&edmac->chan.device_node,
1317                              &dma_dev->channels);
1318        }
1319
1320        dma_cap_zero(dma_dev->cap_mask);
1321        dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
1322        dma_cap_set(DMA_CYCLIC, dma_dev->cap_mask);
1323
1324        dma_dev->dev = &pdev->dev;
1325        dma_dev->device_alloc_chan_resources = ep93xx_dma_alloc_chan_resources;
1326        dma_dev->device_free_chan_resources = ep93xx_dma_free_chan_resources;
1327        dma_dev->device_prep_slave_sg = ep93xx_dma_prep_slave_sg;
1328        dma_dev->device_prep_dma_cyclic = ep93xx_dma_prep_dma_cyclic;
1329        dma_dev->device_config = ep93xx_dma_slave_config;
1330        dma_dev->device_terminate_all = ep93xx_dma_terminate_all;
1331        dma_dev->device_issue_pending = ep93xx_dma_issue_pending;
1332        dma_dev->device_tx_status = ep93xx_dma_tx_status;
1333
1334        dma_set_max_seg_size(dma_dev->dev, DMA_MAX_CHAN_BYTES);
1335
1336        if (edma->m2m) {
1337                dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
1338                dma_dev->device_prep_dma_memcpy = ep93xx_dma_prep_dma_memcpy;
1339
1340                edma->hw_setup = m2m_hw_setup;
1341                edma->hw_shutdown = m2m_hw_shutdown;
1342                edma->hw_submit = m2m_hw_submit;
1343                edma->hw_interrupt = m2m_hw_interrupt;
1344        } else {
1345                dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask);
1346
1347                edma->hw_setup = m2p_hw_setup;
1348                edma->hw_shutdown = m2p_hw_shutdown;
1349                edma->hw_submit = m2p_hw_submit;
1350                edma->hw_interrupt = m2p_hw_interrupt;
1351        }
1352
1353        ret = dma_async_device_register(dma_dev);
1354        if (unlikely(ret)) {
1355                for (i = 0; i < edma->num_channels; i++) {
1356                        struct ep93xx_dma_chan *edmac = &edma->channels[i];
1357                        if (!IS_ERR_OR_NULL(edmac->clk))
1358                                clk_put(edmac->clk);
1359                }
1360                kfree(edma);
1361        } else {
1362                dev_info(dma_dev->dev, "EP93xx M2%s DMA ready\n",
1363                         edma->m2m ? "M" : "P");
1364        }
1365
1366        return ret;
1367}
1368
1369static const struct platform_device_id ep93xx_dma_driver_ids[] = {
1370        { "ep93xx-dma-m2p", 0 },
1371        { "ep93xx-dma-m2m", 1 },
1372        { },
1373};
1374
1375static struct platform_driver ep93xx_dma_driver = {
1376        .driver         = {
1377                .name   = "ep93xx-dma",
1378        },
1379        .id_table       = ep93xx_dma_driver_ids,
1380};
1381
1382static int __init ep93xx_dma_module_init(void)
1383{
1384        return platform_driver_probe(&ep93xx_dma_driver, ep93xx_dma_probe);
1385}
1386subsys_initcall(ep93xx_dma_module_init);
1387
1388MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
1389MODULE_DESCRIPTION("EP93xx DMA driver");
1390MODULE_LICENSE("GPL");
1391