linux/drivers/edac/sb_edac.c
<<
>>
Prefs
   1/* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
   2 *
   3 * This driver supports the memory controllers found on the Intel
   4 * processor family Sandy Bridge.
   5 *
   6 * This file may be distributed under the terms of the
   7 * GNU General Public License version 2 only.
   8 *
   9 * Copyright (c) 2011 by:
  10 *       Mauro Carvalho Chehab
  11 */
  12
  13#include <linux/module.h>
  14#include <linux/init.h>
  15#include <linux/pci.h>
  16#include <linux/pci_ids.h>
  17#include <linux/slab.h>
  18#include <linux/delay.h>
  19#include <linux/edac.h>
  20#include <linux/mmzone.h>
  21#include <linux/smp.h>
  22#include <linux/bitmap.h>
  23#include <linux/math64.h>
  24#include <asm/processor.h>
  25#include <asm/mce.h>
  26
  27#include "edac_core.h"
  28
  29/* Static vars */
  30static LIST_HEAD(sbridge_edac_list);
  31static DEFINE_MUTEX(sbridge_edac_lock);
  32static int probed;
  33
  34/*
  35 * Alter this version for the module when modifications are made
  36 */
  37#define SBRIDGE_REVISION    " Ver: 1.1.1 "
  38#define EDAC_MOD_STR      "sbridge_edac"
  39
  40/*
  41 * Debug macros
  42 */
  43#define sbridge_printk(level, fmt, arg...)                      \
  44        edac_printk(level, "sbridge", fmt, ##arg)
  45
  46#define sbridge_mc_printk(mci, level, fmt, arg...)              \
  47        edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
  48
  49/*
  50 * Get a bit field at register value <v>, from bit <lo> to bit <hi>
  51 */
  52#define GET_BITFIELD(v, lo, hi) \
  53        (((v) & GENMASK_ULL(hi, lo)) >> (lo))
  54
  55/* Devices 12 Function 6, Offsets 0x80 to 0xcc */
  56static const u32 sbridge_dram_rule[] = {
  57        0x80, 0x88, 0x90, 0x98, 0xa0,
  58        0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
  59};
  60
  61static const u32 ibridge_dram_rule[] = {
  62        0x60, 0x68, 0x70, 0x78, 0x80,
  63        0x88, 0x90, 0x98, 0xa0, 0xa8,
  64        0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
  65        0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
  66};
  67
  68static const u32 knl_dram_rule[] = {
  69        0x60, 0x68, 0x70, 0x78, 0x80, /* 0-4 */
  70        0x88, 0x90, 0x98, 0xa0, 0xa8, /* 5-9 */
  71        0xb0, 0xb8, 0xc0, 0xc8, 0xd0, /* 10-14 */
  72        0xd8, 0xe0, 0xe8, 0xf0, 0xf8, /* 15-19 */
  73        0x100, 0x108, 0x110, 0x118,   /* 20-23 */
  74};
  75
  76#define DRAM_RULE_ENABLE(reg)   GET_BITFIELD(reg, 0,  0)
  77#define A7MODE(reg)             GET_BITFIELD(reg, 26, 26)
  78
  79static char *show_dram_attr(u32 attr)
  80{
  81        switch (attr) {
  82                case 0:
  83                        return "DRAM";
  84                case 1:
  85                        return "MMCFG";
  86                case 2:
  87                        return "NXM";
  88                default:
  89                        return "unknown";
  90        }
  91}
  92
  93static const u32 sbridge_interleave_list[] = {
  94        0x84, 0x8c, 0x94, 0x9c, 0xa4,
  95        0xac, 0xb4, 0xbc, 0xc4, 0xcc,
  96};
  97
  98static const u32 ibridge_interleave_list[] = {
  99        0x64, 0x6c, 0x74, 0x7c, 0x84,
 100        0x8c, 0x94, 0x9c, 0xa4, 0xac,
 101        0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
 102        0xdc, 0xe4, 0xec, 0xf4, 0xfc,
 103};
 104
 105static const u32 knl_interleave_list[] = {
 106        0x64, 0x6c, 0x74, 0x7c, 0x84, /* 0-4 */
 107        0x8c, 0x94, 0x9c, 0xa4, 0xac, /* 5-9 */
 108        0xb4, 0xbc, 0xc4, 0xcc, 0xd4, /* 10-14 */
 109        0xdc, 0xe4, 0xec, 0xf4, 0xfc, /* 15-19 */
 110        0x104, 0x10c, 0x114, 0x11c,   /* 20-23 */
 111};
 112
 113struct interleave_pkg {
 114        unsigned char start;
 115        unsigned char end;
 116};
 117
 118static const struct interleave_pkg sbridge_interleave_pkg[] = {
 119        { 0, 2 },
 120        { 3, 5 },
 121        { 8, 10 },
 122        { 11, 13 },
 123        { 16, 18 },
 124        { 19, 21 },
 125        { 24, 26 },
 126        { 27, 29 },
 127};
 128
 129static const struct interleave_pkg ibridge_interleave_pkg[] = {
 130        { 0, 3 },
 131        { 4, 7 },
 132        { 8, 11 },
 133        { 12, 15 },
 134        { 16, 19 },
 135        { 20, 23 },
 136        { 24, 27 },
 137        { 28, 31 },
 138};
 139
 140static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
 141                          int interleave)
 142{
 143        return GET_BITFIELD(reg, table[interleave].start,
 144                            table[interleave].end);
 145}
 146
 147/* Devices 12 Function 7 */
 148
 149#define TOLM            0x80
 150#define TOHM            0x84
 151#define HASWELL_TOLM    0xd0
 152#define HASWELL_TOHM_0  0xd4
 153#define HASWELL_TOHM_1  0xd8
 154#define KNL_TOLM        0xd0
 155#define KNL_TOHM_0      0xd4
 156#define KNL_TOHM_1      0xd8
 157
 158#define GET_TOLM(reg)           ((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff)
 159#define GET_TOHM(reg)           ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
 160
 161/* Device 13 Function 6 */
 162
 163#define SAD_TARGET      0xf0
 164
 165#define SOURCE_ID(reg)          GET_BITFIELD(reg, 9, 11)
 166
 167#define SOURCE_ID_KNL(reg)      GET_BITFIELD(reg, 12, 14)
 168
 169#define SAD_CONTROL     0xf4
 170
 171/* Device 14 function 0 */
 172
 173static const u32 tad_dram_rule[] = {
 174        0x40, 0x44, 0x48, 0x4c,
 175        0x50, 0x54, 0x58, 0x5c,
 176        0x60, 0x64, 0x68, 0x6c,
 177};
 178#define MAX_TAD ARRAY_SIZE(tad_dram_rule)
 179
 180#define TAD_LIMIT(reg)          ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
 181#define TAD_SOCK(reg)           GET_BITFIELD(reg, 10, 11)
 182#define TAD_CH(reg)             GET_BITFIELD(reg,  8,  9)
 183#define TAD_TGT3(reg)           GET_BITFIELD(reg,  6,  7)
 184#define TAD_TGT2(reg)           GET_BITFIELD(reg,  4,  5)
 185#define TAD_TGT1(reg)           GET_BITFIELD(reg,  2,  3)
 186#define TAD_TGT0(reg)           GET_BITFIELD(reg,  0,  1)
 187
 188/* Device 15, function 0 */
 189
 190#define MCMTR                   0x7c
 191#define KNL_MCMTR               0x624
 192
 193#define IS_ECC_ENABLED(mcmtr)           GET_BITFIELD(mcmtr, 2, 2)
 194#define IS_LOCKSTEP_ENABLED(mcmtr)      GET_BITFIELD(mcmtr, 1, 1)
 195#define IS_CLOSE_PG(mcmtr)              GET_BITFIELD(mcmtr, 0, 0)
 196
 197/* Device 15, function 1 */
 198
 199#define RASENABLES              0xac
 200#define IS_MIRROR_ENABLED(reg)          GET_BITFIELD(reg, 0, 0)
 201
 202/* Device 15, functions 2-5 */
 203
 204static const int mtr_regs[] = {
 205        0x80, 0x84, 0x88,
 206};
 207
 208static const int knl_mtr_reg = 0xb60;
 209
 210#define RANK_DISABLE(mtr)               GET_BITFIELD(mtr, 16, 19)
 211#define IS_DIMM_PRESENT(mtr)            GET_BITFIELD(mtr, 14, 14)
 212#define RANK_CNT_BITS(mtr)              GET_BITFIELD(mtr, 12, 13)
 213#define RANK_WIDTH_BITS(mtr)            GET_BITFIELD(mtr, 2, 4)
 214#define COL_WIDTH_BITS(mtr)             GET_BITFIELD(mtr, 0, 1)
 215
 216static const u32 tad_ch_nilv_offset[] = {
 217        0x90, 0x94, 0x98, 0x9c,
 218        0xa0, 0xa4, 0xa8, 0xac,
 219        0xb0, 0xb4, 0xb8, 0xbc,
 220};
 221#define CHN_IDX_OFFSET(reg)             GET_BITFIELD(reg, 28, 29)
 222#define TAD_OFFSET(reg)                 (GET_BITFIELD(reg,  6, 25) << 26)
 223
 224static const u32 rir_way_limit[] = {
 225        0x108, 0x10c, 0x110, 0x114, 0x118,
 226};
 227#define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
 228
 229#define IS_RIR_VALID(reg)       GET_BITFIELD(reg, 31, 31)
 230#define RIR_WAY(reg)            GET_BITFIELD(reg, 28, 29)
 231
 232#define MAX_RIR_WAY     8
 233
 234static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
 235        { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
 236        { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
 237        { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
 238        { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
 239        { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
 240};
 241
 242#define RIR_RNK_TGT(reg)                GET_BITFIELD(reg, 16, 19)
 243#define RIR_OFFSET(reg)         GET_BITFIELD(reg,  2, 14)
 244
 245/* Device 16, functions 2-7 */
 246
 247/*
 248 * FIXME: Implement the error count reads directly
 249 */
 250
 251static const u32 correrrcnt[] = {
 252        0x104, 0x108, 0x10c, 0x110,
 253};
 254
 255#define RANK_ODD_OV(reg)                GET_BITFIELD(reg, 31, 31)
 256#define RANK_ODD_ERR_CNT(reg)           GET_BITFIELD(reg, 16, 30)
 257#define RANK_EVEN_OV(reg)               GET_BITFIELD(reg, 15, 15)
 258#define RANK_EVEN_ERR_CNT(reg)          GET_BITFIELD(reg,  0, 14)
 259
 260static const u32 correrrthrsld[] = {
 261        0x11c, 0x120, 0x124, 0x128,
 262};
 263
 264#define RANK_ODD_ERR_THRSLD(reg)        GET_BITFIELD(reg, 16, 30)
 265#define RANK_EVEN_ERR_THRSLD(reg)       GET_BITFIELD(reg,  0, 14)
 266
 267
 268/* Device 17, function 0 */
 269
 270#define SB_RANK_CFG_A           0x0328
 271
 272#define IB_RANK_CFG_A           0x0320
 273
 274/*
 275 * sbridge structs
 276 */
 277
 278#define NUM_CHANNELS            8       /* 2MC per socket, four chan per MC */
 279#define MAX_DIMMS               3       /* Max DIMMS per channel */
 280#define KNL_MAX_CHAS            38      /* KNL max num. of Cache Home Agents */
 281#define KNL_MAX_CHANNELS        6       /* KNL max num. of PCI channels */
 282#define KNL_MAX_EDCS            8       /* Embedded DRAM controllers */
 283#define CHANNEL_UNSPECIFIED     0xf     /* Intel IA32 SDM 15-14 */
 284
 285enum type {
 286        SANDY_BRIDGE,
 287        IVY_BRIDGE,
 288        HASWELL,
 289        BROADWELL,
 290        KNIGHTS_LANDING,
 291};
 292
 293struct sbridge_pvt;
 294struct sbridge_info {
 295        enum type       type;
 296        u32             mcmtr;
 297        u32             rankcfgr;
 298        u64             (*get_tolm)(struct sbridge_pvt *pvt);
 299        u64             (*get_tohm)(struct sbridge_pvt *pvt);
 300        u64             (*rir_limit)(u32 reg);
 301        u64             (*sad_limit)(u32 reg);
 302        u32             (*interleave_mode)(u32 reg);
 303        char*           (*show_interleave_mode)(u32 reg);
 304        u32             (*dram_attr)(u32 reg);
 305        const u32       *dram_rule;
 306        const u32       *interleave_list;
 307        const struct interleave_pkg *interleave_pkg;
 308        u8              max_sad;
 309        u8              max_interleave;
 310        u8              (*get_node_id)(struct sbridge_pvt *pvt);
 311        enum mem_type   (*get_memory_type)(struct sbridge_pvt *pvt);
 312        enum dev_type   (*get_width)(struct sbridge_pvt *pvt, u32 mtr);
 313        struct pci_dev  *pci_vtd;
 314};
 315
 316struct sbridge_channel {
 317        u32             ranks;
 318        u32             dimms;
 319};
 320
 321struct pci_id_descr {
 322        int                     dev_id;
 323        int                     optional;
 324};
 325
 326struct pci_id_table {
 327        const struct pci_id_descr       *descr;
 328        int                             n_devs;
 329};
 330
 331struct sbridge_dev {
 332        struct list_head        list;
 333        u8                      bus, mc;
 334        u8                      node_id, source_id;
 335        struct pci_dev          **pdev;
 336        int                     n_devs;
 337        struct mem_ctl_info     *mci;
 338};
 339
 340struct knl_pvt {
 341        struct pci_dev          *pci_cha[KNL_MAX_CHAS];
 342        struct pci_dev          *pci_channel[KNL_MAX_CHANNELS];
 343        struct pci_dev          *pci_mc0;
 344        struct pci_dev          *pci_mc1;
 345        struct pci_dev          *pci_mc0_misc;
 346        struct pci_dev          *pci_mc1_misc;
 347        struct pci_dev          *pci_mc_info; /* tolm, tohm */
 348};
 349
 350struct sbridge_pvt {
 351        struct pci_dev          *pci_ta, *pci_ddrio, *pci_ras;
 352        struct pci_dev          *pci_sad0, *pci_sad1;
 353        struct pci_dev          *pci_ha0, *pci_ha1;
 354        struct pci_dev          *pci_br0, *pci_br1;
 355        struct pci_dev          *pci_ha1_ta;
 356        struct pci_dev          *pci_tad[NUM_CHANNELS];
 357
 358        struct sbridge_dev      *sbridge_dev;
 359
 360        struct sbridge_info     info;
 361        struct sbridge_channel  channel[NUM_CHANNELS];
 362
 363        /* Memory type detection */
 364        bool                    is_mirrored, is_lockstep, is_close_pg;
 365        bool                    is_chan_hash;
 366
 367        /* Fifo double buffers */
 368        struct mce              mce_entry[MCE_LOG_LEN];
 369        struct mce              mce_outentry[MCE_LOG_LEN];
 370
 371        /* Fifo in/out counters */
 372        unsigned                mce_in, mce_out;
 373
 374        /* Count indicator to show errors not got */
 375        unsigned                mce_overrun;
 376
 377        /* Memory description */
 378        u64                     tolm, tohm;
 379        struct knl_pvt knl;
 380};
 381
 382#define PCI_DESCR(device_id, opt)       \
 383        .dev_id = (device_id),          \
 384        .optional = opt
 385
 386static const struct pci_id_descr pci_dev_descr_sbridge[] = {
 387                /* Processor Home Agent */
 388        { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0, 0)     },
 389
 390                /* Memory controller */
 391        { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA, 0)      },
 392        { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS, 0)     },
 393        { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0, 0)    },
 394        { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1, 0)    },
 395        { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2, 0)    },
 396        { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3, 0)    },
 397        { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1)   },
 398
 399                /* System Address Decoder */
 400        { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0, 0)        },
 401        { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1, 0)        },
 402
 403                /* Broadcast Registers */
 404        { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR, 0)          },
 405};
 406
 407#define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
 408static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
 409        PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge),
 410        {0,}                    /* 0 terminated list. */
 411};
 412
 413/* This changes depending if 1HA or 2HA:
 414 * 1HA:
 415 *      0x0eb8 (17.0) is DDRIO0
 416 * 2HA:
 417 *      0x0ebc (17.4) is DDRIO0
 418 */
 419#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0      0x0eb8
 420#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0      0x0ebc
 421
 422/* pci ids */
 423#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0             0x0ea0
 424#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA          0x0ea8
 425#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS         0x0e71
 426#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0        0x0eaa
 427#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1        0x0eab
 428#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2        0x0eac
 429#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3        0x0ead
 430#define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD                 0x0ec8
 431#define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0                 0x0ec9
 432#define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1                 0x0eca
 433#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1             0x0e60
 434#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA          0x0e68
 435#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS         0x0e79
 436#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0        0x0e6a
 437#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1        0x0e6b
 438#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2        0x0e6c
 439#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3        0x0e6d
 440
 441static const struct pci_id_descr pci_dev_descr_ibridge[] = {
 442                /* Processor Home Agent */
 443        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0, 0)             },
 444
 445                /* Memory controller */
 446        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA, 0)          },
 447        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS, 0)         },
 448        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0, 0)        },
 449        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1, 0)        },
 450        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2, 0)        },
 451        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3, 0)        },
 452
 453                /* System Address Decoder */
 454        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD, 0)                 },
 455
 456                /* Broadcast Registers */
 457        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0, 1)                 },
 458        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1, 0)                 },
 459
 460                /* Optional, mode 2HA */
 461        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1, 1)             },
 462#if 0
 463        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA, 1)  },
 464        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS, 1) },
 465#endif
 466        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0, 1)        },
 467        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1, 1)        },
 468        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2, 1)        },
 469        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3, 1)        },
 470
 471        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1)      },
 472        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1)      },
 473};
 474
 475static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
 476        PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge),
 477        {0,}                    /* 0 terminated list. */
 478};
 479
 480/* Haswell support */
 481/* EN processor:
 482 *      - 1 IMC
 483 *      - 3 DDR3 channels, 2 DPC per channel
 484 * EP processor:
 485 *      - 1 or 2 IMC
 486 *      - 4 DDR4 channels, 3 DPC per channel
 487 * EP 4S processor:
 488 *      - 2 IMC
 489 *      - 4 DDR4 channels, 3 DPC per channel
 490 * EX processor:
 491 *      - 2 IMC
 492 *      - each IMC interfaces with a SMI 2 channel
 493 *      - each SMI channel interfaces with a scalable memory buffer
 494 *      - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
 495 */
 496#define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
 497#define HASWELL_HASYSDEFEATURE2 0x84
 498#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
 499#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0     0x2fa0
 500#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1     0x2f60
 501#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA  0x2fa8
 502#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL 0x2f71
 503#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA  0x2f68
 504#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL 0x2f79
 505#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
 506#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
 507#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
 508#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
 509#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
 510#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
 511#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
 512#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
 513#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
 514#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
 515#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
 516#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf
 517#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9
 518#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb
 519static const struct pci_id_descr pci_dev_descr_haswell[] = {
 520        /* first item must be the HA */
 521        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0, 0)             },
 522
 523        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0)        },
 524        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0)        },
 525
 526        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1, 1)             },
 527
 528        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA, 0)          },
 529        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL, 0)     },
 530        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0)        },
 531        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0)        },
 532        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1)        },
 533        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1)        },
 534
 535        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0, 1)          },
 536        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1, 1)          },
 537        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2, 1)          },
 538        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3, 1)          },
 539
 540        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA, 1)          },
 541        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL, 1)     },
 542        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1)        },
 543        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1)        },
 544        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1)        },
 545        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1)        },
 546};
 547
 548static const struct pci_id_table pci_dev_descr_haswell_table[] = {
 549        PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell),
 550        {0,}                    /* 0 terminated list. */
 551};
 552
 553/* Knight's Landing Support */
 554/*
 555 * KNL's memory channels are swizzled between memory controllers.
 556 * MC0 is mapped to CH3,5,6 and MC1 is mapped to CH0,1,2
 557 */
 558#define knl_channel_remap(channel) ((channel + 3) % 6)
 559
 560/* Memory controller, TAD tables, error injection - 2-8-0, 2-9-0 (2 of these) */
 561#define PCI_DEVICE_ID_INTEL_KNL_IMC_MC       0x7840
 562/* DRAM channel stuff; bank addrs, dimmmtr, etc.. 2-8-2 - 2-9-4 (6 of these) */
 563#define PCI_DEVICE_ID_INTEL_KNL_IMC_CHANNEL  0x7843
 564/* kdrwdbu TAD limits/offsets, MCMTR - 2-10-1, 2-11-1 (2 of these) */
 565#define PCI_DEVICE_ID_INTEL_KNL_IMC_TA       0x7844
 566/* CHA broadcast registers, dram rules - 1-29-0 (1 of these) */
 567#define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0     0x782a
 568/* SAD target - 1-29-1 (1 of these) */
 569#define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1     0x782b
 570/* Caching / Home Agent */
 571#define PCI_DEVICE_ID_INTEL_KNL_IMC_CHA      0x782c
 572/* Device with TOLM and TOHM, 0-5-0 (1 of these) */
 573#define PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM    0x7810
 574
 575/*
 576 * KNL differs from SB, IB, and Haswell in that it has multiple
 577 * instances of the same device with the same device ID, so we handle that
 578 * by creating as many copies in the table as we expect to find.
 579 * (Like device ID must be grouped together.)
 580 */
 581
 582static const struct pci_id_descr pci_dev_descr_knl[] = {
 583        [0]         = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0, 0) },
 584        [1]         = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1, 0) },
 585        [2 ... 3]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_MC, 0)},
 586        [4 ... 41]  = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHA, 0) },
 587        [42 ... 47] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHANNEL, 0) },
 588        [48]        = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TA, 0) },
 589        [49]        = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM, 0) },
 590};
 591
 592static const struct pci_id_table pci_dev_descr_knl_table[] = {
 593        PCI_ID_TABLE_ENTRY(pci_dev_descr_knl),
 594        {0,}
 595};
 596
 597/*
 598 * Broadwell support
 599 *
 600 * DE processor:
 601 *      - 1 IMC
 602 *      - 2 DDR3 channels, 2 DPC per channel
 603 * EP processor:
 604 *      - 1 or 2 IMC
 605 *      - 4 DDR4 channels, 3 DPC per channel
 606 * EP 4S processor:
 607 *      - 2 IMC
 608 *      - 4 DDR4 channels, 3 DPC per channel
 609 * EX processor:
 610 *      - 2 IMC
 611 *      - each IMC interfaces with a SMI 2 channel
 612 *      - each SMI channel interfaces with a scalable memory buffer
 613 *      - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
 614 */
 615#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
 616#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0   0x6fa0
 617#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1   0x6f60
 618#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA        0x6fa8
 619#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL 0x6f71
 620#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA        0x6f68
 621#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_THERMAL 0x6f79
 622#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
 623#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
 624#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
 625#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
 626#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
 627#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
 628#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a
 629#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b
 630#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c
 631#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d
 632#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
 633
 634static const struct pci_id_descr pci_dev_descr_broadwell[] = {
 635        /* first item must be the HA */
 636        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0, 0)           },
 637
 638        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0)      },
 639        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0)      },
 640
 641        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1, 1)           },
 642
 643        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA, 0)        },
 644        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL, 0)   },
 645        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0)      },
 646        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0)      },
 647        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 1)      },
 648        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 1)      },
 649
 650        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0, 1)        },
 651
 652        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA, 1)        },
 653        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_THERMAL, 1)   },
 654        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0, 1)      },
 655        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1, 1)      },
 656        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2, 1)      },
 657        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3, 1)      },
 658};
 659
 660static const struct pci_id_table pci_dev_descr_broadwell_table[] = {
 661        PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell),
 662        {0,}                    /* 0 terminated list. */
 663};
 664
 665/*
 666 *      pci_device_id   table for which devices we are looking for
 667 */
 668static const struct pci_device_id sbridge_pci_tbl[] = {
 669        {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0)},
 670        {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA)},
 671        {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0)},
 672        {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0)},
 673        {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0)},
 674        {0,}                    /* 0 terminated list. */
 675};
 676
 677
 678/****************************************************************************
 679                        Ancillary status routines
 680 ****************************************************************************/
 681
 682static inline int numrank(enum type type, u32 mtr)
 683{
 684        int ranks = (1 << RANK_CNT_BITS(mtr));
 685        int max = 4;
 686
 687        if (type == HASWELL || type == BROADWELL || type == KNIGHTS_LANDING)
 688                max = 8;
 689
 690        if (ranks > max) {
 691                edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
 692                         ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
 693                return -EINVAL;
 694        }
 695
 696        return ranks;
 697}
 698
 699static inline int numrow(u32 mtr)
 700{
 701        int rows = (RANK_WIDTH_BITS(mtr) + 12);
 702
 703        if (rows < 13 || rows > 18) {
 704                edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
 705                         rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
 706                return -EINVAL;
 707        }
 708
 709        return 1 << rows;
 710}
 711
 712static inline int numcol(u32 mtr)
 713{
 714        int cols = (COL_WIDTH_BITS(mtr) + 10);
 715
 716        if (cols > 12) {
 717                edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
 718                         cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
 719                return -EINVAL;
 720        }
 721
 722        return 1 << cols;
 723}
 724
 725static struct sbridge_dev *get_sbridge_dev(u8 bus, int multi_bus)
 726{
 727        struct sbridge_dev *sbridge_dev;
 728
 729        /*
 730         * If we have devices scattered across several busses that pertain
 731         * to the same memory controller, we'll lump them all together.
 732         */
 733        if (multi_bus) {
 734                return list_first_entry_or_null(&sbridge_edac_list,
 735                                struct sbridge_dev, list);
 736        }
 737
 738        list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
 739                if (sbridge_dev->bus == bus)
 740                        return sbridge_dev;
 741        }
 742
 743        return NULL;
 744}
 745
 746static struct sbridge_dev *alloc_sbridge_dev(u8 bus,
 747                                           const struct pci_id_table *table)
 748{
 749        struct sbridge_dev *sbridge_dev;
 750
 751        sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
 752        if (!sbridge_dev)
 753                return NULL;
 754
 755        sbridge_dev->pdev = kzalloc(sizeof(*sbridge_dev->pdev) * table->n_devs,
 756                                   GFP_KERNEL);
 757        if (!sbridge_dev->pdev) {
 758                kfree(sbridge_dev);
 759                return NULL;
 760        }
 761
 762        sbridge_dev->bus = bus;
 763        sbridge_dev->n_devs = table->n_devs;
 764        list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
 765
 766        return sbridge_dev;
 767}
 768
 769static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
 770{
 771        list_del(&sbridge_dev->list);
 772        kfree(sbridge_dev->pdev);
 773        kfree(sbridge_dev);
 774}
 775
 776static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
 777{
 778        u32 reg;
 779
 780        /* Address range is 32:28 */
 781        pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
 782        return GET_TOLM(reg);
 783}
 784
 785static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
 786{
 787        u32 reg;
 788
 789        pci_read_config_dword(pvt->pci_sad1, TOHM, &reg);
 790        return GET_TOHM(reg);
 791}
 792
 793static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
 794{
 795        u32 reg;
 796
 797        pci_read_config_dword(pvt->pci_br1, TOLM, &reg);
 798
 799        return GET_TOLM(reg);
 800}
 801
 802static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
 803{
 804        u32 reg;
 805
 806        pci_read_config_dword(pvt->pci_br1, TOHM, &reg);
 807
 808        return GET_TOHM(reg);
 809}
 810
 811static u64 rir_limit(u32 reg)
 812{
 813        return ((u64)GET_BITFIELD(reg,  1, 10) << 29) | 0x1fffffff;
 814}
 815
 816static u64 sad_limit(u32 reg)
 817{
 818        return (GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff;
 819}
 820
 821static u32 interleave_mode(u32 reg)
 822{
 823        return GET_BITFIELD(reg, 1, 1);
 824}
 825
 826char *show_interleave_mode(u32 reg)
 827{
 828        return interleave_mode(reg) ? "8:6" : "[8:6]XOR[18:16]";
 829}
 830
 831static u32 dram_attr(u32 reg)
 832{
 833        return GET_BITFIELD(reg, 2, 3);
 834}
 835
 836static u64 knl_sad_limit(u32 reg)
 837{
 838        return (GET_BITFIELD(reg, 7, 26) << 26) | 0x3ffffff;
 839}
 840
 841static u32 knl_interleave_mode(u32 reg)
 842{
 843        return GET_BITFIELD(reg, 1, 2);
 844}
 845
 846static char *knl_show_interleave_mode(u32 reg)
 847{
 848        char *s;
 849
 850        switch (knl_interleave_mode(reg)) {
 851        case 0:
 852                s = "use address bits [8:6]";
 853                break;
 854        case 1:
 855                s = "use address bits [10:8]";
 856                break;
 857        case 2:
 858                s = "use address bits [14:12]";
 859                break;
 860        case 3:
 861                s = "use address bits [32:30]";
 862                break;
 863        default:
 864                WARN_ON(1);
 865                break;
 866        }
 867
 868        return s;
 869}
 870
 871static u32 dram_attr_knl(u32 reg)
 872{
 873        return GET_BITFIELD(reg, 3, 4);
 874}
 875
 876
 877static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
 878{
 879        u32 reg;
 880        enum mem_type mtype;
 881
 882        if (pvt->pci_ddrio) {
 883                pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
 884                                      &reg);
 885                if (GET_BITFIELD(reg, 11, 11))
 886                        /* FIXME: Can also be LRDIMM */
 887                        mtype = MEM_RDDR3;
 888                else
 889                        mtype = MEM_DDR3;
 890        } else
 891                mtype = MEM_UNKNOWN;
 892
 893        return mtype;
 894}
 895
 896static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
 897{
 898        u32 reg;
 899        bool registered = false;
 900        enum mem_type mtype = MEM_UNKNOWN;
 901
 902        if (!pvt->pci_ddrio)
 903                goto out;
 904
 905        pci_read_config_dword(pvt->pci_ddrio,
 906                              HASWELL_DDRCRCLKCONTROLS, &reg);
 907        /* Is_Rdimm */
 908        if (GET_BITFIELD(reg, 16, 16))
 909                registered = true;
 910
 911        pci_read_config_dword(pvt->pci_ta, MCMTR, &reg);
 912        if (GET_BITFIELD(reg, 14, 14)) {
 913                if (registered)
 914                        mtype = MEM_RDDR4;
 915                else
 916                        mtype = MEM_DDR4;
 917        } else {
 918                if (registered)
 919                        mtype = MEM_RDDR3;
 920                else
 921                        mtype = MEM_DDR3;
 922        }
 923
 924out:
 925        return mtype;
 926}
 927
 928static enum dev_type knl_get_width(struct sbridge_pvt *pvt, u32 mtr)
 929{
 930        /* for KNL value is fixed */
 931        return DEV_X16;
 932}
 933
 934static enum dev_type sbridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
 935{
 936        /* there's no way to figure out */
 937        return DEV_UNKNOWN;
 938}
 939
 940static enum dev_type __ibridge_get_width(u32 mtr)
 941{
 942        enum dev_type type;
 943
 944        switch (mtr) {
 945        case 3:
 946                type = DEV_UNKNOWN;
 947                break;
 948        case 2:
 949                type = DEV_X16;
 950                break;
 951        case 1:
 952                type = DEV_X8;
 953                break;
 954        case 0:
 955                type = DEV_X4;
 956                break;
 957        }
 958
 959        return type;
 960}
 961
 962static enum dev_type ibridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
 963{
 964        /*
 965         * ddr3_width on the documentation but also valid for DDR4 on
 966         * Haswell
 967         */
 968        return __ibridge_get_width(GET_BITFIELD(mtr, 7, 8));
 969}
 970
 971static enum dev_type broadwell_get_width(struct sbridge_pvt *pvt, u32 mtr)
 972{
 973        /* ddr3_width on the documentation but also valid for DDR4 */
 974        return __ibridge_get_width(GET_BITFIELD(mtr, 8, 9));
 975}
 976
 977static enum mem_type knl_get_memory_type(struct sbridge_pvt *pvt)
 978{
 979        /* DDR4 RDIMMS and LRDIMMS are supported */
 980        return MEM_RDDR4;
 981}
 982
 983static u8 get_node_id(struct sbridge_pvt *pvt)
 984{
 985        u32 reg;
 986        pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
 987        return GET_BITFIELD(reg, 0, 2);
 988}
 989
 990static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
 991{
 992        u32 reg;
 993
 994        pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
 995        return GET_BITFIELD(reg, 0, 3);
 996}
 997
 998static u8 knl_get_node_id(struct sbridge_pvt *pvt)
 999{
1000        u32 reg;
1001
1002        pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
1003        return GET_BITFIELD(reg, 0, 2);
1004}
1005
1006
1007static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
1008{
1009        u32 reg;
1010
1011        pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, &reg);
1012        return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1013}
1014
1015static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
1016{
1017        u64 rc;
1018        u32 reg;
1019
1020        pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, &reg);
1021        rc = GET_BITFIELD(reg, 26, 31);
1022        pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, &reg);
1023        rc = ((reg << 6) | rc) << 26;
1024
1025        return rc | 0x1ffffff;
1026}
1027
1028static u64 knl_get_tolm(struct sbridge_pvt *pvt)
1029{
1030        u32 reg;
1031
1032        pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOLM, &reg);
1033        return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1034}
1035
1036static u64 knl_get_tohm(struct sbridge_pvt *pvt)
1037{
1038        u64 rc;
1039        u32 reg_lo, reg_hi;
1040
1041        pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_0, &reg_lo);
1042        pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_1, &reg_hi);
1043        rc = ((u64)reg_hi << 32) | reg_lo;
1044        return rc | 0x3ffffff;
1045}
1046
1047
1048static u64 haswell_rir_limit(u32 reg)
1049{
1050        return (((u64)GET_BITFIELD(reg,  1, 11) + 1) << 29) - 1;
1051}
1052
1053static inline u8 sad_pkg_socket(u8 pkg)
1054{
1055        /* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
1056        return ((pkg >> 3) << 2) | (pkg & 0x3);
1057}
1058
1059static inline u8 sad_pkg_ha(u8 pkg)
1060{
1061        return (pkg >> 2) & 0x1;
1062}
1063
1064static int haswell_chan_hash(int idx, u64 addr)
1065{
1066        int i;
1067
1068        /*
1069         * XOR even bits from 12:26 to bit0 of idx,
1070         *     odd bits from 13:27 to bit1
1071         */
1072        for (i = 12; i < 28; i += 2)
1073                idx ^= (addr >> i) & 3;
1074
1075        return idx;
1076}
1077
1078/****************************************************************************
1079                        Memory check routines
1080 ****************************************************************************/
1081static struct pci_dev *get_pdev_same_bus(u8 bus, u32 id)
1082{
1083        struct pci_dev *pdev = NULL;
1084
1085        do {
1086                pdev = pci_get_device(PCI_VENDOR_ID_INTEL, id, pdev);
1087                if (pdev && pdev->bus->number == bus)
1088                        break;
1089        } while (pdev);
1090
1091        return pdev;
1092}
1093
1094/**
1095 * check_if_ecc_is_active() - Checks if ECC is active
1096 * @bus:        Device bus
1097 * @type:       Memory controller type
1098 * returns: 0 in case ECC is active, -ENODEV if it can't be determined or
1099 *          disabled
1100 */
1101static int check_if_ecc_is_active(const u8 bus, enum type type)
1102{
1103        struct pci_dev *pdev = NULL;
1104        u32 mcmtr, id;
1105
1106        switch (type) {
1107        case IVY_BRIDGE:
1108                id = PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA;
1109                break;
1110        case HASWELL:
1111                id = PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA;
1112                break;
1113        case SANDY_BRIDGE:
1114                id = PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA;
1115                break;
1116        case BROADWELL:
1117                id = PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA;
1118                break;
1119        case KNIGHTS_LANDING:
1120                /*
1121                 * KNL doesn't group things by bus the same way
1122                 * SB/IB/Haswell does.
1123                 */
1124                id = PCI_DEVICE_ID_INTEL_KNL_IMC_TA;
1125                break;
1126        default:
1127                return -ENODEV;
1128        }
1129
1130        if (type != KNIGHTS_LANDING)
1131                pdev = get_pdev_same_bus(bus, id);
1132        else
1133                pdev = pci_get_device(PCI_VENDOR_ID_INTEL, id, 0);
1134
1135        if (!pdev) {
1136                sbridge_printk(KERN_ERR, "Couldn't find PCI device "
1137                                        "%04x:%04x! on bus %02d\n",
1138                                        PCI_VENDOR_ID_INTEL, id, bus);
1139                return -ENODEV;
1140        }
1141
1142        pci_read_config_dword(pdev,
1143                        type == KNIGHTS_LANDING ? KNL_MCMTR : MCMTR, &mcmtr);
1144        if (!IS_ECC_ENABLED(mcmtr)) {
1145                sbridge_printk(KERN_ERR, "ECC is disabled. Aborting\n");
1146                return -ENODEV;
1147        }
1148        return 0;
1149}
1150
1151/* Low bits of TAD limit, and some metadata. */
1152static const u32 knl_tad_dram_limit_lo[] = {
1153        0x400, 0x500, 0x600, 0x700,
1154        0x800, 0x900, 0xa00, 0xb00,
1155};
1156
1157/* Low bits of TAD offset. */
1158static const u32 knl_tad_dram_offset_lo[] = {
1159        0x404, 0x504, 0x604, 0x704,
1160        0x804, 0x904, 0xa04, 0xb04,
1161};
1162
1163/* High 16 bits of TAD limit and offset. */
1164static const u32 knl_tad_dram_hi[] = {
1165        0x408, 0x508, 0x608, 0x708,
1166        0x808, 0x908, 0xa08, 0xb08,
1167};
1168
1169/* Number of ways a tad entry is interleaved. */
1170static const u32 knl_tad_ways[] = {
1171        8, 6, 4, 3, 2, 1,
1172};
1173
1174/*
1175 * Retrieve the n'th Target Address Decode table entry
1176 * from the memory controller's TAD table.
1177 *
1178 * @pvt:        driver private data
1179 * @entry:      which entry you want to retrieve
1180 * @mc:         which memory controller (0 or 1)
1181 * @offset:     output tad range offset
1182 * @limit:      output address of first byte above tad range
1183 * @ways:       output number of interleave ways
1184 *
1185 * The offset value has curious semantics.  It's a sort of running total
1186 * of the sizes of all the memory regions that aren't mapped in this
1187 * tad table.
1188 */
1189static int knl_get_tad(const struct sbridge_pvt *pvt,
1190                const int entry,
1191                const int mc,
1192                u64 *offset,
1193                u64 *limit,
1194                int *ways)
1195{
1196        u32 reg_limit_lo, reg_offset_lo, reg_hi;
1197        struct pci_dev *pci_mc;
1198        int way_id;
1199
1200        switch (mc) {
1201        case 0:
1202                pci_mc = pvt->knl.pci_mc0;
1203                break;
1204        case 1:
1205                pci_mc = pvt->knl.pci_mc1;
1206                break;
1207        default:
1208                WARN_ON(1);
1209                return -EINVAL;
1210        }
1211
1212        pci_read_config_dword(pci_mc,
1213                        knl_tad_dram_limit_lo[entry], &reg_limit_lo);
1214        pci_read_config_dword(pci_mc,
1215                        knl_tad_dram_offset_lo[entry], &reg_offset_lo);
1216        pci_read_config_dword(pci_mc,
1217                        knl_tad_dram_hi[entry], &reg_hi);
1218
1219        /* Is this TAD entry enabled? */
1220        if (!GET_BITFIELD(reg_limit_lo, 0, 0))
1221                return -ENODEV;
1222
1223        way_id = GET_BITFIELD(reg_limit_lo, 3, 5);
1224
1225        if (way_id < ARRAY_SIZE(knl_tad_ways)) {
1226                *ways = knl_tad_ways[way_id];
1227        } else {
1228                *ways = 0;
1229                sbridge_printk(KERN_ERR,
1230                                "Unexpected value %d in mc_tad_limit_lo wayness field\n",
1231                                way_id);
1232                return -ENODEV;
1233        }
1234
1235        /*
1236         * The least significant 6 bits of base and limit are truncated.
1237         * For limit, we fill the missing bits with 1s.
1238         */
1239        *offset = ((u64) GET_BITFIELD(reg_offset_lo, 6, 31) << 6) |
1240                                ((u64) GET_BITFIELD(reg_hi, 0,  15) << 32);
1241        *limit = ((u64) GET_BITFIELD(reg_limit_lo,  6, 31) << 6) | 63 |
1242                                ((u64) GET_BITFIELD(reg_hi, 16, 31) << 32);
1243
1244        return 0;
1245}
1246
1247/* Determine which memory controller is responsible for a given channel. */
1248static int knl_channel_mc(int channel)
1249{
1250        WARN_ON(channel < 0 || channel >= 6);
1251
1252        return channel < 3 ? 1 : 0;
1253}
1254
1255/*
1256 * Get the Nth entry from EDC_ROUTE_TABLE register.
1257 * (This is the per-tile mapping of logical interleave targets to
1258 *  physical EDC modules.)
1259 *
1260 * entry 0: 0:2
1261 *       1: 3:5
1262 *       2: 6:8
1263 *       3: 9:11
1264 *       4: 12:14
1265 *       5: 15:17
1266 *       6: 18:20
1267 *       7: 21:23
1268 * reserved: 24:31
1269 */
1270static u32 knl_get_edc_route(int entry, u32 reg)
1271{
1272        WARN_ON(entry >= KNL_MAX_EDCS);
1273        return GET_BITFIELD(reg, entry*3, (entry*3)+2);
1274}
1275
1276/*
1277 * Get the Nth entry from MC_ROUTE_TABLE register.
1278 * (This is the per-tile mapping of logical interleave targets to
1279 *  physical DRAM channels modules.)
1280 *
1281 * entry 0: mc 0:2   channel 18:19
1282 *       1: mc 3:5   channel 20:21
1283 *       2: mc 6:8   channel 22:23
1284 *       3: mc 9:11  channel 24:25
1285 *       4: mc 12:14 channel 26:27
1286 *       5: mc 15:17 channel 28:29
1287 * reserved: 30:31
1288 *
1289 * Though we have 3 bits to identify the MC, we should only see
1290 * the values 0 or 1.
1291 */
1292
1293static u32 knl_get_mc_route(int entry, u32 reg)
1294{
1295        int mc, chan;
1296
1297        WARN_ON(entry >= KNL_MAX_CHANNELS);
1298
1299        mc = GET_BITFIELD(reg, entry*3, (entry*3)+2);
1300        chan = GET_BITFIELD(reg, (entry*2) + 18, (entry*2) + 18 + 1);
1301
1302        return knl_channel_remap(mc*3 + chan);
1303}
1304
1305/*
1306 * Render the EDC_ROUTE register in human-readable form.
1307 * Output string s should be at least KNL_MAX_EDCS*2 bytes.
1308 */
1309static void knl_show_edc_route(u32 reg, char *s)
1310{
1311        int i;
1312
1313        for (i = 0; i < KNL_MAX_EDCS; i++) {
1314                s[i*2] = knl_get_edc_route(i, reg) + '0';
1315                s[i*2+1] = '-';
1316        }
1317
1318        s[KNL_MAX_EDCS*2 - 1] = '\0';
1319}
1320
1321/*
1322 * Render the MC_ROUTE register in human-readable form.
1323 * Output string s should be at least KNL_MAX_CHANNELS*2 bytes.
1324 */
1325static void knl_show_mc_route(u32 reg, char *s)
1326{
1327        int i;
1328
1329        for (i = 0; i < KNL_MAX_CHANNELS; i++) {
1330                s[i*2] = knl_get_mc_route(i, reg) + '0';
1331                s[i*2+1] = '-';
1332        }
1333
1334        s[KNL_MAX_CHANNELS*2 - 1] = '\0';
1335}
1336
1337#define KNL_EDC_ROUTE 0xb8
1338#define KNL_MC_ROUTE 0xb4
1339
1340/* Is this dram rule backed by regular DRAM in flat mode? */
1341#define KNL_EDRAM(reg) GET_BITFIELD(reg, 29, 29)
1342
1343/* Is this dram rule cached? */
1344#define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1345
1346/* Is this rule backed by edc ? */
1347#define KNL_EDRAM_ONLY(reg) GET_BITFIELD(reg, 29, 29)
1348
1349/* Is this rule backed by DRAM, cacheable in EDRAM? */
1350#define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1351
1352/* Is this rule mod3? */
1353#define KNL_MOD3(reg) GET_BITFIELD(reg, 27, 27)
1354
1355/*
1356 * Figure out how big our RAM modules are.
1357 *
1358 * The DIMMMTR register in KNL doesn't tell us the size of the DIMMs, so we
1359 * have to figure this out from the SAD rules, interleave lists, route tables,
1360 * and TAD rules.
1361 *
1362 * SAD rules can have holes in them (e.g. the 3G-4G hole), so we have to
1363 * inspect the TAD rules to figure out how large the SAD regions really are.
1364 *
1365 * When we know the real size of a SAD region and how many ways it's
1366 * interleaved, we know the individual contribution of each channel to
1367 * TAD is size/ways.
1368 *
1369 * Finally, we have to check whether each channel participates in each SAD
1370 * region.
1371 *
1372 * Fortunately, KNL only supports one DIMM per channel, so once we know how
1373 * much memory the channel uses, we know the DIMM is at least that large.
1374 * (The BIOS might possibly choose not to map all available memory, in which
1375 * case we will underreport the size of the DIMM.)
1376 *
1377 * In theory, we could try to determine the EDC sizes as well, but that would
1378 * only work in flat mode, not in cache mode.
1379 *
1380 * @mc_sizes: Output sizes of channels (must have space for KNL_MAX_CHANNELS
1381 *            elements)
1382 */
1383static int knl_get_dimm_capacity(struct sbridge_pvt *pvt, u64 *mc_sizes)
1384{
1385        u64 sad_base, sad_size, sad_limit = 0;
1386        u64 tad_base, tad_size, tad_limit, tad_deadspace, tad_livespace;
1387        int sad_rule = 0;
1388        int tad_rule = 0;
1389        int intrlv_ways, tad_ways;
1390        u32 first_pkg, pkg;
1391        int i;
1392        u64 sad_actual_size[2]; /* sad size accounting for holes, per mc */
1393        u32 dram_rule, interleave_reg;
1394        u32 mc_route_reg[KNL_MAX_CHAS];
1395        u32 edc_route_reg[KNL_MAX_CHAS];
1396        int edram_only;
1397        char edc_route_string[KNL_MAX_EDCS*2];
1398        char mc_route_string[KNL_MAX_CHANNELS*2];
1399        int cur_reg_start;
1400        int mc;
1401        int channel;
1402        int way;
1403        int participants[KNL_MAX_CHANNELS];
1404        int participant_count = 0;
1405
1406        for (i = 0; i < KNL_MAX_CHANNELS; i++)
1407                mc_sizes[i] = 0;
1408
1409        /* Read the EDC route table in each CHA. */
1410        cur_reg_start = 0;
1411        for (i = 0; i < KNL_MAX_CHAS; i++) {
1412                pci_read_config_dword(pvt->knl.pci_cha[i],
1413                                KNL_EDC_ROUTE, &edc_route_reg[i]);
1414
1415                if (i > 0 && edc_route_reg[i] != edc_route_reg[i-1]) {
1416                        knl_show_edc_route(edc_route_reg[i-1],
1417                                        edc_route_string);
1418                        if (cur_reg_start == i-1)
1419                                edac_dbg(0, "edc route table for CHA %d: %s\n",
1420                                        cur_reg_start, edc_route_string);
1421                        else
1422                                edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1423                                        cur_reg_start, i-1, edc_route_string);
1424                        cur_reg_start = i;
1425                }
1426        }
1427        knl_show_edc_route(edc_route_reg[i-1], edc_route_string);
1428        if (cur_reg_start == i-1)
1429                edac_dbg(0, "edc route table for CHA %d: %s\n",
1430                        cur_reg_start, edc_route_string);
1431        else
1432                edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1433                        cur_reg_start, i-1, edc_route_string);
1434
1435        /* Read the MC route table in each CHA. */
1436        cur_reg_start = 0;
1437        for (i = 0; i < KNL_MAX_CHAS; i++) {
1438                pci_read_config_dword(pvt->knl.pci_cha[i],
1439                        KNL_MC_ROUTE, &mc_route_reg[i]);
1440
1441                if (i > 0 && mc_route_reg[i] != mc_route_reg[i-1]) {
1442                        knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1443                        if (cur_reg_start == i-1)
1444                                edac_dbg(0, "mc route table for CHA %d: %s\n",
1445                                        cur_reg_start, mc_route_string);
1446                        else
1447                                edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1448                                        cur_reg_start, i-1, mc_route_string);
1449                        cur_reg_start = i;
1450                }
1451        }
1452        knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1453        if (cur_reg_start == i-1)
1454                edac_dbg(0, "mc route table for CHA %d: %s\n",
1455                        cur_reg_start, mc_route_string);
1456        else
1457                edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1458                        cur_reg_start, i-1, mc_route_string);
1459
1460        /* Process DRAM rules */
1461        for (sad_rule = 0; sad_rule < pvt->info.max_sad; sad_rule++) {
1462                /* previous limit becomes the new base */
1463                sad_base = sad_limit;
1464
1465                pci_read_config_dword(pvt->pci_sad0,
1466                        pvt->info.dram_rule[sad_rule], &dram_rule);
1467
1468                if (!DRAM_RULE_ENABLE(dram_rule))
1469                        break;
1470
1471                edram_only = KNL_EDRAM_ONLY(dram_rule);
1472
1473                sad_limit = pvt->info.sad_limit(dram_rule)+1;
1474                sad_size = sad_limit - sad_base;
1475
1476                pci_read_config_dword(pvt->pci_sad0,
1477                        pvt->info.interleave_list[sad_rule], &interleave_reg);
1478
1479                /*
1480                 * Find out how many ways this dram rule is interleaved.
1481                 * We stop when we see the first channel again.
1482                 */
1483                first_pkg = sad_pkg(pvt->info.interleave_pkg,
1484                                                interleave_reg, 0);
1485                for (intrlv_ways = 1; intrlv_ways < 8; intrlv_ways++) {
1486                        pkg = sad_pkg(pvt->info.interleave_pkg,
1487                                                interleave_reg, intrlv_ways);
1488
1489                        if ((pkg & 0x8) == 0) {
1490                                /*
1491                                 * 0 bit means memory is non-local,
1492                                 * which KNL doesn't support
1493                                 */
1494                                edac_dbg(0, "Unexpected interleave target %d\n",
1495                                        pkg);
1496                                return -1;
1497                        }
1498
1499                        if (pkg == first_pkg)
1500                                break;
1501                }
1502                if (KNL_MOD3(dram_rule))
1503                        intrlv_ways *= 3;
1504
1505                edac_dbg(3, "dram rule %d (base 0x%llx, limit 0x%llx), %d way interleave%s\n",
1506                        sad_rule,
1507                        sad_base,
1508                        sad_limit,
1509                        intrlv_ways,
1510                        edram_only ? ", EDRAM" : "");
1511
1512                /*
1513                 * Find out how big the SAD region really is by iterating
1514                 * over TAD tables (SAD regions may contain holes).
1515                 * Each memory controller might have a different TAD table, so
1516                 * we have to look at both.
1517                 *
1518                 * Livespace is the memory that's mapped in this TAD table,
1519                 * deadspace is the holes (this could be the MMIO hole, or it
1520                 * could be memory that's mapped by the other TAD table but
1521                 * not this one).
1522                 */
1523                for (mc = 0; mc < 2; mc++) {
1524                        sad_actual_size[mc] = 0;
1525                        tad_livespace = 0;
1526                        for (tad_rule = 0;
1527                                        tad_rule < ARRAY_SIZE(
1528                                                knl_tad_dram_limit_lo);
1529                                        tad_rule++) {
1530                                if (knl_get_tad(pvt,
1531                                                tad_rule,
1532                                                mc,
1533                                                &tad_deadspace,
1534                                                &tad_limit,
1535                                                &tad_ways))
1536                                        break;
1537
1538                                tad_size = (tad_limit+1) -
1539                                        (tad_livespace + tad_deadspace);
1540                                tad_livespace += tad_size;
1541                                tad_base = (tad_limit+1) - tad_size;
1542
1543                                if (tad_base < sad_base) {
1544                                        if (tad_limit > sad_base)
1545                                                edac_dbg(0, "TAD region overlaps lower SAD boundary -- TAD tables may be configured incorrectly.\n");
1546                                } else if (tad_base < sad_limit) {
1547                                        if (tad_limit+1 > sad_limit) {
1548                                                edac_dbg(0, "TAD region overlaps upper SAD boundary -- TAD tables may be configured incorrectly.\n");
1549                                        } else {
1550                                                /* TAD region is completely inside SAD region */
1551                                                edac_dbg(3, "TAD region %d 0x%llx - 0x%llx (%lld bytes) table%d\n",
1552                                                        tad_rule, tad_base,
1553                                                        tad_limit, tad_size,
1554                                                        mc);
1555                                                sad_actual_size[mc] += tad_size;
1556                                        }
1557                                }
1558                                tad_base = tad_limit+1;
1559                        }
1560                }
1561
1562                for (mc = 0; mc < 2; mc++) {
1563                        edac_dbg(3, " total TAD DRAM footprint in table%d : 0x%llx (%lld bytes)\n",
1564                                mc, sad_actual_size[mc], sad_actual_size[mc]);
1565                }
1566
1567                /* Ignore EDRAM rule */
1568                if (edram_only)
1569                        continue;
1570
1571                /* Figure out which channels participate in interleave. */
1572                for (channel = 0; channel < KNL_MAX_CHANNELS; channel++)
1573                        participants[channel] = 0;
1574
1575                /* For each channel, does at least one CHA have
1576                 * this channel mapped to the given target?
1577                 */
1578                for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1579                        for (way = 0; way < intrlv_ways; way++) {
1580                                int target;
1581                                int cha;
1582
1583                                if (KNL_MOD3(dram_rule))
1584                                        target = way;
1585                                else
1586                                        target = 0x7 & sad_pkg(
1587                                pvt->info.interleave_pkg, interleave_reg, way);
1588
1589                                for (cha = 0; cha < KNL_MAX_CHAS; cha++) {
1590                                        if (knl_get_mc_route(target,
1591                                                mc_route_reg[cha]) == channel
1592                                                && !participants[channel]) {
1593                                                participant_count++;
1594                                                participants[channel] = 1;
1595                                                break;
1596                                        }
1597                                }
1598                        }
1599                }
1600
1601                if (participant_count != intrlv_ways)
1602                        edac_dbg(0, "participant_count (%d) != interleave_ways (%d): DIMM size may be incorrect\n",
1603                                participant_count, intrlv_ways);
1604
1605                for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1606                        mc = knl_channel_mc(channel);
1607                        if (participants[channel]) {
1608                                edac_dbg(4, "mc channel %d contributes %lld bytes via sad entry %d\n",
1609                                        channel,
1610                                        sad_actual_size[mc]/intrlv_ways,
1611                                        sad_rule);
1612                                mc_sizes[channel] +=
1613                                        sad_actual_size[mc]/intrlv_ways;
1614                        }
1615                }
1616        }
1617
1618        return 0;
1619}
1620
1621static int get_dimm_config(struct mem_ctl_info *mci)
1622{
1623        struct sbridge_pvt *pvt = mci->pvt_info;
1624        struct dimm_info *dimm;
1625        unsigned i, j, banks, ranks, rows, cols, npages;
1626        u64 size;
1627        u32 reg;
1628        enum edac_type mode;
1629        enum mem_type mtype;
1630        int channels = pvt->info.type == KNIGHTS_LANDING ?
1631                KNL_MAX_CHANNELS : NUM_CHANNELS;
1632        u64 knl_mc_sizes[KNL_MAX_CHANNELS];
1633
1634        if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
1635                pci_read_config_dword(pvt->pci_ha0, HASWELL_HASYSDEFEATURE2, &reg);
1636                pvt->is_chan_hash = GET_BITFIELD(reg, 21, 21);
1637        }
1638        if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL ||
1639                        pvt->info.type == KNIGHTS_LANDING)
1640                pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, &reg);
1641        else
1642                pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);
1643
1644        if (pvt->info.type == KNIGHTS_LANDING)
1645                pvt->sbridge_dev->source_id = SOURCE_ID_KNL(reg);
1646        else
1647                pvt->sbridge_dev->source_id = SOURCE_ID(reg);
1648
1649        pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
1650        edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
1651                 pvt->sbridge_dev->mc,
1652                 pvt->sbridge_dev->node_id,
1653                 pvt->sbridge_dev->source_id);
1654
1655        /* KNL doesn't support mirroring or lockstep,
1656         * and is always closed page
1657         */
1658        if (pvt->info.type == KNIGHTS_LANDING) {
1659                mode = EDAC_S4ECD4ED;
1660                pvt->is_mirrored = false;
1661
1662                if (knl_get_dimm_capacity(pvt, knl_mc_sizes) != 0)
1663                        return -1;
1664        } else {
1665                pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg);
1666                if (IS_MIRROR_ENABLED(reg)) {
1667                        edac_dbg(0, "Memory mirror is enabled\n");
1668                        pvt->is_mirrored = true;
1669                } else {
1670                        edac_dbg(0, "Memory mirror is disabled\n");
1671                        pvt->is_mirrored = false;
1672                }
1673
1674                pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr);
1675                if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
1676                        edac_dbg(0, "Lockstep is enabled\n");
1677                        mode = EDAC_S8ECD8ED;
1678                        pvt->is_lockstep = true;
1679                } else {
1680                        edac_dbg(0, "Lockstep is disabled\n");
1681                        mode = EDAC_S4ECD4ED;
1682                        pvt->is_lockstep = false;
1683                }
1684                if (IS_CLOSE_PG(pvt->info.mcmtr)) {
1685                        edac_dbg(0, "address map is on closed page mode\n");
1686                        pvt->is_close_pg = true;
1687                } else {
1688                        edac_dbg(0, "address map is on open page mode\n");
1689                        pvt->is_close_pg = false;
1690                }
1691        }
1692
1693        mtype = pvt->info.get_memory_type(pvt);
1694        if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
1695                edac_dbg(0, "Memory is registered\n");
1696        else if (mtype == MEM_UNKNOWN)
1697                edac_dbg(0, "Cannot determine memory type\n");
1698        else
1699                edac_dbg(0, "Memory is unregistered\n");
1700
1701        if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
1702                banks = 16;
1703        else
1704                banks = 8;
1705
1706        for (i = 0; i < channels; i++) {
1707                u32 mtr;
1708
1709                int max_dimms_per_channel;
1710
1711                if (pvt->info.type == KNIGHTS_LANDING) {
1712                        max_dimms_per_channel = 1;
1713                        if (!pvt->knl.pci_channel[i])
1714                                continue;
1715                } else {
1716                        max_dimms_per_channel = ARRAY_SIZE(mtr_regs);
1717                        if (!pvt->pci_tad[i])
1718                                continue;
1719                }
1720
1721                for (j = 0; j < max_dimms_per_channel; j++) {
1722                        dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
1723                                       i, j, 0);
1724                        if (pvt->info.type == KNIGHTS_LANDING) {
1725                                pci_read_config_dword(pvt->knl.pci_channel[i],
1726                                        knl_mtr_reg, &mtr);
1727                        } else {
1728                                pci_read_config_dword(pvt->pci_tad[i],
1729                                        mtr_regs[j], &mtr);
1730                        }
1731                        edac_dbg(4, "Channel #%d  MTR%d = %x\n", i, j, mtr);
1732                        if (IS_DIMM_PRESENT(mtr)) {
1733                                pvt->channel[i].dimms++;
1734
1735                                ranks = numrank(pvt->info.type, mtr);
1736
1737                                if (pvt->info.type == KNIGHTS_LANDING) {
1738                                        /* For DDR4, this is fixed. */
1739                                        cols = 1 << 10;
1740                                        rows = knl_mc_sizes[i] /
1741                                                ((u64) cols * ranks * banks * 8);
1742                                } else {
1743                                        rows = numrow(mtr);
1744                                        cols = numcol(mtr);
1745                                }
1746
1747                                size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
1748                                npages = MiB_TO_PAGES(size);
1749
1750                                edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
1751                                         pvt->sbridge_dev->mc, i/4, i%4, j,
1752                                         size, npages,
1753                                         banks, ranks, rows, cols);
1754
1755                                dimm->nr_pages = npages;
1756                                dimm->grain = 32;
1757                                dimm->dtype = pvt->info.get_width(pvt, mtr);
1758                                dimm->mtype = mtype;
1759                                dimm->edac_mode = mode;
1760                                snprintf(dimm->label, sizeof(dimm->label),
1761                                         "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u",
1762                                         pvt->sbridge_dev->source_id, i/4, i%4, j);
1763                        }
1764                }
1765        }
1766
1767        return 0;
1768}
1769
1770static void get_memory_layout(const struct mem_ctl_info *mci)
1771{
1772        struct sbridge_pvt *pvt = mci->pvt_info;
1773        int i, j, k, n_sads, n_tads, sad_interl;
1774        u32 reg;
1775        u64 limit, prv = 0;
1776        u64 tmp_mb;
1777        u32 gb, mb;
1778        u32 rir_way;
1779
1780        /*
1781         * Step 1) Get TOLM/TOHM ranges
1782         */
1783
1784        pvt->tolm = pvt->info.get_tolm(pvt);
1785        tmp_mb = (1 + pvt->tolm) >> 20;
1786
1787        gb = div_u64_rem(tmp_mb, 1024, &mb);
1788        edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
1789                gb, (mb*1000)/1024, (u64)pvt->tolm);
1790
1791        /* Address range is already 45:25 */
1792        pvt->tohm = pvt->info.get_tohm(pvt);
1793        tmp_mb = (1 + pvt->tohm) >> 20;
1794
1795        gb = div_u64_rem(tmp_mb, 1024, &mb);
1796        edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
1797                gb, (mb*1000)/1024, (u64)pvt->tohm);
1798
1799        /*
1800         * Step 2) Get SAD range and SAD Interleave list
1801         * TAD registers contain the interleave wayness. However, it
1802         * seems simpler to just discover it indirectly, with the
1803         * algorithm bellow.
1804         */
1805        prv = 0;
1806        for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1807                /* SAD_LIMIT Address range is 45:26 */
1808                pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1809                                      &reg);
1810                limit = pvt->info.sad_limit(reg);
1811
1812                if (!DRAM_RULE_ENABLE(reg))
1813                        continue;
1814
1815                if (limit <= prv)
1816                        break;
1817
1818                tmp_mb = (limit + 1) >> 20;
1819                gb = div_u64_rem(tmp_mb, 1024, &mb);
1820                edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
1821                         n_sads,
1822                         show_dram_attr(pvt->info.dram_attr(reg)),
1823                         gb, (mb*1000)/1024,
1824                         ((u64)tmp_mb) << 20L,
1825                         pvt->info.show_interleave_mode(reg),
1826                         reg);
1827                prv = limit;
1828
1829                pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1830                                      &reg);
1831                sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1832                for (j = 0; j < 8; j++) {
1833                        u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
1834                        if (j > 0 && sad_interl == pkg)
1835                                break;
1836
1837                        edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
1838                                 n_sads, j, pkg);
1839                }
1840        }
1841
1842        if (pvt->info.type == KNIGHTS_LANDING)
1843                return;
1844
1845        /*
1846         * Step 3) Get TAD range
1847         */
1848        prv = 0;
1849        for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
1850                pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
1851                                      &reg);
1852                limit = TAD_LIMIT(reg);
1853                if (limit <= prv)
1854                        break;
1855                tmp_mb = (limit + 1) >> 20;
1856
1857                gb = div_u64_rem(tmp_mb, 1024, &mb);
1858                edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
1859                         n_tads, gb, (mb*1000)/1024,
1860                         ((u64)tmp_mb) << 20L,
1861                         (u32)(1 << TAD_SOCK(reg)),
1862                         (u32)TAD_CH(reg) + 1,
1863                         (u32)TAD_TGT0(reg),
1864                         (u32)TAD_TGT1(reg),
1865                         (u32)TAD_TGT2(reg),
1866                         (u32)TAD_TGT3(reg),
1867                         reg);
1868                prv = limit;
1869        }
1870
1871        /*
1872         * Step 4) Get TAD offsets, per each channel
1873         */
1874        for (i = 0; i < NUM_CHANNELS; i++) {
1875                if (!pvt->channel[i].dimms)
1876                        continue;
1877                for (j = 0; j < n_tads; j++) {
1878                        pci_read_config_dword(pvt->pci_tad[i],
1879                                              tad_ch_nilv_offset[j],
1880                                              &reg);
1881                        tmp_mb = TAD_OFFSET(reg) >> 20;
1882                        gb = div_u64_rem(tmp_mb, 1024, &mb);
1883                        edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
1884                                 i, j,
1885                                 gb, (mb*1000)/1024,
1886                                 ((u64)tmp_mb) << 20L,
1887                                 reg);
1888                }
1889        }
1890
1891        /*
1892         * Step 6) Get RIR Wayness/Limit, per each channel
1893         */
1894        for (i = 0; i < NUM_CHANNELS; i++) {
1895                if (!pvt->channel[i].dimms)
1896                        continue;
1897                for (j = 0; j < MAX_RIR_RANGES; j++) {
1898                        pci_read_config_dword(pvt->pci_tad[i],
1899                                              rir_way_limit[j],
1900                                              &reg);
1901
1902                        if (!IS_RIR_VALID(reg))
1903                                continue;
1904
1905                        tmp_mb = pvt->info.rir_limit(reg) >> 20;
1906                        rir_way = 1 << RIR_WAY(reg);
1907                        gb = div_u64_rem(tmp_mb, 1024, &mb);
1908                        edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
1909                                 i, j,
1910                                 gb, (mb*1000)/1024,
1911                                 ((u64)tmp_mb) << 20L,
1912                                 rir_way,
1913                                 reg);
1914
1915                        for (k = 0; k < rir_way; k++) {
1916                                pci_read_config_dword(pvt->pci_tad[i],
1917                                                      rir_offset[j][k],
1918                                                      &reg);
1919                                tmp_mb = RIR_OFFSET(reg) << 6;
1920
1921                                gb = div_u64_rem(tmp_mb, 1024, &mb);
1922                                edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
1923                                         i, j, k,
1924                                         gb, (mb*1000)/1024,
1925                                         ((u64)tmp_mb) << 20L,
1926                                         (u32)RIR_RNK_TGT(reg),
1927                                         reg);
1928                        }
1929                }
1930        }
1931}
1932
1933static struct mem_ctl_info *get_mci_for_node_id(u8 node_id)
1934{
1935        struct sbridge_dev *sbridge_dev;
1936
1937        list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
1938                if (sbridge_dev->node_id == node_id)
1939                        return sbridge_dev->mci;
1940        }
1941        return NULL;
1942}
1943
1944static int get_memory_error_data(struct mem_ctl_info *mci,
1945                                 u64 addr,
1946                                 u8 *socket, u8 *ha,
1947                                 long *channel_mask,
1948                                 u8 *rank,
1949                                 char **area_type, char *msg)
1950{
1951        struct mem_ctl_info     *new_mci;
1952        struct sbridge_pvt *pvt = mci->pvt_info;
1953        struct pci_dev          *pci_ha;
1954        int                     n_rir, n_sads, n_tads, sad_way, sck_xch;
1955        int                     sad_interl, idx, base_ch;
1956        int                     interleave_mode, shiftup = 0;
1957        unsigned                sad_interleave[pvt->info.max_interleave];
1958        u32                     reg, dram_rule;
1959        u8                      ch_way, sck_way, pkg, sad_ha = 0, ch_add = 0;
1960        u32                     tad_offset;
1961        u32                     rir_way;
1962        u32                     mb, gb;
1963        u64                     ch_addr, offset, limit = 0, prv = 0;
1964
1965
1966        /*
1967         * Step 0) Check if the address is at special memory ranges
1968         * The check bellow is probably enough to fill all cases where
1969         * the error is not inside a memory, except for the legacy
1970         * range (e. g. VGA addresses). It is unlikely, however, that the
1971         * memory controller would generate an error on that range.
1972         */
1973        if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
1974                sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
1975                return -EINVAL;
1976        }
1977        if (addr >= (u64)pvt->tohm) {
1978                sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
1979                return -EINVAL;
1980        }
1981
1982        /*
1983         * Step 1) Get socket
1984         */
1985        for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1986                pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1987                                      &reg);
1988
1989                if (!DRAM_RULE_ENABLE(reg))
1990                        continue;
1991
1992                limit = pvt->info.sad_limit(reg);
1993                if (limit <= prv) {
1994                        sprintf(msg, "Can't discover the memory socket");
1995                        return -EINVAL;
1996                }
1997                if  (addr <= limit)
1998                        break;
1999                prv = limit;
2000        }
2001        if (n_sads == pvt->info.max_sad) {
2002                sprintf(msg, "Can't discover the memory socket");
2003                return -EINVAL;
2004        }
2005        dram_rule = reg;
2006        *area_type = show_dram_attr(pvt->info.dram_attr(dram_rule));
2007        interleave_mode = pvt->info.interleave_mode(dram_rule);
2008
2009        pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
2010                              &reg);
2011
2012        if (pvt->info.type == SANDY_BRIDGE) {
2013                sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
2014                for (sad_way = 0; sad_way < 8; sad_way++) {
2015                        u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
2016                        if (sad_way > 0 && sad_interl == pkg)
2017                                break;
2018                        sad_interleave[sad_way] = pkg;
2019                        edac_dbg(0, "SAD interleave #%d: %d\n",
2020                                 sad_way, sad_interleave[sad_way]);
2021                }
2022                edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
2023                         pvt->sbridge_dev->mc,
2024                         n_sads,
2025                         addr,
2026                         limit,
2027                         sad_way + 7,
2028                         !interleave_mode ? "" : "XOR[18:16]");
2029                if (interleave_mode)
2030                        idx = ((addr >> 6) ^ (addr >> 16)) & 7;
2031                else
2032                        idx = (addr >> 6) & 7;
2033                switch (sad_way) {
2034                case 1:
2035                        idx = 0;
2036                        break;
2037                case 2:
2038                        idx = idx & 1;
2039                        break;
2040                case 4:
2041                        idx = idx & 3;
2042                        break;
2043                case 8:
2044                        break;
2045                default:
2046                        sprintf(msg, "Can't discover socket interleave");
2047                        return -EINVAL;
2048                }
2049                *socket = sad_interleave[idx];
2050                edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
2051                         idx, sad_way, *socket);
2052        } else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
2053                int bits, a7mode = A7MODE(dram_rule);
2054
2055                if (a7mode) {
2056                        /* A7 mode swaps P9 with P6 */
2057                        bits = GET_BITFIELD(addr, 7, 8) << 1;
2058                        bits |= GET_BITFIELD(addr, 9, 9);
2059                } else
2060                        bits = GET_BITFIELD(addr, 6, 8);
2061
2062                if (interleave_mode == 0) {
2063                        /* interleave mode will XOR {8,7,6} with {18,17,16} */
2064                        idx = GET_BITFIELD(addr, 16, 18);
2065                        idx ^= bits;
2066                } else
2067                        idx = bits;
2068
2069                pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2070                *socket = sad_pkg_socket(pkg);
2071                sad_ha = sad_pkg_ha(pkg);
2072                if (sad_ha)
2073                        ch_add = 4;
2074
2075                if (a7mode) {
2076                        /* MCChanShiftUpEnable */
2077                        pci_read_config_dword(pvt->pci_ha0,
2078                                              HASWELL_HASYSDEFEATURE2, &reg);
2079                        shiftup = GET_BITFIELD(reg, 22, 22);
2080                }
2081
2082                edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
2083                         idx, *socket, sad_ha, shiftup);
2084        } else {
2085                /* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
2086                idx = (addr >> 6) & 7;
2087                pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2088                *socket = sad_pkg_socket(pkg);
2089                sad_ha = sad_pkg_ha(pkg);
2090                if (sad_ha)
2091                        ch_add = 4;
2092                edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
2093                         idx, *socket, sad_ha);
2094        }
2095
2096        *ha = sad_ha;
2097
2098        /*
2099         * Move to the proper node structure, in order to access the
2100         * right PCI registers
2101         */
2102        new_mci = get_mci_for_node_id(*socket);
2103        if (!new_mci) {
2104                sprintf(msg, "Struct for socket #%u wasn't initialized",
2105                        *socket);
2106                return -EINVAL;
2107        }
2108        mci = new_mci;
2109        pvt = mci->pvt_info;
2110
2111        /*
2112         * Step 2) Get memory channel
2113         */
2114        prv = 0;
2115        if (pvt->info.type == SANDY_BRIDGE)
2116                pci_ha = pvt->pci_ha0;
2117        else {
2118                if (sad_ha)
2119                        pci_ha = pvt->pci_ha1;
2120                else
2121                        pci_ha = pvt->pci_ha0;
2122        }
2123        for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
2124                pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], &reg);
2125                limit = TAD_LIMIT(reg);
2126                if (limit <= prv) {
2127                        sprintf(msg, "Can't discover the memory channel");
2128                        return -EINVAL;
2129                }
2130                if  (addr <= limit)
2131                        break;
2132                prv = limit;
2133        }
2134        if (n_tads == MAX_TAD) {
2135                sprintf(msg, "Can't discover the memory channel");
2136                return -EINVAL;
2137        }
2138
2139        ch_way = TAD_CH(reg) + 1;
2140        sck_way = TAD_SOCK(reg);
2141
2142        if (ch_way == 3)
2143                idx = addr >> 6;
2144        else {
2145                idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
2146                if (pvt->is_chan_hash)
2147                        idx = haswell_chan_hash(idx, addr);
2148        }
2149        idx = idx % ch_way;
2150
2151        /*
2152         * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
2153         */
2154        switch (idx) {
2155        case 0:
2156                base_ch = TAD_TGT0(reg);
2157                break;
2158        case 1:
2159                base_ch = TAD_TGT1(reg);
2160                break;
2161        case 2:
2162                base_ch = TAD_TGT2(reg);
2163                break;
2164        case 3:
2165                base_ch = TAD_TGT3(reg);
2166                break;
2167        default:
2168                sprintf(msg, "Can't discover the TAD target");
2169                return -EINVAL;
2170        }
2171        *channel_mask = 1 << base_ch;
2172
2173        pci_read_config_dword(pvt->pci_tad[ch_add + base_ch],
2174                                tad_ch_nilv_offset[n_tads],
2175                                &tad_offset);
2176
2177        if (pvt->is_mirrored) {
2178                *channel_mask |= 1 << ((base_ch + 2) % 4);
2179                switch(ch_way) {
2180                case 2:
2181                case 4:
2182                        sck_xch = (1 << sck_way) * (ch_way >> 1);
2183                        break;
2184                default:
2185                        sprintf(msg, "Invalid mirror set. Can't decode addr");
2186                        return -EINVAL;
2187                }
2188        } else
2189                sck_xch = (1 << sck_way) * ch_way;
2190
2191        if (pvt->is_lockstep)
2192                *channel_mask |= 1 << ((base_ch + 1) % 4);
2193
2194        offset = TAD_OFFSET(tad_offset);
2195
2196        edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
2197                 n_tads,
2198                 addr,
2199                 limit,
2200                 sck_way,
2201                 ch_way,
2202                 offset,
2203                 idx,
2204                 base_ch,
2205                 *channel_mask);
2206
2207        /* Calculate channel address */
2208        /* Remove the TAD offset */
2209
2210        if (offset > addr) {
2211                sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
2212                        offset, addr);
2213                return -EINVAL;
2214        }
2215
2216        ch_addr = addr - offset;
2217        ch_addr >>= (6 + shiftup);
2218        ch_addr /= sck_xch;
2219        ch_addr <<= (6 + shiftup);
2220        ch_addr |= addr & ((1 << (6 + shiftup)) - 1);
2221
2222        /*
2223         * Step 3) Decode rank
2224         */
2225        for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
2226                pci_read_config_dword(pvt->pci_tad[ch_add + base_ch],
2227                                      rir_way_limit[n_rir],
2228                                      &reg);
2229
2230                if (!IS_RIR_VALID(reg))
2231                        continue;
2232
2233                limit = pvt->info.rir_limit(reg);
2234                gb = div_u64_rem(limit >> 20, 1024, &mb);
2235                edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
2236                         n_rir,
2237                         gb, (mb*1000)/1024,
2238                         limit,
2239                         1 << RIR_WAY(reg));
2240                if  (ch_addr <= limit)
2241                        break;
2242        }
2243        if (n_rir == MAX_RIR_RANGES) {
2244                sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
2245                        ch_addr);
2246                return -EINVAL;
2247        }
2248        rir_way = RIR_WAY(reg);
2249
2250        if (pvt->is_close_pg)
2251                idx = (ch_addr >> 6);
2252        else
2253                idx = (ch_addr >> 13);  /* FIXME: Datasheet says to shift by 15 */
2254        idx %= 1 << rir_way;
2255
2256        pci_read_config_dword(pvt->pci_tad[ch_add + base_ch],
2257                              rir_offset[n_rir][idx],
2258                              &reg);
2259        *rank = RIR_RNK_TGT(reg);
2260
2261        edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
2262                 n_rir,
2263                 ch_addr,
2264                 limit,
2265                 rir_way,
2266                 idx);
2267
2268        return 0;
2269}
2270
2271/****************************************************************************
2272        Device initialization routines: put/get, init/exit
2273 ****************************************************************************/
2274
2275/*
2276 *      sbridge_put_all_devices 'put' all the devices that we have
2277 *                              reserved via 'get'
2278 */
2279static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
2280{
2281        int i;
2282
2283        edac_dbg(0, "\n");
2284        for (i = 0; i < sbridge_dev->n_devs; i++) {
2285                struct pci_dev *pdev = sbridge_dev->pdev[i];
2286                if (!pdev)
2287                        continue;
2288                edac_dbg(0, "Removing dev %02x:%02x.%d\n",
2289                         pdev->bus->number,
2290                         PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
2291                pci_dev_put(pdev);
2292        }
2293}
2294
2295static void sbridge_put_all_devices(void)
2296{
2297        struct sbridge_dev *sbridge_dev, *tmp;
2298
2299        list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
2300                sbridge_put_devices(sbridge_dev);
2301                free_sbridge_dev(sbridge_dev);
2302        }
2303}
2304
2305static int sbridge_get_onedevice(struct pci_dev **prev,
2306                                 u8 *num_mc,
2307                                 const struct pci_id_table *table,
2308                                 const unsigned devno,
2309                                 const int multi_bus)
2310{
2311        struct sbridge_dev *sbridge_dev;
2312        const struct pci_id_descr *dev_descr = &table->descr[devno];
2313        struct pci_dev *pdev = NULL;
2314        u8 bus = 0;
2315
2316        sbridge_printk(KERN_DEBUG,
2317                "Seeking for: PCI ID %04x:%04x\n",
2318                PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2319
2320        pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
2321                              dev_descr->dev_id, *prev);
2322
2323        if (!pdev) {
2324                if (*prev) {
2325                        *prev = pdev;
2326                        return 0;
2327                }
2328
2329                if (dev_descr->optional)
2330                        return 0;
2331
2332                /* if the HA wasn't found */
2333                if (devno == 0)
2334                        return -ENODEV;
2335
2336                sbridge_printk(KERN_INFO,
2337                        "Device not found: %04x:%04x\n",
2338                        PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2339
2340                /* End of list, leave */
2341                return -ENODEV;
2342        }
2343        bus = pdev->bus->number;
2344
2345        sbridge_dev = get_sbridge_dev(bus, multi_bus);
2346        if (!sbridge_dev) {
2347                sbridge_dev = alloc_sbridge_dev(bus, table);
2348                if (!sbridge_dev) {
2349                        pci_dev_put(pdev);
2350                        return -ENOMEM;
2351                }
2352                (*num_mc)++;
2353        }
2354
2355        if (sbridge_dev->pdev[devno]) {
2356                sbridge_printk(KERN_ERR,
2357                        "Duplicated device for %04x:%04x\n",
2358                        PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2359                pci_dev_put(pdev);
2360                return -ENODEV;
2361        }
2362
2363        sbridge_dev->pdev[devno] = pdev;
2364
2365        /* Be sure that the device is enabled */
2366        if (unlikely(pci_enable_device(pdev) < 0)) {
2367                sbridge_printk(KERN_ERR,
2368                        "Couldn't enable %04x:%04x\n",
2369                        PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2370                return -ENODEV;
2371        }
2372
2373        edac_dbg(0, "Detected %04x:%04x\n",
2374                 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2375
2376        /*
2377         * As stated on drivers/pci/search.c, the reference count for
2378         * @from is always decremented if it is not %NULL. So, as we need
2379         * to get all devices up to null, we need to do a get for the device
2380         */
2381        pci_dev_get(pdev);
2382
2383        *prev = pdev;
2384
2385        return 0;
2386}
2387
2388/*
2389 * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
2390 *                           devices we want to reference for this driver.
2391 * @num_mc: pointer to the memory controllers count, to be incremented in case
2392 *          of success.
2393 * @table: model specific table
2394 * @allow_dups: allow for multiple devices to exist with the same device id
2395 *              (as implemented, this isn't expected to work correctly in the
2396 *              multi-socket case).
2397 * @multi_bus: don't assume devices on different buses belong to different
2398 *             memory controllers.
2399 *
2400 * returns 0 in case of success or error code
2401 */
2402static int sbridge_get_all_devices_full(u8 *num_mc,
2403                                        const struct pci_id_table *table,
2404                                        int allow_dups,
2405                                        int multi_bus)
2406{
2407        int i, rc;
2408        struct pci_dev *pdev = NULL;
2409
2410        while (table && table->descr) {
2411                for (i = 0; i < table->n_devs; i++) {
2412                        if (!allow_dups || i == 0 ||
2413                                        table->descr[i].dev_id !=
2414                                                table->descr[i-1].dev_id) {
2415                                pdev = NULL;
2416                        }
2417                        do {
2418                                rc = sbridge_get_onedevice(&pdev, num_mc,
2419                                                           table, i, multi_bus);
2420                                if (rc < 0) {
2421                                        if (i == 0) {
2422                                                i = table->n_devs;
2423                                                break;
2424                                        }
2425                                        sbridge_put_all_devices();
2426                                        return -ENODEV;
2427                                }
2428                        } while (pdev && !allow_dups);
2429                }
2430                table++;
2431        }
2432
2433        return 0;
2434}
2435
2436#define sbridge_get_all_devices(num_mc, table) \
2437                sbridge_get_all_devices_full(num_mc, table, 0, 0)
2438#define sbridge_get_all_devices_knl(num_mc, table) \
2439                sbridge_get_all_devices_full(num_mc, table, 1, 1)
2440
2441static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
2442                                 struct sbridge_dev *sbridge_dev)
2443{
2444        struct sbridge_pvt *pvt = mci->pvt_info;
2445        struct pci_dev *pdev;
2446        u8 saw_chan_mask = 0;
2447        int i;
2448
2449        for (i = 0; i < sbridge_dev->n_devs; i++) {
2450                pdev = sbridge_dev->pdev[i];
2451                if (!pdev)
2452                        continue;
2453
2454                switch (pdev->device) {
2455                case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
2456                        pvt->pci_sad0 = pdev;
2457                        break;
2458                case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
2459                        pvt->pci_sad1 = pdev;
2460                        break;
2461                case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
2462                        pvt->pci_br0 = pdev;
2463                        break;
2464                case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
2465                        pvt->pci_ha0 = pdev;
2466                        break;
2467                case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
2468                        pvt->pci_ta = pdev;
2469                        break;
2470                case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
2471                        pvt->pci_ras = pdev;
2472                        break;
2473                case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
2474                case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
2475                case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
2476                case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
2477                {
2478                        int id = pdev->device - PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0;
2479                        pvt->pci_tad[id] = pdev;
2480                        saw_chan_mask |= 1 << id;
2481                }
2482                        break;
2483                case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
2484                        pvt->pci_ddrio = pdev;
2485                        break;
2486                default:
2487                        goto error;
2488                }
2489
2490                edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
2491                         pdev->vendor, pdev->device,
2492                         sbridge_dev->bus,
2493                         pdev);
2494        }
2495
2496        /* Check if everything were registered */
2497        if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha0 ||
2498            !pvt-> pci_tad || !pvt->pci_ras  || !pvt->pci_ta)
2499                goto enodev;
2500
2501        if (saw_chan_mask != 0x0f)
2502                goto enodev;
2503        return 0;
2504
2505enodev:
2506        sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2507        return -ENODEV;
2508
2509error:
2510        sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
2511                       PCI_VENDOR_ID_INTEL, pdev->device);
2512        return -EINVAL;
2513}
2514
2515static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
2516                                 struct sbridge_dev *sbridge_dev)
2517{
2518        struct sbridge_pvt *pvt = mci->pvt_info;
2519        struct pci_dev *pdev;
2520        u8 saw_chan_mask = 0;
2521        int i;
2522
2523        for (i = 0; i < sbridge_dev->n_devs; i++) {
2524                pdev = sbridge_dev->pdev[i];
2525                if (!pdev)
2526                        continue;
2527
2528                switch (pdev->device) {
2529                case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
2530                        pvt->pci_ha0 = pdev;
2531                        break;
2532                case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
2533                        pvt->pci_ta = pdev;
2534                case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
2535                        pvt->pci_ras = pdev;
2536                        break;
2537                case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
2538                case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
2539                case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
2540                case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
2541                {
2542                        int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0;
2543                        pvt->pci_tad[id] = pdev;
2544                        saw_chan_mask |= 1 << id;
2545                }
2546                        break;
2547                case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
2548                        pvt->pci_ddrio = pdev;
2549                        break;
2550                case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
2551                        pvt->pci_ddrio = pdev;
2552                        break;
2553                case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
2554                        pvt->pci_sad0 = pdev;
2555                        break;
2556                case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
2557                        pvt->pci_br0 = pdev;
2558                        break;
2559                case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
2560                        pvt->pci_br1 = pdev;
2561                        break;
2562                case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
2563                        pvt->pci_ha1 = pdev;
2564                        break;
2565                case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
2566                case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
2567                case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2:
2568                case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3:
2569                {
2570                        int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0 + 4;
2571                        pvt->pci_tad[id] = pdev;
2572                        saw_chan_mask |= 1 << id;
2573                }
2574                        break;
2575                default:
2576                        goto error;
2577                }
2578
2579                edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2580                         sbridge_dev->bus,
2581                         PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2582                         pdev);
2583        }
2584
2585        /* Check if everything were registered */
2586        if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_br0 ||
2587            !pvt->pci_br1 || !pvt->pci_tad || !pvt->pci_ras  ||
2588            !pvt->pci_ta)
2589                goto enodev;
2590
2591        if (saw_chan_mask != 0x0f && /* -EN */
2592            saw_chan_mask != 0x33 && /* -EP */
2593            saw_chan_mask != 0xff)   /* -EX */
2594                goto enodev;
2595        return 0;
2596
2597enodev:
2598        sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2599        return -ENODEV;
2600
2601error:
2602        sbridge_printk(KERN_ERR,
2603                       "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
2604                        pdev->device);
2605        return -EINVAL;
2606}
2607
2608static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
2609                                 struct sbridge_dev *sbridge_dev)
2610{
2611        struct sbridge_pvt *pvt = mci->pvt_info;
2612        struct pci_dev *pdev;
2613        u8 saw_chan_mask = 0;
2614        int i;
2615
2616        /* there's only one device per system; not tied to any bus */
2617        if (pvt->info.pci_vtd == NULL)
2618                /* result will be checked later */
2619                pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2620                                                   PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
2621                                                   NULL);
2622
2623        for (i = 0; i < sbridge_dev->n_devs; i++) {
2624                pdev = sbridge_dev->pdev[i];
2625                if (!pdev)
2626                        continue;
2627
2628                switch (pdev->device) {
2629                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
2630                        pvt->pci_sad0 = pdev;
2631                        break;
2632                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
2633                        pvt->pci_sad1 = pdev;
2634                        break;
2635                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
2636                        pvt->pci_ha0 = pdev;
2637                        break;
2638                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
2639                        pvt->pci_ta = pdev;
2640                        break;
2641                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL:
2642                        pvt->pci_ras = pdev;
2643                        break;
2644                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
2645                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
2646                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
2647                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
2648                {
2649                        int id = pdev->device - PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0;
2650
2651                        pvt->pci_tad[id] = pdev;
2652                        saw_chan_mask |= 1 << id;
2653                }
2654                        break;
2655                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
2656                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
2657                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2:
2658                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3:
2659                {
2660                        int id = pdev->device - PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 + 4;
2661
2662                        pvt->pci_tad[id] = pdev;
2663                        saw_chan_mask |= 1 << id;
2664                }
2665                        break;
2666                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
2667                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1:
2668                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2:
2669                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3:
2670                        if (!pvt->pci_ddrio)
2671                                pvt->pci_ddrio = pdev;
2672                        break;
2673                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
2674                        pvt->pci_ha1 = pdev;
2675                        break;
2676                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
2677                        pvt->pci_ha1_ta = pdev;
2678                        break;
2679                default:
2680                        break;
2681                }
2682
2683                edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2684                         sbridge_dev->bus,
2685                         PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2686                         pdev);
2687        }
2688
2689        /* Check if everything were registered */
2690        if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_sad1 ||
2691            !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2692                goto enodev;
2693
2694        if (saw_chan_mask != 0x0f && /* -EN */
2695            saw_chan_mask != 0x33 && /* -EP */
2696            saw_chan_mask != 0xff)   /* -EX */
2697                goto enodev;
2698        return 0;
2699
2700enodev:
2701        sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2702        return -ENODEV;
2703}
2704
2705static int broadwell_mci_bind_devs(struct mem_ctl_info *mci,
2706                                 struct sbridge_dev *sbridge_dev)
2707{
2708        struct sbridge_pvt *pvt = mci->pvt_info;
2709        struct pci_dev *pdev;
2710        u8 saw_chan_mask = 0;
2711        int i;
2712
2713        /* there's only one device per system; not tied to any bus */
2714        if (pvt->info.pci_vtd == NULL)
2715                /* result will be checked later */
2716                pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2717                                                   PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC,
2718                                                   NULL);
2719
2720        for (i = 0; i < sbridge_dev->n_devs; i++) {
2721                pdev = sbridge_dev->pdev[i];
2722                if (!pdev)
2723                        continue;
2724
2725                switch (pdev->device) {
2726                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0:
2727                        pvt->pci_sad0 = pdev;
2728                        break;
2729                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1:
2730                        pvt->pci_sad1 = pdev;
2731                        break;
2732                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
2733                        pvt->pci_ha0 = pdev;
2734                        break;
2735                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA:
2736                        pvt->pci_ta = pdev;
2737                        break;
2738                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL:
2739                        pvt->pci_ras = pdev;
2740                        break;
2741                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0:
2742                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1:
2743                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2:
2744                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3:
2745                {
2746                        int id = pdev->device - PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0;
2747                        pvt->pci_tad[id] = pdev;
2748                        saw_chan_mask |= 1 << id;
2749                }
2750                        break;
2751                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0:
2752                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1:
2753                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2:
2754                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3:
2755                {
2756                        int id = pdev->device - PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 + 4;
2757                        pvt->pci_tad[id] = pdev;
2758                        saw_chan_mask |= 1 << id;
2759                }
2760                        break;
2761                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0:
2762                        pvt->pci_ddrio = pdev;
2763                        break;
2764                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1:
2765                        pvt->pci_ha1 = pdev;
2766                        break;
2767                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA:
2768                        pvt->pci_ha1_ta = pdev;
2769                        break;
2770                default:
2771                        break;
2772                }
2773
2774                edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2775                         sbridge_dev->bus,
2776                         PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2777                         pdev);
2778        }
2779
2780        /* Check if everything were registered */
2781        if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_sad1 ||
2782            !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2783                goto enodev;
2784
2785        if (saw_chan_mask != 0x0f && /* -EN */
2786            saw_chan_mask != 0x33 && /* -EP */
2787            saw_chan_mask != 0xff)   /* -EX */
2788                goto enodev;
2789        return 0;
2790
2791enodev:
2792        sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2793        return -ENODEV;
2794}
2795
2796static int knl_mci_bind_devs(struct mem_ctl_info *mci,
2797                        struct sbridge_dev *sbridge_dev)
2798{
2799        struct sbridge_pvt *pvt = mci->pvt_info;
2800        struct pci_dev *pdev;
2801        int dev, func;
2802
2803        int i;
2804        int devidx;
2805
2806        for (i = 0; i < sbridge_dev->n_devs; i++) {
2807                pdev = sbridge_dev->pdev[i];
2808                if (!pdev)
2809                        continue;
2810
2811                /* Extract PCI device and function. */
2812                dev = (pdev->devfn >> 3) & 0x1f;
2813                func = pdev->devfn & 0x7;
2814
2815                switch (pdev->device) {
2816                case PCI_DEVICE_ID_INTEL_KNL_IMC_MC:
2817                        if (dev == 8)
2818                                pvt->knl.pci_mc0 = pdev;
2819                        else if (dev == 9)
2820                                pvt->knl.pci_mc1 = pdev;
2821                        else {
2822                                sbridge_printk(KERN_ERR,
2823                                        "Memory controller in unexpected place! (dev %d, fn %d)\n",
2824                                        dev, func);
2825                                continue;
2826                        }
2827                        break;
2828
2829                case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0:
2830                        pvt->pci_sad0 = pdev;
2831                        break;
2832
2833                case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1:
2834                        pvt->pci_sad1 = pdev;
2835                        break;
2836
2837                case PCI_DEVICE_ID_INTEL_KNL_IMC_CHA:
2838                        /* There are one of these per tile, and range from
2839                         * 1.14.0 to 1.18.5.
2840                         */
2841                        devidx = ((dev-14)*8)+func;
2842
2843                        if (devidx < 0 || devidx >= KNL_MAX_CHAS) {
2844                                sbridge_printk(KERN_ERR,
2845                                        "Caching and Home Agent in unexpected place! (dev %d, fn %d)\n",
2846                                        dev, func);
2847                                continue;
2848                        }
2849
2850                        WARN_ON(pvt->knl.pci_cha[devidx] != NULL);
2851
2852                        pvt->knl.pci_cha[devidx] = pdev;
2853                        break;
2854
2855                case PCI_DEVICE_ID_INTEL_KNL_IMC_CHANNEL:
2856                        devidx = -1;
2857
2858                        /*
2859                         *  MC0 channels 0-2 are device 9 function 2-4,
2860                         *  MC1 channels 3-5 are device 8 function 2-4.
2861                         */
2862
2863                        if (dev == 9)
2864                                devidx = func-2;
2865                        else if (dev == 8)
2866                                devidx = 3 + (func-2);
2867
2868                        if (devidx < 0 || devidx >= KNL_MAX_CHANNELS) {
2869                                sbridge_printk(KERN_ERR,
2870                                        "DRAM Channel Registers in unexpected place! (dev %d, fn %d)\n",
2871                                        dev, func);
2872                                continue;
2873                        }
2874
2875                        WARN_ON(pvt->knl.pci_channel[devidx] != NULL);
2876                        pvt->knl.pci_channel[devidx] = pdev;
2877                        break;
2878
2879                case PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM:
2880                        pvt->knl.pci_mc_info = pdev;
2881                        break;
2882
2883                case PCI_DEVICE_ID_INTEL_KNL_IMC_TA:
2884                        pvt->pci_ta = pdev;
2885                        break;
2886
2887                default:
2888                        sbridge_printk(KERN_ERR, "Unexpected device %d\n",
2889                                pdev->device);
2890                        break;
2891                }
2892        }
2893
2894        if (!pvt->knl.pci_mc0  || !pvt->knl.pci_mc1 ||
2895            !pvt->pci_sad0     || !pvt->pci_sad1    ||
2896            !pvt->pci_ta) {
2897                goto enodev;
2898        }
2899
2900        for (i = 0; i < KNL_MAX_CHANNELS; i++) {
2901                if (!pvt->knl.pci_channel[i]) {
2902                        sbridge_printk(KERN_ERR, "Missing channel %d\n", i);
2903                        goto enodev;
2904                }
2905        }
2906
2907        for (i = 0; i < KNL_MAX_CHAS; i++) {
2908                if (!pvt->knl.pci_cha[i]) {
2909                        sbridge_printk(KERN_ERR, "Missing CHA %d\n", i);
2910                        goto enodev;
2911                }
2912        }
2913
2914        return 0;
2915
2916enodev:
2917        sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2918        return -ENODEV;
2919}
2920
2921/****************************************************************************
2922                        Error check routines
2923 ****************************************************************************/
2924
2925/*
2926 * While Sandy Bridge has error count registers, SMI BIOS read values from
2927 * and resets the counters. So, they are not reliable for the OS to read
2928 * from them. So, we have no option but to just trust on whatever MCE is
2929 * telling us about the errors.
2930 */
2931static void sbridge_mce_output_error(struct mem_ctl_info *mci,
2932                                    const struct mce *m)
2933{
2934        struct mem_ctl_info *new_mci;
2935        struct sbridge_pvt *pvt = mci->pvt_info;
2936        enum hw_event_mc_err_type tp_event;
2937        char *type, *optype, msg[256];
2938        bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
2939        bool overflow = GET_BITFIELD(m->status, 62, 62);
2940        bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
2941        bool recoverable;
2942        u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
2943        u32 mscod = GET_BITFIELD(m->status, 16, 31);
2944        u32 errcode = GET_BITFIELD(m->status, 0, 15);
2945        u32 channel = GET_BITFIELD(m->status, 0, 3);
2946        u32 optypenum = GET_BITFIELD(m->status, 4, 6);
2947        long channel_mask, first_channel;
2948        u8  rank, socket, ha;
2949        int rc, dimm;
2950        char *area_type = NULL;
2951
2952        if (pvt->info.type != SANDY_BRIDGE)
2953                recoverable = true;
2954        else
2955                recoverable = GET_BITFIELD(m->status, 56, 56);
2956
2957        if (uncorrected_error) {
2958                if (ripv) {
2959                        type = "FATAL";
2960                        tp_event = HW_EVENT_ERR_FATAL;
2961                } else {
2962                        type = "NON_FATAL";
2963                        tp_event = HW_EVENT_ERR_UNCORRECTED;
2964                }
2965        } else {
2966                type = "CORRECTED";
2967                tp_event = HW_EVENT_ERR_CORRECTED;
2968        }
2969
2970        /*
2971         * According with Table 15-9 of the Intel Architecture spec vol 3A,
2972         * memory errors should fit in this mask:
2973         *      000f 0000 1mmm cccc (binary)
2974         * where:
2975         *      f = Correction Report Filtering Bit. If 1, subsequent errors
2976         *          won't be shown
2977         *      mmm = error type
2978         *      cccc = channel
2979         * If the mask doesn't match, report an error to the parsing logic
2980         */
2981        if (! ((errcode & 0xef80) == 0x80)) {
2982                optype = "Can't parse: it is not a mem";
2983        } else {
2984                switch (optypenum) {
2985                case 0:
2986                        optype = "generic undef request error";
2987                        break;
2988                case 1:
2989                        optype = "memory read error";
2990                        break;
2991                case 2:
2992                        optype = "memory write error";
2993                        break;
2994                case 3:
2995                        optype = "addr/cmd error";
2996                        break;
2997                case 4:
2998                        optype = "memory scrubbing error";
2999                        break;
3000                default:
3001                        optype = "reserved";
3002                        break;
3003                }
3004        }
3005
3006        /* Only decode errors with an valid address (ADDRV) */
3007        if (!GET_BITFIELD(m->status, 58, 58))
3008                return;
3009
3010        if (pvt->info.type == KNIGHTS_LANDING) {
3011                if (channel == 14) {
3012                        edac_dbg(0, "%s%s err_code:%04x:%04x EDRAM bank %d\n",
3013                                overflow ? " OVERFLOW" : "",
3014                                (uncorrected_error && recoverable)
3015                                ? " recoverable" : "",
3016                                mscod, errcode,
3017                                m->bank);
3018                } else {
3019                        char A = *("A");
3020
3021                        channel = knl_channel_remap(channel);
3022                        channel_mask = 1 << channel;
3023                        snprintf(msg, sizeof(msg),
3024                                "%s%s err_code:%04x:%04x channel:%d (DIMM_%c)",
3025                                overflow ? " OVERFLOW" : "",
3026                                (uncorrected_error && recoverable)
3027                                ? " recoverable" : " ",
3028                                mscod, errcode, channel, A + channel);
3029                        edac_mc_handle_error(tp_event, mci, core_err_cnt,
3030                                m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
3031                                channel, 0, -1,
3032                                optype, msg);
3033                }
3034                return;
3035        } else {
3036                rc = get_memory_error_data(mci, m->addr, &socket, &ha,
3037                                &channel_mask, &rank, &area_type, msg);
3038        }
3039
3040        if (rc < 0)
3041                goto err_parsing;
3042        new_mci = get_mci_for_node_id(socket);
3043        if (!new_mci) {
3044                strcpy(msg, "Error: socket got corrupted!");
3045                goto err_parsing;
3046        }
3047        mci = new_mci;
3048        pvt = mci->pvt_info;
3049
3050        first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
3051
3052        if (rank < 4)
3053                dimm = 0;
3054        else if (rank < 8)
3055                dimm = 1;
3056        else
3057                dimm = 2;
3058
3059
3060        /*
3061         * FIXME: On some memory configurations (mirror, lockstep), the
3062         * Memory Controller can't point the error to a single DIMM. The
3063         * EDAC core should be handling the channel mask, in order to point
3064         * to the group of dimm's where the error may be happening.
3065         */
3066        if (!pvt->is_lockstep && !pvt->is_mirrored && !pvt->is_close_pg)
3067                channel = first_channel;
3068
3069        snprintf(msg, sizeof(msg),
3070                 "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d",
3071                 overflow ? " OVERFLOW" : "",
3072                 (uncorrected_error && recoverable) ? " recoverable" : "",
3073                 area_type,
3074                 mscod, errcode,
3075                 socket, ha,
3076                 channel_mask,
3077                 rank);
3078
3079        edac_dbg(0, "%s\n", msg);
3080
3081        /* FIXME: need support for channel mask */
3082
3083        if (channel == CHANNEL_UNSPECIFIED)
3084                channel = -1;
3085
3086        /* Call the helper to output message */
3087        edac_mc_handle_error(tp_event, mci, core_err_cnt,
3088                             m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
3089                             4*ha+channel, dimm, -1,
3090                             optype, msg);
3091        return;
3092err_parsing:
3093        edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
3094                             -1, -1, -1,
3095                             msg, "");
3096
3097}
3098
3099/*
3100 *      sbridge_check_error     Retrieve and process errors reported by the
3101 *                              hardware. Called by the Core module.
3102 */
3103static void sbridge_check_error(struct mem_ctl_info *mci)
3104{
3105        struct sbridge_pvt *pvt = mci->pvt_info;
3106        int i;
3107        unsigned count = 0;
3108        struct mce *m;
3109
3110        /*
3111         * MCE first step: Copy all mce errors into a temporary buffer
3112         * We use a double buffering here, to reduce the risk of
3113         * loosing an error.
3114         */
3115        smp_rmb();
3116        count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
3117                % MCE_LOG_LEN;
3118        if (!count)
3119                return;
3120
3121        m = pvt->mce_outentry;
3122        if (pvt->mce_in + count > MCE_LOG_LEN) {
3123                unsigned l = MCE_LOG_LEN - pvt->mce_in;
3124
3125                memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
3126                smp_wmb();
3127                pvt->mce_in = 0;
3128                count -= l;
3129                m += l;
3130        }
3131        memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
3132        smp_wmb();
3133        pvt->mce_in += count;
3134
3135        smp_rmb();
3136        if (pvt->mce_overrun) {
3137                sbridge_printk(KERN_ERR, "Lost %d memory errors\n",
3138                              pvt->mce_overrun);
3139                smp_wmb();
3140                pvt->mce_overrun = 0;
3141        }
3142
3143        /*
3144         * MCE second step: parse errors and display
3145         */
3146        for (i = 0; i < count; i++)
3147                sbridge_mce_output_error(mci, &pvt->mce_outentry[i]);
3148}
3149
3150/*
3151 * sbridge_mce_check_error      Replicates mcelog routine to get errors
3152 *                              This routine simply queues mcelog errors, and
3153 *                              return. The error itself should be handled later
3154 *                              by sbridge_check_error.
3155 * WARNING: As this routine should be called at NMI time, extra care should
3156 * be taken to avoid deadlocks, and to be as fast as possible.
3157 */
3158static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
3159                                   void *data)
3160{
3161        struct mce *mce = (struct mce *)data;
3162        struct mem_ctl_info *mci;
3163        struct sbridge_pvt *pvt;
3164        char *type;
3165
3166        if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
3167                return NOTIFY_DONE;
3168
3169        mci = get_mci_for_node_id(mce->socketid);
3170        if (!mci)
3171                return NOTIFY_DONE;
3172        pvt = mci->pvt_info;
3173
3174        /*
3175         * Just let mcelog handle it if the error is
3176         * outside the memory controller. A memory error
3177         * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
3178         * bit 12 has an special meaning.
3179         */
3180        if ((mce->status & 0xefff) >> 7 != 1)
3181                return NOTIFY_DONE;
3182
3183        if (mce->mcgstatus & MCG_STATUS_MCIP)
3184                type = "Exception";
3185        else
3186                type = "Event";
3187
3188        sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
3189
3190        sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
3191                          "Bank %d: %016Lx\n", mce->extcpu, type,
3192                          mce->mcgstatus, mce->bank, mce->status);
3193        sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
3194        sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
3195        sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
3196
3197        sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
3198                          "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
3199                          mce->time, mce->socketid, mce->apicid);
3200
3201        smp_rmb();
3202        if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
3203                smp_wmb();
3204                pvt->mce_overrun++;
3205                return NOTIFY_DONE;
3206        }
3207
3208        /* Copy memory error at the ringbuffer */
3209        memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
3210        smp_wmb();
3211        pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
3212
3213        /* Handle fatal errors immediately */
3214        if (mce->mcgstatus & 1)
3215                sbridge_check_error(mci);
3216
3217        /* Advice mcelog that the error were handled */
3218        return NOTIFY_STOP;
3219}
3220
3221static struct notifier_block sbridge_mce_dec = {
3222        .notifier_call      = sbridge_mce_check_error,
3223};
3224
3225/****************************************************************************
3226                        EDAC register/unregister logic
3227 ****************************************************************************/
3228
3229static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
3230{
3231        struct mem_ctl_info *mci = sbridge_dev->mci;
3232        struct sbridge_pvt *pvt;
3233
3234        if (unlikely(!mci || !mci->pvt_info)) {
3235                edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
3236
3237                sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
3238                return;
3239        }
3240
3241        pvt = mci->pvt_info;
3242
3243        edac_dbg(0, "MC: mci = %p, dev = %p\n",
3244                 mci, &sbridge_dev->pdev[0]->dev);
3245
3246        /* Remove MC sysfs nodes */
3247        edac_mc_del_mc(mci->pdev);
3248
3249        edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
3250        kfree(mci->ctl_name);
3251        edac_mc_free(mci);
3252        sbridge_dev->mci = NULL;
3253}
3254
3255static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
3256{
3257        struct mem_ctl_info *mci;
3258        struct edac_mc_layer layers[2];
3259        struct sbridge_pvt *pvt;
3260        struct pci_dev *pdev = sbridge_dev->pdev[0];
3261        int rc;
3262
3263        /* Check the number of active and not disabled channels */
3264        rc = check_if_ecc_is_active(sbridge_dev->bus, type);
3265        if (unlikely(rc < 0))
3266                return rc;
3267
3268        /* allocate a new MC control structure */
3269        layers[0].type = EDAC_MC_LAYER_CHANNEL;
3270        layers[0].size = type == KNIGHTS_LANDING ?
3271                KNL_MAX_CHANNELS : NUM_CHANNELS;
3272        layers[0].is_virt_csrow = false;
3273        layers[1].type = EDAC_MC_LAYER_SLOT;
3274        layers[1].size = type == KNIGHTS_LANDING ? 1 : MAX_DIMMS;
3275        layers[1].is_virt_csrow = true;
3276        mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
3277                            sizeof(*pvt));
3278
3279        if (unlikely(!mci))
3280                return -ENOMEM;
3281
3282        edac_dbg(0, "MC: mci = %p, dev = %p\n",
3283                 mci, &pdev->dev);
3284
3285        pvt = mci->pvt_info;
3286        memset(pvt, 0, sizeof(*pvt));
3287
3288        /* Associate sbridge_dev and mci for future usage */
3289        pvt->sbridge_dev = sbridge_dev;
3290        sbridge_dev->mci = mci;
3291
3292        mci->mtype_cap = type == KNIGHTS_LANDING ?
3293                MEM_FLAG_DDR4 : MEM_FLAG_DDR3;
3294        mci->edac_ctl_cap = EDAC_FLAG_NONE;
3295        mci->edac_cap = EDAC_FLAG_NONE;
3296        mci->mod_name = "sbridge_edac.c";
3297        mci->mod_ver = SBRIDGE_REVISION;
3298        mci->dev_name = pci_name(pdev);
3299        mci->ctl_page_to_phys = NULL;
3300
3301        /* Set the function pointer to an actual operation function */
3302        mci->edac_check = sbridge_check_error;
3303
3304        pvt->info.type = type;
3305        switch (type) {
3306        case IVY_BRIDGE:
3307                pvt->info.rankcfgr = IB_RANK_CFG_A;
3308                pvt->info.get_tolm = ibridge_get_tolm;
3309                pvt->info.get_tohm = ibridge_get_tohm;
3310                pvt->info.dram_rule = ibridge_dram_rule;
3311                pvt->info.get_memory_type = get_memory_type;
3312                pvt->info.get_node_id = get_node_id;
3313                pvt->info.rir_limit = rir_limit;
3314                pvt->info.sad_limit = sad_limit;
3315                pvt->info.interleave_mode = interleave_mode;
3316                pvt->info.show_interleave_mode = show_interleave_mode;
3317                pvt->info.dram_attr = dram_attr;
3318                pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3319                pvt->info.interleave_list = ibridge_interleave_list;
3320                pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
3321                pvt->info.interleave_pkg = ibridge_interleave_pkg;
3322                pvt->info.get_width = ibridge_get_width;
3323                mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge Socket#%d", mci->mc_idx);
3324
3325                /* Store pci devices at mci for faster access */
3326                rc = ibridge_mci_bind_devs(mci, sbridge_dev);
3327                if (unlikely(rc < 0))
3328                        goto fail0;
3329                break;
3330        case SANDY_BRIDGE:
3331                pvt->info.rankcfgr = SB_RANK_CFG_A;
3332                pvt->info.get_tolm = sbridge_get_tolm;
3333                pvt->info.get_tohm = sbridge_get_tohm;
3334                pvt->info.dram_rule = sbridge_dram_rule;
3335                pvt->info.get_memory_type = get_memory_type;
3336                pvt->info.get_node_id = get_node_id;
3337                pvt->info.rir_limit = rir_limit;
3338                pvt->info.sad_limit = sad_limit;
3339                pvt->info.interleave_mode = interleave_mode;
3340                pvt->info.show_interleave_mode = show_interleave_mode;
3341                pvt->info.dram_attr = dram_attr;
3342                pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
3343                pvt->info.interleave_list = sbridge_interleave_list;
3344                pvt->info.max_interleave = ARRAY_SIZE(sbridge_interleave_list);
3345                pvt->info.interleave_pkg = sbridge_interleave_pkg;
3346                pvt->info.get_width = sbridge_get_width;
3347                mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge Socket#%d", mci->mc_idx);
3348
3349                /* Store pci devices at mci for faster access */
3350                rc = sbridge_mci_bind_devs(mci, sbridge_dev);
3351                if (unlikely(rc < 0))
3352                        goto fail0;
3353                break;
3354        case HASWELL:
3355                /* rankcfgr isn't used */
3356                pvt->info.get_tolm = haswell_get_tolm;
3357                pvt->info.get_tohm = haswell_get_tohm;
3358                pvt->info.dram_rule = ibridge_dram_rule;
3359                pvt->info.get_memory_type = haswell_get_memory_type;
3360                pvt->info.get_node_id = haswell_get_node_id;
3361                pvt->info.rir_limit = haswell_rir_limit;
3362                pvt->info.sad_limit = sad_limit;
3363                pvt->info.interleave_mode = interleave_mode;
3364                pvt->info.show_interleave_mode = show_interleave_mode;
3365                pvt->info.dram_attr = dram_attr;
3366                pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3367                pvt->info.interleave_list = ibridge_interleave_list;
3368                pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
3369                pvt->info.interleave_pkg = ibridge_interleave_pkg;
3370                pvt->info.get_width = ibridge_get_width;
3371                mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell Socket#%d", mci->mc_idx);
3372
3373                /* Store pci devices at mci for faster access */
3374                rc = haswell_mci_bind_devs(mci, sbridge_dev);
3375                if (unlikely(rc < 0))
3376                        goto fail0;
3377                break;
3378        case BROADWELL:
3379                /* rankcfgr isn't used */
3380                pvt->info.get_tolm = haswell_get_tolm;
3381                pvt->info.get_tohm = haswell_get_tohm;
3382                pvt->info.dram_rule = ibridge_dram_rule;
3383                pvt->info.get_memory_type = haswell_get_memory_type;
3384                pvt->info.get_node_id = haswell_get_node_id;
3385                pvt->info.rir_limit = haswell_rir_limit;
3386                pvt->info.sad_limit = sad_limit;
3387                pvt->info.interleave_mode = interleave_mode;
3388                pvt->info.show_interleave_mode = show_interleave_mode;
3389                pvt->info.dram_attr = dram_attr;
3390                pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3391                pvt->info.interleave_list = ibridge_interleave_list;
3392                pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
3393                pvt->info.interleave_pkg = ibridge_interleave_pkg;
3394                pvt->info.get_width = broadwell_get_width;
3395                mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell Socket#%d", mci->mc_idx);
3396
3397                /* Store pci devices at mci for faster access */
3398                rc = broadwell_mci_bind_devs(mci, sbridge_dev);
3399                if (unlikely(rc < 0))
3400                        goto fail0;
3401                break;
3402        case KNIGHTS_LANDING:
3403                /* pvt->info.rankcfgr == ??? */
3404                pvt->info.get_tolm = knl_get_tolm;
3405                pvt->info.get_tohm = knl_get_tohm;
3406                pvt->info.dram_rule = knl_dram_rule;
3407                pvt->info.get_memory_type = knl_get_memory_type;
3408                pvt->info.get_node_id = knl_get_node_id;
3409                pvt->info.rir_limit = NULL;
3410                pvt->info.sad_limit = knl_sad_limit;
3411                pvt->info.interleave_mode = knl_interleave_mode;
3412                pvt->info.show_interleave_mode = knl_show_interleave_mode;
3413                pvt->info.dram_attr = dram_attr_knl;
3414                pvt->info.max_sad = ARRAY_SIZE(knl_dram_rule);
3415                pvt->info.interleave_list = knl_interleave_list;
3416                pvt->info.max_interleave = ARRAY_SIZE(knl_interleave_list);
3417                pvt->info.interleave_pkg = ibridge_interleave_pkg;
3418                pvt->info.get_width = knl_get_width;
3419                mci->ctl_name = kasprintf(GFP_KERNEL,
3420                        "Knights Landing Socket#%d", mci->mc_idx);
3421
3422                rc = knl_mci_bind_devs(mci, sbridge_dev);
3423                if (unlikely(rc < 0))
3424                        goto fail0;
3425                break;
3426        }
3427
3428        /* Get dimm basic config and the memory layout */
3429        get_dimm_config(mci);
3430        get_memory_layout(mci);
3431
3432        /* record ptr to the generic device */
3433        mci->pdev = &pdev->dev;
3434
3435        /* add this new MC control structure to EDAC's list of MCs */
3436        if (unlikely(edac_mc_add_mc(mci))) {
3437                edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
3438                rc = -EINVAL;
3439                goto fail0;
3440        }
3441
3442        return 0;
3443
3444fail0:
3445        kfree(mci->ctl_name);
3446        edac_mc_free(mci);
3447        sbridge_dev->mci = NULL;
3448        return rc;
3449}
3450
3451/*
3452 *      sbridge_probe   Probe for ONE instance of device to see if it is
3453 *                      present.
3454 *      return:
3455 *              0 for FOUND a device
3456 *              < 0 for error code
3457 */
3458
3459static int sbridge_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3460{
3461        int rc = -ENODEV;
3462        u8 mc, num_mc = 0;
3463        struct sbridge_dev *sbridge_dev;
3464        enum type type = SANDY_BRIDGE;
3465
3466        /* get the pci devices we want to reserve for our use */
3467        mutex_lock(&sbridge_edac_lock);
3468
3469        /*
3470         * All memory controllers are allocated at the first pass.
3471         */
3472        if (unlikely(probed >= 1)) {
3473                mutex_unlock(&sbridge_edac_lock);
3474                return -ENODEV;
3475        }
3476        probed++;
3477
3478        switch (pdev->device) {
3479        case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
3480                rc = sbridge_get_all_devices(&num_mc,
3481                                        pci_dev_descr_ibridge_table);
3482                type = IVY_BRIDGE;
3483                break;
3484        case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
3485                rc = sbridge_get_all_devices(&num_mc,
3486                                        pci_dev_descr_sbridge_table);
3487                type = SANDY_BRIDGE;
3488                break;
3489        case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
3490                rc = sbridge_get_all_devices(&num_mc,
3491                                        pci_dev_descr_haswell_table);
3492                type = HASWELL;
3493                break;
3494        case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
3495                rc = sbridge_get_all_devices(&num_mc,
3496                                        pci_dev_descr_broadwell_table);
3497                type = BROADWELL;
3498            break;
3499        case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0:
3500                rc = sbridge_get_all_devices_knl(&num_mc,
3501                                        pci_dev_descr_knl_table);
3502                type = KNIGHTS_LANDING;
3503                break;
3504        }
3505        if (unlikely(rc < 0)) {
3506                edac_dbg(0, "couldn't get all devices for 0x%x\n", pdev->device);
3507                goto fail0;
3508        }
3509
3510        mc = 0;
3511
3512        list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
3513                edac_dbg(0, "Registering MC#%d (%d of %d)\n",
3514                         mc, mc + 1, num_mc);
3515
3516                sbridge_dev->mc = mc++;
3517                rc = sbridge_register_mci(sbridge_dev, type);
3518                if (unlikely(rc < 0))
3519                        goto fail1;
3520        }
3521
3522        sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION);
3523
3524        mutex_unlock(&sbridge_edac_lock);
3525        return 0;
3526
3527fail1:
3528        list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3529                sbridge_unregister_mci(sbridge_dev);
3530
3531        sbridge_put_all_devices();
3532fail0:
3533        mutex_unlock(&sbridge_edac_lock);
3534        return rc;
3535}
3536
3537/*
3538 *      sbridge_remove  destructor for one instance of device
3539 *
3540 */
3541static void sbridge_remove(struct pci_dev *pdev)
3542{
3543        struct sbridge_dev *sbridge_dev;
3544
3545        edac_dbg(0, "\n");
3546
3547        /*
3548         * we have a trouble here: pdev value for removal will be wrong, since
3549         * it will point to the X58 register used to detect that the machine
3550         * is a Nehalem or upper design. However, due to the way several PCI
3551         * devices are grouped together to provide MC functionality, we need
3552         * to use a different method for releasing the devices
3553         */
3554
3555        mutex_lock(&sbridge_edac_lock);
3556
3557        if (unlikely(!probed)) {
3558                mutex_unlock(&sbridge_edac_lock);
3559                return;
3560        }
3561
3562        list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3563                sbridge_unregister_mci(sbridge_dev);
3564
3565        /* Release PCI resources */
3566        sbridge_put_all_devices();
3567
3568        probed--;
3569
3570        mutex_unlock(&sbridge_edac_lock);
3571}
3572
3573MODULE_DEVICE_TABLE(pci, sbridge_pci_tbl);
3574
3575/*
3576 *      sbridge_driver  pci_driver structure for this module
3577 *
3578 */
3579static struct pci_driver sbridge_driver = {
3580        .name     = "sbridge_edac",
3581        .probe    = sbridge_probe,
3582        .remove   = sbridge_remove,
3583        .id_table = sbridge_pci_tbl,
3584};
3585
3586/*
3587 *      sbridge_init            Module entry function
3588 *                      Try to initialize this module for its devices
3589 */
3590static int __init sbridge_init(void)
3591{
3592        int pci_rc;
3593
3594        edac_dbg(2, "\n");
3595
3596        /* Ensure that the OPSTATE is set correctly for POLL or NMI */
3597        opstate_init();
3598
3599        pci_rc = pci_register_driver(&sbridge_driver);
3600        if (pci_rc >= 0) {
3601                mce_register_decode_chain(&sbridge_mce_dec);
3602                if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
3603                        sbridge_printk(KERN_WARNING, "Loading driver, error reporting disabled.\n");
3604                return 0;
3605        }
3606
3607        sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
3608                      pci_rc);
3609
3610        return pci_rc;
3611}
3612
3613/*
3614 *      sbridge_exit()  Module exit function
3615 *                      Unregister the driver
3616 */
3617static void __exit sbridge_exit(void)
3618{
3619        edac_dbg(2, "\n");
3620        pci_unregister_driver(&sbridge_driver);
3621        mce_unregister_decode_chain(&sbridge_mce_dec);
3622}
3623
3624module_init(sbridge_init);
3625module_exit(sbridge_exit);
3626
3627module_param(edac_op_state, int, 0444);
3628MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
3629
3630MODULE_LICENSE("GPL");
3631MODULE_AUTHOR("Mauro Carvalho Chehab");
3632MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
3633MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
3634                   SBRIDGE_REVISION);
3635