linux/drivers/gpu/drm/i915/i915_gem_gtt.h
<<
>>
Prefs
   1/*
   2 * Copyright © 2014 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Please try to maintain the following order within this file unless it makes
  24 * sense to do otherwise. From top to bottom:
  25 * 1. typedefs
  26 * 2. #defines, and macros
  27 * 3. structure definitions
  28 * 4. function prototypes
  29 *
  30 * Within each section, please try to order by generation in ascending order,
  31 * from top to bottom (ie. gen6 on the top, gen8 on the bottom).
  32 */
  33
  34#ifndef __I915_GEM_GTT_H__
  35#define __I915_GEM_GTT_H__
  36
  37struct drm_i915_file_private;
  38
  39typedef uint32_t gen6_pte_t;
  40typedef uint64_t gen8_pte_t;
  41typedef uint64_t gen8_pde_t;
  42typedef uint64_t gen8_ppgtt_pdpe_t;
  43typedef uint64_t gen8_ppgtt_pml4e_t;
  44
  45#define gtt_total_entries(gtt) ((gtt).base.total >> PAGE_SHIFT)
  46
  47/* gen6-hsw has bit 11-4 for physical addr bit 39-32 */
  48#define GEN6_GTT_ADDR_ENCODE(addr)      ((addr) | (((addr) >> 28) & 0xff0))
  49#define GEN6_PTE_ADDR_ENCODE(addr)      GEN6_GTT_ADDR_ENCODE(addr)
  50#define GEN6_PDE_ADDR_ENCODE(addr)      GEN6_GTT_ADDR_ENCODE(addr)
  51#define GEN6_PTE_CACHE_LLC              (2 << 1)
  52#define GEN6_PTE_UNCACHED               (1 << 1)
  53#define GEN6_PTE_VALID                  (1 << 0)
  54
  55#define I915_PTES(pte_len)              (PAGE_SIZE / (pte_len))
  56#define I915_PTE_MASK(pte_len)          (I915_PTES(pte_len) - 1)
  57#define I915_PDES                       512
  58#define I915_PDE_MASK                   (I915_PDES - 1)
  59#define NUM_PTE(pde_shift)     (1 << (pde_shift - PAGE_SHIFT))
  60
  61#define GEN6_PTES                       I915_PTES(sizeof(gen6_pte_t))
  62#define GEN6_PD_SIZE                    (I915_PDES * PAGE_SIZE)
  63#define GEN6_PD_ALIGN                   (PAGE_SIZE * 16)
  64#define GEN6_PDE_SHIFT                  22
  65#define GEN6_PDE_VALID                  (1 << 0)
  66
  67#define GEN7_PTE_CACHE_L3_LLC           (3 << 1)
  68
  69#define BYT_PTE_SNOOPED_BY_CPU_CACHES   (1 << 2)
  70#define BYT_PTE_WRITEABLE               (1 << 1)
  71
  72/* Cacheability Control is a 4-bit value. The low three bits are stored in bits
  73 * 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
  74 */
  75#define HSW_CACHEABILITY_CONTROL(bits)  ((((bits) & 0x7) << 1) | \
  76                                         (((bits) & 0x8) << (11 - 3)))
  77#define HSW_WB_LLC_AGE3                 HSW_CACHEABILITY_CONTROL(0x2)
  78#define HSW_WB_LLC_AGE0                 HSW_CACHEABILITY_CONTROL(0x3)
  79#define HSW_WB_ELLC_LLC_AGE3            HSW_CACHEABILITY_CONTROL(0x8)
  80#define HSW_WB_ELLC_LLC_AGE0            HSW_CACHEABILITY_CONTROL(0xb)
  81#define HSW_WT_ELLC_LLC_AGE3            HSW_CACHEABILITY_CONTROL(0x7)
  82#define HSW_WT_ELLC_LLC_AGE0            HSW_CACHEABILITY_CONTROL(0x6)
  83#define HSW_PTE_UNCACHED                (0)
  84#define HSW_GTT_ADDR_ENCODE(addr)       ((addr) | (((addr) >> 28) & 0x7f0))
  85#define HSW_PTE_ADDR_ENCODE(addr)       HSW_GTT_ADDR_ENCODE(addr)
  86
  87/* GEN8 legacy style address is defined as a 3 level page table:
  88 * 31:30 | 29:21 | 20:12 |  11:0
  89 * PDPE  |  PDE  |  PTE  | offset
  90 * The difference as compared to normal x86 3 level page table is the PDPEs are
  91 * programmed via register.
  92 *
  93 * GEN8 48b legacy style address is defined as a 4 level page table:
  94 * 47:39 | 38:30 | 29:21 | 20:12 |  11:0
  95 * PML4E | PDPE  |  PDE  |  PTE  | offset
  96 */
  97#define GEN8_PML4ES_PER_PML4            512
  98#define GEN8_PML4E_SHIFT                39
  99#define GEN8_PML4E_MASK                 (GEN8_PML4ES_PER_PML4 - 1)
 100#define GEN8_PDPE_SHIFT                 30
 101/* NB: GEN8_PDPE_MASK is untrue for 32b platforms, but it has no impact on 32b page
 102 * tables */
 103#define GEN8_PDPE_MASK                  0x1ff
 104#define GEN8_PDE_SHIFT                  21
 105#define GEN8_PDE_MASK                   0x1ff
 106#define GEN8_PTE_SHIFT                  12
 107#define GEN8_PTE_MASK                   0x1ff
 108#define GEN8_LEGACY_PDPES               4
 109#define GEN8_PTES                       I915_PTES(sizeof(gen8_pte_t))
 110
 111#define I915_PDPES_PER_PDP(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
 112                                 GEN8_PML4ES_PER_PML4 : GEN8_LEGACY_PDPES)
 113
 114#define PPAT_UNCACHED_INDEX             (_PAGE_PWT | _PAGE_PCD)
 115#define PPAT_CACHED_PDE_INDEX           0 /* WB LLC */
 116#define PPAT_CACHED_INDEX               _PAGE_PAT /* WB LLCeLLC */
 117#define PPAT_DISPLAY_ELLC_INDEX         _PAGE_PCD /* WT eLLC */
 118
 119#define CHV_PPAT_SNOOP                  (1<<6)
 120#define GEN8_PPAT_AGE(x)                (x<<4)
 121#define GEN8_PPAT_LLCeLLC               (3<<2)
 122#define GEN8_PPAT_LLCELLC               (2<<2)
 123#define GEN8_PPAT_LLC                   (1<<2)
 124#define GEN8_PPAT_WB                    (3<<0)
 125#define GEN8_PPAT_WT                    (2<<0)
 126#define GEN8_PPAT_WC                    (1<<0)
 127#define GEN8_PPAT_UC                    (0<<0)
 128#define GEN8_PPAT_ELLC_OVERRIDE         (0<<2)
 129#define GEN8_PPAT(i, x)                 ((uint64_t) (x) << ((i) * 8))
 130
 131enum i915_ggtt_view_type {
 132        I915_GGTT_VIEW_NORMAL = 0,
 133        I915_GGTT_VIEW_ROTATED,
 134        I915_GGTT_VIEW_PARTIAL,
 135};
 136
 137struct intel_rotation_info {
 138        unsigned int height;
 139        unsigned int pitch;
 140        unsigned int uv_offset;
 141        uint32_t pixel_format;
 142        uint64_t fb_modifier;
 143        unsigned int width_pages, height_pages;
 144        uint64_t size;
 145        unsigned int width_pages_uv, height_pages_uv;
 146        uint64_t size_uv;
 147        unsigned int uv_start_page;
 148};
 149
 150struct i915_ggtt_view {
 151        enum i915_ggtt_view_type type;
 152
 153        union {
 154                struct {
 155                        u64 offset;
 156                        unsigned int size;
 157                } partial;
 158                struct intel_rotation_info rotated;
 159        } params;
 160
 161        struct sg_table *pages;
 162};
 163
 164extern const struct i915_ggtt_view i915_ggtt_view_normal;
 165extern const struct i915_ggtt_view i915_ggtt_view_rotated;
 166
 167enum i915_cache_level;
 168
 169/**
 170 * A VMA represents a GEM BO that is bound into an address space. Therefore, a
 171 * VMA's presence cannot be guaranteed before binding, or after unbinding the
 172 * object into/from the address space.
 173 *
 174 * To make things as simple as possible (ie. no refcounting), a VMA's lifetime
 175 * will always be <= an objects lifetime. So object refcounting should cover us.
 176 */
 177struct i915_vma {
 178        struct drm_mm_node node;
 179        struct drm_i915_gem_object *obj;
 180        struct i915_address_space *vm;
 181
 182        /** Flags and address space this VMA is bound to */
 183#define GLOBAL_BIND     (1<<0)
 184#define LOCAL_BIND      (1<<1)
 185        unsigned int bound : 4;
 186        bool is_ggtt : 1;
 187
 188        /**
 189         * Support different GGTT views into the same object.
 190         * This means there can be multiple VMA mappings per object and per VM.
 191         * i915_ggtt_view_type is used to distinguish between those entries.
 192         * The default one of zero (I915_GGTT_VIEW_NORMAL) is default and also
 193         * assumed in GEM functions which take no ggtt view parameter.
 194         */
 195        struct i915_ggtt_view ggtt_view;
 196
 197        /** This object's place on the active/inactive lists */
 198        struct list_head vm_link;
 199
 200        struct list_head obj_link; /* Link in the object's VMA list */
 201
 202        /** This vma's place in the batchbuffer or on the eviction list */
 203        struct list_head exec_list;
 204
 205        /**
 206         * Used for performing relocations during execbuffer insertion.
 207         */
 208        struct hlist_node exec_node;
 209        unsigned long exec_handle;
 210        struct drm_i915_gem_exec_object2 *exec_entry;
 211
 212        /**
 213         * How many users have pinned this object in GTT space. The following
 214         * users can each hold at most one reference: pwrite/pread, execbuffer
 215         * (objects are not allowed multiple times for the same batchbuffer),
 216         * and the framebuffer code. When switching/pageflipping, the
 217         * framebuffer code has at most two buffers pinned per crtc.
 218         *
 219         * In the worst case this is 1 + 1 + 1 + 2*2 = 7. That would fit into 3
 220         * bits with absolutely no headroom. So use 4 bits. */
 221        unsigned int pin_count:4;
 222#define DRM_I915_GEM_OBJECT_MAX_PIN_COUNT 0xf
 223};
 224
 225struct i915_page_dma {
 226        struct page *page;
 227        union {
 228                dma_addr_t daddr;
 229
 230                /* For gen6/gen7 only. This is the offset in the GGTT
 231                 * where the page directory entries for PPGTT begin
 232                 */
 233                uint32_t ggtt_offset;
 234        };
 235};
 236
 237#define px_base(px) (&(px)->base)
 238#define px_page(px) (px_base(px)->page)
 239#define px_dma(px) (px_base(px)->daddr)
 240
 241struct i915_page_scratch {
 242        struct i915_page_dma base;
 243};
 244
 245struct i915_page_table {
 246        struct i915_page_dma base;
 247
 248        unsigned long *used_ptes;
 249};
 250
 251struct i915_page_directory {
 252        struct i915_page_dma base;
 253
 254        unsigned long *used_pdes;
 255        struct i915_page_table *page_table[I915_PDES]; /* PDEs */
 256};
 257
 258struct i915_page_directory_pointer {
 259        struct i915_page_dma base;
 260
 261        unsigned long *used_pdpes;
 262        struct i915_page_directory **page_directory;
 263};
 264
 265struct i915_pml4 {
 266        struct i915_page_dma base;
 267
 268        DECLARE_BITMAP(used_pml4es, GEN8_PML4ES_PER_PML4);
 269        struct i915_page_directory_pointer *pdps[GEN8_PML4ES_PER_PML4];
 270};
 271
 272struct i915_address_space {
 273        struct drm_mm mm;
 274        struct drm_device *dev;
 275        struct list_head global_link;
 276        u64 start;              /* Start offset always 0 for dri2 */
 277        u64 total;              /* size addr space maps (ex. 2GB for ggtt) */
 278
 279        bool is_ggtt;
 280
 281        struct i915_page_scratch *scratch_page;
 282        struct i915_page_table *scratch_pt;
 283        struct i915_page_directory *scratch_pd;
 284        struct i915_page_directory_pointer *scratch_pdp; /* GEN8+ & 48b PPGTT */
 285
 286        /**
 287         * List of objects currently involved in rendering.
 288         *
 289         * Includes buffers having the contents of their GPU caches
 290         * flushed, not necessarily primitives. last_read_req
 291         * represents when the rendering involved will be completed.
 292         *
 293         * A reference is held on the buffer while on this list.
 294         */
 295        struct list_head active_list;
 296
 297        /**
 298         * LRU list of objects which are not in the ringbuffer and
 299         * are ready to unbind, but are still in the GTT.
 300         *
 301         * last_read_req is NULL while an object is in this list.
 302         *
 303         * A reference is not held on the buffer while on this list,
 304         * as merely being GTT-bound shouldn't prevent its being
 305         * freed, and we'll pull it off the list in the free path.
 306         */
 307        struct list_head inactive_list;
 308
 309        /* FIXME: Need a more generic return type */
 310        gen6_pte_t (*pte_encode)(dma_addr_t addr,
 311                                 enum i915_cache_level level,
 312                                 bool valid, u32 flags); /* Create a valid PTE */
 313        /* flags for pte_encode */
 314#define PTE_READ_ONLY   (1<<0)
 315        int (*allocate_va_range)(struct i915_address_space *vm,
 316                                 uint64_t start,
 317                                 uint64_t length);
 318        void (*clear_range)(struct i915_address_space *vm,
 319                            uint64_t start,
 320                            uint64_t length,
 321                            bool use_scratch);
 322        void (*insert_entries)(struct i915_address_space *vm,
 323                               struct sg_table *st,
 324                               uint64_t start,
 325                               enum i915_cache_level cache_level, u32 flags);
 326        void (*cleanup)(struct i915_address_space *vm);
 327        /** Unmap an object from an address space. This usually consists of
 328         * setting the valid PTE entries to a reserved scratch page. */
 329        void (*unbind_vma)(struct i915_vma *vma);
 330        /* Map an object into an address space with the given cache flags. */
 331        int (*bind_vma)(struct i915_vma *vma,
 332                        enum i915_cache_level cache_level,
 333                        u32 flags);
 334};
 335
 336#define i915_is_ggtt(V) ((V)->is_ggtt)
 337
 338/* The Graphics Translation Table is the way in which GEN hardware translates a
 339 * Graphics Virtual Address into a Physical Address. In addition to the normal
 340 * collateral associated with any va->pa translations GEN hardware also has a
 341 * portion of the GTT which can be mapped by the CPU and remain both coherent
 342 * and correct (in cases like swizzling). That region is referred to as GMADR in
 343 * the spec.
 344 */
 345struct i915_gtt {
 346        struct i915_address_space base;
 347
 348        size_t stolen_size;             /* Total size of stolen memory */
 349        size_t stolen_usable_size;      /* Total size minus BIOS reserved */
 350        size_t stolen_reserved_base;
 351        size_t stolen_reserved_size;
 352        u64 mappable_end;               /* End offset that we can CPU map */
 353        struct io_mapping *mappable;    /* Mapping to our CPU mappable region */
 354        phys_addr_t mappable_base;      /* PA of our GMADR */
 355
 356        /** "Graphics Stolen Memory" holds the global PTEs */
 357        void __iomem *gsm;
 358
 359        bool do_idle_maps;
 360
 361        int mtrr;
 362
 363        /* global gtt ops */
 364        int (*gtt_probe)(struct drm_device *dev, u64 *gtt_total,
 365                          size_t *stolen, phys_addr_t *mappable_base,
 366                          u64 *mappable_end);
 367};
 368
 369struct i915_hw_ppgtt {
 370        struct i915_address_space base;
 371        struct kref ref;
 372        struct drm_mm_node node;
 373        unsigned long pd_dirty_rings;
 374        union {
 375                struct i915_pml4 pml4;          /* GEN8+ & 48b PPGTT */
 376                struct i915_page_directory_pointer pdp; /* GEN8+ */
 377                struct i915_page_directory pd;          /* GEN6-7 */
 378        };
 379
 380        struct drm_i915_file_private *file_priv;
 381
 382        gen6_pte_t __iomem *pd_addr;
 383
 384        int (*enable)(struct i915_hw_ppgtt *ppgtt);
 385        int (*switch_mm)(struct i915_hw_ppgtt *ppgtt,
 386                         struct drm_i915_gem_request *req);
 387        void (*debug_dump)(struct i915_hw_ppgtt *ppgtt, struct seq_file *m);
 388};
 389
 390/* For each pde iterates over every pde between from start until start + length.
 391 * If start, and start+length are not perfectly divisible, the macro will round
 392 * down, and up as needed. The macro modifies pde, start, and length. Dev is
 393 * only used to differentiate shift values. Temp is temp.  On gen6/7, start = 0,
 394 * and length = 2G effectively iterates over every PDE in the system.
 395 *
 396 * XXX: temp is not actually needed, but it saves doing the ALIGN operation.
 397 */
 398#define gen6_for_each_pde(pt, pd, start, length, temp, iter) \
 399        for (iter = gen6_pde_index(start); \
 400             length > 0 && iter < I915_PDES ? \
 401                        (pt = (pd)->page_table[iter]), 1 : 0; \
 402             iter++, \
 403             temp = ALIGN(start+1, 1 << GEN6_PDE_SHIFT) - start, \
 404             temp = min_t(unsigned, temp, length), \
 405             start += temp, length -= temp)
 406
 407#define gen6_for_all_pdes(pt, ppgtt, iter)  \
 408        for (iter = 0;          \
 409             pt = ppgtt->pd.page_table[iter], iter < I915_PDES; \
 410             iter++)
 411
 412static inline uint32_t i915_pte_index(uint64_t address, uint32_t pde_shift)
 413{
 414        const uint32_t mask = NUM_PTE(pde_shift) - 1;
 415
 416        return (address >> PAGE_SHIFT) & mask;
 417}
 418
 419/* Helper to counts the number of PTEs within the given length. This count
 420 * does not cross a page table boundary, so the max value would be
 421 * GEN6_PTES for GEN6, and GEN8_PTES for GEN8.
 422*/
 423static inline uint32_t i915_pte_count(uint64_t addr, size_t length,
 424                                      uint32_t pde_shift)
 425{
 426        const uint64_t mask = ~((1ULL << pde_shift) - 1);
 427        uint64_t end;
 428
 429        WARN_ON(length == 0);
 430        WARN_ON(offset_in_page(addr|length));
 431
 432        end = addr + length;
 433
 434        if ((addr & mask) != (end & mask))
 435                return NUM_PTE(pde_shift) - i915_pte_index(addr, pde_shift);
 436
 437        return i915_pte_index(end, pde_shift) - i915_pte_index(addr, pde_shift);
 438}
 439
 440static inline uint32_t i915_pde_index(uint64_t addr, uint32_t shift)
 441{
 442        return (addr >> shift) & I915_PDE_MASK;
 443}
 444
 445static inline uint32_t gen6_pte_index(uint32_t addr)
 446{
 447        return i915_pte_index(addr, GEN6_PDE_SHIFT);
 448}
 449
 450static inline size_t gen6_pte_count(uint32_t addr, uint32_t length)
 451{
 452        return i915_pte_count(addr, length, GEN6_PDE_SHIFT);
 453}
 454
 455static inline uint32_t gen6_pde_index(uint32_t addr)
 456{
 457        return i915_pde_index(addr, GEN6_PDE_SHIFT);
 458}
 459
 460/* Equivalent to the gen6 version, For each pde iterates over every pde
 461 * between from start until start + length. On gen8+ it simply iterates
 462 * over every page directory entry in a page directory.
 463 */
 464#define gen8_for_each_pde(pt, pd, start, length, iter)                  \
 465        for (iter = gen8_pde_index(start);                              \
 466             length > 0 && iter < I915_PDES &&                          \
 467                (pt = (pd)->page_table[iter], true);                    \
 468             ({ u64 temp = ALIGN(start+1, 1 << GEN8_PDE_SHIFT);         \
 469                    temp = min(temp - start, length);                   \
 470                    start += temp, length -= temp; }), ++iter)
 471
 472#define gen8_for_each_pdpe(pd, pdp, start, length, iter)                \
 473        for (iter = gen8_pdpe_index(start);                             \
 474             length > 0 && iter < I915_PDPES_PER_PDP(dev) &&            \
 475                (pd = (pdp)->page_directory[iter], true);               \
 476             ({ u64 temp = ALIGN(start+1, 1 << GEN8_PDPE_SHIFT);        \
 477                    temp = min(temp - start, length);                   \
 478                    start += temp, length -= temp; }), ++iter)
 479
 480#define gen8_for_each_pml4e(pdp, pml4, start, length, iter)             \
 481        for (iter = gen8_pml4e_index(start);                            \
 482             length > 0 && iter < GEN8_PML4ES_PER_PML4 &&               \
 483                (pdp = (pml4)->pdps[iter], true);                       \
 484             ({ u64 temp = ALIGN(start+1, 1ULL << GEN8_PML4E_SHIFT);    \
 485                    temp = min(temp - start, length);                   \
 486                    start += temp, length -= temp; }), ++iter)
 487
 488static inline uint32_t gen8_pte_index(uint64_t address)
 489{
 490        return i915_pte_index(address, GEN8_PDE_SHIFT);
 491}
 492
 493static inline uint32_t gen8_pde_index(uint64_t address)
 494{
 495        return i915_pde_index(address, GEN8_PDE_SHIFT);
 496}
 497
 498static inline uint32_t gen8_pdpe_index(uint64_t address)
 499{
 500        return (address >> GEN8_PDPE_SHIFT) & GEN8_PDPE_MASK;
 501}
 502
 503static inline uint32_t gen8_pml4e_index(uint64_t address)
 504{
 505        return (address >> GEN8_PML4E_SHIFT) & GEN8_PML4E_MASK;
 506}
 507
 508static inline size_t gen8_pte_count(uint64_t address, uint64_t length)
 509{
 510        return i915_pte_count(address, length, GEN8_PDE_SHIFT);
 511}
 512
 513static inline dma_addr_t
 514i915_page_dir_dma_addr(const struct i915_hw_ppgtt *ppgtt, const unsigned n)
 515{
 516        return test_bit(n, ppgtt->pdp.used_pdpes) ?
 517                px_dma(ppgtt->pdp.page_directory[n]) :
 518                px_dma(ppgtt->base.scratch_pd);
 519}
 520
 521int i915_gem_gtt_init(struct drm_device *dev);
 522void i915_gem_init_global_gtt(struct drm_device *dev);
 523void i915_global_gtt_cleanup(struct drm_device *dev);
 524
 525
 526int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt);
 527int i915_ppgtt_init_hw(struct drm_device *dev);
 528int i915_ppgtt_init_ring(struct drm_i915_gem_request *req);
 529void i915_ppgtt_release(struct kref *kref);
 530struct i915_hw_ppgtt *i915_ppgtt_create(struct drm_device *dev,
 531                                        struct drm_i915_file_private *fpriv);
 532static inline void i915_ppgtt_get(struct i915_hw_ppgtt *ppgtt)
 533{
 534        if (ppgtt)
 535                kref_get(&ppgtt->ref);
 536}
 537static inline void i915_ppgtt_put(struct i915_hw_ppgtt *ppgtt)
 538{
 539        if (ppgtt)
 540                kref_put(&ppgtt->ref, i915_ppgtt_release);
 541}
 542
 543void i915_check_and_clear_faults(struct drm_device *dev);
 544void i915_gem_suspend_gtt_mappings(struct drm_device *dev);
 545void i915_gem_restore_gtt_mappings(struct drm_device *dev);
 546
 547int __must_check i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj);
 548void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj);
 549
 550static inline bool
 551i915_ggtt_view_equal(const struct i915_ggtt_view *a,
 552                     const struct i915_ggtt_view *b)
 553{
 554        if (WARN_ON(!a || !b))
 555                return false;
 556
 557        if (a->type != b->type)
 558                return false;
 559        if (a->type != I915_GGTT_VIEW_NORMAL)
 560                return !memcmp(&a->params, &b->params, sizeof(a->params));
 561        return true;
 562}
 563
 564size_t
 565i915_ggtt_view_size(struct drm_i915_gem_object *obj,
 566                    const struct i915_ggtt_view *view);
 567
 568#endif
 569