linux/drivers/gpu/drm/i915/intel_pm.c
<<
>>
Prefs
   1/*
   2 * Copyright © 2012 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
  25 *
  26 */
  27
  28#include <linux/cpufreq.h>
  29#include "i915_drv.h"
  30#include "intel_drv.h"
  31#include "../../../platform/x86/intel_ips.h"
  32#include <linux/module.h>
  33
  34/**
  35 * DOC: RC6
  36 *
  37 * RC6 is a special power stage which allows the GPU to enter an very
  38 * low-voltage mode when idle, using down to 0V while at this stage.  This
  39 * stage is entered automatically when the GPU is idle when RC6 support is
  40 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
  41 *
  42 * There are different RC6 modes available in Intel GPU, which differentiate
  43 * among each other with the latency required to enter and leave RC6 and
  44 * voltage consumed by the GPU in different states.
  45 *
  46 * The combination of the following flags define which states GPU is allowed
  47 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
  48 * RC6pp is deepest RC6. Their support by hardware varies according to the
  49 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
  50 * which brings the most power savings; deeper states save more power, but
  51 * require higher latency to switch to and wake up.
  52 */
  53#define INTEL_RC6_ENABLE                        (1<<0)
  54#define INTEL_RC6p_ENABLE                       (1<<1)
  55#define INTEL_RC6pp_ENABLE                      (1<<2)
  56
  57static void bxt_init_clock_gating(struct drm_device *dev)
  58{
  59        struct drm_i915_private *dev_priv = dev->dev_private;
  60
  61        /* WaDisableSDEUnitClockGating:bxt */
  62        I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  63                   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  64
  65        /*
  66         * FIXME:
  67         * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
  68         */
  69        I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  70                   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
  71
  72        /*
  73         * Wa: Backlight PWM may stop in the asserted state, causing backlight
  74         * to stay fully on.
  75         */
  76        if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
  77                I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
  78                           PWM1_GATING_DIS | PWM2_GATING_DIS);
  79}
  80
  81static void i915_pineview_get_mem_freq(struct drm_device *dev)
  82{
  83        struct drm_i915_private *dev_priv = dev->dev_private;
  84        u32 tmp;
  85
  86        tmp = I915_READ(CLKCFG);
  87
  88        switch (tmp & CLKCFG_FSB_MASK) {
  89        case CLKCFG_FSB_533:
  90                dev_priv->fsb_freq = 533; /* 133*4 */
  91                break;
  92        case CLKCFG_FSB_800:
  93                dev_priv->fsb_freq = 800; /* 200*4 */
  94                break;
  95        case CLKCFG_FSB_667:
  96                dev_priv->fsb_freq =  667; /* 167*4 */
  97                break;
  98        case CLKCFG_FSB_400:
  99                dev_priv->fsb_freq = 400; /* 100*4 */
 100                break;
 101        }
 102
 103        switch (tmp & CLKCFG_MEM_MASK) {
 104        case CLKCFG_MEM_533:
 105                dev_priv->mem_freq = 533;
 106                break;
 107        case CLKCFG_MEM_667:
 108                dev_priv->mem_freq = 667;
 109                break;
 110        case CLKCFG_MEM_800:
 111                dev_priv->mem_freq = 800;
 112                break;
 113        }
 114
 115        /* detect pineview DDR3 setting */
 116        tmp = I915_READ(CSHRDDR3CTL);
 117        dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
 118}
 119
 120static void i915_ironlake_get_mem_freq(struct drm_device *dev)
 121{
 122        struct drm_i915_private *dev_priv = dev->dev_private;
 123        u16 ddrpll, csipll;
 124
 125        ddrpll = I915_READ16(DDRMPLL1);
 126        csipll = I915_READ16(CSIPLL0);
 127
 128        switch (ddrpll & 0xff) {
 129        case 0xc:
 130                dev_priv->mem_freq = 800;
 131                break;
 132        case 0x10:
 133                dev_priv->mem_freq = 1066;
 134                break;
 135        case 0x14:
 136                dev_priv->mem_freq = 1333;
 137                break;
 138        case 0x18:
 139                dev_priv->mem_freq = 1600;
 140                break;
 141        default:
 142                DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
 143                                 ddrpll & 0xff);
 144                dev_priv->mem_freq = 0;
 145                break;
 146        }
 147
 148        dev_priv->ips.r_t = dev_priv->mem_freq;
 149
 150        switch (csipll & 0x3ff) {
 151        case 0x00c:
 152                dev_priv->fsb_freq = 3200;
 153                break;
 154        case 0x00e:
 155                dev_priv->fsb_freq = 3733;
 156                break;
 157        case 0x010:
 158                dev_priv->fsb_freq = 4266;
 159                break;
 160        case 0x012:
 161                dev_priv->fsb_freq = 4800;
 162                break;
 163        case 0x014:
 164                dev_priv->fsb_freq = 5333;
 165                break;
 166        case 0x016:
 167                dev_priv->fsb_freq = 5866;
 168                break;
 169        case 0x018:
 170                dev_priv->fsb_freq = 6400;
 171                break;
 172        default:
 173                DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
 174                                 csipll & 0x3ff);
 175                dev_priv->fsb_freq = 0;
 176                break;
 177        }
 178
 179        if (dev_priv->fsb_freq == 3200) {
 180                dev_priv->ips.c_m = 0;
 181        } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
 182                dev_priv->ips.c_m = 1;
 183        } else {
 184                dev_priv->ips.c_m = 2;
 185        }
 186}
 187
 188static const struct cxsr_latency cxsr_latency_table[] = {
 189        {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
 190        {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
 191        {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
 192        {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
 193        {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
 194
 195        {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
 196        {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
 197        {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
 198        {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
 199        {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
 200
 201        {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
 202        {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
 203        {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
 204        {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
 205        {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
 206
 207        {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
 208        {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
 209        {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
 210        {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
 211        {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
 212
 213        {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
 214        {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
 215        {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
 216        {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
 217        {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
 218
 219        {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
 220        {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
 221        {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
 222        {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
 223        {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
 224};
 225
 226static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
 227                                                         int is_ddr3,
 228                                                         int fsb,
 229                                                         int mem)
 230{
 231        const struct cxsr_latency *latency;
 232        int i;
 233
 234        if (fsb == 0 || mem == 0)
 235                return NULL;
 236
 237        for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
 238                latency = &cxsr_latency_table[i];
 239                if (is_desktop == latency->is_desktop &&
 240                    is_ddr3 == latency->is_ddr3 &&
 241                    fsb == latency->fsb_freq && mem == latency->mem_freq)
 242                        return latency;
 243        }
 244
 245        DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
 246
 247        return NULL;
 248}
 249
 250static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
 251{
 252        u32 val;
 253
 254        mutex_lock(&dev_priv->rps.hw_lock);
 255
 256        val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
 257        if (enable)
 258                val &= ~FORCE_DDR_HIGH_FREQ;
 259        else
 260                val |= FORCE_DDR_HIGH_FREQ;
 261        val &= ~FORCE_DDR_LOW_FREQ;
 262        val |= FORCE_DDR_FREQ_REQ_ACK;
 263        vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
 264
 265        if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
 266                      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
 267                DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
 268
 269        mutex_unlock(&dev_priv->rps.hw_lock);
 270}
 271
 272static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
 273{
 274        u32 val;
 275
 276        mutex_lock(&dev_priv->rps.hw_lock);
 277
 278        val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
 279        if (enable)
 280                val |= DSP_MAXFIFO_PM5_ENABLE;
 281        else
 282                val &= ~DSP_MAXFIFO_PM5_ENABLE;
 283        vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
 284
 285        mutex_unlock(&dev_priv->rps.hw_lock);
 286}
 287
 288#define FW_WM(value, plane) \
 289        (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
 290
 291void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
 292{
 293        struct drm_device *dev = dev_priv->dev;
 294        u32 val;
 295
 296        if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
 297                I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
 298                POSTING_READ(FW_BLC_SELF_VLV);
 299                dev_priv->wm.vlv.cxsr = enable;
 300        } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
 301                I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
 302                POSTING_READ(FW_BLC_SELF);
 303        } else if (IS_PINEVIEW(dev)) {
 304                val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
 305                val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
 306                I915_WRITE(DSPFW3, val);
 307                POSTING_READ(DSPFW3);
 308        } else if (IS_I945G(dev) || IS_I945GM(dev)) {
 309                val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
 310                               _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
 311                I915_WRITE(FW_BLC_SELF, val);
 312                POSTING_READ(FW_BLC_SELF);
 313        } else if (IS_I915GM(dev)) {
 314                val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
 315                               _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
 316                I915_WRITE(INSTPM, val);
 317                POSTING_READ(INSTPM);
 318        } else {
 319                return;
 320        }
 321
 322        DRM_DEBUG_KMS("memory self-refresh is %s\n",
 323                      enable ? "enabled" : "disabled");
 324}
 325
 326
 327/*
 328 * Latency for FIFO fetches is dependent on several factors:
 329 *   - memory configuration (speed, channels)
 330 *   - chipset
 331 *   - current MCH state
 332 * It can be fairly high in some situations, so here we assume a fairly
 333 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 334 * set this value too high, the FIFO will fetch frequently to stay full)
 335 * and power consumption (set it too low to save power and we might see
 336 * FIFO underruns and display "flicker").
 337 *
 338 * A value of 5us seems to be a good balance; safe for very low end
 339 * platforms but not overly aggressive on lower latency configs.
 340 */
 341static const int pessimal_latency_ns = 5000;
 342
 343#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
 344        ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
 345
 346static int vlv_get_fifo_size(struct drm_device *dev,
 347                              enum pipe pipe, int plane)
 348{
 349        struct drm_i915_private *dev_priv = dev->dev_private;
 350        int sprite0_start, sprite1_start, size;
 351
 352        switch (pipe) {
 353                uint32_t dsparb, dsparb2, dsparb3;
 354        case PIPE_A:
 355                dsparb = I915_READ(DSPARB);
 356                dsparb2 = I915_READ(DSPARB2);
 357                sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
 358                sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
 359                break;
 360        case PIPE_B:
 361                dsparb = I915_READ(DSPARB);
 362                dsparb2 = I915_READ(DSPARB2);
 363                sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
 364                sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
 365                break;
 366        case PIPE_C:
 367                dsparb2 = I915_READ(DSPARB2);
 368                dsparb3 = I915_READ(DSPARB3);
 369                sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
 370                sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
 371                break;
 372        default:
 373                return 0;
 374        }
 375
 376        switch (plane) {
 377        case 0:
 378                size = sprite0_start;
 379                break;
 380        case 1:
 381                size = sprite1_start - sprite0_start;
 382                break;
 383        case 2:
 384                size = 512 - 1 - sprite1_start;
 385                break;
 386        default:
 387                return 0;
 388        }
 389
 390        DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
 391                      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
 392                      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
 393                      size);
 394
 395        return size;
 396}
 397
 398static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
 399{
 400        struct drm_i915_private *dev_priv = dev->dev_private;
 401        uint32_t dsparb = I915_READ(DSPARB);
 402        int size;
 403
 404        size = dsparb & 0x7f;
 405        if (plane)
 406                size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
 407
 408        DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
 409                      plane ? "B" : "A", size);
 410
 411        return size;
 412}
 413
 414static int i830_get_fifo_size(struct drm_device *dev, int plane)
 415{
 416        struct drm_i915_private *dev_priv = dev->dev_private;
 417        uint32_t dsparb = I915_READ(DSPARB);
 418        int size;
 419
 420        size = dsparb & 0x1ff;
 421        if (plane)
 422                size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
 423        size >>= 1; /* Convert to cachelines */
 424
 425        DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
 426                      plane ? "B" : "A", size);
 427
 428        return size;
 429}
 430
 431static int i845_get_fifo_size(struct drm_device *dev, int plane)
 432{
 433        struct drm_i915_private *dev_priv = dev->dev_private;
 434        uint32_t dsparb = I915_READ(DSPARB);
 435        int size;
 436
 437        size = dsparb & 0x7f;
 438        size >>= 2; /* Convert to cachelines */
 439
 440        DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
 441                      plane ? "B" : "A",
 442                      size);
 443
 444        return size;
 445}
 446
 447/* Pineview has different values for various configs */
 448static const struct intel_watermark_params pineview_display_wm = {
 449        .fifo_size = PINEVIEW_DISPLAY_FIFO,
 450        .max_wm = PINEVIEW_MAX_WM,
 451        .default_wm = PINEVIEW_DFT_WM,
 452        .guard_size = PINEVIEW_GUARD_WM,
 453        .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
 454};
 455static const struct intel_watermark_params pineview_display_hplloff_wm = {
 456        .fifo_size = PINEVIEW_DISPLAY_FIFO,
 457        .max_wm = PINEVIEW_MAX_WM,
 458        .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
 459        .guard_size = PINEVIEW_GUARD_WM,
 460        .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
 461};
 462static const struct intel_watermark_params pineview_cursor_wm = {
 463        .fifo_size = PINEVIEW_CURSOR_FIFO,
 464        .max_wm = PINEVIEW_CURSOR_MAX_WM,
 465        .default_wm = PINEVIEW_CURSOR_DFT_WM,
 466        .guard_size = PINEVIEW_CURSOR_GUARD_WM,
 467        .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
 468};
 469static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
 470        .fifo_size = PINEVIEW_CURSOR_FIFO,
 471        .max_wm = PINEVIEW_CURSOR_MAX_WM,
 472        .default_wm = PINEVIEW_CURSOR_DFT_WM,
 473        .guard_size = PINEVIEW_CURSOR_GUARD_WM,
 474        .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
 475};
 476static const struct intel_watermark_params g4x_wm_info = {
 477        .fifo_size = G4X_FIFO_SIZE,
 478        .max_wm = G4X_MAX_WM,
 479        .default_wm = G4X_MAX_WM,
 480        .guard_size = 2,
 481        .cacheline_size = G4X_FIFO_LINE_SIZE,
 482};
 483static const struct intel_watermark_params g4x_cursor_wm_info = {
 484        .fifo_size = I965_CURSOR_FIFO,
 485        .max_wm = I965_CURSOR_MAX_WM,
 486        .default_wm = I965_CURSOR_DFT_WM,
 487        .guard_size = 2,
 488        .cacheline_size = G4X_FIFO_LINE_SIZE,
 489};
 490static const struct intel_watermark_params valleyview_wm_info = {
 491        .fifo_size = VALLEYVIEW_FIFO_SIZE,
 492        .max_wm = VALLEYVIEW_MAX_WM,
 493        .default_wm = VALLEYVIEW_MAX_WM,
 494        .guard_size = 2,
 495        .cacheline_size = G4X_FIFO_LINE_SIZE,
 496};
 497static const struct intel_watermark_params valleyview_cursor_wm_info = {
 498        .fifo_size = I965_CURSOR_FIFO,
 499        .max_wm = VALLEYVIEW_CURSOR_MAX_WM,
 500        .default_wm = I965_CURSOR_DFT_WM,
 501        .guard_size = 2,
 502        .cacheline_size = G4X_FIFO_LINE_SIZE,
 503};
 504static const struct intel_watermark_params i965_cursor_wm_info = {
 505        .fifo_size = I965_CURSOR_FIFO,
 506        .max_wm = I965_CURSOR_MAX_WM,
 507        .default_wm = I965_CURSOR_DFT_WM,
 508        .guard_size = 2,
 509        .cacheline_size = I915_FIFO_LINE_SIZE,
 510};
 511static const struct intel_watermark_params i945_wm_info = {
 512        .fifo_size = I945_FIFO_SIZE,
 513        .max_wm = I915_MAX_WM,
 514        .default_wm = 1,
 515        .guard_size = 2,
 516        .cacheline_size = I915_FIFO_LINE_SIZE,
 517};
 518static const struct intel_watermark_params i915_wm_info = {
 519        .fifo_size = I915_FIFO_SIZE,
 520        .max_wm = I915_MAX_WM,
 521        .default_wm = 1,
 522        .guard_size = 2,
 523        .cacheline_size = I915_FIFO_LINE_SIZE,
 524};
 525static const struct intel_watermark_params i830_a_wm_info = {
 526        .fifo_size = I855GM_FIFO_SIZE,
 527        .max_wm = I915_MAX_WM,
 528        .default_wm = 1,
 529        .guard_size = 2,
 530        .cacheline_size = I830_FIFO_LINE_SIZE,
 531};
 532static const struct intel_watermark_params i830_bc_wm_info = {
 533        .fifo_size = I855GM_FIFO_SIZE,
 534        .max_wm = I915_MAX_WM/2,
 535        .default_wm = 1,
 536        .guard_size = 2,
 537        .cacheline_size = I830_FIFO_LINE_SIZE,
 538};
 539static const struct intel_watermark_params i845_wm_info = {
 540        .fifo_size = I830_FIFO_SIZE,
 541        .max_wm = I915_MAX_WM,
 542        .default_wm = 1,
 543        .guard_size = 2,
 544        .cacheline_size = I830_FIFO_LINE_SIZE,
 545};
 546
 547/**
 548 * intel_calculate_wm - calculate watermark level
 549 * @clock_in_khz: pixel clock
 550 * @wm: chip FIFO params
 551 * @cpp: bytes per pixel
 552 * @latency_ns: memory latency for the platform
 553 *
 554 * Calculate the watermark level (the level at which the display plane will
 555 * start fetching from memory again).  Each chip has a different display
 556 * FIFO size and allocation, so the caller needs to figure that out and pass
 557 * in the correct intel_watermark_params structure.
 558 *
 559 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 560 * on the pixel size.  When it reaches the watermark level, it'll start
 561 * fetching FIFO line sized based chunks from memory until the FIFO fills
 562 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 563 * will occur, and a display engine hang could result.
 564 */
 565static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
 566                                        const struct intel_watermark_params *wm,
 567                                        int fifo_size, int cpp,
 568                                        unsigned long latency_ns)
 569{
 570        long entries_required, wm_size;
 571
 572        /*
 573         * Note: we need to make sure we don't overflow for various clock &
 574         * latency values.
 575         * clocks go from a few thousand to several hundred thousand.
 576         * latency is usually a few thousand
 577         */
 578        entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
 579                1000;
 580        entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
 581
 582        DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
 583
 584        wm_size = fifo_size - (entries_required + wm->guard_size);
 585
 586        DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
 587
 588        /* Don't promote wm_size to unsigned... */
 589        if (wm_size > (long)wm->max_wm)
 590                wm_size = wm->max_wm;
 591        if (wm_size <= 0)
 592                wm_size = wm->default_wm;
 593
 594        /*
 595         * Bspec seems to indicate that the value shouldn't be lower than
 596         * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
 597         * Lets go for 8 which is the burst size since certain platforms
 598         * already use a hardcoded 8 (which is what the spec says should be
 599         * done).
 600         */
 601        if (wm_size <= 8)
 602                wm_size = 8;
 603
 604        return wm_size;
 605}
 606
 607static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
 608{
 609        struct drm_crtc *crtc, *enabled = NULL;
 610
 611        for_each_crtc(dev, crtc) {
 612                if (intel_crtc_active(crtc)) {
 613                        if (enabled)
 614                                return NULL;
 615                        enabled = crtc;
 616                }
 617        }
 618
 619        return enabled;
 620}
 621
 622static void pineview_update_wm(struct drm_crtc *unused_crtc)
 623{
 624        struct drm_device *dev = unused_crtc->dev;
 625        struct drm_i915_private *dev_priv = dev->dev_private;
 626        struct drm_crtc *crtc;
 627        const struct cxsr_latency *latency;
 628        u32 reg;
 629        unsigned long wm;
 630
 631        latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
 632                                         dev_priv->fsb_freq, dev_priv->mem_freq);
 633        if (!latency) {
 634                DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
 635                intel_set_memory_cxsr(dev_priv, false);
 636                return;
 637        }
 638
 639        crtc = single_enabled_crtc(dev);
 640        if (crtc) {
 641                const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
 642                int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
 643                int clock = adjusted_mode->crtc_clock;
 644
 645                /* Display SR */
 646                wm = intel_calculate_wm(clock, &pineview_display_wm,
 647                                        pineview_display_wm.fifo_size,
 648                                        cpp, latency->display_sr);
 649                reg = I915_READ(DSPFW1);
 650                reg &= ~DSPFW_SR_MASK;
 651                reg |= FW_WM(wm, SR);
 652                I915_WRITE(DSPFW1, reg);
 653                DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
 654
 655                /* cursor SR */
 656                wm = intel_calculate_wm(clock, &pineview_cursor_wm,
 657                                        pineview_display_wm.fifo_size,
 658                                        cpp, latency->cursor_sr);
 659                reg = I915_READ(DSPFW3);
 660                reg &= ~DSPFW_CURSOR_SR_MASK;
 661                reg |= FW_WM(wm, CURSOR_SR);
 662                I915_WRITE(DSPFW3, reg);
 663
 664                /* Display HPLL off SR */
 665                wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
 666                                        pineview_display_hplloff_wm.fifo_size,
 667                                        cpp, latency->display_hpll_disable);
 668                reg = I915_READ(DSPFW3);
 669                reg &= ~DSPFW_HPLL_SR_MASK;
 670                reg |= FW_WM(wm, HPLL_SR);
 671                I915_WRITE(DSPFW3, reg);
 672
 673                /* cursor HPLL off SR */
 674                wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
 675                                        pineview_display_hplloff_wm.fifo_size,
 676                                        cpp, latency->cursor_hpll_disable);
 677                reg = I915_READ(DSPFW3);
 678                reg &= ~DSPFW_HPLL_CURSOR_MASK;
 679                reg |= FW_WM(wm, HPLL_CURSOR);
 680                I915_WRITE(DSPFW3, reg);
 681                DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
 682
 683                intel_set_memory_cxsr(dev_priv, true);
 684        } else {
 685                intel_set_memory_cxsr(dev_priv, false);
 686        }
 687}
 688
 689static bool g4x_compute_wm0(struct drm_device *dev,
 690                            int plane,
 691                            const struct intel_watermark_params *display,
 692                            int display_latency_ns,
 693                            const struct intel_watermark_params *cursor,
 694                            int cursor_latency_ns,
 695                            int *plane_wm,
 696                            int *cursor_wm)
 697{
 698        struct drm_crtc *crtc;
 699        const struct drm_display_mode *adjusted_mode;
 700        int htotal, hdisplay, clock, cpp;
 701        int line_time_us, line_count;
 702        int entries, tlb_miss;
 703
 704        crtc = intel_get_crtc_for_plane(dev, plane);
 705        if (!intel_crtc_active(crtc)) {
 706                *cursor_wm = cursor->guard_size;
 707                *plane_wm = display->guard_size;
 708                return false;
 709        }
 710
 711        adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
 712        clock = adjusted_mode->crtc_clock;
 713        htotal = adjusted_mode->crtc_htotal;
 714        hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
 715        cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
 716
 717        /* Use the small buffer method to calculate plane watermark */
 718        entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
 719        tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
 720        if (tlb_miss > 0)
 721                entries += tlb_miss;
 722        entries = DIV_ROUND_UP(entries, display->cacheline_size);
 723        *plane_wm = entries + display->guard_size;
 724        if (*plane_wm > (int)display->max_wm)
 725                *plane_wm = display->max_wm;
 726
 727        /* Use the large buffer method to calculate cursor watermark */
 728        line_time_us = max(htotal * 1000 / clock, 1);
 729        line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
 730        entries = line_count * crtc->cursor->state->crtc_w * cpp;
 731        tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
 732        if (tlb_miss > 0)
 733                entries += tlb_miss;
 734        entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
 735        *cursor_wm = entries + cursor->guard_size;
 736        if (*cursor_wm > (int)cursor->max_wm)
 737                *cursor_wm = (int)cursor->max_wm;
 738
 739        return true;
 740}
 741
 742/*
 743 * Check the wm result.
 744 *
 745 * If any calculated watermark values is larger than the maximum value that
 746 * can be programmed into the associated watermark register, that watermark
 747 * must be disabled.
 748 */
 749static bool g4x_check_srwm(struct drm_device *dev,
 750                           int display_wm, int cursor_wm,
 751                           const struct intel_watermark_params *display,
 752                           const struct intel_watermark_params *cursor)
 753{
 754        DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
 755                      display_wm, cursor_wm);
 756
 757        if (display_wm > display->max_wm) {
 758                DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
 759                              display_wm, display->max_wm);
 760                return false;
 761        }
 762
 763        if (cursor_wm > cursor->max_wm) {
 764                DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
 765                              cursor_wm, cursor->max_wm);
 766                return false;
 767        }
 768
 769        if (!(display_wm || cursor_wm)) {
 770                DRM_DEBUG_KMS("SR latency is 0, disabling\n");
 771                return false;
 772        }
 773
 774        return true;
 775}
 776
 777static bool g4x_compute_srwm(struct drm_device *dev,
 778                             int plane,
 779                             int latency_ns,
 780                             const struct intel_watermark_params *display,
 781                             const struct intel_watermark_params *cursor,
 782                             int *display_wm, int *cursor_wm)
 783{
 784        struct drm_crtc *crtc;
 785        const struct drm_display_mode *adjusted_mode;
 786        int hdisplay, htotal, cpp, clock;
 787        unsigned long line_time_us;
 788        int line_count, line_size;
 789        int small, large;
 790        int entries;
 791
 792        if (!latency_ns) {
 793                *display_wm = *cursor_wm = 0;
 794                return false;
 795        }
 796
 797        crtc = intel_get_crtc_for_plane(dev, plane);
 798        adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
 799        clock = adjusted_mode->crtc_clock;
 800        htotal = adjusted_mode->crtc_htotal;
 801        hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
 802        cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
 803
 804        line_time_us = max(htotal * 1000 / clock, 1);
 805        line_count = (latency_ns / line_time_us + 1000) / 1000;
 806        line_size = hdisplay * cpp;
 807
 808        /* Use the minimum of the small and large buffer method for primary */
 809        small = ((clock * cpp / 1000) * latency_ns) / 1000;
 810        large = line_count * line_size;
 811
 812        entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
 813        *display_wm = entries + display->guard_size;
 814
 815        /* calculate the self-refresh watermark for display cursor */
 816        entries = line_count * cpp * crtc->cursor->state->crtc_w;
 817        entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
 818        *cursor_wm = entries + cursor->guard_size;
 819
 820        return g4x_check_srwm(dev,
 821                              *display_wm, *cursor_wm,
 822                              display, cursor);
 823}
 824
 825#define FW_WM_VLV(value, plane) \
 826        (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
 827
 828static void vlv_write_wm_values(struct intel_crtc *crtc,
 829                                const struct vlv_wm_values *wm)
 830{
 831        struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 832        enum pipe pipe = crtc->pipe;
 833
 834        I915_WRITE(VLV_DDL(pipe),
 835                   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
 836                   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
 837                   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
 838                   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
 839
 840        I915_WRITE(DSPFW1,
 841                   FW_WM(wm->sr.plane, SR) |
 842                   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
 843                   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
 844                   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
 845        I915_WRITE(DSPFW2,
 846                   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
 847                   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
 848                   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
 849        I915_WRITE(DSPFW3,
 850                   FW_WM(wm->sr.cursor, CURSOR_SR));
 851
 852        if (IS_CHERRYVIEW(dev_priv)) {
 853                I915_WRITE(DSPFW7_CHV,
 854                           FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
 855                           FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
 856                I915_WRITE(DSPFW8_CHV,
 857                           FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
 858                           FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
 859                I915_WRITE(DSPFW9_CHV,
 860                           FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
 861                           FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
 862                I915_WRITE(DSPHOWM,
 863                           FW_WM(wm->sr.plane >> 9, SR_HI) |
 864                           FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
 865                           FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
 866                           FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
 867                           FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
 868                           FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
 869                           FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
 870                           FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
 871                           FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
 872                           FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
 873        } else {
 874                I915_WRITE(DSPFW7,
 875                           FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
 876                           FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
 877                I915_WRITE(DSPHOWM,
 878                           FW_WM(wm->sr.plane >> 9, SR_HI) |
 879                           FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
 880                           FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
 881                           FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
 882                           FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
 883                           FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
 884                           FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
 885        }
 886
 887        /* zero (unused) WM1 watermarks */
 888        I915_WRITE(DSPFW4, 0);
 889        I915_WRITE(DSPFW5, 0);
 890        I915_WRITE(DSPFW6, 0);
 891        I915_WRITE(DSPHOWM1, 0);
 892
 893        POSTING_READ(DSPFW1);
 894}
 895
 896#undef FW_WM_VLV
 897
 898enum vlv_wm_level {
 899        VLV_WM_LEVEL_PM2,
 900        VLV_WM_LEVEL_PM5,
 901        VLV_WM_LEVEL_DDR_DVFS,
 902};
 903
 904/* latency must be in 0.1us units. */
 905static unsigned int vlv_wm_method2(unsigned int pixel_rate,
 906                                   unsigned int pipe_htotal,
 907                                   unsigned int horiz_pixels,
 908                                   unsigned int cpp,
 909                                   unsigned int latency)
 910{
 911        unsigned int ret;
 912
 913        ret = (latency * pixel_rate) / (pipe_htotal * 10000);
 914        ret = (ret + 1) * horiz_pixels * cpp;
 915        ret = DIV_ROUND_UP(ret, 64);
 916
 917        return ret;
 918}
 919
 920static void vlv_setup_wm_latency(struct drm_device *dev)
 921{
 922        struct drm_i915_private *dev_priv = dev->dev_private;
 923
 924        /* all latencies in usec */
 925        dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
 926
 927        dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
 928
 929        if (IS_CHERRYVIEW(dev_priv)) {
 930                dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
 931                dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
 932
 933                dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
 934        }
 935}
 936
 937static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
 938                                     struct intel_crtc *crtc,
 939                                     const struct intel_plane_state *state,
 940                                     int level)
 941{
 942        struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
 943        int clock, htotal, cpp, width, wm;
 944
 945        if (dev_priv->wm.pri_latency[level] == 0)
 946                return USHRT_MAX;
 947
 948        if (!state->visible)
 949                return 0;
 950
 951        cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
 952        clock = crtc->config->base.adjusted_mode.crtc_clock;
 953        htotal = crtc->config->base.adjusted_mode.crtc_htotal;
 954        width = crtc->config->pipe_src_w;
 955        if (WARN_ON(htotal == 0))
 956                htotal = 1;
 957
 958        if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
 959                /*
 960                 * FIXME the formula gives values that are
 961                 * too big for the cursor FIFO, and hence we
 962                 * would never be able to use cursors. For
 963                 * now just hardcode the watermark.
 964                 */
 965                wm = 63;
 966        } else {
 967                wm = vlv_wm_method2(clock, htotal, width, cpp,
 968                                    dev_priv->wm.pri_latency[level] * 10);
 969        }
 970
 971        return min_t(int, wm, USHRT_MAX);
 972}
 973
 974static void vlv_compute_fifo(struct intel_crtc *crtc)
 975{
 976        struct drm_device *dev = crtc->base.dev;
 977        struct vlv_wm_state *wm_state = &crtc->wm_state;
 978        struct intel_plane *plane;
 979        unsigned int total_rate = 0;
 980        const int fifo_size = 512 - 1;
 981        int fifo_extra, fifo_left = fifo_size;
 982
 983        for_each_intel_plane_on_crtc(dev, crtc, plane) {
 984                struct intel_plane_state *state =
 985                        to_intel_plane_state(plane->base.state);
 986
 987                if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
 988                        continue;
 989
 990                if (state->visible) {
 991                        wm_state->num_active_planes++;
 992                        total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
 993                }
 994        }
 995
 996        for_each_intel_plane_on_crtc(dev, crtc, plane) {
 997                struct intel_plane_state *state =
 998                        to_intel_plane_state(plane->base.state);
 999                unsigned int rate;
1000
1001                if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1002                        plane->wm.fifo_size = 63;
1003                        continue;
1004                }
1005
1006                if (!state->visible) {
1007                        plane->wm.fifo_size = 0;
1008                        continue;
1009                }
1010
1011                rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1012                plane->wm.fifo_size = fifo_size * rate / total_rate;
1013                fifo_left -= plane->wm.fifo_size;
1014        }
1015
1016        fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
1017
1018        /* spread the remainder evenly */
1019        for_each_intel_plane_on_crtc(dev, crtc, plane) {
1020                int plane_extra;
1021
1022                if (fifo_left == 0)
1023                        break;
1024
1025                if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1026                        continue;
1027
1028                /* give it all to the first plane if none are active */
1029                if (plane->wm.fifo_size == 0 &&
1030                    wm_state->num_active_planes)
1031                        continue;
1032
1033                plane_extra = min(fifo_extra, fifo_left);
1034                plane->wm.fifo_size += plane_extra;
1035                fifo_left -= plane_extra;
1036        }
1037
1038        WARN_ON(fifo_left != 0);
1039}
1040
1041static void vlv_invert_wms(struct intel_crtc *crtc)
1042{
1043        struct vlv_wm_state *wm_state = &crtc->wm_state;
1044        int level;
1045
1046        for (level = 0; level < wm_state->num_levels; level++) {
1047                struct drm_device *dev = crtc->base.dev;
1048                const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1049                struct intel_plane *plane;
1050
1051                wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
1052                wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
1053
1054                for_each_intel_plane_on_crtc(dev, crtc, plane) {
1055                        switch (plane->base.type) {
1056                                int sprite;
1057                        case DRM_PLANE_TYPE_CURSOR:
1058                                wm_state->wm[level].cursor = plane->wm.fifo_size -
1059                                        wm_state->wm[level].cursor;
1060                                break;
1061                        case DRM_PLANE_TYPE_PRIMARY:
1062                                wm_state->wm[level].primary = plane->wm.fifo_size -
1063                                        wm_state->wm[level].primary;
1064                                break;
1065                        case DRM_PLANE_TYPE_OVERLAY:
1066                                sprite = plane->plane;
1067                                wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
1068                                        wm_state->wm[level].sprite[sprite];
1069                                break;
1070                        }
1071                }
1072        }
1073}
1074
1075static void vlv_compute_wm(struct intel_crtc *crtc)
1076{
1077        struct drm_device *dev = crtc->base.dev;
1078        struct vlv_wm_state *wm_state = &crtc->wm_state;
1079        struct intel_plane *plane;
1080        int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1081        int level;
1082
1083        memset(wm_state, 0, sizeof(*wm_state));
1084
1085        wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1086        wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1087
1088        wm_state->num_active_planes = 0;
1089
1090        vlv_compute_fifo(crtc);
1091
1092        if (wm_state->num_active_planes != 1)
1093                wm_state->cxsr = false;
1094
1095        if (wm_state->cxsr) {
1096                for (level = 0; level < wm_state->num_levels; level++) {
1097                        wm_state->sr[level].plane = sr_fifo_size;
1098                        wm_state->sr[level].cursor = 63;
1099                }
1100        }
1101
1102        for_each_intel_plane_on_crtc(dev, crtc, plane) {
1103                struct intel_plane_state *state =
1104                        to_intel_plane_state(plane->base.state);
1105
1106                if (!state->visible)
1107                        continue;
1108
1109                /* normal watermarks */
1110                for (level = 0; level < wm_state->num_levels; level++) {
1111                        int wm = vlv_compute_wm_level(plane, crtc, state, level);
1112                        int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
1113
1114                        /* hack */
1115                        if (WARN_ON(level == 0 && wm > max_wm))
1116                                wm = max_wm;
1117
1118                        if (wm > plane->wm.fifo_size)
1119                                break;
1120
1121                        switch (plane->base.type) {
1122                                int sprite;
1123                        case DRM_PLANE_TYPE_CURSOR:
1124                                wm_state->wm[level].cursor = wm;
1125                                break;
1126                        case DRM_PLANE_TYPE_PRIMARY:
1127                                wm_state->wm[level].primary = wm;
1128                                break;
1129                        case DRM_PLANE_TYPE_OVERLAY:
1130                                sprite = plane->plane;
1131                                wm_state->wm[level].sprite[sprite] = wm;
1132                                break;
1133                        }
1134                }
1135
1136                wm_state->num_levels = level;
1137
1138                if (!wm_state->cxsr)
1139                        continue;
1140
1141                /* maxfifo watermarks */
1142                switch (plane->base.type) {
1143                        int sprite, level;
1144                case DRM_PLANE_TYPE_CURSOR:
1145                        for (level = 0; level < wm_state->num_levels; level++)
1146                                wm_state->sr[level].cursor =
1147                                        wm_state->wm[level].cursor;
1148                        break;
1149                case DRM_PLANE_TYPE_PRIMARY:
1150                        for (level = 0; level < wm_state->num_levels; level++)
1151                                wm_state->sr[level].plane =
1152                                        min(wm_state->sr[level].plane,
1153                                            wm_state->wm[level].primary);
1154                        break;
1155                case DRM_PLANE_TYPE_OVERLAY:
1156                        sprite = plane->plane;
1157                        for (level = 0; level < wm_state->num_levels; level++)
1158                                wm_state->sr[level].plane =
1159                                        min(wm_state->sr[level].plane,
1160                                            wm_state->wm[level].sprite[sprite]);
1161                        break;
1162                }
1163        }
1164
1165        /* clear any (partially) filled invalid levels */
1166        for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1167                memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
1168                memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
1169        }
1170
1171        vlv_invert_wms(crtc);
1172}
1173
1174#define VLV_FIFO(plane, value) \
1175        (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1176
1177static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
1178{
1179        struct drm_device *dev = crtc->base.dev;
1180        struct drm_i915_private *dev_priv = to_i915(dev);
1181        struct intel_plane *plane;
1182        int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
1183
1184        for_each_intel_plane_on_crtc(dev, crtc, plane) {
1185                if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1186                        WARN_ON(plane->wm.fifo_size != 63);
1187                        continue;
1188                }
1189
1190                if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
1191                        sprite0_start = plane->wm.fifo_size;
1192                else if (plane->plane == 0)
1193                        sprite1_start = sprite0_start + plane->wm.fifo_size;
1194                else
1195                        fifo_size = sprite1_start + plane->wm.fifo_size;
1196        }
1197
1198        WARN_ON(fifo_size != 512 - 1);
1199
1200        DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
1201                      pipe_name(crtc->pipe), sprite0_start,
1202                      sprite1_start, fifo_size);
1203
1204        switch (crtc->pipe) {
1205                uint32_t dsparb, dsparb2, dsparb3;
1206        case PIPE_A:
1207                dsparb = I915_READ(DSPARB);
1208                dsparb2 = I915_READ(DSPARB2);
1209
1210                dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1211                            VLV_FIFO(SPRITEB, 0xff));
1212                dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1213                           VLV_FIFO(SPRITEB, sprite1_start));
1214
1215                dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1216                             VLV_FIFO(SPRITEB_HI, 0x1));
1217                dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1218                           VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1219
1220                I915_WRITE(DSPARB, dsparb);
1221                I915_WRITE(DSPARB2, dsparb2);
1222                break;
1223        case PIPE_B:
1224                dsparb = I915_READ(DSPARB);
1225                dsparb2 = I915_READ(DSPARB2);
1226
1227                dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1228                            VLV_FIFO(SPRITED, 0xff));
1229                dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1230                           VLV_FIFO(SPRITED, sprite1_start));
1231
1232                dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1233                             VLV_FIFO(SPRITED_HI, 0xff));
1234                dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1235                           VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1236
1237                I915_WRITE(DSPARB, dsparb);
1238                I915_WRITE(DSPARB2, dsparb2);
1239                break;
1240        case PIPE_C:
1241                dsparb3 = I915_READ(DSPARB3);
1242                dsparb2 = I915_READ(DSPARB2);
1243
1244                dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1245                             VLV_FIFO(SPRITEF, 0xff));
1246                dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1247                            VLV_FIFO(SPRITEF, sprite1_start));
1248
1249                dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1250                             VLV_FIFO(SPRITEF_HI, 0xff));
1251                dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1252                           VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1253
1254                I915_WRITE(DSPARB3, dsparb3);
1255                I915_WRITE(DSPARB2, dsparb2);
1256                break;
1257        default:
1258                break;
1259        }
1260}
1261
1262#undef VLV_FIFO
1263
1264static void vlv_merge_wm(struct drm_device *dev,
1265                         struct vlv_wm_values *wm)
1266{
1267        struct intel_crtc *crtc;
1268        int num_active_crtcs = 0;
1269
1270        wm->level = to_i915(dev)->wm.max_level;
1271        wm->cxsr = true;
1272
1273        for_each_intel_crtc(dev, crtc) {
1274                const struct vlv_wm_state *wm_state = &crtc->wm_state;
1275
1276                if (!crtc->active)
1277                        continue;
1278
1279                if (!wm_state->cxsr)
1280                        wm->cxsr = false;
1281
1282                num_active_crtcs++;
1283                wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
1284        }
1285
1286        if (num_active_crtcs != 1)
1287                wm->cxsr = false;
1288
1289        if (num_active_crtcs > 1)
1290                wm->level = VLV_WM_LEVEL_PM2;
1291
1292        for_each_intel_crtc(dev, crtc) {
1293                struct vlv_wm_state *wm_state = &crtc->wm_state;
1294                enum pipe pipe = crtc->pipe;
1295
1296                if (!crtc->active)
1297                        continue;
1298
1299                wm->pipe[pipe] = wm_state->wm[wm->level];
1300                if (wm->cxsr)
1301                        wm->sr = wm_state->sr[wm->level];
1302
1303                wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
1304                wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
1305                wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
1306                wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
1307        }
1308}
1309
1310static void vlv_update_wm(struct drm_crtc *crtc)
1311{
1312        struct drm_device *dev = crtc->dev;
1313        struct drm_i915_private *dev_priv = dev->dev_private;
1314        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1315        enum pipe pipe = intel_crtc->pipe;
1316        struct vlv_wm_values wm = {};
1317
1318        vlv_compute_wm(intel_crtc);
1319        vlv_merge_wm(dev, &wm);
1320
1321        if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
1322                /* FIXME should be part of crtc atomic commit */
1323                vlv_pipe_set_fifo_size(intel_crtc);
1324                return;
1325        }
1326
1327        if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
1328            dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
1329                chv_set_memory_dvfs(dev_priv, false);
1330
1331        if (wm.level < VLV_WM_LEVEL_PM5 &&
1332            dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
1333                chv_set_memory_pm5(dev_priv, false);
1334
1335        if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1336                intel_set_memory_cxsr(dev_priv, false);
1337
1338        /* FIXME should be part of crtc atomic commit */
1339        vlv_pipe_set_fifo_size(intel_crtc);
1340
1341        vlv_write_wm_values(intel_crtc, &wm);
1342
1343        DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1344                      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1345                      pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
1346                      wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
1347                      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
1348
1349        if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1350                intel_set_memory_cxsr(dev_priv, true);
1351
1352        if (wm.level >= VLV_WM_LEVEL_PM5 &&
1353            dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
1354                chv_set_memory_pm5(dev_priv, true);
1355
1356        if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
1357            dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
1358                chv_set_memory_dvfs(dev_priv, true);
1359
1360        dev_priv->wm.vlv = wm;
1361}
1362
1363#define single_plane_enabled(mask) is_power_of_2(mask)
1364
1365static void g4x_update_wm(struct drm_crtc *crtc)
1366{
1367        struct drm_device *dev = crtc->dev;
1368        static const int sr_latency_ns = 12000;
1369        struct drm_i915_private *dev_priv = dev->dev_private;
1370        int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1371        int plane_sr, cursor_sr;
1372        unsigned int enabled = 0;
1373        bool cxsr_enabled;
1374
1375        if (g4x_compute_wm0(dev, PIPE_A,
1376                            &g4x_wm_info, pessimal_latency_ns,
1377                            &g4x_cursor_wm_info, pessimal_latency_ns,
1378                            &planea_wm, &cursora_wm))
1379                enabled |= 1 << PIPE_A;
1380
1381        if (g4x_compute_wm0(dev, PIPE_B,
1382                            &g4x_wm_info, pessimal_latency_ns,
1383                            &g4x_cursor_wm_info, pessimal_latency_ns,
1384                            &planeb_wm, &cursorb_wm))
1385                enabled |= 1 << PIPE_B;
1386
1387        if (single_plane_enabled(enabled) &&
1388            g4x_compute_srwm(dev, ffs(enabled) - 1,
1389                             sr_latency_ns,
1390                             &g4x_wm_info,
1391                             &g4x_cursor_wm_info,
1392                             &plane_sr, &cursor_sr)) {
1393                cxsr_enabled = true;
1394        } else {
1395                cxsr_enabled = false;
1396                intel_set_memory_cxsr(dev_priv, false);
1397                plane_sr = cursor_sr = 0;
1398        }
1399
1400        DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1401                      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1402                      planea_wm, cursora_wm,
1403                      planeb_wm, cursorb_wm,
1404                      plane_sr, cursor_sr);
1405
1406        I915_WRITE(DSPFW1,
1407                   FW_WM(plane_sr, SR) |
1408                   FW_WM(cursorb_wm, CURSORB) |
1409                   FW_WM(planeb_wm, PLANEB) |
1410                   FW_WM(planea_wm, PLANEA));
1411        I915_WRITE(DSPFW2,
1412                   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1413                   FW_WM(cursora_wm, CURSORA));
1414        /* HPLL off in SR has some issues on G4x... disable it */
1415        I915_WRITE(DSPFW3,
1416                   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1417                   FW_WM(cursor_sr, CURSOR_SR));
1418
1419        if (cxsr_enabled)
1420                intel_set_memory_cxsr(dev_priv, true);
1421}
1422
1423static void i965_update_wm(struct drm_crtc *unused_crtc)
1424{
1425        struct drm_device *dev = unused_crtc->dev;
1426        struct drm_i915_private *dev_priv = dev->dev_private;
1427        struct drm_crtc *crtc;
1428        int srwm = 1;
1429        int cursor_sr = 16;
1430        bool cxsr_enabled;
1431
1432        /* Calc sr entries for one plane configs */
1433        crtc = single_enabled_crtc(dev);
1434        if (crtc) {
1435                /* self-refresh has much higher latency */
1436                static const int sr_latency_ns = 12000;
1437                const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1438                int clock = adjusted_mode->crtc_clock;
1439                int htotal = adjusted_mode->crtc_htotal;
1440                int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1441                int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1442                unsigned long line_time_us;
1443                int entries;
1444
1445                line_time_us = max(htotal * 1000 / clock, 1);
1446
1447                /* Use ns/us then divide to preserve precision */
1448                entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1449                        cpp * hdisplay;
1450                entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1451                srwm = I965_FIFO_SIZE - entries;
1452                if (srwm < 0)
1453                        srwm = 1;
1454                srwm &= 0x1ff;
1455                DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1456                              entries, srwm);
1457
1458                entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1459                        cpp * crtc->cursor->state->crtc_w;
1460                entries = DIV_ROUND_UP(entries,
1461                                          i965_cursor_wm_info.cacheline_size);
1462                cursor_sr = i965_cursor_wm_info.fifo_size -
1463                        (entries + i965_cursor_wm_info.guard_size);
1464
1465                if (cursor_sr > i965_cursor_wm_info.max_wm)
1466                        cursor_sr = i965_cursor_wm_info.max_wm;
1467
1468                DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1469                              "cursor %d\n", srwm, cursor_sr);
1470
1471                cxsr_enabled = true;
1472        } else {
1473                cxsr_enabled = false;
1474                /* Turn off self refresh if both pipes are enabled */
1475                intel_set_memory_cxsr(dev_priv, false);
1476        }
1477
1478        DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1479                      srwm);
1480
1481        /* 965 has limitations... */
1482        I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1483                   FW_WM(8, CURSORB) |
1484                   FW_WM(8, PLANEB) |
1485                   FW_WM(8, PLANEA));
1486        I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1487                   FW_WM(8, PLANEC_OLD));
1488        /* update cursor SR watermark */
1489        I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1490
1491        if (cxsr_enabled)
1492                intel_set_memory_cxsr(dev_priv, true);
1493}
1494
1495#undef FW_WM
1496
1497static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1498{
1499        struct drm_device *dev = unused_crtc->dev;
1500        struct drm_i915_private *dev_priv = dev->dev_private;
1501        const struct intel_watermark_params *wm_info;
1502        uint32_t fwater_lo;
1503        uint32_t fwater_hi;
1504        int cwm, srwm = 1;
1505        int fifo_size;
1506        int planea_wm, planeb_wm;
1507        struct drm_crtc *crtc, *enabled = NULL;
1508
1509        if (IS_I945GM(dev))
1510                wm_info = &i945_wm_info;
1511        else if (!IS_GEN2(dev))
1512                wm_info = &i915_wm_info;
1513        else
1514                wm_info = &i830_a_wm_info;
1515
1516        fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1517        crtc = intel_get_crtc_for_plane(dev, 0);
1518        if (intel_crtc_active(crtc)) {
1519                const struct drm_display_mode *adjusted_mode;
1520                int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1521                if (IS_GEN2(dev))
1522                        cpp = 4;
1523
1524                adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1525                planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1526                                               wm_info, fifo_size, cpp,
1527                                               pessimal_latency_ns);
1528                enabled = crtc;
1529        } else {
1530                planea_wm = fifo_size - wm_info->guard_size;
1531                if (planea_wm > (long)wm_info->max_wm)
1532                        planea_wm = wm_info->max_wm;
1533        }
1534
1535        if (IS_GEN2(dev))
1536                wm_info = &i830_bc_wm_info;
1537
1538        fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1539        crtc = intel_get_crtc_for_plane(dev, 1);
1540        if (intel_crtc_active(crtc)) {
1541                const struct drm_display_mode *adjusted_mode;
1542                int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1543                if (IS_GEN2(dev))
1544                        cpp = 4;
1545
1546                adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1547                planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1548                                               wm_info, fifo_size, cpp,
1549                                               pessimal_latency_ns);
1550                if (enabled == NULL)
1551                        enabled = crtc;
1552                else
1553                        enabled = NULL;
1554        } else {
1555                planeb_wm = fifo_size - wm_info->guard_size;
1556                if (planeb_wm > (long)wm_info->max_wm)
1557                        planeb_wm = wm_info->max_wm;
1558        }
1559
1560        DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1561
1562        if (IS_I915GM(dev) && enabled) {
1563                struct drm_i915_gem_object *obj;
1564
1565                obj = intel_fb_obj(enabled->primary->state->fb);
1566
1567                /* self-refresh seems busted with untiled */
1568                if (obj->tiling_mode == I915_TILING_NONE)
1569                        enabled = NULL;
1570        }
1571
1572        /*
1573         * Overlay gets an aggressive default since video jitter is bad.
1574         */
1575        cwm = 2;
1576
1577        /* Play safe and disable self-refresh before adjusting watermarks. */
1578        intel_set_memory_cxsr(dev_priv, false);
1579
1580        /* Calc sr entries for one plane configs */
1581        if (HAS_FW_BLC(dev) && enabled) {
1582                /* self-refresh has much higher latency */
1583                static const int sr_latency_ns = 6000;
1584                const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1585                int clock = adjusted_mode->crtc_clock;
1586                int htotal = adjusted_mode->crtc_htotal;
1587                int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1588                int cpp = drm_format_plane_cpp(enabled->primary->state->fb->pixel_format, 0);
1589                unsigned long line_time_us;
1590                int entries;
1591
1592                line_time_us = max(htotal * 1000 / clock, 1);
1593
1594                /* Use ns/us then divide to preserve precision */
1595                entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1596                        cpp * hdisplay;
1597                entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1598                DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1599                srwm = wm_info->fifo_size - entries;
1600                if (srwm < 0)
1601                        srwm = 1;
1602
1603                if (IS_I945G(dev) || IS_I945GM(dev))
1604                        I915_WRITE(FW_BLC_SELF,
1605                                   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1606                else if (IS_I915GM(dev))
1607                        I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1608        }
1609
1610        DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1611                      planea_wm, planeb_wm, cwm, srwm);
1612
1613        fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1614        fwater_hi = (cwm & 0x1f);
1615
1616        /* Set request length to 8 cachelines per fetch */
1617        fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1618        fwater_hi = fwater_hi | (1 << 8);
1619
1620        I915_WRITE(FW_BLC, fwater_lo);
1621        I915_WRITE(FW_BLC2, fwater_hi);
1622
1623        if (enabled)
1624                intel_set_memory_cxsr(dev_priv, true);
1625}
1626
1627static void i845_update_wm(struct drm_crtc *unused_crtc)
1628{
1629        struct drm_device *dev = unused_crtc->dev;
1630        struct drm_i915_private *dev_priv = dev->dev_private;
1631        struct drm_crtc *crtc;
1632        const struct drm_display_mode *adjusted_mode;
1633        uint32_t fwater_lo;
1634        int planea_wm;
1635
1636        crtc = single_enabled_crtc(dev);
1637        if (crtc == NULL)
1638                return;
1639
1640        adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1641        planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1642                                       &i845_wm_info,
1643                                       dev_priv->display.get_fifo_size(dev, 0),
1644                                       4, pessimal_latency_ns);
1645        fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1646        fwater_lo |= (3<<8) | planea_wm;
1647
1648        DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1649
1650        I915_WRITE(FW_BLC, fwater_lo);
1651}
1652
1653uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1654{
1655        uint32_t pixel_rate;
1656
1657        pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1658
1659        /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1660         * adjust the pixel_rate here. */
1661
1662        if (pipe_config->pch_pfit.enabled) {
1663                uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1664                uint32_t pfit_size = pipe_config->pch_pfit.size;
1665
1666                pipe_w = pipe_config->pipe_src_w;
1667                pipe_h = pipe_config->pipe_src_h;
1668
1669                pfit_w = (pfit_size >> 16) & 0xFFFF;
1670                pfit_h = pfit_size & 0xFFFF;
1671                if (pipe_w < pfit_w)
1672                        pipe_w = pfit_w;
1673                if (pipe_h < pfit_h)
1674                        pipe_h = pfit_h;
1675
1676                if (WARN_ON(!pfit_w || !pfit_h))
1677                        return pixel_rate;
1678
1679                pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1680                                     pfit_w * pfit_h);
1681        }
1682
1683        return pixel_rate;
1684}
1685
1686/* latency must be in 0.1us units. */
1687static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1688{
1689        uint64_t ret;
1690
1691        if (WARN(latency == 0, "Latency value missing\n"))
1692                return UINT_MAX;
1693
1694        ret = (uint64_t) pixel_rate * cpp * latency;
1695        ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1696
1697        return ret;
1698}
1699
1700/* latency must be in 0.1us units. */
1701static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1702                               uint32_t horiz_pixels, uint8_t cpp,
1703                               uint32_t latency)
1704{
1705        uint32_t ret;
1706
1707        if (WARN(latency == 0, "Latency value missing\n"))
1708                return UINT_MAX;
1709        if (WARN_ON(!pipe_htotal))
1710                return UINT_MAX;
1711
1712        ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1713        ret = (ret + 1) * horiz_pixels * cpp;
1714        ret = DIV_ROUND_UP(ret, 64) + 2;
1715        return ret;
1716}
1717
1718static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1719                           uint8_t cpp)
1720{
1721        /*
1722         * Neither of these should be possible since this function shouldn't be
1723         * called if the CRTC is off or the plane is invisible.  But let's be
1724         * extra paranoid to avoid a potential divide-by-zero if we screw up
1725         * elsewhere in the driver.
1726         */
1727        if (WARN_ON(!cpp))
1728                return 0;
1729        if (WARN_ON(!horiz_pixels))
1730                return 0;
1731
1732        return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1733}
1734
1735struct ilk_wm_maximums {
1736        uint16_t pri;
1737        uint16_t spr;
1738        uint16_t cur;
1739        uint16_t fbc;
1740};
1741
1742/*
1743 * For both WM_PIPE and WM_LP.
1744 * mem_value must be in 0.1us units.
1745 */
1746static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1747                                   const struct intel_plane_state *pstate,
1748                                   uint32_t mem_value,
1749                                   bool is_lp)
1750{
1751        int cpp = pstate->base.fb ?
1752                drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1753        uint32_t method1, method2;
1754
1755        if (!cstate->base.active || !pstate->visible)
1756                return 0;
1757
1758        method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1759
1760        if (!is_lp)
1761                return method1;
1762
1763        method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1764                                 cstate->base.adjusted_mode.crtc_htotal,
1765                                 drm_rect_width(&pstate->dst),
1766                                 cpp, mem_value);
1767
1768        return min(method1, method2);
1769}
1770
1771/*
1772 * For both WM_PIPE and WM_LP.
1773 * mem_value must be in 0.1us units.
1774 */
1775static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1776                                   const struct intel_plane_state *pstate,
1777                                   uint32_t mem_value)
1778{
1779        int cpp = pstate->base.fb ?
1780                drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1781        uint32_t method1, method2;
1782
1783        if (!cstate->base.active || !pstate->visible)
1784                return 0;
1785
1786        method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1787        method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1788                                 cstate->base.adjusted_mode.crtc_htotal,
1789                                 drm_rect_width(&pstate->dst),
1790                                 cpp, mem_value);
1791        return min(method1, method2);
1792}
1793
1794/*
1795 * For both WM_PIPE and WM_LP.
1796 * mem_value must be in 0.1us units.
1797 */
1798static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1799                                   const struct intel_plane_state *pstate,
1800                                   uint32_t mem_value)
1801{
1802        /*
1803         * We treat the cursor plane as always-on for the purposes of watermark
1804         * calculation.  Until we have two-stage watermark programming merged,
1805         * this is necessary to avoid flickering.
1806         */
1807        int cpp = 4;
1808        int width = pstate->visible ? pstate->base.crtc_w : 64;
1809
1810        if (!cstate->base.active)
1811                return 0;
1812
1813        return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1814                              cstate->base.adjusted_mode.crtc_htotal,
1815                              width, cpp, mem_value);
1816}
1817
1818/* Only for WM_LP. */
1819static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1820                                   const struct intel_plane_state *pstate,
1821                                   uint32_t pri_val)
1822{
1823        int cpp = pstate->base.fb ?
1824                drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1825
1826        if (!cstate->base.active || !pstate->visible)
1827                return 0;
1828
1829        return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), cpp);
1830}
1831
1832static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1833{
1834        if (INTEL_INFO(dev)->gen >= 8)
1835                return 3072;
1836        else if (INTEL_INFO(dev)->gen >= 7)
1837                return 768;
1838        else
1839                return 512;
1840}
1841
1842static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1843                                         int level, bool is_sprite)
1844{
1845        if (INTEL_INFO(dev)->gen >= 8)
1846                /* BDW primary/sprite plane watermarks */
1847                return level == 0 ? 255 : 2047;
1848        else if (INTEL_INFO(dev)->gen >= 7)
1849                /* IVB/HSW primary/sprite plane watermarks */
1850                return level == 0 ? 127 : 1023;
1851        else if (!is_sprite)
1852                /* ILK/SNB primary plane watermarks */
1853                return level == 0 ? 127 : 511;
1854        else
1855                /* ILK/SNB sprite plane watermarks */
1856                return level == 0 ? 63 : 255;
1857}
1858
1859static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1860                                          int level)
1861{
1862        if (INTEL_INFO(dev)->gen >= 7)
1863                return level == 0 ? 63 : 255;
1864        else
1865                return level == 0 ? 31 : 63;
1866}
1867
1868static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1869{
1870        if (INTEL_INFO(dev)->gen >= 8)
1871                return 31;
1872        else
1873                return 15;
1874}
1875
1876/* Calculate the maximum primary/sprite plane watermark */
1877static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1878                                     int level,
1879                                     const struct intel_wm_config *config,
1880                                     enum intel_ddb_partitioning ddb_partitioning,
1881                                     bool is_sprite)
1882{
1883        unsigned int fifo_size = ilk_display_fifo_size(dev);
1884
1885        /* if sprites aren't enabled, sprites get nothing */
1886        if (is_sprite && !config->sprites_enabled)
1887                return 0;
1888
1889        /* HSW allows LP1+ watermarks even with multiple pipes */
1890        if (level == 0 || config->num_pipes_active > 1) {
1891                fifo_size /= INTEL_INFO(dev)->num_pipes;
1892
1893                /*
1894                 * For some reason the non self refresh
1895                 * FIFO size is only half of the self
1896                 * refresh FIFO size on ILK/SNB.
1897                 */
1898                if (INTEL_INFO(dev)->gen <= 6)
1899                        fifo_size /= 2;
1900        }
1901
1902        if (config->sprites_enabled) {
1903                /* level 0 is always calculated with 1:1 split */
1904                if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1905                        if (is_sprite)
1906                                fifo_size *= 5;
1907                        fifo_size /= 6;
1908                } else {
1909                        fifo_size /= 2;
1910                }
1911        }
1912
1913        /* clamp to max that the registers can hold */
1914        return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1915}
1916
1917/* Calculate the maximum cursor plane watermark */
1918static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1919                                      int level,
1920                                      const struct intel_wm_config *config)
1921{
1922        /* HSW LP1+ watermarks w/ multiple pipes */
1923        if (level > 0 && config->num_pipes_active > 1)
1924                return 64;
1925
1926        /* otherwise just report max that registers can hold */
1927        return ilk_cursor_wm_reg_max(dev, level);
1928}
1929
1930static void ilk_compute_wm_maximums(const struct drm_device *dev,
1931                                    int level,
1932                                    const struct intel_wm_config *config,
1933                                    enum intel_ddb_partitioning ddb_partitioning,
1934                                    struct ilk_wm_maximums *max)
1935{
1936        max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1937        max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1938        max->cur = ilk_cursor_wm_max(dev, level, config);
1939        max->fbc = ilk_fbc_wm_reg_max(dev);
1940}
1941
1942static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1943                                        int level,
1944                                        struct ilk_wm_maximums *max)
1945{
1946        max->pri = ilk_plane_wm_reg_max(dev, level, false);
1947        max->spr = ilk_plane_wm_reg_max(dev, level, true);
1948        max->cur = ilk_cursor_wm_reg_max(dev, level);
1949        max->fbc = ilk_fbc_wm_reg_max(dev);
1950}
1951
1952static bool ilk_validate_wm_level(int level,
1953                                  const struct ilk_wm_maximums *max,
1954                                  struct intel_wm_level *result)
1955{
1956        bool ret;
1957
1958        /* already determined to be invalid? */
1959        if (!result->enable)
1960                return false;
1961
1962        result->enable = result->pri_val <= max->pri &&
1963                         result->spr_val <= max->spr &&
1964                         result->cur_val <= max->cur;
1965
1966        ret = result->enable;
1967
1968        /*
1969         * HACK until we can pre-compute everything,
1970         * and thus fail gracefully if LP0 watermarks
1971         * are exceeded...
1972         */
1973        if (level == 0 && !result->enable) {
1974                if (result->pri_val > max->pri)
1975                        DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1976                                      level, result->pri_val, max->pri);
1977                if (result->spr_val > max->spr)
1978                        DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1979                                      level, result->spr_val, max->spr);
1980                if (result->cur_val > max->cur)
1981                        DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1982                                      level, result->cur_val, max->cur);
1983
1984                result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1985                result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1986                result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1987                result->enable = true;
1988        }
1989
1990        return ret;
1991}
1992
1993static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1994                                 const struct intel_crtc *intel_crtc,
1995                                 int level,
1996                                 struct intel_crtc_state *cstate,
1997                                 struct intel_plane_state *pristate,
1998                                 struct intel_plane_state *sprstate,
1999                                 struct intel_plane_state *curstate,
2000                                 struct intel_wm_level *result)
2001{
2002        uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2003        uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2004        uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2005
2006        /* WM1+ latency values stored in 0.5us units */
2007        if (level > 0) {
2008                pri_latency *= 5;
2009                spr_latency *= 5;
2010                cur_latency *= 5;
2011        }
2012
2013        result->pri_val = ilk_compute_pri_wm(cstate, pristate,
2014                                             pri_latency, level);
2015        result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
2016        result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
2017        result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
2018        result->enable = true;
2019}
2020
2021static uint32_t
2022hsw_compute_linetime_wm(struct drm_device *dev,
2023                        struct intel_crtc_state *cstate)
2024{
2025        struct drm_i915_private *dev_priv = dev->dev_private;
2026        const struct drm_display_mode *adjusted_mode =
2027                &cstate->base.adjusted_mode;
2028        u32 linetime, ips_linetime;
2029
2030        if (!cstate->base.active)
2031                return 0;
2032        if (WARN_ON(adjusted_mode->crtc_clock == 0))
2033                return 0;
2034        if (WARN_ON(dev_priv->cdclk_freq == 0))
2035                return 0;
2036
2037        /* The WM are computed with base on how long it takes to fill a single
2038         * row at the given clock rate, multiplied by 8.
2039         * */
2040        linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2041                                     adjusted_mode->crtc_clock);
2042        ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2043                                         dev_priv->cdclk_freq);
2044
2045        return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2046               PIPE_WM_LINETIME_TIME(linetime);
2047}
2048
2049static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2050{
2051        struct drm_i915_private *dev_priv = dev->dev_private;
2052
2053        if (IS_GEN9(dev)) {
2054                uint32_t val;
2055                int ret, i;
2056                int level, max_level = ilk_wm_max_level(dev);
2057
2058                /* read the first set of memory latencies[0:3] */
2059                val = 0; /* data0 to be programmed to 0 for first set */
2060                mutex_lock(&dev_priv->rps.hw_lock);
2061                ret = sandybridge_pcode_read(dev_priv,
2062                                             GEN9_PCODE_READ_MEM_LATENCY,
2063                                             &val);
2064                mutex_unlock(&dev_priv->rps.hw_lock);
2065
2066                if (ret) {
2067                        DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2068                        return;
2069                }
2070
2071                wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2072                wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2073                                GEN9_MEM_LATENCY_LEVEL_MASK;
2074                wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2075                                GEN9_MEM_LATENCY_LEVEL_MASK;
2076                wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2077                                GEN9_MEM_LATENCY_LEVEL_MASK;
2078
2079                /* read the second set of memory latencies[4:7] */
2080                val = 1; /* data0 to be programmed to 1 for second set */
2081                mutex_lock(&dev_priv->rps.hw_lock);
2082                ret = sandybridge_pcode_read(dev_priv,
2083                                             GEN9_PCODE_READ_MEM_LATENCY,
2084                                             &val);
2085                mutex_unlock(&dev_priv->rps.hw_lock);
2086                if (ret) {
2087                        DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2088                        return;
2089                }
2090
2091                wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2092                wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2093                                GEN9_MEM_LATENCY_LEVEL_MASK;
2094                wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2095                                GEN9_MEM_LATENCY_LEVEL_MASK;
2096                wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2097                                GEN9_MEM_LATENCY_LEVEL_MASK;
2098
2099                /*
2100                 * WaWmMemoryReadLatency:skl
2101                 *
2102                 * punit doesn't take into account the read latency so we need
2103                 * to add 2us to the various latency levels we retrieve from
2104                 * the punit.
2105                 *   - W0 is a bit special in that it's the only level that
2106                 *   can't be disabled if we want to have display working, so
2107                 *   we always add 2us there.
2108                 *   - For levels >=1, punit returns 0us latency when they are
2109                 *   disabled, so we respect that and don't add 2us then
2110                 *
2111                 * Additionally, if a level n (n > 1) has a 0us latency, all
2112                 * levels m (m >= n) need to be disabled. We make sure to
2113                 * sanitize the values out of the punit to satisfy this
2114                 * requirement.
2115                 */
2116                wm[0] += 2;
2117                for (level = 1; level <= max_level; level++)
2118                        if (wm[level] != 0)
2119                                wm[level] += 2;
2120                        else {
2121                                for (i = level + 1; i <= max_level; i++)
2122                                        wm[i] = 0;
2123
2124                                break;
2125                        }
2126        } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2127                uint64_t sskpd = I915_READ64(MCH_SSKPD);
2128
2129                wm[0] = (sskpd >> 56) & 0xFF;
2130                if (wm[0] == 0)
2131                        wm[0] = sskpd & 0xF;
2132                wm[1] = (sskpd >> 4) & 0xFF;
2133                wm[2] = (sskpd >> 12) & 0xFF;
2134                wm[3] = (sskpd >> 20) & 0x1FF;
2135                wm[4] = (sskpd >> 32) & 0x1FF;
2136        } else if (INTEL_INFO(dev)->gen >= 6) {
2137                uint32_t sskpd = I915_READ(MCH_SSKPD);
2138
2139                wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2140                wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2141                wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2142                wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2143        } else if (INTEL_INFO(dev)->gen >= 5) {
2144                uint32_t mltr = I915_READ(MLTR_ILK);
2145
2146                /* ILK primary LP0 latency is 700 ns */
2147                wm[0] = 7;
2148                wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2149                wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2150        }
2151}
2152
2153static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2154{
2155        /* ILK sprite LP0 latency is 1300 ns */
2156        if (INTEL_INFO(dev)->gen == 5)
2157                wm[0] = 13;
2158}
2159
2160static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2161{
2162        /* ILK cursor LP0 latency is 1300 ns */
2163        if (INTEL_INFO(dev)->gen == 5)
2164                wm[0] = 13;
2165
2166        /* WaDoubleCursorLP3Latency:ivb */
2167        if (IS_IVYBRIDGE(dev))
2168                wm[3] *= 2;
2169}
2170
2171int ilk_wm_max_level(const struct drm_device *dev)
2172{
2173        /* how many WM levels are we expecting */
2174        if (INTEL_INFO(dev)->gen >= 9)
2175                return 7;
2176        else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2177                return 4;
2178        else if (INTEL_INFO(dev)->gen >= 6)
2179                return 3;
2180        else
2181                return 2;
2182}
2183
2184static void intel_print_wm_latency(struct drm_device *dev,
2185                                   const char *name,
2186                                   const uint16_t wm[8])
2187{
2188        int level, max_level = ilk_wm_max_level(dev);
2189
2190        for (level = 0; level <= max_level; level++) {
2191                unsigned int latency = wm[level];
2192
2193                if (latency == 0) {
2194                        DRM_ERROR("%s WM%d latency not provided\n",
2195                                  name, level);
2196                        continue;
2197                }
2198
2199                /*
2200                 * - latencies are in us on gen9.
2201                 * - before then, WM1+ latency values are in 0.5us units
2202                 */
2203                if (IS_GEN9(dev))
2204                        latency *= 10;
2205                else if (level > 0)
2206                        latency *= 5;
2207
2208                DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2209                              name, level, wm[level],
2210                              latency / 10, latency % 10);
2211        }
2212}
2213
2214static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2215                                    uint16_t wm[5], uint16_t min)
2216{
2217        int level, max_level = ilk_wm_max_level(dev_priv->dev);
2218
2219        if (wm[0] >= min)
2220                return false;
2221
2222        wm[0] = max(wm[0], min);
2223        for (level = 1; level <= max_level; level++)
2224                wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2225
2226        return true;
2227}
2228
2229static void snb_wm_latency_quirk(struct drm_device *dev)
2230{
2231        struct drm_i915_private *dev_priv = dev->dev_private;
2232        bool changed;
2233
2234        /*
2235         * The BIOS provided WM memory latency values are often
2236         * inadequate for high resolution displays. Adjust them.
2237         */
2238        changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2239                ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2240                ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2241
2242        if (!changed)
2243                return;
2244
2245        DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2246        intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2247        intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2248        intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2249}
2250
2251static void ilk_setup_wm_latency(struct drm_device *dev)
2252{
2253        struct drm_i915_private *dev_priv = dev->dev_private;
2254
2255        intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2256
2257        memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2258               sizeof(dev_priv->wm.pri_latency));
2259        memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2260               sizeof(dev_priv->wm.pri_latency));
2261
2262        intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2263        intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2264
2265        intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2266        intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2267        intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2268
2269        if (IS_GEN6(dev))
2270                snb_wm_latency_quirk(dev);
2271}
2272
2273static void skl_setup_wm_latency(struct drm_device *dev)
2274{
2275        struct drm_i915_private *dev_priv = dev->dev_private;
2276
2277        intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2278        intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
2279}
2280
2281/* Compute new watermarks for the pipe */
2282static int ilk_compute_pipe_wm(struct intel_crtc *intel_crtc,
2283                               struct drm_atomic_state *state)
2284{
2285        struct intel_pipe_wm *pipe_wm;
2286        struct drm_device *dev = intel_crtc->base.dev;
2287        const struct drm_i915_private *dev_priv = dev->dev_private;
2288        struct intel_crtc_state *cstate = NULL;
2289        struct intel_plane *intel_plane;
2290        struct drm_plane_state *ps;
2291        struct intel_plane_state *pristate = NULL;
2292        struct intel_plane_state *sprstate = NULL;
2293        struct intel_plane_state *curstate = NULL;
2294        int level, max_level = ilk_wm_max_level(dev);
2295        /* LP0 watermark maximums depend on this pipe alone */
2296        struct intel_wm_config config = {
2297                .num_pipes_active = 1,
2298        };
2299        struct ilk_wm_maximums max;
2300
2301        cstate = intel_atomic_get_crtc_state(state, intel_crtc);
2302        if (IS_ERR(cstate))
2303                return PTR_ERR(cstate);
2304
2305        pipe_wm = &cstate->wm.optimal.ilk;
2306        memset(pipe_wm, 0, sizeof(*pipe_wm));
2307
2308        for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2309                ps = drm_atomic_get_plane_state(state,
2310                                                &intel_plane->base);
2311                if (IS_ERR(ps))
2312                        return PTR_ERR(ps);
2313
2314                if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2315                        pristate = to_intel_plane_state(ps);
2316                else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2317                        sprstate = to_intel_plane_state(ps);
2318                else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2319                        curstate = to_intel_plane_state(ps);
2320        }
2321
2322        config.sprites_enabled = sprstate->visible;
2323        config.sprites_scaled = sprstate->visible &&
2324                (drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
2325                drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
2326
2327        pipe_wm->pipe_enabled = cstate->base.active;
2328        pipe_wm->sprites_enabled = config.sprites_enabled;
2329        pipe_wm->sprites_scaled = config.sprites_scaled;
2330
2331        /* ILK/SNB: LP2+ watermarks only w/o sprites */
2332        if (INTEL_INFO(dev)->gen <= 6 && sprstate->visible)
2333                max_level = 1;
2334
2335        /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2336        if (config.sprites_scaled)
2337                max_level = 0;
2338
2339        ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2340                             pristate, sprstate, curstate, &pipe_wm->wm[0]);
2341
2342        if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2343                pipe_wm->linetime = hsw_compute_linetime_wm(dev, cstate);
2344
2345        /* LP0 watermarks always use 1/2 DDB partitioning */
2346        ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2347
2348        /* At least LP0 must be valid */
2349        if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2350                return -EINVAL;
2351
2352        ilk_compute_wm_reg_maximums(dev, 1, &max);
2353
2354        for (level = 1; level <= max_level; level++) {
2355                struct intel_wm_level wm = {};
2356
2357                ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2358                                     pristate, sprstate, curstate, &wm);
2359
2360                /*
2361                 * Disable any watermark level that exceeds the
2362                 * register maximums since such watermarks are
2363                 * always invalid.
2364                 */
2365                if (!ilk_validate_wm_level(level, &max, &wm))
2366                        break;
2367
2368                pipe_wm->wm[level] = wm;
2369        }
2370
2371        return 0;
2372}
2373
2374/*
2375 * Merge the watermarks from all active pipes for a specific level.
2376 */
2377static void ilk_merge_wm_level(struct drm_device *dev,
2378                               int level,
2379                               struct intel_wm_level *ret_wm)
2380{
2381        const struct intel_crtc *intel_crtc;
2382
2383        ret_wm->enable = true;
2384
2385        for_each_intel_crtc(dev, intel_crtc) {
2386                const struct intel_crtc_state *cstate =
2387                        to_intel_crtc_state(intel_crtc->base.state);
2388                const struct intel_pipe_wm *active = &cstate->wm.optimal.ilk;
2389                const struct intel_wm_level *wm = &active->wm[level];
2390
2391                if (!active->pipe_enabled)
2392                        continue;
2393
2394                /*
2395                 * The watermark values may have been used in the past,
2396                 * so we must maintain them in the registers for some
2397                 * time even if the level is now disabled.
2398                 */
2399                if (!wm->enable)
2400                        ret_wm->enable = false;
2401
2402                ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2403                ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2404                ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2405                ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2406        }
2407}
2408
2409/*
2410 * Merge all low power watermarks for all active pipes.
2411 */
2412static void ilk_wm_merge(struct drm_device *dev,
2413                         const struct intel_wm_config *config,
2414                         const struct ilk_wm_maximums *max,
2415                         struct intel_pipe_wm *merged)
2416{
2417        struct drm_i915_private *dev_priv = dev->dev_private;
2418        int level, max_level = ilk_wm_max_level(dev);
2419        int last_enabled_level = max_level;
2420
2421        /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2422        if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2423            config->num_pipes_active > 1)
2424                return;
2425
2426        /* ILK: FBC WM must be disabled always */
2427        merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2428
2429        /* merge each WM1+ level */
2430        for (level = 1; level <= max_level; level++) {
2431                struct intel_wm_level *wm = &merged->wm[level];
2432
2433                ilk_merge_wm_level(dev, level, wm);
2434
2435                if (level > last_enabled_level)
2436                        wm->enable = false;
2437                else if (!ilk_validate_wm_level(level, max, wm))
2438                        /* make sure all following levels get disabled */
2439                        last_enabled_level = level - 1;
2440
2441                /*
2442                 * The spec says it is preferred to disable
2443                 * FBC WMs instead of disabling a WM level.
2444                 */
2445                if (wm->fbc_val > max->fbc) {
2446                        if (wm->enable)
2447                                merged->fbc_wm_enabled = false;
2448                        wm->fbc_val = 0;
2449                }
2450        }
2451
2452        /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2453        /*
2454         * FIXME this is racy. FBC might get enabled later.
2455         * What we should check here is whether FBC can be
2456         * enabled sometime later.
2457         */
2458        if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2459            intel_fbc_is_active(dev_priv)) {
2460                for (level = 2; level <= max_level; level++) {
2461                        struct intel_wm_level *wm = &merged->wm[level];
2462
2463                        wm->enable = false;
2464                }
2465        }
2466}
2467
2468static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2469{
2470        /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2471        return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2472}
2473
2474/* The value we need to program into the WM_LPx latency field */
2475static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2476{
2477        struct drm_i915_private *dev_priv = dev->dev_private;
2478
2479        if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2480                return 2 * level;
2481        else
2482                return dev_priv->wm.pri_latency[level];
2483}
2484
2485static void ilk_compute_wm_results(struct drm_device *dev,
2486                                   const struct intel_pipe_wm *merged,
2487                                   enum intel_ddb_partitioning partitioning,
2488                                   struct ilk_wm_values *results)
2489{
2490        struct intel_crtc *intel_crtc;
2491        int level, wm_lp;
2492
2493        results->enable_fbc_wm = merged->fbc_wm_enabled;
2494        results->partitioning = partitioning;
2495
2496        /* LP1+ register values */
2497        for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2498                const struct intel_wm_level *r;
2499
2500                level = ilk_wm_lp_to_level(wm_lp, merged);
2501
2502                r = &merged->wm[level];
2503
2504                /*
2505                 * Maintain the watermark values even if the level is
2506                 * disabled. Doing otherwise could cause underruns.
2507                 */
2508                results->wm_lp[wm_lp - 1] =
2509                        (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2510                        (r->pri_val << WM1_LP_SR_SHIFT) |
2511                        r->cur_val;
2512
2513                if (r->enable)
2514                        results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2515
2516                if (INTEL_INFO(dev)->gen >= 8)
2517                        results->wm_lp[wm_lp - 1] |=
2518                                r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2519                else
2520                        results->wm_lp[wm_lp - 1] |=
2521                                r->fbc_val << WM1_LP_FBC_SHIFT;
2522
2523                /*
2524                 * Always set WM1S_LP_EN when spr_val != 0, even if the
2525                 * level is disabled. Doing otherwise could cause underruns.
2526                 */
2527                if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2528                        WARN_ON(wm_lp != 1);
2529                        results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2530                } else
2531                        results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2532        }
2533
2534        /* LP0 register values */
2535        for_each_intel_crtc(dev, intel_crtc) {
2536                const struct intel_crtc_state *cstate =
2537                        to_intel_crtc_state(intel_crtc->base.state);
2538                enum pipe pipe = intel_crtc->pipe;
2539                const struct intel_wm_level *r = &cstate->wm.optimal.ilk.wm[0];
2540
2541                if (WARN_ON(!r->enable))
2542                        continue;
2543
2544                results->wm_linetime[pipe] = cstate->wm.optimal.ilk.linetime;
2545
2546                results->wm_pipe[pipe] =
2547                        (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2548                        (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2549                        r->cur_val;
2550        }
2551}
2552
2553/* Find the result with the highest level enabled. Check for enable_fbc_wm in
2554 * case both are at the same level. Prefer r1 in case they're the same. */
2555static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2556                                                  struct intel_pipe_wm *r1,
2557                                                  struct intel_pipe_wm *r2)
2558{
2559        int level, max_level = ilk_wm_max_level(dev);
2560        int level1 = 0, level2 = 0;
2561
2562        for (level = 1; level <= max_level; level++) {
2563                if (r1->wm[level].enable)
2564                        level1 = level;
2565                if (r2->wm[level].enable)
2566                        level2 = level;
2567        }
2568
2569        if (level1 == level2) {
2570                if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2571                        return r2;
2572                else
2573                        return r1;
2574        } else if (level1 > level2) {
2575                return r1;
2576        } else {
2577                return r2;
2578        }
2579}
2580
2581/* dirty bits used to track which watermarks need changes */
2582#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2583#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2584#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2585#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2586#define WM_DIRTY_FBC (1 << 24)
2587#define WM_DIRTY_DDB (1 << 25)
2588
2589static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2590                                         const struct ilk_wm_values *old,
2591                                         const struct ilk_wm_values *new)
2592{
2593        unsigned int dirty = 0;
2594        enum pipe pipe;
2595        int wm_lp;
2596
2597        for_each_pipe(dev_priv, pipe) {
2598                if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2599                        dirty |= WM_DIRTY_LINETIME(pipe);
2600                        /* Must disable LP1+ watermarks too */
2601                        dirty |= WM_DIRTY_LP_ALL;
2602                }
2603
2604                if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2605                        dirty |= WM_DIRTY_PIPE(pipe);
2606                        /* Must disable LP1+ watermarks too */
2607                        dirty |= WM_DIRTY_LP_ALL;
2608                }
2609        }
2610
2611        if (old->enable_fbc_wm != new->enable_fbc_wm) {
2612                dirty |= WM_DIRTY_FBC;
2613                /* Must disable LP1+ watermarks too */
2614                dirty |= WM_DIRTY_LP_ALL;
2615        }
2616
2617        if (old->partitioning != new->partitioning) {
2618                dirty |= WM_DIRTY_DDB;
2619                /* Must disable LP1+ watermarks too */
2620                dirty |= WM_DIRTY_LP_ALL;
2621        }
2622
2623        /* LP1+ watermarks already deemed dirty, no need to continue */
2624        if (dirty & WM_DIRTY_LP_ALL)
2625                return dirty;
2626
2627        /* Find the lowest numbered LP1+ watermark in need of an update... */
2628        for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2629                if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2630                    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2631                        break;
2632        }
2633
2634        /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2635        for (; wm_lp <= 3; wm_lp++)
2636                dirty |= WM_DIRTY_LP(wm_lp);
2637
2638        return dirty;
2639}
2640
2641static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2642                               unsigned int dirty)
2643{
2644        struct ilk_wm_values *previous = &dev_priv->wm.hw;
2645        bool changed = false;
2646
2647        if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2648                previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2649                I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2650                changed = true;
2651        }
2652        if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2653                previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2654                I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2655                changed = true;
2656        }
2657        if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2658                previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2659                I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2660                changed = true;
2661        }
2662
2663        /*
2664         * Don't touch WM1S_LP_EN here.
2665         * Doing so could cause underruns.
2666         */
2667
2668        return changed;
2669}
2670
2671/*
2672 * The spec says we shouldn't write when we don't need, because every write
2673 * causes WMs to be re-evaluated, expending some power.
2674 */
2675static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2676                                struct ilk_wm_values *results)
2677{
2678        struct drm_device *dev = dev_priv->dev;
2679        struct ilk_wm_values *previous = &dev_priv->wm.hw;
2680        unsigned int dirty;
2681        uint32_t val;
2682
2683        dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2684        if (!dirty)
2685                return;
2686
2687        _ilk_disable_lp_wm(dev_priv, dirty);
2688
2689        if (dirty & WM_DIRTY_PIPE(PIPE_A))
2690                I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2691        if (dirty & WM_DIRTY_PIPE(PIPE_B))
2692                I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2693        if (dirty & WM_DIRTY_PIPE(PIPE_C))
2694                I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2695
2696        if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2697                I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2698        if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2699                I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2700        if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2701                I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2702
2703        if (dirty & WM_DIRTY_DDB) {
2704                if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2705                        val = I915_READ(WM_MISC);
2706                        if (results->partitioning == INTEL_DDB_PART_1_2)
2707                                val &= ~WM_MISC_DATA_PARTITION_5_6;
2708                        else
2709                                val |= WM_MISC_DATA_PARTITION_5_6;
2710                        I915_WRITE(WM_MISC, val);
2711                } else {
2712                        val = I915_READ(DISP_ARB_CTL2);
2713                        if (results->partitioning == INTEL_DDB_PART_1_2)
2714                                val &= ~DISP_DATA_PARTITION_5_6;
2715                        else
2716                                val |= DISP_DATA_PARTITION_5_6;
2717                        I915_WRITE(DISP_ARB_CTL2, val);
2718                }
2719        }
2720
2721        if (dirty & WM_DIRTY_FBC) {
2722                val = I915_READ(DISP_ARB_CTL);
2723                if (results->enable_fbc_wm)
2724                        val &= ~DISP_FBC_WM_DIS;
2725                else
2726                        val |= DISP_FBC_WM_DIS;
2727                I915_WRITE(DISP_ARB_CTL, val);
2728        }
2729
2730        if (dirty & WM_DIRTY_LP(1) &&
2731            previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2732                I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2733
2734        if (INTEL_INFO(dev)->gen >= 7) {
2735                if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2736                        I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2737                if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2738                        I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2739        }
2740
2741        if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2742                I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2743        if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2744                I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2745        if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2746                I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2747
2748        dev_priv->wm.hw = *results;
2749}
2750
2751static bool ilk_disable_lp_wm(struct drm_device *dev)
2752{
2753        struct drm_i915_private *dev_priv = dev->dev_private;
2754
2755        return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2756}
2757
2758/*
2759 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
2760 * different active planes.
2761 */
2762
2763#define SKL_DDB_SIZE            896     /* in blocks */
2764#define BXT_DDB_SIZE            512
2765
2766/*
2767 * Return the index of a plane in the SKL DDB and wm result arrays.  Primary
2768 * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
2769 * other universal planes are in indices 1..n.  Note that this may leave unused
2770 * indices between the top "sprite" plane and the cursor.
2771 */
2772static int
2773skl_wm_plane_id(const struct intel_plane *plane)
2774{
2775        switch (plane->base.type) {
2776        case DRM_PLANE_TYPE_PRIMARY:
2777                return 0;
2778        case DRM_PLANE_TYPE_CURSOR:
2779                return PLANE_CURSOR;
2780        case DRM_PLANE_TYPE_OVERLAY:
2781                return plane->plane + 1;
2782        default:
2783                MISSING_CASE(plane->base.type);
2784                return plane->plane;
2785        }
2786}
2787
2788static void
2789skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2790                                   const struct intel_crtc_state *cstate,
2791                                   const struct intel_wm_config *config,
2792                                   struct skl_ddb_entry *alloc /* out */)
2793{
2794        struct drm_crtc *for_crtc = cstate->base.crtc;
2795        struct drm_crtc *crtc;
2796        unsigned int pipe_size, ddb_size;
2797        int nth_active_pipe;
2798
2799        if (!cstate->base.active) {
2800                alloc->start = 0;
2801                alloc->end = 0;
2802                return;
2803        }
2804
2805        if (IS_BROXTON(dev))
2806                ddb_size = BXT_DDB_SIZE;
2807        else
2808                ddb_size = SKL_DDB_SIZE;
2809
2810        ddb_size -= 4; /* 4 blocks for bypass path allocation */
2811
2812        nth_active_pipe = 0;
2813        for_each_crtc(dev, crtc) {
2814                if (!to_intel_crtc(crtc)->active)
2815                        continue;
2816
2817                if (crtc == for_crtc)
2818                        break;
2819
2820                nth_active_pipe++;
2821        }
2822
2823        pipe_size = ddb_size / config->num_pipes_active;
2824        alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2825        alloc->end = alloc->start + pipe_size;
2826}
2827
2828static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
2829{
2830        if (config->num_pipes_active == 1)
2831                return 32;
2832
2833        return 8;
2834}
2835
2836static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
2837{
2838        entry->start = reg & 0x3ff;
2839        entry->end = (reg >> 16) & 0x3ff;
2840        if (entry->end)
2841                entry->end += 1;
2842}
2843
2844void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
2845                          struct skl_ddb_allocation *ddb /* out */)
2846{
2847        enum pipe pipe;
2848        int plane;
2849        u32 val;
2850
2851        memset(ddb, 0, sizeof(*ddb));
2852
2853        for_each_pipe(dev_priv, pipe) {
2854                enum intel_display_power_domain power_domain;
2855
2856                power_domain = POWER_DOMAIN_PIPE(pipe);
2857                if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
2858                        continue;
2859
2860                for_each_plane(dev_priv, pipe, plane) {
2861                        val = I915_READ(PLANE_BUF_CFG(pipe, plane));
2862                        skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
2863                                                   val);
2864                }
2865
2866                val = I915_READ(CUR_BUF_CFG(pipe));
2867                skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
2868                                           val);
2869
2870                intel_display_power_put(dev_priv, power_domain);
2871        }
2872}
2873
2874static unsigned int
2875skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
2876                             const struct drm_plane_state *pstate,
2877                             int y)
2878{
2879        struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
2880        struct drm_framebuffer *fb = pstate->fb;
2881        uint32_t width = 0, height = 0;
2882
2883        width = drm_rect_width(&intel_pstate->src) >> 16;
2884        height = drm_rect_height(&intel_pstate->src) >> 16;
2885
2886        if (intel_rotation_90_or_270(pstate->rotation))
2887                swap(width, height);
2888
2889        /* for planar format */
2890        if (fb->pixel_format == DRM_FORMAT_NV12) {
2891                if (y)  /* y-plane data rate */
2892                        return width * height *
2893                                drm_format_plane_cpp(fb->pixel_format, 0);
2894                else    /* uv-plane data rate */
2895                        return (width / 2) * (height / 2) *
2896                                drm_format_plane_cpp(fb->pixel_format, 1);
2897        }
2898
2899        /* for packed formats */
2900        return width * height * drm_format_plane_cpp(fb->pixel_format, 0);
2901}
2902
2903/*
2904 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
2905 * a 8192x4096@32bpp framebuffer:
2906 *   3 * 4096 * 8192  * 4 < 2^32
2907 */
2908static unsigned int
2909skl_get_total_relative_data_rate(const struct intel_crtc_state *cstate)
2910{
2911        struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2912        struct drm_device *dev = intel_crtc->base.dev;
2913        const struct intel_plane *intel_plane;
2914        unsigned int total_data_rate = 0;
2915
2916        for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2917                const struct drm_plane_state *pstate = intel_plane->base.state;
2918
2919                if (pstate->fb == NULL)
2920                        continue;
2921
2922                if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2923                        continue;
2924
2925                /* packed/uv */
2926                total_data_rate += skl_plane_relative_data_rate(cstate,
2927                                                                pstate,
2928                                                                0);
2929
2930                if (pstate->fb->pixel_format == DRM_FORMAT_NV12)
2931                        /* y-plane */
2932                        total_data_rate += skl_plane_relative_data_rate(cstate,
2933                                                                        pstate,
2934                                                                        1);
2935        }
2936
2937        return total_data_rate;
2938}
2939
2940static void
2941skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
2942                      struct skl_ddb_allocation *ddb /* out */)
2943{
2944        struct drm_crtc *crtc = cstate->base.crtc;
2945        struct drm_device *dev = crtc->dev;
2946        struct drm_i915_private *dev_priv = to_i915(dev);
2947        struct intel_wm_config *config = &dev_priv->wm.config;
2948        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2949        struct intel_plane *intel_plane;
2950        enum pipe pipe = intel_crtc->pipe;
2951        struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2952        uint16_t alloc_size, start, cursor_blocks;
2953        uint16_t minimum[I915_MAX_PLANES];
2954        uint16_t y_minimum[I915_MAX_PLANES];
2955        unsigned int total_data_rate;
2956
2957        skl_ddb_get_pipe_allocation_limits(dev, cstate, config, alloc);
2958        alloc_size = skl_ddb_entry_size(alloc);
2959        if (alloc_size == 0) {
2960                memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
2961                memset(&ddb->plane[pipe][PLANE_CURSOR], 0,
2962                       sizeof(ddb->plane[pipe][PLANE_CURSOR]));
2963                return;
2964        }
2965
2966        cursor_blocks = skl_cursor_allocation(config);
2967        ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
2968        ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
2969
2970        alloc_size -= cursor_blocks;
2971        alloc->end -= cursor_blocks;
2972
2973        /* 1. Allocate the mininum required blocks for each active plane */
2974        for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2975                struct drm_plane *plane = &intel_plane->base;
2976                struct drm_framebuffer *fb = plane->state->fb;
2977                int id = skl_wm_plane_id(intel_plane);
2978
2979                if (!to_intel_plane_state(plane->state)->visible)
2980                        continue;
2981
2982                if (plane->type == DRM_PLANE_TYPE_CURSOR)
2983                        continue;
2984
2985                minimum[id] = 8;
2986                alloc_size -= minimum[id];
2987                y_minimum[id] = (fb->pixel_format == DRM_FORMAT_NV12) ? 8 : 0;
2988                alloc_size -= y_minimum[id];
2989        }
2990
2991        /*
2992         * 2. Distribute the remaining space in proportion to the amount of
2993         * data each plane needs to fetch from memory.
2994         *
2995         * FIXME: we may not allocate every single block here.
2996         */
2997        total_data_rate = skl_get_total_relative_data_rate(cstate);
2998
2999        start = alloc->start;
3000        for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3001                struct drm_plane *plane = &intel_plane->base;
3002                struct drm_plane_state *pstate = intel_plane->base.state;
3003                unsigned int data_rate, y_data_rate;
3004                uint16_t plane_blocks, y_plane_blocks = 0;
3005                int id = skl_wm_plane_id(intel_plane);
3006
3007                if (!to_intel_plane_state(pstate)->visible)
3008                        continue;
3009                if (plane->type == DRM_PLANE_TYPE_CURSOR)
3010                        continue;
3011
3012                data_rate = skl_plane_relative_data_rate(cstate, pstate, 0);
3013
3014                /*
3015                 * allocation for (packed formats) or (uv-plane part of planar format):
3016                 * promote the expression to 64 bits to avoid overflowing, the
3017                 * result is < available as data_rate / total_data_rate < 1
3018                 */
3019                plane_blocks = minimum[id];
3020                plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
3021                                        total_data_rate);
3022
3023                ddb->plane[pipe][id].start = start;
3024                ddb->plane[pipe][id].end = start + plane_blocks;
3025
3026                start += plane_blocks;
3027
3028                /*
3029                 * allocation for y_plane part of planar format:
3030                 */
3031                if (pstate->fb->pixel_format == DRM_FORMAT_NV12) {
3032                        y_data_rate = skl_plane_relative_data_rate(cstate,
3033                                                                   pstate,
3034                                                                   1);
3035                        y_plane_blocks = y_minimum[id];
3036                        y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
3037                                                total_data_rate);
3038
3039                        ddb->y_plane[pipe][id].start = start;
3040                        ddb->y_plane[pipe][id].end = start + y_plane_blocks;
3041
3042                        start += y_plane_blocks;
3043                }
3044
3045        }
3046
3047}
3048
3049static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3050{
3051        /* TODO: Take into account the scalers once we support them */
3052        return config->base.adjusted_mode.crtc_clock;
3053}
3054
3055/*
3056 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3057 * for the read latency) and cpp should always be <= 8, so that
3058 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
3059 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
3060*/
3061static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3062{
3063        uint32_t wm_intermediate_val, ret;
3064
3065        if (latency == 0)
3066                return UINT_MAX;
3067
3068        wm_intermediate_val = latency * pixel_rate * cpp / 512;
3069        ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
3070
3071        return ret;
3072}
3073
3074static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3075                               uint32_t horiz_pixels, uint8_t cpp,
3076                               uint64_t tiling, uint32_t latency)
3077{
3078        uint32_t ret;
3079        uint32_t plane_bytes_per_line, plane_blocks_per_line;
3080        uint32_t wm_intermediate_val;
3081
3082        if (latency == 0)
3083                return UINT_MAX;
3084
3085        plane_bytes_per_line = horiz_pixels * cpp;
3086
3087        if (tiling == I915_FORMAT_MOD_Y_TILED ||
3088            tiling == I915_FORMAT_MOD_Yf_TILED) {
3089                plane_bytes_per_line *= 4;
3090                plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3091                plane_blocks_per_line /= 4;
3092        } else {
3093                plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3094        }
3095
3096        wm_intermediate_val = latency * pixel_rate;
3097        ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3098                                plane_blocks_per_line;
3099
3100        return ret;
3101}
3102
3103static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
3104                                       const struct intel_crtc *intel_crtc)
3105{
3106        struct drm_device *dev = intel_crtc->base.dev;
3107        struct drm_i915_private *dev_priv = dev->dev_private;
3108        const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
3109
3110        /*
3111         * If ddb allocation of pipes changed, it may require recalculation of
3112         * watermarks
3113         */
3114        if (memcmp(new_ddb->pipe, cur_ddb->pipe, sizeof(new_ddb->pipe)))
3115                return true;
3116
3117        return false;
3118}
3119
3120static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3121                                 struct intel_crtc_state *cstate,
3122                                 struct intel_plane *intel_plane,
3123                                 uint16_t ddb_allocation,
3124                                 int level,
3125                                 uint16_t *out_blocks, /* out */
3126                                 uint8_t *out_lines /* out */)
3127{
3128        struct drm_plane *plane = &intel_plane->base;
3129        struct drm_framebuffer *fb = plane->state->fb;
3130        struct intel_plane_state *intel_pstate =
3131                                        to_intel_plane_state(plane->state);
3132        uint32_t latency = dev_priv->wm.skl_latency[level];
3133        uint32_t method1, method2;
3134        uint32_t plane_bytes_per_line, plane_blocks_per_line;
3135        uint32_t res_blocks, res_lines;
3136        uint32_t selected_result;
3137        uint8_t cpp;
3138        uint32_t width = 0, height = 0;
3139
3140        if (latency == 0 || !cstate->base.active || !intel_pstate->visible)
3141                return false;
3142
3143        width = drm_rect_width(&intel_pstate->src) >> 16;
3144        height = drm_rect_height(&intel_pstate->src) >> 16;
3145
3146        if (intel_rotation_90_or_270(plane->state->rotation))
3147                swap(width, height);
3148
3149        cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3150        method1 = skl_wm_method1(skl_pipe_pixel_rate(cstate),
3151                                 cpp, latency);
3152        method2 = skl_wm_method2(skl_pipe_pixel_rate(cstate),
3153                                 cstate->base.adjusted_mode.crtc_htotal,
3154                                 width,
3155                                 cpp,
3156                                 fb->modifier[0],
3157                                 latency);
3158
3159        plane_bytes_per_line = width * cpp;
3160        plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3161
3162        if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3163            fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3164                uint32_t min_scanlines = 4;
3165                uint32_t y_tile_minimum;
3166                if (intel_rotation_90_or_270(plane->state->rotation)) {
3167                        int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
3168                                drm_format_plane_cpp(fb->pixel_format, 1) :
3169                                drm_format_plane_cpp(fb->pixel_format, 0);
3170
3171                        switch (cpp) {
3172                        case 1:
3173                                min_scanlines = 16;
3174                                break;
3175                        case 2:
3176                                min_scanlines = 8;
3177                                break;
3178                        case 8:
3179                                WARN(1, "Unsupported pixel depth for rotation");
3180                        }
3181                }
3182                y_tile_minimum = plane_blocks_per_line * min_scanlines;
3183                selected_result = max(method2, y_tile_minimum);
3184        } else {
3185                if ((ddb_allocation / plane_blocks_per_line) >= 1)
3186                        selected_result = min(method1, method2);
3187                else
3188                        selected_result = method1;
3189        }
3190
3191        res_blocks = selected_result + 1;
3192        res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3193
3194        if (level >= 1 && level <= 7) {
3195                if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3196                    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED)
3197                        res_lines += 4;
3198                else
3199                        res_blocks++;
3200        }
3201
3202        if (res_blocks >= ddb_allocation || res_lines > 31)
3203                return false;
3204
3205        *out_blocks = res_blocks;
3206        *out_lines = res_lines;
3207
3208        return true;
3209}
3210
3211static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3212                                 struct skl_ddb_allocation *ddb,
3213                                 struct intel_crtc_state *cstate,
3214                                 int level,
3215                                 struct skl_wm_level *result)
3216{
3217        struct drm_device *dev = dev_priv->dev;
3218        struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3219        struct intel_plane *intel_plane;
3220        uint16_t ddb_blocks;
3221        enum pipe pipe = intel_crtc->pipe;
3222
3223        for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3224                int i = skl_wm_plane_id(intel_plane);
3225
3226                ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3227
3228                result->plane_en[i] = skl_compute_plane_wm(dev_priv,
3229                                                cstate,
3230                                                intel_plane,
3231                                                ddb_blocks,
3232                                                level,
3233                                                &result->plane_res_b[i],
3234                                                &result->plane_res_l[i]);
3235        }
3236}
3237
3238static uint32_t
3239skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3240{
3241        if (!cstate->base.active)
3242                return 0;
3243
3244        if (WARN_ON(skl_pipe_pixel_rate(cstate) == 0))
3245                return 0;
3246
3247        return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
3248                            skl_pipe_pixel_rate(cstate));
3249}
3250
3251static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3252                                      struct skl_wm_level *trans_wm /* out */)
3253{
3254        struct drm_crtc *crtc = cstate->base.crtc;
3255        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3256        struct intel_plane *intel_plane;
3257
3258        if (!cstate->base.active)
3259                return;
3260
3261        /* Until we know more, just disable transition WMs */
3262        for_each_intel_plane_on_crtc(crtc->dev, intel_crtc, intel_plane) {
3263                int i = skl_wm_plane_id(intel_plane);
3264
3265                trans_wm->plane_en[i] = false;
3266        }
3267}
3268
3269static void skl_compute_pipe_wm(struct intel_crtc_state *cstate,
3270                                struct skl_ddb_allocation *ddb,
3271                                struct skl_pipe_wm *pipe_wm)
3272{
3273        struct drm_device *dev = cstate->base.crtc->dev;
3274        const struct drm_i915_private *dev_priv = dev->dev_private;
3275        int level, max_level = ilk_wm_max_level(dev);
3276
3277        for (level = 0; level <= max_level; level++) {
3278                skl_compute_wm_level(dev_priv, ddb, cstate,
3279                                     level, &pipe_wm->wm[level]);
3280        }
3281        pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3282
3283        skl_compute_transition_wm(cstate, &pipe_wm->trans_wm);
3284}
3285
3286static void skl_compute_wm_results(struct drm_device *dev,
3287                                   struct skl_pipe_wm *p_wm,
3288                                   struct skl_wm_values *r,
3289                                   struct intel_crtc *intel_crtc)
3290{
3291        int level, max_level = ilk_wm_max_level(dev);
3292        enum pipe pipe = intel_crtc->pipe;
3293        uint32_t temp;
3294        int i;
3295
3296        for (level = 0; level <= max_level; level++) {
3297                for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3298                        temp = 0;
3299
3300                        temp |= p_wm->wm[level].plane_res_l[i] <<
3301                                        PLANE_WM_LINES_SHIFT;
3302                        temp |= p_wm->wm[level].plane_res_b[i];
3303                        if (p_wm->wm[level].plane_en[i])
3304                                temp |= PLANE_WM_EN;
3305
3306                        r->plane[pipe][i][level] = temp;
3307                }
3308
3309                temp = 0;
3310
3311                temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3312                temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
3313
3314                if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3315                        temp |= PLANE_WM_EN;
3316
3317                r->plane[pipe][PLANE_CURSOR][level] = temp;
3318
3319        }
3320
3321        /* transition WMs */
3322        for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3323                temp = 0;
3324                temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
3325                temp |= p_wm->trans_wm.plane_res_b[i];
3326                if (p_wm->trans_wm.plane_en[i])
3327                        temp |= PLANE_WM_EN;
3328
3329                r->plane_trans[pipe][i] = temp;
3330        }
3331
3332        temp = 0;
3333        temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3334        temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
3335        if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3336                temp |= PLANE_WM_EN;
3337
3338        r->plane_trans[pipe][PLANE_CURSOR] = temp;
3339
3340        r->wm_linetime[pipe] = p_wm->linetime;
3341}
3342
3343static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
3344                                i915_reg_t reg,
3345                                const struct skl_ddb_entry *entry)
3346{
3347        if (entry->end)
3348                I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3349        else
3350                I915_WRITE(reg, 0);
3351}
3352
3353static void skl_write_wm_values(struct drm_i915_private *dev_priv,
3354                                const struct skl_wm_values *new)
3355{
3356        struct drm_device *dev = dev_priv->dev;
3357        struct intel_crtc *crtc;
3358
3359        for_each_intel_crtc(dev, crtc) {
3360                int i, level, max_level = ilk_wm_max_level(dev);
3361                enum pipe pipe = crtc->pipe;
3362
3363                if (!new->dirty[pipe])
3364                        continue;
3365
3366                I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3367
3368                for (level = 0; level <= max_level; level++) {
3369                        for (i = 0; i < intel_num_planes(crtc); i++)
3370                                I915_WRITE(PLANE_WM(pipe, i, level),
3371                                           new->plane[pipe][i][level]);
3372                        I915_WRITE(CUR_WM(pipe, level),
3373                                   new->plane[pipe][PLANE_CURSOR][level]);
3374                }
3375                for (i = 0; i < intel_num_planes(crtc); i++)
3376                        I915_WRITE(PLANE_WM_TRANS(pipe, i),
3377                                   new->plane_trans[pipe][i]);
3378                I915_WRITE(CUR_WM_TRANS(pipe),
3379                           new->plane_trans[pipe][PLANE_CURSOR]);
3380
3381                for (i = 0; i < intel_num_planes(crtc); i++) {
3382                        skl_ddb_entry_write(dev_priv,
3383                                            PLANE_BUF_CFG(pipe, i),
3384                                            &new->ddb.plane[pipe][i]);
3385                        skl_ddb_entry_write(dev_priv,
3386                                            PLANE_NV12_BUF_CFG(pipe, i),
3387                                            &new->ddb.y_plane[pipe][i]);
3388                }
3389
3390                skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3391                                    &new->ddb.plane[pipe][PLANE_CURSOR]);
3392        }
3393}
3394
3395/*
3396 * When setting up a new DDB allocation arrangement, we need to correctly
3397 * sequence the times at which the new allocations for the pipes are taken into
3398 * account or we'll have pipes fetching from space previously allocated to
3399 * another pipe.
3400 *
3401 * Roughly the sequence looks like:
3402 *  1. re-allocate the pipe(s) with the allocation being reduced and not
3403 *     overlapping with a previous light-up pipe (another way to put it is:
3404 *     pipes with their new allocation strickly included into their old ones).
3405 *  2. re-allocate the other pipes that get their allocation reduced
3406 *  3. allocate the pipes having their allocation increased
3407 *
3408 * Steps 1. and 2. are here to take care of the following case:
3409 * - Initially DDB looks like this:
3410 *     |   B    |   C    |
3411 * - enable pipe A.
3412 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
3413 *   allocation
3414 *     |  A  |  B  |  C  |
3415 *
3416 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
3417 */
3418
3419static void
3420skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3421{
3422        int plane;
3423
3424        DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
3425
3426        for_each_plane(dev_priv, pipe, plane) {
3427                I915_WRITE(PLANE_SURF(pipe, plane),
3428                           I915_READ(PLANE_SURF(pipe, plane)));
3429        }
3430        I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3431}
3432
3433static bool
3434skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
3435                            const struct skl_ddb_allocation *new,
3436                            enum pipe pipe)
3437{
3438        uint16_t old_size, new_size;
3439
3440        old_size = skl_ddb_entry_size(&old->pipe[pipe]);
3441        new_size = skl_ddb_entry_size(&new->pipe[pipe]);
3442
3443        return old_size != new_size &&
3444               new->pipe[pipe].start >= old->pipe[pipe].start &&
3445               new->pipe[pipe].end <= old->pipe[pipe].end;
3446}
3447
3448static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
3449                                struct skl_wm_values *new_values)
3450{
3451        struct drm_device *dev = dev_priv->dev;
3452        struct skl_ddb_allocation *cur_ddb, *new_ddb;
3453        bool reallocated[I915_MAX_PIPES] = {};
3454        struct intel_crtc *crtc;
3455        enum pipe pipe;
3456
3457        new_ddb = &new_values->ddb;
3458        cur_ddb = &dev_priv->wm.skl_hw.ddb;
3459
3460        /*
3461         * First pass: flush the pipes with the new allocation contained into
3462         * the old space.
3463         *
3464         * We'll wait for the vblank on those pipes to ensure we can safely
3465         * re-allocate the freed space without this pipe fetching from it.
3466         */
3467        for_each_intel_crtc(dev, crtc) {
3468                if (!crtc->active)
3469                        continue;
3470
3471                pipe = crtc->pipe;
3472
3473                if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
3474                        continue;
3475
3476                skl_wm_flush_pipe(dev_priv, pipe, 1);
3477                intel_wait_for_vblank(dev, pipe);
3478
3479                reallocated[pipe] = true;
3480        }
3481
3482
3483        /*
3484         * Second pass: flush the pipes that are having their allocation
3485         * reduced, but overlapping with a previous allocation.
3486         *
3487         * Here as well we need to wait for the vblank to make sure the freed
3488         * space is not used anymore.
3489         */
3490        for_each_intel_crtc(dev, crtc) {
3491                if (!crtc->active)
3492                        continue;
3493
3494                pipe = crtc->pipe;
3495
3496                if (reallocated[pipe])
3497                        continue;
3498
3499                if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3500                    skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3501                        skl_wm_flush_pipe(dev_priv, pipe, 2);
3502                        intel_wait_for_vblank(dev, pipe);
3503                        reallocated[pipe] = true;
3504                }
3505        }
3506
3507        /*
3508         * Third pass: flush the pipes that got more space allocated.
3509         *
3510         * We don't need to actively wait for the update here, next vblank
3511         * will just get more DDB space with the correct WM values.
3512         */
3513        for_each_intel_crtc(dev, crtc) {
3514                if (!crtc->active)
3515                        continue;
3516
3517                pipe = crtc->pipe;
3518
3519                /*
3520                 * At this point, only the pipes more space than before are
3521                 * left to re-allocate.
3522                 */
3523                if (reallocated[pipe])
3524                        continue;
3525
3526                skl_wm_flush_pipe(dev_priv, pipe, 3);
3527        }
3528}
3529
3530static bool skl_update_pipe_wm(struct drm_crtc *crtc,
3531                               struct skl_ddb_allocation *ddb, /* out */
3532                               struct skl_pipe_wm *pipe_wm /* out */)
3533{
3534        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3535        struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3536
3537        skl_allocate_pipe_ddb(cstate, ddb);
3538        skl_compute_pipe_wm(cstate, ddb, pipe_wm);
3539
3540        if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
3541                return false;
3542
3543        intel_crtc->wm.active.skl = *pipe_wm;
3544
3545        return true;
3546}
3547
3548static void skl_update_other_pipe_wm(struct drm_device *dev,
3549                                     struct drm_crtc *crtc,
3550                                     struct skl_wm_values *r)
3551{
3552        struct intel_crtc *intel_crtc;
3553        struct intel_crtc *this_crtc = to_intel_crtc(crtc);
3554
3555        /*
3556         * If the WM update hasn't changed the allocation for this_crtc (the
3557         * crtc we are currently computing the new WM values for), other
3558         * enabled crtcs will keep the same allocation and we don't need to
3559         * recompute anything for them.
3560         */
3561        if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
3562                return;
3563
3564        /*
3565         * Otherwise, because of this_crtc being freshly enabled/disabled, the
3566         * other active pipes need new DDB allocation and WM values.
3567         */
3568        for_each_intel_crtc(dev, intel_crtc) {
3569                struct skl_pipe_wm pipe_wm = {};
3570                bool wm_changed;
3571
3572                if (this_crtc->pipe == intel_crtc->pipe)
3573                        continue;
3574
3575                if (!intel_crtc->active)
3576                        continue;
3577
3578                wm_changed = skl_update_pipe_wm(&intel_crtc->base,
3579                                                &r->ddb, &pipe_wm);
3580
3581                /*
3582                 * If we end up re-computing the other pipe WM values, it's
3583                 * because it was really needed, so we expect the WM values to
3584                 * be different.
3585                 */
3586                WARN_ON(!wm_changed);
3587
3588                skl_compute_wm_results(dev, &pipe_wm, r, intel_crtc);
3589                r->dirty[intel_crtc->pipe] = true;
3590        }
3591}
3592
3593static void skl_clear_wm(struct skl_wm_values *watermarks, enum pipe pipe)
3594{
3595        watermarks->wm_linetime[pipe] = 0;
3596        memset(watermarks->plane[pipe], 0,
3597               sizeof(uint32_t) * 8 * I915_MAX_PLANES);
3598        memset(watermarks->plane_trans[pipe],
3599               0, sizeof(uint32_t) * I915_MAX_PLANES);
3600        watermarks->plane_trans[pipe][PLANE_CURSOR] = 0;
3601
3602        /* Clear ddb entries for pipe */
3603        memset(&watermarks->ddb.pipe[pipe], 0, sizeof(struct skl_ddb_entry));
3604        memset(&watermarks->ddb.plane[pipe], 0,
3605               sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3606        memset(&watermarks->ddb.y_plane[pipe], 0,
3607               sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3608        memset(&watermarks->ddb.plane[pipe][PLANE_CURSOR], 0,
3609               sizeof(struct skl_ddb_entry));
3610
3611}
3612
3613static void skl_update_wm(struct drm_crtc *crtc)
3614{
3615        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3616        struct drm_device *dev = crtc->dev;
3617        struct drm_i915_private *dev_priv = dev->dev_private;
3618        struct skl_wm_values *results = &dev_priv->wm.skl_results;
3619        struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3620        struct skl_pipe_wm *pipe_wm = &cstate->wm.optimal.skl;
3621
3622
3623        /* Clear all dirty flags */
3624        memset(results->dirty, 0, sizeof(bool) * I915_MAX_PIPES);
3625
3626        skl_clear_wm(results, intel_crtc->pipe);
3627
3628        if (!skl_update_pipe_wm(crtc, &results->ddb, pipe_wm))
3629                return;
3630
3631        skl_compute_wm_results(dev, pipe_wm, results, intel_crtc);
3632        results->dirty[intel_crtc->pipe] = true;
3633
3634        skl_update_other_pipe_wm(dev, crtc, results);
3635        skl_write_wm_values(dev_priv, results);
3636        skl_flush_wm_values(dev_priv, results);
3637
3638        /* store the new configuration */
3639        dev_priv->wm.skl_hw = *results;
3640}
3641
3642static void ilk_compute_wm_config(struct drm_device *dev,
3643                                  struct intel_wm_config *config)
3644{
3645        struct intel_crtc *crtc;
3646
3647        /* Compute the currently _active_ config */
3648        for_each_intel_crtc(dev, crtc) {
3649                const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
3650
3651                if (!wm->pipe_enabled)
3652                        continue;
3653
3654                config->sprites_enabled |= wm->sprites_enabled;
3655                config->sprites_scaled |= wm->sprites_scaled;
3656                config->num_pipes_active++;
3657        }
3658}
3659
3660static void ilk_program_watermarks(struct intel_crtc_state *cstate)
3661{
3662        struct drm_crtc *crtc = cstate->base.crtc;
3663        struct drm_device *dev = crtc->dev;
3664        struct drm_i915_private *dev_priv = to_i915(dev);
3665        struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3666        struct ilk_wm_maximums max;
3667        struct intel_wm_config config = {};
3668        struct ilk_wm_values results = {};
3669        enum intel_ddb_partitioning partitioning;
3670
3671        ilk_compute_wm_config(dev, &config);
3672
3673        ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
3674        ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3675
3676        /* 5/6 split only in single pipe config on IVB+ */
3677        if (INTEL_INFO(dev)->gen >= 7 &&
3678            config.num_pipes_active == 1 && config.sprites_enabled) {
3679                ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
3680                ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3681
3682                best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3683        } else {
3684                best_lp_wm = &lp_wm_1_2;
3685        }
3686
3687        partitioning = (best_lp_wm == &lp_wm_1_2) ?
3688                       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3689
3690        ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3691
3692        ilk_write_wm_values(dev_priv, &results);
3693}
3694
3695static void ilk_update_wm(struct drm_crtc *crtc)
3696{
3697        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3698        struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3699
3700        WARN_ON(cstate->base.active != intel_crtc->active);
3701
3702        /*
3703         * IVB workaround: must disable low power watermarks for at least
3704         * one frame before enabling scaling.  LP watermarks can be re-enabled
3705         * when scaling is disabled.
3706         *
3707         * WaCxSRDisabledForSpriteScaling:ivb
3708         */
3709        if (cstate->disable_lp_wm) {
3710                ilk_disable_lp_wm(crtc->dev);
3711                intel_wait_for_vblank(crtc->dev, intel_crtc->pipe);
3712        }
3713
3714        intel_crtc->wm.active.ilk = cstate->wm.optimal.ilk;
3715
3716        ilk_program_watermarks(cstate);
3717}
3718
3719static void skl_pipe_wm_active_state(uint32_t val,
3720                                     struct skl_pipe_wm *active,
3721                                     bool is_transwm,
3722                                     bool is_cursor,
3723                                     int i,
3724                                     int level)
3725{
3726        bool is_enabled = (val & PLANE_WM_EN) != 0;
3727
3728        if (!is_transwm) {
3729                if (!is_cursor) {
3730                        active->wm[level].plane_en[i] = is_enabled;
3731                        active->wm[level].plane_res_b[i] =
3732                                        val & PLANE_WM_BLOCKS_MASK;
3733                        active->wm[level].plane_res_l[i] =
3734                                        (val >> PLANE_WM_LINES_SHIFT) &
3735                                                PLANE_WM_LINES_MASK;
3736                } else {
3737                        active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
3738                        active->wm[level].plane_res_b[PLANE_CURSOR] =
3739                                        val & PLANE_WM_BLOCKS_MASK;
3740                        active->wm[level].plane_res_l[PLANE_CURSOR] =
3741                                        (val >> PLANE_WM_LINES_SHIFT) &
3742                                                PLANE_WM_LINES_MASK;
3743                }
3744        } else {
3745                if (!is_cursor) {
3746                        active->trans_wm.plane_en[i] = is_enabled;
3747                        active->trans_wm.plane_res_b[i] =
3748                                        val & PLANE_WM_BLOCKS_MASK;
3749                        active->trans_wm.plane_res_l[i] =
3750                                        (val >> PLANE_WM_LINES_SHIFT) &
3751                                                PLANE_WM_LINES_MASK;
3752                } else {
3753                        active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
3754                        active->trans_wm.plane_res_b[PLANE_CURSOR] =
3755                                        val & PLANE_WM_BLOCKS_MASK;
3756                        active->trans_wm.plane_res_l[PLANE_CURSOR] =
3757                                        (val >> PLANE_WM_LINES_SHIFT) &
3758                                                PLANE_WM_LINES_MASK;
3759                }
3760        }
3761}
3762
3763static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3764{
3765        struct drm_device *dev = crtc->dev;
3766        struct drm_i915_private *dev_priv = dev->dev_private;
3767        struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
3768        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3769        struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3770        struct skl_pipe_wm *active = &cstate->wm.optimal.skl;
3771        enum pipe pipe = intel_crtc->pipe;
3772        int level, i, max_level;
3773        uint32_t temp;
3774
3775        max_level = ilk_wm_max_level(dev);
3776
3777        hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3778
3779        for (level = 0; level <= max_level; level++) {
3780                for (i = 0; i < intel_num_planes(intel_crtc); i++)
3781                        hw->plane[pipe][i][level] =
3782                                        I915_READ(PLANE_WM(pipe, i, level));
3783                hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
3784        }
3785
3786        for (i = 0; i < intel_num_planes(intel_crtc); i++)
3787                hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
3788        hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
3789
3790        if (!intel_crtc->active)
3791                return;
3792
3793        hw->dirty[pipe] = true;
3794
3795        active->linetime = hw->wm_linetime[pipe];
3796
3797        for (level = 0; level <= max_level; level++) {
3798                for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3799                        temp = hw->plane[pipe][i][level];
3800                        skl_pipe_wm_active_state(temp, active, false,
3801                                                false, i, level);
3802                }
3803                temp = hw->plane[pipe][PLANE_CURSOR][level];
3804                skl_pipe_wm_active_state(temp, active, false, true, i, level);
3805        }
3806
3807        for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3808                temp = hw->plane_trans[pipe][i];
3809                skl_pipe_wm_active_state(temp, active, true, false, i, 0);
3810        }
3811
3812        temp = hw->plane_trans[pipe][PLANE_CURSOR];
3813        skl_pipe_wm_active_state(temp, active, true, true, i, 0);
3814
3815        intel_crtc->wm.active.skl = *active;
3816}
3817
3818void skl_wm_get_hw_state(struct drm_device *dev)
3819{
3820        struct drm_i915_private *dev_priv = dev->dev_private;
3821        struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3822        struct drm_crtc *crtc;
3823
3824        skl_ddb_get_hw_state(dev_priv, ddb);
3825        list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3826                skl_pipe_wm_get_hw_state(crtc);
3827}
3828
3829static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3830{
3831        struct drm_device *dev = crtc->dev;
3832        struct drm_i915_private *dev_priv = dev->dev_private;
3833        struct ilk_wm_values *hw = &dev_priv->wm.hw;
3834        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3835        struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3836        struct intel_pipe_wm *active = &cstate->wm.optimal.ilk;
3837        enum pipe pipe = intel_crtc->pipe;
3838        static const i915_reg_t wm0_pipe_reg[] = {
3839                [PIPE_A] = WM0_PIPEA_ILK,
3840                [PIPE_B] = WM0_PIPEB_ILK,
3841                [PIPE_C] = WM0_PIPEC_IVB,
3842        };
3843
3844        hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3845        if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3846                hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3847
3848        active->pipe_enabled = intel_crtc->active;
3849
3850        if (active->pipe_enabled) {
3851                u32 tmp = hw->wm_pipe[pipe];
3852
3853                /*
3854                 * For active pipes LP0 watermark is marked as
3855                 * enabled, and LP1+ watermaks as disabled since
3856                 * we can't really reverse compute them in case
3857                 * multiple pipes are active.
3858                 */
3859                active->wm[0].enable = true;
3860                active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
3861                active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
3862                active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
3863                active->linetime = hw->wm_linetime[pipe];
3864        } else {
3865                int level, max_level = ilk_wm_max_level(dev);
3866
3867                /*
3868                 * For inactive pipes, all watermark levels
3869                 * should be marked as enabled but zeroed,
3870                 * which is what we'd compute them to.
3871                 */
3872                for (level = 0; level <= max_level; level++)
3873                        active->wm[level].enable = true;
3874        }
3875
3876        intel_crtc->wm.active.ilk = *active;
3877}
3878
3879#define _FW_WM(value, plane) \
3880        (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
3881#define _FW_WM_VLV(value, plane) \
3882        (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
3883
3884static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
3885                               struct vlv_wm_values *wm)
3886{
3887        enum pipe pipe;
3888        uint32_t tmp;
3889
3890        for_each_pipe(dev_priv, pipe) {
3891                tmp = I915_READ(VLV_DDL(pipe));
3892
3893                wm->ddl[pipe].primary =
3894                        (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3895                wm->ddl[pipe].cursor =
3896                        (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3897                wm->ddl[pipe].sprite[0] =
3898                        (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3899                wm->ddl[pipe].sprite[1] =
3900                        (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3901        }
3902
3903        tmp = I915_READ(DSPFW1);
3904        wm->sr.plane = _FW_WM(tmp, SR);
3905        wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
3906        wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
3907        wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
3908
3909        tmp = I915_READ(DSPFW2);
3910        wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
3911        wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
3912        wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
3913
3914        tmp = I915_READ(DSPFW3);
3915        wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
3916
3917        if (IS_CHERRYVIEW(dev_priv)) {
3918                tmp = I915_READ(DSPFW7_CHV);
3919                wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
3920                wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
3921
3922                tmp = I915_READ(DSPFW8_CHV);
3923                wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
3924                wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
3925
3926                tmp = I915_READ(DSPFW9_CHV);
3927                wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
3928                wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
3929
3930                tmp = I915_READ(DSPHOWM);
3931                wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3932                wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
3933                wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
3934                wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
3935                wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3936                wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3937                wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
3938                wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
3939                wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
3940                wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
3941        } else {
3942                tmp = I915_READ(DSPFW7);
3943                wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
3944                wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
3945
3946                tmp = I915_READ(DSPHOWM);
3947                wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3948                wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3949                wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3950                wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
3951                wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
3952                wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
3953                wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
3954        }
3955}
3956
3957#undef _FW_WM
3958#undef _FW_WM_VLV
3959
3960void vlv_wm_get_hw_state(struct drm_device *dev)
3961{
3962        struct drm_i915_private *dev_priv = to_i915(dev);
3963        struct vlv_wm_values *wm = &dev_priv->wm.vlv;
3964        struct intel_plane *plane;
3965        enum pipe pipe;
3966        u32 val;
3967
3968        vlv_read_wm_values(dev_priv, wm);
3969
3970        for_each_intel_plane(dev, plane) {
3971                switch (plane->base.type) {
3972                        int sprite;
3973                case DRM_PLANE_TYPE_CURSOR:
3974                        plane->wm.fifo_size = 63;
3975                        break;
3976                case DRM_PLANE_TYPE_PRIMARY:
3977                        plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
3978                        break;
3979                case DRM_PLANE_TYPE_OVERLAY:
3980                        sprite = plane->plane;
3981                        plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
3982                        break;
3983                }
3984        }
3985
3986        wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
3987        wm->level = VLV_WM_LEVEL_PM2;
3988
3989        if (IS_CHERRYVIEW(dev_priv)) {
3990                mutex_lock(&dev_priv->rps.hw_lock);
3991
3992                val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
3993                if (val & DSP_MAXFIFO_PM5_ENABLE)
3994                        wm->level = VLV_WM_LEVEL_PM5;
3995
3996                /*
3997                 * If DDR DVFS is disabled in the BIOS, Punit
3998                 * will never ack the request. So if that happens
3999                 * assume we don't have to enable/disable DDR DVFS
4000                 * dynamically. To test that just set the REQ_ACK
4001                 * bit to poke the Punit, but don't change the
4002                 * HIGH/LOW bits so that we don't actually change
4003                 * the current state.
4004                 */
4005                val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4006                val |= FORCE_DDR_FREQ_REQ_ACK;
4007                vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
4008
4009                if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
4010                              FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
4011                        DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
4012                                      "assuming DDR DVFS is disabled\n");
4013                        dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
4014                } else {
4015                        val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4016                        if ((val & FORCE_DDR_HIGH_FREQ) == 0)
4017                                wm->level = VLV_WM_LEVEL_DDR_DVFS;
4018                }
4019
4020                mutex_unlock(&dev_priv->rps.hw_lock);
4021        }
4022
4023        for_each_pipe(dev_priv, pipe)
4024                DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4025                              pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
4026                              wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
4027
4028        DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
4029                      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
4030}
4031
4032void ilk_wm_get_hw_state(struct drm_device *dev)
4033{
4034        struct drm_i915_private *dev_priv = dev->dev_private;
4035        struct ilk_wm_values *hw = &dev_priv->wm.hw;
4036        struct drm_crtc *crtc;
4037
4038        for_each_crtc(dev, crtc)
4039                ilk_pipe_wm_get_hw_state(crtc);
4040
4041        hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
4042        hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
4043        hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
4044
4045        hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4046        if (INTEL_INFO(dev)->gen >= 7) {
4047                hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
4048                hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
4049        }
4050
4051        if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4052                hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
4053                        INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4054        else if (IS_IVYBRIDGE(dev))
4055                hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
4056                        INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4057
4058        hw->enable_fbc_wm =
4059                !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
4060}
4061
4062/**
4063 * intel_update_watermarks - update FIFO watermark values based on current modes
4064 *
4065 * Calculate watermark values for the various WM regs based on current mode
4066 * and plane configuration.
4067 *
4068 * There are several cases to deal with here:
4069 *   - normal (i.e. non-self-refresh)
4070 *   - self-refresh (SR) mode
4071 *   - lines are large relative to FIFO size (buffer can hold up to 2)
4072 *   - lines are small relative to FIFO size (buffer can hold more than 2
4073 *     lines), so need to account for TLB latency
4074 *
4075 *   The normal calculation is:
4076 *     watermark = dotclock * bytes per pixel * latency
4077 *   where latency is platform & configuration dependent (we assume pessimal
4078 *   values here).
4079 *
4080 *   The SR calculation is:
4081 *     watermark = (trunc(latency/line time)+1) * surface width *
4082 *       bytes per pixel
4083 *   where
4084 *     line time = htotal / dotclock
4085 *     surface width = hdisplay for normal plane and 64 for cursor
4086 *   and latency is assumed to be high, as above.
4087 *
4088 * The final value programmed to the register should always be rounded up,
4089 * and include an extra 2 entries to account for clock crossings.
4090 *
4091 * We don't use the sprite, so we can ignore that.  And on Crestline we have
4092 * to set the non-SR watermarks to 8.
4093 */
4094void intel_update_watermarks(struct drm_crtc *crtc)
4095{
4096        struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4097
4098        if (dev_priv->display.update_wm)
4099                dev_priv->display.update_wm(crtc);
4100}
4101
4102/*
4103 * Lock protecting IPS related data structures
4104 */
4105DEFINE_SPINLOCK(mchdev_lock);
4106
4107/* Global for IPS driver to get at the current i915 device. Protected by
4108 * mchdev_lock. */
4109static struct drm_i915_private *i915_mch_dev;
4110
4111bool ironlake_set_drps(struct drm_device *dev, u8 val)
4112{
4113        struct drm_i915_private *dev_priv = dev->dev_private;
4114        u16 rgvswctl;
4115
4116        assert_spin_locked(&mchdev_lock);
4117
4118        rgvswctl = I915_READ16(MEMSWCTL);
4119        if (rgvswctl & MEMCTL_CMD_STS) {
4120                DRM_DEBUG("gpu busy, RCS change rejected\n");
4121                return false; /* still busy with another command */
4122        }
4123
4124        rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4125                (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4126        I915_WRITE16(MEMSWCTL, rgvswctl);
4127        POSTING_READ16(MEMSWCTL);
4128
4129        rgvswctl |= MEMCTL_CMD_STS;
4130        I915_WRITE16(MEMSWCTL, rgvswctl);
4131
4132        return true;
4133}
4134
4135static void ironlake_enable_drps(struct drm_device *dev)
4136{
4137        struct drm_i915_private *dev_priv = dev->dev_private;
4138        u32 rgvmodectl;
4139        u8 fmax, fmin, fstart, vstart;
4140
4141        spin_lock_irq(&mchdev_lock);
4142
4143        rgvmodectl = I915_READ(MEMMODECTL);
4144
4145        /* Enable temp reporting */
4146        I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
4147        I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
4148
4149        /* 100ms RC evaluation intervals */
4150        I915_WRITE(RCUPEI, 100000);
4151        I915_WRITE(RCDNEI, 100000);
4152
4153        /* Set max/min thresholds to 90ms and 80ms respectively */
4154        I915_WRITE(RCBMAXAVG, 90000);
4155        I915_WRITE(RCBMINAVG, 80000);
4156
4157        I915_WRITE(MEMIHYST, 1);
4158
4159        /* Set up min, max, and cur for interrupt handling */
4160        fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4161        fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4162        fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4163                MEMMODE_FSTART_SHIFT;
4164
4165        vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4166                PXVFREQ_PX_SHIFT;
4167
4168        dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
4169        dev_priv->ips.fstart = fstart;
4170
4171        dev_priv->ips.max_delay = fstart;
4172        dev_priv->ips.min_delay = fmin;
4173        dev_priv->ips.cur_delay = fstart;
4174
4175        DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
4176                         fmax, fmin, fstart);
4177
4178        I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4179
4180        /*
4181         * Interrupts will be enabled in ironlake_irq_postinstall
4182         */
4183
4184        I915_WRITE(VIDSTART, vstart);
4185        POSTING_READ(VIDSTART);
4186
4187        rgvmodectl |= MEMMODE_SWMODE_EN;
4188        I915_WRITE(MEMMODECTL, rgvmodectl);
4189
4190        if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4191                DRM_ERROR("stuck trying to change perf mode\n");
4192        mdelay(1);
4193
4194        ironlake_set_drps(dev, fstart);
4195
4196        dev_priv->ips.last_count1 = I915_READ(DMIEC) +
4197                I915_READ(DDREC) + I915_READ(CSIEC);
4198        dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4199        dev_priv->ips.last_count2 = I915_READ(GFXEC);
4200        dev_priv->ips.last_time2 = ktime_get_raw_ns();
4201
4202        spin_unlock_irq(&mchdev_lock);
4203}
4204
4205static void ironlake_disable_drps(struct drm_device *dev)
4206{
4207        struct drm_i915_private *dev_priv = dev->dev_private;
4208        u16 rgvswctl;
4209
4210        spin_lock_irq(&mchdev_lock);
4211
4212        rgvswctl = I915_READ16(MEMSWCTL);
4213
4214        /* Ack interrupts, disable EFC interrupt */
4215        I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4216        I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4217        I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4218        I915_WRITE(DEIIR, DE_PCU_EVENT);
4219        I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4220
4221        /* Go back to the starting frequency */
4222        ironlake_set_drps(dev, dev_priv->ips.fstart);
4223        mdelay(1);
4224        rgvswctl |= MEMCTL_CMD_STS;
4225        I915_WRITE(MEMSWCTL, rgvswctl);
4226        mdelay(1);
4227
4228        spin_unlock_irq(&mchdev_lock);
4229}
4230
4231/* There's a funny hw issue where the hw returns all 0 when reading from
4232 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
4233 * ourselves, instead of doing a rmw cycle (which might result in us clearing
4234 * all limits and the gpu stuck at whatever frequency it is at atm).
4235 */
4236static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4237{
4238        u32 limits;
4239
4240        /* Only set the down limit when we've reached the lowest level to avoid
4241         * getting more interrupts, otherwise leave this clear. This prevents a
4242         * race in the hw when coming out of rc6: There's a tiny window where
4243         * the hw runs at the minimal clock before selecting the desired
4244         * frequency, if the down threshold expires in that window we will not
4245         * receive a down interrupt. */
4246        if (IS_GEN9(dev_priv->dev)) {
4247                limits = (dev_priv->rps.max_freq_softlimit) << 23;
4248                if (val <= dev_priv->rps.min_freq_softlimit)
4249                        limits |= (dev_priv->rps.min_freq_softlimit) << 14;
4250        } else {
4251                limits = dev_priv->rps.max_freq_softlimit << 24;
4252                if (val <= dev_priv->rps.min_freq_softlimit)
4253                        limits |= dev_priv->rps.min_freq_softlimit << 16;
4254        }
4255
4256        return limits;
4257}
4258
4259static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
4260{
4261        int new_power;
4262        u32 threshold_up = 0, threshold_down = 0; /* in % */
4263        u32 ei_up = 0, ei_down = 0;
4264
4265        new_power = dev_priv->rps.power;
4266        switch (dev_priv->rps.power) {
4267        case LOW_POWER:
4268                if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4269                        new_power = BETWEEN;
4270                break;
4271
4272        case BETWEEN:
4273                if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4274                        new_power = LOW_POWER;
4275                else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4276                        new_power = HIGH_POWER;
4277                break;
4278
4279        case HIGH_POWER:
4280                if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4281                        new_power = BETWEEN;
4282                break;
4283        }
4284        /* Max/min bins are special */
4285        if (val <= dev_priv->rps.min_freq_softlimit)
4286                new_power = LOW_POWER;
4287        if (val >= dev_priv->rps.max_freq_softlimit)
4288                new_power = HIGH_POWER;
4289        if (new_power == dev_priv->rps.power)
4290                return;
4291
4292        /* Note the units here are not exactly 1us, but 1280ns. */
4293        switch (new_power) {
4294        case LOW_POWER:
4295                /* Upclock if more than 95% busy over 16ms */
4296                ei_up = 16000;
4297                threshold_up = 95;
4298
4299                /* Downclock if less than 85% busy over 32ms */
4300                ei_down = 32000;
4301                threshold_down = 85;
4302                break;
4303
4304        case BETWEEN:
4305                /* Upclock if more than 90% busy over 13ms */
4306                ei_up = 13000;
4307                threshold_up = 90;
4308
4309                /* Downclock if less than 75% busy over 32ms */
4310                ei_down = 32000;
4311                threshold_down = 75;
4312                break;
4313
4314        case HIGH_POWER:
4315                /* Upclock if more than 85% busy over 10ms */
4316                ei_up = 10000;
4317                threshold_up = 85;
4318
4319                /* Downclock if less than 60% busy over 32ms */
4320                ei_down = 32000;
4321                threshold_down = 60;
4322                break;
4323        }
4324
4325        I915_WRITE(GEN6_RP_UP_EI,
4326                GT_INTERVAL_FROM_US(dev_priv, ei_up));
4327        I915_WRITE(GEN6_RP_UP_THRESHOLD,
4328                GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));
4329
4330        I915_WRITE(GEN6_RP_DOWN_EI,
4331                GT_INTERVAL_FROM_US(dev_priv, ei_down));
4332        I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4333                GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));
4334
4335         I915_WRITE(GEN6_RP_CONTROL,
4336                    GEN6_RP_MEDIA_TURBO |
4337                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
4338                    GEN6_RP_MEDIA_IS_GFX |
4339                    GEN6_RP_ENABLE |
4340                    GEN6_RP_UP_BUSY_AVG |
4341                    GEN6_RP_DOWN_IDLE_AVG);
4342
4343        dev_priv->rps.power = new_power;
4344        dev_priv->rps.up_threshold = threshold_up;
4345        dev_priv->rps.down_threshold = threshold_down;
4346        dev_priv->rps.last_adj = 0;
4347}
4348
4349static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
4350{
4351        u32 mask = 0;
4352
4353        if (val > dev_priv->rps.min_freq_softlimit)
4354                mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4355        if (val < dev_priv->rps.max_freq_softlimit)
4356                mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4357
4358        mask &= dev_priv->pm_rps_events;
4359
4360        return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4361}
4362
4363/* gen6_set_rps is called to update the frequency request, but should also be
4364 * called when the range (min_delay and max_delay) is modified so that we can
4365 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4366static void gen6_set_rps(struct drm_device *dev, u8 val)
4367{
4368        struct drm_i915_private *dev_priv = dev->dev_private;
4369
4370        /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4371        if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
4372                return;
4373
4374        WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4375        WARN_ON(val > dev_priv->rps.max_freq);
4376        WARN_ON(val < dev_priv->rps.min_freq);
4377
4378        /* min/max delay may still have been modified so be sure to
4379         * write the limits value.
4380         */
4381        if (val != dev_priv->rps.cur_freq) {
4382                gen6_set_rps_thresholds(dev_priv, val);
4383
4384                if (IS_GEN9(dev))
4385                        I915_WRITE(GEN6_RPNSWREQ,
4386                                   GEN9_FREQUENCY(val));
4387                else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4388                        I915_WRITE(GEN6_RPNSWREQ,
4389                                   HSW_FREQUENCY(val));
4390                else
4391                        I915_WRITE(GEN6_RPNSWREQ,
4392                                   GEN6_FREQUENCY(val) |
4393                                   GEN6_OFFSET(0) |
4394                                   GEN6_AGGRESSIVE_TURBO);
4395        }
4396
4397        /* Make sure we continue to get interrupts
4398         * until we hit the minimum or maximum frequencies.
4399         */
4400        I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4401        I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4402
4403        POSTING_READ(GEN6_RPNSWREQ);
4404
4405        dev_priv->rps.cur_freq = val;
4406        trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4407}
4408
4409static void valleyview_set_rps(struct drm_device *dev, u8 val)
4410{
4411        struct drm_i915_private *dev_priv = dev->dev_private;
4412
4413        WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4414        WARN_ON(val > dev_priv->rps.max_freq);
4415        WARN_ON(val < dev_priv->rps.min_freq);
4416
4417        if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
4418                      "Odd GPU freq value\n"))
4419                val &= ~1;
4420
4421        I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4422
4423        if (val != dev_priv->rps.cur_freq) {
4424                vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4425                if (!IS_CHERRYVIEW(dev_priv))
4426                        gen6_set_rps_thresholds(dev_priv, val);
4427        }
4428
4429        dev_priv->rps.cur_freq = val;
4430        trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4431}
4432
4433/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4434 *
4435 * * If Gfx is Idle, then
4436 * 1. Forcewake Media well.
4437 * 2. Request idle freq.
4438 * 3. Release Forcewake of Media well.
4439*/
4440static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
4441{
4442        u32 val = dev_priv->rps.idle_freq;
4443
4444        if (dev_priv->rps.cur_freq <= val)
4445                return;
4446
4447        /* Wake up the media well, as that takes a lot less
4448         * power than the Render well. */
4449        intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4450        valleyview_set_rps(dev_priv->dev, val);
4451        intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4452}
4453
4454void gen6_rps_busy(struct drm_i915_private *dev_priv)
4455{
4456        mutex_lock(&dev_priv->rps.hw_lock);
4457        if (dev_priv->rps.enabled) {
4458                if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
4459                        gen6_rps_reset_ei(dev_priv);
4460                I915_WRITE(GEN6_PMINTRMSK,
4461                           gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
4462        }
4463        mutex_unlock(&dev_priv->rps.hw_lock);
4464}
4465
4466void gen6_rps_idle(struct drm_i915_private *dev_priv)
4467{
4468        struct drm_device *dev = dev_priv->dev;
4469
4470        mutex_lock(&dev_priv->rps.hw_lock);
4471        if (dev_priv->rps.enabled) {
4472                if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4473                        vlv_set_rps_idle(dev_priv);
4474                else
4475                        gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4476                dev_priv->rps.last_adj = 0;
4477                I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4478        }
4479        mutex_unlock(&dev_priv->rps.hw_lock);
4480
4481        spin_lock(&dev_priv->rps.client_lock);
4482        while (!list_empty(&dev_priv->rps.clients))
4483                list_del_init(dev_priv->rps.clients.next);
4484        spin_unlock(&dev_priv->rps.client_lock);
4485}
4486
4487void gen6_rps_boost(struct drm_i915_private *dev_priv,
4488                    struct intel_rps_client *rps,
4489                    unsigned long submitted)
4490{
4491        /* This is intentionally racy! We peek at the state here, then
4492         * validate inside the RPS worker.
4493         */
4494        if (!(dev_priv->mm.busy &&
4495              dev_priv->rps.enabled &&
4496              dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
4497                return;
4498
4499        /* Force a RPS boost (and don't count it against the client) if
4500         * the GPU is severely congested.
4501         */
4502        if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4503                rps = NULL;
4504
4505        spin_lock(&dev_priv->rps.client_lock);
4506        if (rps == NULL || list_empty(&rps->link)) {
4507                spin_lock_irq(&dev_priv->irq_lock);
4508                if (dev_priv->rps.interrupts_enabled) {
4509                        dev_priv->rps.client_boost = true;
4510                        queue_work(dev_priv->wq, &dev_priv->rps.work);
4511                }
4512                spin_unlock_irq(&dev_priv->irq_lock);
4513
4514                if (rps != NULL) {
4515                        list_add(&rps->link, &dev_priv->rps.clients);
4516                        rps->boosts++;
4517                } else
4518                        dev_priv->rps.boosts++;
4519        }
4520        spin_unlock(&dev_priv->rps.client_lock);
4521}
4522
4523void intel_set_rps(struct drm_device *dev, u8 val)
4524{
4525        if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4526                valleyview_set_rps(dev, val);
4527        else
4528                gen6_set_rps(dev, val);
4529}
4530
4531static void gen9_disable_rps(struct drm_device *dev)
4532{
4533        struct drm_i915_private *dev_priv = dev->dev_private;
4534
4535        I915_WRITE(GEN6_RC_CONTROL, 0);
4536        I915_WRITE(GEN9_PG_ENABLE, 0);
4537}
4538
4539static void gen6_disable_rps(struct drm_device *dev)
4540{
4541        struct drm_i915_private *dev_priv = dev->dev_private;
4542
4543        I915_WRITE(GEN6_RC_CONTROL, 0);
4544        I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4545}
4546
4547static void cherryview_disable_rps(struct drm_device *dev)
4548{
4549        struct drm_i915_private *dev_priv = dev->dev_private;
4550
4551        I915_WRITE(GEN6_RC_CONTROL, 0);
4552}
4553
4554static void valleyview_disable_rps(struct drm_device *dev)
4555{
4556        struct drm_i915_private *dev_priv = dev->dev_private;
4557
4558        /* we're doing forcewake before Disabling RC6,
4559         * This what the BIOS expects when going into suspend */
4560        intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4561
4562        I915_WRITE(GEN6_RC_CONTROL, 0);
4563
4564        intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4565}
4566
4567static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
4568{
4569        if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
4570                if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
4571                        mode = GEN6_RC_CTL_RC6_ENABLE;
4572                else
4573                        mode = 0;
4574        }
4575        if (HAS_RC6p(dev))
4576                DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
4577                              onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
4578                              onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
4579                              onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
4580
4581        else
4582                DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
4583                              onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
4584}
4585
4586static bool bxt_check_bios_rc6_setup(const struct drm_device *dev)
4587{
4588        struct drm_i915_private *dev_priv = dev->dev_private;
4589        bool enable_rc6 = true;
4590        unsigned long rc6_ctx_base;
4591
4592        if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
4593                DRM_DEBUG_KMS("RC6 Base location not set properly.\n");
4594                enable_rc6 = false;
4595        }
4596
4597        /*
4598         * The exact context size is not known for BXT, so assume a page size
4599         * for this check.
4600         */
4601        rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
4602        if (!((rc6_ctx_base >= dev_priv->gtt.stolen_reserved_base) &&
4603              (rc6_ctx_base + PAGE_SIZE <= dev_priv->gtt.stolen_reserved_base +
4604                                        dev_priv->gtt.stolen_reserved_size))) {
4605                DRM_DEBUG_KMS("RC6 Base address not as expected.\n");
4606                enable_rc6 = false;
4607        }
4608
4609        if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
4610              ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
4611              ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
4612              ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
4613                DRM_DEBUG_KMS("Engine Idle wait time not set properly.\n");
4614                enable_rc6 = false;
4615        }
4616
4617        if (!(I915_READ(GEN6_RC_CONTROL) & (GEN6_RC_CTL_RC6_ENABLE |
4618                                            GEN6_RC_CTL_HW_ENABLE)) &&
4619            ((I915_READ(GEN6_RC_CONTROL) & GEN6_RC_CTL_HW_ENABLE) ||
4620             !(I915_READ(GEN6_RC_STATE) & RC6_STATE))) {
4621                DRM_DEBUG_KMS("HW/SW RC6 is not enabled by BIOS.\n");
4622                enable_rc6 = false;
4623        }
4624
4625        return enable_rc6;
4626}
4627
4628int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
4629{
4630        /* No RC6 before Ironlake and code is gone for ilk. */
4631        if (INTEL_INFO(dev)->gen < 6)
4632                return 0;
4633
4634        if (!enable_rc6)
4635                return 0;
4636
4637        if (IS_BROXTON(dev) && !bxt_check_bios_rc6_setup(dev)) {
4638                DRM_INFO("RC6 disabled by BIOS\n");
4639                return 0;
4640        }
4641
4642        /* Respect the kernel parameter if it is set */
4643        if (enable_rc6 >= 0) {
4644                int mask;
4645
4646                if (HAS_RC6p(dev))
4647                        mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
4648                               INTEL_RC6pp_ENABLE;
4649                else
4650                        mask = INTEL_RC6_ENABLE;
4651
4652                if ((enable_rc6 & mask) != enable_rc6)
4653                        DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
4654                                      enable_rc6 & mask, enable_rc6, mask);
4655
4656                return enable_rc6 & mask;
4657        }
4658
4659        if (IS_IVYBRIDGE(dev))
4660                return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4661
4662        return INTEL_RC6_ENABLE;
4663}
4664
4665int intel_enable_rc6(const struct drm_device *dev)
4666{
4667        return i915.enable_rc6;
4668}
4669
4670static void gen6_init_rps_frequencies(struct drm_device *dev)
4671{
4672        struct drm_i915_private *dev_priv = dev->dev_private;
4673        uint32_t rp_state_cap;
4674        u32 ddcc_status = 0;
4675        int ret;
4676
4677        /* All of these values are in units of 50MHz */
4678        dev_priv->rps.cur_freq          = 0;
4679        /* static values from HW: RP0 > RP1 > RPn (min_freq) */
4680        if (IS_BROXTON(dev)) {
4681                rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
4682                dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
4683                dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
4684                dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
4685        } else {
4686                rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4687                dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
4688                dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
4689                dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
4690        }
4691
4692        /* hw_max = RP0 until we check for overclocking */
4693        dev_priv->rps.max_freq          = dev_priv->rps.rp0_freq;
4694
4695        dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4696        if (IS_HASWELL(dev) || IS_BROADWELL(dev) ||
4697            IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4698                ret = sandybridge_pcode_read(dev_priv,
4699                                        HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
4700                                        &ddcc_status);
4701                if (0 == ret)
4702                        dev_priv->rps.efficient_freq =
4703                                clamp_t(u8,
4704                                        ((ddcc_status >> 8) & 0xff),
4705                                        dev_priv->rps.min_freq,
4706                                        dev_priv->rps.max_freq);
4707        }
4708
4709        if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4710                /* Store the frequency values in 16.66 MHZ units, which is
4711                   the natural hardware unit for SKL */
4712                dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
4713                dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
4714                dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
4715                dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
4716                dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
4717        }
4718
4719        dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
4720
4721        /* Preserve min/max settings in case of re-init */
4722        if (dev_priv->rps.max_freq_softlimit == 0)
4723                dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4724
4725        if (dev_priv->rps.min_freq_softlimit == 0) {
4726                if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4727                        dev_priv->rps.min_freq_softlimit =
4728                                max_t(int, dev_priv->rps.efficient_freq,
4729                                      intel_freq_opcode(dev_priv, 450));
4730                else
4731                        dev_priv->rps.min_freq_softlimit =
4732                                dev_priv->rps.min_freq;
4733        }
4734}
4735
4736/* See the Gen9_GT_PM_Programming_Guide doc for the below */
4737static void gen9_enable_rps(struct drm_device *dev)
4738{
4739        struct drm_i915_private *dev_priv = dev->dev_private;
4740
4741        intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4742
4743        gen6_init_rps_frequencies(dev);
4744
4745        /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4746        if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
4747                intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4748                return;
4749        }
4750
4751        /* Program defaults and thresholds for RPS*/
4752        I915_WRITE(GEN6_RC_VIDEO_FREQ,
4753                GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
4754
4755        /* 1 second timeout*/
4756        I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
4757                GT_INTERVAL_FROM_US(dev_priv, 1000000));
4758
4759        I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
4760
4761        /* Leaning on the below call to gen6_set_rps to program/setup the
4762         * Up/Down EI & threshold registers, as well as the RP_CONTROL,
4763         * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
4764        dev_priv->rps.power = HIGH_POWER; /* force a reset */
4765        gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4766
4767        intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4768}
4769
4770static void gen9_enable_rc6(struct drm_device *dev)
4771{
4772        struct drm_i915_private *dev_priv = dev->dev_private;
4773        struct intel_engine_cs *ring;
4774        uint32_t rc6_mask = 0;
4775        int unused;
4776
4777        /* 1a: Software RC state - RC0 */
4778        I915_WRITE(GEN6_RC_STATE, 0);
4779
4780        /* 1b: Get forcewake during program sequence. Although the driver
4781         * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4782        intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4783
4784        /* 2a: Disable RC states. */
4785        I915_WRITE(GEN6_RC_CONTROL, 0);
4786
4787        /* 2b: Program RC6 thresholds.*/
4788
4789        /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
4790        if (IS_SKYLAKE(dev))
4791                I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
4792        else
4793                I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
4794        I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4795        I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4796        for_each_ring(ring, dev_priv, unused)
4797                I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4798
4799        if (HAS_GUC_UCODE(dev))
4800                I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
4801
4802        I915_WRITE(GEN6_RC_SLEEP, 0);
4803
4804        /* 2c: Program Coarse Power Gating Policies. */
4805        I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
4806        I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
4807
4808        /* 3a: Enable RC6 */
4809        if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4810                rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4811        DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
4812        /* WaRsUseTimeoutMode */
4813        if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
4814            IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
4815                I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
4816                I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4817                           GEN7_RC_CTL_TO_MODE |
4818                           rc6_mask);
4819        } else {
4820                I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
4821                I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4822                           GEN6_RC_CTL_EI_MODE(1) |
4823                           rc6_mask);
4824        }
4825
4826        /*
4827         * 3b: Enable Coarse Power Gating only when RC6 is enabled.
4828         * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
4829         */
4830        if (NEEDS_WaRsDisableCoarsePowerGating(dev))
4831                I915_WRITE(GEN9_PG_ENABLE, 0);
4832        else
4833                I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4834                                (GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
4835
4836        intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4837
4838}
4839
4840static void gen8_enable_rps(struct drm_device *dev)
4841{
4842        struct drm_i915_private *dev_priv = dev->dev_private;
4843        struct intel_engine_cs *ring;
4844        uint32_t rc6_mask = 0;
4845        int unused;
4846
4847        /* 1a: Software RC state - RC0 */
4848        I915_WRITE(GEN6_RC_STATE, 0);
4849
4850        /* 1c & 1d: Get forcewake during program sequence. Although the driver
4851         * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4852        intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4853
4854        /* 2a: Disable RC states. */
4855        I915_WRITE(GEN6_RC_CONTROL, 0);
4856
4857        /* Initialize rps frequencies */
4858        gen6_init_rps_frequencies(dev);
4859
4860        /* 2b: Program RC6 thresholds.*/
4861        I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4862        I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4863        I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4864        for_each_ring(ring, dev_priv, unused)
4865                I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4866        I915_WRITE(GEN6_RC_SLEEP, 0);
4867        if (IS_BROADWELL(dev))
4868                I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
4869        else
4870                I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4871
4872        /* 3: Enable RC6 */
4873        if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4874                rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4875        intel_print_rc6_info(dev, rc6_mask);
4876        if (IS_BROADWELL(dev))
4877                I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4878                                GEN7_RC_CTL_TO_MODE |
4879                                rc6_mask);
4880        else
4881                I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4882                                GEN6_RC_CTL_EI_MODE(1) |
4883                                rc6_mask);
4884
4885        /* 4 Program defaults and thresholds for RPS*/
4886        I915_WRITE(GEN6_RPNSWREQ,
4887                   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4888        I915_WRITE(GEN6_RC_VIDEO_FREQ,
4889                   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4890        /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
4891        I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
4892
4893        /* Docs recommend 900MHz, and 300 MHz respectively */
4894        I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
4895                   dev_priv->rps.max_freq_softlimit << 24 |
4896                   dev_priv->rps.min_freq_softlimit << 16);
4897
4898        I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
4899        I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
4900        I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
4901        I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
4902
4903        I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4904
4905        /* 5: Enable RPS */
4906        I915_WRITE(GEN6_RP_CONTROL,
4907                   GEN6_RP_MEDIA_TURBO |
4908                   GEN6_RP_MEDIA_HW_NORMAL_MODE |
4909                   GEN6_RP_MEDIA_IS_GFX |
4910                   GEN6_RP_ENABLE |
4911                   GEN6_RP_UP_BUSY_AVG |
4912                   GEN6_RP_DOWN_IDLE_AVG);
4913
4914        /* 6: Ring frequency + overclocking (our driver does this later */
4915
4916        dev_priv->rps.power = HIGH_POWER; /* force a reset */
4917        gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4918
4919        intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4920}
4921
4922static void gen6_enable_rps(struct drm_device *dev)
4923{
4924        struct drm_i915_private *dev_priv = dev->dev_private;
4925        struct intel_engine_cs *ring;
4926        u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
4927        u32 gtfifodbg;
4928        int rc6_mode;
4929        int i, ret;
4930
4931        WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4932
4933        /* Here begins a magic sequence of register writes to enable
4934         * auto-downclocking.
4935         *
4936         * Perhaps there might be some value in exposing these to
4937         * userspace...
4938         */
4939        I915_WRITE(GEN6_RC_STATE, 0);
4940
4941        /* Clear the DBG now so we don't confuse earlier errors */
4942        if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4943                DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
4944                I915_WRITE(GTFIFODBG, gtfifodbg);
4945        }
4946
4947        intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4948
4949        /* Initialize rps frequencies */
4950        gen6_init_rps_frequencies(dev);
4951
4952        /* disable the counters and set deterministic thresholds */
4953        I915_WRITE(GEN6_RC_CONTROL, 0);
4954
4955        I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
4956        I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
4957        I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
4958        I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4959        I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4960
4961        for_each_ring(ring, dev_priv, i)
4962                I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4963
4964        I915_WRITE(GEN6_RC_SLEEP, 0);
4965        I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
4966        if (IS_IVYBRIDGE(dev))
4967                I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
4968        else
4969                I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
4970        I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
4971        I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
4972
4973        /* Check if we are enabling RC6 */
4974        rc6_mode = intel_enable_rc6(dev_priv->dev);
4975        if (rc6_mode & INTEL_RC6_ENABLE)
4976                rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
4977
4978        /* We don't use those on Haswell */
4979        if (!IS_HASWELL(dev)) {
4980                if (rc6_mode & INTEL_RC6p_ENABLE)
4981                        rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
4982
4983                if (rc6_mode & INTEL_RC6pp_ENABLE)
4984                        rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
4985        }
4986
4987        intel_print_rc6_info(dev, rc6_mask);
4988
4989        I915_WRITE(GEN6_RC_CONTROL,
4990                   rc6_mask |
4991                   GEN6_RC_CTL_EI_MODE(1) |
4992                   GEN6_RC_CTL_HW_ENABLE);
4993
4994        /* Power down if completely idle for over 50ms */
4995        I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
4996        I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4997
4998        ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
4999        if (ret)
5000                DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
5001
5002        ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
5003        if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
5004                DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
5005                                 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
5006                                 (pcu_mbox & 0xff) * 50);
5007                dev_priv->rps.max_freq = pcu_mbox & 0xff;
5008        }
5009
5010        dev_priv->rps.power = HIGH_POWER; /* force a reset */
5011        gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
5012
5013        rc6vids = 0;
5014        ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5015        if (IS_GEN6(dev) && ret) {
5016                DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5017        } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5018                DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
5019                          GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
5020                rc6vids &= 0xffff00;
5021                rc6vids |= GEN6_ENCODE_RC6_VID(450);
5022                ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
5023                if (ret)
5024                        DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
5025        }
5026
5027        intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5028}
5029
5030static void __gen6_update_ring_freq(struct drm_device *dev)
5031{
5032        struct drm_i915_private *dev_priv = dev->dev_private;
5033        int min_freq = 15;
5034        unsigned int gpu_freq;
5035        unsigned int max_ia_freq, min_ring_freq;
5036        unsigned int max_gpu_freq, min_gpu_freq;
5037        int scaling_factor = 180;
5038        struct cpufreq_policy *policy;
5039
5040        WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5041
5042        policy = cpufreq_cpu_get(0);
5043        if (policy) {
5044                max_ia_freq = policy->cpuinfo.max_freq;
5045                cpufreq_cpu_put(policy);
5046        } else {
5047                /*
5048                 * Default to measured freq if none found, PCU will ensure we
5049                 * don't go over
5050                 */
5051                max_ia_freq = tsc_khz;
5052        }
5053
5054        /* Convert from kHz to MHz */
5055        max_ia_freq /= 1000;
5056
5057        min_ring_freq = I915_READ(DCLK) & 0xf;
5058        /* convert DDR frequency from units of 266.6MHz to bandwidth */
5059        min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5060
5061        if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5062                /* Convert GT frequency to 50 HZ units */
5063                min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
5064                max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
5065        } else {
5066                min_gpu_freq = dev_priv->rps.min_freq;
5067                max_gpu_freq = dev_priv->rps.max_freq;
5068        }
5069
5070        /*
5071         * For each potential GPU frequency, load a ring frequency we'd like
5072         * to use for memory access.  We do this by specifying the IA frequency
5073         * the PCU should use as a reference to determine the ring frequency.
5074         */
5075        for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
5076                int diff = max_gpu_freq - gpu_freq;
5077                unsigned int ia_freq = 0, ring_freq = 0;
5078
5079                if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5080                        /*
5081                         * ring_freq = 2 * GT. ring_freq is in 100MHz units
5082                         * No floor required for ring frequency on SKL.
5083                         */
5084                        ring_freq = gpu_freq;
5085                } else if (INTEL_INFO(dev)->gen >= 8) {
5086                        /* max(2 * GT, DDR). NB: GT is 50MHz units */
5087                        ring_freq = max(min_ring_freq, gpu_freq);
5088                } else if (IS_HASWELL(dev)) {
5089                        ring_freq = mult_frac(gpu_freq, 5, 4);
5090                        ring_freq = max(min_ring_freq, ring_freq);
5091                        /* leave ia_freq as the default, chosen by cpufreq */
5092                } else {
5093                        /* On older processors, there is no separate ring
5094                         * clock domain, so in order to boost the bandwidth
5095                         * of the ring, we need to upclock the CPU (ia_freq).
5096                         *
5097                         * For GPU frequencies less than 750MHz,
5098                         * just use the lowest ring freq.
5099                         */
5100                        if (gpu_freq < min_freq)
5101                                ia_freq = 800;
5102                        else
5103                                ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
5104                        ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
5105                }
5106
5107                sandybridge_pcode_write(dev_priv,
5108                                        GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5109                                        ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
5110                                        ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
5111                                        gpu_freq);
5112        }
5113}
5114
5115void gen6_update_ring_freq(struct drm_device *dev)
5116{
5117        struct drm_i915_private *dev_priv = dev->dev_private;
5118
5119        if (!HAS_CORE_RING_FREQ(dev))
5120                return;
5121
5122        mutex_lock(&dev_priv->rps.hw_lock);
5123        __gen6_update_ring_freq(dev);
5124        mutex_unlock(&dev_priv->rps.hw_lock);
5125}
5126
5127static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5128{
5129        struct drm_device *dev = dev_priv->dev;
5130        u32 val, rp0;
5131
5132        val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5133
5134        switch (INTEL_INFO(dev)->eu_total) {
5135        case 8:
5136                /* (2 * 4) config */
5137                rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
5138                break;
5139        case 12:
5140                /* (2 * 6) config */
5141                rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
5142                break;
5143        case 16:
5144                /* (2 * 8) config */
5145        default:
5146                /* Setting (2 * 8) Min RP0 for any other combination */
5147                rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
5148                break;
5149        }
5150
5151        rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
5152
5153        return rp0;
5154}
5155
5156static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5157{
5158        u32 val, rpe;
5159
5160        val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
5161        rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
5162
5163        return rpe;
5164}
5165
5166static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
5167{
5168        u32 val, rp1;
5169
5170        val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5171        rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
5172
5173        return rp1;
5174}
5175
5176static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
5177{
5178        u32 val, rp1;
5179
5180        val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5181
5182        rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
5183
5184        return rp1;
5185}
5186
5187static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5188{
5189        u32 val, rp0;
5190
5191        val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5192
5193        rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
5194        /* Clamp to max */
5195        rp0 = min_t(u32, rp0, 0xea);
5196
5197        return rp0;
5198}
5199
5200static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5201{
5202        u32 val, rpe;
5203
5204        val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5205        rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5206        val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5207        rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
5208
5209        return rpe;
5210}
5211
5212static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5213{
5214        u32 val;
5215
5216        val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5217        /*
5218         * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
5219         * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
5220         * a BYT-M B0 the above register contains 0xbf. Moreover when setting
5221         * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
5222         * to make sure it matches what Punit accepts.
5223         */
5224        return max_t(u32, val, 0xc0);
5225}
5226
5227/* Check that the pctx buffer wasn't move under us. */
5228static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
5229{
5230        unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5231
5232        WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
5233                             dev_priv->vlv_pctx->stolen->start);
5234}
5235
5236
5237/* Check that the pcbr address is not empty. */
5238static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
5239{
5240        unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5241
5242        WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
5243}
5244
5245static void cherryview_setup_pctx(struct drm_device *dev)
5246{
5247        struct drm_i915_private *dev_priv = dev->dev_private;
5248        unsigned long pctx_paddr, paddr;
5249        struct i915_gtt *gtt = &dev_priv->gtt;
5250        u32 pcbr;
5251        int pctx_size = 32*1024;
5252
5253        pcbr = I915_READ(VLV_PCBR);
5254        if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5255                DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5256                paddr = (dev_priv->mm.stolen_base +
5257                         (gtt->stolen_size - pctx_size));
5258
5259                pctx_paddr = (paddr & (~4095));
5260                I915_WRITE(VLV_PCBR, pctx_paddr);
5261        }
5262
5263        DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5264}
5265
5266static void valleyview_setup_pctx(struct drm_device *dev)
5267{
5268        struct drm_i915_private *dev_priv = dev->dev_private;
5269        struct drm_i915_gem_object *pctx;
5270        unsigned long pctx_paddr;
5271        u32 pcbr;
5272        int pctx_size = 24*1024;
5273
5274        mutex_lock(&dev->struct_mutex);
5275
5276        pcbr = I915_READ(VLV_PCBR);
5277        if (pcbr) {
5278                /* BIOS set it up already, grab the pre-alloc'd space */
5279                int pcbr_offset;
5280
5281                pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5282                pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
5283                                                                      pcbr_offset,
5284                                                                      I915_GTT_OFFSET_NONE,
5285                                                                      pctx_size);
5286                goto out;
5287        }
5288
5289        DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5290
5291        /*
5292         * From the Gunit register HAS:
5293         * The Gfx driver is expected to program this register and ensure
5294         * proper allocation within Gfx stolen memory.  For example, this
5295         * register should be programmed such than the PCBR range does not
5296         * overlap with other ranges, such as the frame buffer, protected
5297         * memory, or any other relevant ranges.
5298         */
5299        pctx = i915_gem_object_create_stolen(dev, pctx_size);
5300        if (!pctx) {
5301                DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5302                goto out;
5303        }
5304
5305        pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
5306        I915_WRITE(VLV_PCBR, pctx_paddr);
5307
5308out:
5309        DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5310        dev_priv->vlv_pctx = pctx;
5311        mutex_unlock(&dev->struct_mutex);
5312}
5313
5314static void valleyview_cleanup_pctx(struct drm_device *dev)
5315{
5316        struct drm_i915_private *dev_priv = dev->dev_private;
5317
5318        if (WARN_ON(!dev_priv->vlv_pctx))
5319                return;
5320
5321        drm_gem_object_unreference_unlocked(&dev_priv->vlv_pctx->base);
5322        dev_priv->vlv_pctx = NULL;
5323}
5324
5325static void valleyview_init_gt_powersave(struct drm_device *dev)
5326{
5327        struct drm_i915_private *dev_priv = dev->dev_private;
5328        u32 val;
5329
5330        valleyview_setup_pctx(dev);
5331
5332        mutex_lock(&dev_priv->rps.hw_lock);
5333
5334        val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5335        switch ((val >> 6) & 3) {
5336        case 0:
5337        case 1:
5338                dev_priv->mem_freq = 800;
5339                break;
5340        case 2:
5341                dev_priv->mem_freq = 1066;
5342                break;
5343        case 3:
5344                dev_priv->mem_freq = 1333;
5345                break;
5346        }
5347        DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5348
5349        dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
5350        dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5351        DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5352                         intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5353                         dev_priv->rps.max_freq);
5354
5355        dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
5356        DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5357                         intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5358                         dev_priv->rps.efficient_freq);
5359
5360        dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
5361        DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5362                         intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5363                         dev_priv->rps.rp1_freq);
5364
5365        dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
5366        DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5367                         intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5368                         dev_priv->rps.min_freq);
5369
5370        dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5371
5372        /* Preserve min/max settings in case of re-init */
5373        if (dev_priv->rps.max_freq_softlimit == 0)
5374                dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5375
5376        if (dev_priv->rps.min_freq_softlimit == 0)
5377                dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5378
5379        mutex_unlock(&dev_priv->rps.hw_lock);
5380}
5381
5382static void cherryview_init_gt_powersave(struct drm_device *dev)
5383{
5384        struct drm_i915_private *dev_priv = dev->dev_private;
5385        u32 val;
5386
5387        cherryview_setup_pctx(dev);
5388
5389        mutex_lock(&dev_priv->rps.hw_lock);
5390
5391        mutex_lock(&dev_priv->sb_lock);
5392        val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
5393        mutex_unlock(&dev_priv->sb_lock);
5394
5395        switch ((val >> 2) & 0x7) {
5396        case 3:
5397                dev_priv->mem_freq = 2000;
5398                break;
5399        default:
5400                dev_priv->mem_freq = 1600;
5401                break;
5402        }
5403        DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5404
5405        dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
5406        dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5407        DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5408                         intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5409                         dev_priv->rps.max_freq);
5410
5411        dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
5412        DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5413                         intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5414                         dev_priv->rps.efficient_freq);
5415
5416        dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
5417        DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5418                         intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5419                         dev_priv->rps.rp1_freq);
5420
5421        /* PUnit validated range is only [RPe, RP0] */
5422        dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5423        DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5424                         intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5425                         dev_priv->rps.min_freq);
5426
5427        WARN_ONCE((dev_priv->rps.max_freq |
5428                   dev_priv->rps.efficient_freq |
5429                   dev_priv->rps.rp1_freq |
5430                   dev_priv->rps.min_freq) & 1,
5431                  "Odd GPU freq values\n");
5432
5433        dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5434
5435        /* Preserve min/max settings in case of re-init */
5436        if (dev_priv->rps.max_freq_softlimit == 0)
5437                dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5438
5439        if (dev_priv->rps.min_freq_softlimit == 0)
5440                dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5441
5442        mutex_unlock(&dev_priv->rps.hw_lock);
5443}
5444
5445static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
5446{
5447        valleyview_cleanup_pctx(dev);
5448}
5449
5450static void cherryview_enable_rps(struct drm_device *dev)
5451{
5452        struct drm_i915_private *dev_priv = dev->dev_private;
5453        struct intel_engine_cs *ring;
5454        u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5455        int i;
5456
5457        WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5458
5459        gtfifodbg = I915_READ(GTFIFODBG);
5460        if (gtfifodbg) {
5461                DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5462                                 gtfifodbg);
5463                I915_WRITE(GTFIFODBG, gtfifodbg);
5464        }
5465
5466        cherryview_check_pctx(dev_priv);
5467
5468        /* 1a & 1b: Get forcewake during program sequence. Although the driver
5469         * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5470        intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5471
5472        /*  Disable RC states. */
5473        I915_WRITE(GEN6_RC_CONTROL, 0);
5474
5475        /* 2a: Program RC6 thresholds.*/
5476        I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5477        I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5478        I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5479
5480        for_each_ring(ring, dev_priv, i)
5481                I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5482        I915_WRITE(GEN6_RC_SLEEP, 0);
5483
5484        /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
5485        I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5486
5487        /* allows RC6 residency counter to work */
5488        I915_WRITE(VLV_COUNTER_CONTROL,
5489                   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
5490                                      VLV_MEDIA_RC6_COUNT_EN |
5491                                      VLV_RENDER_RC6_COUNT_EN));
5492
5493        /* For now we assume BIOS is allocating and populating the PCBR  */
5494        pcbr = I915_READ(VLV_PCBR);
5495
5496        /* 3: Enable RC6 */
5497        if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
5498                                                (pcbr >> VLV_PCBR_ADDR_SHIFT))
5499                rc6_mode = GEN7_RC_CTL_TO_MODE;
5500
5501        I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5502
5503        /* 4 Program defaults and thresholds for RPS*/
5504        I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5505        I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5506        I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5507        I915_WRITE(GEN6_RP_UP_EI, 66000);
5508        I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5509
5510        I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5511
5512        /* 5: Enable RPS */
5513        I915_WRITE(GEN6_RP_CONTROL,
5514                   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5515                   GEN6_RP_MEDIA_IS_GFX |
5516                   GEN6_RP_ENABLE |
5517                   GEN6_RP_UP_BUSY_AVG |
5518                   GEN6_RP_DOWN_IDLE_AVG);
5519
5520        /* Setting Fixed Bias */
5521        val = VLV_OVERRIDE_EN |
5522                  VLV_SOC_TDP_EN |
5523                  CHV_BIAS_CPU_50_SOC_50;
5524        vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5525
5526        val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5527
5528        /* RPS code assumes GPLL is used */
5529        WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5530
5531        DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5532        DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5533
5534        dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5535        DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5536                         intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5537                         dev_priv->rps.cur_freq);
5538
5539        DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5540                         intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5541                         dev_priv->rps.efficient_freq);
5542
5543        valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5544
5545        intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5546}
5547
5548static void valleyview_enable_rps(struct drm_device *dev)
5549{
5550        struct drm_i915_private *dev_priv = dev->dev_private;
5551        struct intel_engine_cs *ring;
5552        u32 gtfifodbg, val, rc6_mode = 0;
5553        int i;
5554
5555        WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5556
5557        valleyview_check_pctx(dev_priv);
5558
5559        if ((gtfifodbg = I915_READ(GTFIFODBG))) {
5560                DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5561                                 gtfifodbg);
5562                I915_WRITE(GTFIFODBG, gtfifodbg);
5563        }
5564
5565        /* If VLV, Forcewake all wells, else re-direct to regular path */
5566        intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5567
5568        /*  Disable RC states. */
5569        I915_WRITE(GEN6_RC_CONTROL, 0);
5570
5571        I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5572        I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5573        I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5574        I915_WRITE(GEN6_RP_UP_EI, 66000);
5575        I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5576
5577        I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5578
5579        I915_WRITE(GEN6_RP_CONTROL,
5580                   GEN6_RP_MEDIA_TURBO |
5581                   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5582                   GEN6_RP_MEDIA_IS_GFX |
5583                   GEN6_RP_ENABLE |
5584                   GEN6_RP_UP_BUSY_AVG |
5585                   GEN6_RP_DOWN_IDLE_CONT);
5586
5587        I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
5588        I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5589        I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5590
5591        for_each_ring(ring, dev_priv, i)
5592                I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5593
5594        I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5595
5596        /* allows RC6 residency counter to work */
5597        I915_WRITE(VLV_COUNTER_CONTROL,
5598                   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
5599                                      VLV_RENDER_RC0_COUNT_EN |
5600                                      VLV_MEDIA_RC6_COUNT_EN |
5601                                      VLV_RENDER_RC6_COUNT_EN));
5602
5603        if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
5604                rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
5605
5606        intel_print_rc6_info(dev, rc6_mode);
5607
5608        I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5609
5610        /* Setting Fixed Bias */
5611        val = VLV_OVERRIDE_EN |
5612                  VLV_SOC_TDP_EN |
5613                  VLV_BIAS_CPU_125_SOC_875;
5614        vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5615
5616        val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5617
5618        /* RPS code assumes GPLL is used */
5619        WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5620
5621        DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5622        DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5623
5624        dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5625        DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5626                         intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5627                         dev_priv->rps.cur_freq);
5628
5629        DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5630                         intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5631                         dev_priv->rps.efficient_freq);
5632
5633        valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5634
5635        intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5636}
5637
5638static unsigned long intel_pxfreq(u32 vidfreq)
5639{
5640        unsigned long freq;
5641        int div = (vidfreq & 0x3f0000) >> 16;
5642        int post = (vidfreq & 0x3000) >> 12;
5643        int pre = (vidfreq & 0x7);
5644
5645        if (!pre)
5646                return 0;
5647
5648        freq = ((div * 133333) / ((1<<post) * pre));
5649
5650        return freq;
5651}
5652
5653static const struct cparams {
5654        u16 i;
5655        u16 t;
5656        u16 m;
5657        u16 c;
5658} cparams[] = {
5659        { 1, 1333, 301, 28664 },
5660        { 1, 1066, 294, 24460 },
5661        { 1, 800, 294, 25192 },
5662        { 0, 1333, 276, 27605 },
5663        { 0, 1066, 276, 27605 },
5664        { 0, 800, 231, 23784 },
5665};
5666
5667static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5668{
5669        u64 total_count, diff, ret;
5670        u32 count1, count2, count3, m = 0, c = 0;
5671        unsigned long now = jiffies_to_msecs(jiffies), diff1;
5672        int i;
5673
5674        assert_spin_locked(&mchdev_lock);
5675
5676        diff1 = now - dev_priv->ips.last_time1;
5677
5678        /* Prevent division-by-zero if we are asking too fast.
5679         * Also, we don't get interesting results if we are polling
5680         * faster than once in 10ms, so just return the saved value
5681         * in such cases.
5682         */
5683        if (diff1 <= 10)
5684                return dev_priv->ips.chipset_power;
5685
5686        count1 = I915_READ(DMIEC);
5687        count2 = I915_READ(DDREC);
5688        count3 = I915_READ(CSIEC);
5689
5690        total_count = count1 + count2 + count3;
5691
5692        /* FIXME: handle per-counter overflow */
5693        if (total_count < dev_priv->ips.last_count1) {
5694                diff = ~0UL - dev_priv->ips.last_count1;
5695                diff += total_count;
5696        } else {
5697                diff = total_count - dev_priv->ips.last_count1;
5698        }
5699
5700        for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5701                if (cparams[i].i == dev_priv->ips.c_m &&
5702                    cparams[i].t == dev_priv->ips.r_t) {
5703                        m = cparams[i].m;
5704                        c = cparams[i].c;
5705                        break;
5706                }
5707        }
5708
5709        diff = div_u64(diff, diff1);
5710        ret = ((m * diff) + c);
5711        ret = div_u64(ret, 10);
5712
5713        dev_priv->ips.last_count1 = total_count;
5714        dev_priv->ips.last_time1 = now;
5715
5716        dev_priv->ips.chipset_power = ret;
5717
5718        return ret;
5719}
5720
5721unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
5722{
5723        struct drm_device *dev = dev_priv->dev;
5724        unsigned long val;
5725
5726        if (INTEL_INFO(dev)->gen != 5)
5727                return 0;
5728
5729        spin_lock_irq(&mchdev_lock);
5730
5731        val = __i915_chipset_val(dev_priv);
5732
5733        spin_unlock_irq(&mchdev_lock);
5734
5735        return val;
5736}
5737
5738unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
5739{
5740        unsigned long m, x, b;
5741        u32 tsfs;
5742
5743        tsfs = I915_READ(TSFS);
5744
5745        m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
5746        x = I915_READ8(TR1);
5747
5748        b = tsfs & TSFS_INTR_MASK;
5749
5750        return ((m * x) / 127) - b;
5751}
5752
5753static int _pxvid_to_vd(u8 pxvid)
5754{
5755        if (pxvid == 0)
5756                return 0;
5757
5758        if (pxvid >= 8 && pxvid < 31)
5759                pxvid = 31;
5760
5761        return (pxvid + 2) * 125;
5762}
5763
5764static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5765{
5766        struct drm_device *dev = dev_priv->dev;
5767        const int vd = _pxvid_to_vd(pxvid);
5768        const int vm = vd - 1125;
5769
5770        if (INTEL_INFO(dev)->is_mobile)
5771                return vm > 0 ? vm : 0;
5772
5773        return vd;
5774}
5775
5776static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5777{
5778        u64 now, diff, diffms;
5779        u32 count;
5780
5781        assert_spin_locked(&mchdev_lock);
5782
5783        now = ktime_get_raw_ns();
5784        diffms = now - dev_priv->ips.last_time2;
5785        do_div(diffms, NSEC_PER_MSEC);
5786
5787        /* Don't divide by 0 */
5788        if (!diffms)
5789                return;
5790
5791        count = I915_READ(GFXEC);
5792
5793        if (count < dev_priv->ips.last_count2) {
5794                diff = ~0UL - dev_priv->ips.last_count2;
5795                diff += count;
5796        } else {
5797                diff = count - dev_priv->ips.last_count2;
5798        }
5799
5800        dev_priv->ips.last_count2 = count;
5801        dev_priv->ips.last_time2 = now;
5802
5803        /* More magic constants... */
5804        diff = diff * 1181;
5805        diff = div_u64(diff, diffms * 10);
5806        dev_priv->ips.gfx_power = diff;
5807}
5808
5809void i915_update_gfx_val(struct drm_i915_private *dev_priv)
5810{
5811        struct drm_device *dev = dev_priv->dev;
5812
5813        if (INTEL_INFO(dev)->gen != 5)
5814                return;
5815
5816        spin_lock_irq(&mchdev_lock);
5817
5818        __i915_update_gfx_val(dev_priv);
5819
5820        spin_unlock_irq(&mchdev_lock);
5821}
5822
5823static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5824{
5825        unsigned long t, corr, state1, corr2, state2;
5826        u32 pxvid, ext_v;
5827
5828        assert_spin_locked(&mchdev_lock);
5829
5830        pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
5831        pxvid = (pxvid >> 24) & 0x7f;
5832        ext_v = pvid_to_extvid(dev_priv, pxvid);
5833
5834        state1 = ext_v;
5835
5836        t = i915_mch_val(dev_priv);
5837
5838        /* Revel in the empirically derived constants */
5839
5840        /* Correction factor in 1/100000 units */
5841        if (t > 80)
5842                corr = ((t * 2349) + 135940);
5843        else if (t >= 50)
5844                corr = ((t * 964) + 29317);
5845        else /* < 50 */
5846                corr = ((t * 301) + 1004);
5847
5848        corr = corr * ((150142 * state1) / 10000 - 78642);
5849        corr /= 100000;
5850        corr2 = (corr * dev_priv->ips.corr);
5851
5852        state2 = (corr2 * state1) / 10000;
5853        state2 /= 100; /* convert to mW */
5854
5855        __i915_update_gfx_val(dev_priv);
5856
5857        return dev_priv->ips.gfx_power + state2;
5858}
5859
5860unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
5861{
5862        struct drm_device *dev = dev_priv->dev;
5863        unsigned long val;
5864
5865        if (INTEL_INFO(dev)->gen != 5)
5866                return 0;
5867
5868        spin_lock_irq(&mchdev_lock);
5869
5870        val = __i915_gfx_val(dev_priv);
5871
5872        spin_unlock_irq(&mchdev_lock);
5873
5874        return val;
5875}
5876
5877/**
5878 * i915_read_mch_val - return value for IPS use
5879 *
5880 * Calculate and return a value for the IPS driver to use when deciding whether
5881 * we have thermal and power headroom to increase CPU or GPU power budget.
5882 */
5883unsigned long i915_read_mch_val(void)
5884{
5885        struct drm_i915_private *dev_priv;
5886        unsigned long chipset_val, graphics_val, ret = 0;
5887
5888        spin_lock_irq(&mchdev_lock);
5889        if (!i915_mch_dev)
5890                goto out_unlock;
5891        dev_priv = i915_mch_dev;
5892
5893        chipset_val = __i915_chipset_val(dev_priv);
5894        graphics_val = __i915_gfx_val(dev_priv);
5895
5896        ret = chipset_val + graphics_val;
5897
5898out_unlock:
5899        spin_unlock_irq(&mchdev_lock);
5900
5901        return ret;
5902}
5903EXPORT_SYMBOL_GPL(i915_read_mch_val);
5904
5905/**
5906 * i915_gpu_raise - raise GPU frequency limit
5907 *
5908 * Raise the limit; IPS indicates we have thermal headroom.
5909 */
5910bool i915_gpu_raise(void)
5911{
5912        struct drm_i915_private *dev_priv;
5913        bool ret = true;
5914
5915        spin_lock_irq(&mchdev_lock);
5916        if (!i915_mch_dev) {
5917                ret = false;
5918                goto out_unlock;
5919        }
5920        dev_priv = i915_mch_dev;
5921
5922        if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
5923                dev_priv->ips.max_delay--;
5924
5925out_unlock:
5926        spin_unlock_irq(&mchdev_lock);
5927
5928        return ret;
5929}
5930EXPORT_SYMBOL_GPL(i915_gpu_raise);
5931
5932/**
5933 * i915_gpu_lower - lower GPU frequency limit
5934 *
5935 * IPS indicates we're close to a thermal limit, so throttle back the GPU
5936 * frequency maximum.
5937 */
5938bool i915_gpu_lower(void)
5939{
5940        struct drm_i915_private *dev_priv;
5941        bool ret = true;
5942
5943        spin_lock_irq(&mchdev_lock);
5944        if (!i915_mch_dev) {
5945                ret = false;
5946                goto out_unlock;
5947        }
5948        dev_priv = i915_mch_dev;
5949
5950        if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
5951                dev_priv->ips.max_delay++;
5952
5953out_unlock:
5954        spin_unlock_irq(&mchdev_lock);
5955
5956        return ret;
5957}
5958EXPORT_SYMBOL_GPL(i915_gpu_lower);
5959
5960/**
5961 * i915_gpu_busy - indicate GPU business to IPS
5962 *
5963 * Tell the IPS driver whether or not the GPU is busy.
5964 */
5965bool i915_gpu_busy(void)
5966{
5967        struct drm_i915_private *dev_priv;
5968        struct intel_engine_cs *ring;
5969        bool ret = false;
5970        int i;
5971
5972        spin_lock_irq(&mchdev_lock);
5973        if (!i915_mch_dev)
5974                goto out_unlock;
5975        dev_priv = i915_mch_dev;
5976
5977        for_each_ring(ring, dev_priv, i)
5978                ret |= !list_empty(&ring->request_list);
5979
5980out_unlock:
5981        spin_unlock_irq(&mchdev_lock);
5982
5983        return ret;
5984}
5985EXPORT_SYMBOL_GPL(i915_gpu_busy);
5986
5987/**
5988 * i915_gpu_turbo_disable - disable graphics turbo
5989 *
5990 * Disable graphics turbo by resetting the max frequency and setting the
5991 * current frequency to the default.
5992 */
5993bool i915_gpu_turbo_disable(void)
5994{
5995        struct drm_i915_private *dev_priv;
5996        bool ret = true;
5997
5998        spin_lock_irq(&mchdev_lock);
5999        if (!i915_mch_dev) {
6000                ret = false;
6001                goto out_unlock;
6002        }
6003        dev_priv = i915_mch_dev;
6004
6005        dev_priv->ips.max_delay = dev_priv->ips.fstart;
6006
6007        if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
6008                ret = false;
6009
6010out_unlock:
6011        spin_unlock_irq(&mchdev_lock);
6012
6013        return ret;
6014}
6015EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
6016
6017/**
6018 * Tells the intel_ips driver that the i915 driver is now loaded, if
6019 * IPS got loaded first.
6020 *
6021 * This awkward dance is so that neither module has to depend on the
6022 * other in order for IPS to do the appropriate communication of
6023 * GPU turbo limits to i915.
6024 */
6025static void
6026ips_ping_for_i915_load(void)
6027{
6028        void (*link)(void);
6029
6030        link = symbol_get(ips_link_to_i915_driver);
6031        if (link) {
6032                link();
6033                symbol_put(ips_link_to_i915_driver);
6034        }
6035}
6036
6037void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
6038{
6039        /* We only register the i915 ips part with intel-ips once everything is
6040         * set up, to avoid intel-ips sneaking in and reading bogus values. */
6041        spin_lock_irq(&mchdev_lock);
6042        i915_mch_dev = dev_priv;
6043        spin_unlock_irq(&mchdev_lock);
6044
6045        ips_ping_for_i915_load();
6046}
6047
6048void intel_gpu_ips_teardown(void)
6049{
6050        spin_lock_irq(&mchdev_lock);
6051        i915_mch_dev = NULL;
6052        spin_unlock_irq(&mchdev_lock);
6053}
6054
6055static void intel_init_emon(struct drm_device *dev)
6056{
6057        struct drm_i915_private *dev_priv = dev->dev_private;
6058        u32 lcfuse;
6059        u8 pxw[16];
6060        int i;
6061
6062        /* Disable to program */
6063        I915_WRITE(ECR, 0);
6064        POSTING_READ(ECR);
6065
6066        /* Program energy weights for various events */
6067        I915_WRITE(SDEW, 0x15040d00);
6068        I915_WRITE(CSIEW0, 0x007f0000);
6069        I915_WRITE(CSIEW1, 0x1e220004);
6070        I915_WRITE(CSIEW2, 0x04000004);
6071
6072        for (i = 0; i < 5; i++)
6073                I915_WRITE(PEW(i), 0);
6074        for (i = 0; i < 3; i++)
6075                I915_WRITE(DEW(i), 0);
6076
6077        /* Program P-state weights to account for frequency power adjustment */
6078        for (i = 0; i < 16; i++) {
6079                u32 pxvidfreq = I915_READ(PXVFREQ(i));
6080                unsigned long freq = intel_pxfreq(pxvidfreq);
6081                unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
6082                        PXVFREQ_PX_SHIFT;
6083                unsigned long val;
6084
6085                val = vid * vid;
6086                val *= (freq / 1000);
6087                val *= 255;
6088                val /= (127*127*900);
6089                if (val > 0xff)
6090                        DRM_ERROR("bad pxval: %ld\n", val);
6091                pxw[i] = val;
6092        }
6093        /* Render standby states get 0 weight */
6094        pxw[14] = 0;
6095        pxw[15] = 0;
6096
6097        for (i = 0; i < 4; i++) {
6098                u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
6099                        (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6100                I915_WRITE(PXW(i), val);
6101        }
6102
6103        /* Adjust magic regs to magic values (more experimental results) */
6104        I915_WRITE(OGW0, 0);
6105        I915_WRITE(OGW1, 0);
6106        I915_WRITE(EG0, 0x00007f00);
6107        I915_WRITE(EG1, 0x0000000e);
6108        I915_WRITE(EG2, 0x000e0000);
6109        I915_WRITE(EG3, 0x68000300);
6110        I915_WRITE(EG4, 0x42000000);
6111        I915_WRITE(EG5, 0x00140031);
6112        I915_WRITE(EG6, 0);
6113        I915_WRITE(EG7, 0);
6114
6115        for (i = 0; i < 8; i++)
6116                I915_WRITE(PXWL(i), 0);
6117
6118        /* Enable PMON + select events */
6119        I915_WRITE(ECR, 0x80000019);
6120
6121        lcfuse = I915_READ(LCFUSE02);
6122
6123        dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6124}
6125
6126void intel_init_gt_powersave(struct drm_device *dev)
6127{
6128        struct drm_i915_private *dev_priv = dev->dev_private;
6129
6130        /*
6131         * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
6132         * requirement.
6133         */
6134        if (!i915.enable_rc6) {
6135                DRM_INFO("RC6 disabled, disabling runtime PM support\n");
6136                intel_runtime_pm_get(dev_priv);
6137        }
6138
6139        if (IS_CHERRYVIEW(dev))
6140                cherryview_init_gt_powersave(dev);
6141        else if (IS_VALLEYVIEW(dev))
6142                valleyview_init_gt_powersave(dev);
6143}
6144
6145void intel_cleanup_gt_powersave(struct drm_device *dev)
6146{
6147        struct drm_i915_private *dev_priv = dev->dev_private;
6148
6149        if (IS_CHERRYVIEW(dev))
6150                return;
6151        else if (IS_VALLEYVIEW(dev))
6152                valleyview_cleanup_gt_powersave(dev);
6153
6154        if (!i915.enable_rc6)
6155                intel_runtime_pm_put(dev_priv);
6156}
6157
6158static void gen6_suspend_rps(struct drm_device *dev)
6159{
6160        struct drm_i915_private *dev_priv = dev->dev_private;
6161
6162        flush_delayed_work(&dev_priv->rps.delayed_resume_work);
6163
6164        gen6_disable_rps_interrupts(dev);
6165}
6166
6167/**
6168 * intel_suspend_gt_powersave - suspend PM work and helper threads
6169 * @dev: drm device
6170 *
6171 * We don't want to disable RC6 or other features here, we just want
6172 * to make sure any work we've queued has finished and won't bother
6173 * us while we're suspended.
6174 */
6175void intel_suspend_gt_powersave(struct drm_device *dev)
6176{
6177        struct drm_i915_private *dev_priv = dev->dev_private;
6178
6179        if (INTEL_INFO(dev)->gen < 6)
6180                return;
6181
6182        gen6_suspend_rps(dev);
6183
6184        /* Force GPU to min freq during suspend */
6185        gen6_rps_idle(dev_priv);
6186}
6187
6188void intel_disable_gt_powersave(struct drm_device *dev)
6189{
6190        struct drm_i915_private *dev_priv = dev->dev_private;
6191
6192        if (IS_IRONLAKE_M(dev)) {
6193                ironlake_disable_drps(dev);
6194        } else if (INTEL_INFO(dev)->gen >= 6) {
6195                intel_suspend_gt_powersave(dev);
6196
6197                mutex_lock(&dev_priv->rps.hw_lock);
6198                if (INTEL_INFO(dev)->gen >= 9)
6199                        gen9_disable_rps(dev);
6200                else if (IS_CHERRYVIEW(dev))
6201                        cherryview_disable_rps(dev);
6202                else if (IS_VALLEYVIEW(dev))
6203                        valleyview_disable_rps(dev);
6204                else
6205                        gen6_disable_rps(dev);
6206
6207                dev_priv->rps.enabled = false;
6208                mutex_unlock(&dev_priv->rps.hw_lock);
6209        }
6210}
6211
6212static void intel_gen6_powersave_work(struct work_struct *work)
6213{
6214        struct drm_i915_private *dev_priv =
6215                container_of(work, struct drm_i915_private,
6216                             rps.delayed_resume_work.work);
6217        struct drm_device *dev = dev_priv->dev;
6218
6219        mutex_lock(&dev_priv->rps.hw_lock);
6220
6221        gen6_reset_rps_interrupts(dev);
6222
6223        if (IS_CHERRYVIEW(dev)) {
6224                cherryview_enable_rps(dev);
6225        } else if (IS_VALLEYVIEW(dev)) {
6226                valleyview_enable_rps(dev);
6227        } else if (INTEL_INFO(dev)->gen >= 9) {
6228                gen9_enable_rc6(dev);
6229                gen9_enable_rps(dev);
6230                if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
6231                        __gen6_update_ring_freq(dev);
6232        } else if (IS_BROADWELL(dev)) {
6233                gen8_enable_rps(dev);
6234                __gen6_update_ring_freq(dev);
6235        } else {
6236                gen6_enable_rps(dev);
6237                __gen6_update_ring_freq(dev);
6238        }
6239
6240        WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
6241        WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
6242
6243        WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
6244        WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
6245
6246        dev_priv->rps.enabled = true;
6247
6248        gen6_enable_rps_interrupts(dev);
6249
6250        mutex_unlock(&dev_priv->rps.hw_lock);
6251
6252        intel_runtime_pm_put(dev_priv);
6253}
6254
6255void intel_enable_gt_powersave(struct drm_device *dev)
6256{
6257        struct drm_i915_private *dev_priv = dev->dev_private;
6258
6259        /* Powersaving is controlled by the host when inside a VM */
6260        if (intel_vgpu_active(dev))
6261                return;
6262
6263        if (IS_IRONLAKE_M(dev)) {
6264                ironlake_enable_drps(dev);
6265                mutex_lock(&dev->struct_mutex);
6266                intel_init_emon(dev);
6267                mutex_unlock(&dev->struct_mutex);
6268        } else if (INTEL_INFO(dev)->gen >= 6) {
6269                /*
6270                 * PCU communication is slow and this doesn't need to be
6271                 * done at any specific time, so do this out of our fast path
6272                 * to make resume and init faster.
6273                 *
6274                 * We depend on the HW RC6 power context save/restore
6275                 * mechanism when entering D3 through runtime PM suspend. So
6276                 * disable RPM until RPS/RC6 is properly setup. We can only
6277                 * get here via the driver load/system resume/runtime resume
6278                 * paths, so the _noresume version is enough (and in case of
6279                 * runtime resume it's necessary).
6280                 */
6281                if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
6282                                           round_jiffies_up_relative(HZ)))
6283                        intel_runtime_pm_get_noresume(dev_priv);
6284        }
6285}
6286
6287void intel_reset_gt_powersave(struct drm_device *dev)
6288{
6289        struct drm_i915_private *dev_priv = dev->dev_private;
6290
6291        if (INTEL_INFO(dev)->gen < 6)
6292                return;
6293
6294        gen6_suspend_rps(dev);
6295        dev_priv->rps.enabled = false;
6296}
6297
6298static void ibx_init_clock_gating(struct drm_device *dev)
6299{
6300        struct drm_i915_private *dev_priv = dev->dev_private;
6301
6302        /*
6303         * On Ibex Peak and Cougar Point, we need to disable clock
6304         * gating for the panel power sequencer or it will fail to
6305         * start up when no ports are active.
6306         */
6307        I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6308}
6309
6310static void g4x_disable_trickle_feed(struct drm_device *dev)
6311{
6312        struct drm_i915_private *dev_priv = dev->dev_private;
6313        enum pipe pipe;
6314
6315        for_each_pipe(dev_priv, pipe) {
6316                I915_WRITE(DSPCNTR(pipe),
6317                           I915_READ(DSPCNTR(pipe)) |
6318                           DISPPLANE_TRICKLE_FEED_DISABLE);
6319
6320                I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6321                POSTING_READ(DSPSURF(pipe));
6322        }
6323}
6324
6325static void ilk_init_lp_watermarks(struct drm_device *dev)
6326{
6327        struct drm_i915_private *dev_priv = dev->dev_private;
6328
6329        I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6330        I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6331        I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6332
6333        /*
6334         * Don't touch WM1S_LP_EN here.
6335         * Doing so could cause underruns.
6336         */
6337}
6338
6339static void ironlake_init_clock_gating(struct drm_device *dev)
6340{
6341        struct drm_i915_private *dev_priv = dev->dev_private;
6342        uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6343
6344        /*
6345         * Required for FBC
6346         * WaFbcDisableDpfcClockGating:ilk
6347         */
6348        dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6349                   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6350                   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6351
6352        I915_WRITE(PCH_3DCGDIS0,
6353                   MARIUNIT_CLOCK_GATE_DISABLE |
6354                   SVSMUNIT_CLOCK_GATE_DISABLE);
6355        I915_WRITE(PCH_3DCGDIS1,
6356                   VFMUNIT_CLOCK_GATE_DISABLE);
6357
6358        /*
6359         * According to the spec the following bits should be set in
6360         * order to enable memory self-refresh
6361         * The bit 22/21 of 0x42004
6362         * The bit 5 of 0x42020
6363         * The bit 15 of 0x45000
6364         */
6365        I915_WRITE(ILK_DISPLAY_CHICKEN2,
6366                   (I915_READ(ILK_DISPLAY_CHICKEN2) |
6367                    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6368        dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6369        I915_WRITE(DISP_ARB_CTL,
6370                   (I915_READ(DISP_ARB_CTL) |
6371                    DISP_FBC_WM_DIS));
6372
6373        ilk_init_lp_watermarks(dev);
6374
6375        /*
6376         * Based on the document from hardware guys the following bits
6377         * should be set unconditionally in order to enable FBC.
6378         * The bit 22 of 0x42000
6379         * The bit 22 of 0x42004
6380         * The bit 7,8,9 of 0x42020.
6381         */
6382        if (IS_IRONLAKE_M(dev)) {
6383                /* WaFbcAsynchFlipDisableFbcQueue:ilk */
6384                I915_WRITE(ILK_DISPLAY_CHICKEN1,
6385                           I915_READ(ILK_DISPLAY_CHICKEN1) |
6386                           ILK_FBCQ_DIS);
6387                I915_WRITE(ILK_DISPLAY_CHICKEN2,
6388                           I915_READ(ILK_DISPLAY_CHICKEN2) |
6389                           ILK_DPARB_GATE);
6390        }
6391
6392        I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6393
6394        I915_WRITE(ILK_DISPLAY_CHICKEN2,
6395                   I915_READ(ILK_DISPLAY_CHICKEN2) |
6396                   ILK_ELPIN_409_SELECT);
6397        I915_WRITE(_3D_CHICKEN2,
6398                   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6399                   _3D_CHICKEN2_WM_READ_PIPELINED);
6400
6401        /* WaDisableRenderCachePipelinedFlush:ilk */
6402        I915_WRITE(CACHE_MODE_0,
6403                   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6404
6405        /* WaDisable_RenderCache_OperationalFlush:ilk */
6406        I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6407
6408        g4x_disable_trickle_feed(dev);
6409
6410        ibx_init_clock_gating(dev);
6411}
6412
6413static void cpt_init_clock_gating(struct drm_device *dev)
6414{
6415        struct drm_i915_private *dev_priv = dev->dev_private;
6416        int pipe;
6417        uint32_t val;
6418
6419        /*
6420         * On Ibex Peak and Cougar Point, we need to disable clock
6421         * gating for the panel power sequencer or it will fail to
6422         * start up when no ports are active.
6423         */
6424        I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6425                   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6426                   PCH_CPUNIT_CLOCK_GATE_DISABLE);
6427        I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6428                   DPLS_EDP_PPS_FIX_DIS);
6429        /* The below fixes the weird display corruption, a few pixels shifted
6430         * downward, on (only) LVDS of some HP laptops with IVY.
6431         */
6432        for_each_pipe(dev_priv, pipe) {
6433                val = I915_READ(TRANS_CHICKEN2(pipe));
6434                val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6435                val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6436                if (dev_priv->vbt.fdi_rx_polarity_inverted)
6437                        val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6438                val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
6439                val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6440                val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6441                I915_WRITE(TRANS_CHICKEN2(pipe), val);
6442        }
6443        /* WADP0ClockGatingDisable */
6444        for_each_pipe(dev_priv, pipe) {
6445                I915_WRITE(TRANS_CHICKEN1(pipe),
6446                           TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6447        }
6448}
6449
6450static void gen6_check_mch_setup(struct drm_device *dev)
6451{
6452        struct drm_i915_private *dev_priv = dev->dev_private;
6453        uint32_t tmp;
6454
6455        tmp = I915_READ(MCH_SSKPD);
6456        if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6457                DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6458                              tmp);
6459}
6460
6461static void gen6_init_clock_gating(struct drm_device *dev)
6462{
6463        struct drm_i915_private *dev_priv = dev->dev_private;
6464        uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6465
6466        I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6467
6468        I915_WRITE(ILK_DISPLAY_CHICKEN2,
6469                   I915_READ(ILK_DISPLAY_CHICKEN2) |
6470                   ILK_ELPIN_409_SELECT);
6471
6472        /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6473        I915_WRITE(_3D_CHICKEN,
6474                   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6475
6476        /* WaDisable_RenderCache_OperationalFlush:snb */
6477        I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6478
6479        /*
6480         * BSpec recoomends 8x4 when MSAA is used,
6481         * however in practice 16x4 seems fastest.
6482         *
6483         * Note that PS/WM thread counts depend on the WIZ hashing
6484         * disable bit, which we don't touch here, but it's good
6485         * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6486         */
6487        I915_WRITE(GEN6_GT_MODE,
6488                   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6489
6490        ilk_init_lp_watermarks(dev);
6491
6492        I915_WRITE(CACHE_MODE_0,
6493                   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6494
6495        I915_WRITE(GEN6_UCGCTL1,
6496                   I915_READ(GEN6_UCGCTL1) |
6497                   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
6498                   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6499
6500        /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
6501         * gating disable must be set.  Failure to set it results in
6502         * flickering pixels due to Z write ordering failures after
6503         * some amount of runtime in the Mesa "fire" demo, and Unigine
6504         * Sanctuary and Tropics, and apparently anything else with
6505         * alpha test or pixel discard.
6506         *
6507         * According to the spec, bit 11 (RCCUNIT) must also be set,
6508         * but we didn't debug actual testcases to find it out.
6509         *
6510         * WaDisableRCCUnitClockGating:snb
6511         * WaDisableRCPBUnitClockGating:snb
6512         */
6513        I915_WRITE(GEN6_UCGCTL2,
6514                   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
6515                   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
6516
6517        /* WaStripsFansDisableFastClipPerformanceFix:snb */
6518        I915_WRITE(_3D_CHICKEN3,
6519                   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6520
6521        /*
6522         * Bspec says:
6523         * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
6524         * 3DSTATE_SF number of SF output attributes is more than 16."
6525         */
6526        I915_WRITE(_3D_CHICKEN3,
6527                   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
6528
6529        /*
6530         * According to the spec the following bits should be
6531         * set in order to enable memory self-refresh and fbc:
6532         * The bit21 and bit22 of 0x42000
6533         * The bit21 and bit22 of 0x42004
6534         * The bit5 and bit7 of 0x42020
6535         * The bit14 of 0x70180
6536         * The bit14 of 0x71180
6537         *
6538         * WaFbcAsynchFlipDisableFbcQueue:snb
6539         */
6540        I915_WRITE(ILK_DISPLAY_CHICKEN1,
6541                   I915_READ(ILK_DISPLAY_CHICKEN1) |
6542                   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6543        I915_WRITE(ILK_DISPLAY_CHICKEN2,
6544                   I915_READ(ILK_DISPLAY_CHICKEN2) |
6545                   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6546        I915_WRITE(ILK_DSPCLK_GATE_D,
6547                   I915_READ(ILK_DSPCLK_GATE_D) |
6548                   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
6549                   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6550
6551        g4x_disable_trickle_feed(dev);
6552
6553        cpt_init_clock_gating(dev);
6554
6555        gen6_check_mch_setup(dev);
6556}
6557
6558static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6559{
6560        uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
6561
6562        /*
6563         * WaVSThreadDispatchOverride:ivb,vlv
6564         *
6565         * This actually overrides the dispatch
6566         * mode for all thread types.
6567         */
6568        reg &= ~GEN7_FF_SCHED_MASK;
6569        reg |= GEN7_FF_TS_SCHED_HW;
6570        reg |= GEN7_FF_VS_SCHED_HW;
6571        reg |= GEN7_FF_DS_SCHED_HW;
6572
6573        I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6574}
6575
6576static void lpt_init_clock_gating(struct drm_device *dev)
6577{
6578        struct drm_i915_private *dev_priv = dev->dev_private;
6579
6580        /*
6581         * TODO: this bit should only be enabled when really needed, then
6582         * disabled when not needed anymore in order to save power.
6583         */
6584        if (HAS_PCH_LPT_LP(dev))
6585                I915_WRITE(SOUTH_DSPCLK_GATE_D,
6586                           I915_READ(SOUTH_DSPCLK_GATE_D) |
6587                           PCH_LP_PARTITION_LEVEL_DISABLE);
6588
6589        /* WADPOClockGatingDisable:hsw */
6590        I915_WRITE(TRANS_CHICKEN1(PIPE_A),
6591                   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6592                   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6593}
6594
6595static void lpt_suspend_hw(struct drm_device *dev)
6596{
6597        struct drm_i915_private *dev_priv = dev->dev_private;
6598
6599        if (HAS_PCH_LPT_LP(dev)) {
6600                uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
6601
6602                val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6603                I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6604        }
6605}
6606
6607static void broadwell_init_clock_gating(struct drm_device *dev)
6608{
6609        struct drm_i915_private *dev_priv = dev->dev_private;
6610        enum pipe pipe;
6611        uint32_t misccpctl;
6612
6613        ilk_init_lp_watermarks(dev);
6614
6615        /* WaSwitchSolVfFArbitrationPriority:bdw */
6616        I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6617
6618        /* WaPsrDPAMaskVBlankInSRD:bdw */
6619        I915_WRITE(CHICKEN_PAR1_1,
6620                   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
6621
6622        /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6623        for_each_pipe(dev_priv, pipe) {
6624                I915_WRITE(CHICKEN_PIPESL_1(pipe),
6625                           I915_READ(CHICKEN_PIPESL_1(pipe)) |
6626                           BDW_DPRS_MASK_VBLANK_SRD);
6627        }
6628
6629        /* WaVSRefCountFullforceMissDisable:bdw */
6630        /* WaDSRefCountFullforceMissDisable:bdw */
6631        I915_WRITE(GEN7_FF_THREAD_MODE,
6632                   I915_READ(GEN7_FF_THREAD_MODE) &
6633                   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6634
6635        I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6636                   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6637
6638        /* WaDisableSDEUnitClockGating:bdw */
6639        I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6640                   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6641
6642        /*
6643         * WaProgramL3SqcReg1Default:bdw
6644         * WaTempDisableDOPClkGating:bdw
6645         */
6646        misccpctl = I915_READ(GEN7_MISCCPCTL);
6647        I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
6648        I915_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
6649        /*
6650         * Wait at least 100 clocks before re-enabling clock gating. See
6651         * the definition of L3SQCREG1 in BSpec.
6652         */
6653        POSTING_READ(GEN8_L3SQCREG1);
6654        udelay(1);
6655        I915_WRITE(GEN7_MISCCPCTL, misccpctl);
6656
6657        /*
6658         * WaGttCachingOffByDefault:bdw
6659         * GTT cache may not work with big pages, so if those
6660         * are ever enabled GTT cache may need to be disabled.
6661         */
6662        I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6663
6664        lpt_init_clock_gating(dev);
6665}
6666
6667static void haswell_init_clock_gating(struct drm_device *dev)
6668{
6669        struct drm_i915_private *dev_priv = dev->dev_private;
6670
6671        ilk_init_lp_watermarks(dev);
6672
6673        /* L3 caching of data atomics doesn't work -- disable it. */
6674        I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
6675        I915_WRITE(HSW_ROW_CHICKEN3,
6676                   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
6677
6678        /* This is required by WaCatErrorRejectionIssue:hsw */
6679        I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6680                        I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6681                        GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6682
6683        /* WaVSRefCountFullforceMissDisable:hsw */
6684        I915_WRITE(GEN7_FF_THREAD_MODE,
6685                   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6686
6687        /* WaDisable_RenderCache_OperationalFlush:hsw */
6688        I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6689
6690        /* enable HiZ Raw Stall Optimization */
6691        I915_WRITE(CACHE_MODE_0_GEN7,
6692                   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6693
6694        /* WaDisable4x2SubspanOptimization:hsw */
6695        I915_WRITE(CACHE_MODE_1,
6696                   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6697
6698        /*
6699         * BSpec recommends 8x4 when MSAA is used,
6700         * however in practice 16x4 seems fastest.
6701         *
6702         * Note that PS/WM thread counts depend on the WIZ hashing
6703         * disable bit, which we don't touch here, but it's good
6704         * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6705         */
6706        I915_WRITE(GEN7_GT_MODE,
6707                   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6708
6709        /* WaSampleCChickenBitEnable:hsw */
6710        I915_WRITE(HALF_SLICE_CHICKEN3,
6711                   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
6712
6713        /* WaSwitchSolVfFArbitrationPriority:hsw */
6714        I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6715
6716        /* WaRsPkgCStateDisplayPMReq:hsw */
6717        I915_WRITE(CHICKEN_PAR1_1,
6718                   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6719
6720        lpt_init_clock_gating(dev);
6721}
6722
6723static void ivybridge_init_clock_gating(struct drm_device *dev)
6724{
6725        struct drm_i915_private *dev_priv = dev->dev_private;
6726        uint32_t snpcr;
6727
6728        ilk_init_lp_watermarks(dev);
6729
6730        I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6731
6732        /* WaDisableEarlyCull:ivb */
6733        I915_WRITE(_3D_CHICKEN3,
6734                   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6735
6736        /* WaDisableBackToBackFlipFix:ivb */
6737        I915_WRITE(IVB_CHICKEN3,
6738                   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6739                   CHICKEN3_DGMG_DONE_FIX_DISABLE);
6740
6741        /* WaDisablePSDDualDispatchEnable:ivb */
6742        if (IS_IVB_GT1(dev))
6743                I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6744                           _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6745
6746        /* WaDisable_RenderCache_OperationalFlush:ivb */
6747        I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6748
6749        /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6750        I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
6751                   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
6752
6753        /* WaApplyL3ControlAndL3ChickenMode:ivb */
6754        I915_WRITE(GEN7_L3CNTLREG1,
6755                        GEN7_WA_FOR_GEN7_L3_CONTROL);
6756        I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6757                   GEN7_WA_L3_CHICKEN_MODE);
6758        if (IS_IVB_GT1(dev))
6759                I915_WRITE(GEN7_ROW_CHICKEN2,
6760                           _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6761        else {
6762                /* must write both registers */
6763                I915_WRITE(GEN7_ROW_CHICKEN2,
6764                           _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6765                I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
6766                           _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6767        }
6768
6769        /* WaForceL3Serialization:ivb */
6770        I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6771                   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6772
6773        /*
6774         * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6775         * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6776         */
6777        I915_WRITE(GEN6_UCGCTL2,
6778                   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6779
6780        /* This is required by WaCatErrorRejectionIssue:ivb */
6781        I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6782                        I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6783                        GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6784
6785        g4x_disable_trickle_feed(dev);
6786
6787        gen7_setup_fixed_func_scheduler(dev_priv);
6788
6789        if (0) { /* causes HiZ corruption on ivb:gt1 */
6790                /* enable HiZ Raw Stall Optimization */
6791                I915_WRITE(CACHE_MODE_0_GEN7,
6792                           _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6793        }
6794
6795        /* WaDisable4x2SubspanOptimization:ivb */
6796        I915_WRITE(CACHE_MODE_1,
6797                   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6798
6799        /*
6800         * BSpec recommends 8x4 when MSAA is used,
6801         * however in practice 16x4 seems fastest.
6802         *
6803         * Note that PS/WM thread counts depend on the WIZ hashing
6804         * disable bit, which we don't touch here, but it's good
6805         * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6806         */
6807        I915_WRITE(GEN7_GT_MODE,
6808                   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6809
6810        snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
6811        snpcr &= ~GEN6_MBC_SNPCR_MASK;
6812        snpcr |= GEN6_MBC_SNPCR_MED;
6813        I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6814
6815        if (!HAS_PCH_NOP(dev))
6816                cpt_init_clock_gating(dev);
6817
6818        gen6_check_mch_setup(dev);
6819}
6820
6821static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
6822{
6823        I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6824
6825        /*
6826         * Disable trickle feed and enable pnd deadline calculation
6827         */
6828        I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6829        I915_WRITE(CBR1_VLV, 0);
6830}
6831
6832static void valleyview_init_clock_gating(struct drm_device *dev)
6833{
6834        struct drm_i915_private *dev_priv = dev->dev_private;
6835
6836        vlv_init_display_clock_gating(dev_priv);
6837
6838        /* WaDisableEarlyCull:vlv */
6839        I915_WRITE(_3D_CHICKEN3,
6840                   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6841
6842        /* WaDisableBackToBackFlipFix:vlv */
6843        I915_WRITE(IVB_CHICKEN3,
6844                   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6845                   CHICKEN3_DGMG_DONE_FIX_DISABLE);
6846
6847        /* WaPsdDispatchEnable:vlv */
6848        /* WaDisablePSDDualDispatchEnable:vlv */
6849        I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6850                   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
6851                                      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6852
6853        /* WaDisable_RenderCache_OperationalFlush:vlv */
6854        I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6855
6856        /* WaForceL3Serialization:vlv */
6857        I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6858                   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6859
6860        /* WaDisableDopClockGating:vlv */
6861        I915_WRITE(GEN7_ROW_CHICKEN2,
6862                   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6863
6864        /* This is required by WaCatErrorRejectionIssue:vlv */
6865        I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6866                   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6867                   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6868
6869        gen7_setup_fixed_func_scheduler(dev_priv);
6870
6871        /*
6872         * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6873         * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6874         */
6875        I915_WRITE(GEN6_UCGCTL2,
6876                   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6877
6878        /* WaDisableL3Bank2xClockGate:vlv
6879         * Disabling L3 clock gating- MMIO 940c[25] = 1
6880         * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
6881        I915_WRITE(GEN7_UCGCTL4,
6882                   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6883
6884        /*
6885         * BSpec says this must be set, even though
6886         * WaDisable4x2SubspanOptimization isn't listed for VLV.
6887         */
6888        I915_WRITE(CACHE_MODE_1,
6889                   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6890
6891        /*
6892         * BSpec recommends 8x4 when MSAA is used,
6893         * however in practice 16x4 seems fastest.
6894         *
6895         * Note that PS/WM thread counts depend on the WIZ hashing
6896         * disable bit, which we don't touch here, but it's good
6897         * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6898         */
6899        I915_WRITE(GEN7_GT_MODE,
6900                   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6901
6902        /*
6903         * WaIncreaseL3CreditsForVLVB0:vlv
6904         * This is the hardware default actually.
6905         */
6906        I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
6907
6908        /*
6909         * WaDisableVLVClockGating_VBIIssue:vlv
6910         * Disable clock gating on th GCFG unit to prevent a delay
6911         * in the reporting of vblank events.
6912         */
6913        I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6914}
6915
6916static void cherryview_init_clock_gating(struct drm_device *dev)
6917{
6918        struct drm_i915_private *dev_priv = dev->dev_private;
6919
6920        vlv_init_display_clock_gating(dev_priv);
6921
6922        /* WaVSRefCountFullforceMissDisable:chv */
6923        /* WaDSRefCountFullforceMissDisable:chv */
6924        I915_WRITE(GEN7_FF_THREAD_MODE,
6925                   I915_READ(GEN7_FF_THREAD_MODE) &
6926                   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6927
6928        /* WaDisableSemaphoreAndSyncFlipWait:chv */
6929        I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6930                   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6931
6932        /* WaDisableCSUnitClockGating:chv */
6933        I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
6934                   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6935
6936        /* WaDisableSDEUnitClockGating:chv */
6937        I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6938                   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6939
6940        /*
6941         * GTT cache may not work with big pages, so if those
6942         * are ever enabled GTT cache may need to be disabled.
6943         */
6944        I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6945}
6946
6947static void g4x_init_clock_gating(struct drm_device *dev)
6948{
6949        struct drm_i915_private *dev_priv = dev->dev_private;
6950        uint32_t dspclk_gate;
6951
6952        I915_WRITE(RENCLK_GATE_D1, 0);
6953        I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
6954                   GS_UNIT_CLOCK_GATE_DISABLE |
6955                   CL_UNIT_CLOCK_GATE_DISABLE);
6956        I915_WRITE(RAMCLK_GATE_D, 0);
6957        dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
6958                OVRUNIT_CLOCK_GATE_DISABLE |
6959                OVCUNIT_CLOCK_GATE_DISABLE;
6960        if (IS_GM45(dev))
6961                dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
6962        I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6963
6964        /* WaDisableRenderCachePipelinedFlush */
6965        I915_WRITE(CACHE_MODE_0,
6966                   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6967
6968        /* WaDisable_RenderCache_OperationalFlush:g4x */
6969        I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6970
6971        g4x_disable_trickle_feed(dev);
6972}
6973
6974static void crestline_init_clock_gating(struct drm_device *dev)
6975{
6976        struct drm_i915_private *dev_priv = dev->dev_private;
6977
6978        I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
6979        I915_WRITE(RENCLK_GATE_D2, 0);
6980        I915_WRITE(DSPCLK_GATE_D, 0);
6981        I915_WRITE(RAMCLK_GATE_D, 0);
6982        I915_WRITE16(DEUC, 0);
6983        I915_WRITE(MI_ARB_STATE,
6984                   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6985
6986        /* WaDisable_RenderCache_OperationalFlush:gen4 */
6987        I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6988}
6989
6990static void broadwater_init_clock_gating(struct drm_device *dev)
6991{
6992        struct drm_i915_private *dev_priv = dev->dev_private;
6993
6994        I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
6995                   I965_RCC_CLOCK_GATE_DISABLE |
6996                   I965_RCPB_CLOCK_GATE_DISABLE |
6997                   I965_ISC_CLOCK_GATE_DISABLE |
6998                   I965_FBC_CLOCK_GATE_DISABLE);
6999        I915_WRITE(RENCLK_GATE_D2, 0);
7000        I915_WRITE(MI_ARB_STATE,
7001                   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7002
7003        /* WaDisable_RenderCache_OperationalFlush:gen4 */
7004        I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7005}
7006
7007static void gen3_init_clock_gating(struct drm_device *dev)
7008{
7009        struct drm_i915_private *dev_priv = dev->dev_private;
7010        u32 dstate = I915_READ(D_STATE);
7011
7012        dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7013                DSTATE_DOT_CLOCK_GATING;
7014        I915_WRITE(D_STATE, dstate);
7015
7016        if (IS_PINEVIEW(dev))
7017                I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7018
7019        /* IIR "flip pending" means done if this bit is set */
7020        I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7021
7022        /* interrupts should cause a wake up from C3 */
7023        I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7024
7025        /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7026        I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7027
7028        I915_WRITE(MI_ARB_STATE,
7029                   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7030}
7031
7032static void i85x_init_clock_gating(struct drm_device *dev)
7033{
7034        struct drm_i915_private *dev_priv = dev->dev_private;
7035
7036        I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7037
7038        /* interrupts should cause a wake up from C3 */
7039        I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7040                   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7041
7042        I915_WRITE(MEM_MODE,
7043                   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7044}
7045
7046static void i830_init_clock_gating(struct drm_device *dev)
7047{
7048        struct drm_i915_private *dev_priv = dev->dev_private;
7049
7050        I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7051
7052        I915_WRITE(MEM_MODE,
7053                   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7054                   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7055}
7056
7057void intel_init_clock_gating(struct drm_device *dev)
7058{
7059        struct drm_i915_private *dev_priv = dev->dev_private;
7060
7061        if (dev_priv->display.init_clock_gating)
7062                dev_priv->display.init_clock_gating(dev);
7063}
7064
7065void intel_suspend_hw(struct drm_device *dev)
7066{
7067        if (HAS_PCH_LPT(dev))
7068                lpt_suspend_hw(dev);
7069}
7070
7071/* Set up chip specific power management-related functions */
7072void intel_init_pm(struct drm_device *dev)
7073{
7074        struct drm_i915_private *dev_priv = dev->dev_private;
7075
7076        intel_fbc_init(dev_priv);
7077
7078        /* For cxsr */
7079        if (IS_PINEVIEW(dev))
7080                i915_pineview_get_mem_freq(dev);
7081        else if (IS_GEN5(dev))
7082                i915_ironlake_get_mem_freq(dev);
7083
7084        /* For FIFO watermark updates */
7085        if (INTEL_INFO(dev)->gen >= 9) {
7086                skl_setup_wm_latency(dev);
7087
7088                if (IS_BROXTON(dev))
7089                        dev_priv->display.init_clock_gating =
7090                                bxt_init_clock_gating;
7091                dev_priv->display.update_wm = skl_update_wm;
7092        } else if (HAS_PCH_SPLIT(dev)) {
7093                ilk_setup_wm_latency(dev);
7094
7095                if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
7096                     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7097                    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
7098                     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7099                        dev_priv->display.update_wm = ilk_update_wm;
7100                        dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7101                        dev_priv->display.program_watermarks = ilk_program_watermarks;
7102                } else {
7103                        DRM_DEBUG_KMS("Failed to read display plane latency. "
7104                                      "Disable CxSR\n");
7105                }
7106
7107                if (IS_GEN5(dev))
7108                        dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7109                else if (IS_GEN6(dev))
7110                        dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7111                else if (IS_IVYBRIDGE(dev))
7112                        dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7113                else if (IS_HASWELL(dev))
7114                        dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7115                else if (INTEL_INFO(dev)->gen == 8)
7116                        dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7117        } else if (IS_CHERRYVIEW(dev)) {
7118                vlv_setup_wm_latency(dev);
7119
7120                dev_priv->display.update_wm = vlv_update_wm;
7121                dev_priv->display.init_clock_gating =
7122                        cherryview_init_clock_gating;
7123        } else if (IS_VALLEYVIEW(dev)) {
7124                vlv_setup_wm_latency(dev);
7125
7126                dev_priv->display.update_wm = vlv_update_wm;
7127                dev_priv->display.init_clock_gating =
7128                        valleyview_init_clock_gating;
7129        } else if (IS_PINEVIEW(dev)) {
7130                if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7131                                            dev_priv->is_ddr3,
7132                                            dev_priv->fsb_freq,
7133                                            dev_priv->mem_freq)) {
7134                        DRM_INFO("failed to find known CxSR latency "
7135                                 "(found ddr%s fsb freq %d, mem freq %d), "
7136                                 "disabling CxSR\n",
7137                                 (dev_priv->is_ddr3 == 1) ? "3" : "2",
7138                                 dev_priv->fsb_freq, dev_priv->mem_freq);
7139                        /* Disable CxSR and never update its watermark again */
7140                        intel_set_memory_cxsr(dev_priv, false);
7141                        dev_priv->display.update_wm = NULL;
7142                } else
7143                        dev_priv->display.update_wm = pineview_update_wm;
7144                dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7145        } else if (IS_G4X(dev)) {
7146                dev_priv->display.update_wm = g4x_update_wm;
7147                dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7148        } else if (IS_GEN4(dev)) {
7149                dev_priv->display.update_wm = i965_update_wm;
7150                if (IS_CRESTLINE(dev))
7151                        dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7152                else if (IS_BROADWATER(dev))
7153                        dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7154        } else if (IS_GEN3(dev)) {
7155                dev_priv->display.update_wm = i9xx_update_wm;
7156                dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7157                dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7158        } else if (IS_GEN2(dev)) {
7159                if (INTEL_INFO(dev)->num_pipes == 1) {
7160                        dev_priv->display.update_wm = i845_update_wm;
7161                        dev_priv->display.get_fifo_size = i845_get_fifo_size;
7162                } else {
7163                        dev_priv->display.update_wm = i9xx_update_wm;
7164                        dev_priv->display.get_fifo_size = i830_get_fifo_size;
7165                }
7166
7167                if (IS_I85X(dev) || IS_I865G(dev))
7168                        dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7169                else
7170                        dev_priv->display.init_clock_gating = i830_init_clock_gating;
7171        } else {
7172                DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7173        }
7174}
7175
7176int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
7177{
7178        WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7179
7180        if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7181                DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7182                return -EAGAIN;
7183        }
7184
7185        I915_WRITE(GEN6_PCODE_DATA, *val);
7186        I915_WRITE(GEN6_PCODE_DATA1, 0);
7187        I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7188
7189        if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7190                     500)) {
7191                DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7192                return -ETIMEDOUT;
7193        }
7194
7195        *val = I915_READ(GEN6_PCODE_DATA);
7196        I915_WRITE(GEN6_PCODE_DATA, 0);
7197
7198        return 0;
7199}
7200
7201int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
7202{
7203        WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7204
7205        if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7206                DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7207                return -EAGAIN;
7208        }
7209
7210        I915_WRITE(GEN6_PCODE_DATA, val);
7211        I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7212
7213        if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7214                     500)) {
7215                DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7216                return -ETIMEDOUT;
7217        }
7218
7219        I915_WRITE(GEN6_PCODE_DATA, 0);
7220
7221        return 0;
7222}
7223
7224static int vlv_gpu_freq_div(unsigned int czclk_freq)
7225{
7226        switch (czclk_freq) {
7227        case 200:
7228                return 10;
7229        case 267:
7230                return 12;
7231        case 320:
7232        case 333:
7233                return 16;
7234        case 400:
7235                return 20;
7236        default:
7237                return -1;
7238        }
7239}
7240
7241static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7242{
7243        int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7244
7245        div = vlv_gpu_freq_div(czclk_freq);
7246        if (div < 0)
7247                return div;
7248
7249        return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
7250}
7251
7252static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7253{
7254        int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7255
7256        mul = vlv_gpu_freq_div(czclk_freq);
7257        if (mul < 0)
7258                return mul;
7259
7260        return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
7261}
7262
7263static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7264{
7265        int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7266
7267        div = vlv_gpu_freq_div(czclk_freq);
7268        if (div < 0)
7269                return div;
7270        div /= 2;
7271
7272        return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
7273}
7274
7275static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7276{
7277        int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7278
7279        mul = vlv_gpu_freq_div(czclk_freq);
7280        if (mul < 0)
7281                return mul;
7282        mul /= 2;
7283
7284        /* CHV needs even values */
7285        return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
7286}
7287
7288int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7289{
7290        if (IS_GEN9(dev_priv->dev))
7291                return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
7292                                         GEN9_FREQ_SCALER);
7293        else if (IS_CHERRYVIEW(dev_priv->dev))
7294                return chv_gpu_freq(dev_priv, val);
7295        else if (IS_VALLEYVIEW(dev_priv->dev))
7296                return byt_gpu_freq(dev_priv, val);
7297        else
7298                return val * GT_FREQUENCY_MULTIPLIER;
7299}
7300
7301int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
7302{
7303        if (IS_GEN9(dev_priv->dev))
7304                return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
7305                                         GT_FREQUENCY_MULTIPLIER);
7306        else if (IS_CHERRYVIEW(dev_priv->dev))
7307                return chv_freq_opcode(dev_priv, val);
7308        else if (IS_VALLEYVIEW(dev_priv->dev))
7309                return byt_freq_opcode(dev_priv, val);
7310        else
7311                return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7312}
7313
7314struct request_boost {
7315        struct work_struct work;
7316        struct drm_i915_gem_request *req;
7317};
7318
7319static void __intel_rps_boost_work(struct work_struct *work)
7320{
7321        struct request_boost *boost = container_of(work, struct request_boost, work);
7322        struct drm_i915_gem_request *req = boost->req;
7323
7324        if (!i915_gem_request_completed(req, true))
7325                gen6_rps_boost(to_i915(req->ring->dev), NULL,
7326                               req->emitted_jiffies);
7327
7328        i915_gem_request_unreference__unlocked(req);
7329        kfree(boost);
7330}
7331
7332void intel_queue_rps_boost_for_request(struct drm_device *dev,
7333                                       struct drm_i915_gem_request *req)
7334{
7335        struct request_boost *boost;
7336
7337        if (req == NULL || INTEL_INFO(dev)->gen < 6)
7338                return;
7339
7340        if (i915_gem_request_completed(req, true))
7341                return;
7342
7343        boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
7344        if (boost == NULL)
7345                return;
7346
7347        i915_gem_request_reference(req);
7348        boost->req = req;
7349
7350        INIT_WORK(&boost->work, __intel_rps_boost_work);
7351        queue_work(to_i915(dev)->wq, &boost->work);
7352}
7353
7354void intel_pm_setup(struct drm_device *dev)
7355{
7356        struct drm_i915_private *dev_priv = dev->dev_private;
7357
7358        mutex_init(&dev_priv->rps.hw_lock);
7359        spin_lock_init(&dev_priv->rps.client_lock);
7360
7361        INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
7362                          intel_gen6_powersave_work);
7363        INIT_LIST_HEAD(&dev_priv->rps.clients);
7364        INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
7365        INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
7366
7367        dev_priv->pm.suspended = false;
7368        atomic_set(&dev_priv->pm.wakeref_count, 0);
7369        atomic_set(&dev_priv->pm.atomic_seq, 0);
7370}
7371