linux/drivers/gpu/drm/vc4/vc4_crtc.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2015 Broadcom
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License version 2 as
   6 * published by the Free Software Foundation.
   7 */
   8
   9/**
  10 * DOC: VC4 CRTC module
  11 *
  12 * In VC4, the Pixel Valve is what most closely corresponds to the
  13 * DRM's concept of a CRTC.  The PV generates video timings from the
  14 * output's clock plus its configuration.  It pulls scaled pixels from
  15 * the HVS at that timing, and feeds it to the encoder.
  16 *
  17 * However, the DRM CRTC also collects the configuration of all the
  18 * DRM planes attached to it.  As a result, this file also manages
  19 * setup of the VC4 HVS's display elements on the CRTC.
  20 *
  21 * The 2835 has 3 different pixel valves.  pv0 in the audio power
  22 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
  23 * image domain can feed either HDMI or the SDTV controller.  The
  24 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
  25 * SDTV, etc.) according to which output type is chosen in the mux.
  26 *
  27 * For power management, the pixel valve's registers are all clocked
  28 * by the AXI clock, while the timings and FIFOs make use of the
  29 * output-specific clock.  Since the encoders also directly consume
  30 * the CPRMAN clocks, and know what timings they need, they are the
  31 * ones that set the clock.
  32 */
  33
  34#include "drm_atomic.h"
  35#include "drm_atomic_helper.h"
  36#include "drm_crtc_helper.h"
  37#include "linux/clk.h"
  38#include "drm_fb_cma_helper.h"
  39#include "linux/component.h"
  40#include "linux/of_device.h"
  41#include "vc4_drv.h"
  42#include "vc4_regs.h"
  43
  44struct vc4_crtc {
  45        struct drm_crtc base;
  46        const struct vc4_crtc_data *data;
  47        void __iomem *regs;
  48
  49        /* Which HVS channel we're using for our CRTC. */
  50        int channel;
  51
  52        struct drm_pending_vblank_event *event;
  53};
  54
  55struct vc4_crtc_state {
  56        struct drm_crtc_state base;
  57        /* Dlist area for this CRTC configuration. */
  58        struct drm_mm_node mm;
  59};
  60
  61static inline struct vc4_crtc *
  62to_vc4_crtc(struct drm_crtc *crtc)
  63{
  64        return (struct vc4_crtc *)crtc;
  65}
  66
  67static inline struct vc4_crtc_state *
  68to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
  69{
  70        return (struct vc4_crtc_state *)crtc_state;
  71}
  72
  73struct vc4_crtc_data {
  74        /* Which channel of the HVS this pixelvalve sources from. */
  75        int hvs_channel;
  76
  77        enum vc4_encoder_type encoder0_type;
  78        enum vc4_encoder_type encoder1_type;
  79};
  80
  81#define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
  82#define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
  83
  84#define CRTC_REG(reg) { reg, #reg }
  85static const struct {
  86        u32 reg;
  87        const char *name;
  88} crtc_regs[] = {
  89        CRTC_REG(PV_CONTROL),
  90        CRTC_REG(PV_V_CONTROL),
  91        CRTC_REG(PV_VSYNCD_EVEN),
  92        CRTC_REG(PV_HORZA),
  93        CRTC_REG(PV_HORZB),
  94        CRTC_REG(PV_VERTA),
  95        CRTC_REG(PV_VERTB),
  96        CRTC_REG(PV_VERTA_EVEN),
  97        CRTC_REG(PV_VERTB_EVEN),
  98        CRTC_REG(PV_INTEN),
  99        CRTC_REG(PV_INTSTAT),
 100        CRTC_REG(PV_STAT),
 101        CRTC_REG(PV_HACT_ACT),
 102};
 103
 104static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
 105{
 106        int i;
 107
 108        for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
 109                DRM_INFO("0x%04x (%s): 0x%08x\n",
 110                         crtc_regs[i].reg, crtc_regs[i].name,
 111                         CRTC_READ(crtc_regs[i].reg));
 112        }
 113}
 114
 115#ifdef CONFIG_DEBUG_FS
 116int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
 117{
 118        struct drm_info_node *node = (struct drm_info_node *)m->private;
 119        struct drm_device *dev = node->minor->dev;
 120        int crtc_index = (uintptr_t)node->info_ent->data;
 121        struct drm_crtc *crtc;
 122        struct vc4_crtc *vc4_crtc;
 123        int i;
 124
 125        i = 0;
 126        list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
 127                if (i == crtc_index)
 128                        break;
 129                i++;
 130        }
 131        if (!crtc)
 132                return 0;
 133        vc4_crtc = to_vc4_crtc(crtc);
 134
 135        for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
 136                seq_printf(m, "%s (0x%04x): 0x%08x\n",
 137                           crtc_regs[i].name, crtc_regs[i].reg,
 138                           CRTC_READ(crtc_regs[i].reg));
 139        }
 140
 141        return 0;
 142}
 143#endif
 144
 145static void vc4_crtc_destroy(struct drm_crtc *crtc)
 146{
 147        drm_crtc_cleanup(crtc);
 148}
 149
 150static u32 vc4_get_fifo_full_level(u32 format)
 151{
 152        static const u32 fifo_len_bytes = 64;
 153        static const u32 hvs_latency_pix = 6;
 154
 155        switch (format) {
 156        case PV_CONTROL_FORMAT_DSIV_16:
 157        case PV_CONTROL_FORMAT_DSIC_16:
 158                return fifo_len_bytes - 2 * hvs_latency_pix;
 159        case PV_CONTROL_FORMAT_DSIV_18:
 160                return fifo_len_bytes - 14;
 161        case PV_CONTROL_FORMAT_24:
 162        case PV_CONTROL_FORMAT_DSIV_24:
 163        default:
 164                return fifo_len_bytes - 3 * hvs_latency_pix;
 165        }
 166}
 167
 168/*
 169 * Returns the clock select bit for the connector attached to the
 170 * CRTC.
 171 */
 172static int vc4_get_clock_select(struct drm_crtc *crtc)
 173{
 174        struct drm_connector *connector;
 175
 176        drm_for_each_connector(connector, crtc->dev) {
 177                if (connector->state->crtc == crtc) {
 178                        struct drm_encoder *encoder = connector->encoder;
 179                        struct vc4_encoder *vc4_encoder =
 180                                to_vc4_encoder(encoder);
 181
 182                        return vc4_encoder->clock_select;
 183                }
 184        }
 185
 186        return -1;
 187}
 188
 189static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
 190{
 191        struct drm_device *dev = crtc->dev;
 192        struct vc4_dev *vc4 = to_vc4_dev(dev);
 193        struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 194        struct drm_crtc_state *state = crtc->state;
 195        struct drm_display_mode *mode = &state->adjusted_mode;
 196        bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
 197        u32 vactive = (mode->vdisplay >> (interlace ? 1 : 0));
 198        u32 format = PV_CONTROL_FORMAT_24;
 199        bool debug_dump_regs = false;
 200        int clock_select = vc4_get_clock_select(crtc);
 201
 202        if (debug_dump_regs) {
 203                DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
 204                vc4_crtc_dump_regs(vc4_crtc);
 205        }
 206
 207        /* Reset the PV fifo. */
 208        CRTC_WRITE(PV_CONTROL, 0);
 209        CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
 210        CRTC_WRITE(PV_CONTROL, 0);
 211
 212        CRTC_WRITE(PV_HORZA,
 213                   VC4_SET_FIELD(mode->htotal - mode->hsync_end,
 214                                 PV_HORZA_HBP) |
 215                   VC4_SET_FIELD(mode->hsync_end - mode->hsync_start,
 216                                 PV_HORZA_HSYNC));
 217        CRTC_WRITE(PV_HORZB,
 218                   VC4_SET_FIELD(mode->hsync_start - mode->hdisplay,
 219                                 PV_HORZB_HFP) |
 220                   VC4_SET_FIELD(mode->hdisplay, PV_HORZB_HACTIVE));
 221
 222        CRTC_WRITE(PV_VERTA,
 223                   VC4_SET_FIELD(mode->vtotal - mode->vsync_end,
 224                                 PV_VERTA_VBP) |
 225                   VC4_SET_FIELD(mode->vsync_end - mode->vsync_start,
 226                                 PV_VERTA_VSYNC));
 227        CRTC_WRITE(PV_VERTB,
 228                   VC4_SET_FIELD(mode->vsync_start - mode->vdisplay,
 229                                 PV_VERTB_VFP) |
 230                   VC4_SET_FIELD(vactive, PV_VERTB_VACTIVE));
 231
 232        if (interlace) {
 233                CRTC_WRITE(PV_VERTA_EVEN,
 234                           VC4_SET_FIELD(mode->vtotal - mode->vsync_end - 1,
 235                                         PV_VERTA_VBP) |
 236                           VC4_SET_FIELD(mode->vsync_end - mode->vsync_start,
 237                                         PV_VERTA_VSYNC));
 238                CRTC_WRITE(PV_VERTB_EVEN,
 239                           VC4_SET_FIELD(mode->vsync_start - mode->vdisplay,
 240                                         PV_VERTB_VFP) |
 241                           VC4_SET_FIELD(vactive, PV_VERTB_VACTIVE));
 242        }
 243
 244        CRTC_WRITE(PV_HACT_ACT, mode->hdisplay);
 245
 246        CRTC_WRITE(PV_V_CONTROL,
 247                   PV_VCONTROL_CONTINUOUS |
 248                   (interlace ? PV_VCONTROL_INTERLACE : 0));
 249
 250        CRTC_WRITE(PV_CONTROL,
 251                   VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
 252                   VC4_SET_FIELD(vc4_get_fifo_full_level(format),
 253                                 PV_CONTROL_FIFO_LEVEL) |
 254                   PV_CONTROL_CLR_AT_START |
 255                   PV_CONTROL_TRIGGER_UNDERFLOW |
 256                   PV_CONTROL_WAIT_HSTART |
 257                   VC4_SET_FIELD(clock_select, PV_CONTROL_CLK_SELECT) |
 258                   PV_CONTROL_FIFO_CLR |
 259                   PV_CONTROL_EN);
 260
 261        HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
 262                  SCALER_DISPBKGND_AUTOHS |
 263                  (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
 264
 265        if (debug_dump_regs) {
 266                DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
 267                vc4_crtc_dump_regs(vc4_crtc);
 268        }
 269}
 270
 271static void require_hvs_enabled(struct drm_device *dev)
 272{
 273        struct vc4_dev *vc4 = to_vc4_dev(dev);
 274
 275        WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
 276                     SCALER_DISPCTRL_ENABLE);
 277}
 278
 279static void vc4_crtc_disable(struct drm_crtc *crtc)
 280{
 281        struct drm_device *dev = crtc->dev;
 282        struct vc4_dev *vc4 = to_vc4_dev(dev);
 283        struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 284        u32 chan = vc4_crtc->channel;
 285        int ret;
 286        require_hvs_enabled(dev);
 287
 288        CRTC_WRITE(PV_V_CONTROL,
 289                   CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
 290        ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
 291        WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
 292
 293        if (HVS_READ(SCALER_DISPCTRLX(chan)) &
 294            SCALER_DISPCTRLX_ENABLE) {
 295                HVS_WRITE(SCALER_DISPCTRLX(chan),
 296                          SCALER_DISPCTRLX_RESET);
 297
 298                /* While the docs say that reset is self-clearing, it
 299                 * seems it doesn't actually.
 300                 */
 301                HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
 302        }
 303
 304        /* Once we leave, the scaler should be disabled and its fifo empty. */
 305
 306        WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
 307
 308        WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
 309                                   SCALER_DISPSTATX_MODE) !=
 310                     SCALER_DISPSTATX_MODE_DISABLED);
 311
 312        WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
 313                      (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
 314                     SCALER_DISPSTATX_EMPTY);
 315}
 316
 317static void vc4_crtc_enable(struct drm_crtc *crtc)
 318{
 319        struct drm_device *dev = crtc->dev;
 320        struct vc4_dev *vc4 = to_vc4_dev(dev);
 321        struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 322        struct drm_crtc_state *state = crtc->state;
 323        struct drm_display_mode *mode = &state->adjusted_mode;
 324
 325        require_hvs_enabled(dev);
 326
 327        /* Turn on the scaler, which will wait for vstart to start
 328         * compositing.
 329         */
 330        HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
 331                  VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
 332                  VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
 333                  SCALER_DISPCTRLX_ENABLE);
 334
 335        /* Turn on the pixel valve, which will emit the vstart signal. */
 336        CRTC_WRITE(PV_V_CONTROL,
 337                   CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
 338}
 339
 340static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
 341                                 struct drm_crtc_state *state)
 342{
 343        struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
 344        struct drm_device *dev = crtc->dev;
 345        struct vc4_dev *vc4 = to_vc4_dev(dev);
 346        struct drm_plane *plane;
 347        unsigned long flags;
 348        u32 dlist_count = 0;
 349        int ret;
 350
 351        /* The pixelvalve can only feed one encoder (and encoders are
 352         * 1:1 with connectors.)
 353         */
 354        if (hweight32(state->connector_mask) > 1)
 355                return -EINVAL;
 356
 357        drm_atomic_crtc_state_for_each_plane(plane, state) {
 358                struct drm_plane_state *plane_state =
 359                        state->state->plane_states[drm_plane_index(plane)];
 360
 361                /* plane might not have changed, in which case take
 362                 * current state:
 363                 */
 364                if (!plane_state)
 365                        plane_state = plane->state;
 366
 367                dlist_count += vc4_plane_dlist_size(plane_state);
 368        }
 369
 370        dlist_count++; /* Account for SCALER_CTL0_END. */
 371
 372        spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
 373        ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
 374                                 dlist_count, 1, 0);
 375        spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
 376        if (ret)
 377                return ret;
 378
 379        return 0;
 380}
 381
 382static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
 383                                  struct drm_crtc_state *old_state)
 384{
 385        struct drm_device *dev = crtc->dev;
 386        struct vc4_dev *vc4 = to_vc4_dev(dev);
 387        struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 388        struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
 389        struct drm_plane *plane;
 390        bool debug_dump_regs = false;
 391        u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
 392        u32 __iomem *dlist_next = dlist_start;
 393
 394        if (debug_dump_regs) {
 395                DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
 396                vc4_hvs_dump_state(dev);
 397        }
 398
 399        /* Copy all the active planes' dlist contents to the hardware dlist. */
 400        drm_atomic_crtc_for_each_plane(plane, crtc) {
 401                dlist_next += vc4_plane_write_dlist(plane, dlist_next);
 402        }
 403
 404        writel(SCALER_CTL0_END, dlist_next);
 405        dlist_next++;
 406
 407        WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
 408
 409        HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
 410                  vc4_state->mm.start);
 411
 412        if (debug_dump_regs) {
 413                DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
 414                vc4_hvs_dump_state(dev);
 415        }
 416
 417        if (crtc->state->event) {
 418                unsigned long flags;
 419
 420                crtc->state->event->pipe = drm_crtc_index(crtc);
 421
 422                WARN_ON(drm_crtc_vblank_get(crtc) != 0);
 423
 424                spin_lock_irqsave(&dev->event_lock, flags);
 425                vc4_crtc->event = crtc->state->event;
 426                spin_unlock_irqrestore(&dev->event_lock, flags);
 427                crtc->state->event = NULL;
 428        }
 429}
 430
 431int vc4_enable_vblank(struct drm_device *dev, unsigned int crtc_id)
 432{
 433        struct vc4_dev *vc4 = to_vc4_dev(dev);
 434        struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
 435
 436        CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
 437
 438        return 0;
 439}
 440
 441void vc4_disable_vblank(struct drm_device *dev, unsigned int crtc_id)
 442{
 443        struct vc4_dev *vc4 = to_vc4_dev(dev);
 444        struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
 445
 446        CRTC_WRITE(PV_INTEN, 0);
 447}
 448
 449static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
 450{
 451        struct drm_crtc *crtc = &vc4_crtc->base;
 452        struct drm_device *dev = crtc->dev;
 453        unsigned long flags;
 454
 455        spin_lock_irqsave(&dev->event_lock, flags);
 456        if (vc4_crtc->event) {
 457                drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
 458                vc4_crtc->event = NULL;
 459        }
 460        spin_unlock_irqrestore(&dev->event_lock, flags);
 461}
 462
 463static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
 464{
 465        struct vc4_crtc *vc4_crtc = data;
 466        u32 stat = CRTC_READ(PV_INTSTAT);
 467        irqreturn_t ret = IRQ_NONE;
 468
 469        if (stat & PV_INT_VFP_START) {
 470                CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
 471                drm_crtc_handle_vblank(&vc4_crtc->base);
 472                vc4_crtc_handle_page_flip(vc4_crtc);
 473                ret = IRQ_HANDLED;
 474        }
 475
 476        return ret;
 477}
 478
 479struct vc4_async_flip_state {
 480        struct drm_crtc *crtc;
 481        struct drm_framebuffer *fb;
 482        struct drm_pending_vblank_event *event;
 483
 484        struct vc4_seqno_cb cb;
 485};
 486
 487/* Called when the V3D execution for the BO being flipped to is done, so that
 488 * we can actually update the plane's address to point to it.
 489 */
 490static void
 491vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
 492{
 493        struct vc4_async_flip_state *flip_state =
 494                container_of(cb, struct vc4_async_flip_state, cb);
 495        struct drm_crtc *crtc = flip_state->crtc;
 496        struct drm_device *dev = crtc->dev;
 497        struct vc4_dev *vc4 = to_vc4_dev(dev);
 498        struct drm_plane *plane = crtc->primary;
 499
 500        vc4_plane_async_set_fb(plane, flip_state->fb);
 501        if (flip_state->event) {
 502                unsigned long flags;
 503
 504                spin_lock_irqsave(&dev->event_lock, flags);
 505                drm_crtc_send_vblank_event(crtc, flip_state->event);
 506                spin_unlock_irqrestore(&dev->event_lock, flags);
 507        }
 508
 509        drm_framebuffer_unreference(flip_state->fb);
 510        kfree(flip_state);
 511
 512        up(&vc4->async_modeset);
 513}
 514
 515/* Implements async (non-vblank-synced) page flips.
 516 *
 517 * The page flip ioctl needs to return immediately, so we grab the
 518 * modeset semaphore on the pipe, and queue the address update for
 519 * when V3D is done with the BO being flipped to.
 520 */
 521static int vc4_async_page_flip(struct drm_crtc *crtc,
 522                               struct drm_framebuffer *fb,
 523                               struct drm_pending_vblank_event *event,
 524                               uint32_t flags)
 525{
 526        struct drm_device *dev = crtc->dev;
 527        struct vc4_dev *vc4 = to_vc4_dev(dev);
 528        struct drm_plane *plane = crtc->primary;
 529        int ret = 0;
 530        struct vc4_async_flip_state *flip_state;
 531        struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
 532        struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
 533
 534        flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
 535        if (!flip_state)
 536                return -ENOMEM;
 537
 538        drm_framebuffer_reference(fb);
 539        flip_state->fb = fb;
 540        flip_state->crtc = crtc;
 541        flip_state->event = event;
 542
 543        /* Make sure all other async modesetes have landed. */
 544        ret = down_interruptible(&vc4->async_modeset);
 545        if (ret) {
 546                drm_framebuffer_unreference(fb);
 547                kfree(flip_state);
 548                return ret;
 549        }
 550
 551        /* Immediately update the plane's legacy fb pointer, so that later
 552         * modeset prep sees the state that will be present when the semaphore
 553         * is released.
 554         */
 555        drm_atomic_set_fb_for_plane(plane->state, fb);
 556        plane->fb = fb;
 557
 558        vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
 559                           vc4_async_page_flip_complete);
 560
 561        /* Driver takes ownership of state on successful async commit. */
 562        return 0;
 563}
 564
 565static int vc4_page_flip(struct drm_crtc *crtc,
 566                         struct drm_framebuffer *fb,
 567                         struct drm_pending_vblank_event *event,
 568                         uint32_t flags)
 569{
 570        if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
 571                return vc4_async_page_flip(crtc, fb, event, flags);
 572        else
 573                return drm_atomic_helper_page_flip(crtc, fb, event, flags);
 574}
 575
 576static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
 577{
 578        struct vc4_crtc_state *vc4_state;
 579
 580        vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
 581        if (!vc4_state)
 582                return NULL;
 583
 584        __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
 585        return &vc4_state->base;
 586}
 587
 588static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
 589                                   struct drm_crtc_state *state)
 590{
 591        struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
 592        struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
 593
 594        if (vc4_state->mm.allocated) {
 595                unsigned long flags;
 596
 597                spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
 598                drm_mm_remove_node(&vc4_state->mm);
 599                spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
 600
 601        }
 602
 603        __drm_atomic_helper_crtc_destroy_state(crtc, state);
 604}
 605
 606static const struct drm_crtc_funcs vc4_crtc_funcs = {
 607        .set_config = drm_atomic_helper_set_config,
 608        .destroy = vc4_crtc_destroy,
 609        .page_flip = vc4_page_flip,
 610        .set_property = NULL,
 611        .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
 612        .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
 613        .reset = drm_atomic_helper_crtc_reset,
 614        .atomic_duplicate_state = vc4_crtc_duplicate_state,
 615        .atomic_destroy_state = vc4_crtc_destroy_state,
 616};
 617
 618static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
 619        .mode_set_nofb = vc4_crtc_mode_set_nofb,
 620        .disable = vc4_crtc_disable,
 621        .enable = vc4_crtc_enable,
 622        .atomic_check = vc4_crtc_atomic_check,
 623        .atomic_flush = vc4_crtc_atomic_flush,
 624};
 625
 626static const struct vc4_crtc_data pv0_data = {
 627        .hvs_channel = 0,
 628        .encoder0_type = VC4_ENCODER_TYPE_DSI0,
 629        .encoder1_type = VC4_ENCODER_TYPE_DPI,
 630};
 631
 632static const struct vc4_crtc_data pv1_data = {
 633        .hvs_channel = 2,
 634        .encoder0_type = VC4_ENCODER_TYPE_DSI1,
 635        .encoder1_type = VC4_ENCODER_TYPE_SMI,
 636};
 637
 638static const struct vc4_crtc_data pv2_data = {
 639        .hvs_channel = 1,
 640        .encoder0_type = VC4_ENCODER_TYPE_VEC,
 641        .encoder1_type = VC4_ENCODER_TYPE_HDMI,
 642};
 643
 644static const struct of_device_id vc4_crtc_dt_match[] = {
 645        { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
 646        { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
 647        { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
 648        {}
 649};
 650
 651static void vc4_set_crtc_possible_masks(struct drm_device *drm,
 652                                        struct drm_crtc *crtc)
 653{
 654        struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 655        struct drm_encoder *encoder;
 656
 657        drm_for_each_encoder(encoder, drm) {
 658                struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
 659
 660                if (vc4_encoder->type == vc4_crtc->data->encoder0_type) {
 661                        vc4_encoder->clock_select = 0;
 662                        encoder->possible_crtcs |= drm_crtc_mask(crtc);
 663                } else if (vc4_encoder->type == vc4_crtc->data->encoder1_type) {
 664                        vc4_encoder->clock_select = 1;
 665                        encoder->possible_crtcs |= drm_crtc_mask(crtc);
 666                }
 667        }
 668}
 669
 670static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
 671{
 672        struct platform_device *pdev = to_platform_device(dev);
 673        struct drm_device *drm = dev_get_drvdata(master);
 674        struct vc4_dev *vc4 = to_vc4_dev(drm);
 675        struct vc4_crtc *vc4_crtc;
 676        struct drm_crtc *crtc;
 677        struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
 678        const struct of_device_id *match;
 679        int ret, i;
 680
 681        vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
 682        if (!vc4_crtc)
 683                return -ENOMEM;
 684        crtc = &vc4_crtc->base;
 685
 686        match = of_match_device(vc4_crtc_dt_match, dev);
 687        if (!match)
 688                return -ENODEV;
 689        vc4_crtc->data = match->data;
 690
 691        vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
 692        if (IS_ERR(vc4_crtc->regs))
 693                return PTR_ERR(vc4_crtc->regs);
 694
 695        /* For now, we create just the primary and the legacy cursor
 696         * planes.  We should be able to stack more planes on easily,
 697         * but to do that we would need to compute the bandwidth
 698         * requirement of the plane configuration, and reject ones
 699         * that will take too much.
 700         */
 701        primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
 702        if (IS_ERR(primary_plane)) {
 703                dev_err(dev, "failed to construct primary plane\n");
 704                ret = PTR_ERR(primary_plane);
 705                goto err;
 706        }
 707
 708        drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
 709                                  &vc4_crtc_funcs, NULL);
 710        drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
 711        primary_plane->crtc = crtc;
 712        vc4->crtc[drm_crtc_index(crtc)] = vc4_crtc;
 713        vc4_crtc->channel = vc4_crtc->data->hvs_channel;
 714
 715        /* Set up some arbitrary number of planes.  We're not limited
 716         * by a set number of physical registers, just the space in
 717         * the HVS (16k) and how small an plane can be (28 bytes).
 718         * However, each plane we set up takes up some memory, and
 719         * increases the cost of looping over planes, which atomic
 720         * modesetting does quite a bit.  As a result, we pick a
 721         * modest number of planes to expose, that should hopefully
 722         * still cover any sane usecase.
 723         */
 724        for (i = 0; i < 8; i++) {
 725                struct drm_plane *plane =
 726                        vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
 727
 728                if (IS_ERR(plane))
 729                        continue;
 730
 731                plane->possible_crtcs = 1 << drm_crtc_index(crtc);
 732        }
 733
 734        /* Set up the legacy cursor after overlay initialization,
 735         * since we overlay planes on the CRTC in the order they were
 736         * initialized.
 737         */
 738        cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
 739        if (!IS_ERR(cursor_plane)) {
 740                cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc);
 741                cursor_plane->crtc = crtc;
 742                crtc->cursor = cursor_plane;
 743        }
 744
 745        CRTC_WRITE(PV_INTEN, 0);
 746        CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
 747        ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
 748                               vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
 749        if (ret)
 750                goto err_destroy_planes;
 751
 752        vc4_set_crtc_possible_masks(drm, crtc);
 753
 754        platform_set_drvdata(pdev, vc4_crtc);
 755
 756        return 0;
 757
 758err_destroy_planes:
 759        list_for_each_entry_safe(destroy_plane, temp,
 760                                 &drm->mode_config.plane_list, head) {
 761                if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc))
 762                    destroy_plane->funcs->destroy(destroy_plane);
 763        }
 764err:
 765        return ret;
 766}
 767
 768static void vc4_crtc_unbind(struct device *dev, struct device *master,
 769                            void *data)
 770{
 771        struct platform_device *pdev = to_platform_device(dev);
 772        struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
 773
 774        vc4_crtc_destroy(&vc4_crtc->base);
 775
 776        CRTC_WRITE(PV_INTEN, 0);
 777
 778        platform_set_drvdata(pdev, NULL);
 779}
 780
 781static const struct component_ops vc4_crtc_ops = {
 782        .bind   = vc4_crtc_bind,
 783        .unbind = vc4_crtc_unbind,
 784};
 785
 786static int vc4_crtc_dev_probe(struct platform_device *pdev)
 787{
 788        return component_add(&pdev->dev, &vc4_crtc_ops);
 789}
 790
 791static int vc4_crtc_dev_remove(struct platform_device *pdev)
 792{
 793        component_del(&pdev->dev, &vc4_crtc_ops);
 794        return 0;
 795}
 796
 797struct platform_driver vc4_crtc_driver = {
 798        .probe = vc4_crtc_dev_probe,
 799        .remove = vc4_crtc_dev_remove,
 800        .driver = {
 801                .name = "vc4_crtc",
 802                .of_match_table = vc4_crtc_dt_match,
 803        },
 804};
 805