linux/drivers/i2c/busses/i2c-at91.c
<<
>>
Prefs
   1/*
   2 *  i2c Support for Atmel's AT91 Two-Wire Interface (TWI)
   3 *
   4 *  Copyright (C) 2011 Weinmann Medical GmbH
   5 *  Author: Nikolaus Voss <n.voss@weinmann.de>
   6 *
   7 *  Evolved from original work by:
   8 *  Copyright (C) 2004 Rick Bronson
   9 *  Converted to 2.6 by Andrew Victor <andrew@sanpeople.com>
  10 *
  11 *  Borrowed heavily from original work by:
  12 *  Copyright (C) 2000 Philip Edelbrock <phil@stimpy.netroedge.com>
  13 *
  14 *  This program is free software; you can redistribute it and/or modify
  15 *  it under the terms of the GNU General Public License as published by
  16 *  the Free Software Foundation; either version 2 of the License, or
  17 *  (at your option) any later version.
  18 */
  19
  20#include <linux/clk.h>
  21#include <linux/completion.h>
  22#include <linux/dma-mapping.h>
  23#include <linux/dmaengine.h>
  24#include <linux/err.h>
  25#include <linux/i2c.h>
  26#include <linux/interrupt.h>
  27#include <linux/io.h>
  28#include <linux/module.h>
  29#include <linux/of.h>
  30#include <linux/of_device.h>
  31#include <linux/platform_device.h>
  32#include <linux/slab.h>
  33#include <linux/platform_data/dma-atmel.h>
  34#include <linux/pm_runtime.h>
  35#include <linux/pinctrl/consumer.h>
  36
  37#define DEFAULT_TWI_CLK_HZ              100000          /* max 400 Kbits/s */
  38#define AT91_I2C_TIMEOUT        msecs_to_jiffies(100)   /* transfer timeout */
  39#define AT91_I2C_DMA_THRESHOLD  8                       /* enable DMA if transfer size is bigger than this threshold */
  40#define AUTOSUSPEND_TIMEOUT             2000
  41
  42/* AT91 TWI register definitions */
  43#define AT91_TWI_CR             0x0000  /* Control Register */
  44#define AT91_TWI_START          BIT(0)  /* Send a Start Condition */
  45#define AT91_TWI_STOP           BIT(1)  /* Send a Stop Condition */
  46#define AT91_TWI_MSEN           BIT(2)  /* Master Transfer Enable */
  47#define AT91_TWI_MSDIS          BIT(3)  /* Master Transfer Disable */
  48#define AT91_TWI_SVEN           BIT(4)  /* Slave Transfer Enable */
  49#define AT91_TWI_SVDIS          BIT(5)  /* Slave Transfer Disable */
  50#define AT91_TWI_QUICK          BIT(6)  /* SMBus quick command */
  51#define AT91_TWI_SWRST          BIT(7)  /* Software Reset */
  52#define AT91_TWI_ACMEN          BIT(16) /* Alternative Command Mode Enable */
  53#define AT91_TWI_ACMDIS         BIT(17) /* Alternative Command Mode Disable */
  54#define AT91_TWI_THRCLR         BIT(24) /* Transmit Holding Register Clear */
  55#define AT91_TWI_RHRCLR         BIT(25) /* Receive Holding Register Clear */
  56#define AT91_TWI_LOCKCLR        BIT(26) /* Lock Clear */
  57#define AT91_TWI_FIFOEN         BIT(28) /* FIFO Enable */
  58#define AT91_TWI_FIFODIS        BIT(29) /* FIFO Disable */
  59
  60#define AT91_TWI_MMR            0x0004  /* Master Mode Register */
  61#define AT91_TWI_IADRSZ_1       0x0100  /* Internal Device Address Size */
  62#define AT91_TWI_MREAD          BIT(12) /* Master Read Direction */
  63
  64#define AT91_TWI_IADR           0x000c  /* Internal Address Register */
  65
  66#define AT91_TWI_CWGR           0x0010  /* Clock Waveform Generator Reg */
  67#define AT91_TWI_CWGR_HOLD_MAX  0x1f
  68#define AT91_TWI_CWGR_HOLD(x)   (((x) & AT91_TWI_CWGR_HOLD_MAX) << 24)
  69
  70#define AT91_TWI_SR             0x0020  /* Status Register */
  71#define AT91_TWI_TXCOMP         BIT(0)  /* Transmission Complete */
  72#define AT91_TWI_RXRDY          BIT(1)  /* Receive Holding Register Ready */
  73#define AT91_TWI_TXRDY          BIT(2)  /* Transmit Holding Register Ready */
  74#define AT91_TWI_OVRE           BIT(6)  /* Overrun Error */
  75#define AT91_TWI_UNRE           BIT(7)  /* Underrun Error */
  76#define AT91_TWI_NACK           BIT(8)  /* Not Acknowledged */
  77#define AT91_TWI_LOCK           BIT(23) /* TWI Lock due to Frame Errors */
  78
  79#define AT91_TWI_INT_MASK \
  80        (AT91_TWI_TXCOMP | AT91_TWI_RXRDY | AT91_TWI_TXRDY | AT91_TWI_NACK)
  81
  82#define AT91_TWI_IER            0x0024  /* Interrupt Enable Register */
  83#define AT91_TWI_IDR            0x0028  /* Interrupt Disable Register */
  84#define AT91_TWI_IMR            0x002c  /* Interrupt Mask Register */
  85#define AT91_TWI_RHR            0x0030  /* Receive Holding Register */
  86#define AT91_TWI_THR            0x0034  /* Transmit Holding Register */
  87
  88#define AT91_TWI_ACR            0x0040  /* Alternative Command Register */
  89#define AT91_TWI_ACR_DATAL(len) ((len) & 0xff)
  90#define AT91_TWI_ACR_DIR        BIT(8)
  91
  92#define AT91_TWI_FMR            0x0050  /* FIFO Mode Register */
  93#define AT91_TWI_FMR_TXRDYM(mode)       (((mode) & 0x3) << 0)
  94#define AT91_TWI_FMR_TXRDYM_MASK        (0x3 << 0)
  95#define AT91_TWI_FMR_RXRDYM(mode)       (((mode) & 0x3) << 4)
  96#define AT91_TWI_FMR_RXRDYM_MASK        (0x3 << 4)
  97#define AT91_TWI_ONE_DATA       0x0
  98#define AT91_TWI_TWO_DATA       0x1
  99#define AT91_TWI_FOUR_DATA      0x2
 100
 101#define AT91_TWI_FLR            0x0054  /* FIFO Level Register */
 102
 103#define AT91_TWI_FSR            0x0060  /* FIFO Status Register */
 104#define AT91_TWI_FIER           0x0064  /* FIFO Interrupt Enable Register */
 105#define AT91_TWI_FIDR           0x0068  /* FIFO Interrupt Disable Register */
 106#define AT91_TWI_FIMR           0x006c  /* FIFO Interrupt Mask Register */
 107
 108#define AT91_TWI_VER            0x00fc  /* Version Register */
 109
 110struct at91_twi_pdata {
 111        unsigned clk_max_div;
 112        unsigned clk_offset;
 113        bool has_unre_flag;
 114        bool has_alt_cmd;
 115        bool has_hold_field;
 116        struct at_dma_slave dma_slave;
 117};
 118
 119struct at91_twi_dma {
 120        struct dma_chan *chan_rx;
 121        struct dma_chan *chan_tx;
 122        struct scatterlist sg[2];
 123        struct dma_async_tx_descriptor *data_desc;
 124        enum dma_data_direction direction;
 125        bool buf_mapped;
 126        bool xfer_in_progress;
 127};
 128
 129struct at91_twi_dev {
 130        struct device *dev;
 131        void __iomem *base;
 132        struct completion cmd_complete;
 133        struct clk *clk;
 134        u8 *buf;
 135        size_t buf_len;
 136        struct i2c_msg *msg;
 137        int irq;
 138        unsigned imr;
 139        unsigned transfer_status;
 140        struct i2c_adapter adapter;
 141        unsigned twi_cwgr_reg;
 142        struct at91_twi_pdata *pdata;
 143        bool use_dma;
 144        bool recv_len_abort;
 145        u32 fifo_size;
 146        struct at91_twi_dma dma;
 147};
 148
 149static unsigned at91_twi_read(struct at91_twi_dev *dev, unsigned reg)
 150{
 151        return readl_relaxed(dev->base + reg);
 152}
 153
 154static void at91_twi_write(struct at91_twi_dev *dev, unsigned reg, unsigned val)
 155{
 156        writel_relaxed(val, dev->base + reg);
 157}
 158
 159static void at91_disable_twi_interrupts(struct at91_twi_dev *dev)
 160{
 161        at91_twi_write(dev, AT91_TWI_IDR, AT91_TWI_INT_MASK);
 162}
 163
 164static void at91_twi_irq_save(struct at91_twi_dev *dev)
 165{
 166        dev->imr = at91_twi_read(dev, AT91_TWI_IMR) & AT91_TWI_INT_MASK;
 167        at91_disable_twi_interrupts(dev);
 168}
 169
 170static void at91_twi_irq_restore(struct at91_twi_dev *dev)
 171{
 172        at91_twi_write(dev, AT91_TWI_IER, dev->imr);
 173}
 174
 175static void at91_init_twi_bus(struct at91_twi_dev *dev)
 176{
 177        at91_disable_twi_interrupts(dev);
 178        at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_SWRST);
 179        /* FIFO should be enabled immediately after the software reset */
 180        if (dev->fifo_size)
 181                at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_FIFOEN);
 182        at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_MSEN);
 183        at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_SVDIS);
 184        at91_twi_write(dev, AT91_TWI_CWGR, dev->twi_cwgr_reg);
 185}
 186
 187/*
 188 * Calculate symmetric clock as stated in datasheet:
 189 * twi_clk = F_MAIN / (2 * (cdiv * (1 << ckdiv) + offset))
 190 */
 191static void at91_calc_twi_clock(struct at91_twi_dev *dev, int twi_clk)
 192{
 193        int ckdiv, cdiv, div, hold = 0;
 194        struct at91_twi_pdata *pdata = dev->pdata;
 195        int offset = pdata->clk_offset;
 196        int max_ckdiv = pdata->clk_max_div;
 197        u32 twd_hold_time_ns = 0;
 198
 199        div = max(0, (int)DIV_ROUND_UP(clk_get_rate(dev->clk),
 200                                       2 * twi_clk) - offset);
 201        ckdiv = fls(div >> 8);
 202        cdiv = div >> ckdiv;
 203
 204        if (ckdiv > max_ckdiv) {
 205                dev_warn(dev->dev, "%d exceeds ckdiv max value which is %d.\n",
 206                         ckdiv, max_ckdiv);
 207                ckdiv = max_ckdiv;
 208                cdiv = 255;
 209        }
 210
 211        if (pdata->has_hold_field) {
 212                of_property_read_u32(dev->dev->of_node, "i2c-sda-hold-time-ns",
 213                                     &twd_hold_time_ns);
 214
 215                /*
 216                 * hold time = HOLD + 3 x T_peripheral_clock
 217                 * Use clk rate in kHz to prevent overflows when computing
 218                 * hold.
 219                 */
 220                hold = DIV_ROUND_UP(twd_hold_time_ns
 221                                    * (clk_get_rate(dev->clk) / 1000), 1000000);
 222                hold -= 3;
 223                if (hold < 0)
 224                        hold = 0;
 225                if (hold > AT91_TWI_CWGR_HOLD_MAX) {
 226                        dev_warn(dev->dev,
 227                                 "HOLD field set to its maximum value (%d instead of %d)\n",
 228                                 AT91_TWI_CWGR_HOLD_MAX, hold);
 229                        hold = AT91_TWI_CWGR_HOLD_MAX;
 230                }
 231        }
 232
 233        dev->twi_cwgr_reg = (ckdiv << 16) | (cdiv << 8) | cdiv
 234                            | AT91_TWI_CWGR_HOLD(hold);
 235
 236        dev_dbg(dev->dev, "cdiv %d ckdiv %d hold %d (%d ns)\n",
 237                cdiv, ckdiv, hold, twd_hold_time_ns);
 238}
 239
 240static void at91_twi_dma_cleanup(struct at91_twi_dev *dev)
 241{
 242        struct at91_twi_dma *dma = &dev->dma;
 243
 244        at91_twi_irq_save(dev);
 245
 246        if (dma->xfer_in_progress) {
 247                if (dma->direction == DMA_FROM_DEVICE)
 248                        dmaengine_terminate_all(dma->chan_rx);
 249                else
 250                        dmaengine_terminate_all(dma->chan_tx);
 251                dma->xfer_in_progress = false;
 252        }
 253        if (dma->buf_mapped) {
 254                dma_unmap_single(dev->dev, sg_dma_address(&dma->sg[0]),
 255                                 dev->buf_len, dma->direction);
 256                dma->buf_mapped = false;
 257        }
 258
 259        at91_twi_irq_restore(dev);
 260}
 261
 262static void at91_twi_write_next_byte(struct at91_twi_dev *dev)
 263{
 264        if (!dev->buf_len)
 265                return;
 266
 267        /* 8bit write works with and without FIFO */
 268        writeb_relaxed(*dev->buf, dev->base + AT91_TWI_THR);
 269
 270        /* send stop when last byte has been written */
 271        if (--dev->buf_len == 0)
 272                if (!dev->pdata->has_alt_cmd)
 273                        at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
 274
 275        dev_dbg(dev->dev, "wrote 0x%x, to go %d\n", *dev->buf, dev->buf_len);
 276
 277        ++dev->buf;
 278}
 279
 280static void at91_twi_write_data_dma_callback(void *data)
 281{
 282        struct at91_twi_dev *dev = (struct at91_twi_dev *)data;
 283
 284        dma_unmap_single(dev->dev, sg_dma_address(&dev->dma.sg[0]),
 285                         dev->buf_len, DMA_TO_DEVICE);
 286
 287        /*
 288         * When this callback is called, THR/TX FIFO is likely not to be empty
 289         * yet. So we have to wait for TXCOMP or NACK bits to be set into the
 290         * Status Register to be sure that the STOP bit has been sent and the
 291         * transfer is completed. The NACK interrupt has already been enabled,
 292         * we just have to enable TXCOMP one.
 293         */
 294        at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_TXCOMP);
 295        if (!dev->pdata->has_alt_cmd)
 296                at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
 297}
 298
 299static void at91_twi_write_data_dma(struct at91_twi_dev *dev)
 300{
 301        dma_addr_t dma_addr;
 302        struct dma_async_tx_descriptor *txdesc;
 303        struct at91_twi_dma *dma = &dev->dma;
 304        struct dma_chan *chan_tx = dma->chan_tx;
 305        unsigned int sg_len = 1;
 306
 307        if (!dev->buf_len)
 308                return;
 309
 310        dma->direction = DMA_TO_DEVICE;
 311
 312        at91_twi_irq_save(dev);
 313        dma_addr = dma_map_single(dev->dev, dev->buf, dev->buf_len,
 314                                  DMA_TO_DEVICE);
 315        if (dma_mapping_error(dev->dev, dma_addr)) {
 316                dev_err(dev->dev, "dma map failed\n");
 317                return;
 318        }
 319        dma->buf_mapped = true;
 320        at91_twi_irq_restore(dev);
 321
 322        if (dev->fifo_size) {
 323                size_t part1_len, part2_len;
 324                struct scatterlist *sg;
 325                unsigned fifo_mr;
 326
 327                sg_len = 0;
 328
 329                part1_len = dev->buf_len & ~0x3;
 330                if (part1_len) {
 331                        sg = &dma->sg[sg_len++];
 332                        sg_dma_len(sg) = part1_len;
 333                        sg_dma_address(sg) = dma_addr;
 334                }
 335
 336                part2_len = dev->buf_len & 0x3;
 337                if (part2_len) {
 338                        sg = &dma->sg[sg_len++];
 339                        sg_dma_len(sg) = part2_len;
 340                        sg_dma_address(sg) = dma_addr + part1_len;
 341                }
 342
 343                /*
 344                 * DMA controller is triggered when at least 4 data can be
 345                 * written into the TX FIFO
 346                 */
 347                fifo_mr = at91_twi_read(dev, AT91_TWI_FMR);
 348                fifo_mr &= ~AT91_TWI_FMR_TXRDYM_MASK;
 349                fifo_mr |= AT91_TWI_FMR_TXRDYM(AT91_TWI_FOUR_DATA);
 350                at91_twi_write(dev, AT91_TWI_FMR, fifo_mr);
 351        } else {
 352                sg_dma_len(&dma->sg[0]) = dev->buf_len;
 353                sg_dma_address(&dma->sg[0]) = dma_addr;
 354        }
 355
 356        txdesc = dmaengine_prep_slave_sg(chan_tx, dma->sg, sg_len,
 357                                         DMA_MEM_TO_DEV,
 358                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 359        if (!txdesc) {
 360                dev_err(dev->dev, "dma prep slave sg failed\n");
 361                goto error;
 362        }
 363
 364        txdesc->callback = at91_twi_write_data_dma_callback;
 365        txdesc->callback_param = dev;
 366
 367        dma->xfer_in_progress = true;
 368        dmaengine_submit(txdesc);
 369        dma_async_issue_pending(chan_tx);
 370
 371        return;
 372
 373error:
 374        at91_twi_dma_cleanup(dev);
 375}
 376
 377static void at91_twi_read_next_byte(struct at91_twi_dev *dev)
 378{
 379        /*
 380         * If we are in this case, it means there is garbage data in RHR, so
 381         * delete them.
 382         */
 383        if (!dev->buf_len) {
 384                at91_twi_read(dev, AT91_TWI_RHR);
 385                return;
 386        }
 387
 388        /* 8bit read works with and without FIFO */
 389        *dev->buf = readb_relaxed(dev->base + AT91_TWI_RHR);
 390        --dev->buf_len;
 391
 392        /* return if aborting, we only needed to read RHR to clear RXRDY*/
 393        if (dev->recv_len_abort)
 394                return;
 395
 396        /* handle I2C_SMBUS_BLOCK_DATA */
 397        if (unlikely(dev->msg->flags & I2C_M_RECV_LEN)) {
 398                /* ensure length byte is a valid value */
 399                if (*dev->buf <= I2C_SMBUS_BLOCK_MAX && *dev->buf > 0) {
 400                        dev->msg->flags &= ~I2C_M_RECV_LEN;
 401                        dev->buf_len += *dev->buf;
 402                        dev->msg->len = dev->buf_len + 1;
 403                        dev_dbg(dev->dev, "received block length %d\n",
 404                                         dev->buf_len);
 405                } else {
 406                        /* abort and send the stop by reading one more byte */
 407                        dev->recv_len_abort = true;
 408                        dev->buf_len = 1;
 409                }
 410        }
 411
 412        /* send stop if second but last byte has been read */
 413        if (!dev->pdata->has_alt_cmd && dev->buf_len == 1)
 414                at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
 415
 416        dev_dbg(dev->dev, "read 0x%x, to go %d\n", *dev->buf, dev->buf_len);
 417
 418        ++dev->buf;
 419}
 420
 421static void at91_twi_read_data_dma_callback(void *data)
 422{
 423        struct at91_twi_dev *dev = (struct at91_twi_dev *)data;
 424        unsigned ier = AT91_TWI_TXCOMP;
 425
 426        dma_unmap_single(dev->dev, sg_dma_address(&dev->dma.sg[0]),
 427                         dev->buf_len, DMA_FROM_DEVICE);
 428
 429        if (!dev->pdata->has_alt_cmd) {
 430                /* The last two bytes have to be read without using dma */
 431                dev->buf += dev->buf_len - 2;
 432                dev->buf_len = 2;
 433                ier |= AT91_TWI_RXRDY;
 434        }
 435        at91_twi_write(dev, AT91_TWI_IER, ier);
 436}
 437
 438static void at91_twi_read_data_dma(struct at91_twi_dev *dev)
 439{
 440        dma_addr_t dma_addr;
 441        struct dma_async_tx_descriptor *rxdesc;
 442        struct at91_twi_dma *dma = &dev->dma;
 443        struct dma_chan *chan_rx = dma->chan_rx;
 444        size_t buf_len;
 445
 446        buf_len = (dev->pdata->has_alt_cmd) ? dev->buf_len : dev->buf_len - 2;
 447        dma->direction = DMA_FROM_DEVICE;
 448
 449        /* Keep in mind that we won't use dma to read the last two bytes */
 450        at91_twi_irq_save(dev);
 451        dma_addr = dma_map_single(dev->dev, dev->buf, buf_len, DMA_FROM_DEVICE);
 452        if (dma_mapping_error(dev->dev, dma_addr)) {
 453                dev_err(dev->dev, "dma map failed\n");
 454                return;
 455        }
 456        dma->buf_mapped = true;
 457        at91_twi_irq_restore(dev);
 458
 459        if (dev->fifo_size && IS_ALIGNED(buf_len, 4)) {
 460                unsigned fifo_mr;
 461
 462                /*
 463                 * DMA controller is triggered when at least 4 data can be
 464                 * read from the RX FIFO
 465                 */
 466                fifo_mr = at91_twi_read(dev, AT91_TWI_FMR);
 467                fifo_mr &= ~AT91_TWI_FMR_RXRDYM_MASK;
 468                fifo_mr |= AT91_TWI_FMR_RXRDYM(AT91_TWI_FOUR_DATA);
 469                at91_twi_write(dev, AT91_TWI_FMR, fifo_mr);
 470        }
 471
 472        sg_dma_len(&dma->sg[0]) = buf_len;
 473        sg_dma_address(&dma->sg[0]) = dma_addr;
 474
 475        rxdesc = dmaengine_prep_slave_sg(chan_rx, dma->sg, 1, DMA_DEV_TO_MEM,
 476                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 477        if (!rxdesc) {
 478                dev_err(dev->dev, "dma prep slave sg failed\n");
 479                goto error;
 480        }
 481
 482        rxdesc->callback = at91_twi_read_data_dma_callback;
 483        rxdesc->callback_param = dev;
 484
 485        dma->xfer_in_progress = true;
 486        dmaengine_submit(rxdesc);
 487        dma_async_issue_pending(dma->chan_rx);
 488
 489        return;
 490
 491error:
 492        at91_twi_dma_cleanup(dev);
 493}
 494
 495static irqreturn_t atmel_twi_interrupt(int irq, void *dev_id)
 496{
 497        struct at91_twi_dev *dev = dev_id;
 498        const unsigned status = at91_twi_read(dev, AT91_TWI_SR);
 499        const unsigned irqstatus = status & at91_twi_read(dev, AT91_TWI_IMR);
 500
 501        if (!irqstatus)
 502                return IRQ_NONE;
 503        /*
 504         * In reception, the behavior of the twi device (before sama5d2) is
 505         * weird. There is some magic about RXRDY flag! When a data has been
 506         * almost received, the reception of a new one is anticipated if there
 507         * is no stop command to send. That is the reason why ask for sending
 508         * the stop command not on the last data but on the second last one.
 509         *
 510         * Unfortunately, we could still have the RXRDY flag set even if the
 511         * transfer is done and we have read the last data. It might happen
 512         * when the i2c slave device sends too quickly data after receiving the
 513         * ack from the master. The data has been almost received before having
 514         * the order to send stop. In this case, sending the stop command could
 515         * cause a RXRDY interrupt with a TXCOMP one. It is better to manage
 516         * the RXRDY interrupt first in order to not keep garbage data in the
 517         * Receive Holding Register for the next transfer.
 518         */
 519        if (irqstatus & AT91_TWI_RXRDY)
 520                at91_twi_read_next_byte(dev);
 521
 522        /*
 523         * When a NACK condition is detected, the I2C controller sets the NACK,
 524         * TXCOMP and TXRDY bits all together in the Status Register (SR).
 525         *
 526         * 1 - Handling NACK errors with CPU write transfer.
 527         *
 528         * In such case, we should not write the next byte into the Transmit
 529         * Holding Register (THR) otherwise the I2C controller would start a new
 530         * transfer and the I2C slave is likely to reply by another NACK.
 531         *
 532         * 2 - Handling NACK errors with DMA write transfer.
 533         *
 534         * By setting the TXRDY bit in the SR, the I2C controller also triggers
 535         * the DMA controller to write the next data into the THR. Then the
 536         * result depends on the hardware version of the I2C controller.
 537         *
 538         * 2a - Without support of the Alternative Command mode.
 539         *
 540         * This is the worst case: the DMA controller is triggered to write the
 541         * next data into the THR, hence starting a new transfer: the I2C slave
 542         * is likely to reply by another NACK.
 543         * Concurrently, this interrupt handler is likely to be called to manage
 544         * the first NACK before the I2C controller detects the second NACK and
 545         * sets once again the NACK bit into the SR.
 546         * When handling the first NACK, this interrupt handler disables the I2C
 547         * controller interruptions, especially the NACK interrupt.
 548         * Hence, the NACK bit is pending into the SR. This is why we should
 549         * read the SR to clear all pending interrupts at the beginning of
 550         * at91_do_twi_transfer() before actually starting a new transfer.
 551         *
 552         * 2b - With support of the Alternative Command mode.
 553         *
 554         * When a NACK condition is detected, the I2C controller also locks the
 555         * THR (and sets the LOCK bit in the SR): even though the DMA controller
 556         * is triggered by the TXRDY bit to write the next data into the THR,
 557         * this data actually won't go on the I2C bus hence a second NACK is not
 558         * generated.
 559         */
 560        if (irqstatus & (AT91_TWI_TXCOMP | AT91_TWI_NACK)) {
 561                at91_disable_twi_interrupts(dev);
 562                complete(&dev->cmd_complete);
 563        } else if (irqstatus & AT91_TWI_TXRDY) {
 564                at91_twi_write_next_byte(dev);
 565        }
 566
 567        /* catch error flags */
 568        dev->transfer_status |= status;
 569
 570        return IRQ_HANDLED;
 571}
 572
 573static int at91_do_twi_transfer(struct at91_twi_dev *dev)
 574{
 575        int ret;
 576        unsigned long time_left;
 577        bool has_unre_flag = dev->pdata->has_unre_flag;
 578        bool has_alt_cmd = dev->pdata->has_alt_cmd;
 579
 580        /*
 581         * WARNING: the TXCOMP bit in the Status Register is NOT a clear on
 582         * read flag but shows the state of the transmission at the time the
 583         * Status Register is read. According to the programmer datasheet,
 584         * TXCOMP is set when both holding register and internal shifter are
 585         * empty and STOP condition has been sent.
 586         * Consequently, we should enable NACK interrupt rather than TXCOMP to
 587         * detect transmission failure.
 588         * Indeed let's take the case of an i2c write command using DMA.
 589         * Whenever the slave doesn't acknowledge a byte, the LOCK, NACK and
 590         * TXCOMP bits are set together into the Status Register.
 591         * LOCK is a clear on write bit, which is set to prevent the DMA
 592         * controller from sending new data on the i2c bus after a NACK
 593         * condition has happened. Once locked, this i2c peripheral stops
 594         * triggering the DMA controller for new data but it is more than
 595         * likely that a new DMA transaction is already in progress, writing
 596         * into the Transmit Holding Register. Since the peripheral is locked,
 597         * these new data won't be sent to the i2c bus but they will remain
 598         * into the Transmit Holding Register, so TXCOMP bit is cleared.
 599         * Then when the interrupt handler is called, the Status Register is
 600         * read: the TXCOMP bit is clear but NACK bit is still set. The driver
 601         * manage the error properly, without waiting for timeout.
 602         * This case can be reproduced easyly when writing into an at24 eeprom.
 603         *
 604         * Besides, the TXCOMP bit is already set before the i2c transaction
 605         * has been started. For read transactions, this bit is cleared when
 606         * writing the START bit into the Control Register. So the
 607         * corresponding interrupt can safely be enabled just after.
 608         * However for write transactions managed by the CPU, we first write
 609         * into THR, so TXCOMP is cleared. Then we can safely enable TXCOMP
 610         * interrupt. If TXCOMP interrupt were enabled before writing into THR,
 611         * the interrupt handler would be called immediately and the i2c command
 612         * would be reported as completed.
 613         * Also when a write transaction is managed by the DMA controller,
 614         * enabling the TXCOMP interrupt in this function may lead to a race
 615         * condition since we don't know whether the TXCOMP interrupt is enabled
 616         * before or after the DMA has started to write into THR. So the TXCOMP
 617         * interrupt is enabled later by at91_twi_write_data_dma_callback().
 618         * Immediately after in that DMA callback, if the alternative command
 619         * mode is not used, we still need to send the STOP condition manually
 620         * writing the corresponding bit into the Control Register.
 621         */
 622
 623        dev_dbg(dev->dev, "transfer: %s %d bytes.\n",
 624                (dev->msg->flags & I2C_M_RD) ? "read" : "write", dev->buf_len);
 625
 626        reinit_completion(&dev->cmd_complete);
 627        dev->transfer_status = 0;
 628
 629        /* Clear pending interrupts, such as NACK. */
 630        at91_twi_read(dev, AT91_TWI_SR);
 631
 632        if (dev->fifo_size) {
 633                unsigned fifo_mr = at91_twi_read(dev, AT91_TWI_FMR);
 634
 635                /* Reset FIFO mode register */
 636                fifo_mr &= ~(AT91_TWI_FMR_TXRDYM_MASK |
 637                             AT91_TWI_FMR_RXRDYM_MASK);
 638                fifo_mr |= AT91_TWI_FMR_TXRDYM(AT91_TWI_ONE_DATA);
 639                fifo_mr |= AT91_TWI_FMR_RXRDYM(AT91_TWI_ONE_DATA);
 640                at91_twi_write(dev, AT91_TWI_FMR, fifo_mr);
 641
 642                /* Flush FIFOs */
 643                at91_twi_write(dev, AT91_TWI_CR,
 644                               AT91_TWI_THRCLR | AT91_TWI_RHRCLR);
 645        }
 646
 647        if (!dev->buf_len) {
 648                at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_QUICK);
 649                at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_TXCOMP);
 650        } else if (dev->msg->flags & I2C_M_RD) {
 651                unsigned start_flags = AT91_TWI_START;
 652
 653                /* if only one byte is to be read, immediately stop transfer */
 654                if (!has_alt_cmd && dev->buf_len <= 1 &&
 655                    !(dev->msg->flags & I2C_M_RECV_LEN))
 656                        start_flags |= AT91_TWI_STOP;
 657                at91_twi_write(dev, AT91_TWI_CR, start_flags);
 658                /*
 659                 * When using dma without alternative command mode, the last
 660                 * byte has to be read manually in order to not send the stop
 661                 * command too late and then to receive extra data.
 662                 * In practice, there are some issues if you use the dma to
 663                 * read n-1 bytes because of latency.
 664                 * Reading n-2 bytes with dma and the two last ones manually
 665                 * seems to be the best solution.
 666                 */
 667                if (dev->use_dma && (dev->buf_len > AT91_I2C_DMA_THRESHOLD)) {
 668                        at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_NACK);
 669                        at91_twi_read_data_dma(dev);
 670                } else {
 671                        at91_twi_write(dev, AT91_TWI_IER,
 672                                       AT91_TWI_TXCOMP |
 673                                       AT91_TWI_NACK |
 674                                       AT91_TWI_RXRDY);
 675                }
 676        } else {
 677                if (dev->use_dma && (dev->buf_len > AT91_I2C_DMA_THRESHOLD)) {
 678                        at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_NACK);
 679                        at91_twi_write_data_dma(dev);
 680                } else {
 681                        at91_twi_write_next_byte(dev);
 682                        at91_twi_write(dev, AT91_TWI_IER,
 683                                       AT91_TWI_TXCOMP |
 684                                       AT91_TWI_NACK |
 685                                       AT91_TWI_TXRDY);
 686                }
 687        }
 688
 689        time_left = wait_for_completion_timeout(&dev->cmd_complete,
 690                                              dev->adapter.timeout);
 691        if (time_left == 0) {
 692                dev->transfer_status |= at91_twi_read(dev, AT91_TWI_SR);
 693                dev_err(dev->dev, "controller timed out\n");
 694                at91_init_twi_bus(dev);
 695                ret = -ETIMEDOUT;
 696                goto error;
 697        }
 698        if (dev->transfer_status & AT91_TWI_NACK) {
 699                dev_dbg(dev->dev, "received nack\n");
 700                ret = -EREMOTEIO;
 701                goto error;
 702        }
 703        if (dev->transfer_status & AT91_TWI_OVRE) {
 704                dev_err(dev->dev, "overrun while reading\n");
 705                ret = -EIO;
 706                goto error;
 707        }
 708        if (has_unre_flag && dev->transfer_status & AT91_TWI_UNRE) {
 709                dev_err(dev->dev, "underrun while writing\n");
 710                ret = -EIO;
 711                goto error;
 712        }
 713        if ((has_alt_cmd || dev->fifo_size) &&
 714            (dev->transfer_status & AT91_TWI_LOCK)) {
 715                dev_err(dev->dev, "tx locked\n");
 716                ret = -EIO;
 717                goto error;
 718        }
 719        if (dev->recv_len_abort) {
 720                dev_err(dev->dev, "invalid smbus block length recvd\n");
 721                ret = -EPROTO;
 722                goto error;
 723        }
 724
 725        dev_dbg(dev->dev, "transfer complete\n");
 726
 727        return 0;
 728
 729error:
 730        /* first stop DMA transfer if still in progress */
 731        at91_twi_dma_cleanup(dev);
 732        /* then flush THR/FIFO and unlock TX if locked */
 733        if ((has_alt_cmd || dev->fifo_size) &&
 734            (dev->transfer_status & AT91_TWI_LOCK)) {
 735                dev_dbg(dev->dev, "unlock tx\n");
 736                at91_twi_write(dev, AT91_TWI_CR,
 737                               AT91_TWI_THRCLR | AT91_TWI_LOCKCLR);
 738        }
 739        return ret;
 740}
 741
 742static int at91_twi_xfer(struct i2c_adapter *adap, struct i2c_msg *msg, int num)
 743{
 744        struct at91_twi_dev *dev = i2c_get_adapdata(adap);
 745        int ret;
 746        unsigned int_addr_flag = 0;
 747        struct i2c_msg *m_start = msg;
 748        bool is_read, use_alt_cmd = false;
 749
 750        dev_dbg(&adap->dev, "at91_xfer: processing %d messages:\n", num);
 751
 752        ret = pm_runtime_get_sync(dev->dev);
 753        if (ret < 0)
 754                goto out;
 755
 756        if (num == 2) {
 757                int internal_address = 0;
 758                int i;
 759
 760                /* 1st msg is put into the internal address, start with 2nd */
 761                m_start = &msg[1];
 762                for (i = 0; i < msg->len; ++i) {
 763                        const unsigned addr = msg->buf[msg->len - 1 - i];
 764
 765                        internal_address |= addr << (8 * i);
 766                        int_addr_flag += AT91_TWI_IADRSZ_1;
 767                }
 768                at91_twi_write(dev, AT91_TWI_IADR, internal_address);
 769        }
 770
 771        is_read = (m_start->flags & I2C_M_RD);
 772        if (dev->pdata->has_alt_cmd) {
 773                if (m_start->len > 0) {
 774                        at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_ACMEN);
 775                        at91_twi_write(dev, AT91_TWI_ACR,
 776                                       AT91_TWI_ACR_DATAL(m_start->len) |
 777                                       ((is_read) ? AT91_TWI_ACR_DIR : 0));
 778                        use_alt_cmd = true;
 779                } else {
 780                        at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_ACMDIS);
 781                }
 782        }
 783
 784        at91_twi_write(dev, AT91_TWI_MMR,
 785                       (m_start->addr << 16) |
 786                       int_addr_flag |
 787                       ((!use_alt_cmd && is_read) ? AT91_TWI_MREAD : 0));
 788
 789        dev->buf_len = m_start->len;
 790        dev->buf = m_start->buf;
 791        dev->msg = m_start;
 792        dev->recv_len_abort = false;
 793
 794        ret = at91_do_twi_transfer(dev);
 795
 796        ret = (ret < 0) ? ret : num;
 797out:
 798        pm_runtime_mark_last_busy(dev->dev);
 799        pm_runtime_put_autosuspend(dev->dev);
 800
 801        return ret;
 802}
 803
 804/*
 805 * The hardware can handle at most two messages concatenated by a
 806 * repeated start via it's internal address feature.
 807 */
 808static struct i2c_adapter_quirks at91_twi_quirks = {
 809        .flags = I2C_AQ_COMB | I2C_AQ_COMB_WRITE_FIRST | I2C_AQ_COMB_SAME_ADDR,
 810        .max_comb_1st_msg_len = 3,
 811};
 812
 813static u32 at91_twi_func(struct i2c_adapter *adapter)
 814{
 815        return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL
 816                | I2C_FUNC_SMBUS_READ_BLOCK_DATA;
 817}
 818
 819static struct i2c_algorithm at91_twi_algorithm = {
 820        .master_xfer    = at91_twi_xfer,
 821        .functionality  = at91_twi_func,
 822};
 823
 824static struct at91_twi_pdata at91rm9200_config = {
 825        .clk_max_div = 5,
 826        .clk_offset = 3,
 827        .has_unre_flag = true,
 828        .has_alt_cmd = false,
 829        .has_hold_field = false,
 830};
 831
 832static struct at91_twi_pdata at91sam9261_config = {
 833        .clk_max_div = 5,
 834        .clk_offset = 4,
 835        .has_unre_flag = false,
 836        .has_alt_cmd = false,
 837        .has_hold_field = false,
 838};
 839
 840static struct at91_twi_pdata at91sam9260_config = {
 841        .clk_max_div = 7,
 842        .clk_offset = 4,
 843        .has_unre_flag = false,
 844        .has_alt_cmd = false,
 845        .has_hold_field = false,
 846};
 847
 848static struct at91_twi_pdata at91sam9g20_config = {
 849        .clk_max_div = 7,
 850        .clk_offset = 4,
 851        .has_unre_flag = false,
 852        .has_alt_cmd = false,
 853        .has_hold_field = false,
 854};
 855
 856static struct at91_twi_pdata at91sam9g10_config = {
 857        .clk_max_div = 7,
 858        .clk_offset = 4,
 859        .has_unre_flag = false,
 860        .has_alt_cmd = false,
 861        .has_hold_field = false,
 862};
 863
 864static const struct platform_device_id at91_twi_devtypes[] = {
 865        {
 866                .name = "i2c-at91rm9200",
 867                .driver_data = (unsigned long) &at91rm9200_config,
 868        }, {
 869                .name = "i2c-at91sam9261",
 870                .driver_data = (unsigned long) &at91sam9261_config,
 871        }, {
 872                .name = "i2c-at91sam9260",
 873                .driver_data = (unsigned long) &at91sam9260_config,
 874        }, {
 875                .name = "i2c-at91sam9g20",
 876                .driver_data = (unsigned long) &at91sam9g20_config,
 877        }, {
 878                .name = "i2c-at91sam9g10",
 879                .driver_data = (unsigned long) &at91sam9g10_config,
 880        }, {
 881                /* sentinel */
 882        }
 883};
 884
 885#if defined(CONFIG_OF)
 886static struct at91_twi_pdata at91sam9x5_config = {
 887        .clk_max_div = 7,
 888        .clk_offset = 4,
 889        .has_unre_flag = false,
 890        .has_alt_cmd = false,
 891        .has_hold_field = false,
 892};
 893
 894static struct at91_twi_pdata sama5d4_config = {
 895        .clk_max_div = 7,
 896        .clk_offset = 4,
 897        .has_unre_flag = false,
 898        .has_alt_cmd = false,
 899        .has_hold_field = true,
 900};
 901
 902static struct at91_twi_pdata sama5d2_config = {
 903        .clk_max_div = 7,
 904        .clk_offset = 4,
 905        .has_unre_flag = true,
 906        .has_alt_cmd = true,
 907        .has_hold_field = true,
 908};
 909
 910static const struct of_device_id atmel_twi_dt_ids[] = {
 911        {
 912                .compatible = "atmel,at91rm9200-i2c",
 913                .data = &at91rm9200_config,
 914        } , {
 915                .compatible = "atmel,at91sam9260-i2c",
 916                .data = &at91sam9260_config,
 917        } , {
 918                .compatible = "atmel,at91sam9261-i2c",
 919                .data = &at91sam9261_config,
 920        } , {
 921                .compatible = "atmel,at91sam9g20-i2c",
 922                .data = &at91sam9g20_config,
 923        } , {
 924                .compatible = "atmel,at91sam9g10-i2c",
 925                .data = &at91sam9g10_config,
 926        }, {
 927                .compatible = "atmel,at91sam9x5-i2c",
 928                .data = &at91sam9x5_config,
 929        }, {
 930                .compatible = "atmel,sama5d4-i2c",
 931                .data = &sama5d4_config,
 932        }, {
 933                .compatible = "atmel,sama5d2-i2c",
 934                .data = &sama5d2_config,
 935        }, {
 936                /* sentinel */
 937        }
 938};
 939MODULE_DEVICE_TABLE(of, atmel_twi_dt_ids);
 940#endif
 941
 942static int at91_twi_configure_dma(struct at91_twi_dev *dev, u32 phy_addr)
 943{
 944        int ret = 0;
 945        struct dma_slave_config slave_config;
 946        struct at91_twi_dma *dma = &dev->dma;
 947        enum dma_slave_buswidth addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 948
 949        /*
 950         * The actual width of the access will be chosen in
 951         * dmaengine_prep_slave_sg():
 952         * for each buffer in the scatter-gather list, if its size is aligned
 953         * to addr_width then addr_width accesses will be performed to transfer
 954         * the buffer. On the other hand, if the buffer size is not aligned to
 955         * addr_width then the buffer is transferred using single byte accesses.
 956         * Please refer to the Atmel eXtended DMA controller driver.
 957         * When FIFOs are used, the TXRDYM threshold can always be set to
 958         * trigger the XDMAC when at least 4 data can be written into the TX
 959         * FIFO, even if single byte accesses are performed.
 960         * However the RXRDYM threshold must be set to fit the access width,
 961         * deduced from buffer length, so the XDMAC is triggered properly to
 962         * read data from the RX FIFO.
 963         */
 964        if (dev->fifo_size)
 965                addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 966
 967        memset(&slave_config, 0, sizeof(slave_config));
 968        slave_config.src_addr = (dma_addr_t)phy_addr + AT91_TWI_RHR;
 969        slave_config.src_addr_width = addr_width;
 970        slave_config.src_maxburst = 1;
 971        slave_config.dst_addr = (dma_addr_t)phy_addr + AT91_TWI_THR;
 972        slave_config.dst_addr_width = addr_width;
 973        slave_config.dst_maxburst = 1;
 974        slave_config.device_fc = false;
 975
 976        dma->chan_tx = dma_request_slave_channel_reason(dev->dev, "tx");
 977        if (IS_ERR(dma->chan_tx)) {
 978                ret = PTR_ERR(dma->chan_tx);
 979                dma->chan_tx = NULL;
 980                goto error;
 981        }
 982
 983        dma->chan_rx = dma_request_slave_channel_reason(dev->dev, "rx");
 984        if (IS_ERR(dma->chan_rx)) {
 985                ret = PTR_ERR(dma->chan_rx);
 986                dma->chan_rx = NULL;
 987                goto error;
 988        }
 989
 990        slave_config.direction = DMA_MEM_TO_DEV;
 991        if (dmaengine_slave_config(dma->chan_tx, &slave_config)) {
 992                dev_err(dev->dev, "failed to configure tx channel\n");
 993                ret = -EINVAL;
 994                goto error;
 995        }
 996
 997        slave_config.direction = DMA_DEV_TO_MEM;
 998        if (dmaengine_slave_config(dma->chan_rx, &slave_config)) {
 999                dev_err(dev->dev, "failed to configure rx channel\n");
1000                ret = -EINVAL;
1001                goto error;
1002        }
1003
1004        sg_init_table(dma->sg, 2);
1005        dma->buf_mapped = false;
1006        dma->xfer_in_progress = false;
1007        dev->use_dma = true;
1008
1009        dev_info(dev->dev, "using %s (tx) and %s (rx) for DMA transfers\n",
1010                 dma_chan_name(dma->chan_tx), dma_chan_name(dma->chan_rx));
1011
1012        return ret;
1013
1014error:
1015        if (ret != -EPROBE_DEFER)
1016                dev_info(dev->dev, "can't use DMA, error %d\n", ret);
1017        if (dma->chan_rx)
1018                dma_release_channel(dma->chan_rx);
1019        if (dma->chan_tx)
1020                dma_release_channel(dma->chan_tx);
1021        return ret;
1022}
1023
1024static struct at91_twi_pdata *at91_twi_get_driver_data(
1025                                        struct platform_device *pdev)
1026{
1027        if (pdev->dev.of_node) {
1028                const struct of_device_id *match;
1029                match = of_match_node(atmel_twi_dt_ids, pdev->dev.of_node);
1030                if (!match)
1031                        return NULL;
1032                return (struct at91_twi_pdata *)match->data;
1033        }
1034        return (struct at91_twi_pdata *) platform_get_device_id(pdev)->driver_data;
1035}
1036
1037static int at91_twi_probe(struct platform_device *pdev)
1038{
1039        struct at91_twi_dev *dev;
1040        struct resource *mem;
1041        int rc;
1042        u32 phy_addr;
1043        u32 bus_clk_rate;
1044
1045        dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL);
1046        if (!dev)
1047                return -ENOMEM;
1048        init_completion(&dev->cmd_complete);
1049        dev->dev = &pdev->dev;
1050
1051        mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1052        if (!mem)
1053                return -ENODEV;
1054        phy_addr = mem->start;
1055
1056        dev->pdata = at91_twi_get_driver_data(pdev);
1057        if (!dev->pdata)
1058                return -ENODEV;
1059
1060        dev->base = devm_ioremap_resource(&pdev->dev, mem);
1061        if (IS_ERR(dev->base))
1062                return PTR_ERR(dev->base);
1063
1064        dev->irq = platform_get_irq(pdev, 0);
1065        if (dev->irq < 0)
1066                return dev->irq;
1067
1068        rc = devm_request_irq(&pdev->dev, dev->irq, atmel_twi_interrupt, 0,
1069                         dev_name(dev->dev), dev);
1070        if (rc) {
1071                dev_err(dev->dev, "Cannot get irq %d: %d\n", dev->irq, rc);
1072                return rc;
1073        }
1074
1075        platform_set_drvdata(pdev, dev);
1076
1077        dev->clk = devm_clk_get(dev->dev, NULL);
1078        if (IS_ERR(dev->clk)) {
1079                dev_err(dev->dev, "no clock defined\n");
1080                return -ENODEV;
1081        }
1082        clk_prepare_enable(dev->clk);
1083
1084        if (dev->dev->of_node) {
1085                rc = at91_twi_configure_dma(dev, phy_addr);
1086                if (rc == -EPROBE_DEFER)
1087                        return rc;
1088        }
1089
1090        if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1091                                  &dev->fifo_size)) {
1092                dev_info(dev->dev, "Using FIFO (%u data)\n", dev->fifo_size);
1093        }
1094
1095        rc = of_property_read_u32(dev->dev->of_node, "clock-frequency",
1096                        &bus_clk_rate);
1097        if (rc)
1098                bus_clk_rate = DEFAULT_TWI_CLK_HZ;
1099
1100        at91_calc_twi_clock(dev, bus_clk_rate);
1101        at91_init_twi_bus(dev);
1102
1103        snprintf(dev->adapter.name, sizeof(dev->adapter.name), "AT91");
1104        i2c_set_adapdata(&dev->adapter, dev);
1105        dev->adapter.owner = THIS_MODULE;
1106        dev->adapter.class = I2C_CLASS_DEPRECATED;
1107        dev->adapter.algo = &at91_twi_algorithm;
1108        dev->adapter.quirks = &at91_twi_quirks;
1109        dev->adapter.dev.parent = dev->dev;
1110        dev->adapter.nr = pdev->id;
1111        dev->adapter.timeout = AT91_I2C_TIMEOUT;
1112        dev->adapter.dev.of_node = pdev->dev.of_node;
1113
1114        pm_runtime_set_autosuspend_delay(dev->dev, AUTOSUSPEND_TIMEOUT);
1115        pm_runtime_use_autosuspend(dev->dev);
1116        pm_runtime_set_active(dev->dev);
1117        pm_runtime_enable(dev->dev);
1118
1119        rc = i2c_add_numbered_adapter(&dev->adapter);
1120        if (rc) {
1121                dev_err(dev->dev, "Adapter %s registration failed\n",
1122                        dev->adapter.name);
1123                clk_disable_unprepare(dev->clk);
1124
1125                pm_runtime_disable(dev->dev);
1126                pm_runtime_set_suspended(dev->dev);
1127
1128                return rc;
1129        }
1130
1131        dev_info(dev->dev, "AT91 i2c bus driver (hw version: %#x).\n",
1132                 at91_twi_read(dev, AT91_TWI_VER));
1133        return 0;
1134}
1135
1136static int at91_twi_remove(struct platform_device *pdev)
1137{
1138        struct at91_twi_dev *dev = platform_get_drvdata(pdev);
1139
1140        i2c_del_adapter(&dev->adapter);
1141        clk_disable_unprepare(dev->clk);
1142
1143        pm_runtime_disable(dev->dev);
1144        pm_runtime_set_suspended(dev->dev);
1145
1146        return 0;
1147}
1148
1149#ifdef CONFIG_PM
1150
1151static int at91_twi_runtime_suspend(struct device *dev)
1152{
1153        struct at91_twi_dev *twi_dev = dev_get_drvdata(dev);
1154
1155        clk_disable_unprepare(twi_dev->clk);
1156
1157        pinctrl_pm_select_sleep_state(dev);
1158
1159        return 0;
1160}
1161
1162static int at91_twi_runtime_resume(struct device *dev)
1163{
1164        struct at91_twi_dev *twi_dev = dev_get_drvdata(dev);
1165
1166        pinctrl_pm_select_default_state(dev);
1167
1168        return clk_prepare_enable(twi_dev->clk);
1169}
1170
1171static int at91_twi_suspend_noirq(struct device *dev)
1172{
1173        if (!pm_runtime_status_suspended(dev))
1174                at91_twi_runtime_suspend(dev);
1175
1176        return 0;
1177}
1178
1179static int at91_twi_resume_noirq(struct device *dev)
1180{
1181        int ret;
1182
1183        if (!pm_runtime_status_suspended(dev)) {
1184                ret = at91_twi_runtime_resume(dev);
1185                if (ret)
1186                        return ret;
1187        }
1188
1189        pm_runtime_mark_last_busy(dev);
1190        pm_request_autosuspend(dev);
1191
1192        return 0;
1193}
1194
1195static const struct dev_pm_ops at91_twi_pm = {
1196        .suspend_noirq  = at91_twi_suspend_noirq,
1197        .resume_noirq   = at91_twi_resume_noirq,
1198        .runtime_suspend        = at91_twi_runtime_suspend,
1199        .runtime_resume         = at91_twi_runtime_resume,
1200};
1201
1202#define at91_twi_pm_ops (&at91_twi_pm)
1203#else
1204#define at91_twi_pm_ops NULL
1205#endif
1206
1207static struct platform_driver at91_twi_driver = {
1208        .probe          = at91_twi_probe,
1209        .remove         = at91_twi_remove,
1210        .id_table       = at91_twi_devtypes,
1211        .driver         = {
1212                .name   = "at91_i2c",
1213                .of_match_table = of_match_ptr(atmel_twi_dt_ids),
1214                .pm     = at91_twi_pm_ops,
1215        },
1216};
1217
1218static int __init at91_twi_init(void)
1219{
1220        return platform_driver_register(&at91_twi_driver);
1221}
1222
1223static void __exit at91_twi_exit(void)
1224{
1225        platform_driver_unregister(&at91_twi_driver);
1226}
1227
1228subsys_initcall(at91_twi_init);
1229module_exit(at91_twi_exit);
1230
1231MODULE_AUTHOR("Nikolaus Voss <n.voss@weinmann.de>");
1232MODULE_DESCRIPTION("I2C (TWI) driver for Atmel AT91");
1233MODULE_LICENSE("GPL");
1234MODULE_ALIAS("platform:at91_i2c");
1235