linux/drivers/input/keyboard/lm8323.c
<<
>>
Prefs
   1/*
   2 * drivers/i2c/chips/lm8323.c
   3 *
   4 * Copyright (C) 2007-2009 Nokia Corporation
   5 *
   6 * Written by Daniel Stone <daniel.stone@nokia.com>
   7 *            Timo O. Karjalainen <timo.o.karjalainen@nokia.com>
   8 *
   9 * Updated by Felipe Balbi <felipe.balbi@nokia.com>
  10 *
  11 * This program is free software; you can redistribute it and/or modify
  12 * it under the terms of the GNU General Public License as published by
  13 * the Free Software Foundation (version 2 of the License only).
  14 *
  15 * This program is distributed in the hope that it will be useful,
  16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18 * GNU General Public License for more details.
  19 *
  20 * You should have received a copy of the GNU General Public License
  21 * along with this program; if not, write to the Free Software
  22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  23 */
  24
  25#include <linux/module.h>
  26#include <linux/i2c.h>
  27#include <linux/interrupt.h>
  28#include <linux/sched.h>
  29#include <linux/mutex.h>
  30#include <linux/delay.h>
  31#include <linux/input.h>
  32#include <linux/leds.h>
  33#include <linux/pm.h>
  34#include <linux/i2c/lm8323.h>
  35#include <linux/slab.h>
  36
  37/* Commands to send to the chip. */
  38#define LM8323_CMD_READ_ID              0x80 /* Read chip ID. */
  39#define LM8323_CMD_WRITE_CFG            0x81 /* Set configuration item. */
  40#define LM8323_CMD_READ_INT             0x82 /* Get interrupt status. */
  41#define LM8323_CMD_RESET                0x83 /* Reset, same as external one */
  42#define LM8323_CMD_WRITE_PORT_SEL       0x85 /* Set GPIO in/out. */
  43#define LM8323_CMD_WRITE_PORT_STATE     0x86 /* Set GPIO pullup. */
  44#define LM8323_CMD_READ_PORT_SEL        0x87 /* Get GPIO in/out. */
  45#define LM8323_CMD_READ_PORT_STATE      0x88 /* Get GPIO pullup. */
  46#define LM8323_CMD_READ_FIFO            0x89 /* Read byte from FIFO. */
  47#define LM8323_CMD_RPT_READ_FIFO        0x8a /* Read FIFO (no increment). */
  48#define LM8323_CMD_SET_ACTIVE           0x8b /* Set active time. */
  49#define LM8323_CMD_READ_ERR             0x8c /* Get error status. */
  50#define LM8323_CMD_READ_ROTATOR         0x8e /* Read rotator status. */
  51#define LM8323_CMD_SET_DEBOUNCE         0x8f /* Set debouncing time. */
  52#define LM8323_CMD_SET_KEY_SIZE         0x90 /* Set keypad size. */
  53#define LM8323_CMD_READ_KEY_SIZE        0x91 /* Get keypad size. */
  54#define LM8323_CMD_READ_CFG             0x92 /* Get configuration item. */
  55#define LM8323_CMD_WRITE_CLOCK          0x93 /* Set clock config. */
  56#define LM8323_CMD_READ_CLOCK           0x94 /* Get clock config. */
  57#define LM8323_CMD_PWM_WRITE            0x95 /* Write PWM script. */
  58#define LM8323_CMD_START_PWM            0x96 /* Start PWM engine. */
  59#define LM8323_CMD_STOP_PWM             0x97 /* Stop PWM engine. */
  60
  61/* Interrupt status. */
  62#define INT_KEYPAD                      0x01 /* Key event. */
  63#define INT_ROTATOR                     0x02 /* Rotator event. */
  64#define INT_ERROR                       0x08 /* Error: use CMD_READ_ERR. */
  65#define INT_NOINIT                      0x10 /* Lost configuration. */
  66#define INT_PWM1                        0x20 /* PWM1 stopped. */
  67#define INT_PWM2                        0x40 /* PWM2 stopped. */
  68#define INT_PWM3                        0x80 /* PWM3 stopped. */
  69
  70/* Errors (signalled by INT_ERROR, read with CMD_READ_ERR). */
  71#define ERR_BADPAR                      0x01 /* Bad parameter. */
  72#define ERR_CMDUNK                      0x02 /* Unknown command. */
  73#define ERR_KEYOVR                      0x04 /* Too many keys pressed. */
  74#define ERR_FIFOOVER                    0x40 /* FIFO overflow. */
  75
  76/* Configuration keys (CMD_{WRITE,READ}_CFG). */
  77#define CFG_MUX1SEL                     0x01 /* Select MUX1_OUT input. */
  78#define CFG_MUX1EN                      0x02 /* Enable MUX1_OUT. */
  79#define CFG_MUX2SEL                     0x04 /* Select MUX2_OUT input. */
  80#define CFG_MUX2EN                      0x08 /* Enable MUX2_OUT. */
  81#define CFG_PSIZE                       0x20 /* Package size (must be 0). */
  82#define CFG_ROTEN                       0x40 /* Enable rotator. */
  83
  84/* Clock settings (CMD_{WRITE,READ}_CLOCK). */
  85#define CLK_RCPWM_INTERNAL              0x00
  86#define CLK_RCPWM_EXTERNAL              0x03
  87#define CLK_SLOWCLKEN                   0x08 /* Enable 32.768kHz clock. */
  88#define CLK_SLOWCLKOUT                  0x40 /* Enable slow pulse output. */
  89
  90/* The possible addresses corresponding to CONFIG1 and CONFIG2 pin wirings. */
  91#define LM8323_I2C_ADDR00               (0x84 >> 1)     /* 1000 010x */
  92#define LM8323_I2C_ADDR01               (0x86 >> 1)     /* 1000 011x */
  93#define LM8323_I2C_ADDR10               (0x88 >> 1)     /* 1000 100x */
  94#define LM8323_I2C_ADDR11               (0x8A >> 1)     /* 1000 101x */
  95
  96/* Key event fifo length */
  97#define LM8323_FIFO_LEN                 15
  98
  99/* Commands for PWM engine; feed in with PWM_WRITE. */
 100/* Load ramp counter from duty cycle field (range 0 - 0xff). */
 101#define PWM_SET(v)                      (0x4000 | ((v) & 0xff))
 102/* Go to start of script. */
 103#define PWM_GOTOSTART                   0x0000
 104/*
 105 * Stop engine (generates interrupt).  If reset is 1, clear the program
 106 * counter, else leave it.
 107 */
 108#define PWM_END(reset)                  (0xc000 | (!!(reset) << 11))
 109/*
 110 * Ramp.  If s is 1, divide clock by 512, else divide clock by 16.
 111 * Take t clock scales (up to 63) per step, for n steps (up to 126).
 112 * If u is set, ramp up, else ramp down.
 113 */
 114#define PWM_RAMP(s, t, n, u)            ((!!(s) << 14) | ((t) & 0x3f) << 8 | \
 115                                         ((n) & 0x7f) | ((u) ? 0 : 0x80))
 116/*
 117 * Loop (i.e. jump back to pos) for a given number of iterations (up to 63).
 118 * If cnt is zero, execute until PWM_END is encountered.
 119 */
 120#define PWM_LOOP(cnt, pos)              (0xa000 | (((cnt) & 0x3f) << 7) | \
 121                                         ((pos) & 0x3f))
 122/*
 123 * Wait for trigger.  Argument is a mask of channels, shifted by the channel
 124 * number, e.g. 0xa for channels 3 and 1.  Note that channels are numbered
 125 * from 1, not 0.
 126 */
 127#define PWM_WAIT_TRIG(chans)            (0xe000 | (((chans) & 0x7) << 6))
 128/* Send trigger.  Argument is same as PWM_WAIT_TRIG. */
 129#define PWM_SEND_TRIG(chans)            (0xe000 | ((chans) & 0x7))
 130
 131struct lm8323_pwm {
 132        int                     id;
 133        int                     fade_time;
 134        int                     brightness;
 135        int                     desired_brightness;
 136        bool                    enabled;
 137        bool                    running;
 138        /* pwm lock */
 139        struct mutex            lock;
 140        struct work_struct      work;
 141        struct led_classdev     cdev;
 142        struct lm8323_chip      *chip;
 143};
 144
 145struct lm8323_chip {
 146        /* device lock */
 147        struct mutex            lock;
 148        struct i2c_client       *client;
 149        struct input_dev        *idev;
 150        bool                    kp_enabled;
 151        bool                    pm_suspend;
 152        unsigned                keys_down;
 153        char                    phys[32];
 154        unsigned short          keymap[LM8323_KEYMAP_SIZE];
 155        int                     size_x;
 156        int                     size_y;
 157        int                     debounce_time;
 158        int                     active_time;
 159        struct lm8323_pwm       pwm[LM8323_NUM_PWMS];
 160};
 161
 162#define client_to_lm8323(c)     container_of(c, struct lm8323_chip, client)
 163#define dev_to_lm8323(d)        container_of(d, struct lm8323_chip, client->dev)
 164#define cdev_to_pwm(c)          container_of(c, struct lm8323_pwm, cdev)
 165#define work_to_pwm(w)          container_of(w, struct lm8323_pwm, work)
 166
 167#define LM8323_MAX_DATA 8
 168
 169/*
 170 * To write, we just access the chip's address in write mode, and dump the
 171 * command and data out on the bus.  The command byte and data are taken as
 172 * sequential u8s out of varargs, to a maximum of LM8323_MAX_DATA.
 173 */
 174static int lm8323_write(struct lm8323_chip *lm, int len, ...)
 175{
 176        int ret, i;
 177        va_list ap;
 178        u8 data[LM8323_MAX_DATA];
 179
 180        va_start(ap, len);
 181
 182        if (unlikely(len > LM8323_MAX_DATA)) {
 183                dev_err(&lm->client->dev, "tried to send %d bytes\n", len);
 184                va_end(ap);
 185                return 0;
 186        }
 187
 188        for (i = 0; i < len; i++)
 189                data[i] = va_arg(ap, int);
 190
 191        va_end(ap);
 192
 193        /*
 194         * If the host is asleep while we send the data, we can get a NACK
 195         * back while it wakes up, so try again, once.
 196         */
 197        ret = i2c_master_send(lm->client, data, len);
 198        if (unlikely(ret == -EREMOTEIO))
 199                ret = i2c_master_send(lm->client, data, len);
 200        if (unlikely(ret != len))
 201                dev_err(&lm->client->dev, "sent %d bytes of %d total\n",
 202                        len, ret);
 203
 204        return ret;
 205}
 206
 207/*
 208 * To read, we first send the command byte to the chip and end the transaction,
 209 * then access the chip in read mode, at which point it will send the data.
 210 */
 211static int lm8323_read(struct lm8323_chip *lm, u8 cmd, u8 *buf, int len)
 212{
 213        int ret;
 214
 215        /*
 216         * If the host is asleep while we send the byte, we can get a NACK
 217         * back while it wakes up, so try again, once.
 218         */
 219        ret = i2c_master_send(lm->client, &cmd, 1);
 220        if (unlikely(ret == -EREMOTEIO))
 221                ret = i2c_master_send(lm->client, &cmd, 1);
 222        if (unlikely(ret != 1)) {
 223                dev_err(&lm->client->dev, "sending read cmd 0x%02x failed\n",
 224                        cmd);
 225                return 0;
 226        }
 227
 228        ret = i2c_master_recv(lm->client, buf, len);
 229        if (unlikely(ret != len))
 230                dev_err(&lm->client->dev, "wanted %d bytes, got %d\n",
 231                        len, ret);
 232
 233        return ret;
 234}
 235
 236/*
 237 * Set the chip active time (idle time before it enters halt).
 238 */
 239static void lm8323_set_active_time(struct lm8323_chip *lm, int time)
 240{
 241        lm8323_write(lm, 2, LM8323_CMD_SET_ACTIVE, time >> 2);
 242}
 243
 244/*
 245 * The signals are AT-style: the low 7 bits are the keycode, and the top
 246 * bit indicates the state (1 for down, 0 for up).
 247 */
 248static inline u8 lm8323_whichkey(u8 event)
 249{
 250        return event & 0x7f;
 251}
 252
 253static inline int lm8323_ispress(u8 event)
 254{
 255        return (event & 0x80) ? 1 : 0;
 256}
 257
 258static void process_keys(struct lm8323_chip *lm)
 259{
 260        u8 event;
 261        u8 key_fifo[LM8323_FIFO_LEN + 1];
 262        int old_keys_down = lm->keys_down;
 263        int ret;
 264        int i = 0;
 265
 266        /*
 267         * Read all key events from the FIFO at once. Next READ_FIFO clears the
 268         * FIFO even if we didn't read all events previously.
 269         */
 270        ret = lm8323_read(lm, LM8323_CMD_READ_FIFO, key_fifo, LM8323_FIFO_LEN);
 271
 272        if (ret < 0) {
 273                dev_err(&lm->client->dev, "Failed reading fifo \n");
 274                return;
 275        }
 276        key_fifo[ret] = 0;
 277
 278        while ((event = key_fifo[i++])) {
 279                u8 key = lm8323_whichkey(event);
 280                int isdown = lm8323_ispress(event);
 281                unsigned short keycode = lm->keymap[key];
 282
 283                dev_vdbg(&lm->client->dev, "key 0x%02x %s\n",
 284                         key, isdown ? "down" : "up");
 285
 286                if (lm->kp_enabled) {
 287                        input_event(lm->idev, EV_MSC, MSC_SCAN, key);
 288                        input_report_key(lm->idev, keycode, isdown);
 289                        input_sync(lm->idev);
 290                }
 291
 292                if (isdown)
 293                        lm->keys_down++;
 294                else
 295                        lm->keys_down--;
 296        }
 297
 298        /*
 299         * Errata: We need to ensure that the chip never enters halt mode
 300         * during a keypress, so set active time to 0.  When it's released,
 301         * we can enter halt again, so set the active time back to normal.
 302         */
 303        if (!old_keys_down && lm->keys_down)
 304                lm8323_set_active_time(lm, 0);
 305        if (old_keys_down && !lm->keys_down)
 306                lm8323_set_active_time(lm, lm->active_time);
 307}
 308
 309static void lm8323_process_error(struct lm8323_chip *lm)
 310{
 311        u8 error;
 312
 313        if (lm8323_read(lm, LM8323_CMD_READ_ERR, &error, 1) == 1) {
 314                if (error & ERR_FIFOOVER)
 315                        dev_vdbg(&lm->client->dev, "fifo overflow!\n");
 316                if (error & ERR_KEYOVR)
 317                        dev_vdbg(&lm->client->dev,
 318                                        "more than two keys pressed\n");
 319                if (error & ERR_CMDUNK)
 320                        dev_vdbg(&lm->client->dev,
 321                                        "unknown command submitted\n");
 322                if (error & ERR_BADPAR)
 323                        dev_vdbg(&lm->client->dev, "bad command parameter\n");
 324        }
 325}
 326
 327static void lm8323_reset(struct lm8323_chip *lm)
 328{
 329        /* The docs say we must pass 0xAA as the data byte. */
 330        lm8323_write(lm, 2, LM8323_CMD_RESET, 0xAA);
 331}
 332
 333static int lm8323_configure(struct lm8323_chip *lm)
 334{
 335        int keysize = (lm->size_x << 4) | lm->size_y;
 336        int clock = (CLK_SLOWCLKEN | CLK_RCPWM_EXTERNAL);
 337        int debounce = lm->debounce_time >> 2;
 338        int active = lm->active_time >> 2;
 339
 340        /*
 341         * Active time must be greater than the debounce time: if it's
 342         * a close-run thing, give ourselves a 12ms buffer.
 343         */
 344        if (debounce >= active)
 345                active = debounce + 3;
 346
 347        lm8323_write(lm, 2, LM8323_CMD_WRITE_CFG, 0);
 348        lm8323_write(lm, 2, LM8323_CMD_WRITE_CLOCK, clock);
 349        lm8323_write(lm, 2, LM8323_CMD_SET_KEY_SIZE, keysize);
 350        lm8323_set_active_time(lm, lm->active_time);
 351        lm8323_write(lm, 2, LM8323_CMD_SET_DEBOUNCE, debounce);
 352        lm8323_write(lm, 3, LM8323_CMD_WRITE_PORT_STATE, 0xff, 0xff);
 353        lm8323_write(lm, 3, LM8323_CMD_WRITE_PORT_SEL, 0, 0);
 354
 355        /*
 356         * Not much we can do about errors at this point, so just hope
 357         * for the best.
 358         */
 359
 360        return 0;
 361}
 362
 363static void pwm_done(struct lm8323_pwm *pwm)
 364{
 365        mutex_lock(&pwm->lock);
 366        pwm->running = false;
 367        if (pwm->desired_brightness != pwm->brightness)
 368                schedule_work(&pwm->work);
 369        mutex_unlock(&pwm->lock);
 370}
 371
 372/*
 373 * Bottom half: handle the interrupt by posting key events, or dealing with
 374 * errors appropriately.
 375 */
 376static irqreturn_t lm8323_irq(int irq, void *_lm)
 377{
 378        struct lm8323_chip *lm = _lm;
 379        u8 ints;
 380        int i;
 381
 382        mutex_lock(&lm->lock);
 383
 384        while ((lm8323_read(lm, LM8323_CMD_READ_INT, &ints, 1) == 1) && ints) {
 385                if (likely(ints & INT_KEYPAD))
 386                        process_keys(lm);
 387                if (ints & INT_ROTATOR) {
 388                        /* We don't currently support the rotator. */
 389                        dev_vdbg(&lm->client->dev, "rotator fired\n");
 390                }
 391                if (ints & INT_ERROR) {
 392                        dev_vdbg(&lm->client->dev, "error!\n");
 393                        lm8323_process_error(lm);
 394                }
 395                if (ints & INT_NOINIT) {
 396                        dev_err(&lm->client->dev, "chip lost config; "
 397                                                  "reinitialising\n");
 398                        lm8323_configure(lm);
 399                }
 400                for (i = 0; i < LM8323_NUM_PWMS; i++) {
 401                        if (ints & (INT_PWM1 << i)) {
 402                                dev_vdbg(&lm->client->dev,
 403                                         "pwm%d engine completed\n", i);
 404                                pwm_done(&lm->pwm[i]);
 405                        }
 406                }
 407        }
 408
 409        mutex_unlock(&lm->lock);
 410
 411        return IRQ_HANDLED;
 412}
 413
 414/*
 415 * Read the chip ID.
 416 */
 417static int lm8323_read_id(struct lm8323_chip *lm, u8 *buf)
 418{
 419        int bytes;
 420
 421        bytes = lm8323_read(lm, LM8323_CMD_READ_ID, buf, 2);
 422        if (unlikely(bytes != 2))
 423                return -EIO;
 424
 425        return 0;
 426}
 427
 428static void lm8323_write_pwm_one(struct lm8323_pwm *pwm, int pos, u16 cmd)
 429{
 430        lm8323_write(pwm->chip, 4, LM8323_CMD_PWM_WRITE, (pos << 2) | pwm->id,
 431                     (cmd & 0xff00) >> 8, cmd & 0x00ff);
 432}
 433
 434/*
 435 * Write a script into a given PWM engine, concluding with PWM_END.
 436 * If 'kill' is nonzero, the engine will be shut down at the end
 437 * of the script, producing a zero output. Otherwise the engine
 438 * will be kept running at the final PWM level indefinitely.
 439 */
 440static void lm8323_write_pwm(struct lm8323_pwm *pwm, int kill,
 441                             int len, const u16 *cmds)
 442{
 443        int i;
 444
 445        for (i = 0; i < len; i++)
 446                lm8323_write_pwm_one(pwm, i, cmds[i]);
 447
 448        lm8323_write_pwm_one(pwm, i++, PWM_END(kill));
 449        lm8323_write(pwm->chip, 2, LM8323_CMD_START_PWM, pwm->id);
 450        pwm->running = true;
 451}
 452
 453static void lm8323_pwm_work(struct work_struct *work)
 454{
 455        struct lm8323_pwm *pwm = work_to_pwm(work);
 456        int div512, perstep, steps, hz, up, kill;
 457        u16 pwm_cmds[3];
 458        int num_cmds = 0;
 459
 460        mutex_lock(&pwm->lock);
 461
 462        /*
 463         * Do nothing if we're already at the requested level,
 464         * or previous setting is not yet complete. In the latter
 465         * case we will be called again when the previous PWM script
 466         * finishes.
 467         */
 468        if (pwm->running || pwm->desired_brightness == pwm->brightness)
 469                goto out;
 470
 471        kill = (pwm->desired_brightness == 0);
 472        up = (pwm->desired_brightness > pwm->brightness);
 473        steps = abs(pwm->desired_brightness - pwm->brightness);
 474
 475        /*
 476         * Convert time (in ms) into a divisor (512 or 16 on a refclk of
 477         * 32768Hz), and number of ticks per step.
 478         */
 479        if ((pwm->fade_time / steps) > (32768 / 512)) {
 480                div512 = 1;
 481                hz = 32768 / 512;
 482        } else {
 483                div512 = 0;
 484                hz = 32768 / 16;
 485        }
 486
 487        perstep = (hz * pwm->fade_time) / (steps * 1000);
 488
 489        if (perstep == 0)
 490                perstep = 1;
 491        else if (perstep > 63)
 492                perstep = 63;
 493
 494        while (steps) {
 495                int s;
 496
 497                s = min(126, steps);
 498                pwm_cmds[num_cmds++] = PWM_RAMP(div512, perstep, s, up);
 499                steps -= s;
 500        }
 501
 502        lm8323_write_pwm(pwm, kill, num_cmds, pwm_cmds);
 503        pwm->brightness = pwm->desired_brightness;
 504
 505 out:
 506        mutex_unlock(&pwm->lock);
 507}
 508
 509static void lm8323_pwm_set_brightness(struct led_classdev *led_cdev,
 510                                      enum led_brightness brightness)
 511{
 512        struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev);
 513        struct lm8323_chip *lm = pwm->chip;
 514
 515        mutex_lock(&pwm->lock);
 516        pwm->desired_brightness = brightness;
 517        mutex_unlock(&pwm->lock);
 518
 519        if (in_interrupt()) {
 520                schedule_work(&pwm->work);
 521        } else {
 522                /*
 523                 * Schedule PWM work as usual unless we are going into suspend
 524                 */
 525                mutex_lock(&lm->lock);
 526                if (likely(!lm->pm_suspend))
 527                        schedule_work(&pwm->work);
 528                else
 529                        lm8323_pwm_work(&pwm->work);
 530                mutex_unlock(&lm->lock);
 531        }
 532}
 533
 534static ssize_t lm8323_pwm_show_time(struct device *dev,
 535                struct device_attribute *attr, char *buf)
 536{
 537        struct led_classdev *led_cdev = dev_get_drvdata(dev);
 538        struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev);
 539
 540        return sprintf(buf, "%d\n", pwm->fade_time);
 541}
 542
 543static ssize_t lm8323_pwm_store_time(struct device *dev,
 544                struct device_attribute *attr, const char *buf, size_t len)
 545{
 546        struct led_classdev *led_cdev = dev_get_drvdata(dev);
 547        struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev);
 548        int ret, time;
 549
 550        ret = kstrtoint(buf, 10, &time);
 551        /* Numbers only, please. */
 552        if (ret)
 553                return ret;
 554
 555        pwm->fade_time = time;
 556
 557        return strlen(buf);
 558}
 559static DEVICE_ATTR(time, 0644, lm8323_pwm_show_time, lm8323_pwm_store_time);
 560
 561static struct attribute *lm8323_pwm_attrs[] = {
 562        &dev_attr_time.attr,
 563        NULL
 564};
 565ATTRIBUTE_GROUPS(lm8323_pwm);
 566
 567static int init_pwm(struct lm8323_chip *lm, int id, struct device *dev,
 568                    const char *name)
 569{
 570        struct lm8323_pwm *pwm;
 571
 572        BUG_ON(id > 3);
 573
 574        pwm = &lm->pwm[id - 1];
 575
 576        pwm->id = id;
 577        pwm->fade_time = 0;
 578        pwm->brightness = 0;
 579        pwm->desired_brightness = 0;
 580        pwm->running = false;
 581        pwm->enabled = false;
 582        INIT_WORK(&pwm->work, lm8323_pwm_work);
 583        mutex_init(&pwm->lock);
 584        pwm->chip = lm;
 585
 586        if (name) {
 587                pwm->cdev.name = name;
 588                pwm->cdev.brightness_set = lm8323_pwm_set_brightness;
 589                pwm->cdev.groups = lm8323_pwm_groups;
 590                if (led_classdev_register(dev, &pwm->cdev) < 0) {
 591                        dev_err(dev, "couldn't register PWM %d\n", id);
 592                        return -1;
 593                }
 594                pwm->enabled = true;
 595        }
 596
 597        return 0;
 598}
 599
 600static struct i2c_driver lm8323_i2c_driver;
 601
 602static ssize_t lm8323_show_disable(struct device *dev,
 603                                   struct device_attribute *attr, char *buf)
 604{
 605        struct lm8323_chip *lm = dev_get_drvdata(dev);
 606
 607        return sprintf(buf, "%u\n", !lm->kp_enabled);
 608}
 609
 610static ssize_t lm8323_set_disable(struct device *dev,
 611                                  struct device_attribute *attr,
 612                                  const char *buf, size_t count)
 613{
 614        struct lm8323_chip *lm = dev_get_drvdata(dev);
 615        int ret;
 616        unsigned int i;
 617
 618        ret = kstrtouint(buf, 10, &i);
 619        if (ret)
 620                return ret;
 621
 622        mutex_lock(&lm->lock);
 623        lm->kp_enabled = !i;
 624        mutex_unlock(&lm->lock);
 625
 626        return count;
 627}
 628static DEVICE_ATTR(disable_kp, 0644, lm8323_show_disable, lm8323_set_disable);
 629
 630static int lm8323_probe(struct i2c_client *client,
 631                                  const struct i2c_device_id *id)
 632{
 633        struct lm8323_platform_data *pdata = dev_get_platdata(&client->dev);
 634        struct input_dev *idev;
 635        struct lm8323_chip *lm;
 636        int pwm;
 637        int i, err;
 638        unsigned long tmo;
 639        u8 data[2];
 640
 641        if (!pdata || !pdata->size_x || !pdata->size_y) {
 642                dev_err(&client->dev, "missing platform_data\n");
 643                return -EINVAL;
 644        }
 645
 646        if (pdata->size_x > 8) {
 647                dev_err(&client->dev, "invalid x size %d specified\n",
 648                        pdata->size_x);
 649                return -EINVAL;
 650        }
 651
 652        if (pdata->size_y > 12) {
 653                dev_err(&client->dev, "invalid y size %d specified\n",
 654                        pdata->size_y);
 655                return -EINVAL;
 656        }
 657
 658        lm = kzalloc(sizeof *lm, GFP_KERNEL);
 659        idev = input_allocate_device();
 660        if (!lm || !idev) {
 661                err = -ENOMEM;
 662                goto fail1;
 663        }
 664
 665        lm->client = client;
 666        lm->idev = idev;
 667        mutex_init(&lm->lock);
 668
 669        lm->size_x = pdata->size_x;
 670        lm->size_y = pdata->size_y;
 671        dev_vdbg(&client->dev, "Keypad size: %d x %d\n",
 672                 lm->size_x, lm->size_y);
 673
 674        lm->debounce_time = pdata->debounce_time;
 675        lm->active_time = pdata->active_time;
 676
 677        lm8323_reset(lm);
 678
 679        /* Nothing's set up to service the IRQ yet, so just spin for max.
 680         * 100ms until we can configure. */
 681        tmo = jiffies + msecs_to_jiffies(100);
 682        while (lm8323_read(lm, LM8323_CMD_READ_INT, data, 1) == 1) {
 683                if (data[0] & INT_NOINIT)
 684                        break;
 685
 686                if (time_after(jiffies, tmo)) {
 687                        dev_err(&client->dev,
 688                                "timeout waiting for initialisation\n");
 689                        break;
 690                }
 691
 692                msleep(1);
 693        }
 694
 695        lm8323_configure(lm);
 696
 697        /* If a true probe check the device */
 698        if (lm8323_read_id(lm, data) != 0) {
 699                dev_err(&client->dev, "device not found\n");
 700                err = -ENODEV;
 701                goto fail1;
 702        }
 703
 704        for (pwm = 0; pwm < LM8323_NUM_PWMS; pwm++) {
 705                err = init_pwm(lm, pwm + 1, &client->dev,
 706                               pdata->pwm_names[pwm]);
 707                if (err < 0)
 708                        goto fail2;
 709        }
 710
 711        lm->kp_enabled = true;
 712        err = device_create_file(&client->dev, &dev_attr_disable_kp);
 713        if (err < 0)
 714                goto fail2;
 715
 716        idev->name = pdata->name ? : "LM8323 keypad";
 717        snprintf(lm->phys, sizeof(lm->phys),
 718                 "%s/input-kp", dev_name(&client->dev));
 719        idev->phys = lm->phys;
 720
 721        idev->evbit[0] = BIT(EV_KEY) | BIT(EV_MSC);
 722        __set_bit(MSC_SCAN, idev->mscbit);
 723        for (i = 0; i < LM8323_KEYMAP_SIZE; i++) {
 724                __set_bit(pdata->keymap[i], idev->keybit);
 725                lm->keymap[i] = pdata->keymap[i];
 726        }
 727        __clear_bit(KEY_RESERVED, idev->keybit);
 728
 729        if (pdata->repeat)
 730                __set_bit(EV_REP, idev->evbit);
 731
 732        err = input_register_device(idev);
 733        if (err) {
 734                dev_dbg(&client->dev, "error registering input device\n");
 735                goto fail3;
 736        }
 737
 738        err = request_threaded_irq(client->irq, NULL, lm8323_irq,
 739                          IRQF_TRIGGER_LOW|IRQF_ONESHOT, "lm8323", lm);
 740        if (err) {
 741                dev_err(&client->dev, "could not get IRQ %d\n", client->irq);
 742                goto fail4;
 743        }
 744
 745        i2c_set_clientdata(client, lm);
 746
 747        device_init_wakeup(&client->dev, 1);
 748        enable_irq_wake(client->irq);
 749
 750        return 0;
 751
 752fail4:
 753        input_unregister_device(idev);
 754        idev = NULL;
 755fail3:
 756        device_remove_file(&client->dev, &dev_attr_disable_kp);
 757fail2:
 758        while (--pwm >= 0)
 759                if (lm->pwm[pwm].enabled)
 760                        led_classdev_unregister(&lm->pwm[pwm].cdev);
 761fail1:
 762        input_free_device(idev);
 763        kfree(lm);
 764        return err;
 765}
 766
 767static int lm8323_remove(struct i2c_client *client)
 768{
 769        struct lm8323_chip *lm = i2c_get_clientdata(client);
 770        int i;
 771
 772        disable_irq_wake(client->irq);
 773        free_irq(client->irq, lm);
 774
 775        input_unregister_device(lm->idev);
 776
 777        device_remove_file(&lm->client->dev, &dev_attr_disable_kp);
 778
 779        for (i = 0; i < 3; i++)
 780                if (lm->pwm[i].enabled)
 781                        led_classdev_unregister(&lm->pwm[i].cdev);
 782
 783        kfree(lm);
 784
 785        return 0;
 786}
 787
 788#ifdef CONFIG_PM_SLEEP
 789/*
 790 * We don't need to explicitly suspend the chip, as it already switches off
 791 * when there's no activity.
 792 */
 793static int lm8323_suspend(struct device *dev)
 794{
 795        struct i2c_client *client = to_i2c_client(dev);
 796        struct lm8323_chip *lm = i2c_get_clientdata(client);
 797        int i;
 798
 799        irq_set_irq_wake(client->irq, 0);
 800        disable_irq(client->irq);
 801
 802        mutex_lock(&lm->lock);
 803        lm->pm_suspend = true;
 804        mutex_unlock(&lm->lock);
 805
 806        for (i = 0; i < 3; i++)
 807                if (lm->pwm[i].enabled)
 808                        led_classdev_suspend(&lm->pwm[i].cdev);
 809
 810        return 0;
 811}
 812
 813static int lm8323_resume(struct device *dev)
 814{
 815        struct i2c_client *client = to_i2c_client(dev);
 816        struct lm8323_chip *lm = i2c_get_clientdata(client);
 817        int i;
 818
 819        mutex_lock(&lm->lock);
 820        lm->pm_suspend = false;
 821        mutex_unlock(&lm->lock);
 822
 823        for (i = 0; i < 3; i++)
 824                if (lm->pwm[i].enabled)
 825                        led_classdev_resume(&lm->pwm[i].cdev);
 826
 827        enable_irq(client->irq);
 828        irq_set_irq_wake(client->irq, 1);
 829
 830        return 0;
 831}
 832#endif
 833
 834static SIMPLE_DEV_PM_OPS(lm8323_pm_ops, lm8323_suspend, lm8323_resume);
 835
 836static const struct i2c_device_id lm8323_id[] = {
 837        { "lm8323", 0 },
 838        { }
 839};
 840
 841static struct i2c_driver lm8323_i2c_driver = {
 842        .driver = {
 843                .name   = "lm8323",
 844                .pm     = &lm8323_pm_ops,
 845        },
 846        .probe          = lm8323_probe,
 847        .remove         = lm8323_remove,
 848        .id_table       = lm8323_id,
 849};
 850MODULE_DEVICE_TABLE(i2c, lm8323_id);
 851
 852module_i2c_driver(lm8323_i2c_driver);
 853
 854MODULE_AUTHOR("Timo O. Karjalainen <timo.o.karjalainen@nokia.com>");
 855MODULE_AUTHOR("Daniel Stone");
 856MODULE_AUTHOR("Felipe Balbi <felipe.balbi@nokia.com>");
 857MODULE_DESCRIPTION("LM8323 keypad driver");
 858MODULE_LICENSE("GPL");
 859
 860