linux/drivers/iommu/amd_iommu.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
   3 * Author: Joerg Roedel <jroedel@suse.de>
   4 *         Leo Duran <leo.duran@amd.com>
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published
   8 * by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program; if not, write to the Free Software
  17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
  18 */
  19
  20#include <linux/ratelimit.h>
  21#include <linux/pci.h>
  22#include <linux/pci-ats.h>
  23#include <linux/bitmap.h>
  24#include <linux/slab.h>
  25#include <linux/debugfs.h>
  26#include <linux/scatterlist.h>
  27#include <linux/dma-mapping.h>
  28#include <linux/iommu-helper.h>
  29#include <linux/iommu.h>
  30#include <linux/delay.h>
  31#include <linux/amd-iommu.h>
  32#include <linux/notifier.h>
  33#include <linux/export.h>
  34#include <linux/irq.h>
  35#include <linux/msi.h>
  36#include <linux/dma-contiguous.h>
  37#include <linux/irqdomain.h>
  38#include <linux/percpu.h>
  39#include <asm/irq_remapping.h>
  40#include <asm/io_apic.h>
  41#include <asm/apic.h>
  42#include <asm/hw_irq.h>
  43#include <asm/msidef.h>
  44#include <asm/proto.h>
  45#include <asm/iommu.h>
  46#include <asm/gart.h>
  47#include <asm/dma.h>
  48
  49#include "amd_iommu_proto.h"
  50#include "amd_iommu_types.h"
  51#include "irq_remapping.h"
  52
  53#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
  54
  55#define LOOP_TIMEOUT    100000
  56
  57/*
  58 * This bitmap is used to advertise the page sizes our hardware support
  59 * to the IOMMU core, which will then use this information to split
  60 * physically contiguous memory regions it is mapping into page sizes
  61 * that we support.
  62 *
  63 * 512GB Pages are not supported due to a hardware bug
  64 */
  65#define AMD_IOMMU_PGSIZES       ((~0xFFFUL) & ~(2ULL << 38))
  66
  67static DEFINE_RWLOCK(amd_iommu_devtable_lock);
  68
  69/* List of all available dev_data structures */
  70static LIST_HEAD(dev_data_list);
  71static DEFINE_SPINLOCK(dev_data_list_lock);
  72
  73LIST_HEAD(ioapic_map);
  74LIST_HEAD(hpet_map);
  75
  76/*
  77 * Domain for untranslated devices - only allocated
  78 * if iommu=pt passed on kernel cmd line.
  79 */
  80static const struct iommu_ops amd_iommu_ops;
  81
  82static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
  83int amd_iommu_max_glx_val = -1;
  84
  85static struct dma_map_ops amd_iommu_dma_ops;
  86
  87/*
  88 * This struct contains device specific data for the IOMMU
  89 */
  90struct iommu_dev_data {
  91        struct list_head list;            /* For domain->dev_list */
  92        struct list_head dev_data_list;   /* For global dev_data_list */
  93        struct protection_domain *domain; /* Domain the device is bound to */
  94        u16 devid;                        /* PCI Device ID */
  95        u16 alias;                        /* Alias Device ID */
  96        bool iommu_v2;                    /* Device can make use of IOMMUv2 */
  97        bool passthrough;                 /* Device is identity mapped */
  98        struct {
  99                bool enabled;
 100                int qdep;
 101        } ats;                            /* ATS state */
 102        bool pri_tlp;                     /* PASID TLB required for
 103                                             PPR completions */
 104        u32 errata;                       /* Bitmap for errata to apply */
 105};
 106
 107/*
 108 * general struct to manage commands send to an IOMMU
 109 */
 110struct iommu_cmd {
 111        u32 data[4];
 112};
 113
 114struct kmem_cache *amd_iommu_irq_cache;
 115
 116static void update_domain(struct protection_domain *domain);
 117static int protection_domain_init(struct protection_domain *domain);
 118static void detach_device(struct device *dev);
 119
 120/*
 121 * For dynamic growth the aperture size is split into ranges of 128MB of
 122 * DMA address space each. This struct represents one such range.
 123 */
 124struct aperture_range {
 125
 126        spinlock_t bitmap_lock;
 127
 128        /* address allocation bitmap */
 129        unsigned long *bitmap;
 130        unsigned long offset;
 131        unsigned long next_bit;
 132
 133        /*
 134         * Array of PTE pages for the aperture. In this array we save all the
 135         * leaf pages of the domain page table used for the aperture. This way
 136         * we don't need to walk the page table to find a specific PTE. We can
 137         * just calculate its address in constant time.
 138         */
 139        u64 *pte_pages[64];
 140};
 141
 142/*
 143 * Data container for a dma_ops specific protection domain
 144 */
 145struct dma_ops_domain {
 146        /* generic protection domain information */
 147        struct protection_domain domain;
 148
 149        /* size of the aperture for the mappings */
 150        unsigned long aperture_size;
 151
 152        /* aperture index we start searching for free addresses */
 153        u32 __percpu *next_index;
 154
 155        /* address space relevant data */
 156        struct aperture_range *aperture[APERTURE_MAX_RANGES];
 157};
 158
 159/****************************************************************************
 160 *
 161 * Helper functions
 162 *
 163 ****************************************************************************/
 164
 165static struct protection_domain *to_pdomain(struct iommu_domain *dom)
 166{
 167        return container_of(dom, struct protection_domain, domain);
 168}
 169
 170static inline u16 get_device_id(struct device *dev)
 171{
 172        struct pci_dev *pdev = to_pci_dev(dev);
 173
 174        return PCI_DEVID(pdev->bus->number, pdev->devfn);
 175}
 176
 177static struct iommu_dev_data *alloc_dev_data(u16 devid)
 178{
 179        struct iommu_dev_data *dev_data;
 180        unsigned long flags;
 181
 182        dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
 183        if (!dev_data)
 184                return NULL;
 185
 186        dev_data->devid = devid;
 187
 188        spin_lock_irqsave(&dev_data_list_lock, flags);
 189        list_add_tail(&dev_data->dev_data_list, &dev_data_list);
 190        spin_unlock_irqrestore(&dev_data_list_lock, flags);
 191
 192        return dev_data;
 193}
 194
 195static struct iommu_dev_data *search_dev_data(u16 devid)
 196{
 197        struct iommu_dev_data *dev_data;
 198        unsigned long flags;
 199
 200        spin_lock_irqsave(&dev_data_list_lock, flags);
 201        list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
 202                if (dev_data->devid == devid)
 203                        goto out_unlock;
 204        }
 205
 206        dev_data = NULL;
 207
 208out_unlock:
 209        spin_unlock_irqrestore(&dev_data_list_lock, flags);
 210
 211        return dev_data;
 212}
 213
 214static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
 215{
 216        *(u16 *)data = alias;
 217        return 0;
 218}
 219
 220static u16 get_alias(struct device *dev)
 221{
 222        struct pci_dev *pdev = to_pci_dev(dev);
 223        u16 devid, ivrs_alias, pci_alias;
 224
 225        devid = get_device_id(dev);
 226        ivrs_alias = amd_iommu_alias_table[devid];
 227        pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);
 228
 229        if (ivrs_alias == pci_alias)
 230                return ivrs_alias;
 231
 232        /*
 233         * DMA alias showdown
 234         *
 235         * The IVRS is fairly reliable in telling us about aliases, but it
 236         * can't know about every screwy device.  If we don't have an IVRS
 237         * reported alias, use the PCI reported alias.  In that case we may
 238         * still need to initialize the rlookup and dev_table entries if the
 239         * alias is to a non-existent device.
 240         */
 241        if (ivrs_alias == devid) {
 242                if (!amd_iommu_rlookup_table[pci_alias]) {
 243                        amd_iommu_rlookup_table[pci_alias] =
 244                                amd_iommu_rlookup_table[devid];
 245                        memcpy(amd_iommu_dev_table[pci_alias].data,
 246                               amd_iommu_dev_table[devid].data,
 247                               sizeof(amd_iommu_dev_table[pci_alias].data));
 248                }
 249
 250                return pci_alias;
 251        }
 252
 253        pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
 254                "for device %s[%04x:%04x], kernel reported alias "
 255                "%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
 256                PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
 257                PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
 258                PCI_FUNC(pci_alias));
 259
 260        /*
 261         * If we don't have a PCI DMA alias and the IVRS alias is on the same
 262         * bus, then the IVRS table may know about a quirk that we don't.
 263         */
 264        if (pci_alias == devid &&
 265            PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
 266                pdev->dev_flags |= PCI_DEV_FLAGS_DMA_ALIAS_DEVFN;
 267                pdev->dma_alias_devfn = ivrs_alias & 0xff;
 268                pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
 269                        PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
 270                        dev_name(dev));
 271        }
 272
 273        return ivrs_alias;
 274}
 275
 276static struct iommu_dev_data *find_dev_data(u16 devid)
 277{
 278        struct iommu_dev_data *dev_data;
 279
 280        dev_data = search_dev_data(devid);
 281
 282        if (dev_data == NULL)
 283                dev_data = alloc_dev_data(devid);
 284
 285        return dev_data;
 286}
 287
 288static struct iommu_dev_data *get_dev_data(struct device *dev)
 289{
 290        return dev->archdata.iommu;
 291}
 292
 293static bool pci_iommuv2_capable(struct pci_dev *pdev)
 294{
 295        static const int caps[] = {
 296                PCI_EXT_CAP_ID_ATS,
 297                PCI_EXT_CAP_ID_PRI,
 298                PCI_EXT_CAP_ID_PASID,
 299        };
 300        int i, pos;
 301
 302        for (i = 0; i < 3; ++i) {
 303                pos = pci_find_ext_capability(pdev, caps[i]);
 304                if (pos == 0)
 305                        return false;
 306        }
 307
 308        return true;
 309}
 310
 311static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
 312{
 313        struct iommu_dev_data *dev_data;
 314
 315        dev_data = get_dev_data(&pdev->dev);
 316
 317        return dev_data->errata & (1 << erratum) ? true : false;
 318}
 319
 320/*
 321 * This function actually applies the mapping to the page table of the
 322 * dma_ops domain.
 323 */
 324static void alloc_unity_mapping(struct dma_ops_domain *dma_dom,
 325                                struct unity_map_entry *e)
 326{
 327        u64 addr;
 328
 329        for (addr = e->address_start; addr < e->address_end;
 330             addr += PAGE_SIZE) {
 331                if (addr < dma_dom->aperture_size)
 332                        __set_bit(addr >> PAGE_SHIFT,
 333                                  dma_dom->aperture[0]->bitmap);
 334        }
 335}
 336
 337/*
 338 * Inits the unity mappings required for a specific device
 339 */
 340static void init_unity_mappings_for_device(struct device *dev,
 341                                           struct dma_ops_domain *dma_dom)
 342{
 343        struct unity_map_entry *e;
 344        u16 devid;
 345
 346        devid = get_device_id(dev);
 347
 348        list_for_each_entry(e, &amd_iommu_unity_map, list) {
 349                if (!(devid >= e->devid_start && devid <= e->devid_end))
 350                        continue;
 351                alloc_unity_mapping(dma_dom, e);
 352        }
 353}
 354
 355/*
 356 * This function checks if the driver got a valid device from the caller to
 357 * avoid dereferencing invalid pointers.
 358 */
 359static bool check_device(struct device *dev)
 360{
 361        u16 devid;
 362
 363        if (!dev || !dev->dma_mask)
 364                return false;
 365
 366        /* No PCI device */
 367        if (!dev_is_pci(dev))
 368                return false;
 369
 370        devid = get_device_id(dev);
 371
 372        /* Out of our scope? */
 373        if (devid > amd_iommu_last_bdf)
 374                return false;
 375
 376        if (amd_iommu_rlookup_table[devid] == NULL)
 377                return false;
 378
 379        return true;
 380}
 381
 382static void init_iommu_group(struct device *dev)
 383{
 384        struct dma_ops_domain *dma_domain;
 385        struct iommu_domain *domain;
 386        struct iommu_group *group;
 387
 388        group = iommu_group_get_for_dev(dev);
 389        if (IS_ERR(group))
 390                return;
 391
 392        domain = iommu_group_default_domain(group);
 393        if (!domain)
 394                goto out;
 395
 396        dma_domain = to_pdomain(domain)->priv;
 397
 398        init_unity_mappings_for_device(dev, dma_domain);
 399out:
 400        iommu_group_put(group);
 401}
 402
 403static int iommu_init_device(struct device *dev)
 404{
 405        struct pci_dev *pdev = to_pci_dev(dev);
 406        struct iommu_dev_data *dev_data;
 407
 408        if (dev->archdata.iommu)
 409                return 0;
 410
 411        dev_data = find_dev_data(get_device_id(dev));
 412        if (!dev_data)
 413                return -ENOMEM;
 414
 415        dev_data->alias = get_alias(dev);
 416
 417        if (pci_iommuv2_capable(pdev)) {
 418                struct amd_iommu *iommu;
 419
 420                iommu              = amd_iommu_rlookup_table[dev_data->devid];
 421                dev_data->iommu_v2 = iommu->is_iommu_v2;
 422        }
 423
 424        dev->archdata.iommu = dev_data;
 425
 426        iommu_device_link(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
 427                          dev);
 428
 429        return 0;
 430}
 431
 432static void iommu_ignore_device(struct device *dev)
 433{
 434        u16 devid, alias;
 435
 436        devid = get_device_id(dev);
 437        alias = get_alias(dev);
 438
 439        memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
 440        memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
 441
 442        amd_iommu_rlookup_table[devid] = NULL;
 443        amd_iommu_rlookup_table[alias] = NULL;
 444}
 445
 446static void iommu_uninit_device(struct device *dev)
 447{
 448        struct iommu_dev_data *dev_data = search_dev_data(get_device_id(dev));
 449
 450        if (!dev_data)
 451                return;
 452
 453        if (dev_data->domain)
 454                detach_device(dev);
 455
 456        iommu_device_unlink(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
 457                            dev);
 458
 459        iommu_group_remove_device(dev);
 460
 461        /* Remove dma-ops */
 462        dev->archdata.dma_ops = NULL;
 463
 464        /*
 465         * We keep dev_data around for unplugged devices and reuse it when the
 466         * device is re-plugged - not doing so would introduce a ton of races.
 467         */
 468}
 469
 470#ifdef CONFIG_AMD_IOMMU_STATS
 471
 472/*
 473 * Initialization code for statistics collection
 474 */
 475
 476DECLARE_STATS_COUNTER(compl_wait);
 477DECLARE_STATS_COUNTER(cnt_map_single);
 478DECLARE_STATS_COUNTER(cnt_unmap_single);
 479DECLARE_STATS_COUNTER(cnt_map_sg);
 480DECLARE_STATS_COUNTER(cnt_unmap_sg);
 481DECLARE_STATS_COUNTER(cnt_alloc_coherent);
 482DECLARE_STATS_COUNTER(cnt_free_coherent);
 483DECLARE_STATS_COUNTER(cross_page);
 484DECLARE_STATS_COUNTER(domain_flush_single);
 485DECLARE_STATS_COUNTER(domain_flush_all);
 486DECLARE_STATS_COUNTER(alloced_io_mem);
 487DECLARE_STATS_COUNTER(total_map_requests);
 488DECLARE_STATS_COUNTER(complete_ppr);
 489DECLARE_STATS_COUNTER(invalidate_iotlb);
 490DECLARE_STATS_COUNTER(invalidate_iotlb_all);
 491DECLARE_STATS_COUNTER(pri_requests);
 492
 493static struct dentry *stats_dir;
 494static struct dentry *de_fflush;
 495
 496static void amd_iommu_stats_add(struct __iommu_counter *cnt)
 497{
 498        if (stats_dir == NULL)
 499                return;
 500
 501        cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
 502                                       &cnt->value);
 503}
 504
 505static void amd_iommu_stats_init(void)
 506{
 507        stats_dir = debugfs_create_dir("amd-iommu", NULL);
 508        if (stats_dir == NULL)
 509                return;
 510
 511        de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
 512                                         &amd_iommu_unmap_flush);
 513
 514        amd_iommu_stats_add(&compl_wait);
 515        amd_iommu_stats_add(&cnt_map_single);
 516        amd_iommu_stats_add(&cnt_unmap_single);
 517        amd_iommu_stats_add(&cnt_map_sg);
 518        amd_iommu_stats_add(&cnt_unmap_sg);
 519        amd_iommu_stats_add(&cnt_alloc_coherent);
 520        amd_iommu_stats_add(&cnt_free_coherent);
 521        amd_iommu_stats_add(&cross_page);
 522        amd_iommu_stats_add(&domain_flush_single);
 523        amd_iommu_stats_add(&domain_flush_all);
 524        amd_iommu_stats_add(&alloced_io_mem);
 525        amd_iommu_stats_add(&total_map_requests);
 526        amd_iommu_stats_add(&complete_ppr);
 527        amd_iommu_stats_add(&invalidate_iotlb);
 528        amd_iommu_stats_add(&invalidate_iotlb_all);
 529        amd_iommu_stats_add(&pri_requests);
 530}
 531
 532#endif
 533
 534/****************************************************************************
 535 *
 536 * Interrupt handling functions
 537 *
 538 ****************************************************************************/
 539
 540static void dump_dte_entry(u16 devid)
 541{
 542        int i;
 543
 544        for (i = 0; i < 4; ++i)
 545                pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
 546                        amd_iommu_dev_table[devid].data[i]);
 547}
 548
 549static void dump_command(unsigned long phys_addr)
 550{
 551        struct iommu_cmd *cmd = phys_to_virt(phys_addr);
 552        int i;
 553
 554        for (i = 0; i < 4; ++i)
 555                pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
 556}
 557
 558static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
 559{
 560        int type, devid, domid, flags;
 561        volatile u32 *event = __evt;
 562        int count = 0;
 563        u64 address;
 564
 565retry:
 566        type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
 567        devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
 568        domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
 569        flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
 570        address = (u64)(((u64)event[3]) << 32) | event[2];
 571
 572        if (type == 0) {
 573                /* Did we hit the erratum? */
 574                if (++count == LOOP_TIMEOUT) {
 575                        pr_err("AMD-Vi: No event written to event log\n");
 576                        return;
 577                }
 578                udelay(1);
 579                goto retry;
 580        }
 581
 582        printk(KERN_ERR "AMD-Vi: Event logged [");
 583
 584        switch (type) {
 585        case EVENT_TYPE_ILL_DEV:
 586                printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
 587                       "address=0x%016llx flags=0x%04x]\n",
 588                       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 589                       address, flags);
 590                dump_dte_entry(devid);
 591                break;
 592        case EVENT_TYPE_IO_FAULT:
 593                printk("IO_PAGE_FAULT device=%02x:%02x.%x "
 594                       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
 595                       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 596                       domid, address, flags);
 597                break;
 598        case EVENT_TYPE_DEV_TAB_ERR:
 599                printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
 600                       "address=0x%016llx flags=0x%04x]\n",
 601                       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 602                       address, flags);
 603                break;
 604        case EVENT_TYPE_PAGE_TAB_ERR:
 605                printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
 606                       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
 607                       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 608                       domid, address, flags);
 609                break;
 610        case EVENT_TYPE_ILL_CMD:
 611                printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
 612                dump_command(address);
 613                break;
 614        case EVENT_TYPE_CMD_HARD_ERR:
 615                printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
 616                       "flags=0x%04x]\n", address, flags);
 617                break;
 618        case EVENT_TYPE_IOTLB_INV_TO:
 619                printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
 620                       "address=0x%016llx]\n",
 621                       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 622                       address);
 623                break;
 624        case EVENT_TYPE_INV_DEV_REQ:
 625                printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
 626                       "address=0x%016llx flags=0x%04x]\n",
 627                       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 628                       address, flags);
 629                break;
 630        default:
 631                printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
 632        }
 633
 634        memset(__evt, 0, 4 * sizeof(u32));
 635}
 636
 637static void iommu_poll_events(struct amd_iommu *iommu)
 638{
 639        u32 head, tail;
 640
 641        head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
 642        tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
 643
 644        while (head != tail) {
 645                iommu_print_event(iommu, iommu->evt_buf + head);
 646                head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
 647        }
 648
 649        writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
 650}
 651
 652static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
 653{
 654        struct amd_iommu_fault fault;
 655
 656        INC_STATS_COUNTER(pri_requests);
 657
 658        if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
 659                pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
 660                return;
 661        }
 662
 663        fault.address   = raw[1];
 664        fault.pasid     = PPR_PASID(raw[0]);
 665        fault.device_id = PPR_DEVID(raw[0]);
 666        fault.tag       = PPR_TAG(raw[0]);
 667        fault.flags     = PPR_FLAGS(raw[0]);
 668
 669        atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
 670}
 671
 672static void iommu_poll_ppr_log(struct amd_iommu *iommu)
 673{
 674        u32 head, tail;
 675
 676        if (iommu->ppr_log == NULL)
 677                return;
 678
 679        head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
 680        tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
 681
 682        while (head != tail) {
 683                volatile u64 *raw;
 684                u64 entry[2];
 685                int i;
 686
 687                raw = (u64 *)(iommu->ppr_log + head);
 688
 689                /*
 690                 * Hardware bug: Interrupt may arrive before the entry is
 691                 * written to memory. If this happens we need to wait for the
 692                 * entry to arrive.
 693                 */
 694                for (i = 0; i < LOOP_TIMEOUT; ++i) {
 695                        if (PPR_REQ_TYPE(raw[0]) != 0)
 696                                break;
 697                        udelay(1);
 698                }
 699
 700                /* Avoid memcpy function-call overhead */
 701                entry[0] = raw[0];
 702                entry[1] = raw[1];
 703
 704                /*
 705                 * To detect the hardware bug we need to clear the entry
 706                 * back to zero.
 707                 */
 708                raw[0] = raw[1] = 0UL;
 709
 710                /* Update head pointer of hardware ring-buffer */
 711                head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
 712                writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
 713
 714                /* Handle PPR entry */
 715                iommu_handle_ppr_entry(iommu, entry);
 716
 717                /* Refresh ring-buffer information */
 718                head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
 719                tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
 720        }
 721}
 722
 723irqreturn_t amd_iommu_int_thread(int irq, void *data)
 724{
 725        struct amd_iommu *iommu = (struct amd_iommu *) data;
 726        u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
 727
 728        while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
 729                /* Enable EVT and PPR interrupts again */
 730                writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
 731                        iommu->mmio_base + MMIO_STATUS_OFFSET);
 732
 733                if (status & MMIO_STATUS_EVT_INT_MASK) {
 734                        pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
 735                        iommu_poll_events(iommu);
 736                }
 737
 738                if (status & MMIO_STATUS_PPR_INT_MASK) {
 739                        pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
 740                        iommu_poll_ppr_log(iommu);
 741                }
 742
 743                /*
 744                 * Hardware bug: ERBT1312
 745                 * When re-enabling interrupt (by writing 1
 746                 * to clear the bit), the hardware might also try to set
 747                 * the interrupt bit in the event status register.
 748                 * In this scenario, the bit will be set, and disable
 749                 * subsequent interrupts.
 750                 *
 751                 * Workaround: The IOMMU driver should read back the
 752                 * status register and check if the interrupt bits are cleared.
 753                 * If not, driver will need to go through the interrupt handler
 754                 * again and re-clear the bits
 755                 */
 756                status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
 757        }
 758        return IRQ_HANDLED;
 759}
 760
 761irqreturn_t amd_iommu_int_handler(int irq, void *data)
 762{
 763        return IRQ_WAKE_THREAD;
 764}
 765
 766/****************************************************************************
 767 *
 768 * IOMMU command queuing functions
 769 *
 770 ****************************************************************************/
 771
 772static int wait_on_sem(volatile u64 *sem)
 773{
 774        int i = 0;
 775
 776        while (*sem == 0 && i < LOOP_TIMEOUT) {
 777                udelay(1);
 778                i += 1;
 779        }
 780
 781        if (i == LOOP_TIMEOUT) {
 782                pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
 783                return -EIO;
 784        }
 785
 786        return 0;
 787}
 788
 789static void copy_cmd_to_buffer(struct amd_iommu *iommu,
 790                               struct iommu_cmd *cmd,
 791                               u32 tail)
 792{
 793        u8 *target;
 794
 795        target = iommu->cmd_buf + tail;
 796        tail   = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
 797
 798        /* Copy command to buffer */
 799        memcpy(target, cmd, sizeof(*cmd));
 800
 801        /* Tell the IOMMU about it */
 802        writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
 803}
 804
 805static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
 806{
 807        WARN_ON(address & 0x7ULL);
 808
 809        memset(cmd, 0, sizeof(*cmd));
 810        cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
 811        cmd->data[1] = upper_32_bits(__pa(address));
 812        cmd->data[2] = 1;
 813        CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
 814}
 815
 816static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
 817{
 818        memset(cmd, 0, sizeof(*cmd));
 819        cmd->data[0] = devid;
 820        CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
 821}
 822
 823static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
 824                                  size_t size, u16 domid, int pde)
 825{
 826        u64 pages;
 827        bool s;
 828
 829        pages = iommu_num_pages(address, size, PAGE_SIZE);
 830        s     = false;
 831
 832        if (pages > 1) {
 833                /*
 834                 * If we have to flush more than one page, flush all
 835                 * TLB entries for this domain
 836                 */
 837                address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
 838                s = true;
 839        }
 840
 841        address &= PAGE_MASK;
 842
 843        memset(cmd, 0, sizeof(*cmd));
 844        cmd->data[1] |= domid;
 845        cmd->data[2]  = lower_32_bits(address);
 846        cmd->data[3]  = upper_32_bits(address);
 847        CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
 848        if (s) /* size bit - we flush more than one 4kb page */
 849                cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
 850        if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
 851                cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
 852}
 853
 854static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
 855                                  u64 address, size_t size)
 856{
 857        u64 pages;
 858        bool s;
 859
 860        pages = iommu_num_pages(address, size, PAGE_SIZE);
 861        s     = false;
 862
 863        if (pages > 1) {
 864                /*
 865                 * If we have to flush more than one page, flush all
 866                 * TLB entries for this domain
 867                 */
 868                address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
 869                s = true;
 870        }
 871
 872        address &= PAGE_MASK;
 873
 874        memset(cmd, 0, sizeof(*cmd));
 875        cmd->data[0]  = devid;
 876        cmd->data[0] |= (qdep & 0xff) << 24;
 877        cmd->data[1]  = devid;
 878        cmd->data[2]  = lower_32_bits(address);
 879        cmd->data[3]  = upper_32_bits(address);
 880        CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
 881        if (s)
 882                cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
 883}
 884
 885static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
 886                                  u64 address, bool size)
 887{
 888        memset(cmd, 0, sizeof(*cmd));
 889
 890        address &= ~(0xfffULL);
 891
 892        cmd->data[0]  = pasid;
 893        cmd->data[1]  = domid;
 894        cmd->data[2]  = lower_32_bits(address);
 895        cmd->data[3]  = upper_32_bits(address);
 896        cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
 897        cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
 898        if (size)
 899                cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
 900        CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
 901}
 902
 903static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
 904                                  int qdep, u64 address, bool size)
 905{
 906        memset(cmd, 0, sizeof(*cmd));
 907
 908        address &= ~(0xfffULL);
 909
 910        cmd->data[0]  = devid;
 911        cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
 912        cmd->data[0] |= (qdep  & 0xff) << 24;
 913        cmd->data[1]  = devid;
 914        cmd->data[1] |= (pasid & 0xff) << 16;
 915        cmd->data[2]  = lower_32_bits(address);
 916        cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
 917        cmd->data[3]  = upper_32_bits(address);
 918        if (size)
 919                cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
 920        CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
 921}
 922
 923static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
 924                               int status, int tag, bool gn)
 925{
 926        memset(cmd, 0, sizeof(*cmd));
 927
 928        cmd->data[0]  = devid;
 929        if (gn) {
 930                cmd->data[1]  = pasid;
 931                cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
 932        }
 933        cmd->data[3]  = tag & 0x1ff;
 934        cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
 935
 936        CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
 937}
 938
 939static void build_inv_all(struct iommu_cmd *cmd)
 940{
 941        memset(cmd, 0, sizeof(*cmd));
 942        CMD_SET_TYPE(cmd, CMD_INV_ALL);
 943}
 944
 945static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
 946{
 947        memset(cmd, 0, sizeof(*cmd));
 948        cmd->data[0] = devid;
 949        CMD_SET_TYPE(cmd, CMD_INV_IRT);
 950}
 951
 952/*
 953 * Writes the command to the IOMMUs command buffer and informs the
 954 * hardware about the new command.
 955 */
 956static int iommu_queue_command_sync(struct amd_iommu *iommu,
 957                                    struct iommu_cmd *cmd,
 958                                    bool sync)
 959{
 960        u32 left, tail, head, next_tail;
 961        unsigned long flags;
 962
 963again:
 964        spin_lock_irqsave(&iommu->lock, flags);
 965
 966        head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
 967        tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
 968        next_tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
 969        left      = (head - next_tail) % CMD_BUFFER_SIZE;
 970
 971        if (left <= 2) {
 972                struct iommu_cmd sync_cmd;
 973                volatile u64 sem = 0;
 974                int ret;
 975
 976                build_completion_wait(&sync_cmd, (u64)&sem);
 977                copy_cmd_to_buffer(iommu, &sync_cmd, tail);
 978
 979                spin_unlock_irqrestore(&iommu->lock, flags);
 980
 981                if ((ret = wait_on_sem(&sem)) != 0)
 982                        return ret;
 983
 984                goto again;
 985        }
 986
 987        copy_cmd_to_buffer(iommu, cmd, tail);
 988
 989        /* We need to sync now to make sure all commands are processed */
 990        iommu->need_sync = sync;
 991
 992        spin_unlock_irqrestore(&iommu->lock, flags);
 993
 994        return 0;
 995}
 996
 997static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
 998{
 999        return iommu_queue_command_sync(iommu, cmd, true);
1000}
1001
1002/*
1003 * This function queues a completion wait command into the command
1004 * buffer of an IOMMU
1005 */
1006static int iommu_completion_wait(struct amd_iommu *iommu)
1007{
1008        struct iommu_cmd cmd;
1009        volatile u64 sem = 0;
1010        int ret;
1011
1012        if (!iommu->need_sync)
1013                return 0;
1014
1015        build_completion_wait(&cmd, (u64)&sem);
1016
1017        ret = iommu_queue_command_sync(iommu, &cmd, false);
1018        if (ret)
1019                return ret;
1020
1021        return wait_on_sem(&sem);
1022}
1023
1024static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1025{
1026        struct iommu_cmd cmd;
1027
1028        build_inv_dte(&cmd, devid);
1029
1030        return iommu_queue_command(iommu, &cmd);
1031}
1032
1033static void iommu_flush_dte_all(struct amd_iommu *iommu)
1034{
1035        u32 devid;
1036
1037        for (devid = 0; devid <= 0xffff; ++devid)
1038                iommu_flush_dte(iommu, devid);
1039
1040        iommu_completion_wait(iommu);
1041}
1042
1043/*
1044 * This function uses heavy locking and may disable irqs for some time. But
1045 * this is no issue because it is only called during resume.
1046 */
1047static void iommu_flush_tlb_all(struct amd_iommu *iommu)
1048{
1049        u32 dom_id;
1050
1051        for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
1052                struct iommu_cmd cmd;
1053                build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1054                                      dom_id, 1);
1055                iommu_queue_command(iommu, &cmd);
1056        }
1057
1058        iommu_completion_wait(iommu);
1059}
1060
1061static void iommu_flush_all(struct amd_iommu *iommu)
1062{
1063        struct iommu_cmd cmd;
1064
1065        build_inv_all(&cmd);
1066
1067        iommu_queue_command(iommu, &cmd);
1068        iommu_completion_wait(iommu);
1069}
1070
1071static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1072{
1073        struct iommu_cmd cmd;
1074
1075        build_inv_irt(&cmd, devid);
1076
1077        iommu_queue_command(iommu, &cmd);
1078}
1079
1080static void iommu_flush_irt_all(struct amd_iommu *iommu)
1081{
1082        u32 devid;
1083
1084        for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
1085                iommu_flush_irt(iommu, devid);
1086
1087        iommu_completion_wait(iommu);
1088}
1089
1090void iommu_flush_all_caches(struct amd_iommu *iommu)
1091{
1092        if (iommu_feature(iommu, FEATURE_IA)) {
1093                iommu_flush_all(iommu);
1094        } else {
1095                iommu_flush_dte_all(iommu);
1096                iommu_flush_irt_all(iommu);
1097                iommu_flush_tlb_all(iommu);
1098        }
1099}
1100
1101/*
1102 * Command send function for flushing on-device TLB
1103 */
1104static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1105                              u64 address, size_t size)
1106{
1107        struct amd_iommu *iommu;
1108        struct iommu_cmd cmd;
1109        int qdep;
1110
1111        qdep     = dev_data->ats.qdep;
1112        iommu    = amd_iommu_rlookup_table[dev_data->devid];
1113
1114        build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1115
1116        return iommu_queue_command(iommu, &cmd);
1117}
1118
1119/*
1120 * Command send function for invalidating a device table entry
1121 */
1122static int device_flush_dte(struct iommu_dev_data *dev_data)
1123{
1124        struct amd_iommu *iommu;
1125        u16 alias;
1126        int ret;
1127
1128        iommu = amd_iommu_rlookup_table[dev_data->devid];
1129        alias = dev_data->alias;
1130
1131        ret = iommu_flush_dte(iommu, dev_data->devid);
1132        if (!ret && alias != dev_data->devid)
1133                ret = iommu_flush_dte(iommu, alias);
1134        if (ret)
1135                return ret;
1136
1137        if (dev_data->ats.enabled)
1138                ret = device_flush_iotlb(dev_data, 0, ~0UL);
1139
1140        return ret;
1141}
1142
1143/*
1144 * TLB invalidation function which is called from the mapping functions.
1145 * It invalidates a single PTE if the range to flush is within a single
1146 * page. Otherwise it flushes the whole TLB of the IOMMU.
1147 */
1148static void __domain_flush_pages(struct protection_domain *domain,
1149                                 u64 address, size_t size, int pde)
1150{
1151        struct iommu_dev_data *dev_data;
1152        struct iommu_cmd cmd;
1153        int ret = 0, i;
1154
1155        build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1156
1157        for (i = 0; i < amd_iommus_present; ++i) {
1158                if (!domain->dev_iommu[i])
1159                        continue;
1160
1161                /*
1162                 * Devices of this domain are behind this IOMMU
1163                 * We need a TLB flush
1164                 */
1165                ret |= iommu_queue_command(amd_iommus[i], &cmd);
1166        }
1167
1168        list_for_each_entry(dev_data, &domain->dev_list, list) {
1169
1170                if (!dev_data->ats.enabled)
1171                        continue;
1172
1173                ret |= device_flush_iotlb(dev_data, address, size);
1174        }
1175
1176        WARN_ON(ret);
1177}
1178
1179static void domain_flush_pages(struct protection_domain *domain,
1180                               u64 address, size_t size)
1181{
1182        __domain_flush_pages(domain, address, size, 0);
1183}
1184
1185/* Flush the whole IO/TLB for a given protection domain */
1186static void domain_flush_tlb(struct protection_domain *domain)
1187{
1188        __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1189}
1190
1191/* Flush the whole IO/TLB for a given protection domain - including PDE */
1192static void domain_flush_tlb_pde(struct protection_domain *domain)
1193{
1194        __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1195}
1196
1197static void domain_flush_complete(struct protection_domain *domain)
1198{
1199        int i;
1200
1201        for (i = 0; i < amd_iommus_present; ++i) {
1202                if (!domain->dev_iommu[i])
1203                        continue;
1204
1205                /*
1206                 * Devices of this domain are behind this IOMMU
1207                 * We need to wait for completion of all commands.
1208                 */
1209                iommu_completion_wait(amd_iommus[i]);
1210        }
1211}
1212
1213
1214/*
1215 * This function flushes the DTEs for all devices in domain
1216 */
1217static void domain_flush_devices(struct protection_domain *domain)
1218{
1219        struct iommu_dev_data *dev_data;
1220
1221        list_for_each_entry(dev_data, &domain->dev_list, list)
1222                device_flush_dte(dev_data);
1223}
1224
1225/****************************************************************************
1226 *
1227 * The functions below are used the create the page table mappings for
1228 * unity mapped regions.
1229 *
1230 ****************************************************************************/
1231
1232/*
1233 * This function is used to add another level to an IO page table. Adding
1234 * another level increases the size of the address space by 9 bits to a size up
1235 * to 64 bits.
1236 */
1237static bool increase_address_space(struct protection_domain *domain,
1238                                   gfp_t gfp)
1239{
1240        u64 *pte;
1241
1242        if (domain->mode == PAGE_MODE_6_LEVEL)
1243                /* address space already 64 bit large */
1244                return false;
1245
1246        pte = (void *)get_zeroed_page(gfp);
1247        if (!pte)
1248                return false;
1249
1250        *pte             = PM_LEVEL_PDE(domain->mode,
1251                                        virt_to_phys(domain->pt_root));
1252        domain->pt_root  = pte;
1253        domain->mode    += 1;
1254        domain->updated  = true;
1255
1256        return true;
1257}
1258
1259static u64 *alloc_pte(struct protection_domain *domain,
1260                      unsigned long address,
1261                      unsigned long page_size,
1262                      u64 **pte_page,
1263                      gfp_t gfp)
1264{
1265        int level, end_lvl;
1266        u64 *pte, *page;
1267
1268        BUG_ON(!is_power_of_2(page_size));
1269
1270        while (address > PM_LEVEL_SIZE(domain->mode))
1271                increase_address_space(domain, gfp);
1272
1273        level   = domain->mode - 1;
1274        pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1275        address = PAGE_SIZE_ALIGN(address, page_size);
1276        end_lvl = PAGE_SIZE_LEVEL(page_size);
1277
1278        while (level > end_lvl) {
1279                u64 __pte, __npte;
1280
1281                __pte = *pte;
1282
1283                if (!IOMMU_PTE_PRESENT(__pte)) {
1284                        page = (u64 *)get_zeroed_page(gfp);
1285                        if (!page)
1286                                return NULL;
1287
1288                        __npte = PM_LEVEL_PDE(level, virt_to_phys(page));
1289
1290                        if (cmpxchg64(pte, __pte, __npte)) {
1291                                free_page((unsigned long)page);
1292                                continue;
1293                        }
1294                }
1295
1296                /* No level skipping support yet */
1297                if (PM_PTE_LEVEL(*pte) != level)
1298                        return NULL;
1299
1300                level -= 1;
1301
1302                pte = IOMMU_PTE_PAGE(*pte);
1303
1304                if (pte_page && level == end_lvl)
1305                        *pte_page = pte;
1306
1307                pte = &pte[PM_LEVEL_INDEX(level, address)];
1308        }
1309
1310        return pte;
1311}
1312
1313/*
1314 * This function checks if there is a PTE for a given dma address. If
1315 * there is one, it returns the pointer to it.
1316 */
1317static u64 *fetch_pte(struct protection_domain *domain,
1318                      unsigned long address,
1319                      unsigned long *page_size)
1320{
1321        int level;
1322        u64 *pte;
1323
1324        if (address > PM_LEVEL_SIZE(domain->mode))
1325                return NULL;
1326
1327        level      =  domain->mode - 1;
1328        pte        = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1329        *page_size =  PTE_LEVEL_PAGE_SIZE(level);
1330
1331        while (level > 0) {
1332
1333                /* Not Present */
1334                if (!IOMMU_PTE_PRESENT(*pte))
1335                        return NULL;
1336
1337                /* Large PTE */
1338                if (PM_PTE_LEVEL(*pte) == 7 ||
1339                    PM_PTE_LEVEL(*pte) == 0)
1340                        break;
1341
1342                /* No level skipping support yet */
1343                if (PM_PTE_LEVEL(*pte) != level)
1344                        return NULL;
1345
1346                level -= 1;
1347
1348                /* Walk to the next level */
1349                pte        = IOMMU_PTE_PAGE(*pte);
1350                pte        = &pte[PM_LEVEL_INDEX(level, address)];
1351                *page_size = PTE_LEVEL_PAGE_SIZE(level);
1352        }
1353
1354        if (PM_PTE_LEVEL(*pte) == 0x07) {
1355                unsigned long pte_mask;
1356
1357                /*
1358                 * If we have a series of large PTEs, make
1359                 * sure to return a pointer to the first one.
1360                 */
1361                *page_size = pte_mask = PTE_PAGE_SIZE(*pte);
1362                pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
1363                pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1364        }
1365
1366        return pte;
1367}
1368
1369/*
1370 * Generic mapping functions. It maps a physical address into a DMA
1371 * address space. It allocates the page table pages if necessary.
1372 * In the future it can be extended to a generic mapping function
1373 * supporting all features of AMD IOMMU page tables like level skipping
1374 * and full 64 bit address spaces.
1375 */
1376static int iommu_map_page(struct protection_domain *dom,
1377                          unsigned long bus_addr,
1378                          unsigned long phys_addr,
1379                          int prot,
1380                          unsigned long page_size)
1381{
1382        u64 __pte, *pte;
1383        int i, count;
1384
1385        BUG_ON(!IS_ALIGNED(bus_addr, page_size));
1386        BUG_ON(!IS_ALIGNED(phys_addr, page_size));
1387
1388        if (!(prot & IOMMU_PROT_MASK))
1389                return -EINVAL;
1390
1391        count = PAGE_SIZE_PTE_COUNT(page_size);
1392        pte   = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1393
1394        if (!pte)
1395                return -ENOMEM;
1396
1397        for (i = 0; i < count; ++i)
1398                if (IOMMU_PTE_PRESENT(pte[i]))
1399                        return -EBUSY;
1400
1401        if (count > 1) {
1402                __pte = PAGE_SIZE_PTE(phys_addr, page_size);
1403                __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
1404        } else
1405                __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1406
1407        if (prot & IOMMU_PROT_IR)
1408                __pte |= IOMMU_PTE_IR;
1409        if (prot & IOMMU_PROT_IW)
1410                __pte |= IOMMU_PTE_IW;
1411
1412        for (i = 0; i < count; ++i)
1413                pte[i] = __pte;
1414
1415        update_domain(dom);
1416
1417        return 0;
1418}
1419
1420static unsigned long iommu_unmap_page(struct protection_domain *dom,
1421                                      unsigned long bus_addr,
1422                                      unsigned long page_size)
1423{
1424        unsigned long long unmapped;
1425        unsigned long unmap_size;
1426        u64 *pte;
1427
1428        BUG_ON(!is_power_of_2(page_size));
1429
1430        unmapped = 0;
1431
1432        while (unmapped < page_size) {
1433
1434                pte = fetch_pte(dom, bus_addr, &unmap_size);
1435
1436                if (pte) {
1437                        int i, count;
1438
1439                        count = PAGE_SIZE_PTE_COUNT(unmap_size);
1440                        for (i = 0; i < count; i++)
1441                                pte[i] = 0ULL;
1442                }
1443
1444                bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1445                unmapped += unmap_size;
1446        }
1447
1448        BUG_ON(unmapped && !is_power_of_2(unmapped));
1449
1450        return unmapped;
1451}
1452
1453/****************************************************************************
1454 *
1455 * The next functions belong to the address allocator for the dma_ops
1456 * interface functions. They work like the allocators in the other IOMMU
1457 * drivers. Its basically a bitmap which marks the allocated pages in
1458 * the aperture. Maybe it could be enhanced in the future to a more
1459 * efficient allocator.
1460 *
1461 ****************************************************************************/
1462
1463/*
1464 * The address allocator core functions.
1465 *
1466 * called with domain->lock held
1467 */
1468
1469/*
1470 * Used to reserve address ranges in the aperture (e.g. for exclusion
1471 * ranges.
1472 */
1473static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1474                                      unsigned long start_page,
1475                                      unsigned int pages)
1476{
1477        unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1478
1479        if (start_page + pages > last_page)
1480                pages = last_page - start_page;
1481
1482        for (i = start_page; i < start_page + pages; ++i) {
1483                int index = i / APERTURE_RANGE_PAGES;
1484                int page  = i % APERTURE_RANGE_PAGES;
1485                __set_bit(page, dom->aperture[index]->bitmap);
1486        }
1487}
1488
1489/*
1490 * This function is used to add a new aperture range to an existing
1491 * aperture in case of dma_ops domain allocation or address allocation
1492 * failure.
1493 */
1494static int alloc_new_range(struct dma_ops_domain *dma_dom,
1495                           bool populate, gfp_t gfp)
1496{
1497        int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1498        unsigned long i, old_size, pte_pgsize;
1499        struct aperture_range *range;
1500        struct amd_iommu *iommu;
1501        unsigned long flags;
1502
1503#ifdef CONFIG_IOMMU_STRESS
1504        populate = false;
1505#endif
1506
1507        if (index >= APERTURE_MAX_RANGES)
1508                return -ENOMEM;
1509
1510        range = kzalloc(sizeof(struct aperture_range), gfp);
1511        if (!range)
1512                return -ENOMEM;
1513
1514        range->bitmap = (void *)get_zeroed_page(gfp);
1515        if (!range->bitmap)
1516                goto out_free;
1517
1518        range->offset = dma_dom->aperture_size;
1519
1520        spin_lock_init(&range->bitmap_lock);
1521
1522        if (populate) {
1523                unsigned long address = dma_dom->aperture_size;
1524                int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1525                u64 *pte, *pte_page;
1526
1527                for (i = 0; i < num_ptes; ++i) {
1528                        pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1529                                        &pte_page, gfp);
1530                        if (!pte)
1531                                goto out_free;
1532
1533                        range->pte_pages[i] = pte_page;
1534
1535                        address += APERTURE_RANGE_SIZE / 64;
1536                }
1537        }
1538
1539        spin_lock_irqsave(&dma_dom->domain.lock, flags);
1540
1541        /* First take the bitmap_lock and then publish the range */
1542        spin_lock(&range->bitmap_lock);
1543
1544        old_size                 = dma_dom->aperture_size;
1545        dma_dom->aperture[index] = range;
1546        dma_dom->aperture_size  += APERTURE_RANGE_SIZE;
1547
1548        /* Reserve address range used for MSI messages */
1549        if (old_size < MSI_ADDR_BASE_LO &&
1550            dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
1551                unsigned long spage;
1552                int pages;
1553
1554                pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
1555                spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;
1556
1557                dma_ops_reserve_addresses(dma_dom, spage, pages);
1558        }
1559
1560        /* Initialize the exclusion range if necessary */
1561        for_each_iommu(iommu) {
1562                if (iommu->exclusion_start &&
1563                    iommu->exclusion_start >= dma_dom->aperture[index]->offset
1564                    && iommu->exclusion_start < dma_dom->aperture_size) {
1565                        unsigned long startpage;
1566                        int pages = iommu_num_pages(iommu->exclusion_start,
1567                                                    iommu->exclusion_length,
1568                                                    PAGE_SIZE);
1569                        startpage = iommu->exclusion_start >> PAGE_SHIFT;
1570                        dma_ops_reserve_addresses(dma_dom, startpage, pages);
1571                }
1572        }
1573
1574        /*
1575         * Check for areas already mapped as present in the new aperture
1576         * range and mark those pages as reserved in the allocator. Such
1577         * mappings may already exist as a result of requested unity
1578         * mappings for devices.
1579         */
1580        for (i = dma_dom->aperture[index]->offset;
1581             i < dma_dom->aperture_size;
1582             i += pte_pgsize) {
1583                u64 *pte = fetch_pte(&dma_dom->domain, i, &pte_pgsize);
1584                if (!pte || !IOMMU_PTE_PRESENT(*pte))
1585                        continue;
1586
1587                dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT,
1588                                          pte_pgsize >> 12);
1589        }
1590
1591        update_domain(&dma_dom->domain);
1592
1593        spin_unlock(&range->bitmap_lock);
1594
1595        spin_unlock_irqrestore(&dma_dom->domain.lock, flags);
1596
1597        return 0;
1598
1599out_free:
1600        update_domain(&dma_dom->domain);
1601
1602        free_page((unsigned long)range->bitmap);
1603
1604        kfree(range);
1605
1606        return -ENOMEM;
1607}
1608
1609static dma_addr_t dma_ops_aperture_alloc(struct dma_ops_domain *dom,
1610                                         struct aperture_range *range,
1611                                         unsigned long pages,
1612                                         unsigned long dma_mask,
1613                                         unsigned long boundary_size,
1614                                         unsigned long align_mask,
1615                                         bool trylock)
1616{
1617        unsigned long offset, limit, flags;
1618        dma_addr_t address;
1619        bool flush = false;
1620
1621        offset = range->offset >> PAGE_SHIFT;
1622        limit  = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1623                                        dma_mask >> PAGE_SHIFT);
1624
1625        if (trylock) {
1626                if (!spin_trylock_irqsave(&range->bitmap_lock, flags))
1627                        return -1;
1628        } else {
1629                spin_lock_irqsave(&range->bitmap_lock, flags);
1630        }
1631
1632        address = iommu_area_alloc(range->bitmap, limit, range->next_bit,
1633                                   pages, offset, boundary_size, align_mask);
1634        if (address == -1) {
1635                /* Nothing found, retry one time */
1636                address = iommu_area_alloc(range->bitmap, limit,
1637                                           0, pages, offset, boundary_size,
1638                                           align_mask);
1639                flush = true;
1640        }
1641
1642        if (address != -1)
1643                range->next_bit = address + pages;
1644
1645        spin_unlock_irqrestore(&range->bitmap_lock, flags);
1646
1647        if (flush) {
1648                domain_flush_tlb(&dom->domain);
1649                domain_flush_complete(&dom->domain);
1650        }
1651
1652        return address;
1653}
1654
1655static unsigned long dma_ops_area_alloc(struct device *dev,
1656                                        struct dma_ops_domain *dom,
1657                                        unsigned int pages,
1658                                        unsigned long align_mask,
1659                                        u64 dma_mask)
1660{
1661        unsigned long boundary_size, mask;
1662        unsigned long address = -1;
1663        bool first = true;
1664        u32 start, i;
1665
1666        preempt_disable();
1667
1668        mask = dma_get_seg_boundary(dev);
1669
1670again:
1671        start = this_cpu_read(*dom->next_index);
1672
1673        /* Sanity check - is it really necessary? */
1674        if (unlikely(start > APERTURE_MAX_RANGES)) {
1675                start = 0;
1676                this_cpu_write(*dom->next_index, 0);
1677        }
1678
1679        boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
1680                                   1UL << (BITS_PER_LONG - PAGE_SHIFT);
1681
1682        for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1683                struct aperture_range *range;
1684                int index;
1685
1686                index = (start + i) % APERTURE_MAX_RANGES;
1687
1688                range = dom->aperture[index];
1689
1690                if (!range || range->offset >= dma_mask)
1691                        continue;
1692
1693                address = dma_ops_aperture_alloc(dom, range, pages,
1694                                                 dma_mask, boundary_size,
1695                                                 align_mask, first);
1696                if (address != -1) {
1697                        address = range->offset + (address << PAGE_SHIFT);
1698                        this_cpu_write(*dom->next_index, index);
1699                        break;
1700                }
1701        }
1702
1703        if (address == -1 && first) {
1704                first = false;
1705                goto again;
1706        }
1707
1708        preempt_enable();
1709
1710        return address;
1711}
1712
1713static unsigned long dma_ops_alloc_addresses(struct device *dev,
1714                                             struct dma_ops_domain *dom,
1715                                             unsigned int pages,
1716                                             unsigned long align_mask,
1717                                             u64 dma_mask)
1718{
1719        unsigned long address = -1;
1720
1721        while (address == -1) {
1722                address = dma_ops_area_alloc(dev, dom, pages,
1723                                             align_mask, dma_mask);
1724
1725                if (address == -1 && alloc_new_range(dom, false, GFP_ATOMIC))
1726                        break;
1727        }
1728
1729        if (unlikely(address == -1))
1730                address = DMA_ERROR_CODE;
1731
1732        WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1733
1734        return address;
1735}
1736
1737/*
1738 * The address free function.
1739 *
1740 * called with domain->lock held
1741 */
1742static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1743                                   unsigned long address,
1744                                   unsigned int pages)
1745{
1746        unsigned i = address >> APERTURE_RANGE_SHIFT;
1747        struct aperture_range *range = dom->aperture[i];
1748        unsigned long flags;
1749
1750        BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1751
1752#ifdef CONFIG_IOMMU_STRESS
1753        if (i < 4)
1754                return;
1755#endif
1756
1757        if (amd_iommu_unmap_flush) {
1758                domain_flush_tlb(&dom->domain);
1759                domain_flush_complete(&dom->domain);
1760        }
1761
1762        address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1763
1764        spin_lock_irqsave(&range->bitmap_lock, flags);
1765        if (address + pages > range->next_bit)
1766                range->next_bit = address + pages;
1767        bitmap_clear(range->bitmap, address, pages);
1768        spin_unlock_irqrestore(&range->bitmap_lock, flags);
1769
1770}
1771
1772/****************************************************************************
1773 *
1774 * The next functions belong to the domain allocation. A domain is
1775 * allocated for every IOMMU as the default domain. If device isolation
1776 * is enabled, every device get its own domain. The most important thing
1777 * about domains is the page table mapping the DMA address space they
1778 * contain.
1779 *
1780 ****************************************************************************/
1781
1782/*
1783 * This function adds a protection domain to the global protection domain list
1784 */
1785static void add_domain_to_list(struct protection_domain *domain)
1786{
1787        unsigned long flags;
1788
1789        spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1790        list_add(&domain->list, &amd_iommu_pd_list);
1791        spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1792}
1793
1794/*
1795 * This function removes a protection domain to the global
1796 * protection domain list
1797 */
1798static void del_domain_from_list(struct protection_domain *domain)
1799{
1800        unsigned long flags;
1801
1802        spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1803        list_del(&domain->list);
1804        spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1805}
1806
1807static u16 domain_id_alloc(void)
1808{
1809        unsigned long flags;
1810        int id;
1811
1812        write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1813        id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1814        BUG_ON(id == 0);
1815        if (id > 0 && id < MAX_DOMAIN_ID)
1816                __set_bit(id, amd_iommu_pd_alloc_bitmap);
1817        else
1818                id = 0;
1819        write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1820
1821        return id;
1822}
1823
1824static void domain_id_free(int id)
1825{
1826        unsigned long flags;
1827
1828        write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1829        if (id > 0 && id < MAX_DOMAIN_ID)
1830                __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1831        write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1832}
1833
1834#define DEFINE_FREE_PT_FN(LVL, FN)                              \
1835static void free_pt_##LVL (unsigned long __pt)                  \
1836{                                                               \
1837        unsigned long p;                                        \
1838        u64 *pt;                                                \
1839        int i;                                                  \
1840                                                                \
1841        pt = (u64 *)__pt;                                       \
1842                                                                \
1843        for (i = 0; i < 512; ++i) {                             \
1844                /* PTE present? */                              \
1845                if (!IOMMU_PTE_PRESENT(pt[i]))                  \
1846                        continue;                               \
1847                                                                \
1848                /* Large PTE? */                                \
1849                if (PM_PTE_LEVEL(pt[i]) == 0 ||                 \
1850                    PM_PTE_LEVEL(pt[i]) == 7)                   \
1851                        continue;                               \
1852                                                                \
1853                p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);       \
1854                FN(p);                                          \
1855        }                                                       \
1856        free_page((unsigned long)pt);                           \
1857}
1858
1859DEFINE_FREE_PT_FN(l2, free_page)
1860DEFINE_FREE_PT_FN(l3, free_pt_l2)
1861DEFINE_FREE_PT_FN(l4, free_pt_l3)
1862DEFINE_FREE_PT_FN(l5, free_pt_l4)
1863DEFINE_FREE_PT_FN(l6, free_pt_l5)
1864
1865static void free_pagetable(struct protection_domain *domain)
1866{
1867        unsigned long root = (unsigned long)domain->pt_root;
1868
1869        switch (domain->mode) {
1870        case PAGE_MODE_NONE:
1871                break;
1872        case PAGE_MODE_1_LEVEL:
1873                free_page(root);
1874                break;
1875        case PAGE_MODE_2_LEVEL:
1876                free_pt_l2(root);
1877                break;
1878        case PAGE_MODE_3_LEVEL:
1879                free_pt_l3(root);
1880                break;
1881        case PAGE_MODE_4_LEVEL:
1882                free_pt_l4(root);
1883                break;
1884        case PAGE_MODE_5_LEVEL:
1885                free_pt_l5(root);
1886                break;
1887        case PAGE_MODE_6_LEVEL:
1888                free_pt_l6(root);
1889                break;
1890        default:
1891                BUG();
1892        }
1893}
1894
1895static void free_gcr3_tbl_level1(u64 *tbl)
1896{
1897        u64 *ptr;
1898        int i;
1899
1900        for (i = 0; i < 512; ++i) {
1901                if (!(tbl[i] & GCR3_VALID))
1902                        continue;
1903
1904                ptr = __va(tbl[i] & PAGE_MASK);
1905
1906                free_page((unsigned long)ptr);
1907        }
1908}
1909
1910static void free_gcr3_tbl_level2(u64 *tbl)
1911{
1912        u64 *ptr;
1913        int i;
1914
1915        for (i = 0; i < 512; ++i) {
1916                if (!(tbl[i] & GCR3_VALID))
1917                        continue;
1918
1919                ptr = __va(tbl[i] & PAGE_MASK);
1920
1921                free_gcr3_tbl_level1(ptr);
1922        }
1923}
1924
1925static void free_gcr3_table(struct protection_domain *domain)
1926{
1927        if (domain->glx == 2)
1928                free_gcr3_tbl_level2(domain->gcr3_tbl);
1929        else if (domain->glx == 1)
1930                free_gcr3_tbl_level1(domain->gcr3_tbl);
1931        else
1932                BUG_ON(domain->glx != 0);
1933
1934        free_page((unsigned long)domain->gcr3_tbl);
1935}
1936
1937/*
1938 * Free a domain, only used if something went wrong in the
1939 * allocation path and we need to free an already allocated page table
1940 */
1941static void dma_ops_domain_free(struct dma_ops_domain *dom)
1942{
1943        int i;
1944
1945        if (!dom)
1946                return;
1947
1948        free_percpu(dom->next_index);
1949
1950        del_domain_from_list(&dom->domain);
1951
1952        free_pagetable(&dom->domain);
1953
1954        for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1955                if (!dom->aperture[i])
1956                        continue;
1957                free_page((unsigned long)dom->aperture[i]->bitmap);
1958                kfree(dom->aperture[i]);
1959        }
1960
1961        kfree(dom);
1962}
1963
1964static int dma_ops_domain_alloc_apertures(struct dma_ops_domain *dma_dom,
1965                                          int max_apertures)
1966{
1967        int ret, i, apertures;
1968
1969        apertures = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1970        ret       = 0;
1971
1972        for (i = apertures; i < max_apertures; ++i) {
1973                ret = alloc_new_range(dma_dom, false, GFP_KERNEL);
1974                if (ret)
1975                        break;
1976        }
1977
1978        return ret;
1979}
1980
1981/*
1982 * Allocates a new protection domain usable for the dma_ops functions.
1983 * It also initializes the page table and the address allocator data
1984 * structures required for the dma_ops interface
1985 */
1986static struct dma_ops_domain *dma_ops_domain_alloc(void)
1987{
1988        struct dma_ops_domain *dma_dom;
1989        int cpu;
1990
1991        dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1992        if (!dma_dom)
1993                return NULL;
1994
1995        if (protection_domain_init(&dma_dom->domain))
1996                goto free_dma_dom;
1997
1998        dma_dom->next_index = alloc_percpu(u32);
1999        if (!dma_dom->next_index)
2000                goto free_dma_dom;
2001
2002        dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
2003        dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2004        dma_dom->domain.flags = PD_DMA_OPS_MASK;
2005        dma_dom->domain.priv = dma_dom;
2006        if (!dma_dom->domain.pt_root)
2007                goto free_dma_dom;
2008
2009        add_domain_to_list(&dma_dom->domain);
2010
2011        if (alloc_new_range(dma_dom, true, GFP_KERNEL))
2012                goto free_dma_dom;
2013
2014        /*
2015         * mark the first page as allocated so we never return 0 as
2016         * a valid dma-address. So we can use 0 as error value
2017         */
2018        dma_dom->aperture[0]->bitmap[0] = 1;
2019
2020        for_each_possible_cpu(cpu)
2021                *per_cpu_ptr(dma_dom->next_index, cpu) = 0;
2022
2023        return dma_dom;
2024
2025free_dma_dom:
2026        dma_ops_domain_free(dma_dom);
2027
2028        return NULL;
2029}
2030
2031/*
2032 * little helper function to check whether a given protection domain is a
2033 * dma_ops domain
2034 */
2035static bool dma_ops_domain(struct protection_domain *domain)
2036{
2037        return domain->flags & PD_DMA_OPS_MASK;
2038}
2039
2040static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
2041{
2042        u64 pte_root = 0;
2043        u64 flags = 0;
2044
2045        if (domain->mode != PAGE_MODE_NONE)
2046                pte_root = virt_to_phys(domain->pt_root);
2047
2048        pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
2049                    << DEV_ENTRY_MODE_SHIFT;
2050        pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
2051
2052        flags = amd_iommu_dev_table[devid].data[1];
2053
2054        if (ats)
2055                flags |= DTE_FLAG_IOTLB;
2056
2057        if (domain->flags & PD_IOMMUV2_MASK) {
2058                u64 gcr3 = __pa(domain->gcr3_tbl);
2059                u64 glx  = domain->glx;
2060                u64 tmp;
2061
2062                pte_root |= DTE_FLAG_GV;
2063                pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
2064
2065                /* First mask out possible old values for GCR3 table */
2066                tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
2067                flags    &= ~tmp;
2068
2069                tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
2070                flags    &= ~tmp;
2071
2072                /* Encode GCR3 table into DTE */
2073                tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
2074                pte_root |= tmp;
2075
2076                tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
2077                flags    |= tmp;
2078
2079                tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
2080                flags    |= tmp;
2081        }
2082
2083        flags &= ~(0xffffUL);
2084        flags |= domain->id;
2085
2086        amd_iommu_dev_table[devid].data[1]  = flags;
2087        amd_iommu_dev_table[devid].data[0]  = pte_root;
2088}
2089
2090static void clear_dte_entry(u16 devid)
2091{
2092        /* remove entry from the device table seen by the hardware */
2093        amd_iommu_dev_table[devid].data[0]  = IOMMU_PTE_P | IOMMU_PTE_TV;
2094        amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
2095
2096        amd_iommu_apply_erratum_63(devid);
2097}
2098
2099static void do_attach(struct iommu_dev_data *dev_data,
2100                      struct protection_domain *domain)
2101{
2102        struct amd_iommu *iommu;
2103        u16 alias;
2104        bool ats;
2105
2106        iommu = amd_iommu_rlookup_table[dev_data->devid];
2107        alias = dev_data->alias;
2108        ats   = dev_data->ats.enabled;
2109
2110        /* Update data structures */
2111        dev_data->domain = domain;
2112        list_add(&dev_data->list, &domain->dev_list);
2113
2114        /* Do reference counting */
2115        domain->dev_iommu[iommu->index] += 1;
2116        domain->dev_cnt                 += 1;
2117
2118        /* Update device table */
2119        set_dte_entry(dev_data->devid, domain, ats);
2120        if (alias != dev_data->devid)
2121                set_dte_entry(alias, domain, ats);
2122
2123        device_flush_dte(dev_data);
2124}
2125
2126static void do_detach(struct iommu_dev_data *dev_data)
2127{
2128        struct amd_iommu *iommu;
2129        u16 alias;
2130
2131        /*
2132         * First check if the device is still attached. It might already
2133         * be detached from its domain because the generic
2134         * iommu_detach_group code detached it and we try again here in
2135         * our alias handling.
2136         */
2137        if (!dev_data->domain)
2138                return;
2139
2140        iommu = amd_iommu_rlookup_table[dev_data->devid];
2141        alias = dev_data->alias;
2142
2143        /* decrease reference counters */
2144        dev_data->domain->dev_iommu[iommu->index] -= 1;
2145        dev_data->domain->dev_cnt                 -= 1;
2146
2147        /* Update data structures */
2148        dev_data->domain = NULL;
2149        list_del(&dev_data->list);
2150        clear_dte_entry(dev_data->devid);
2151        if (alias != dev_data->devid)
2152                clear_dte_entry(alias);
2153
2154        /* Flush the DTE entry */
2155        device_flush_dte(dev_data);
2156}
2157
2158/*
2159 * If a device is not yet associated with a domain, this function does
2160 * assigns it visible for the hardware
2161 */
2162static int __attach_device(struct iommu_dev_data *dev_data,
2163                           struct protection_domain *domain)
2164{
2165        int ret;
2166
2167        /*
2168         * Must be called with IRQs disabled. Warn here to detect early
2169         * when its not.
2170         */
2171        WARN_ON(!irqs_disabled());
2172
2173        /* lock domain */
2174        spin_lock(&domain->lock);
2175
2176        ret = -EBUSY;
2177        if (dev_data->domain != NULL)
2178                goto out_unlock;
2179
2180        /* Attach alias group root */
2181        do_attach(dev_data, domain);
2182
2183        ret = 0;
2184
2185out_unlock:
2186
2187        /* ready */
2188        spin_unlock(&domain->lock);
2189
2190        return ret;
2191}
2192
2193
2194static void pdev_iommuv2_disable(struct pci_dev *pdev)
2195{
2196        pci_disable_ats(pdev);
2197        pci_disable_pri(pdev);
2198        pci_disable_pasid(pdev);
2199}
2200
2201/* FIXME: Change generic reset-function to do the same */
2202static int pri_reset_while_enabled(struct pci_dev *pdev)
2203{
2204        u16 control;
2205        int pos;
2206
2207        pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2208        if (!pos)
2209                return -EINVAL;
2210
2211        pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
2212        control |= PCI_PRI_CTRL_RESET;
2213        pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2214
2215        return 0;
2216}
2217
2218static int pdev_iommuv2_enable(struct pci_dev *pdev)
2219{
2220        bool reset_enable;
2221        int reqs, ret;
2222
2223        /* FIXME: Hardcode number of outstanding requests for now */
2224        reqs = 32;
2225        if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2226                reqs = 1;
2227        reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2228
2229        /* Only allow access to user-accessible pages */
2230        ret = pci_enable_pasid(pdev, 0);
2231        if (ret)
2232                goto out_err;
2233
2234        /* First reset the PRI state of the device */
2235        ret = pci_reset_pri(pdev);
2236        if (ret)
2237                goto out_err;
2238
2239        /* Enable PRI */
2240        ret = pci_enable_pri(pdev, reqs);
2241        if (ret)
2242                goto out_err;
2243
2244        if (reset_enable) {
2245                ret = pri_reset_while_enabled(pdev);
2246                if (ret)
2247                        goto out_err;
2248        }
2249
2250        ret = pci_enable_ats(pdev, PAGE_SHIFT);
2251        if (ret)
2252                goto out_err;
2253
2254        return 0;
2255
2256out_err:
2257        pci_disable_pri(pdev);
2258        pci_disable_pasid(pdev);
2259
2260        return ret;
2261}
2262
2263/* FIXME: Move this to PCI code */
2264#define PCI_PRI_TLP_OFF         (1 << 15)
2265
2266static bool pci_pri_tlp_required(struct pci_dev *pdev)
2267{
2268        u16 status;
2269        int pos;
2270
2271        pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2272        if (!pos)
2273                return false;
2274
2275        pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2276
2277        return (status & PCI_PRI_TLP_OFF) ? true : false;
2278}
2279
2280/*
2281 * If a device is not yet associated with a domain, this function
2282 * assigns it visible for the hardware
2283 */
2284static int attach_device(struct device *dev,
2285                         struct protection_domain *domain)
2286{
2287        struct pci_dev *pdev = to_pci_dev(dev);
2288        struct iommu_dev_data *dev_data;
2289        unsigned long flags;
2290        int ret;
2291
2292        dev_data = get_dev_data(dev);
2293
2294        if (domain->flags & PD_IOMMUV2_MASK) {
2295                if (!dev_data->passthrough)
2296                        return -EINVAL;
2297
2298                if (dev_data->iommu_v2) {
2299                        if (pdev_iommuv2_enable(pdev) != 0)
2300                                return -EINVAL;
2301
2302                        dev_data->ats.enabled = true;
2303                        dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2304                        dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
2305                }
2306        } else if (amd_iommu_iotlb_sup &&
2307                   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2308                dev_data->ats.enabled = true;
2309                dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2310        }
2311
2312        write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2313        ret = __attach_device(dev_data, domain);
2314        write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2315
2316        /*
2317         * We might boot into a crash-kernel here. The crashed kernel
2318         * left the caches in the IOMMU dirty. So we have to flush
2319         * here to evict all dirty stuff.
2320         */
2321        domain_flush_tlb_pde(domain);
2322
2323        return ret;
2324}
2325
2326/*
2327 * Removes a device from a protection domain (unlocked)
2328 */
2329static void __detach_device(struct iommu_dev_data *dev_data)
2330{
2331        struct protection_domain *domain;
2332
2333        /*
2334         * Must be called with IRQs disabled. Warn here to detect early
2335         * when its not.
2336         */
2337        WARN_ON(!irqs_disabled());
2338
2339        if (WARN_ON(!dev_data->domain))
2340                return;
2341
2342        domain = dev_data->domain;
2343
2344        spin_lock(&domain->lock);
2345
2346        do_detach(dev_data);
2347
2348        spin_unlock(&domain->lock);
2349}
2350
2351/*
2352 * Removes a device from a protection domain (with devtable_lock held)
2353 */
2354static void detach_device(struct device *dev)
2355{
2356        struct protection_domain *domain;
2357        struct iommu_dev_data *dev_data;
2358        unsigned long flags;
2359
2360        dev_data = get_dev_data(dev);
2361        domain   = dev_data->domain;
2362
2363        /* lock device table */
2364        write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2365        __detach_device(dev_data);
2366        write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2367
2368        if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2369                pdev_iommuv2_disable(to_pci_dev(dev));
2370        else if (dev_data->ats.enabled)
2371                pci_disable_ats(to_pci_dev(dev));
2372
2373        dev_data->ats.enabled = false;
2374}
2375
2376static int amd_iommu_add_device(struct device *dev)
2377{
2378        struct iommu_dev_data *dev_data;
2379        struct iommu_domain *domain;
2380        struct amd_iommu *iommu;
2381        u16 devid;
2382        int ret;
2383
2384        if (!check_device(dev) || get_dev_data(dev))
2385                return 0;
2386
2387        devid = get_device_id(dev);
2388        iommu = amd_iommu_rlookup_table[devid];
2389
2390        ret = iommu_init_device(dev);
2391        if (ret) {
2392                if (ret != -ENOTSUPP)
2393                        pr_err("Failed to initialize device %s - trying to proceed anyway\n",
2394                                dev_name(dev));
2395
2396                iommu_ignore_device(dev);
2397                dev->archdata.dma_ops = &nommu_dma_ops;
2398                goto out;
2399        }
2400        init_iommu_group(dev);
2401
2402        dev_data = get_dev_data(dev);
2403
2404        BUG_ON(!dev_data);
2405
2406        if (iommu_pass_through || dev_data->iommu_v2)
2407                iommu_request_dm_for_dev(dev);
2408
2409        /* Domains are initialized for this device - have a look what we ended up with */
2410        domain = iommu_get_domain_for_dev(dev);
2411        if (domain->type == IOMMU_DOMAIN_IDENTITY)
2412                dev_data->passthrough = true;
2413        else
2414                dev->archdata.dma_ops = &amd_iommu_dma_ops;
2415
2416out:
2417        iommu_completion_wait(iommu);
2418
2419        return 0;
2420}
2421
2422static void amd_iommu_remove_device(struct device *dev)
2423{
2424        struct amd_iommu *iommu;
2425        u16 devid;
2426
2427        if (!check_device(dev))
2428                return;
2429
2430        devid = get_device_id(dev);
2431        iommu = amd_iommu_rlookup_table[devid];
2432
2433        iommu_uninit_device(dev);
2434        iommu_completion_wait(iommu);
2435}
2436
2437/*****************************************************************************
2438 *
2439 * The next functions belong to the dma_ops mapping/unmapping code.
2440 *
2441 *****************************************************************************/
2442
2443/*
2444 * In the dma_ops path we only have the struct device. This function
2445 * finds the corresponding IOMMU, the protection domain and the
2446 * requestor id for a given device.
2447 * If the device is not yet associated with a domain this is also done
2448 * in this function.
2449 */
2450static struct protection_domain *get_domain(struct device *dev)
2451{
2452        struct protection_domain *domain;
2453        struct iommu_domain *io_domain;
2454
2455        if (!check_device(dev))
2456                return ERR_PTR(-EINVAL);
2457
2458        io_domain = iommu_get_domain_for_dev(dev);
2459        if (!io_domain)
2460                return NULL;
2461
2462        domain = to_pdomain(io_domain);
2463        if (!dma_ops_domain(domain))
2464                return ERR_PTR(-EBUSY);
2465
2466        return domain;
2467}
2468
2469static void update_device_table(struct protection_domain *domain)
2470{
2471        struct iommu_dev_data *dev_data;
2472
2473        list_for_each_entry(dev_data, &domain->dev_list, list)
2474                set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2475}
2476
2477static void update_domain(struct protection_domain *domain)
2478{
2479        if (!domain->updated)
2480                return;
2481
2482        update_device_table(domain);
2483
2484        domain_flush_devices(domain);
2485        domain_flush_tlb_pde(domain);
2486
2487        domain->updated = false;
2488}
2489
2490/*
2491 * This function fetches the PTE for a given address in the aperture
2492 */
2493static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
2494                            unsigned long address)
2495{
2496        struct aperture_range *aperture;
2497        u64 *pte, *pte_page;
2498
2499        aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2500        if (!aperture)
2501                return NULL;
2502
2503        pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2504        if (!pte) {
2505                pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
2506                                GFP_ATOMIC);
2507                aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
2508        } else
2509                pte += PM_LEVEL_INDEX(0, address);
2510
2511        update_domain(&dom->domain);
2512
2513        return pte;
2514}
2515
2516/*
2517 * This is the generic map function. It maps one 4kb page at paddr to
2518 * the given address in the DMA address space for the domain.
2519 */
2520static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2521                                     unsigned long address,
2522                                     phys_addr_t paddr,
2523                                     int direction)
2524{
2525        u64 *pte, __pte;
2526
2527        WARN_ON(address > dom->aperture_size);
2528
2529        paddr &= PAGE_MASK;
2530
2531        pte  = dma_ops_get_pte(dom, address);
2532        if (!pte)
2533                return DMA_ERROR_CODE;
2534
2535        __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
2536
2537        if (direction == DMA_TO_DEVICE)
2538                __pte |= IOMMU_PTE_IR;
2539        else if (direction == DMA_FROM_DEVICE)
2540                __pte |= IOMMU_PTE_IW;
2541        else if (direction == DMA_BIDIRECTIONAL)
2542                __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
2543
2544        WARN_ON_ONCE(*pte);
2545
2546        *pte = __pte;
2547
2548        return (dma_addr_t)address;
2549}
2550
2551/*
2552 * The generic unmapping function for on page in the DMA address space.
2553 */
2554static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2555                                 unsigned long address)
2556{
2557        struct aperture_range *aperture;
2558        u64 *pte;
2559
2560        if (address >= dom->aperture_size)
2561                return;
2562
2563        aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2564        if (!aperture)
2565                return;
2566
2567        pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2568        if (!pte)
2569                return;
2570
2571        pte += PM_LEVEL_INDEX(0, address);
2572
2573        WARN_ON_ONCE(!*pte);
2574
2575        *pte = 0ULL;
2576}
2577
2578/*
2579 * This function contains common code for mapping of a physically
2580 * contiguous memory region into DMA address space. It is used by all
2581 * mapping functions provided with this IOMMU driver.
2582 * Must be called with the domain lock held.
2583 */
2584static dma_addr_t __map_single(struct device *dev,
2585                               struct dma_ops_domain *dma_dom,
2586                               phys_addr_t paddr,
2587                               size_t size,
2588                               int dir,
2589                               bool align,
2590                               u64 dma_mask)
2591{
2592        dma_addr_t offset = paddr & ~PAGE_MASK;
2593        dma_addr_t address, start, ret;
2594        unsigned int pages;
2595        unsigned long align_mask = 0;
2596        int i;
2597
2598        pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2599        paddr &= PAGE_MASK;
2600
2601        INC_STATS_COUNTER(total_map_requests);
2602
2603        if (pages > 1)
2604                INC_STATS_COUNTER(cross_page);
2605
2606        if (align)
2607                align_mask = (1UL << get_order(size)) - 1;
2608
2609        address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
2610                                          dma_mask);
2611
2612        if (address == DMA_ERROR_CODE)
2613                goto out;
2614
2615        start = address;
2616        for (i = 0; i < pages; ++i) {
2617                ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2618                if (ret == DMA_ERROR_CODE)
2619                        goto out_unmap;
2620
2621                paddr += PAGE_SIZE;
2622                start += PAGE_SIZE;
2623        }
2624        address += offset;
2625
2626        ADD_STATS_COUNTER(alloced_io_mem, size);
2627
2628        if (unlikely(amd_iommu_np_cache)) {
2629                domain_flush_pages(&dma_dom->domain, address, size);
2630                domain_flush_complete(&dma_dom->domain);
2631        }
2632
2633out:
2634        return address;
2635
2636out_unmap:
2637
2638        for (--i; i >= 0; --i) {
2639                start -= PAGE_SIZE;
2640                dma_ops_domain_unmap(dma_dom, start);
2641        }
2642
2643        dma_ops_free_addresses(dma_dom, address, pages);
2644
2645        return DMA_ERROR_CODE;
2646}
2647
2648/*
2649 * Does the reverse of the __map_single function. Must be called with
2650 * the domain lock held too
2651 */
2652static void __unmap_single(struct dma_ops_domain *dma_dom,
2653                           dma_addr_t dma_addr,
2654                           size_t size,
2655                           int dir)
2656{
2657        dma_addr_t flush_addr;
2658        dma_addr_t i, start;
2659        unsigned int pages;
2660
2661        if ((dma_addr == DMA_ERROR_CODE) ||
2662            (dma_addr + size > dma_dom->aperture_size))
2663                return;
2664
2665        flush_addr = dma_addr;
2666        pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2667        dma_addr &= PAGE_MASK;
2668        start = dma_addr;
2669
2670        for (i = 0; i < pages; ++i) {
2671                dma_ops_domain_unmap(dma_dom, start);
2672                start += PAGE_SIZE;
2673        }
2674
2675        SUB_STATS_COUNTER(alloced_io_mem, size);
2676
2677        dma_ops_free_addresses(dma_dom, dma_addr, pages);
2678}
2679
2680/*
2681 * The exported map_single function for dma_ops.
2682 */
2683static dma_addr_t map_page(struct device *dev, struct page *page,
2684                           unsigned long offset, size_t size,
2685                           enum dma_data_direction dir,
2686                           struct dma_attrs *attrs)
2687{
2688        phys_addr_t paddr = page_to_phys(page) + offset;
2689        struct protection_domain *domain;
2690        u64 dma_mask;
2691
2692        INC_STATS_COUNTER(cnt_map_single);
2693
2694        domain = get_domain(dev);
2695        if (PTR_ERR(domain) == -EINVAL)
2696                return (dma_addr_t)paddr;
2697        else if (IS_ERR(domain))
2698                return DMA_ERROR_CODE;
2699
2700        dma_mask = *dev->dma_mask;
2701
2702        return __map_single(dev, domain->priv, paddr, size, dir, false,
2703                            dma_mask);
2704}
2705
2706/*
2707 * The exported unmap_single function for dma_ops.
2708 */
2709static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2710                       enum dma_data_direction dir, struct dma_attrs *attrs)
2711{
2712        struct protection_domain *domain;
2713
2714        INC_STATS_COUNTER(cnt_unmap_single);
2715
2716        domain = get_domain(dev);
2717        if (IS_ERR(domain))
2718                return;
2719
2720        __unmap_single(domain->priv, dma_addr, size, dir);
2721}
2722
2723/*
2724 * The exported map_sg function for dma_ops (handles scatter-gather
2725 * lists).
2726 */
2727static int map_sg(struct device *dev, struct scatterlist *sglist,
2728                  int nelems, enum dma_data_direction dir,
2729                  struct dma_attrs *attrs)
2730{
2731        struct protection_domain *domain;
2732        int i;
2733        struct scatterlist *s;
2734        phys_addr_t paddr;
2735        int mapped_elems = 0;
2736        u64 dma_mask;
2737
2738        INC_STATS_COUNTER(cnt_map_sg);
2739
2740        domain = get_domain(dev);
2741        if (IS_ERR(domain))
2742                return 0;
2743
2744        dma_mask = *dev->dma_mask;
2745
2746        for_each_sg(sglist, s, nelems, i) {
2747                paddr = sg_phys(s);
2748
2749                s->dma_address = __map_single(dev, domain->priv,
2750                                              paddr, s->length, dir, false,
2751                                              dma_mask);
2752
2753                if (s->dma_address) {
2754                        s->dma_length = s->length;
2755                        mapped_elems++;
2756                } else
2757                        goto unmap;
2758        }
2759
2760        return mapped_elems;
2761
2762unmap:
2763        for_each_sg(sglist, s, mapped_elems, i) {
2764                if (s->dma_address)
2765                        __unmap_single(domain->priv, s->dma_address,
2766                                       s->dma_length, dir);
2767                s->dma_address = s->dma_length = 0;
2768        }
2769
2770        return 0;
2771}
2772
2773/*
2774 * The exported map_sg function for dma_ops (handles scatter-gather
2775 * lists).
2776 */
2777static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2778                     int nelems, enum dma_data_direction dir,
2779                     struct dma_attrs *attrs)
2780{
2781        struct protection_domain *domain;
2782        struct scatterlist *s;
2783        int i;
2784
2785        INC_STATS_COUNTER(cnt_unmap_sg);
2786
2787        domain = get_domain(dev);
2788        if (IS_ERR(domain))
2789                return;
2790
2791        for_each_sg(sglist, s, nelems, i) {
2792                __unmap_single(domain->priv, s->dma_address,
2793                               s->dma_length, dir);
2794                s->dma_address = s->dma_length = 0;
2795        }
2796}
2797
2798/*
2799 * The exported alloc_coherent function for dma_ops.
2800 */
2801static void *alloc_coherent(struct device *dev, size_t size,
2802                            dma_addr_t *dma_addr, gfp_t flag,
2803                            struct dma_attrs *attrs)
2804{
2805        u64 dma_mask = dev->coherent_dma_mask;
2806        struct protection_domain *domain;
2807        struct page *page;
2808
2809        INC_STATS_COUNTER(cnt_alloc_coherent);
2810
2811        domain = get_domain(dev);
2812        if (PTR_ERR(domain) == -EINVAL) {
2813                page = alloc_pages(flag, get_order(size));
2814                *dma_addr = page_to_phys(page);
2815                return page_address(page);
2816        } else if (IS_ERR(domain))
2817                return NULL;
2818
2819        size      = PAGE_ALIGN(size);
2820        dma_mask  = dev->coherent_dma_mask;
2821        flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2822        flag     |= __GFP_ZERO;
2823
2824        page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
2825        if (!page) {
2826                if (!gfpflags_allow_blocking(flag))
2827                        return NULL;
2828
2829                page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
2830                                                 get_order(size));
2831                if (!page)
2832                        return NULL;
2833        }
2834
2835        if (!dma_mask)
2836                dma_mask = *dev->dma_mask;
2837
2838        *dma_addr = __map_single(dev, domain->priv, page_to_phys(page),
2839                                 size, DMA_BIDIRECTIONAL, true, dma_mask);
2840
2841        if (*dma_addr == DMA_ERROR_CODE)
2842                goto out_free;
2843
2844        return page_address(page);
2845
2846out_free:
2847
2848        if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2849                __free_pages(page, get_order(size));
2850
2851        return NULL;
2852}
2853
2854/*
2855 * The exported free_coherent function for dma_ops.
2856 */
2857static void free_coherent(struct device *dev, size_t size,
2858                          void *virt_addr, dma_addr_t dma_addr,
2859                          struct dma_attrs *attrs)
2860{
2861        struct protection_domain *domain;
2862        struct page *page;
2863
2864        INC_STATS_COUNTER(cnt_free_coherent);
2865
2866        page = virt_to_page(virt_addr);
2867        size = PAGE_ALIGN(size);
2868
2869        domain = get_domain(dev);
2870        if (IS_ERR(domain))
2871                goto free_mem;
2872
2873        __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2874
2875free_mem:
2876        if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2877                __free_pages(page, get_order(size));
2878}
2879
2880/*
2881 * This function is called by the DMA layer to find out if we can handle a
2882 * particular device. It is part of the dma_ops.
2883 */
2884static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2885{
2886        return check_device(dev);
2887}
2888
2889static int set_dma_mask(struct device *dev, u64 mask)
2890{
2891        struct protection_domain *domain;
2892        int max_apertures = 1;
2893
2894        domain = get_domain(dev);
2895        if (IS_ERR(domain))
2896                return PTR_ERR(domain);
2897
2898        if (mask == DMA_BIT_MASK(64))
2899                max_apertures = 8;
2900        else if (mask > DMA_BIT_MASK(32))
2901                max_apertures = 4;
2902
2903        /*
2904         * To prevent lock contention it doesn't make sense to allocate more
2905         * apertures than online cpus
2906         */
2907        if (max_apertures > num_online_cpus())
2908                max_apertures = num_online_cpus();
2909
2910        if (dma_ops_domain_alloc_apertures(domain->priv, max_apertures))
2911                dev_err(dev, "Can't allocate %d iommu apertures\n",
2912                        max_apertures);
2913
2914        return 0;
2915}
2916
2917static struct dma_map_ops amd_iommu_dma_ops = {
2918        .alloc          = alloc_coherent,
2919        .free           = free_coherent,
2920        .map_page       = map_page,
2921        .unmap_page     = unmap_page,
2922        .map_sg         = map_sg,
2923        .unmap_sg       = unmap_sg,
2924        .dma_supported  = amd_iommu_dma_supported,
2925        .set_dma_mask   = set_dma_mask,
2926};
2927
2928int __init amd_iommu_init_api(void)
2929{
2930        return bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2931}
2932
2933int __init amd_iommu_init_dma_ops(void)
2934{
2935        swiotlb        = iommu_pass_through ? 1 : 0;
2936        iommu_detected = 1;
2937
2938        /*
2939         * In case we don't initialize SWIOTLB (actually the common case
2940         * when AMD IOMMU is enabled), make sure there are global
2941         * dma_ops set as a fall-back for devices not handled by this
2942         * driver (for example non-PCI devices).
2943         */
2944        if (!swiotlb)
2945                dma_ops = &nommu_dma_ops;
2946
2947        amd_iommu_stats_init();
2948
2949        if (amd_iommu_unmap_flush)
2950                pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
2951        else
2952                pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
2953
2954        return 0;
2955}
2956
2957/*****************************************************************************
2958 *
2959 * The following functions belong to the exported interface of AMD IOMMU
2960 *
2961 * This interface allows access to lower level functions of the IOMMU
2962 * like protection domain handling and assignement of devices to domains
2963 * which is not possible with the dma_ops interface.
2964 *
2965 *****************************************************************************/
2966
2967static void cleanup_domain(struct protection_domain *domain)
2968{
2969        struct iommu_dev_data *entry;
2970        unsigned long flags;
2971
2972        write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2973
2974        while (!list_empty(&domain->dev_list)) {
2975                entry = list_first_entry(&domain->dev_list,
2976                                         struct iommu_dev_data, list);
2977                __detach_device(entry);
2978        }
2979
2980        write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2981}
2982
2983static void protection_domain_free(struct protection_domain *domain)
2984{
2985        if (!domain)
2986                return;
2987
2988        del_domain_from_list(domain);
2989
2990        if (domain->id)
2991                domain_id_free(domain->id);
2992
2993        kfree(domain);
2994}
2995
2996static int protection_domain_init(struct protection_domain *domain)
2997{
2998        spin_lock_init(&domain->lock);
2999        mutex_init(&domain->api_lock);
3000        domain->id = domain_id_alloc();
3001        if (!domain->id)
3002                return -ENOMEM;
3003        INIT_LIST_HEAD(&domain->dev_list);
3004
3005        return 0;
3006}
3007
3008static struct protection_domain *protection_domain_alloc(void)
3009{
3010        struct protection_domain *domain;
3011
3012        domain = kzalloc(sizeof(*domain), GFP_KERNEL);
3013        if (!domain)
3014                return NULL;
3015
3016        if (protection_domain_init(domain))
3017                goto out_err;
3018
3019        add_domain_to_list(domain);
3020
3021        return domain;
3022
3023out_err:
3024        kfree(domain);
3025
3026        return NULL;
3027}
3028
3029static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
3030{
3031        struct protection_domain *pdomain;
3032        struct dma_ops_domain *dma_domain;
3033
3034        switch (type) {
3035        case IOMMU_DOMAIN_UNMANAGED:
3036                pdomain = protection_domain_alloc();
3037                if (!pdomain)
3038                        return NULL;
3039
3040                pdomain->mode    = PAGE_MODE_3_LEVEL;
3041                pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
3042                if (!pdomain->pt_root) {
3043                        protection_domain_free(pdomain);
3044                        return NULL;
3045                }
3046
3047                pdomain->domain.geometry.aperture_start = 0;
3048                pdomain->domain.geometry.aperture_end   = ~0ULL;
3049                pdomain->domain.geometry.force_aperture = true;
3050
3051                break;
3052        case IOMMU_DOMAIN_DMA:
3053                dma_domain = dma_ops_domain_alloc();
3054                if (!dma_domain) {
3055                        pr_err("AMD-Vi: Failed to allocate\n");
3056                        return NULL;
3057                }
3058                pdomain = &dma_domain->domain;
3059                break;
3060        case IOMMU_DOMAIN_IDENTITY:
3061                pdomain = protection_domain_alloc();
3062                if (!pdomain)
3063                        return NULL;
3064
3065                pdomain->mode = PAGE_MODE_NONE;
3066                break;
3067        default:
3068                return NULL;
3069        }
3070
3071        return &pdomain->domain;
3072}
3073
3074static void amd_iommu_domain_free(struct iommu_domain *dom)
3075{
3076        struct protection_domain *domain;
3077
3078        if (!dom)
3079                return;
3080
3081        domain = to_pdomain(dom);
3082
3083        if (domain->dev_cnt > 0)
3084                cleanup_domain(domain);
3085
3086        BUG_ON(domain->dev_cnt != 0);
3087
3088        if (domain->mode != PAGE_MODE_NONE)
3089                free_pagetable(domain);
3090
3091        if (domain->flags & PD_IOMMUV2_MASK)
3092                free_gcr3_table(domain);
3093
3094        protection_domain_free(domain);
3095}
3096
3097static void amd_iommu_detach_device(struct iommu_domain *dom,
3098                                    struct device *dev)
3099{
3100        struct iommu_dev_data *dev_data = dev->archdata.iommu;
3101        struct amd_iommu *iommu;
3102        u16 devid;
3103
3104        if (!check_device(dev))
3105                return;
3106
3107        devid = get_device_id(dev);
3108
3109        if (dev_data->domain != NULL)
3110                detach_device(dev);
3111
3112        iommu = amd_iommu_rlookup_table[devid];
3113        if (!iommu)
3114                return;
3115
3116        iommu_completion_wait(iommu);
3117}
3118
3119static int amd_iommu_attach_device(struct iommu_domain *dom,
3120                                   struct device *dev)
3121{
3122        struct protection_domain *domain = to_pdomain(dom);
3123        struct iommu_dev_data *dev_data;
3124        struct amd_iommu *iommu;
3125        int ret;
3126
3127        if (!check_device(dev))
3128                return -EINVAL;
3129
3130        dev_data = dev->archdata.iommu;
3131
3132        iommu = amd_iommu_rlookup_table[dev_data->devid];
3133        if (!iommu)
3134                return -EINVAL;
3135
3136        if (dev_data->domain)
3137                detach_device(dev);
3138
3139        ret = attach_device(dev, domain);
3140
3141        iommu_completion_wait(iommu);
3142
3143        return ret;
3144}
3145
3146static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3147                         phys_addr_t paddr, size_t page_size, int iommu_prot)
3148{
3149        struct protection_domain *domain = to_pdomain(dom);
3150        int prot = 0;
3151        int ret;
3152
3153        if (domain->mode == PAGE_MODE_NONE)
3154                return -EINVAL;
3155
3156        if (iommu_prot & IOMMU_READ)
3157                prot |= IOMMU_PROT_IR;
3158        if (iommu_prot & IOMMU_WRITE)
3159                prot |= IOMMU_PROT_IW;
3160
3161        mutex_lock(&domain->api_lock);
3162        ret = iommu_map_page(domain, iova, paddr, prot, page_size);
3163        mutex_unlock(&domain->api_lock);
3164
3165        return ret;
3166}
3167
3168static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3169                           size_t page_size)
3170{
3171        struct protection_domain *domain = to_pdomain(dom);
3172        size_t unmap_size;
3173
3174        if (domain->mode == PAGE_MODE_NONE)
3175                return -EINVAL;
3176
3177        mutex_lock(&domain->api_lock);
3178        unmap_size = iommu_unmap_page(domain, iova, page_size);
3179        mutex_unlock(&domain->api_lock);
3180
3181        domain_flush_tlb_pde(domain);
3182
3183        return unmap_size;
3184}
3185
3186static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3187                                          dma_addr_t iova)
3188{
3189        struct protection_domain *domain = to_pdomain(dom);
3190        unsigned long offset_mask, pte_pgsize;
3191        u64 *pte, __pte;
3192
3193        if (domain->mode == PAGE_MODE_NONE)
3194                return iova;
3195
3196        pte = fetch_pte(domain, iova, &pte_pgsize);
3197
3198        if (!pte || !IOMMU_PTE_PRESENT(*pte))
3199                return 0;
3200
3201        offset_mask = pte_pgsize - 1;
3202        __pte       = *pte & PM_ADDR_MASK;
3203
3204        return (__pte & ~offset_mask) | (iova & offset_mask);
3205}
3206
3207static bool amd_iommu_capable(enum iommu_cap cap)
3208{
3209        switch (cap) {
3210        case IOMMU_CAP_CACHE_COHERENCY:
3211                return true;
3212        case IOMMU_CAP_INTR_REMAP:
3213                return (irq_remapping_enabled == 1);
3214        case IOMMU_CAP_NOEXEC:
3215                return false;
3216        }
3217
3218        return false;
3219}
3220
3221static void amd_iommu_get_dm_regions(struct device *dev,
3222                                     struct list_head *head)
3223{
3224        struct unity_map_entry *entry;
3225        u16 devid;
3226
3227        devid = get_device_id(dev);
3228
3229        list_for_each_entry(entry, &amd_iommu_unity_map, list) {
3230                struct iommu_dm_region *region;
3231
3232                if (devid < entry->devid_start || devid > entry->devid_end)
3233                        continue;
3234
3235                region = kzalloc(sizeof(*region), GFP_KERNEL);
3236                if (!region) {
3237                        pr_err("Out of memory allocating dm-regions for %s\n",
3238                                dev_name(dev));
3239                        return;
3240                }
3241
3242                region->start = entry->address_start;
3243                region->length = entry->address_end - entry->address_start;
3244                if (entry->prot & IOMMU_PROT_IR)
3245                        region->prot |= IOMMU_READ;
3246                if (entry->prot & IOMMU_PROT_IW)
3247                        region->prot |= IOMMU_WRITE;
3248
3249                list_add_tail(&region->list, head);
3250        }
3251}
3252
3253static void amd_iommu_put_dm_regions(struct device *dev,
3254                                     struct list_head *head)
3255{
3256        struct iommu_dm_region *entry, *next;
3257
3258        list_for_each_entry_safe(entry, next, head, list)
3259                kfree(entry);
3260}
3261
3262static const struct iommu_ops amd_iommu_ops = {
3263        .capable = amd_iommu_capable,
3264        .domain_alloc = amd_iommu_domain_alloc,
3265        .domain_free  = amd_iommu_domain_free,
3266        .attach_dev = amd_iommu_attach_device,
3267        .detach_dev = amd_iommu_detach_device,
3268        .map = amd_iommu_map,
3269        .unmap = amd_iommu_unmap,
3270        .map_sg = default_iommu_map_sg,
3271        .iova_to_phys = amd_iommu_iova_to_phys,
3272        .add_device = amd_iommu_add_device,
3273        .remove_device = amd_iommu_remove_device,
3274        .device_group = pci_device_group,
3275        .get_dm_regions = amd_iommu_get_dm_regions,
3276        .put_dm_regions = amd_iommu_put_dm_regions,
3277        .pgsize_bitmap  = AMD_IOMMU_PGSIZES,
3278};
3279
3280/*****************************************************************************
3281 *
3282 * The next functions do a basic initialization of IOMMU for pass through
3283 * mode
3284 *
3285 * In passthrough mode the IOMMU is initialized and enabled but not used for
3286 * DMA-API translation.
3287 *
3288 *****************************************************************************/
3289
3290/* IOMMUv2 specific functions */
3291int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
3292{
3293        return atomic_notifier_chain_register(&ppr_notifier, nb);
3294}
3295EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
3296
3297int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
3298{
3299        return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3300}
3301EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3302
3303void amd_iommu_domain_direct_map(struct iommu_domain *dom)
3304{
3305        struct protection_domain *domain = to_pdomain(dom);
3306        unsigned long flags;
3307
3308        spin_lock_irqsave(&domain->lock, flags);
3309
3310        /* Update data structure */
3311        domain->mode    = PAGE_MODE_NONE;
3312        domain->updated = true;
3313
3314        /* Make changes visible to IOMMUs */
3315        update_domain(domain);
3316
3317        /* Page-table is not visible to IOMMU anymore, so free it */
3318        free_pagetable(domain);
3319
3320        spin_unlock_irqrestore(&domain->lock, flags);
3321}
3322EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3323
3324int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3325{
3326        struct protection_domain *domain = to_pdomain(dom);
3327        unsigned long flags;
3328        int levels, ret;
3329
3330        if (pasids <= 0 || pasids > (PASID_MASK + 1))
3331                return -EINVAL;
3332
3333        /* Number of GCR3 table levels required */
3334        for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3335                levels += 1;
3336
3337        if (levels > amd_iommu_max_glx_val)
3338                return -EINVAL;
3339
3340        spin_lock_irqsave(&domain->lock, flags);
3341
3342        /*
3343         * Save us all sanity checks whether devices already in the
3344         * domain support IOMMUv2. Just force that the domain has no
3345         * devices attached when it is switched into IOMMUv2 mode.
3346         */
3347        ret = -EBUSY;
3348        if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3349                goto out;
3350
3351        ret = -ENOMEM;
3352        domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3353        if (domain->gcr3_tbl == NULL)
3354                goto out;
3355
3356        domain->glx      = levels;
3357        domain->flags   |= PD_IOMMUV2_MASK;
3358        domain->updated  = true;
3359
3360        update_domain(domain);
3361
3362        ret = 0;
3363
3364out:
3365        spin_unlock_irqrestore(&domain->lock, flags);
3366
3367        return ret;
3368}
3369EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3370
3371static int __flush_pasid(struct protection_domain *domain, int pasid,
3372                         u64 address, bool size)
3373{
3374        struct iommu_dev_data *dev_data;
3375        struct iommu_cmd cmd;
3376        int i, ret;
3377
3378        if (!(domain->flags & PD_IOMMUV2_MASK))
3379                return -EINVAL;
3380
3381        build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3382
3383        /*
3384         * IOMMU TLB needs to be flushed before Device TLB to
3385         * prevent device TLB refill from IOMMU TLB
3386         */
3387        for (i = 0; i < amd_iommus_present; ++i) {
3388                if (domain->dev_iommu[i] == 0)
3389                        continue;
3390
3391                ret = iommu_queue_command(amd_iommus[i], &cmd);
3392                if (ret != 0)
3393                        goto out;
3394        }
3395
3396        /* Wait until IOMMU TLB flushes are complete */
3397        domain_flush_complete(domain);
3398
3399        /* Now flush device TLBs */
3400        list_for_each_entry(dev_data, &domain->dev_list, list) {
3401                struct amd_iommu *iommu;
3402                int qdep;
3403
3404                /*
3405                   There might be non-IOMMUv2 capable devices in an IOMMUv2
3406                 * domain.
3407                 */
3408                if (!dev_data->ats.enabled)
3409                        continue;
3410
3411                qdep  = dev_data->ats.qdep;
3412                iommu = amd_iommu_rlookup_table[dev_data->devid];
3413
3414                build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3415                                      qdep, address, size);
3416
3417                ret = iommu_queue_command(iommu, &cmd);
3418                if (ret != 0)
3419                        goto out;
3420        }
3421
3422        /* Wait until all device TLBs are flushed */
3423        domain_flush_complete(domain);
3424
3425        ret = 0;
3426
3427out:
3428
3429        return ret;
3430}
3431
3432static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3433                                  u64 address)
3434{
3435        INC_STATS_COUNTER(invalidate_iotlb);
3436
3437        return __flush_pasid(domain, pasid, address, false);
3438}
3439
3440int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3441                         u64 address)
3442{
3443        struct protection_domain *domain = to_pdomain(dom);
3444        unsigned long flags;
3445        int ret;
3446
3447        spin_lock_irqsave(&domain->lock, flags);
3448        ret = __amd_iommu_flush_page(domain, pasid, address);
3449        spin_unlock_irqrestore(&domain->lock, flags);
3450
3451        return ret;
3452}
3453EXPORT_SYMBOL(amd_iommu_flush_page);
3454
3455static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3456{
3457        INC_STATS_COUNTER(invalidate_iotlb_all);
3458
3459        return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3460                             true);
3461}
3462
3463int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3464{
3465        struct protection_domain *domain = to_pdomain(dom);
3466        unsigned long flags;
3467        int ret;
3468
3469        spin_lock_irqsave(&domain->lock, flags);
3470        ret = __amd_iommu_flush_tlb(domain, pasid);
3471        spin_unlock_irqrestore(&domain->lock, flags);
3472
3473        return ret;
3474}
3475EXPORT_SYMBOL(amd_iommu_flush_tlb);
3476
3477static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3478{
3479        int index;
3480        u64 *pte;
3481
3482        while (true) {
3483
3484                index = (pasid >> (9 * level)) & 0x1ff;
3485                pte   = &root[index];
3486
3487                if (level == 0)
3488                        break;
3489
3490                if (!(*pte & GCR3_VALID)) {
3491                        if (!alloc)
3492                                return NULL;
3493
3494                        root = (void *)get_zeroed_page(GFP_ATOMIC);
3495                        if (root == NULL)
3496                                return NULL;
3497
3498                        *pte = __pa(root) | GCR3_VALID;
3499                }
3500
3501                root = __va(*pte & PAGE_MASK);
3502
3503                level -= 1;
3504        }
3505
3506        return pte;
3507}
3508
3509static int __set_gcr3(struct protection_domain *domain, int pasid,
3510                      unsigned long cr3)
3511{
3512        u64 *pte;
3513
3514        if (domain->mode != PAGE_MODE_NONE)
3515                return -EINVAL;
3516
3517        pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3518        if (pte == NULL)
3519                return -ENOMEM;
3520
3521        *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3522
3523        return __amd_iommu_flush_tlb(domain, pasid);
3524}
3525
3526static int __clear_gcr3(struct protection_domain *domain, int pasid)
3527{
3528        u64 *pte;
3529
3530        if (domain->mode != PAGE_MODE_NONE)
3531                return -EINVAL;
3532
3533        pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3534        if (pte == NULL)
3535                return 0;
3536
3537        *pte = 0;
3538
3539        return __amd_iommu_flush_tlb(domain, pasid);
3540}
3541
3542int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3543                              unsigned long cr3)
3544{
3545        struct protection_domain *domain = to_pdomain(dom);
3546        unsigned long flags;
3547        int ret;
3548
3549        spin_lock_irqsave(&domain->lock, flags);
3550        ret = __set_gcr3(domain, pasid, cr3);
3551        spin_unlock_irqrestore(&domain->lock, flags);
3552
3553        return ret;
3554}
3555EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3556
3557int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3558{
3559        struct protection_domain *domain = to_pdomain(dom);
3560        unsigned long flags;
3561        int ret;
3562
3563        spin_lock_irqsave(&domain->lock, flags);
3564        ret = __clear_gcr3(domain, pasid);
3565        spin_unlock_irqrestore(&domain->lock, flags);
3566
3567        return ret;
3568}
3569EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3570
3571int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
3572                           int status, int tag)
3573{
3574        struct iommu_dev_data *dev_data;
3575        struct amd_iommu *iommu;
3576        struct iommu_cmd cmd;
3577
3578        INC_STATS_COUNTER(complete_ppr);
3579
3580        dev_data = get_dev_data(&pdev->dev);
3581        iommu    = amd_iommu_rlookup_table[dev_data->devid];
3582
3583        build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3584                           tag, dev_data->pri_tlp);
3585
3586        return iommu_queue_command(iommu, &cmd);
3587}
3588EXPORT_SYMBOL(amd_iommu_complete_ppr);
3589
3590struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3591{
3592        struct protection_domain *pdomain;
3593
3594        pdomain = get_domain(&pdev->dev);
3595        if (IS_ERR(pdomain))
3596                return NULL;
3597
3598        /* Only return IOMMUv2 domains */
3599        if (!(pdomain->flags & PD_IOMMUV2_MASK))
3600                return NULL;
3601
3602        return &pdomain->domain;
3603}
3604EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3605
3606void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3607{
3608        struct iommu_dev_data *dev_data;
3609
3610        if (!amd_iommu_v2_supported())
3611                return;
3612
3613        dev_data = get_dev_data(&pdev->dev);
3614        dev_data->errata |= (1 << erratum);
3615}
3616EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3617
3618int amd_iommu_device_info(struct pci_dev *pdev,
3619                          struct amd_iommu_device_info *info)
3620{
3621        int max_pasids;
3622        int pos;
3623
3624        if (pdev == NULL || info == NULL)
3625                return -EINVAL;
3626
3627        if (!amd_iommu_v2_supported())
3628                return -EINVAL;
3629
3630        memset(info, 0, sizeof(*info));
3631
3632        pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
3633        if (pos)
3634                info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3635
3636        pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3637        if (pos)
3638                info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3639
3640        pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3641        if (pos) {
3642                int features;
3643
3644                max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3645                max_pasids = min(max_pasids, (1 << 20));
3646
3647                info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3648                info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3649
3650                features = pci_pasid_features(pdev);
3651                if (features & PCI_PASID_CAP_EXEC)
3652                        info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3653                if (features & PCI_PASID_CAP_PRIV)
3654                        info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3655        }
3656
3657        return 0;
3658}
3659EXPORT_SYMBOL(amd_iommu_device_info);
3660
3661#ifdef CONFIG_IRQ_REMAP
3662
3663/*****************************************************************************
3664 *
3665 * Interrupt Remapping Implementation
3666 *
3667 *****************************************************************************/
3668
3669union irte {
3670        u32 val;
3671        struct {
3672                u32 valid       : 1,
3673                    no_fault    : 1,
3674                    int_type    : 3,
3675                    rq_eoi      : 1,
3676                    dm          : 1,
3677                    rsvd_1      : 1,
3678                    destination : 8,
3679                    vector      : 8,
3680                    rsvd_2      : 8;
3681        } fields;
3682};
3683
3684struct irq_2_irte {
3685        u16 devid; /* Device ID for IRTE table */
3686        u16 index; /* Index into IRTE table*/
3687};
3688
3689struct amd_ir_data {
3690        struct irq_2_irte                       irq_2_irte;
3691        union irte                              irte_entry;
3692        union {
3693                struct msi_msg                  msi_entry;
3694        };
3695};
3696
3697static struct irq_chip amd_ir_chip;
3698
3699#define DTE_IRQ_PHYS_ADDR_MASK  (((1ULL << 45)-1) << 6)
3700#define DTE_IRQ_REMAP_INTCTL    (2ULL << 60)
3701#define DTE_IRQ_TABLE_LEN       (8ULL << 1)
3702#define DTE_IRQ_REMAP_ENABLE    1ULL
3703
3704static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
3705{
3706        u64 dte;
3707
3708        dte     = amd_iommu_dev_table[devid].data[2];
3709        dte     &= ~DTE_IRQ_PHYS_ADDR_MASK;
3710        dte     |= virt_to_phys(table->table);
3711        dte     |= DTE_IRQ_REMAP_INTCTL;
3712        dte     |= DTE_IRQ_TABLE_LEN;
3713        dte     |= DTE_IRQ_REMAP_ENABLE;
3714
3715        amd_iommu_dev_table[devid].data[2] = dte;
3716}
3717
3718#define IRTE_ALLOCATED (~1U)
3719
3720static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
3721{
3722        struct irq_remap_table *table = NULL;
3723        struct amd_iommu *iommu;
3724        unsigned long flags;
3725        u16 alias;
3726
3727        write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3728
3729        iommu = amd_iommu_rlookup_table[devid];
3730        if (!iommu)
3731                goto out_unlock;
3732
3733        table = irq_lookup_table[devid];
3734        if (table)
3735                goto out;
3736
3737        alias = amd_iommu_alias_table[devid];
3738        table = irq_lookup_table[alias];
3739        if (table) {
3740                irq_lookup_table[devid] = table;
3741                set_dte_irq_entry(devid, table);
3742                iommu_flush_dte(iommu, devid);
3743                goto out;
3744        }
3745
3746        /* Nothing there yet, allocate new irq remapping table */
3747        table = kzalloc(sizeof(*table), GFP_ATOMIC);
3748        if (!table)
3749                goto out;
3750
3751        /* Initialize table spin-lock */
3752        spin_lock_init(&table->lock);
3753
3754        if (ioapic)
3755                /* Keep the first 32 indexes free for IOAPIC interrupts */
3756                table->min_index = 32;
3757
3758        table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
3759        if (!table->table) {
3760                kfree(table);
3761                table = NULL;
3762                goto out;
3763        }
3764
3765        memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));
3766
3767        if (ioapic) {
3768                int i;
3769
3770                for (i = 0; i < 32; ++i)
3771                        table->table[i] = IRTE_ALLOCATED;
3772        }
3773
3774        irq_lookup_table[devid] = table;
3775        set_dte_irq_entry(devid, table);
3776        iommu_flush_dte(iommu, devid);
3777        if (devid != alias) {
3778                irq_lookup_table[alias] = table;
3779                set_dte_irq_entry(alias, table);
3780                iommu_flush_dte(iommu, alias);
3781        }
3782
3783out:
3784        iommu_completion_wait(iommu);
3785
3786out_unlock:
3787        write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
3788
3789        return table;
3790}
3791
3792static int alloc_irq_index(u16 devid, int count)
3793{
3794        struct irq_remap_table *table;
3795        unsigned long flags;
3796        int index, c;
3797
3798        table = get_irq_table(devid, false);
3799        if (!table)
3800                return -ENODEV;
3801
3802        spin_lock_irqsave(&table->lock, flags);
3803
3804        /* Scan table for free entries */
3805        for (c = 0, index = table->min_index;
3806             index < MAX_IRQS_PER_TABLE;
3807             ++index) {
3808                if (table->table[index] == 0)
3809                        c += 1;
3810                else
3811                        c = 0;
3812
3813                if (c == count) {
3814                        for (; c != 0; --c)
3815                                table->table[index - c + 1] = IRTE_ALLOCATED;
3816
3817                        index -= count - 1;
3818                        goto out;
3819                }
3820        }
3821
3822        index = -ENOSPC;
3823
3824out:
3825        spin_unlock_irqrestore(&table->lock, flags);
3826
3827        return index;
3828}
3829
3830static int modify_irte(u16 devid, int index, union irte irte)
3831{
3832        struct irq_remap_table *table;
3833        struct amd_iommu *iommu;
3834        unsigned long flags;
3835
3836        iommu = amd_iommu_rlookup_table[devid];
3837        if (iommu == NULL)
3838                return -EINVAL;
3839
3840        table = get_irq_table(devid, false);
3841        if (!table)
3842                return -ENOMEM;
3843
3844        spin_lock_irqsave(&table->lock, flags);
3845        table->table[index] = irte.val;
3846        spin_unlock_irqrestore(&table->lock, flags);
3847
3848        iommu_flush_irt(iommu, devid);
3849        iommu_completion_wait(iommu);
3850
3851        return 0;
3852}
3853
3854static void free_irte(u16 devid, int index)
3855{
3856        struct irq_remap_table *table;
3857        struct amd_iommu *iommu;
3858        unsigned long flags;
3859
3860        iommu = amd_iommu_rlookup_table[devid];
3861        if (iommu == NULL)
3862                return;
3863
3864        table = get_irq_table(devid, false);
3865        if (!table)
3866                return;
3867
3868        spin_lock_irqsave(&table->lock, flags);
3869        table->table[index] = 0;
3870        spin_unlock_irqrestore(&table->lock, flags);
3871
3872        iommu_flush_irt(iommu, devid);
3873        iommu_completion_wait(iommu);
3874}
3875
3876static int get_devid(struct irq_alloc_info *info)
3877{
3878        int devid = -1;
3879
3880        switch (info->type) {
3881        case X86_IRQ_ALLOC_TYPE_IOAPIC:
3882                devid     = get_ioapic_devid(info->ioapic_id);
3883                break;
3884        case X86_IRQ_ALLOC_TYPE_HPET:
3885                devid     = get_hpet_devid(info->hpet_id);
3886                break;
3887        case X86_IRQ_ALLOC_TYPE_MSI:
3888        case X86_IRQ_ALLOC_TYPE_MSIX:
3889                devid = get_device_id(&info->msi_dev->dev);
3890                break;
3891        default:
3892                BUG_ON(1);
3893                break;
3894        }
3895
3896        return devid;
3897}
3898
3899static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
3900{
3901        struct amd_iommu *iommu;
3902        int devid;
3903
3904        if (!info)
3905                return NULL;
3906
3907        devid = get_devid(info);
3908        if (devid >= 0) {
3909                iommu = amd_iommu_rlookup_table[devid];
3910                if (iommu)
3911                        return iommu->ir_domain;
3912        }
3913
3914        return NULL;
3915}
3916
3917static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
3918{
3919        struct amd_iommu *iommu;
3920        int devid;
3921
3922        if (!info)
3923                return NULL;
3924
3925        switch (info->type) {
3926        case X86_IRQ_ALLOC_TYPE_MSI:
3927        case X86_IRQ_ALLOC_TYPE_MSIX:
3928                devid = get_device_id(&info->msi_dev->dev);
3929                iommu = amd_iommu_rlookup_table[devid];
3930                if (iommu)
3931                        return iommu->msi_domain;
3932                break;
3933        default:
3934                break;
3935        }
3936
3937        return NULL;
3938}
3939
3940struct irq_remap_ops amd_iommu_irq_ops = {
3941        .prepare                = amd_iommu_prepare,
3942        .enable                 = amd_iommu_enable,
3943        .disable                = amd_iommu_disable,
3944        .reenable               = amd_iommu_reenable,
3945        .enable_faulting        = amd_iommu_enable_faulting,
3946        .get_ir_irq_domain      = get_ir_irq_domain,
3947        .get_irq_domain         = get_irq_domain,
3948};
3949
3950static void irq_remapping_prepare_irte(struct amd_ir_data *data,
3951                                       struct irq_cfg *irq_cfg,
3952                                       struct irq_alloc_info *info,
3953                                       int devid, int index, int sub_handle)
3954{
3955        struct irq_2_irte *irte_info = &data->irq_2_irte;
3956        struct msi_msg *msg = &data->msi_entry;
3957        union irte *irte = &data->irte_entry;
3958        struct IO_APIC_route_entry *entry;
3959
3960        data->irq_2_irte.devid = devid;
3961        data->irq_2_irte.index = index + sub_handle;
3962
3963        /* Setup IRTE for IOMMU */
3964        irte->val = 0;
3965        irte->fields.vector      = irq_cfg->vector;
3966        irte->fields.int_type    = apic->irq_delivery_mode;
3967        irte->fields.destination = irq_cfg->dest_apicid;
3968        irte->fields.dm          = apic->irq_dest_mode;
3969        irte->fields.valid       = 1;
3970
3971        switch (info->type) {
3972        case X86_IRQ_ALLOC_TYPE_IOAPIC:
3973                /* Setup IOAPIC entry */
3974                entry = info->ioapic_entry;
3975                info->ioapic_entry = NULL;
3976                memset(entry, 0, sizeof(*entry));
3977                entry->vector        = index;
3978                entry->mask          = 0;
3979                entry->trigger       = info->ioapic_trigger;
3980                entry->polarity      = info->ioapic_polarity;
3981                /* Mask level triggered irqs. */
3982                if (info->ioapic_trigger)
3983                        entry->mask = 1;
3984                break;
3985
3986        case X86_IRQ_ALLOC_TYPE_HPET:
3987        case X86_IRQ_ALLOC_TYPE_MSI:
3988        case X86_IRQ_ALLOC_TYPE_MSIX:
3989                msg->address_hi = MSI_ADDR_BASE_HI;
3990                msg->address_lo = MSI_ADDR_BASE_LO;
3991                msg->data = irte_info->index;
3992                break;
3993
3994        default:
3995                BUG_ON(1);
3996                break;
3997        }
3998}
3999
4000static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
4001                               unsigned int nr_irqs, void *arg)
4002{
4003        struct irq_alloc_info *info = arg;
4004        struct irq_data *irq_data;
4005        struct amd_ir_data *data;
4006        struct irq_cfg *cfg;
4007        int i, ret, devid;
4008        int index = -1;
4009
4010        if (!info)
4011                return -EINVAL;
4012        if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
4013            info->type != X86_IRQ_ALLOC_TYPE_MSIX)
4014                return -EINVAL;
4015
4016        /*
4017         * With IRQ remapping enabled, don't need contiguous CPU vectors
4018         * to support multiple MSI interrupts.
4019         */
4020        if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
4021                info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
4022
4023        devid = get_devid(info);
4024        if (devid < 0)
4025                return -EINVAL;
4026
4027        ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
4028        if (ret < 0)
4029                return ret;
4030
4031        if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
4032                if (get_irq_table(devid, true))
4033                        index = info->ioapic_pin;
4034                else
4035                        ret = -ENOMEM;
4036        } else {
4037                index = alloc_irq_index(devid, nr_irqs);
4038        }
4039        if (index < 0) {
4040                pr_warn("Failed to allocate IRTE\n");
4041                goto out_free_parent;
4042        }
4043
4044        for (i = 0; i < nr_irqs; i++) {
4045                irq_data = irq_domain_get_irq_data(domain, virq + i);
4046                cfg = irqd_cfg(irq_data);
4047                if (!irq_data || !cfg) {
4048                        ret = -EINVAL;
4049                        goto out_free_data;
4050                }
4051
4052                ret = -ENOMEM;
4053                data = kzalloc(sizeof(*data), GFP_KERNEL);
4054                if (!data)
4055                        goto out_free_data;
4056
4057                irq_data->hwirq = (devid << 16) + i;
4058                irq_data->chip_data = data;
4059                irq_data->chip = &amd_ir_chip;
4060                irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
4061                irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
4062        }
4063
4064        return 0;
4065
4066out_free_data:
4067        for (i--; i >= 0; i--) {
4068                irq_data = irq_domain_get_irq_data(domain, virq + i);
4069                if (irq_data)
4070                        kfree(irq_data->chip_data);
4071        }
4072        for (i = 0; i < nr_irqs; i++)
4073                free_irte(devid, index + i);
4074out_free_parent:
4075        irq_domain_free_irqs_common(domain, virq, nr_irqs);
4076        return ret;
4077}
4078
4079static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
4080                               unsigned int nr_irqs)
4081{
4082        struct irq_2_irte *irte_info;
4083        struct irq_data *irq_data;
4084        struct amd_ir_data *data;
4085        int i;
4086
4087        for (i = 0; i < nr_irqs; i++) {
4088                irq_data = irq_domain_get_irq_data(domain, virq  + i);
4089                if (irq_data && irq_data->chip_data) {
4090                        data = irq_data->chip_data;
4091                        irte_info = &data->irq_2_irte;
4092                        free_irte(irte_info->devid, irte_info->index);
4093                        kfree(data);
4094                }
4095        }
4096        irq_domain_free_irqs_common(domain, virq, nr_irqs);
4097}
4098
4099static void irq_remapping_activate(struct irq_domain *domain,
4100                                   struct irq_data *irq_data)
4101{
4102        struct amd_ir_data *data = irq_data->chip_data;
4103        struct irq_2_irte *irte_info = &data->irq_2_irte;
4104
4105        modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
4106}
4107
4108static void irq_remapping_deactivate(struct irq_domain *domain,
4109                                     struct irq_data *irq_data)
4110{
4111        struct amd_ir_data *data = irq_data->chip_data;
4112        struct irq_2_irte *irte_info = &data->irq_2_irte;
4113        union irte entry;
4114
4115        entry.val = 0;
4116        modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
4117}
4118
4119static struct irq_domain_ops amd_ir_domain_ops = {
4120        .alloc = irq_remapping_alloc,
4121        .free = irq_remapping_free,
4122        .activate = irq_remapping_activate,
4123        .deactivate = irq_remapping_deactivate,
4124};
4125
4126static int amd_ir_set_affinity(struct irq_data *data,
4127                               const struct cpumask *mask, bool force)
4128{
4129        struct amd_ir_data *ir_data = data->chip_data;
4130        struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4131        struct irq_cfg *cfg = irqd_cfg(data);
4132        struct irq_data *parent = data->parent_data;
4133        int ret;
4134
4135        ret = parent->chip->irq_set_affinity(parent, mask, force);
4136        if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
4137                return ret;
4138
4139        /*
4140         * Atomically updates the IRTE with the new destination, vector
4141         * and flushes the interrupt entry cache.
4142         */
4143        ir_data->irte_entry.fields.vector = cfg->vector;
4144        ir_data->irte_entry.fields.destination = cfg->dest_apicid;
4145        modify_irte(irte_info->devid, irte_info->index, ir_data->irte_entry);
4146
4147        /*
4148         * After this point, all the interrupts will start arriving
4149         * at the new destination. So, time to cleanup the previous
4150         * vector allocation.
4151         */
4152        send_cleanup_vector(cfg);
4153
4154        return IRQ_SET_MASK_OK_DONE;
4155}
4156
4157static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4158{
4159        struct amd_ir_data *ir_data = irq_data->chip_data;
4160
4161        *msg = ir_data->msi_entry;
4162}
4163
4164static struct irq_chip amd_ir_chip = {
4165        .irq_ack = ir_ack_apic_edge,
4166        .irq_set_affinity = amd_ir_set_affinity,
4167        .irq_compose_msi_msg = ir_compose_msi_msg,
4168};
4169
4170int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
4171{
4172        iommu->ir_domain = irq_domain_add_tree(NULL, &amd_ir_domain_ops, iommu);
4173        if (!iommu->ir_domain)
4174                return -ENOMEM;
4175
4176        iommu->ir_domain->parent = arch_get_ir_parent_domain();
4177        iommu->msi_domain = arch_create_msi_irq_domain(iommu->ir_domain);
4178
4179        return 0;
4180}
4181#endif
4182