linux/drivers/lguest/page_tables.c
<<
>>
Prefs
   1/*P:700
   2 * The pagetable code, on the other hand, still shows the scars of
   3 * previous encounters.  It's functional, and as neat as it can be in the
   4 * circumstances, but be wary, for these things are subtle and break easily.
   5 * The Guest provides a virtual to physical mapping, but we can neither trust
   6 * it nor use it: we verify and convert it here then point the CPU to the
   7 * converted Guest pages when running the Guest.
   8:*/
   9
  10/* Copyright (C) Rusty Russell IBM Corporation 2013.
  11 * GPL v2 and any later version */
  12#include <linux/mm.h>
  13#include <linux/gfp.h>
  14#include <linux/types.h>
  15#include <linux/spinlock.h>
  16#include <linux/random.h>
  17#include <linux/percpu.h>
  18#include <asm/tlbflush.h>
  19#include <asm/uaccess.h>
  20#include "lg.h"
  21
  22/*M:008
  23 * We hold reference to pages, which prevents them from being swapped.
  24 * It'd be nice to have a callback in the "struct mm_struct" when Linux wants
  25 * to swap out.  If we had this, and a shrinker callback to trim PTE pages, we
  26 * could probably consider launching Guests as non-root.
  27:*/
  28
  29/*H:300
  30 * The Page Table Code
  31 *
  32 * We use two-level page tables for the Guest, or three-level with PAE.  If
  33 * you're not entirely comfortable with virtual addresses, physical addresses
  34 * and page tables then I recommend you review arch/x86/lguest/boot.c's "Page
  35 * Table Handling" (with diagrams!).
  36 *
  37 * The Guest keeps page tables, but we maintain the actual ones here: these are
  38 * called "shadow" page tables.  Which is a very Guest-centric name: these are
  39 * the real page tables the CPU uses, although we keep them up to date to
  40 * reflect the Guest's.  (See what I mean about weird naming?  Since when do
  41 * shadows reflect anything?)
  42 *
  43 * Anyway, this is the most complicated part of the Host code.  There are seven
  44 * parts to this:
  45 *  (i) Looking up a page table entry when the Guest faults,
  46 *  (ii) Making sure the Guest stack is mapped,
  47 *  (iii) Setting up a page table entry when the Guest tells us one has changed,
  48 *  (iv) Switching page tables,
  49 *  (v) Flushing (throwing away) page tables,
  50 *  (vi) Mapping the Switcher when the Guest is about to run,
  51 *  (vii) Setting up the page tables initially.
  52:*/
  53
  54/*
  55 * The Switcher uses the complete top PTE page.  That's 1024 PTE entries (4MB)
  56 * or 512 PTE entries with PAE (2MB).
  57 */
  58#define SWITCHER_PGD_INDEX (PTRS_PER_PGD - 1)
  59
  60/*
  61 * For PAE we need the PMD index as well. We use the last 2MB, so we
  62 * will need the last pmd entry of the last pmd page.
  63 */
  64#ifdef CONFIG_X86_PAE
  65#define CHECK_GPGD_MASK         _PAGE_PRESENT
  66#else
  67#define CHECK_GPGD_MASK         _PAGE_TABLE
  68#endif
  69
  70/*H:320
  71 * The page table code is curly enough to need helper functions to keep it
  72 * clear and clean.  The kernel itself provides many of them; one advantage
  73 * of insisting that the Guest and Host use the same CONFIG_X86_PAE setting.
  74 *
  75 * There are two functions which return pointers to the shadow (aka "real")
  76 * page tables.
  77 *
  78 * spgd_addr() takes the virtual address and returns a pointer to the top-level
  79 * page directory entry (PGD) for that address.  Since we keep track of several
  80 * page tables, the "i" argument tells us which one we're interested in (it's
  81 * usually the current one).
  82 */
  83static pgd_t *spgd_addr(struct lg_cpu *cpu, u32 i, unsigned long vaddr)
  84{
  85        unsigned int index = pgd_index(vaddr);
  86
  87        /* Return a pointer index'th pgd entry for the i'th page table. */
  88        return &cpu->lg->pgdirs[i].pgdir[index];
  89}
  90
  91#ifdef CONFIG_X86_PAE
  92/*
  93 * This routine then takes the PGD entry given above, which contains the
  94 * address of the PMD page.  It then returns a pointer to the PMD entry for the
  95 * given address.
  96 */
  97static pmd_t *spmd_addr(struct lg_cpu *cpu, pgd_t spgd, unsigned long vaddr)
  98{
  99        unsigned int index = pmd_index(vaddr);
 100        pmd_t *page;
 101
 102        /* You should never call this if the PGD entry wasn't valid */
 103        BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT));
 104        page = __va(pgd_pfn(spgd) << PAGE_SHIFT);
 105
 106        return &page[index];
 107}
 108#endif
 109
 110/*
 111 * This routine then takes the page directory entry returned above, which
 112 * contains the address of the page table entry (PTE) page.  It then returns a
 113 * pointer to the PTE entry for the given address.
 114 */
 115static pte_t *spte_addr(struct lg_cpu *cpu, pgd_t spgd, unsigned long vaddr)
 116{
 117#ifdef CONFIG_X86_PAE
 118        pmd_t *pmd = spmd_addr(cpu, spgd, vaddr);
 119        pte_t *page = __va(pmd_pfn(*pmd) << PAGE_SHIFT);
 120
 121        /* You should never call this if the PMD entry wasn't valid */
 122        BUG_ON(!(pmd_flags(*pmd) & _PAGE_PRESENT));
 123#else
 124        pte_t *page = __va(pgd_pfn(spgd) << PAGE_SHIFT);
 125        /* You should never call this if the PGD entry wasn't valid */
 126        BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT));
 127#endif
 128
 129        return &page[pte_index(vaddr)];
 130}
 131
 132/*
 133 * These functions are just like the above, except they access the Guest
 134 * page tables.  Hence they return a Guest address.
 135 */
 136static unsigned long gpgd_addr(struct lg_cpu *cpu, unsigned long vaddr)
 137{
 138        unsigned int index = vaddr >> (PGDIR_SHIFT);
 139        return cpu->lg->pgdirs[cpu->cpu_pgd].gpgdir + index * sizeof(pgd_t);
 140}
 141
 142#ifdef CONFIG_X86_PAE
 143/* Follow the PGD to the PMD. */
 144static unsigned long gpmd_addr(pgd_t gpgd, unsigned long vaddr)
 145{
 146        unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT;
 147        BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT));
 148        return gpage + pmd_index(vaddr) * sizeof(pmd_t);
 149}
 150
 151/* Follow the PMD to the PTE. */
 152static unsigned long gpte_addr(struct lg_cpu *cpu,
 153                               pmd_t gpmd, unsigned long vaddr)
 154{
 155        unsigned long gpage = pmd_pfn(gpmd) << PAGE_SHIFT;
 156
 157        BUG_ON(!(pmd_flags(gpmd) & _PAGE_PRESENT));
 158        return gpage + pte_index(vaddr) * sizeof(pte_t);
 159}
 160#else
 161/* Follow the PGD to the PTE (no mid-level for !PAE). */
 162static unsigned long gpte_addr(struct lg_cpu *cpu,
 163                                pgd_t gpgd, unsigned long vaddr)
 164{
 165        unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT;
 166
 167        BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT));
 168        return gpage + pte_index(vaddr) * sizeof(pte_t);
 169}
 170#endif
 171/*:*/
 172
 173/*M:007
 174 * get_pfn is slow: we could probably try to grab batches of pages here as
 175 * an optimization (ie. pre-faulting).
 176:*/
 177
 178/*H:350
 179 * This routine takes a page number given by the Guest and converts it to
 180 * an actual, physical page number.  It can fail for several reasons: the
 181 * virtual address might not be mapped by the Launcher, the write flag is set
 182 * and the page is read-only, or the write flag was set and the page was
 183 * shared so had to be copied, but we ran out of memory.
 184 *
 185 * This holds a reference to the page, so release_pte() is careful to put that
 186 * back.
 187 */
 188static unsigned long get_pfn(unsigned long virtpfn, int write)
 189{
 190        struct page *page;
 191
 192        /* gup me one page at this address please! */
 193        if (get_user_pages_fast(virtpfn << PAGE_SHIFT, 1, write, &page) == 1)
 194                return page_to_pfn(page);
 195
 196        /* This value indicates failure. */
 197        return -1UL;
 198}
 199
 200/*H:340
 201 * Converting a Guest page table entry to a shadow (ie. real) page table
 202 * entry can be a little tricky.  The flags are (almost) the same, but the
 203 * Guest PTE contains a virtual page number: the CPU needs the real page
 204 * number.
 205 */
 206static pte_t gpte_to_spte(struct lg_cpu *cpu, pte_t gpte, int write)
 207{
 208        unsigned long pfn, base, flags;
 209
 210        /*
 211         * The Guest sets the global flag, because it thinks that it is using
 212         * PGE.  We only told it to use PGE so it would tell us whether it was
 213         * flushing a kernel mapping or a userspace mapping.  We don't actually
 214         * use the global bit, so throw it away.
 215         */
 216        flags = (pte_flags(gpte) & ~_PAGE_GLOBAL);
 217
 218        /* The Guest's pages are offset inside the Launcher. */
 219        base = (unsigned long)cpu->lg->mem_base / PAGE_SIZE;
 220
 221        /*
 222         * We need a temporary "unsigned long" variable to hold the answer from
 223         * get_pfn(), because it returns 0xFFFFFFFF on failure, which wouldn't
 224         * fit in spte.pfn.  get_pfn() finds the real physical number of the
 225         * page, given the virtual number.
 226         */
 227        pfn = get_pfn(base + pte_pfn(gpte), write);
 228        if (pfn == -1UL) {
 229                kill_guest(cpu, "failed to get page %lu", pte_pfn(gpte));
 230                /*
 231                 * When we destroy the Guest, we'll go through the shadow page
 232                 * tables and release_pte() them.  Make sure we don't think
 233                 * this one is valid!
 234                 */
 235                flags = 0;
 236        }
 237        /* Now we assemble our shadow PTE from the page number and flags. */
 238        return pfn_pte(pfn, __pgprot(flags));
 239}
 240
 241/*H:460 And to complete the chain, release_pte() looks like this: */
 242static void release_pte(pte_t pte)
 243{
 244        /*
 245         * Remember that get_user_pages_fast() took a reference to the page, in
 246         * get_pfn()?  We have to put it back now.
 247         */
 248        if (pte_flags(pte) & _PAGE_PRESENT)
 249                put_page(pte_page(pte));
 250}
 251/*:*/
 252
 253static bool gpte_in_iomem(struct lg_cpu *cpu, pte_t gpte)
 254{
 255        /* We don't handle large pages. */
 256        if (pte_flags(gpte) & _PAGE_PSE)
 257                return false;
 258
 259        return (pte_pfn(gpte) >= cpu->lg->pfn_limit
 260                && pte_pfn(gpte) < cpu->lg->device_limit);
 261}
 262
 263static bool check_gpte(struct lg_cpu *cpu, pte_t gpte)
 264{
 265        if ((pte_flags(gpte) & _PAGE_PSE) ||
 266            pte_pfn(gpte) >= cpu->lg->pfn_limit) {
 267                kill_guest(cpu, "bad page table entry");
 268                return false;
 269        }
 270        return true;
 271}
 272
 273static bool check_gpgd(struct lg_cpu *cpu, pgd_t gpgd)
 274{
 275        if ((pgd_flags(gpgd) & ~CHECK_GPGD_MASK) ||
 276            (pgd_pfn(gpgd) >= cpu->lg->pfn_limit)) {
 277                kill_guest(cpu, "bad page directory entry");
 278                return false;
 279        }
 280        return true;
 281}
 282
 283#ifdef CONFIG_X86_PAE
 284static bool check_gpmd(struct lg_cpu *cpu, pmd_t gpmd)
 285{
 286        if ((pmd_flags(gpmd) & ~_PAGE_TABLE) ||
 287            (pmd_pfn(gpmd) >= cpu->lg->pfn_limit)) {
 288                kill_guest(cpu, "bad page middle directory entry");
 289                return false;
 290        }
 291        return true;
 292}
 293#endif
 294
 295/*H:331
 296 * This is the core routine to walk the shadow page tables and find the page
 297 * table entry for a specific address.
 298 *
 299 * If allocate is set, then we allocate any missing levels, setting the flags
 300 * on the new page directory and mid-level directories using the arguments
 301 * (which are copied from the Guest's page table entries).
 302 */
 303static pte_t *find_spte(struct lg_cpu *cpu, unsigned long vaddr, bool allocate,
 304                        int pgd_flags, int pmd_flags)
 305{
 306        pgd_t *spgd;
 307        /* Mid level for PAE. */
 308#ifdef CONFIG_X86_PAE
 309        pmd_t *spmd;
 310#endif
 311
 312        /* Get top level entry. */
 313        spgd = spgd_addr(cpu, cpu->cpu_pgd, vaddr);
 314        if (!(pgd_flags(*spgd) & _PAGE_PRESENT)) {
 315                /* No shadow entry: allocate a new shadow PTE page. */
 316                unsigned long ptepage;
 317
 318                /* If they didn't want us to allocate anything, stop. */
 319                if (!allocate)
 320                        return NULL;
 321
 322                ptepage = get_zeroed_page(GFP_KERNEL);
 323                /*
 324                 * This is not really the Guest's fault, but killing it is
 325                 * simple for this corner case.
 326                 */
 327                if (!ptepage) {
 328                        kill_guest(cpu, "out of memory allocating pte page");
 329                        return NULL;
 330                }
 331                /*
 332                 * And we copy the flags to the shadow PGD entry.  The page
 333                 * number in the shadow PGD is the page we just allocated.
 334                 */
 335                set_pgd(spgd, __pgd(__pa(ptepage) | pgd_flags));
 336        }
 337
 338        /*
 339         * Intel's Physical Address Extension actually uses three levels of
 340         * page tables, so we need to look in the mid-level.
 341         */
 342#ifdef CONFIG_X86_PAE
 343        /* Now look at the mid-level shadow entry. */
 344        spmd = spmd_addr(cpu, *spgd, vaddr);
 345
 346        if (!(pmd_flags(*spmd) & _PAGE_PRESENT)) {
 347                /* No shadow entry: allocate a new shadow PTE page. */
 348                unsigned long ptepage;
 349
 350                /* If they didn't want us to allocate anything, stop. */
 351                if (!allocate)
 352                        return NULL;
 353
 354                ptepage = get_zeroed_page(GFP_KERNEL);
 355
 356                /*
 357                 * This is not really the Guest's fault, but killing it is
 358                 * simple for this corner case.
 359                 */
 360                if (!ptepage) {
 361                        kill_guest(cpu, "out of memory allocating pmd page");
 362                        return NULL;
 363                }
 364
 365                /*
 366                 * And we copy the flags to the shadow PMD entry.  The page
 367                 * number in the shadow PMD is the page we just allocated.
 368                 */
 369                set_pmd(spmd, __pmd(__pa(ptepage) | pmd_flags));
 370        }
 371#endif
 372
 373        /* Get the pointer to the shadow PTE entry we're going to set. */
 374        return spte_addr(cpu, *spgd, vaddr);
 375}
 376
 377/*H:330
 378 * (i) Looking up a page table entry when the Guest faults.
 379 *
 380 * We saw this call in run_guest(): when we see a page fault in the Guest, we
 381 * come here.  That's because we only set up the shadow page tables lazily as
 382 * they're needed, so we get page faults all the time and quietly fix them up
 383 * and return to the Guest without it knowing.
 384 *
 385 * If we fixed up the fault (ie. we mapped the address), this routine returns
 386 * true.  Otherwise, it was a real fault and we need to tell the Guest.
 387 *
 388 * There's a corner case: they're trying to access memory between
 389 * pfn_limit and device_limit, which is I/O memory.  In this case, we
 390 * return false and set @iomem to the physical address, so the the
 391 * Launcher can handle the instruction manually.
 392 */
 393bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode,
 394                 unsigned long *iomem)
 395{
 396        unsigned long gpte_ptr;
 397        pte_t gpte;
 398        pte_t *spte;
 399        pmd_t gpmd;
 400        pgd_t gpgd;
 401
 402        *iomem = 0;
 403
 404        /* We never demand page the Switcher, so trying is a mistake. */
 405        if (vaddr >= switcher_addr)
 406                return false;
 407
 408        /* First step: get the top-level Guest page table entry. */
 409        if (unlikely(cpu->linear_pages)) {
 410                /* Faking up a linear mapping. */
 411                gpgd = __pgd(CHECK_GPGD_MASK);
 412        } else {
 413                gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t);
 414                /* Toplevel not present?  We can't map it in. */
 415                if (!(pgd_flags(gpgd) & _PAGE_PRESENT))
 416                        return false;
 417
 418                /* 
 419                 * This kills the Guest if it has weird flags or tries to
 420                 * refer to a "physical" address outside the bounds.
 421                 */
 422                if (!check_gpgd(cpu, gpgd))
 423                        return false;
 424        }
 425
 426        /* This "mid-level" entry is only used for non-linear, PAE mode. */
 427        gpmd = __pmd(_PAGE_TABLE);
 428
 429#ifdef CONFIG_X86_PAE
 430        if (likely(!cpu->linear_pages)) {
 431                gpmd = lgread(cpu, gpmd_addr(gpgd, vaddr), pmd_t);
 432                /* Middle level not present?  We can't map it in. */
 433                if (!(pmd_flags(gpmd) & _PAGE_PRESENT))
 434                        return false;
 435
 436                /* 
 437                 * This kills the Guest if it has weird flags or tries to
 438                 * refer to a "physical" address outside the bounds.
 439                 */
 440                if (!check_gpmd(cpu, gpmd))
 441                        return false;
 442        }
 443
 444        /*
 445         * OK, now we look at the lower level in the Guest page table: keep its
 446         * address, because we might update it later.
 447         */
 448        gpte_ptr = gpte_addr(cpu, gpmd, vaddr);
 449#else
 450        /*
 451         * OK, now we look at the lower level in the Guest page table: keep its
 452         * address, because we might update it later.
 453         */
 454        gpte_ptr = gpte_addr(cpu, gpgd, vaddr);
 455#endif
 456
 457        if (unlikely(cpu->linear_pages)) {
 458                /* Linear?  Make up a PTE which points to same page. */
 459                gpte = __pte((vaddr & PAGE_MASK) | _PAGE_RW | _PAGE_PRESENT);
 460        } else {
 461                /* Read the actual PTE value. */
 462                gpte = lgread(cpu, gpte_ptr, pte_t);
 463        }
 464
 465        /* If this page isn't in the Guest page tables, we can't page it in. */
 466        if (!(pte_flags(gpte) & _PAGE_PRESENT))
 467                return false;
 468
 469        /*
 470         * Check they're not trying to write to a page the Guest wants
 471         * read-only (bit 2 of errcode == write).
 472         */
 473        if ((errcode & 2) && !(pte_flags(gpte) & _PAGE_RW))
 474                return false;
 475
 476        /* User access to a kernel-only page? (bit 3 == user access) */
 477        if ((errcode & 4) && !(pte_flags(gpte) & _PAGE_USER))
 478                return false;
 479
 480        /* If they're accessing io memory, we expect a fault. */
 481        if (gpte_in_iomem(cpu, gpte)) {
 482                *iomem = (pte_pfn(gpte) << PAGE_SHIFT) | (vaddr & ~PAGE_MASK);
 483                return false;
 484        }
 485
 486        /*
 487         * Check that the Guest PTE flags are OK, and the page number is below
 488         * the pfn_limit (ie. not mapping the Launcher binary).
 489         */
 490        if (!check_gpte(cpu, gpte))
 491                return false;
 492
 493        /* Add the _PAGE_ACCESSED and (for a write) _PAGE_DIRTY flag */
 494        gpte = pte_mkyoung(gpte);
 495        if (errcode & 2)
 496                gpte = pte_mkdirty(gpte);
 497
 498        /* Get the pointer to the shadow PTE entry we're going to set. */
 499        spte = find_spte(cpu, vaddr, true, pgd_flags(gpgd), pmd_flags(gpmd));
 500        if (!spte)
 501                return false;
 502
 503        /*
 504         * If there was a valid shadow PTE entry here before, we release it.
 505         * This can happen with a write to a previously read-only entry.
 506         */
 507        release_pte(*spte);
 508
 509        /*
 510         * If this is a write, we insist that the Guest page is writable (the
 511         * final arg to gpte_to_spte()).
 512         */
 513        if (pte_dirty(gpte))
 514                *spte = gpte_to_spte(cpu, gpte, 1);
 515        else
 516                /*
 517                 * If this is a read, don't set the "writable" bit in the page
 518                 * table entry, even if the Guest says it's writable.  That way
 519                 * we will come back here when a write does actually occur, so
 520                 * we can update the Guest's _PAGE_DIRTY flag.
 521                 */
 522                set_pte(spte, gpte_to_spte(cpu, pte_wrprotect(gpte), 0));
 523
 524        /*
 525         * Finally, we write the Guest PTE entry back: we've set the
 526         * _PAGE_ACCESSED and maybe the _PAGE_DIRTY flags.
 527         */
 528        if (likely(!cpu->linear_pages))
 529                lgwrite(cpu, gpte_ptr, pte_t, gpte);
 530
 531        /*
 532         * The fault is fixed, the page table is populated, the mapping
 533         * manipulated, the result returned and the code complete.  A small
 534         * delay and a trace of alliteration are the only indications the Guest
 535         * has that a page fault occurred at all.
 536         */
 537        return true;
 538}
 539
 540/*H:360
 541 * (ii) Making sure the Guest stack is mapped.
 542 *
 543 * Remember that direct traps into the Guest need a mapped Guest kernel stack.
 544 * pin_stack_pages() calls us here: we could simply call demand_page(), but as
 545 * we've seen that logic is quite long, and usually the stack pages are already
 546 * mapped, so it's overkill.
 547 *
 548 * This is a quick version which answers the question: is this virtual address
 549 * mapped by the shadow page tables, and is it writable?
 550 */
 551static bool page_writable(struct lg_cpu *cpu, unsigned long vaddr)
 552{
 553        pte_t *spte;
 554        unsigned long flags;
 555
 556        /* You can't put your stack in the Switcher! */
 557        if (vaddr >= switcher_addr)
 558                return false;
 559
 560        /* If there's no shadow PTE, it's not writable. */
 561        spte = find_spte(cpu, vaddr, false, 0, 0);
 562        if (!spte)
 563                return false;
 564
 565        /*
 566         * Check the flags on the pte entry itself: it must be present and
 567         * writable.
 568         */
 569        flags = pte_flags(*spte);
 570        return (flags & (_PAGE_PRESENT|_PAGE_RW)) == (_PAGE_PRESENT|_PAGE_RW);
 571}
 572
 573/*
 574 * So, when pin_stack_pages() asks us to pin a page, we check if it's already
 575 * in the page tables, and if not, we call demand_page() with error code 2
 576 * (meaning "write").
 577 */
 578void pin_page(struct lg_cpu *cpu, unsigned long vaddr)
 579{
 580        unsigned long iomem;
 581
 582        if (!page_writable(cpu, vaddr) && !demand_page(cpu, vaddr, 2, &iomem))
 583                kill_guest(cpu, "bad stack page %#lx", vaddr);
 584}
 585/*:*/
 586
 587#ifdef CONFIG_X86_PAE
 588static void release_pmd(pmd_t *spmd)
 589{
 590        /* If the entry's not present, there's nothing to release. */
 591        if (pmd_flags(*spmd) & _PAGE_PRESENT) {
 592                unsigned int i;
 593                pte_t *ptepage = __va(pmd_pfn(*spmd) << PAGE_SHIFT);
 594                /* For each entry in the page, we might need to release it. */
 595                for (i = 0; i < PTRS_PER_PTE; i++)
 596                        release_pte(ptepage[i]);
 597                /* Now we can free the page of PTEs */
 598                free_page((long)ptepage);
 599                /* And zero out the PMD entry so we never release it twice. */
 600                set_pmd(spmd, __pmd(0));
 601        }
 602}
 603
 604static void release_pgd(pgd_t *spgd)
 605{
 606        /* If the entry's not present, there's nothing to release. */
 607        if (pgd_flags(*spgd) & _PAGE_PRESENT) {
 608                unsigned int i;
 609                pmd_t *pmdpage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
 610
 611                for (i = 0; i < PTRS_PER_PMD; i++)
 612                        release_pmd(&pmdpage[i]);
 613
 614                /* Now we can free the page of PMDs */
 615                free_page((long)pmdpage);
 616                /* And zero out the PGD entry so we never release it twice. */
 617                set_pgd(spgd, __pgd(0));
 618        }
 619}
 620
 621#else /* !CONFIG_X86_PAE */
 622/*H:450
 623 * If we chase down the release_pgd() code, the non-PAE version looks like
 624 * this.  The PAE version is almost identical, but instead of calling
 625 * release_pte it calls release_pmd(), which looks much like this.
 626 */
 627static void release_pgd(pgd_t *spgd)
 628{
 629        /* If the entry's not present, there's nothing to release. */
 630        if (pgd_flags(*spgd) & _PAGE_PRESENT) {
 631                unsigned int i;
 632                /*
 633                 * Converting the pfn to find the actual PTE page is easy: turn
 634                 * the page number into a physical address, then convert to a
 635                 * virtual address (easy for kernel pages like this one).
 636                 */
 637                pte_t *ptepage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
 638                /* For each entry in the page, we might need to release it. */
 639                for (i = 0; i < PTRS_PER_PTE; i++)
 640                        release_pte(ptepage[i]);
 641                /* Now we can free the page of PTEs */
 642                free_page((long)ptepage);
 643                /* And zero out the PGD entry so we never release it twice. */
 644                *spgd = __pgd(0);
 645        }
 646}
 647#endif
 648
 649/*H:445
 650 * We saw flush_user_mappings() twice: once from the flush_user_mappings()
 651 * hypercall and once in new_pgdir() when we re-used a top-level pgdir page.
 652 * It simply releases every PTE page from 0 up to the Guest's kernel address.
 653 */
 654static void flush_user_mappings(struct lguest *lg, int idx)
 655{
 656        unsigned int i;
 657        /* Release every pgd entry up to the kernel's address. */
 658        for (i = 0; i < pgd_index(lg->kernel_address); i++)
 659                release_pgd(lg->pgdirs[idx].pgdir + i);
 660}
 661
 662/*H:440
 663 * (v) Flushing (throwing away) page tables,
 664 *
 665 * The Guest has a hypercall to throw away the page tables: it's used when a
 666 * large number of mappings have been changed.
 667 */
 668void guest_pagetable_flush_user(struct lg_cpu *cpu)
 669{
 670        /* Drop the userspace part of the current page table. */
 671        flush_user_mappings(cpu->lg, cpu->cpu_pgd);
 672}
 673/*:*/
 674
 675/* We walk down the guest page tables to get a guest-physical address */
 676bool __guest_pa(struct lg_cpu *cpu, unsigned long vaddr, unsigned long *paddr)
 677{
 678        pgd_t gpgd;
 679        pte_t gpte;
 680#ifdef CONFIG_X86_PAE
 681        pmd_t gpmd;
 682#endif
 683
 684        /* Still not set up?  Just map 1:1. */
 685        if (unlikely(cpu->linear_pages)) {
 686                *paddr = vaddr;
 687                return true;
 688        }
 689
 690        /* First step: get the top-level Guest page table entry. */
 691        gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t);
 692        /* Toplevel not present?  We can't map it in. */
 693        if (!(pgd_flags(gpgd) & _PAGE_PRESENT))
 694                goto fail;
 695
 696#ifdef CONFIG_X86_PAE
 697        gpmd = lgread(cpu, gpmd_addr(gpgd, vaddr), pmd_t);
 698        if (!(pmd_flags(gpmd) & _PAGE_PRESENT))
 699                goto fail;
 700        gpte = lgread(cpu, gpte_addr(cpu, gpmd, vaddr), pte_t);
 701#else
 702        gpte = lgread(cpu, gpte_addr(cpu, gpgd, vaddr), pte_t);
 703#endif
 704        if (!(pte_flags(gpte) & _PAGE_PRESENT))
 705                goto fail;
 706
 707        *paddr = pte_pfn(gpte) * PAGE_SIZE | (vaddr & ~PAGE_MASK);
 708        return true;
 709
 710fail:
 711        *paddr = -1UL;
 712        return false;
 713}
 714
 715/*
 716 * This is the version we normally use: kills the Guest if it uses a
 717 * bad address
 718 */
 719unsigned long guest_pa(struct lg_cpu *cpu, unsigned long vaddr)
 720{
 721        unsigned long paddr;
 722
 723        if (!__guest_pa(cpu, vaddr, &paddr))
 724                kill_guest(cpu, "Bad address %#lx", vaddr);
 725        return paddr;
 726}
 727
 728/*
 729 * We keep several page tables.  This is a simple routine to find the page
 730 * table (if any) corresponding to this top-level address the Guest has given
 731 * us.
 732 */
 733static unsigned int find_pgdir(struct lguest *lg, unsigned long pgtable)
 734{
 735        unsigned int i;
 736        for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
 737                if (lg->pgdirs[i].pgdir && lg->pgdirs[i].gpgdir == pgtable)
 738                        break;
 739        return i;
 740}
 741
 742/*H:435
 743 * And this is us, creating the new page directory.  If we really do
 744 * allocate a new one (and so the kernel parts are not there), we set
 745 * blank_pgdir.
 746 */
 747static unsigned int new_pgdir(struct lg_cpu *cpu,
 748                              unsigned long gpgdir,
 749                              int *blank_pgdir)
 750{
 751        unsigned int next;
 752
 753        /*
 754         * We pick one entry at random to throw out.  Choosing the Least
 755         * Recently Used might be better, but this is easy.
 756         */
 757        next = prandom_u32() % ARRAY_SIZE(cpu->lg->pgdirs);
 758        /* If it's never been allocated at all before, try now. */
 759        if (!cpu->lg->pgdirs[next].pgdir) {
 760                cpu->lg->pgdirs[next].pgdir =
 761                                        (pgd_t *)get_zeroed_page(GFP_KERNEL);
 762                /* If the allocation fails, just keep using the one we have */
 763                if (!cpu->lg->pgdirs[next].pgdir)
 764                        next = cpu->cpu_pgd;
 765                else {
 766                        /*
 767                         * This is a blank page, so there are no kernel
 768                         * mappings: caller must map the stack!
 769                         */
 770                        *blank_pgdir = 1;
 771                }
 772        }
 773        /* Record which Guest toplevel this shadows. */
 774        cpu->lg->pgdirs[next].gpgdir = gpgdir;
 775        /* Release all the non-kernel mappings. */
 776        flush_user_mappings(cpu->lg, next);
 777
 778        /* This hasn't run on any CPU at all. */
 779        cpu->lg->pgdirs[next].last_host_cpu = -1;
 780
 781        return next;
 782}
 783
 784/*H:501
 785 * We do need the Switcher code mapped at all times, so we allocate that
 786 * part of the Guest page table here.  We map the Switcher code immediately,
 787 * but defer mapping of the guest register page and IDT/LDT etc page until
 788 * just before we run the guest in map_switcher_in_guest().
 789 *
 790 * We *could* do this setup in map_switcher_in_guest(), but at that point
 791 * we've interrupts disabled, and allocating pages like that is fraught: we
 792 * can't sleep if we need to free up some memory.
 793 */
 794static bool allocate_switcher_mapping(struct lg_cpu *cpu)
 795{
 796        int i;
 797
 798        for (i = 0; i < TOTAL_SWITCHER_PAGES; i++) {
 799                pte_t *pte = find_spte(cpu, switcher_addr + i * PAGE_SIZE, true,
 800                                       CHECK_GPGD_MASK, _PAGE_TABLE);
 801                if (!pte)
 802                        return false;
 803
 804                /*
 805                 * Map the switcher page if not already there.  It might
 806                 * already be there because we call allocate_switcher_mapping()
 807                 * in guest_set_pgd() just in case it did discard our Switcher
 808                 * mapping, but it probably didn't.
 809                 */
 810                if (i == 0 && !(pte_flags(*pte) & _PAGE_PRESENT)) {
 811                        /* Get a reference to the Switcher page. */
 812                        get_page(lg_switcher_pages[0]);
 813                        /* Create a read-only, exectuable, kernel-style PTE */
 814                        set_pte(pte,
 815                                mk_pte(lg_switcher_pages[0], PAGE_KERNEL_RX));
 816                }
 817        }
 818        cpu->lg->pgdirs[cpu->cpu_pgd].switcher_mapped = true;
 819        return true;
 820}
 821
 822/*H:470
 823 * Finally, a routine which throws away everything: all PGD entries in all
 824 * the shadow page tables, including the Guest's kernel mappings.  This is used
 825 * when we destroy the Guest.
 826 */
 827static void release_all_pagetables(struct lguest *lg)
 828{
 829        unsigned int i, j;
 830
 831        /* Every shadow pagetable this Guest has */
 832        for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++) {
 833                if (!lg->pgdirs[i].pgdir)
 834                        continue;
 835
 836                /* Every PGD entry. */
 837                for (j = 0; j < PTRS_PER_PGD; j++)
 838                        release_pgd(lg->pgdirs[i].pgdir + j);
 839                lg->pgdirs[i].switcher_mapped = false;
 840                lg->pgdirs[i].last_host_cpu = -1;
 841        }
 842}
 843
 844/*
 845 * We also throw away everything when a Guest tells us it's changed a kernel
 846 * mapping.  Since kernel mappings are in every page table, it's easiest to
 847 * throw them all away.  This traps the Guest in amber for a while as
 848 * everything faults back in, but it's rare.
 849 */
 850void guest_pagetable_clear_all(struct lg_cpu *cpu)
 851{
 852        release_all_pagetables(cpu->lg);
 853        /* We need the Guest kernel stack mapped again. */
 854        pin_stack_pages(cpu);
 855        /* And we need Switcher allocated. */
 856        if (!allocate_switcher_mapping(cpu))
 857                kill_guest(cpu, "Cannot populate switcher mapping");
 858}
 859
 860/*H:430
 861 * (iv) Switching page tables
 862 *
 863 * Now we've seen all the page table setting and manipulation, let's see
 864 * what happens when the Guest changes page tables (ie. changes the top-level
 865 * pgdir).  This occurs on almost every context switch.
 866 */
 867void guest_new_pagetable(struct lg_cpu *cpu, unsigned long pgtable)
 868{
 869        int newpgdir, repin = 0;
 870
 871        /*
 872         * The very first time they call this, we're actually running without
 873         * any page tables; we've been making it up.  Throw them away now.
 874         */
 875        if (unlikely(cpu->linear_pages)) {
 876                release_all_pagetables(cpu->lg);
 877                cpu->linear_pages = false;
 878                /* Force allocation of a new pgdir. */
 879                newpgdir = ARRAY_SIZE(cpu->lg->pgdirs);
 880        } else {
 881                /* Look to see if we have this one already. */
 882                newpgdir = find_pgdir(cpu->lg, pgtable);
 883        }
 884
 885        /*
 886         * If not, we allocate or mug an existing one: if it's a fresh one,
 887         * repin gets set to 1.
 888         */
 889        if (newpgdir == ARRAY_SIZE(cpu->lg->pgdirs))
 890                newpgdir = new_pgdir(cpu, pgtable, &repin);
 891        /* Change the current pgd index to the new one. */
 892        cpu->cpu_pgd = newpgdir;
 893        /*
 894         * If it was completely blank, we map in the Guest kernel stack and
 895         * the Switcher.
 896         */
 897        if (repin)
 898                pin_stack_pages(cpu);
 899
 900        if (!cpu->lg->pgdirs[cpu->cpu_pgd].switcher_mapped) {
 901                if (!allocate_switcher_mapping(cpu))
 902                        kill_guest(cpu, "Cannot populate switcher mapping");
 903        }
 904}
 905/*:*/
 906
 907/*M:009
 908 * Since we throw away all mappings when a kernel mapping changes, our
 909 * performance sucks for guests using highmem.  In fact, a guest with
 910 * PAGE_OFFSET 0xc0000000 (the default) and more than about 700MB of RAM is
 911 * usually slower than a Guest with less memory.
 912 *
 913 * This, of course, cannot be fixed.  It would take some kind of... well, I
 914 * don't know, but the term "puissant code-fu" comes to mind.
 915:*/
 916
 917/*H:420
 918 * This is the routine which actually sets the page table entry for then
 919 * "idx"'th shadow page table.
 920 *
 921 * Normally, we can just throw out the old entry and replace it with 0: if they
 922 * use it demand_page() will put the new entry in.  We need to do this anyway:
 923 * The Guest expects _PAGE_ACCESSED to be set on its PTE the first time a page
 924 * is read from, and _PAGE_DIRTY when it's written to.
 925 *
 926 * But Avi Kivity pointed out that most Operating Systems (Linux included) set
 927 * these bits on PTEs immediately anyway.  This is done to save the CPU from
 928 * having to update them, but it helps us the same way: if they set
 929 * _PAGE_ACCESSED then we can put a read-only PTE entry in immediately, and if
 930 * they set _PAGE_DIRTY then we can put a writable PTE entry in immediately.
 931 */
 932static void __guest_set_pte(struct lg_cpu *cpu, int idx,
 933                       unsigned long vaddr, pte_t gpte)
 934{
 935        /* Look up the matching shadow page directory entry. */
 936        pgd_t *spgd = spgd_addr(cpu, idx, vaddr);
 937#ifdef CONFIG_X86_PAE
 938        pmd_t *spmd;
 939#endif
 940
 941        /* If the top level isn't present, there's no entry to update. */
 942        if (pgd_flags(*spgd) & _PAGE_PRESENT) {
 943#ifdef CONFIG_X86_PAE
 944                spmd = spmd_addr(cpu, *spgd, vaddr);
 945                if (pmd_flags(*spmd) & _PAGE_PRESENT) {
 946#endif
 947                        /* Otherwise, start by releasing the existing entry. */
 948                        pte_t *spte = spte_addr(cpu, *spgd, vaddr);
 949                        release_pte(*spte);
 950
 951                        /*
 952                         * If they're setting this entry as dirty or accessed,
 953                         * we might as well put that entry they've given us in
 954                         * now.  This shaves 10% off a copy-on-write
 955                         * micro-benchmark.
 956                         */
 957                        if ((pte_flags(gpte) & (_PAGE_DIRTY | _PAGE_ACCESSED))
 958                            && !gpte_in_iomem(cpu, gpte)) {
 959                                if (!check_gpte(cpu, gpte))
 960                                        return;
 961                                set_pte(spte,
 962                                        gpte_to_spte(cpu, gpte,
 963                                                pte_flags(gpte) & _PAGE_DIRTY));
 964                        } else {
 965                                /*
 966                                 * Otherwise kill it and we can demand_page()
 967                                 * it in later.
 968                                 */
 969                                set_pte(spte, __pte(0));
 970                        }
 971#ifdef CONFIG_X86_PAE
 972                }
 973#endif
 974        }
 975}
 976
 977/*H:410
 978 * Updating a PTE entry is a little trickier.
 979 *
 980 * We keep track of several different page tables (the Guest uses one for each
 981 * process, so it makes sense to cache at least a few).  Each of these have
 982 * identical kernel parts: ie. every mapping above PAGE_OFFSET is the same for
 983 * all processes.  So when the page table above that address changes, we update
 984 * all the page tables, not just the current one.  This is rare.
 985 *
 986 * The benefit is that when we have to track a new page table, we can keep all
 987 * the kernel mappings.  This speeds up context switch immensely.
 988 */
 989void guest_set_pte(struct lg_cpu *cpu,
 990                   unsigned long gpgdir, unsigned long vaddr, pte_t gpte)
 991{
 992        /* We don't let you remap the Switcher; we need it to get back! */
 993        if (vaddr >= switcher_addr) {
 994                kill_guest(cpu, "attempt to set pte into Switcher pages");
 995                return;
 996        }
 997
 998        /*
 999         * Kernel mappings must be changed on all top levels.  Slow, but doesn't
1000         * happen often.
1001         */
1002        if (vaddr >= cpu->lg->kernel_address) {
1003                unsigned int i;
1004                for (i = 0; i < ARRAY_SIZE(cpu->lg->pgdirs); i++)
1005                        if (cpu->lg->pgdirs[i].pgdir)
1006                                __guest_set_pte(cpu, i, vaddr, gpte);
1007        } else {
1008                /* Is this page table one we have a shadow for? */
1009                int pgdir = find_pgdir(cpu->lg, gpgdir);
1010                if (pgdir != ARRAY_SIZE(cpu->lg->pgdirs))
1011                        /* If so, do the update. */
1012                        __guest_set_pte(cpu, pgdir, vaddr, gpte);
1013        }
1014}
1015
1016/*H:400
1017 * (iii) Setting up a page table entry when the Guest tells us one has changed.
1018 *
1019 * Just like we did in interrupts_and_traps.c, it makes sense for us to deal
1020 * with the other side of page tables while we're here: what happens when the
1021 * Guest asks for a page table to be updated?
1022 *
1023 * We already saw that demand_page() will fill in the shadow page tables when
1024 * needed, so we can simply remove shadow page table entries whenever the Guest
1025 * tells us they've changed.  When the Guest tries to use the new entry it will
1026 * fault and demand_page() will fix it up.
1027 *
1028 * So with that in mind here's our code to update a (top-level) PGD entry:
1029 */
1030void guest_set_pgd(struct lguest *lg, unsigned long gpgdir, u32 idx)
1031{
1032        int pgdir;
1033
1034        if (idx > PTRS_PER_PGD) {
1035                kill_guest(&lg->cpus[0], "Attempt to set pgd %u/%u",
1036                           idx, PTRS_PER_PGD);
1037                return;
1038        }
1039
1040        /* If they're talking about a page table we have a shadow for... */
1041        pgdir = find_pgdir(lg, gpgdir);
1042        if (pgdir < ARRAY_SIZE(lg->pgdirs)) {
1043                /* ... throw it away. */
1044                release_pgd(lg->pgdirs[pgdir].pgdir + idx);
1045                /* That might have been the Switcher mapping, remap it. */
1046                if (!allocate_switcher_mapping(&lg->cpus[0])) {
1047                        kill_guest(&lg->cpus[0],
1048                                   "Cannot populate switcher mapping");
1049                }
1050                lg->pgdirs[pgdir].last_host_cpu = -1;
1051        }
1052}
1053
1054#ifdef CONFIG_X86_PAE
1055/* For setting a mid-level, we just throw everything away.  It's easy. */
1056void guest_set_pmd(struct lguest *lg, unsigned long pmdp, u32 idx)
1057{
1058        guest_pagetable_clear_all(&lg->cpus[0]);
1059}
1060#endif
1061
1062/*H:500
1063 * (vii) Setting up the page tables initially.
1064 *
1065 * When a Guest is first created, set initialize a shadow page table which
1066 * we will populate on future faults.  The Guest doesn't have any actual
1067 * pagetables yet, so we set linear_pages to tell demand_page() to fake it
1068 * for the moment.
1069 *
1070 * We do need the Switcher to be mapped at all times, so we allocate that
1071 * part of the Guest page table here.
1072 */
1073int init_guest_pagetable(struct lguest *lg)
1074{
1075        struct lg_cpu *cpu = &lg->cpus[0];
1076        int allocated = 0;
1077
1078        /* lg (and lg->cpus[]) starts zeroed: this allocates a new pgdir */
1079        cpu->cpu_pgd = new_pgdir(cpu, 0, &allocated);
1080        if (!allocated)
1081                return -ENOMEM;
1082
1083        /* We start with a linear mapping until the initialize. */
1084        cpu->linear_pages = true;
1085
1086        /* Allocate the page tables for the Switcher. */
1087        if (!allocate_switcher_mapping(cpu)) {
1088                release_all_pagetables(lg);
1089                return -ENOMEM;
1090        }
1091
1092        return 0;
1093}
1094
1095/*H:508 When the Guest calls LHCALL_LGUEST_INIT we do more setup. */
1096void page_table_guest_data_init(struct lg_cpu *cpu)
1097{
1098        /*
1099         * We tell the Guest that it can't use the virtual addresses
1100         * used by the Switcher.  This trick is equivalent to 4GB -
1101         * switcher_addr.
1102         */
1103        u32 top = ~switcher_addr + 1;
1104
1105        /* We get the kernel address: above this is all kernel memory. */
1106        if (get_user(cpu->lg->kernel_address,
1107                     &cpu->lg->lguest_data->kernel_address)
1108                /*
1109                 * We tell the Guest that it can't use the top virtual
1110                 * addresses (used by the Switcher).
1111                 */
1112            || put_user(top, &cpu->lg->lguest_data->reserve_mem)) {
1113                kill_guest(cpu, "bad guest page %p", cpu->lg->lguest_data);
1114                return;
1115        }
1116
1117        /*
1118         * In flush_user_mappings() we loop from 0 to
1119         * "pgd_index(lg->kernel_address)".  This assumes it won't hit the
1120         * Switcher mappings, so check that now.
1121         */
1122        if (cpu->lg->kernel_address >= switcher_addr)
1123                kill_guest(cpu, "bad kernel address %#lx",
1124                                 cpu->lg->kernel_address);
1125}
1126
1127/* When a Guest dies, our cleanup is fairly simple. */
1128void free_guest_pagetable(struct lguest *lg)
1129{
1130        unsigned int i;
1131
1132        /* Throw away all page table pages. */
1133        release_all_pagetables(lg);
1134        /* Now free the top levels: free_page() can handle 0 just fine. */
1135        for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
1136                free_page((long)lg->pgdirs[i].pgdir);
1137}
1138
1139/*H:481
1140 * This clears the Switcher mappings for cpu #i.
1141 */
1142static void remove_switcher_percpu_map(struct lg_cpu *cpu, unsigned int i)
1143{
1144        unsigned long base = switcher_addr + PAGE_SIZE + i * PAGE_SIZE*2;
1145        pte_t *pte;
1146
1147        /* Clear the mappings for both pages. */
1148        pte = find_spte(cpu, base, false, 0, 0);
1149        release_pte(*pte);
1150        set_pte(pte, __pte(0));
1151
1152        pte = find_spte(cpu, base + PAGE_SIZE, false, 0, 0);
1153        release_pte(*pte);
1154        set_pte(pte, __pte(0));
1155}
1156
1157/*H:480
1158 * (vi) Mapping the Switcher when the Guest is about to run.
1159 *
1160 * The Switcher and the two pages for this CPU need to be visible in the Guest
1161 * (and not the pages for other CPUs).
1162 *
1163 * The pages for the pagetables have all been allocated before: we just need
1164 * to make sure the actual PTEs are up-to-date for the CPU we're about to run
1165 * on.
1166 */
1167void map_switcher_in_guest(struct lg_cpu *cpu, struct lguest_pages *pages)
1168{
1169        unsigned long base;
1170        struct page *percpu_switcher_page, *regs_page;
1171        pte_t *pte;
1172        struct pgdir *pgdir = &cpu->lg->pgdirs[cpu->cpu_pgd];
1173
1174        /* Switcher page should always be mapped by now! */
1175        BUG_ON(!pgdir->switcher_mapped);
1176
1177        /* 
1178         * Remember that we have two pages for each Host CPU, so we can run a
1179         * Guest on each CPU without them interfering.  We need to make sure
1180         * those pages are mapped correctly in the Guest, but since we usually
1181         * run on the same CPU, we cache that, and only update the mappings
1182         * when we move.
1183         */
1184        if (pgdir->last_host_cpu == raw_smp_processor_id())
1185                return;
1186
1187        /* -1 means unknown so we remove everything. */
1188        if (pgdir->last_host_cpu == -1) {
1189                unsigned int i;
1190                for_each_possible_cpu(i)
1191                        remove_switcher_percpu_map(cpu, i);
1192        } else {
1193                /* We know exactly what CPU mapping to remove. */
1194                remove_switcher_percpu_map(cpu, pgdir->last_host_cpu);
1195        }
1196
1197        /*
1198         * When we're running the Guest, we want the Guest's "regs" page to
1199         * appear where the first Switcher page for this CPU is.  This is an
1200         * optimization: when the Switcher saves the Guest registers, it saves
1201         * them into the first page of this CPU's "struct lguest_pages": if we
1202         * make sure the Guest's register page is already mapped there, we
1203         * don't have to copy them out again.
1204         */
1205        /* Find the shadow PTE for this regs page. */
1206        base = switcher_addr + PAGE_SIZE
1207                + raw_smp_processor_id() * sizeof(struct lguest_pages);
1208        pte = find_spte(cpu, base, false, 0, 0);
1209        regs_page = pfn_to_page(__pa(cpu->regs_page) >> PAGE_SHIFT);
1210        get_page(regs_page);
1211        set_pte(pte, mk_pte(regs_page, __pgprot(__PAGE_KERNEL & ~_PAGE_GLOBAL)));
1212
1213        /*
1214         * We map the second page of the struct lguest_pages read-only in
1215         * the Guest: the IDT, GDT and other things it's not supposed to
1216         * change.
1217         */
1218        pte = find_spte(cpu, base + PAGE_SIZE, false, 0, 0);
1219        percpu_switcher_page
1220                = lg_switcher_pages[1 + raw_smp_processor_id()*2 + 1];
1221        get_page(percpu_switcher_page);
1222        set_pte(pte, mk_pte(percpu_switcher_page,
1223                            __pgprot(__PAGE_KERNEL_RO & ~_PAGE_GLOBAL)));
1224
1225        pgdir->last_host_cpu = raw_smp_processor_id();
1226}
1227
1228/*H:490
1229 * We've made it through the page table code.  Perhaps our tired brains are
1230 * still processing the details, or perhaps we're simply glad it's over.
1231 *
1232 * If nothing else, note that all this complexity in juggling shadow page tables
1233 * in sync with the Guest's page tables is for one reason: for most Guests this
1234 * page table dance determines how bad performance will be.  This is why Xen
1235 * uses exotic direct Guest pagetable manipulation, and why both Intel and AMD
1236 * have implemented shadow page table support directly into hardware.
1237 *
1238 * There is just one file remaining in the Host.
1239 */
1240