linux/drivers/md/bcache/util.h
<<
>>
Prefs
   1
   2#ifndef _BCACHE_UTIL_H
   3#define _BCACHE_UTIL_H
   4
   5#include <linux/blkdev.h>
   6#include <linux/errno.h>
   7#include <linux/blkdev.h>
   8#include <linux/kernel.h>
   9#include <linux/llist.h>
  10#include <linux/ratelimit.h>
  11#include <linux/vmalloc.h>
  12#include <linux/workqueue.h>
  13
  14#include "closure.h"
  15
  16#define PAGE_SECTORS            (PAGE_SIZE / 512)
  17
  18struct closure;
  19
  20#ifdef CONFIG_BCACHE_DEBUG
  21
  22#define EBUG_ON(cond)                   BUG_ON(cond)
  23#define atomic_dec_bug(v)       BUG_ON(atomic_dec_return(v) < 0)
  24#define atomic_inc_bug(v, i)    BUG_ON(atomic_inc_return(v) <= i)
  25
  26#else /* DEBUG */
  27
  28#define EBUG_ON(cond)                   do { if (cond); } while (0)
  29#define atomic_dec_bug(v)       atomic_dec(v)
  30#define atomic_inc_bug(v, i)    atomic_inc(v)
  31
  32#endif
  33
  34#define DECLARE_HEAP(type, name)                                        \
  35        struct {                                                        \
  36                size_t size, used;                                      \
  37                type *data;                                             \
  38        } name
  39
  40#define init_heap(heap, _size, gfp)                                     \
  41({                                                                      \
  42        size_t _bytes;                                                  \
  43        (heap)->used = 0;                                               \
  44        (heap)->size = (_size);                                         \
  45        _bytes = (heap)->size * sizeof(*(heap)->data);                  \
  46        (heap)->data = NULL;                                            \
  47        if (_bytes < KMALLOC_MAX_SIZE)                                  \
  48                (heap)->data = kmalloc(_bytes, (gfp));                  \
  49        if ((!(heap)->data) && ((gfp) & GFP_KERNEL))                    \
  50                (heap)->data = vmalloc(_bytes);                         \
  51        (heap)->data;                                                   \
  52})
  53
  54#define free_heap(heap)                                                 \
  55do {                                                                    \
  56        kvfree((heap)->data);                                           \
  57        (heap)->data = NULL;                                            \
  58} while (0)
  59
  60#define heap_swap(h, i, j)      swap((h)->data[i], (h)->data[j])
  61
  62#define heap_sift(h, i, cmp)                                            \
  63do {                                                                    \
  64        size_t _r, _j = i;                                              \
  65                                                                        \
  66        for (; _j * 2 + 1 < (h)->used; _j = _r) {                       \
  67                _r = _j * 2 + 1;                                        \
  68                if (_r + 1 < (h)->used &&                               \
  69                    cmp((h)->data[_r], (h)->data[_r + 1]))              \
  70                        _r++;                                           \
  71                                                                        \
  72                if (cmp((h)->data[_r], (h)->data[_j]))                  \
  73                        break;                                          \
  74                heap_swap(h, _r, _j);                                   \
  75        }                                                               \
  76} while (0)
  77
  78#define heap_sift_down(h, i, cmp)                                       \
  79do {                                                                    \
  80        while (i) {                                                     \
  81                size_t p = (i - 1) / 2;                                 \
  82                if (cmp((h)->data[i], (h)->data[p]))                    \
  83                        break;                                          \
  84                heap_swap(h, i, p);                                     \
  85                i = p;                                                  \
  86        }                                                               \
  87} while (0)
  88
  89#define heap_add(h, d, cmp)                                             \
  90({                                                                      \
  91        bool _r = !heap_full(h);                                        \
  92        if (_r) {                                                       \
  93                size_t _i = (h)->used++;                                \
  94                (h)->data[_i] = d;                                      \
  95                                                                        \
  96                heap_sift_down(h, _i, cmp);                             \
  97                heap_sift(h, _i, cmp);                                  \
  98        }                                                               \
  99        _r;                                                             \
 100})
 101
 102#define heap_pop(h, d, cmp)                                             \
 103({                                                                      \
 104        bool _r = (h)->used;                                            \
 105        if (_r) {                                                       \
 106                (d) = (h)->data[0];                                     \
 107                (h)->used--;                                            \
 108                heap_swap(h, 0, (h)->used);                             \
 109                heap_sift(h, 0, cmp);                                   \
 110        }                                                               \
 111        _r;                                                             \
 112})
 113
 114#define heap_peek(h)    ((h)->used ? (h)->data[0] : NULL)
 115
 116#define heap_full(h)    ((h)->used == (h)->size)
 117
 118#define DECLARE_FIFO(type, name)                                        \
 119        struct {                                                        \
 120                size_t front, back, size, mask;                         \
 121                type *data;                                             \
 122        } name
 123
 124#define fifo_for_each(c, fifo, iter)                                    \
 125        for (iter = (fifo)->front;                                      \
 126             c = (fifo)->data[iter], iter != (fifo)->back;              \
 127             iter = (iter + 1) & (fifo)->mask)
 128
 129#define __init_fifo(fifo, gfp)                                          \
 130({                                                                      \
 131        size_t _allocated_size, _bytes;                                 \
 132        BUG_ON(!(fifo)->size);                                          \
 133                                                                        \
 134        _allocated_size = roundup_pow_of_two((fifo)->size + 1);         \
 135        _bytes = _allocated_size * sizeof(*(fifo)->data);               \
 136                                                                        \
 137        (fifo)->mask = _allocated_size - 1;                             \
 138        (fifo)->front = (fifo)->back = 0;                               \
 139        (fifo)->data = NULL;                                            \
 140                                                                        \
 141        if (_bytes < KMALLOC_MAX_SIZE)                                  \
 142                (fifo)->data = kmalloc(_bytes, (gfp));                  \
 143        if ((!(fifo)->data) && ((gfp) & GFP_KERNEL))                    \
 144                (fifo)->data = vmalloc(_bytes);                         \
 145        (fifo)->data;                                                   \
 146})
 147
 148#define init_fifo_exact(fifo, _size, gfp)                               \
 149({                                                                      \
 150        (fifo)->size = (_size);                                         \
 151        __init_fifo(fifo, gfp);                                         \
 152})
 153
 154#define init_fifo(fifo, _size, gfp)                                     \
 155({                                                                      \
 156        (fifo)->size = (_size);                                         \
 157        if ((fifo)->size > 4)                                           \
 158                (fifo)->size = roundup_pow_of_two((fifo)->size) - 1;    \
 159        __init_fifo(fifo, gfp);                                         \
 160})
 161
 162#define free_fifo(fifo)                                                 \
 163do {                                                                    \
 164        kvfree((fifo)->data);                                           \
 165        (fifo)->data = NULL;                                            \
 166} while (0)
 167
 168#define fifo_used(fifo)         (((fifo)->back - (fifo)->front) & (fifo)->mask)
 169#define fifo_free(fifo)         ((fifo)->size - fifo_used(fifo))
 170
 171#define fifo_empty(fifo)        (!fifo_used(fifo))
 172#define fifo_full(fifo)         (!fifo_free(fifo))
 173
 174#define fifo_front(fifo)        ((fifo)->data[(fifo)->front])
 175#define fifo_back(fifo)                                                 \
 176        ((fifo)->data[((fifo)->back - 1) & (fifo)->mask])
 177
 178#define fifo_idx(fifo, p)       (((p) - &fifo_front(fifo)) & (fifo)->mask)
 179
 180#define fifo_push_back(fifo, i)                                         \
 181({                                                                      \
 182        bool _r = !fifo_full((fifo));                                   \
 183        if (_r) {                                                       \
 184                (fifo)->data[(fifo)->back++] = (i);                     \
 185                (fifo)->back &= (fifo)->mask;                           \
 186        }                                                               \
 187        _r;                                                             \
 188})
 189
 190#define fifo_pop_front(fifo, i)                                         \
 191({                                                                      \
 192        bool _r = !fifo_empty((fifo));                                  \
 193        if (_r) {                                                       \
 194                (i) = (fifo)->data[(fifo)->front++];                    \
 195                (fifo)->front &= (fifo)->mask;                          \
 196        }                                                               \
 197        _r;                                                             \
 198})
 199
 200#define fifo_push_front(fifo, i)                                        \
 201({                                                                      \
 202        bool _r = !fifo_full((fifo));                                   \
 203        if (_r) {                                                       \
 204                --(fifo)->front;                                        \
 205                (fifo)->front &= (fifo)->mask;                          \
 206                (fifo)->data[(fifo)->front] = (i);                      \
 207        }                                                               \
 208        _r;                                                             \
 209})
 210
 211#define fifo_pop_back(fifo, i)                                          \
 212({                                                                      \
 213        bool _r = !fifo_empty((fifo));                                  \
 214        if (_r) {                                                       \
 215                --(fifo)->back;                                         \
 216                (fifo)->back &= (fifo)->mask;                           \
 217                (i) = (fifo)->data[(fifo)->back]                        \
 218        }                                                               \
 219        _r;                                                             \
 220})
 221
 222#define fifo_push(fifo, i)      fifo_push_back(fifo, (i))
 223#define fifo_pop(fifo, i)       fifo_pop_front(fifo, (i))
 224
 225#define fifo_swap(l, r)                                                 \
 226do {                                                                    \
 227        swap((l)->front, (r)->front);                                   \
 228        swap((l)->back, (r)->back);                                     \
 229        swap((l)->size, (r)->size);                                     \
 230        swap((l)->mask, (r)->mask);                                     \
 231        swap((l)->data, (r)->data);                                     \
 232} while (0)
 233
 234#define fifo_move(dest, src)                                            \
 235do {                                                                    \
 236        typeof(*((dest)->data)) _t;                                     \
 237        while (!fifo_full(dest) &&                                      \
 238               fifo_pop(src, _t))                                       \
 239                fifo_push(dest, _t);                                    \
 240} while (0)
 241
 242/*
 243 * Simple array based allocator - preallocates a number of elements and you can
 244 * never allocate more than that, also has no locking.
 245 *
 246 * Handy because if you know you only need a fixed number of elements you don't
 247 * have to worry about memory allocation failure, and sometimes a mempool isn't
 248 * what you want.
 249 *
 250 * We treat the free elements as entries in a singly linked list, and the
 251 * freelist as a stack - allocating and freeing push and pop off the freelist.
 252 */
 253
 254#define DECLARE_ARRAY_ALLOCATOR(type, name, size)                       \
 255        struct {                                                        \
 256                type    *freelist;                                      \
 257                type    data[size];                                     \
 258        } name
 259
 260#define array_alloc(array)                                              \
 261({                                                                      \
 262        typeof((array)->freelist) _ret = (array)->freelist;             \
 263                                                                        \
 264        if (_ret)                                                       \
 265                (array)->freelist = *((typeof((array)->freelist) *) _ret);\
 266                                                                        \
 267        _ret;                                                           \
 268})
 269
 270#define array_free(array, ptr)                                          \
 271do {                                                                    \
 272        typeof((array)->freelist) _ptr = ptr;                           \
 273                                                                        \
 274        *((typeof((array)->freelist) *) _ptr) = (array)->freelist;      \
 275        (array)->freelist = _ptr;                                       \
 276} while (0)
 277
 278#define array_allocator_init(array)                                     \
 279do {                                                                    \
 280        typeof((array)->freelist) _i;                                   \
 281                                                                        \
 282        BUILD_BUG_ON(sizeof((array)->data[0]) < sizeof(void *));        \
 283        (array)->freelist = NULL;                                       \
 284                                                                        \
 285        for (_i = (array)->data;                                        \
 286             _i < (array)->data + ARRAY_SIZE((array)->data);            \
 287             _i++)                                                      \
 288                array_free(array, _i);                                  \
 289} while (0)
 290
 291#define array_freelist_empty(array)     ((array)->freelist == NULL)
 292
 293#define ANYSINT_MAX(t)                                                  \
 294        ((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1)
 295
 296int bch_strtoint_h(const char *, int *);
 297int bch_strtouint_h(const char *, unsigned int *);
 298int bch_strtoll_h(const char *, long long *);
 299int bch_strtoull_h(const char *, unsigned long long *);
 300
 301static inline int bch_strtol_h(const char *cp, long *res)
 302{
 303#if BITS_PER_LONG == 32
 304        return bch_strtoint_h(cp, (int *) res);
 305#else
 306        return bch_strtoll_h(cp, (long long *) res);
 307#endif
 308}
 309
 310static inline int bch_strtoul_h(const char *cp, long *res)
 311{
 312#if BITS_PER_LONG == 32
 313        return bch_strtouint_h(cp, (unsigned int *) res);
 314#else
 315        return bch_strtoull_h(cp, (unsigned long long *) res);
 316#endif
 317}
 318
 319#define strtoi_h(cp, res)                                               \
 320        (__builtin_types_compatible_p(typeof(*res), int)                \
 321        ? bch_strtoint_h(cp, (void *) res)                              \
 322        : __builtin_types_compatible_p(typeof(*res), long)              \
 323        ? bch_strtol_h(cp, (void *) res)                                \
 324        : __builtin_types_compatible_p(typeof(*res), long long)         \
 325        ? bch_strtoll_h(cp, (void *) res)                               \
 326        : __builtin_types_compatible_p(typeof(*res), unsigned int)      \
 327        ? bch_strtouint_h(cp, (void *) res)                             \
 328        : __builtin_types_compatible_p(typeof(*res), unsigned long)     \
 329        ? bch_strtoul_h(cp, (void *) res)                               \
 330        : __builtin_types_compatible_p(typeof(*res), unsigned long long)\
 331        ? bch_strtoull_h(cp, (void *) res) : -EINVAL)
 332
 333#define strtoul_safe(cp, var)                                           \
 334({                                                                      \
 335        unsigned long _v;                                               \
 336        int _r = kstrtoul(cp, 10, &_v);                                 \
 337        if (!_r)                                                        \
 338                var = _v;                                               \
 339        _r;                                                             \
 340})
 341
 342#define strtoul_safe_clamp(cp, var, min, max)                           \
 343({                                                                      \
 344        unsigned long _v;                                               \
 345        int _r = kstrtoul(cp, 10, &_v);                                 \
 346        if (!_r)                                                        \
 347                var = clamp_t(typeof(var), _v, min, max);               \
 348        _r;                                                             \
 349})
 350
 351#define snprint(buf, size, var)                                         \
 352        snprintf(buf, size,                                             \
 353                __builtin_types_compatible_p(typeof(var), int)          \
 354                     ? "%i\n" :                                         \
 355                __builtin_types_compatible_p(typeof(var), unsigned)     \
 356                     ? "%u\n" :                                         \
 357                __builtin_types_compatible_p(typeof(var), long)         \
 358                     ? "%li\n" :                                        \
 359                __builtin_types_compatible_p(typeof(var), unsigned long)\
 360                     ? "%lu\n" :                                        \
 361                __builtin_types_compatible_p(typeof(var), int64_t)      \
 362                     ? "%lli\n" :                                       \
 363                __builtin_types_compatible_p(typeof(var), uint64_t)     \
 364                     ? "%llu\n" :                                       \
 365                __builtin_types_compatible_p(typeof(var), const char *) \
 366                     ? "%s\n" : "%i\n", var)
 367
 368ssize_t bch_hprint(char *buf, int64_t v);
 369
 370bool bch_is_zero(const char *p, size_t n);
 371int bch_parse_uuid(const char *s, char *uuid);
 372
 373ssize_t bch_snprint_string_list(char *buf, size_t size, const char * const list[],
 374                            size_t selected);
 375
 376ssize_t bch_read_string_list(const char *buf, const char * const list[]);
 377
 378struct time_stats {
 379        spinlock_t      lock;
 380        /*
 381         * all fields are in nanoseconds, averages are ewmas stored left shifted
 382         * by 8
 383         */
 384        uint64_t        max_duration;
 385        uint64_t        average_duration;
 386        uint64_t        average_frequency;
 387        uint64_t        last;
 388};
 389
 390void bch_time_stats_update(struct time_stats *stats, uint64_t time);
 391
 392static inline unsigned local_clock_us(void)
 393{
 394        return local_clock() >> 10;
 395}
 396
 397#define NSEC_PER_ns                     1L
 398#define NSEC_PER_us                     NSEC_PER_USEC
 399#define NSEC_PER_ms                     NSEC_PER_MSEC
 400#define NSEC_PER_sec                    NSEC_PER_SEC
 401
 402#define __print_time_stat(stats, name, stat, units)                     \
 403        sysfs_print(name ## _ ## stat ## _ ## units,                    \
 404                    div_u64((stats)->stat >> 8, NSEC_PER_ ## units))
 405
 406#define sysfs_print_time_stats(stats, name,                             \
 407                               frequency_units,                         \
 408                               duration_units)                          \
 409do {                                                                    \
 410        __print_time_stat(stats, name,                                  \
 411                          average_frequency,    frequency_units);       \
 412        __print_time_stat(stats, name,                                  \
 413                          average_duration,     duration_units);        \
 414        sysfs_print(name ## _ ##max_duration ## _ ## duration_units,    \
 415                        div_u64((stats)->max_duration, NSEC_PER_ ## duration_units));\
 416                                                                        \
 417        sysfs_print(name ## _last_ ## frequency_units, (stats)->last    \
 418                    ? div_s64(local_clock() - (stats)->last,            \
 419                              NSEC_PER_ ## frequency_units)             \
 420                    : -1LL);                                            \
 421} while (0)
 422
 423#define sysfs_time_stats_attribute(name,                                \
 424                                   frequency_units,                     \
 425                                   duration_units)                      \
 426read_attribute(name ## _average_frequency_ ## frequency_units);         \
 427read_attribute(name ## _average_duration_ ## duration_units);           \
 428read_attribute(name ## _max_duration_ ## duration_units);               \
 429read_attribute(name ## _last_ ## frequency_units)
 430
 431#define sysfs_time_stats_attribute_list(name,                           \
 432                                        frequency_units,                \
 433                                        duration_units)                 \
 434&sysfs_ ## name ## _average_frequency_ ## frequency_units,              \
 435&sysfs_ ## name ## _average_duration_ ## duration_units,                \
 436&sysfs_ ## name ## _max_duration_ ## duration_units,                    \
 437&sysfs_ ## name ## _last_ ## frequency_units,
 438
 439#define ewma_add(ewma, val, weight, factor)                             \
 440({                                                                      \
 441        (ewma) *= (weight) - 1;                                         \
 442        (ewma) += (val) << factor;                                      \
 443        (ewma) /= (weight);                                             \
 444        (ewma) >> factor;                                               \
 445})
 446
 447struct bch_ratelimit {
 448        /* Next time we want to do some work, in nanoseconds */
 449        uint64_t                next;
 450
 451        /*
 452         * Rate at which we want to do work, in units per nanosecond
 453         * The units here correspond to the units passed to bch_next_delay()
 454         */
 455        unsigned                rate;
 456};
 457
 458static inline void bch_ratelimit_reset(struct bch_ratelimit *d)
 459{
 460        d->next = local_clock();
 461}
 462
 463uint64_t bch_next_delay(struct bch_ratelimit *d, uint64_t done);
 464
 465#define __DIV_SAFE(n, d, zero)                                          \
 466({                                                                      \
 467        typeof(n) _n = (n);                                             \
 468        typeof(d) _d = (d);                                             \
 469        _d ? _n / _d : zero;                                            \
 470})
 471
 472#define DIV_SAFE(n, d)  __DIV_SAFE(n, d, 0)
 473
 474#define container_of_or_null(ptr, type, member)                         \
 475({                                                                      \
 476        typeof(ptr) _ptr = ptr;                                         \
 477        _ptr ? container_of(_ptr, type, member) : NULL;                 \
 478})
 479
 480#define RB_INSERT(root, new, member, cmp)                               \
 481({                                                                      \
 482        __label__ dup;                                                  \
 483        struct rb_node **n = &(root)->rb_node, *parent = NULL;          \
 484        typeof(new) this;                                               \
 485        int res, ret = -1;                                              \
 486                                                                        \
 487        while (*n) {                                                    \
 488                parent = *n;                                            \
 489                this = container_of(*n, typeof(*(new)), member);        \
 490                res = cmp(new, this);                                   \
 491                if (!res)                                               \
 492                        goto dup;                                       \
 493                n = res < 0                                             \
 494                        ? &(*n)->rb_left                                \
 495                        : &(*n)->rb_right;                              \
 496        }                                                               \
 497                                                                        \
 498        rb_link_node(&(new)->member, parent, n);                        \
 499        rb_insert_color(&(new)->member, root);                          \
 500        ret = 0;                                                        \
 501dup:                                                                    \
 502        ret;                                                            \
 503})
 504
 505#define RB_SEARCH(root, search, member, cmp)                            \
 506({                                                                      \
 507        struct rb_node *n = (root)->rb_node;                            \
 508        typeof(&(search)) this, ret = NULL;                             \
 509        int res;                                                        \
 510                                                                        \
 511        while (n) {                                                     \
 512                this = container_of(n, typeof(search), member);         \
 513                res = cmp(&(search), this);                             \
 514                if (!res) {                                             \
 515                        ret = this;                                     \
 516                        break;                                          \
 517                }                                                       \
 518                n = res < 0                                             \
 519                        ? n->rb_left                                    \
 520                        : n->rb_right;                                  \
 521        }                                                               \
 522        ret;                                                            \
 523})
 524
 525#define RB_GREATER(root, search, member, cmp)                           \
 526({                                                                      \
 527        struct rb_node *n = (root)->rb_node;                            \
 528        typeof(&(search)) this, ret = NULL;                             \
 529        int res;                                                        \
 530                                                                        \
 531        while (n) {                                                     \
 532                this = container_of(n, typeof(search), member);         \
 533                res = cmp(&(search), this);                             \
 534                if (res < 0) {                                          \
 535                        ret = this;                                     \
 536                        n = n->rb_left;                                 \
 537                } else                                                  \
 538                        n = n->rb_right;                                \
 539        }                                                               \
 540        ret;                                                            \
 541})
 542
 543#define RB_FIRST(root, type, member)                                    \
 544        container_of_or_null(rb_first(root), type, member)
 545
 546#define RB_LAST(root, type, member)                                     \
 547        container_of_or_null(rb_last(root), type, member)
 548
 549#define RB_NEXT(ptr, member)                                            \
 550        container_of_or_null(rb_next(&(ptr)->member), typeof(*ptr), member)
 551
 552#define RB_PREV(ptr, member)                                            \
 553        container_of_or_null(rb_prev(&(ptr)->member), typeof(*ptr), member)
 554
 555/* Does linear interpolation between powers of two */
 556static inline unsigned fract_exp_two(unsigned x, unsigned fract_bits)
 557{
 558        unsigned fract = x & ~(~0 << fract_bits);
 559
 560        x >>= fract_bits;
 561        x   = 1 << x;
 562        x  += (x * fract) >> fract_bits;
 563
 564        return x;
 565}
 566
 567void bch_bio_map(struct bio *bio, void *base);
 568
 569static inline sector_t bdev_sectors(struct block_device *bdev)
 570{
 571        return bdev->bd_inode->i_size >> 9;
 572}
 573
 574#define closure_bio_submit(bio, cl)                                     \
 575do {                                                                    \
 576        closure_get(cl);                                                \
 577        generic_make_request(bio);                                      \
 578} while (0)
 579
 580uint64_t bch_crc64_update(uint64_t, const void *, size_t);
 581uint64_t bch_crc64(const void *, size_t);
 582
 583#endif /* _BCACHE_UTIL_H */
 584