linux/drivers/md/dm-crypt.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2003 Jana Saout <jana@saout.de>
   3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
   4 * Copyright (C) 2006-2015 Red Hat, Inc. All rights reserved.
   5 * Copyright (C) 2013 Milan Broz <gmazyland@gmail.com>
   6 *
   7 * This file is released under the GPL.
   8 */
   9
  10#include <linux/completion.h>
  11#include <linux/err.h>
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/kernel.h>
  15#include <linux/bio.h>
  16#include <linux/blkdev.h>
  17#include <linux/mempool.h>
  18#include <linux/slab.h>
  19#include <linux/crypto.h>
  20#include <linux/workqueue.h>
  21#include <linux/kthread.h>
  22#include <linux/backing-dev.h>
  23#include <linux/atomic.h>
  24#include <linux/scatterlist.h>
  25#include <linux/rbtree.h>
  26#include <asm/page.h>
  27#include <asm/unaligned.h>
  28#include <crypto/hash.h>
  29#include <crypto/md5.h>
  30#include <crypto/algapi.h>
  31#include <crypto/skcipher.h>
  32
  33#include <linux/device-mapper.h>
  34
  35#define DM_MSG_PREFIX "crypt"
  36
  37/*
  38 * context holding the current state of a multi-part conversion
  39 */
  40struct convert_context {
  41        struct completion restart;
  42        struct bio *bio_in;
  43        struct bio *bio_out;
  44        struct bvec_iter iter_in;
  45        struct bvec_iter iter_out;
  46        sector_t cc_sector;
  47        atomic_t cc_pending;
  48        struct skcipher_request *req;
  49};
  50
  51/*
  52 * per bio private data
  53 */
  54struct dm_crypt_io {
  55        struct crypt_config *cc;
  56        struct bio *base_bio;
  57        struct work_struct work;
  58
  59        struct convert_context ctx;
  60
  61        atomic_t io_pending;
  62        int error;
  63        sector_t sector;
  64
  65        struct rb_node rb_node;
  66} CRYPTO_MINALIGN_ATTR;
  67
  68struct dm_crypt_request {
  69        struct convert_context *ctx;
  70        struct scatterlist sg_in;
  71        struct scatterlist sg_out;
  72        sector_t iv_sector;
  73};
  74
  75struct crypt_config;
  76
  77struct crypt_iv_operations {
  78        int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
  79                   const char *opts);
  80        void (*dtr)(struct crypt_config *cc);
  81        int (*init)(struct crypt_config *cc);
  82        int (*wipe)(struct crypt_config *cc);
  83        int (*generator)(struct crypt_config *cc, u8 *iv,
  84                         struct dm_crypt_request *dmreq);
  85        int (*post)(struct crypt_config *cc, u8 *iv,
  86                    struct dm_crypt_request *dmreq);
  87};
  88
  89struct iv_essiv_private {
  90        struct crypto_ahash *hash_tfm;
  91        u8 *salt;
  92};
  93
  94struct iv_benbi_private {
  95        int shift;
  96};
  97
  98#define LMK_SEED_SIZE 64 /* hash + 0 */
  99struct iv_lmk_private {
 100        struct crypto_shash *hash_tfm;
 101        u8 *seed;
 102};
 103
 104#define TCW_WHITENING_SIZE 16
 105struct iv_tcw_private {
 106        struct crypto_shash *crc32_tfm;
 107        u8 *iv_seed;
 108        u8 *whitening;
 109};
 110
 111/*
 112 * Crypt: maps a linear range of a block device
 113 * and encrypts / decrypts at the same time.
 114 */
 115enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
 116             DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD,
 117             DM_CRYPT_EXIT_THREAD};
 118
 119/*
 120 * The fields in here must be read only after initialization.
 121 */
 122struct crypt_config {
 123        struct dm_dev *dev;
 124        sector_t start;
 125
 126        /*
 127         * pool for per bio private data, crypto requests and
 128         * encryption requeusts/buffer pages
 129         */
 130        mempool_t *req_pool;
 131        mempool_t *page_pool;
 132        struct bio_set *bs;
 133        struct mutex bio_alloc_lock;
 134
 135        struct workqueue_struct *io_queue;
 136        struct workqueue_struct *crypt_queue;
 137
 138        struct task_struct *write_thread;
 139        wait_queue_head_t write_thread_wait;
 140        struct rb_root write_tree;
 141
 142        char *cipher;
 143        char *cipher_string;
 144
 145        struct crypt_iv_operations *iv_gen_ops;
 146        union {
 147                struct iv_essiv_private essiv;
 148                struct iv_benbi_private benbi;
 149                struct iv_lmk_private lmk;
 150                struct iv_tcw_private tcw;
 151        } iv_gen_private;
 152        sector_t iv_offset;
 153        unsigned int iv_size;
 154
 155        /* ESSIV: struct crypto_cipher *essiv_tfm */
 156        void *iv_private;
 157        struct crypto_skcipher **tfms;
 158        unsigned tfms_count;
 159
 160        /*
 161         * Layout of each crypto request:
 162         *
 163         *   struct skcipher_request
 164         *      context
 165         *      padding
 166         *   struct dm_crypt_request
 167         *      padding
 168         *   IV
 169         *
 170         * The padding is added so that dm_crypt_request and the IV are
 171         * correctly aligned.
 172         */
 173        unsigned int dmreq_start;
 174
 175        unsigned int per_bio_data_size;
 176
 177        unsigned long flags;
 178        unsigned int key_size;
 179        unsigned int key_parts;      /* independent parts in key buffer */
 180        unsigned int key_extra_size; /* additional keys length */
 181        u8 key[0];
 182};
 183
 184#define MIN_IOS        16
 185
 186static void clone_init(struct dm_crypt_io *, struct bio *);
 187static void kcryptd_queue_crypt(struct dm_crypt_io *io);
 188static u8 *iv_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq);
 189
 190/*
 191 * Use this to access cipher attributes that are the same for each CPU.
 192 */
 193static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
 194{
 195        return cc->tfms[0];
 196}
 197
 198/*
 199 * Different IV generation algorithms:
 200 *
 201 * plain: the initial vector is the 32-bit little-endian version of the sector
 202 *        number, padded with zeros if necessary.
 203 *
 204 * plain64: the initial vector is the 64-bit little-endian version of the sector
 205 *        number, padded with zeros if necessary.
 206 *
 207 * essiv: "encrypted sector|salt initial vector", the sector number is
 208 *        encrypted with the bulk cipher using a salt as key. The salt
 209 *        should be derived from the bulk cipher's key via hashing.
 210 *
 211 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
 212 *        (needed for LRW-32-AES and possible other narrow block modes)
 213 *
 214 * null: the initial vector is always zero.  Provides compatibility with
 215 *       obsolete loop_fish2 devices.  Do not use for new devices.
 216 *
 217 * lmk:  Compatible implementation of the block chaining mode used
 218 *       by the Loop-AES block device encryption system
 219 *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
 220 *       It operates on full 512 byte sectors and uses CBC
 221 *       with an IV derived from the sector number, the data and
 222 *       optionally extra IV seed.
 223 *       This means that after decryption the first block
 224 *       of sector must be tweaked according to decrypted data.
 225 *       Loop-AES can use three encryption schemes:
 226 *         version 1: is plain aes-cbc mode
 227 *         version 2: uses 64 multikey scheme with lmk IV generator
 228 *         version 3: the same as version 2 with additional IV seed
 229 *                   (it uses 65 keys, last key is used as IV seed)
 230 *
 231 * tcw:  Compatible implementation of the block chaining mode used
 232 *       by the TrueCrypt device encryption system (prior to version 4.1).
 233 *       For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
 234 *       It operates on full 512 byte sectors and uses CBC
 235 *       with an IV derived from initial key and the sector number.
 236 *       In addition, whitening value is applied on every sector, whitening
 237 *       is calculated from initial key, sector number and mixed using CRC32.
 238 *       Note that this encryption scheme is vulnerable to watermarking attacks
 239 *       and should be used for old compatible containers access only.
 240 *
 241 * plumb: unimplemented, see:
 242 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
 243 */
 244
 245static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
 246                              struct dm_crypt_request *dmreq)
 247{
 248        memset(iv, 0, cc->iv_size);
 249        *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
 250
 251        return 0;
 252}
 253
 254static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
 255                                struct dm_crypt_request *dmreq)
 256{
 257        memset(iv, 0, cc->iv_size);
 258        *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
 259
 260        return 0;
 261}
 262
 263/* Initialise ESSIV - compute salt but no local memory allocations */
 264static int crypt_iv_essiv_init(struct crypt_config *cc)
 265{
 266        struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 267        AHASH_REQUEST_ON_STACK(req, essiv->hash_tfm);
 268        struct scatterlist sg;
 269        struct crypto_cipher *essiv_tfm;
 270        int err;
 271
 272        sg_init_one(&sg, cc->key, cc->key_size);
 273        ahash_request_set_tfm(req, essiv->hash_tfm);
 274        ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
 275        ahash_request_set_crypt(req, &sg, essiv->salt, cc->key_size);
 276
 277        err = crypto_ahash_digest(req);
 278        ahash_request_zero(req);
 279        if (err)
 280                return err;
 281
 282        essiv_tfm = cc->iv_private;
 283
 284        err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
 285                            crypto_ahash_digestsize(essiv->hash_tfm));
 286        if (err)
 287                return err;
 288
 289        return 0;
 290}
 291
 292/* Wipe salt and reset key derived from volume key */
 293static int crypt_iv_essiv_wipe(struct crypt_config *cc)
 294{
 295        struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 296        unsigned salt_size = crypto_ahash_digestsize(essiv->hash_tfm);
 297        struct crypto_cipher *essiv_tfm;
 298        int r, err = 0;
 299
 300        memset(essiv->salt, 0, salt_size);
 301
 302        essiv_tfm = cc->iv_private;
 303        r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
 304        if (r)
 305                err = r;
 306
 307        return err;
 308}
 309
 310/* Set up per cpu cipher state */
 311static struct crypto_cipher *setup_essiv_cpu(struct crypt_config *cc,
 312                                             struct dm_target *ti,
 313                                             u8 *salt, unsigned saltsize)
 314{
 315        struct crypto_cipher *essiv_tfm;
 316        int err;
 317
 318        /* Setup the essiv_tfm with the given salt */
 319        essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
 320        if (IS_ERR(essiv_tfm)) {
 321                ti->error = "Error allocating crypto tfm for ESSIV";
 322                return essiv_tfm;
 323        }
 324
 325        if (crypto_cipher_blocksize(essiv_tfm) !=
 326            crypto_skcipher_ivsize(any_tfm(cc))) {
 327                ti->error = "Block size of ESSIV cipher does "
 328                            "not match IV size of block cipher";
 329                crypto_free_cipher(essiv_tfm);
 330                return ERR_PTR(-EINVAL);
 331        }
 332
 333        err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
 334        if (err) {
 335                ti->error = "Failed to set key for ESSIV cipher";
 336                crypto_free_cipher(essiv_tfm);
 337                return ERR_PTR(err);
 338        }
 339
 340        return essiv_tfm;
 341}
 342
 343static void crypt_iv_essiv_dtr(struct crypt_config *cc)
 344{
 345        struct crypto_cipher *essiv_tfm;
 346        struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 347
 348        crypto_free_ahash(essiv->hash_tfm);
 349        essiv->hash_tfm = NULL;
 350
 351        kzfree(essiv->salt);
 352        essiv->salt = NULL;
 353
 354        essiv_tfm = cc->iv_private;
 355
 356        if (essiv_tfm)
 357                crypto_free_cipher(essiv_tfm);
 358
 359        cc->iv_private = NULL;
 360}
 361
 362static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
 363                              const char *opts)
 364{
 365        struct crypto_cipher *essiv_tfm = NULL;
 366        struct crypto_ahash *hash_tfm = NULL;
 367        u8 *salt = NULL;
 368        int err;
 369
 370        if (!opts) {
 371                ti->error = "Digest algorithm missing for ESSIV mode";
 372                return -EINVAL;
 373        }
 374
 375        /* Allocate hash algorithm */
 376        hash_tfm = crypto_alloc_ahash(opts, 0, CRYPTO_ALG_ASYNC);
 377        if (IS_ERR(hash_tfm)) {
 378                ti->error = "Error initializing ESSIV hash";
 379                err = PTR_ERR(hash_tfm);
 380                goto bad;
 381        }
 382
 383        salt = kzalloc(crypto_ahash_digestsize(hash_tfm), GFP_KERNEL);
 384        if (!salt) {
 385                ti->error = "Error kmallocing salt storage in ESSIV";
 386                err = -ENOMEM;
 387                goto bad;
 388        }
 389
 390        cc->iv_gen_private.essiv.salt = salt;
 391        cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
 392
 393        essiv_tfm = setup_essiv_cpu(cc, ti, salt,
 394                                crypto_ahash_digestsize(hash_tfm));
 395        if (IS_ERR(essiv_tfm)) {
 396                crypt_iv_essiv_dtr(cc);
 397                return PTR_ERR(essiv_tfm);
 398        }
 399        cc->iv_private = essiv_tfm;
 400
 401        return 0;
 402
 403bad:
 404        if (hash_tfm && !IS_ERR(hash_tfm))
 405                crypto_free_ahash(hash_tfm);
 406        kfree(salt);
 407        return err;
 408}
 409
 410static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
 411                              struct dm_crypt_request *dmreq)
 412{
 413        struct crypto_cipher *essiv_tfm = cc->iv_private;
 414
 415        memset(iv, 0, cc->iv_size);
 416        *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
 417        crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
 418
 419        return 0;
 420}
 421
 422static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
 423                              const char *opts)
 424{
 425        unsigned bs = crypto_skcipher_blocksize(any_tfm(cc));
 426        int log = ilog2(bs);
 427
 428        /* we need to calculate how far we must shift the sector count
 429         * to get the cipher block count, we use this shift in _gen */
 430
 431        if (1 << log != bs) {
 432                ti->error = "cypher blocksize is not a power of 2";
 433                return -EINVAL;
 434        }
 435
 436        if (log > 9) {
 437                ti->error = "cypher blocksize is > 512";
 438                return -EINVAL;
 439        }
 440
 441        cc->iv_gen_private.benbi.shift = 9 - log;
 442
 443        return 0;
 444}
 445
 446static void crypt_iv_benbi_dtr(struct crypt_config *cc)
 447{
 448}
 449
 450static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
 451                              struct dm_crypt_request *dmreq)
 452{
 453        __be64 val;
 454
 455        memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
 456
 457        val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
 458        put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
 459
 460        return 0;
 461}
 462
 463static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
 464                             struct dm_crypt_request *dmreq)
 465{
 466        memset(iv, 0, cc->iv_size);
 467
 468        return 0;
 469}
 470
 471static void crypt_iv_lmk_dtr(struct crypt_config *cc)
 472{
 473        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 474
 475        if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
 476                crypto_free_shash(lmk->hash_tfm);
 477        lmk->hash_tfm = NULL;
 478
 479        kzfree(lmk->seed);
 480        lmk->seed = NULL;
 481}
 482
 483static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
 484                            const char *opts)
 485{
 486        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 487
 488        lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
 489        if (IS_ERR(lmk->hash_tfm)) {
 490                ti->error = "Error initializing LMK hash";
 491                return PTR_ERR(lmk->hash_tfm);
 492        }
 493
 494        /* No seed in LMK version 2 */
 495        if (cc->key_parts == cc->tfms_count) {
 496                lmk->seed = NULL;
 497                return 0;
 498        }
 499
 500        lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
 501        if (!lmk->seed) {
 502                crypt_iv_lmk_dtr(cc);
 503                ti->error = "Error kmallocing seed storage in LMK";
 504                return -ENOMEM;
 505        }
 506
 507        return 0;
 508}
 509
 510static int crypt_iv_lmk_init(struct crypt_config *cc)
 511{
 512        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 513        int subkey_size = cc->key_size / cc->key_parts;
 514
 515        /* LMK seed is on the position of LMK_KEYS + 1 key */
 516        if (lmk->seed)
 517                memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
 518                       crypto_shash_digestsize(lmk->hash_tfm));
 519
 520        return 0;
 521}
 522
 523static int crypt_iv_lmk_wipe(struct crypt_config *cc)
 524{
 525        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 526
 527        if (lmk->seed)
 528                memset(lmk->seed, 0, LMK_SEED_SIZE);
 529
 530        return 0;
 531}
 532
 533static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
 534                            struct dm_crypt_request *dmreq,
 535                            u8 *data)
 536{
 537        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 538        SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
 539        struct md5_state md5state;
 540        __le32 buf[4];
 541        int i, r;
 542
 543        desc->tfm = lmk->hash_tfm;
 544        desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 545
 546        r = crypto_shash_init(desc);
 547        if (r)
 548                return r;
 549
 550        if (lmk->seed) {
 551                r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
 552                if (r)
 553                        return r;
 554        }
 555
 556        /* Sector is always 512B, block size 16, add data of blocks 1-31 */
 557        r = crypto_shash_update(desc, data + 16, 16 * 31);
 558        if (r)
 559                return r;
 560
 561        /* Sector is cropped to 56 bits here */
 562        buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
 563        buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
 564        buf[2] = cpu_to_le32(4024);
 565        buf[3] = 0;
 566        r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
 567        if (r)
 568                return r;
 569
 570        /* No MD5 padding here */
 571        r = crypto_shash_export(desc, &md5state);
 572        if (r)
 573                return r;
 574
 575        for (i = 0; i < MD5_HASH_WORDS; i++)
 576                __cpu_to_le32s(&md5state.hash[i]);
 577        memcpy(iv, &md5state.hash, cc->iv_size);
 578
 579        return 0;
 580}
 581
 582static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
 583                            struct dm_crypt_request *dmreq)
 584{
 585        u8 *src;
 586        int r = 0;
 587
 588        if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
 589                src = kmap_atomic(sg_page(&dmreq->sg_in));
 590                r = crypt_iv_lmk_one(cc, iv, dmreq, src + dmreq->sg_in.offset);
 591                kunmap_atomic(src);
 592        } else
 593                memset(iv, 0, cc->iv_size);
 594
 595        return r;
 596}
 597
 598static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
 599                             struct dm_crypt_request *dmreq)
 600{
 601        u8 *dst;
 602        int r;
 603
 604        if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
 605                return 0;
 606
 607        dst = kmap_atomic(sg_page(&dmreq->sg_out));
 608        r = crypt_iv_lmk_one(cc, iv, dmreq, dst + dmreq->sg_out.offset);
 609
 610        /* Tweak the first block of plaintext sector */
 611        if (!r)
 612                crypto_xor(dst + dmreq->sg_out.offset, iv, cc->iv_size);
 613
 614        kunmap_atomic(dst);
 615        return r;
 616}
 617
 618static void crypt_iv_tcw_dtr(struct crypt_config *cc)
 619{
 620        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 621
 622        kzfree(tcw->iv_seed);
 623        tcw->iv_seed = NULL;
 624        kzfree(tcw->whitening);
 625        tcw->whitening = NULL;
 626
 627        if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
 628                crypto_free_shash(tcw->crc32_tfm);
 629        tcw->crc32_tfm = NULL;
 630}
 631
 632static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
 633                            const char *opts)
 634{
 635        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 636
 637        if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
 638                ti->error = "Wrong key size for TCW";
 639                return -EINVAL;
 640        }
 641
 642        tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0);
 643        if (IS_ERR(tcw->crc32_tfm)) {
 644                ti->error = "Error initializing CRC32 in TCW";
 645                return PTR_ERR(tcw->crc32_tfm);
 646        }
 647
 648        tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
 649        tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
 650        if (!tcw->iv_seed || !tcw->whitening) {
 651                crypt_iv_tcw_dtr(cc);
 652                ti->error = "Error allocating seed storage in TCW";
 653                return -ENOMEM;
 654        }
 655
 656        return 0;
 657}
 658
 659static int crypt_iv_tcw_init(struct crypt_config *cc)
 660{
 661        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 662        int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
 663
 664        memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
 665        memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
 666               TCW_WHITENING_SIZE);
 667
 668        return 0;
 669}
 670
 671static int crypt_iv_tcw_wipe(struct crypt_config *cc)
 672{
 673        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 674
 675        memset(tcw->iv_seed, 0, cc->iv_size);
 676        memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
 677
 678        return 0;
 679}
 680
 681static int crypt_iv_tcw_whitening(struct crypt_config *cc,
 682                                  struct dm_crypt_request *dmreq,
 683                                  u8 *data)
 684{
 685        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 686        u64 sector = cpu_to_le64((u64)dmreq->iv_sector);
 687        u8 buf[TCW_WHITENING_SIZE];
 688        SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
 689        int i, r;
 690
 691        /* xor whitening with sector number */
 692        memcpy(buf, tcw->whitening, TCW_WHITENING_SIZE);
 693        crypto_xor(buf, (u8 *)&sector, 8);
 694        crypto_xor(&buf[8], (u8 *)&sector, 8);
 695
 696        /* calculate crc32 for every 32bit part and xor it */
 697        desc->tfm = tcw->crc32_tfm;
 698        desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 699        for (i = 0; i < 4; i++) {
 700                r = crypto_shash_init(desc);
 701                if (r)
 702                        goto out;
 703                r = crypto_shash_update(desc, &buf[i * 4], 4);
 704                if (r)
 705                        goto out;
 706                r = crypto_shash_final(desc, &buf[i * 4]);
 707                if (r)
 708                        goto out;
 709        }
 710        crypto_xor(&buf[0], &buf[12], 4);
 711        crypto_xor(&buf[4], &buf[8], 4);
 712
 713        /* apply whitening (8 bytes) to whole sector */
 714        for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
 715                crypto_xor(data + i * 8, buf, 8);
 716out:
 717        memzero_explicit(buf, sizeof(buf));
 718        return r;
 719}
 720
 721static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
 722                            struct dm_crypt_request *dmreq)
 723{
 724        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 725        u64 sector = cpu_to_le64((u64)dmreq->iv_sector);
 726        u8 *src;
 727        int r = 0;
 728
 729        /* Remove whitening from ciphertext */
 730        if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
 731                src = kmap_atomic(sg_page(&dmreq->sg_in));
 732                r = crypt_iv_tcw_whitening(cc, dmreq, src + dmreq->sg_in.offset);
 733                kunmap_atomic(src);
 734        }
 735
 736        /* Calculate IV */
 737        memcpy(iv, tcw->iv_seed, cc->iv_size);
 738        crypto_xor(iv, (u8 *)&sector, 8);
 739        if (cc->iv_size > 8)
 740                crypto_xor(&iv[8], (u8 *)&sector, cc->iv_size - 8);
 741
 742        return r;
 743}
 744
 745static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
 746                             struct dm_crypt_request *dmreq)
 747{
 748        u8 *dst;
 749        int r;
 750
 751        if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
 752                return 0;
 753
 754        /* Apply whitening on ciphertext */
 755        dst = kmap_atomic(sg_page(&dmreq->sg_out));
 756        r = crypt_iv_tcw_whitening(cc, dmreq, dst + dmreq->sg_out.offset);
 757        kunmap_atomic(dst);
 758
 759        return r;
 760}
 761
 762static struct crypt_iv_operations crypt_iv_plain_ops = {
 763        .generator = crypt_iv_plain_gen
 764};
 765
 766static struct crypt_iv_operations crypt_iv_plain64_ops = {
 767        .generator = crypt_iv_plain64_gen
 768};
 769
 770static struct crypt_iv_operations crypt_iv_essiv_ops = {
 771        .ctr       = crypt_iv_essiv_ctr,
 772        .dtr       = crypt_iv_essiv_dtr,
 773        .init      = crypt_iv_essiv_init,
 774        .wipe      = crypt_iv_essiv_wipe,
 775        .generator = crypt_iv_essiv_gen
 776};
 777
 778static struct crypt_iv_operations crypt_iv_benbi_ops = {
 779        .ctr       = crypt_iv_benbi_ctr,
 780        .dtr       = crypt_iv_benbi_dtr,
 781        .generator = crypt_iv_benbi_gen
 782};
 783
 784static struct crypt_iv_operations crypt_iv_null_ops = {
 785        .generator = crypt_iv_null_gen
 786};
 787
 788static struct crypt_iv_operations crypt_iv_lmk_ops = {
 789        .ctr       = crypt_iv_lmk_ctr,
 790        .dtr       = crypt_iv_lmk_dtr,
 791        .init      = crypt_iv_lmk_init,
 792        .wipe      = crypt_iv_lmk_wipe,
 793        .generator = crypt_iv_lmk_gen,
 794        .post      = crypt_iv_lmk_post
 795};
 796
 797static struct crypt_iv_operations crypt_iv_tcw_ops = {
 798        .ctr       = crypt_iv_tcw_ctr,
 799        .dtr       = crypt_iv_tcw_dtr,
 800        .init      = crypt_iv_tcw_init,
 801        .wipe      = crypt_iv_tcw_wipe,
 802        .generator = crypt_iv_tcw_gen,
 803        .post      = crypt_iv_tcw_post
 804};
 805
 806static void crypt_convert_init(struct crypt_config *cc,
 807                               struct convert_context *ctx,
 808                               struct bio *bio_out, struct bio *bio_in,
 809                               sector_t sector)
 810{
 811        ctx->bio_in = bio_in;
 812        ctx->bio_out = bio_out;
 813        if (bio_in)
 814                ctx->iter_in = bio_in->bi_iter;
 815        if (bio_out)
 816                ctx->iter_out = bio_out->bi_iter;
 817        ctx->cc_sector = sector + cc->iv_offset;
 818        init_completion(&ctx->restart);
 819}
 820
 821static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
 822                                             struct skcipher_request *req)
 823{
 824        return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
 825}
 826
 827static struct skcipher_request *req_of_dmreq(struct crypt_config *cc,
 828                                               struct dm_crypt_request *dmreq)
 829{
 830        return (struct skcipher_request *)((char *)dmreq - cc->dmreq_start);
 831}
 832
 833static u8 *iv_of_dmreq(struct crypt_config *cc,
 834                       struct dm_crypt_request *dmreq)
 835{
 836        return (u8 *)ALIGN((unsigned long)(dmreq + 1),
 837                crypto_skcipher_alignmask(any_tfm(cc)) + 1);
 838}
 839
 840static int crypt_convert_block(struct crypt_config *cc,
 841                               struct convert_context *ctx,
 842                               struct skcipher_request *req)
 843{
 844        struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
 845        struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
 846        struct dm_crypt_request *dmreq;
 847        u8 *iv;
 848        int r;
 849
 850        dmreq = dmreq_of_req(cc, req);
 851        iv = iv_of_dmreq(cc, dmreq);
 852
 853        dmreq->iv_sector = ctx->cc_sector;
 854        dmreq->ctx = ctx;
 855        sg_init_table(&dmreq->sg_in, 1);
 856        sg_set_page(&dmreq->sg_in, bv_in.bv_page, 1 << SECTOR_SHIFT,
 857                    bv_in.bv_offset);
 858
 859        sg_init_table(&dmreq->sg_out, 1);
 860        sg_set_page(&dmreq->sg_out, bv_out.bv_page, 1 << SECTOR_SHIFT,
 861                    bv_out.bv_offset);
 862
 863        bio_advance_iter(ctx->bio_in, &ctx->iter_in, 1 << SECTOR_SHIFT);
 864        bio_advance_iter(ctx->bio_out, &ctx->iter_out, 1 << SECTOR_SHIFT);
 865
 866        if (cc->iv_gen_ops) {
 867                r = cc->iv_gen_ops->generator(cc, iv, dmreq);
 868                if (r < 0)
 869                        return r;
 870        }
 871
 872        skcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
 873                                   1 << SECTOR_SHIFT, iv);
 874
 875        if (bio_data_dir(ctx->bio_in) == WRITE)
 876                r = crypto_skcipher_encrypt(req);
 877        else
 878                r = crypto_skcipher_decrypt(req);
 879
 880        if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
 881                r = cc->iv_gen_ops->post(cc, iv, dmreq);
 882
 883        return r;
 884}
 885
 886static void kcryptd_async_done(struct crypto_async_request *async_req,
 887                               int error);
 888
 889static void crypt_alloc_req(struct crypt_config *cc,
 890                            struct convert_context *ctx)
 891{
 892        unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
 893
 894        if (!ctx->req)
 895                ctx->req = mempool_alloc(cc->req_pool, GFP_NOIO);
 896
 897        skcipher_request_set_tfm(ctx->req, cc->tfms[key_index]);
 898
 899        /*
 900         * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
 901         * requests if driver request queue is full.
 902         */
 903        skcipher_request_set_callback(ctx->req,
 904            CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
 905            kcryptd_async_done, dmreq_of_req(cc, ctx->req));
 906}
 907
 908static void crypt_free_req(struct crypt_config *cc,
 909                           struct skcipher_request *req, struct bio *base_bio)
 910{
 911        struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
 912
 913        if ((struct skcipher_request *)(io + 1) != req)
 914                mempool_free(req, cc->req_pool);
 915}
 916
 917/*
 918 * Encrypt / decrypt data from one bio to another one (can be the same one)
 919 */
 920static int crypt_convert(struct crypt_config *cc,
 921                         struct convert_context *ctx)
 922{
 923        int r;
 924
 925        atomic_set(&ctx->cc_pending, 1);
 926
 927        while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
 928
 929                crypt_alloc_req(cc, ctx);
 930
 931                atomic_inc(&ctx->cc_pending);
 932
 933                r = crypt_convert_block(cc, ctx, ctx->req);
 934
 935                switch (r) {
 936                /*
 937                 * The request was queued by a crypto driver
 938                 * but the driver request queue is full, let's wait.
 939                 */
 940                case -EBUSY:
 941                        wait_for_completion(&ctx->restart);
 942                        reinit_completion(&ctx->restart);
 943                        /* fall through */
 944                /*
 945                 * The request is queued and processed asynchronously,
 946                 * completion function kcryptd_async_done() will be called.
 947                 */
 948                case -EINPROGRESS:
 949                        ctx->req = NULL;
 950                        ctx->cc_sector++;
 951                        continue;
 952                /*
 953                 * The request was already processed (synchronously).
 954                 */
 955                case 0:
 956                        atomic_dec(&ctx->cc_pending);
 957                        ctx->cc_sector++;
 958                        cond_resched();
 959                        continue;
 960
 961                /* There was an error while processing the request. */
 962                default:
 963                        atomic_dec(&ctx->cc_pending);
 964                        return r;
 965                }
 966        }
 967
 968        return 0;
 969}
 970
 971static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
 972
 973/*
 974 * Generate a new unfragmented bio with the given size
 975 * This should never violate the device limitations (but only because
 976 * max_segment_size is being constrained to PAGE_SIZE).
 977 *
 978 * This function may be called concurrently. If we allocate from the mempool
 979 * concurrently, there is a possibility of deadlock. For example, if we have
 980 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
 981 * the mempool concurrently, it may deadlock in a situation where both processes
 982 * have allocated 128 pages and the mempool is exhausted.
 983 *
 984 * In order to avoid this scenario we allocate the pages under a mutex.
 985 *
 986 * In order to not degrade performance with excessive locking, we try
 987 * non-blocking allocations without a mutex first but on failure we fallback
 988 * to blocking allocations with a mutex.
 989 */
 990static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
 991{
 992        struct crypt_config *cc = io->cc;
 993        struct bio *clone;
 994        unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
 995        gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
 996        unsigned i, len, remaining_size;
 997        struct page *page;
 998        struct bio_vec *bvec;
 999
1000retry:
1001        if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1002                mutex_lock(&cc->bio_alloc_lock);
1003
1004        clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
1005        if (!clone)
1006                goto return_clone;
1007
1008        clone_init(io, clone);
1009
1010        remaining_size = size;
1011
1012        for (i = 0; i < nr_iovecs; i++) {
1013                page = mempool_alloc(cc->page_pool, gfp_mask);
1014                if (!page) {
1015                        crypt_free_buffer_pages(cc, clone);
1016                        bio_put(clone);
1017                        gfp_mask |= __GFP_DIRECT_RECLAIM;
1018                        goto retry;
1019                }
1020
1021                len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size;
1022
1023                bvec = &clone->bi_io_vec[clone->bi_vcnt++];
1024                bvec->bv_page = page;
1025                bvec->bv_len = len;
1026                bvec->bv_offset = 0;
1027
1028                clone->bi_iter.bi_size += len;
1029
1030                remaining_size -= len;
1031        }
1032
1033return_clone:
1034        if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1035                mutex_unlock(&cc->bio_alloc_lock);
1036
1037        return clone;
1038}
1039
1040static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1041{
1042        unsigned int i;
1043        struct bio_vec *bv;
1044
1045        bio_for_each_segment_all(bv, clone, i) {
1046                BUG_ON(!bv->bv_page);
1047                mempool_free(bv->bv_page, cc->page_pool);
1048                bv->bv_page = NULL;
1049        }
1050}
1051
1052static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1053                          struct bio *bio, sector_t sector)
1054{
1055        io->cc = cc;
1056        io->base_bio = bio;
1057        io->sector = sector;
1058        io->error = 0;
1059        io->ctx.req = NULL;
1060        atomic_set(&io->io_pending, 0);
1061}
1062
1063static void crypt_inc_pending(struct dm_crypt_io *io)
1064{
1065        atomic_inc(&io->io_pending);
1066}
1067
1068/*
1069 * One of the bios was finished. Check for completion of
1070 * the whole request and correctly clean up the buffer.
1071 */
1072static void crypt_dec_pending(struct dm_crypt_io *io)
1073{
1074        struct crypt_config *cc = io->cc;
1075        struct bio *base_bio = io->base_bio;
1076        int error = io->error;
1077
1078        if (!atomic_dec_and_test(&io->io_pending))
1079                return;
1080
1081        if (io->ctx.req)
1082                crypt_free_req(cc, io->ctx.req, base_bio);
1083
1084        base_bio->bi_error = error;
1085        bio_endio(base_bio);
1086}
1087
1088/*
1089 * kcryptd/kcryptd_io:
1090 *
1091 * Needed because it would be very unwise to do decryption in an
1092 * interrupt context.
1093 *
1094 * kcryptd performs the actual encryption or decryption.
1095 *
1096 * kcryptd_io performs the IO submission.
1097 *
1098 * They must be separated as otherwise the final stages could be
1099 * starved by new requests which can block in the first stages due
1100 * to memory allocation.
1101 *
1102 * The work is done per CPU global for all dm-crypt instances.
1103 * They should not depend on each other and do not block.
1104 */
1105static void crypt_endio(struct bio *clone)
1106{
1107        struct dm_crypt_io *io = clone->bi_private;
1108        struct crypt_config *cc = io->cc;
1109        unsigned rw = bio_data_dir(clone);
1110        int error;
1111
1112        /*
1113         * free the processed pages
1114         */
1115        if (rw == WRITE)
1116                crypt_free_buffer_pages(cc, clone);
1117
1118        error = clone->bi_error;
1119        bio_put(clone);
1120
1121        if (rw == READ && !error) {
1122                kcryptd_queue_crypt(io);
1123                return;
1124        }
1125
1126        if (unlikely(error))
1127                io->error = error;
1128
1129        crypt_dec_pending(io);
1130}
1131
1132static void clone_init(struct dm_crypt_io *io, struct bio *clone)
1133{
1134        struct crypt_config *cc = io->cc;
1135
1136        clone->bi_private = io;
1137        clone->bi_end_io  = crypt_endio;
1138        clone->bi_bdev    = cc->dev->bdev;
1139        clone->bi_rw      = io->base_bio->bi_rw;
1140}
1141
1142static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1143{
1144        struct crypt_config *cc = io->cc;
1145        struct bio *clone;
1146
1147        /*
1148         * We need the original biovec array in order to decrypt
1149         * the whole bio data *afterwards* -- thanks to immutable
1150         * biovecs we don't need to worry about the block layer
1151         * modifying the biovec array; so leverage bio_clone_fast().
1152         */
1153        clone = bio_clone_fast(io->base_bio, gfp, cc->bs);
1154        if (!clone)
1155                return 1;
1156
1157        crypt_inc_pending(io);
1158
1159        clone_init(io, clone);
1160        clone->bi_iter.bi_sector = cc->start + io->sector;
1161
1162        generic_make_request(clone);
1163        return 0;
1164}
1165
1166static void kcryptd_io_read_work(struct work_struct *work)
1167{
1168        struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1169
1170        crypt_inc_pending(io);
1171        if (kcryptd_io_read(io, GFP_NOIO))
1172                io->error = -ENOMEM;
1173        crypt_dec_pending(io);
1174}
1175
1176static void kcryptd_queue_read(struct dm_crypt_io *io)
1177{
1178        struct crypt_config *cc = io->cc;
1179
1180        INIT_WORK(&io->work, kcryptd_io_read_work);
1181        queue_work(cc->io_queue, &io->work);
1182}
1183
1184static void kcryptd_io_write(struct dm_crypt_io *io)
1185{
1186        struct bio *clone = io->ctx.bio_out;
1187
1188        generic_make_request(clone);
1189}
1190
1191#define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1192
1193static int dmcrypt_write(void *data)
1194{
1195        struct crypt_config *cc = data;
1196        struct dm_crypt_io *io;
1197
1198        while (1) {
1199                struct rb_root write_tree;
1200                struct blk_plug plug;
1201
1202                DECLARE_WAITQUEUE(wait, current);
1203
1204                spin_lock_irq(&cc->write_thread_wait.lock);
1205continue_locked:
1206
1207                if (!RB_EMPTY_ROOT(&cc->write_tree))
1208                        goto pop_from_list;
1209
1210                if (unlikely(test_bit(DM_CRYPT_EXIT_THREAD, &cc->flags))) {
1211                        spin_unlock_irq(&cc->write_thread_wait.lock);
1212                        break;
1213                }
1214
1215                __set_current_state(TASK_INTERRUPTIBLE);
1216                __add_wait_queue(&cc->write_thread_wait, &wait);
1217
1218                spin_unlock_irq(&cc->write_thread_wait.lock);
1219
1220                schedule();
1221
1222                spin_lock_irq(&cc->write_thread_wait.lock);
1223                __remove_wait_queue(&cc->write_thread_wait, &wait);
1224                goto continue_locked;
1225
1226pop_from_list:
1227                write_tree = cc->write_tree;
1228                cc->write_tree = RB_ROOT;
1229                spin_unlock_irq(&cc->write_thread_wait.lock);
1230
1231                BUG_ON(rb_parent(write_tree.rb_node));
1232
1233                /*
1234                 * Note: we cannot walk the tree here with rb_next because
1235                 * the structures may be freed when kcryptd_io_write is called.
1236                 */
1237                blk_start_plug(&plug);
1238                do {
1239                        io = crypt_io_from_node(rb_first(&write_tree));
1240                        rb_erase(&io->rb_node, &write_tree);
1241                        kcryptd_io_write(io);
1242                } while (!RB_EMPTY_ROOT(&write_tree));
1243                blk_finish_plug(&plug);
1244        }
1245        return 0;
1246}
1247
1248static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1249{
1250        struct bio *clone = io->ctx.bio_out;
1251        struct crypt_config *cc = io->cc;
1252        unsigned long flags;
1253        sector_t sector;
1254        struct rb_node **rbp, *parent;
1255
1256        if (unlikely(io->error < 0)) {
1257                crypt_free_buffer_pages(cc, clone);
1258                bio_put(clone);
1259                crypt_dec_pending(io);
1260                return;
1261        }
1262
1263        /* crypt_convert should have filled the clone bio */
1264        BUG_ON(io->ctx.iter_out.bi_size);
1265
1266        clone->bi_iter.bi_sector = cc->start + io->sector;
1267
1268        if (likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) {
1269                generic_make_request(clone);
1270                return;
1271        }
1272
1273        spin_lock_irqsave(&cc->write_thread_wait.lock, flags);
1274        rbp = &cc->write_tree.rb_node;
1275        parent = NULL;
1276        sector = io->sector;
1277        while (*rbp) {
1278                parent = *rbp;
1279                if (sector < crypt_io_from_node(parent)->sector)
1280                        rbp = &(*rbp)->rb_left;
1281                else
1282                        rbp = &(*rbp)->rb_right;
1283        }
1284        rb_link_node(&io->rb_node, parent, rbp);
1285        rb_insert_color(&io->rb_node, &cc->write_tree);
1286
1287        wake_up_locked(&cc->write_thread_wait);
1288        spin_unlock_irqrestore(&cc->write_thread_wait.lock, flags);
1289}
1290
1291static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1292{
1293        struct crypt_config *cc = io->cc;
1294        struct bio *clone;
1295        int crypt_finished;
1296        sector_t sector = io->sector;
1297        int r;
1298
1299        /*
1300         * Prevent io from disappearing until this function completes.
1301         */
1302        crypt_inc_pending(io);
1303        crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1304
1305        clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1306        if (unlikely(!clone)) {
1307                io->error = -EIO;
1308                goto dec;
1309        }
1310
1311        io->ctx.bio_out = clone;
1312        io->ctx.iter_out = clone->bi_iter;
1313
1314        sector += bio_sectors(clone);
1315
1316        crypt_inc_pending(io);
1317        r = crypt_convert(cc, &io->ctx);
1318        if (r)
1319                io->error = -EIO;
1320        crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
1321
1322        /* Encryption was already finished, submit io now */
1323        if (crypt_finished) {
1324                kcryptd_crypt_write_io_submit(io, 0);
1325                io->sector = sector;
1326        }
1327
1328dec:
1329        crypt_dec_pending(io);
1330}
1331
1332static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1333{
1334        crypt_dec_pending(io);
1335}
1336
1337static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1338{
1339        struct crypt_config *cc = io->cc;
1340        int r = 0;
1341
1342        crypt_inc_pending(io);
1343
1344        crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1345                           io->sector);
1346
1347        r = crypt_convert(cc, &io->ctx);
1348        if (r < 0)
1349                io->error = -EIO;
1350
1351        if (atomic_dec_and_test(&io->ctx.cc_pending))
1352                kcryptd_crypt_read_done(io);
1353
1354        crypt_dec_pending(io);
1355}
1356
1357static void kcryptd_async_done(struct crypto_async_request *async_req,
1358                               int error)
1359{
1360        struct dm_crypt_request *dmreq = async_req->data;
1361        struct convert_context *ctx = dmreq->ctx;
1362        struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1363        struct crypt_config *cc = io->cc;
1364
1365        /*
1366         * A request from crypto driver backlog is going to be processed now,
1367         * finish the completion and continue in crypt_convert().
1368         * (Callback will be called for the second time for this request.)
1369         */
1370        if (error == -EINPROGRESS) {
1371                complete(&ctx->restart);
1372                return;
1373        }
1374
1375        if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1376                error = cc->iv_gen_ops->post(cc, iv_of_dmreq(cc, dmreq), dmreq);
1377
1378        if (error < 0)
1379                io->error = -EIO;
1380
1381        crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
1382
1383        if (!atomic_dec_and_test(&ctx->cc_pending))
1384                return;
1385
1386        if (bio_data_dir(io->base_bio) == READ)
1387                kcryptd_crypt_read_done(io);
1388        else
1389                kcryptd_crypt_write_io_submit(io, 1);
1390}
1391
1392static void kcryptd_crypt(struct work_struct *work)
1393{
1394        struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1395
1396        if (bio_data_dir(io->base_bio) == READ)
1397                kcryptd_crypt_read_convert(io);
1398        else
1399                kcryptd_crypt_write_convert(io);
1400}
1401
1402static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1403{
1404        struct crypt_config *cc = io->cc;
1405
1406        INIT_WORK(&io->work, kcryptd_crypt);
1407        queue_work(cc->crypt_queue, &io->work);
1408}
1409
1410/*
1411 * Decode key from its hex representation
1412 */
1413static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
1414{
1415        char buffer[3];
1416        unsigned int i;
1417
1418        buffer[2] = '\0';
1419
1420        for (i = 0; i < size; i++) {
1421                buffer[0] = *hex++;
1422                buffer[1] = *hex++;
1423
1424                if (kstrtou8(buffer, 16, &key[i]))
1425                        return -EINVAL;
1426        }
1427
1428        if (*hex != '\0')
1429                return -EINVAL;
1430
1431        return 0;
1432}
1433
1434static void crypt_free_tfms(struct crypt_config *cc)
1435{
1436        unsigned i;
1437
1438        if (!cc->tfms)
1439                return;
1440
1441        for (i = 0; i < cc->tfms_count; i++)
1442                if (cc->tfms[i] && !IS_ERR(cc->tfms[i])) {
1443                        crypto_free_skcipher(cc->tfms[i]);
1444                        cc->tfms[i] = NULL;
1445                }
1446
1447        kfree(cc->tfms);
1448        cc->tfms = NULL;
1449}
1450
1451static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
1452{
1453        unsigned i;
1454        int err;
1455
1456        cc->tfms = kmalloc(cc->tfms_count * sizeof(struct crypto_skcipher *),
1457                           GFP_KERNEL);
1458        if (!cc->tfms)
1459                return -ENOMEM;
1460
1461        for (i = 0; i < cc->tfms_count; i++) {
1462                cc->tfms[i] = crypto_alloc_skcipher(ciphermode, 0, 0);
1463                if (IS_ERR(cc->tfms[i])) {
1464                        err = PTR_ERR(cc->tfms[i]);
1465                        crypt_free_tfms(cc);
1466                        return err;
1467                }
1468        }
1469
1470        return 0;
1471}
1472
1473static int crypt_setkey_allcpus(struct crypt_config *cc)
1474{
1475        unsigned subkey_size;
1476        int err = 0, i, r;
1477
1478        /* Ignore extra keys (which are used for IV etc) */
1479        subkey_size = (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
1480
1481        for (i = 0; i < cc->tfms_count; i++) {
1482                r = crypto_skcipher_setkey(cc->tfms[i],
1483                                           cc->key + (i * subkey_size),
1484                                           subkey_size);
1485                if (r)
1486                        err = r;
1487        }
1488
1489        return err;
1490}
1491
1492static int crypt_set_key(struct crypt_config *cc, char *key)
1493{
1494        int r = -EINVAL;
1495        int key_string_len = strlen(key);
1496
1497        /* The key size may not be changed. */
1498        if (cc->key_size != (key_string_len >> 1))
1499                goto out;
1500
1501        /* Hyphen (which gives a key_size of zero) means there is no key. */
1502        if (!cc->key_size && strcmp(key, "-"))
1503                goto out;
1504
1505        if (cc->key_size && crypt_decode_key(cc->key, key, cc->key_size) < 0)
1506                goto out;
1507
1508        set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1509
1510        r = crypt_setkey_allcpus(cc);
1511
1512out:
1513        /* Hex key string not needed after here, so wipe it. */
1514        memset(key, '0', key_string_len);
1515
1516        return r;
1517}
1518
1519static int crypt_wipe_key(struct crypt_config *cc)
1520{
1521        clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1522        memset(&cc->key, 0, cc->key_size * sizeof(u8));
1523
1524        return crypt_setkey_allcpus(cc);
1525}
1526
1527static void crypt_dtr(struct dm_target *ti)
1528{
1529        struct crypt_config *cc = ti->private;
1530
1531        ti->private = NULL;
1532
1533        if (!cc)
1534                return;
1535
1536        if (cc->write_thread) {
1537                spin_lock_irq(&cc->write_thread_wait.lock);
1538                set_bit(DM_CRYPT_EXIT_THREAD, &cc->flags);
1539                wake_up_locked(&cc->write_thread_wait);
1540                spin_unlock_irq(&cc->write_thread_wait.lock);
1541                kthread_stop(cc->write_thread);
1542        }
1543
1544        if (cc->io_queue)
1545                destroy_workqueue(cc->io_queue);
1546        if (cc->crypt_queue)
1547                destroy_workqueue(cc->crypt_queue);
1548
1549        crypt_free_tfms(cc);
1550
1551        if (cc->bs)
1552                bioset_free(cc->bs);
1553
1554        mempool_destroy(cc->page_pool);
1555        mempool_destroy(cc->req_pool);
1556
1557        if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1558                cc->iv_gen_ops->dtr(cc);
1559
1560        if (cc->dev)
1561                dm_put_device(ti, cc->dev);
1562
1563        kzfree(cc->cipher);
1564        kzfree(cc->cipher_string);
1565
1566        /* Must zero key material before freeing */
1567        kzfree(cc);
1568}
1569
1570static int crypt_ctr_cipher(struct dm_target *ti,
1571                            char *cipher_in, char *key)
1572{
1573        struct crypt_config *cc = ti->private;
1574        char *tmp, *cipher, *chainmode, *ivmode, *ivopts, *keycount;
1575        char *cipher_api = NULL;
1576        int ret = -EINVAL;
1577        char dummy;
1578
1579        /* Convert to crypto api definition? */
1580        if (strchr(cipher_in, '(')) {
1581                ti->error = "Bad cipher specification";
1582                return -EINVAL;
1583        }
1584
1585        cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
1586        if (!cc->cipher_string)
1587                goto bad_mem;
1588
1589        /*
1590         * Legacy dm-crypt cipher specification
1591         * cipher[:keycount]-mode-iv:ivopts
1592         */
1593        tmp = cipher_in;
1594        keycount = strsep(&tmp, "-");
1595        cipher = strsep(&keycount, ":");
1596
1597        if (!keycount)
1598                cc->tfms_count = 1;
1599        else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
1600                 !is_power_of_2(cc->tfms_count)) {
1601                ti->error = "Bad cipher key count specification";
1602                return -EINVAL;
1603        }
1604        cc->key_parts = cc->tfms_count;
1605        cc->key_extra_size = 0;
1606
1607        cc->cipher = kstrdup(cipher, GFP_KERNEL);
1608        if (!cc->cipher)
1609                goto bad_mem;
1610
1611        chainmode = strsep(&tmp, "-");
1612        ivopts = strsep(&tmp, "-");
1613        ivmode = strsep(&ivopts, ":");
1614
1615        if (tmp)
1616                DMWARN("Ignoring unexpected additional cipher options");
1617
1618        /*
1619         * For compatibility with the original dm-crypt mapping format, if
1620         * only the cipher name is supplied, use cbc-plain.
1621         */
1622        if (!chainmode || (!strcmp(chainmode, "plain") && !ivmode)) {
1623                chainmode = "cbc";
1624                ivmode = "plain";
1625        }
1626
1627        if (strcmp(chainmode, "ecb") && !ivmode) {
1628                ti->error = "IV mechanism required";
1629                return -EINVAL;
1630        }
1631
1632        cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
1633        if (!cipher_api)
1634                goto bad_mem;
1635
1636        ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
1637                       "%s(%s)", chainmode, cipher);
1638        if (ret < 0) {
1639                kfree(cipher_api);
1640                goto bad_mem;
1641        }
1642
1643        /* Allocate cipher */
1644        ret = crypt_alloc_tfms(cc, cipher_api);
1645        if (ret < 0) {
1646                ti->error = "Error allocating crypto tfm";
1647                goto bad;
1648        }
1649
1650        /* Initialize IV */
1651        cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
1652        if (cc->iv_size)
1653                /* at least a 64 bit sector number should fit in our buffer */
1654                cc->iv_size = max(cc->iv_size,
1655                                  (unsigned int)(sizeof(u64) / sizeof(u8)));
1656        else if (ivmode) {
1657                DMWARN("Selected cipher does not support IVs");
1658                ivmode = NULL;
1659        }
1660
1661        /* Choose ivmode, see comments at iv code. */
1662        if (ivmode == NULL)
1663                cc->iv_gen_ops = NULL;
1664        else if (strcmp(ivmode, "plain") == 0)
1665                cc->iv_gen_ops = &crypt_iv_plain_ops;
1666        else if (strcmp(ivmode, "plain64") == 0)
1667                cc->iv_gen_ops = &crypt_iv_plain64_ops;
1668        else if (strcmp(ivmode, "essiv") == 0)
1669                cc->iv_gen_ops = &crypt_iv_essiv_ops;
1670        else if (strcmp(ivmode, "benbi") == 0)
1671                cc->iv_gen_ops = &crypt_iv_benbi_ops;
1672        else if (strcmp(ivmode, "null") == 0)
1673                cc->iv_gen_ops = &crypt_iv_null_ops;
1674        else if (strcmp(ivmode, "lmk") == 0) {
1675                cc->iv_gen_ops = &crypt_iv_lmk_ops;
1676                /*
1677                 * Version 2 and 3 is recognised according
1678                 * to length of provided multi-key string.
1679                 * If present (version 3), last key is used as IV seed.
1680                 * All keys (including IV seed) are always the same size.
1681                 */
1682                if (cc->key_size % cc->key_parts) {
1683                        cc->key_parts++;
1684                        cc->key_extra_size = cc->key_size / cc->key_parts;
1685                }
1686        } else if (strcmp(ivmode, "tcw") == 0) {
1687                cc->iv_gen_ops = &crypt_iv_tcw_ops;
1688                cc->key_parts += 2; /* IV + whitening */
1689                cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
1690        } else {
1691                ret = -EINVAL;
1692                ti->error = "Invalid IV mode";
1693                goto bad;
1694        }
1695
1696        /* Initialize and set key */
1697        ret = crypt_set_key(cc, key);
1698        if (ret < 0) {
1699                ti->error = "Error decoding and setting key";
1700                goto bad;
1701        }
1702
1703        /* Allocate IV */
1704        if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
1705                ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
1706                if (ret < 0) {
1707                        ti->error = "Error creating IV";
1708                        goto bad;
1709                }
1710        }
1711
1712        /* Initialize IV (set keys for ESSIV etc) */
1713        if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
1714                ret = cc->iv_gen_ops->init(cc);
1715                if (ret < 0) {
1716                        ti->error = "Error initialising IV";
1717                        goto bad;
1718                }
1719        }
1720
1721        ret = 0;
1722bad:
1723        kfree(cipher_api);
1724        return ret;
1725
1726bad_mem:
1727        ti->error = "Cannot allocate cipher strings";
1728        return -ENOMEM;
1729}
1730
1731/*
1732 * Construct an encryption mapping:
1733 * <cipher> <key> <iv_offset> <dev_path> <start>
1734 */
1735static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1736{
1737        struct crypt_config *cc;
1738        unsigned int key_size, opt_params;
1739        unsigned long long tmpll;
1740        int ret;
1741        size_t iv_size_padding;
1742        struct dm_arg_set as;
1743        const char *opt_string;
1744        char dummy;
1745
1746        static struct dm_arg _args[] = {
1747                {0, 3, "Invalid number of feature args"},
1748        };
1749
1750        if (argc < 5) {
1751                ti->error = "Not enough arguments";
1752                return -EINVAL;
1753        }
1754
1755        key_size = strlen(argv[1]) >> 1;
1756
1757        cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
1758        if (!cc) {
1759                ti->error = "Cannot allocate encryption context";
1760                return -ENOMEM;
1761        }
1762        cc->key_size = key_size;
1763
1764        ti->private = cc;
1765        ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
1766        if (ret < 0)
1767                goto bad;
1768
1769        cc->dmreq_start = sizeof(struct skcipher_request);
1770        cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
1771        cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
1772
1773        if (crypto_skcipher_alignmask(any_tfm(cc)) < CRYPTO_MINALIGN) {
1774                /* Allocate the padding exactly */
1775                iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
1776                                & crypto_skcipher_alignmask(any_tfm(cc));
1777        } else {
1778                /*
1779                 * If the cipher requires greater alignment than kmalloc
1780                 * alignment, we don't know the exact position of the
1781                 * initialization vector. We must assume worst case.
1782                 */
1783                iv_size_padding = crypto_skcipher_alignmask(any_tfm(cc));
1784        }
1785
1786        ret = -ENOMEM;
1787        cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
1788                        sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size);
1789        if (!cc->req_pool) {
1790                ti->error = "Cannot allocate crypt request mempool";
1791                goto bad;
1792        }
1793
1794        cc->per_bio_data_size = ti->per_io_data_size =
1795                ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start +
1796                      sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size,
1797                      ARCH_KMALLOC_MINALIGN);
1798
1799        cc->page_pool = mempool_create_page_pool(BIO_MAX_PAGES, 0);
1800        if (!cc->page_pool) {
1801                ti->error = "Cannot allocate page mempool";
1802                goto bad;
1803        }
1804
1805        cc->bs = bioset_create(MIN_IOS, 0);
1806        if (!cc->bs) {
1807                ti->error = "Cannot allocate crypt bioset";
1808                goto bad;
1809        }
1810
1811        mutex_init(&cc->bio_alloc_lock);
1812
1813        ret = -EINVAL;
1814        if (sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) {
1815                ti->error = "Invalid iv_offset sector";
1816                goto bad;
1817        }
1818        cc->iv_offset = tmpll;
1819
1820        ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
1821        if (ret) {
1822                ti->error = "Device lookup failed";
1823                goto bad;
1824        }
1825
1826        ret = -EINVAL;
1827        if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) {
1828                ti->error = "Invalid device sector";
1829                goto bad;
1830        }
1831        cc->start = tmpll;
1832
1833        argv += 5;
1834        argc -= 5;
1835
1836        /* Optional parameters */
1837        if (argc) {
1838                as.argc = argc;
1839                as.argv = argv;
1840
1841                ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
1842                if (ret)
1843                        goto bad;
1844
1845                ret = -EINVAL;
1846                while (opt_params--) {
1847                        opt_string = dm_shift_arg(&as);
1848                        if (!opt_string) {
1849                                ti->error = "Not enough feature arguments";
1850                                goto bad;
1851                        }
1852
1853                        if (!strcasecmp(opt_string, "allow_discards"))
1854                                ti->num_discard_bios = 1;
1855
1856                        else if (!strcasecmp(opt_string, "same_cpu_crypt"))
1857                                set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
1858
1859                        else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
1860                                set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
1861
1862                        else {
1863                                ti->error = "Invalid feature arguments";
1864                                goto bad;
1865                        }
1866                }
1867        }
1868
1869        ret = -ENOMEM;
1870        cc->io_queue = alloc_workqueue("kcryptd_io", WQ_MEM_RECLAIM, 1);
1871        if (!cc->io_queue) {
1872                ti->error = "Couldn't create kcryptd io queue";
1873                goto bad;
1874        }
1875
1876        if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
1877                cc->crypt_queue = alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1);
1878        else
1879                cc->crypt_queue = alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
1880                                                  num_online_cpus());
1881        if (!cc->crypt_queue) {
1882                ti->error = "Couldn't create kcryptd queue";
1883                goto bad;
1884        }
1885
1886        init_waitqueue_head(&cc->write_thread_wait);
1887        cc->write_tree = RB_ROOT;
1888
1889        cc->write_thread = kthread_create(dmcrypt_write, cc, "dmcrypt_write");
1890        if (IS_ERR(cc->write_thread)) {
1891                ret = PTR_ERR(cc->write_thread);
1892                cc->write_thread = NULL;
1893                ti->error = "Couldn't spawn write thread";
1894                goto bad;
1895        }
1896        wake_up_process(cc->write_thread);
1897
1898        ti->num_flush_bios = 1;
1899        ti->discard_zeroes_data_unsupported = true;
1900
1901        return 0;
1902
1903bad:
1904        crypt_dtr(ti);
1905        return ret;
1906}
1907
1908static int crypt_map(struct dm_target *ti, struct bio *bio)
1909{
1910        struct dm_crypt_io *io;
1911        struct crypt_config *cc = ti->private;
1912
1913        /*
1914         * If bio is REQ_FLUSH or REQ_DISCARD, just bypass crypt queues.
1915         * - for REQ_FLUSH device-mapper core ensures that no IO is in-flight
1916         * - for REQ_DISCARD caller must use flush if IO ordering matters
1917         */
1918        if (unlikely(bio->bi_rw & (REQ_FLUSH | REQ_DISCARD))) {
1919                bio->bi_bdev = cc->dev->bdev;
1920                if (bio_sectors(bio))
1921                        bio->bi_iter.bi_sector = cc->start +
1922                                dm_target_offset(ti, bio->bi_iter.bi_sector);
1923                return DM_MAPIO_REMAPPED;
1924        }
1925
1926        io = dm_per_bio_data(bio, cc->per_bio_data_size);
1927        crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
1928        io->ctx.req = (struct skcipher_request *)(io + 1);
1929
1930        if (bio_data_dir(io->base_bio) == READ) {
1931                if (kcryptd_io_read(io, GFP_NOWAIT))
1932                        kcryptd_queue_read(io);
1933        } else
1934                kcryptd_queue_crypt(io);
1935
1936        return DM_MAPIO_SUBMITTED;
1937}
1938
1939static void crypt_status(struct dm_target *ti, status_type_t type,
1940                         unsigned status_flags, char *result, unsigned maxlen)
1941{
1942        struct crypt_config *cc = ti->private;
1943        unsigned i, sz = 0;
1944        int num_feature_args = 0;
1945
1946        switch (type) {
1947        case STATUSTYPE_INFO:
1948                result[0] = '\0';
1949                break;
1950
1951        case STATUSTYPE_TABLE:
1952                DMEMIT("%s ", cc->cipher_string);
1953
1954                if (cc->key_size > 0)
1955                        for (i = 0; i < cc->key_size; i++)
1956                                DMEMIT("%02x", cc->key[i]);
1957                else
1958                        DMEMIT("-");
1959
1960                DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1961                                cc->dev->name, (unsigned long long)cc->start);
1962
1963                num_feature_args += !!ti->num_discard_bios;
1964                num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
1965                num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
1966                if (num_feature_args) {
1967                        DMEMIT(" %d", num_feature_args);
1968                        if (ti->num_discard_bios)
1969                                DMEMIT(" allow_discards");
1970                        if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
1971                                DMEMIT(" same_cpu_crypt");
1972                        if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
1973                                DMEMIT(" submit_from_crypt_cpus");
1974                }
1975
1976                break;
1977        }
1978}
1979
1980static void crypt_postsuspend(struct dm_target *ti)
1981{
1982        struct crypt_config *cc = ti->private;
1983
1984        set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1985}
1986
1987static int crypt_preresume(struct dm_target *ti)
1988{
1989        struct crypt_config *cc = ti->private;
1990
1991        if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1992                DMERR("aborting resume - crypt key is not set.");
1993                return -EAGAIN;
1994        }
1995
1996        return 0;
1997}
1998
1999static void crypt_resume(struct dm_target *ti)
2000{
2001        struct crypt_config *cc = ti->private;
2002
2003        clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
2004}
2005
2006/* Message interface
2007 *      key set <key>
2008 *      key wipe
2009 */
2010static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
2011{
2012        struct crypt_config *cc = ti->private;
2013        int ret = -EINVAL;
2014
2015        if (argc < 2)
2016                goto error;
2017
2018        if (!strcasecmp(argv[0], "key")) {
2019                if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
2020                        DMWARN("not suspended during key manipulation.");
2021                        return -EINVAL;
2022                }
2023                if (argc == 3 && !strcasecmp(argv[1], "set")) {
2024                        ret = crypt_set_key(cc, argv[2]);
2025                        if (ret)
2026                                return ret;
2027                        if (cc->iv_gen_ops && cc->iv_gen_ops->init)
2028                                ret = cc->iv_gen_ops->init(cc);
2029                        return ret;
2030                }
2031                if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
2032                        if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2033                                ret = cc->iv_gen_ops->wipe(cc);
2034                                if (ret)
2035                                        return ret;
2036                        }
2037                        return crypt_wipe_key(cc);
2038                }
2039        }
2040
2041error:
2042        DMWARN("unrecognised message received.");
2043        return -EINVAL;
2044}
2045
2046static int crypt_iterate_devices(struct dm_target *ti,
2047                                 iterate_devices_callout_fn fn, void *data)
2048{
2049        struct crypt_config *cc = ti->private;
2050
2051        return fn(ti, cc->dev, cc->start, ti->len, data);
2052}
2053
2054static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
2055{
2056        /*
2057         * Unfortunate constraint that is required to avoid the potential
2058         * for exceeding underlying device's max_segments limits -- due to
2059         * crypt_alloc_buffer() possibly allocating pages for the encryption
2060         * bio that are not as physically contiguous as the original bio.
2061         */
2062        limits->max_segment_size = PAGE_SIZE;
2063}
2064
2065static struct target_type crypt_target = {
2066        .name   = "crypt",
2067        .version = {1, 14, 1},
2068        .module = THIS_MODULE,
2069        .ctr    = crypt_ctr,
2070        .dtr    = crypt_dtr,
2071        .map    = crypt_map,
2072        .status = crypt_status,
2073        .postsuspend = crypt_postsuspend,
2074        .preresume = crypt_preresume,
2075        .resume = crypt_resume,
2076        .message = crypt_message,
2077        .iterate_devices = crypt_iterate_devices,
2078        .io_hints = crypt_io_hints,
2079};
2080
2081static int __init dm_crypt_init(void)
2082{
2083        int r;
2084
2085        r = dm_register_target(&crypt_target);
2086        if (r < 0)
2087                DMERR("register failed %d", r);
2088
2089        return r;
2090}
2091
2092static void __exit dm_crypt_exit(void)
2093{
2094        dm_unregister_target(&crypt_target);
2095}
2096
2097module_init(dm_crypt_init);
2098module_exit(dm_crypt_exit);
2099
2100MODULE_AUTHOR("Jana Saout <jana@saout.de>");
2101MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
2102MODULE_LICENSE("GPL");
2103