linux/drivers/mmc/core/core.c
<<
>>
Prefs
   1/*
   2 *  linux/drivers/mmc/core/core.c
   3 *
   4 *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
   5 *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
   6 *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
   7 *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 */
  13#include <linux/module.h>
  14#include <linux/init.h>
  15#include <linux/interrupt.h>
  16#include <linux/completion.h>
  17#include <linux/device.h>
  18#include <linux/delay.h>
  19#include <linux/pagemap.h>
  20#include <linux/err.h>
  21#include <linux/leds.h>
  22#include <linux/scatterlist.h>
  23#include <linux/log2.h>
  24#include <linux/regulator/consumer.h>
  25#include <linux/pm_runtime.h>
  26#include <linux/pm_wakeup.h>
  27#include <linux/suspend.h>
  28#include <linux/fault-inject.h>
  29#include <linux/random.h>
  30#include <linux/slab.h>
  31#include <linux/of.h>
  32
  33#include <linux/mmc/card.h>
  34#include <linux/mmc/host.h>
  35#include <linux/mmc/mmc.h>
  36#include <linux/mmc/sd.h>
  37#include <linux/mmc/slot-gpio.h>
  38
  39#include "core.h"
  40#include "bus.h"
  41#include "host.h"
  42#include "sdio_bus.h"
  43#include "pwrseq.h"
  44
  45#include "mmc_ops.h"
  46#include "sd_ops.h"
  47#include "sdio_ops.h"
  48
  49/* If the device is not responding */
  50#define MMC_CORE_TIMEOUT_MS     (10 * 60 * 1000) /* 10 minute timeout */
  51
  52/*
  53 * Background operations can take a long time, depending on the housekeeping
  54 * operations the card has to perform.
  55 */
  56#define MMC_BKOPS_MAX_TIMEOUT   (4 * 60 * 1000) /* max time to wait in ms */
  57
  58static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
  59
  60/*
  61 * Enabling software CRCs on the data blocks can be a significant (30%)
  62 * performance cost, and for other reasons may not always be desired.
  63 * So we allow it it to be disabled.
  64 */
  65bool use_spi_crc = 1;
  66module_param(use_spi_crc, bool, 0);
  67
  68static int mmc_schedule_delayed_work(struct delayed_work *work,
  69                                     unsigned long delay)
  70{
  71        /*
  72         * We use the system_freezable_wq, because of two reasons.
  73         * First, it allows several works (not the same work item) to be
  74         * executed simultaneously. Second, the queue becomes frozen when
  75         * userspace becomes frozen during system PM.
  76         */
  77        return queue_delayed_work(system_freezable_wq, work, delay);
  78}
  79
  80#ifdef CONFIG_FAIL_MMC_REQUEST
  81
  82/*
  83 * Internal function. Inject random data errors.
  84 * If mmc_data is NULL no errors are injected.
  85 */
  86static void mmc_should_fail_request(struct mmc_host *host,
  87                                    struct mmc_request *mrq)
  88{
  89        struct mmc_command *cmd = mrq->cmd;
  90        struct mmc_data *data = mrq->data;
  91        static const int data_errors[] = {
  92                -ETIMEDOUT,
  93                -EILSEQ,
  94                -EIO,
  95        };
  96
  97        if (!data)
  98                return;
  99
 100        if (cmd->error || data->error ||
 101            !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
 102                return;
 103
 104        data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
 105        data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
 106}
 107
 108#else /* CONFIG_FAIL_MMC_REQUEST */
 109
 110static inline void mmc_should_fail_request(struct mmc_host *host,
 111                                           struct mmc_request *mrq)
 112{
 113}
 114
 115#endif /* CONFIG_FAIL_MMC_REQUEST */
 116
 117/**
 118 *      mmc_request_done - finish processing an MMC request
 119 *      @host: MMC host which completed request
 120 *      @mrq: MMC request which request
 121 *
 122 *      MMC drivers should call this function when they have completed
 123 *      their processing of a request.
 124 */
 125void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
 126{
 127        struct mmc_command *cmd = mrq->cmd;
 128        int err = cmd->error;
 129
 130        /* Flag re-tuning needed on CRC errors */
 131        if ((cmd->opcode != MMC_SEND_TUNING_BLOCK &&
 132            cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200) &&
 133            (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
 134            (mrq->data && mrq->data->error == -EILSEQ) ||
 135            (mrq->stop && mrq->stop->error == -EILSEQ)))
 136                mmc_retune_needed(host);
 137
 138        if (err && cmd->retries && mmc_host_is_spi(host)) {
 139                if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
 140                        cmd->retries = 0;
 141        }
 142
 143        if (err && cmd->retries && !mmc_card_removed(host->card)) {
 144                /*
 145                 * Request starter must handle retries - see
 146                 * mmc_wait_for_req_done().
 147                 */
 148                if (mrq->done)
 149                        mrq->done(mrq);
 150        } else {
 151                mmc_should_fail_request(host, mrq);
 152
 153                led_trigger_event(host->led, LED_OFF);
 154
 155                if (mrq->sbc) {
 156                        pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
 157                                mmc_hostname(host), mrq->sbc->opcode,
 158                                mrq->sbc->error,
 159                                mrq->sbc->resp[0], mrq->sbc->resp[1],
 160                                mrq->sbc->resp[2], mrq->sbc->resp[3]);
 161                }
 162
 163                pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
 164                        mmc_hostname(host), cmd->opcode, err,
 165                        cmd->resp[0], cmd->resp[1],
 166                        cmd->resp[2], cmd->resp[3]);
 167
 168                if (mrq->data) {
 169                        pr_debug("%s:     %d bytes transferred: %d\n",
 170                                mmc_hostname(host),
 171                                mrq->data->bytes_xfered, mrq->data->error);
 172                }
 173
 174                if (mrq->stop) {
 175                        pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
 176                                mmc_hostname(host), mrq->stop->opcode,
 177                                mrq->stop->error,
 178                                mrq->stop->resp[0], mrq->stop->resp[1],
 179                                mrq->stop->resp[2], mrq->stop->resp[3]);
 180                }
 181
 182                if (mrq->done)
 183                        mrq->done(mrq);
 184        }
 185}
 186
 187EXPORT_SYMBOL(mmc_request_done);
 188
 189static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
 190{
 191        int err;
 192
 193        /* Assumes host controller has been runtime resumed by mmc_claim_host */
 194        err = mmc_retune(host);
 195        if (err) {
 196                mrq->cmd->error = err;
 197                mmc_request_done(host, mrq);
 198                return;
 199        }
 200
 201        /*
 202         * For sdio rw commands we must wait for card busy otherwise some
 203         * sdio devices won't work properly.
 204         */
 205        if (mmc_is_io_op(mrq->cmd->opcode) && host->ops->card_busy) {
 206                int tries = 500; /* Wait aprox 500ms at maximum */
 207
 208                while (host->ops->card_busy(host) && --tries)
 209                        mmc_delay(1);
 210
 211                if (tries == 0) {
 212                        mrq->cmd->error = -EBUSY;
 213                        mmc_request_done(host, mrq);
 214                        return;
 215                }
 216        }
 217
 218        host->ops->request(host, mrq);
 219}
 220
 221static int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
 222{
 223#ifdef CONFIG_MMC_DEBUG
 224        unsigned int i, sz;
 225        struct scatterlist *sg;
 226#endif
 227        mmc_retune_hold(host);
 228
 229        if (mmc_card_removed(host->card))
 230                return -ENOMEDIUM;
 231
 232        if (mrq->sbc) {
 233                pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
 234                         mmc_hostname(host), mrq->sbc->opcode,
 235                         mrq->sbc->arg, mrq->sbc->flags);
 236        }
 237
 238        pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
 239                 mmc_hostname(host), mrq->cmd->opcode,
 240                 mrq->cmd->arg, mrq->cmd->flags);
 241
 242        if (mrq->data) {
 243                pr_debug("%s:     blksz %d blocks %d flags %08x "
 244                        "tsac %d ms nsac %d\n",
 245                        mmc_hostname(host), mrq->data->blksz,
 246                        mrq->data->blocks, mrq->data->flags,
 247                        mrq->data->timeout_ns / 1000000,
 248                        mrq->data->timeout_clks);
 249        }
 250
 251        if (mrq->stop) {
 252                pr_debug("%s:     CMD%u arg %08x flags %08x\n",
 253                         mmc_hostname(host), mrq->stop->opcode,
 254                         mrq->stop->arg, mrq->stop->flags);
 255        }
 256
 257        WARN_ON(!host->claimed);
 258
 259        mrq->cmd->error = 0;
 260        mrq->cmd->mrq = mrq;
 261        if (mrq->sbc) {
 262                mrq->sbc->error = 0;
 263                mrq->sbc->mrq = mrq;
 264        }
 265        if (mrq->data) {
 266                BUG_ON(mrq->data->blksz > host->max_blk_size);
 267                BUG_ON(mrq->data->blocks > host->max_blk_count);
 268                BUG_ON(mrq->data->blocks * mrq->data->blksz >
 269                        host->max_req_size);
 270
 271#ifdef CONFIG_MMC_DEBUG
 272                sz = 0;
 273                for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
 274                        sz += sg->length;
 275                BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
 276#endif
 277
 278                mrq->cmd->data = mrq->data;
 279                mrq->data->error = 0;
 280                mrq->data->mrq = mrq;
 281                if (mrq->stop) {
 282                        mrq->data->stop = mrq->stop;
 283                        mrq->stop->error = 0;
 284                        mrq->stop->mrq = mrq;
 285                }
 286        }
 287        led_trigger_event(host->led, LED_FULL);
 288        __mmc_start_request(host, mrq);
 289
 290        return 0;
 291}
 292
 293/**
 294 *      mmc_start_bkops - start BKOPS for supported cards
 295 *      @card: MMC card to start BKOPS
 296 *      @form_exception: A flag to indicate if this function was
 297 *                       called due to an exception raised by the card
 298 *
 299 *      Start background operations whenever requested.
 300 *      When the urgent BKOPS bit is set in a R1 command response
 301 *      then background operations should be started immediately.
 302*/
 303void mmc_start_bkops(struct mmc_card *card, bool from_exception)
 304{
 305        int err;
 306        int timeout;
 307        bool use_busy_signal;
 308
 309        BUG_ON(!card);
 310
 311        if (!card->ext_csd.man_bkops_en || mmc_card_doing_bkops(card))
 312                return;
 313
 314        err = mmc_read_bkops_status(card);
 315        if (err) {
 316                pr_err("%s: Failed to read bkops status: %d\n",
 317                       mmc_hostname(card->host), err);
 318                return;
 319        }
 320
 321        if (!card->ext_csd.raw_bkops_status)
 322                return;
 323
 324        if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
 325            from_exception)
 326                return;
 327
 328        mmc_claim_host(card->host);
 329        if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
 330                timeout = MMC_BKOPS_MAX_TIMEOUT;
 331                use_busy_signal = true;
 332        } else {
 333                timeout = 0;
 334                use_busy_signal = false;
 335        }
 336
 337        mmc_retune_hold(card->host);
 338
 339        err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
 340                        EXT_CSD_BKOPS_START, 1, timeout,
 341                        use_busy_signal, true, false);
 342        if (err) {
 343                pr_warn("%s: Error %d starting bkops\n",
 344                        mmc_hostname(card->host), err);
 345                mmc_retune_release(card->host);
 346                goto out;
 347        }
 348
 349        /*
 350         * For urgent bkops status (LEVEL_2 and more)
 351         * bkops executed synchronously, otherwise
 352         * the operation is in progress
 353         */
 354        if (!use_busy_signal)
 355                mmc_card_set_doing_bkops(card);
 356        else
 357                mmc_retune_release(card->host);
 358out:
 359        mmc_release_host(card->host);
 360}
 361EXPORT_SYMBOL(mmc_start_bkops);
 362
 363/*
 364 * mmc_wait_data_done() - done callback for data request
 365 * @mrq: done data request
 366 *
 367 * Wakes up mmc context, passed as a callback to host controller driver
 368 */
 369static void mmc_wait_data_done(struct mmc_request *mrq)
 370{
 371        struct mmc_context_info *context_info = &mrq->host->context_info;
 372
 373        context_info->is_done_rcv = true;
 374        wake_up_interruptible(&context_info->wait);
 375}
 376
 377static void mmc_wait_done(struct mmc_request *mrq)
 378{
 379        complete(&mrq->completion);
 380}
 381
 382/*
 383 *__mmc_start_data_req() - starts data request
 384 * @host: MMC host to start the request
 385 * @mrq: data request to start
 386 *
 387 * Sets the done callback to be called when request is completed by the card.
 388 * Starts data mmc request execution
 389 */
 390static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
 391{
 392        int err;
 393
 394        mrq->done = mmc_wait_data_done;
 395        mrq->host = host;
 396
 397        err = mmc_start_request(host, mrq);
 398        if (err) {
 399                mrq->cmd->error = err;
 400                mmc_wait_data_done(mrq);
 401        }
 402
 403        return err;
 404}
 405
 406static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
 407{
 408        int err;
 409
 410        init_completion(&mrq->completion);
 411        mrq->done = mmc_wait_done;
 412
 413        err = mmc_start_request(host, mrq);
 414        if (err) {
 415                mrq->cmd->error = err;
 416                complete(&mrq->completion);
 417        }
 418
 419        return err;
 420}
 421
 422/*
 423 * mmc_wait_for_data_req_done() - wait for request completed
 424 * @host: MMC host to prepare the command.
 425 * @mrq: MMC request to wait for
 426 *
 427 * Blocks MMC context till host controller will ack end of data request
 428 * execution or new request notification arrives from the block layer.
 429 * Handles command retries.
 430 *
 431 * Returns enum mmc_blk_status after checking errors.
 432 */
 433static int mmc_wait_for_data_req_done(struct mmc_host *host,
 434                                      struct mmc_request *mrq,
 435                                      struct mmc_async_req *next_req)
 436{
 437        struct mmc_command *cmd;
 438        struct mmc_context_info *context_info = &host->context_info;
 439        int err;
 440        unsigned long flags;
 441
 442        while (1) {
 443                wait_event_interruptible(context_info->wait,
 444                                (context_info->is_done_rcv ||
 445                                 context_info->is_new_req));
 446                spin_lock_irqsave(&context_info->lock, flags);
 447                context_info->is_waiting_last_req = false;
 448                spin_unlock_irqrestore(&context_info->lock, flags);
 449                if (context_info->is_done_rcv) {
 450                        context_info->is_done_rcv = false;
 451                        context_info->is_new_req = false;
 452                        cmd = mrq->cmd;
 453
 454                        if (!cmd->error || !cmd->retries ||
 455                            mmc_card_removed(host->card)) {
 456                                err = host->areq->err_check(host->card,
 457                                                            host->areq);
 458                                break; /* return err */
 459                        } else {
 460                                mmc_retune_recheck(host);
 461                                pr_info("%s: req failed (CMD%u): %d, retrying...\n",
 462                                        mmc_hostname(host),
 463                                        cmd->opcode, cmd->error);
 464                                cmd->retries--;
 465                                cmd->error = 0;
 466                                __mmc_start_request(host, mrq);
 467                                continue; /* wait for done/new event again */
 468                        }
 469                } else if (context_info->is_new_req) {
 470                        context_info->is_new_req = false;
 471                        if (!next_req)
 472                                return MMC_BLK_NEW_REQUEST;
 473                }
 474        }
 475        mmc_retune_release(host);
 476        return err;
 477}
 478
 479static void mmc_wait_for_req_done(struct mmc_host *host,
 480                                  struct mmc_request *mrq)
 481{
 482        struct mmc_command *cmd;
 483
 484        while (1) {
 485                wait_for_completion(&mrq->completion);
 486
 487                cmd = mrq->cmd;
 488
 489                /*
 490                 * If host has timed out waiting for the sanitize
 491                 * to complete, card might be still in programming state
 492                 * so let's try to bring the card out of programming
 493                 * state.
 494                 */
 495                if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
 496                        if (!mmc_interrupt_hpi(host->card)) {
 497                                pr_warn("%s: %s: Interrupted sanitize\n",
 498                                        mmc_hostname(host), __func__);
 499                                cmd->error = 0;
 500                                break;
 501                        } else {
 502                                pr_err("%s: %s: Failed to interrupt sanitize\n",
 503                                       mmc_hostname(host), __func__);
 504                        }
 505                }
 506                if (!cmd->error || !cmd->retries ||
 507                    mmc_card_removed(host->card))
 508                        break;
 509
 510                mmc_retune_recheck(host);
 511
 512                pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
 513                         mmc_hostname(host), cmd->opcode, cmd->error);
 514                cmd->retries--;
 515                cmd->error = 0;
 516                __mmc_start_request(host, mrq);
 517        }
 518
 519        mmc_retune_release(host);
 520}
 521
 522/**
 523 *      mmc_pre_req - Prepare for a new request
 524 *      @host: MMC host to prepare command
 525 *      @mrq: MMC request to prepare for
 526 *      @is_first_req: true if there is no previous started request
 527 *                     that may run in parellel to this call, otherwise false
 528 *
 529 *      mmc_pre_req() is called in prior to mmc_start_req() to let
 530 *      host prepare for the new request. Preparation of a request may be
 531 *      performed while another request is running on the host.
 532 */
 533static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
 534                 bool is_first_req)
 535{
 536        if (host->ops->pre_req)
 537                host->ops->pre_req(host, mrq, is_first_req);
 538}
 539
 540/**
 541 *      mmc_post_req - Post process a completed request
 542 *      @host: MMC host to post process command
 543 *      @mrq: MMC request to post process for
 544 *      @err: Error, if non zero, clean up any resources made in pre_req
 545 *
 546 *      Let the host post process a completed request. Post processing of
 547 *      a request may be performed while another reuqest is running.
 548 */
 549static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
 550                         int err)
 551{
 552        if (host->ops->post_req)
 553                host->ops->post_req(host, mrq, err);
 554}
 555
 556/**
 557 *      mmc_start_req - start a non-blocking request
 558 *      @host: MMC host to start command
 559 *      @areq: async request to start
 560 *      @error: out parameter returns 0 for success, otherwise non zero
 561 *
 562 *      Start a new MMC custom command request for a host.
 563 *      If there is on ongoing async request wait for completion
 564 *      of that request and start the new one and return.
 565 *      Does not wait for the new request to complete.
 566 *
 567 *      Returns the completed request, NULL in case of none completed.
 568 *      Wait for the an ongoing request (previoulsy started) to complete and
 569 *      return the completed request. If there is no ongoing request, NULL
 570 *      is returned without waiting. NULL is not an error condition.
 571 */
 572struct mmc_async_req *mmc_start_req(struct mmc_host *host,
 573                                    struct mmc_async_req *areq, int *error)
 574{
 575        int err = 0;
 576        int start_err = 0;
 577        struct mmc_async_req *data = host->areq;
 578
 579        /* Prepare a new request */
 580        if (areq)
 581                mmc_pre_req(host, areq->mrq, !host->areq);
 582
 583        if (host->areq) {
 584                err = mmc_wait_for_data_req_done(host, host->areq->mrq, areq);
 585                if (err == MMC_BLK_NEW_REQUEST) {
 586                        if (error)
 587                                *error = err;
 588                        /*
 589                         * The previous request was not completed,
 590                         * nothing to return
 591                         */
 592                        return NULL;
 593                }
 594                /*
 595                 * Check BKOPS urgency for each R1 response
 596                 */
 597                if (host->card && mmc_card_mmc(host->card) &&
 598                    ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
 599                     (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
 600                    (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT)) {
 601
 602                        /* Cancel the prepared request */
 603                        if (areq)
 604                                mmc_post_req(host, areq->mrq, -EINVAL);
 605
 606                        mmc_start_bkops(host->card, true);
 607
 608                        /* prepare the request again */
 609                        if (areq)
 610                                mmc_pre_req(host, areq->mrq, !host->areq);
 611                }
 612        }
 613
 614        if (!err && areq)
 615                start_err = __mmc_start_data_req(host, areq->mrq);
 616
 617        if (host->areq)
 618                mmc_post_req(host, host->areq->mrq, 0);
 619
 620         /* Cancel a prepared request if it was not started. */
 621        if ((err || start_err) && areq)
 622                mmc_post_req(host, areq->mrq, -EINVAL);
 623
 624        if (err)
 625                host->areq = NULL;
 626        else
 627                host->areq = areq;
 628
 629        if (error)
 630                *error = err;
 631        return data;
 632}
 633EXPORT_SYMBOL(mmc_start_req);
 634
 635/**
 636 *      mmc_wait_for_req - start a request and wait for completion
 637 *      @host: MMC host to start command
 638 *      @mrq: MMC request to start
 639 *
 640 *      Start a new MMC custom command request for a host, and wait
 641 *      for the command to complete. Does not attempt to parse the
 642 *      response.
 643 */
 644void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
 645{
 646        __mmc_start_req(host, mrq);
 647        mmc_wait_for_req_done(host, mrq);
 648}
 649EXPORT_SYMBOL(mmc_wait_for_req);
 650
 651/**
 652 *      mmc_interrupt_hpi - Issue for High priority Interrupt
 653 *      @card: the MMC card associated with the HPI transfer
 654 *
 655 *      Issued High Priority Interrupt, and check for card status
 656 *      until out-of prg-state.
 657 */
 658int mmc_interrupt_hpi(struct mmc_card *card)
 659{
 660        int err;
 661        u32 status;
 662        unsigned long prg_wait;
 663
 664        BUG_ON(!card);
 665
 666        if (!card->ext_csd.hpi_en) {
 667                pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
 668                return 1;
 669        }
 670
 671        mmc_claim_host(card->host);
 672        err = mmc_send_status(card, &status);
 673        if (err) {
 674                pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
 675                goto out;
 676        }
 677
 678        switch (R1_CURRENT_STATE(status)) {
 679        case R1_STATE_IDLE:
 680        case R1_STATE_READY:
 681        case R1_STATE_STBY:
 682        case R1_STATE_TRAN:
 683                /*
 684                 * In idle and transfer states, HPI is not needed and the caller
 685                 * can issue the next intended command immediately
 686                 */
 687                goto out;
 688        case R1_STATE_PRG:
 689                break;
 690        default:
 691                /* In all other states, it's illegal to issue HPI */
 692                pr_debug("%s: HPI cannot be sent. Card state=%d\n",
 693                        mmc_hostname(card->host), R1_CURRENT_STATE(status));
 694                err = -EINVAL;
 695                goto out;
 696        }
 697
 698        err = mmc_send_hpi_cmd(card, &status);
 699        if (err)
 700                goto out;
 701
 702        prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
 703        do {
 704                err = mmc_send_status(card, &status);
 705
 706                if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
 707                        break;
 708                if (time_after(jiffies, prg_wait))
 709                        err = -ETIMEDOUT;
 710        } while (!err);
 711
 712out:
 713        mmc_release_host(card->host);
 714        return err;
 715}
 716EXPORT_SYMBOL(mmc_interrupt_hpi);
 717
 718/**
 719 *      mmc_wait_for_cmd - start a command and wait for completion
 720 *      @host: MMC host to start command
 721 *      @cmd: MMC command to start
 722 *      @retries: maximum number of retries
 723 *
 724 *      Start a new MMC command for a host, and wait for the command
 725 *      to complete.  Return any error that occurred while the command
 726 *      was executing.  Do not attempt to parse the response.
 727 */
 728int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
 729{
 730        struct mmc_request mrq = {NULL};
 731
 732        WARN_ON(!host->claimed);
 733
 734        memset(cmd->resp, 0, sizeof(cmd->resp));
 735        cmd->retries = retries;
 736
 737        mrq.cmd = cmd;
 738        cmd->data = NULL;
 739
 740        mmc_wait_for_req(host, &mrq);
 741
 742        return cmd->error;
 743}
 744
 745EXPORT_SYMBOL(mmc_wait_for_cmd);
 746
 747/**
 748 *      mmc_stop_bkops - stop ongoing BKOPS
 749 *      @card: MMC card to check BKOPS
 750 *
 751 *      Send HPI command to stop ongoing background operations to
 752 *      allow rapid servicing of foreground operations, e.g. read/
 753 *      writes. Wait until the card comes out of the programming state
 754 *      to avoid errors in servicing read/write requests.
 755 */
 756int mmc_stop_bkops(struct mmc_card *card)
 757{
 758        int err = 0;
 759
 760        BUG_ON(!card);
 761        err = mmc_interrupt_hpi(card);
 762
 763        /*
 764         * If err is EINVAL, we can't issue an HPI.
 765         * It should complete the BKOPS.
 766         */
 767        if (!err || (err == -EINVAL)) {
 768                mmc_card_clr_doing_bkops(card);
 769                mmc_retune_release(card->host);
 770                err = 0;
 771        }
 772
 773        return err;
 774}
 775EXPORT_SYMBOL(mmc_stop_bkops);
 776
 777int mmc_read_bkops_status(struct mmc_card *card)
 778{
 779        int err;
 780        u8 *ext_csd;
 781
 782        mmc_claim_host(card->host);
 783        err = mmc_get_ext_csd(card, &ext_csd);
 784        mmc_release_host(card->host);
 785        if (err)
 786                return err;
 787
 788        card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
 789        card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
 790        kfree(ext_csd);
 791        return 0;
 792}
 793EXPORT_SYMBOL(mmc_read_bkops_status);
 794
 795/**
 796 *      mmc_set_data_timeout - set the timeout for a data command
 797 *      @data: data phase for command
 798 *      @card: the MMC card associated with the data transfer
 799 *
 800 *      Computes the data timeout parameters according to the
 801 *      correct algorithm given the card type.
 802 */
 803void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
 804{
 805        unsigned int mult;
 806
 807        /*
 808         * SDIO cards only define an upper 1 s limit on access.
 809         */
 810        if (mmc_card_sdio(card)) {
 811                data->timeout_ns = 1000000000;
 812                data->timeout_clks = 0;
 813                return;
 814        }
 815
 816        /*
 817         * SD cards use a 100 multiplier rather than 10
 818         */
 819        mult = mmc_card_sd(card) ? 100 : 10;
 820
 821        /*
 822         * Scale up the multiplier (and therefore the timeout) by
 823         * the r2w factor for writes.
 824         */
 825        if (data->flags & MMC_DATA_WRITE)
 826                mult <<= card->csd.r2w_factor;
 827
 828        data->timeout_ns = card->csd.tacc_ns * mult;
 829        data->timeout_clks = card->csd.tacc_clks * mult;
 830
 831        /*
 832         * SD cards also have an upper limit on the timeout.
 833         */
 834        if (mmc_card_sd(card)) {
 835                unsigned int timeout_us, limit_us;
 836
 837                timeout_us = data->timeout_ns / 1000;
 838                if (card->host->ios.clock)
 839                        timeout_us += data->timeout_clks * 1000 /
 840                                (card->host->ios.clock / 1000);
 841
 842                if (data->flags & MMC_DATA_WRITE)
 843                        /*
 844                         * The MMC spec "It is strongly recommended
 845                         * for hosts to implement more than 500ms
 846                         * timeout value even if the card indicates
 847                         * the 250ms maximum busy length."  Even the
 848                         * previous value of 300ms is known to be
 849                         * insufficient for some cards.
 850                         */
 851                        limit_us = 3000000;
 852                else
 853                        limit_us = 100000;
 854
 855                /*
 856                 * SDHC cards always use these fixed values.
 857                 */
 858                if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
 859                        data->timeout_ns = limit_us * 1000;
 860                        data->timeout_clks = 0;
 861                }
 862
 863                /* assign limit value if invalid */
 864                if (timeout_us == 0)
 865                        data->timeout_ns = limit_us * 1000;
 866        }
 867
 868        /*
 869         * Some cards require longer data read timeout than indicated in CSD.
 870         * Address this by setting the read timeout to a "reasonably high"
 871         * value. For the cards tested, 300ms has proven enough. If necessary,
 872         * this value can be increased if other problematic cards require this.
 873         */
 874        if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
 875                data->timeout_ns = 300000000;
 876                data->timeout_clks = 0;
 877        }
 878
 879        /*
 880         * Some cards need very high timeouts if driven in SPI mode.
 881         * The worst observed timeout was 900ms after writing a
 882         * continuous stream of data until the internal logic
 883         * overflowed.
 884         */
 885        if (mmc_host_is_spi(card->host)) {
 886                if (data->flags & MMC_DATA_WRITE) {
 887                        if (data->timeout_ns < 1000000000)
 888                                data->timeout_ns = 1000000000;  /* 1s */
 889                } else {
 890                        if (data->timeout_ns < 100000000)
 891                                data->timeout_ns =  100000000;  /* 100ms */
 892                }
 893        }
 894}
 895EXPORT_SYMBOL(mmc_set_data_timeout);
 896
 897/**
 898 *      mmc_align_data_size - pads a transfer size to a more optimal value
 899 *      @card: the MMC card associated with the data transfer
 900 *      @sz: original transfer size
 901 *
 902 *      Pads the original data size with a number of extra bytes in
 903 *      order to avoid controller bugs and/or performance hits
 904 *      (e.g. some controllers revert to PIO for certain sizes).
 905 *
 906 *      Returns the improved size, which might be unmodified.
 907 *
 908 *      Note that this function is only relevant when issuing a
 909 *      single scatter gather entry.
 910 */
 911unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
 912{
 913        /*
 914         * FIXME: We don't have a system for the controller to tell
 915         * the core about its problems yet, so for now we just 32-bit
 916         * align the size.
 917         */
 918        sz = ((sz + 3) / 4) * 4;
 919
 920        return sz;
 921}
 922EXPORT_SYMBOL(mmc_align_data_size);
 923
 924/**
 925 *      __mmc_claim_host - exclusively claim a host
 926 *      @host: mmc host to claim
 927 *      @abort: whether or not the operation should be aborted
 928 *
 929 *      Claim a host for a set of operations.  If @abort is non null and
 930 *      dereference a non-zero value then this will return prematurely with
 931 *      that non-zero value without acquiring the lock.  Returns zero
 932 *      with the lock held otherwise.
 933 */
 934int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
 935{
 936        DECLARE_WAITQUEUE(wait, current);
 937        unsigned long flags;
 938        int stop;
 939        bool pm = false;
 940
 941        might_sleep();
 942
 943        add_wait_queue(&host->wq, &wait);
 944        spin_lock_irqsave(&host->lock, flags);
 945        while (1) {
 946                set_current_state(TASK_UNINTERRUPTIBLE);
 947                stop = abort ? atomic_read(abort) : 0;
 948                if (stop || !host->claimed || host->claimer == current)
 949                        break;
 950                spin_unlock_irqrestore(&host->lock, flags);
 951                schedule();
 952                spin_lock_irqsave(&host->lock, flags);
 953        }
 954        set_current_state(TASK_RUNNING);
 955        if (!stop) {
 956                host->claimed = 1;
 957                host->claimer = current;
 958                host->claim_cnt += 1;
 959                if (host->claim_cnt == 1)
 960                        pm = true;
 961        } else
 962                wake_up(&host->wq);
 963        spin_unlock_irqrestore(&host->lock, flags);
 964        remove_wait_queue(&host->wq, &wait);
 965
 966        if (pm)
 967                pm_runtime_get_sync(mmc_dev(host));
 968
 969        return stop;
 970}
 971EXPORT_SYMBOL(__mmc_claim_host);
 972
 973/**
 974 *      mmc_release_host - release a host
 975 *      @host: mmc host to release
 976 *
 977 *      Release a MMC host, allowing others to claim the host
 978 *      for their operations.
 979 */
 980void mmc_release_host(struct mmc_host *host)
 981{
 982        unsigned long flags;
 983
 984        WARN_ON(!host->claimed);
 985
 986        spin_lock_irqsave(&host->lock, flags);
 987        if (--host->claim_cnt) {
 988                /* Release for nested claim */
 989                spin_unlock_irqrestore(&host->lock, flags);
 990        } else {
 991                host->claimed = 0;
 992                host->claimer = NULL;
 993                spin_unlock_irqrestore(&host->lock, flags);
 994                wake_up(&host->wq);
 995                pm_runtime_mark_last_busy(mmc_dev(host));
 996                pm_runtime_put_autosuspend(mmc_dev(host));
 997        }
 998}
 999EXPORT_SYMBOL(mmc_release_host);
1000
1001/*
1002 * This is a helper function, which fetches a runtime pm reference for the
1003 * card device and also claims the host.
1004 */
1005void mmc_get_card(struct mmc_card *card)
1006{
1007        pm_runtime_get_sync(&card->dev);
1008        mmc_claim_host(card->host);
1009}
1010EXPORT_SYMBOL(mmc_get_card);
1011
1012/*
1013 * This is a helper function, which releases the host and drops the runtime
1014 * pm reference for the card device.
1015 */
1016void mmc_put_card(struct mmc_card *card)
1017{
1018        mmc_release_host(card->host);
1019        pm_runtime_mark_last_busy(&card->dev);
1020        pm_runtime_put_autosuspend(&card->dev);
1021}
1022EXPORT_SYMBOL(mmc_put_card);
1023
1024/*
1025 * Internal function that does the actual ios call to the host driver,
1026 * optionally printing some debug output.
1027 */
1028static inline void mmc_set_ios(struct mmc_host *host)
1029{
1030        struct mmc_ios *ios = &host->ios;
1031
1032        pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
1033                "width %u timing %u\n",
1034                 mmc_hostname(host), ios->clock, ios->bus_mode,
1035                 ios->power_mode, ios->chip_select, ios->vdd,
1036                 1 << ios->bus_width, ios->timing);
1037
1038        host->ops->set_ios(host, ios);
1039}
1040
1041/*
1042 * Control chip select pin on a host.
1043 */
1044void mmc_set_chip_select(struct mmc_host *host, int mode)
1045{
1046        host->ios.chip_select = mode;
1047        mmc_set_ios(host);
1048}
1049
1050/*
1051 * Sets the host clock to the highest possible frequency that
1052 * is below "hz".
1053 */
1054void mmc_set_clock(struct mmc_host *host, unsigned int hz)
1055{
1056        WARN_ON(hz && hz < host->f_min);
1057
1058        if (hz > host->f_max)
1059                hz = host->f_max;
1060
1061        host->ios.clock = hz;
1062        mmc_set_ios(host);
1063}
1064
1065int mmc_execute_tuning(struct mmc_card *card)
1066{
1067        struct mmc_host *host = card->host;
1068        u32 opcode;
1069        int err;
1070
1071        if (!host->ops->execute_tuning)
1072                return 0;
1073
1074        if (mmc_card_mmc(card))
1075                opcode = MMC_SEND_TUNING_BLOCK_HS200;
1076        else
1077                opcode = MMC_SEND_TUNING_BLOCK;
1078
1079        err = host->ops->execute_tuning(host, opcode);
1080
1081        if (err)
1082                pr_err("%s: tuning execution failed: %d\n",
1083                        mmc_hostname(host), err);
1084        else
1085                mmc_retune_enable(host);
1086
1087        return err;
1088}
1089
1090/*
1091 * Change the bus mode (open drain/push-pull) of a host.
1092 */
1093void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
1094{
1095        host->ios.bus_mode = mode;
1096        mmc_set_ios(host);
1097}
1098
1099/*
1100 * Change data bus width of a host.
1101 */
1102void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1103{
1104        host->ios.bus_width = width;
1105        mmc_set_ios(host);
1106}
1107
1108/*
1109 * Set initial state after a power cycle or a hw_reset.
1110 */
1111void mmc_set_initial_state(struct mmc_host *host)
1112{
1113        mmc_retune_disable(host);
1114
1115        if (mmc_host_is_spi(host))
1116                host->ios.chip_select = MMC_CS_HIGH;
1117        else
1118                host->ios.chip_select = MMC_CS_DONTCARE;
1119        host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1120        host->ios.bus_width = MMC_BUS_WIDTH_1;
1121        host->ios.timing = MMC_TIMING_LEGACY;
1122        host->ios.drv_type = 0;
1123
1124        mmc_set_ios(host);
1125}
1126
1127/**
1128 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1129 * @vdd:        voltage (mV)
1130 * @low_bits:   prefer low bits in boundary cases
1131 *
1132 * This function returns the OCR bit number according to the provided @vdd
1133 * value. If conversion is not possible a negative errno value returned.
1134 *
1135 * Depending on the @low_bits flag the function prefers low or high OCR bits
1136 * on boundary voltages. For example,
1137 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1138 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1139 *
1140 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1141 */
1142static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1143{
1144        const int max_bit = ilog2(MMC_VDD_35_36);
1145        int bit;
1146
1147        if (vdd < 1650 || vdd > 3600)
1148                return -EINVAL;
1149
1150        if (vdd >= 1650 && vdd <= 1950)
1151                return ilog2(MMC_VDD_165_195);
1152
1153        if (low_bits)
1154                vdd -= 1;
1155
1156        /* Base 2000 mV, step 100 mV, bit's base 8. */
1157        bit = (vdd - 2000) / 100 + 8;
1158        if (bit > max_bit)
1159                return max_bit;
1160        return bit;
1161}
1162
1163/**
1164 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1165 * @vdd_min:    minimum voltage value (mV)
1166 * @vdd_max:    maximum voltage value (mV)
1167 *
1168 * This function returns the OCR mask bits according to the provided @vdd_min
1169 * and @vdd_max values. If conversion is not possible the function returns 0.
1170 *
1171 * Notes wrt boundary cases:
1172 * This function sets the OCR bits for all boundary voltages, for example
1173 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1174 * MMC_VDD_34_35 mask.
1175 */
1176u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1177{
1178        u32 mask = 0;
1179
1180        if (vdd_max < vdd_min)
1181                return 0;
1182
1183        /* Prefer high bits for the boundary vdd_max values. */
1184        vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1185        if (vdd_max < 0)
1186                return 0;
1187
1188        /* Prefer low bits for the boundary vdd_min values. */
1189        vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1190        if (vdd_min < 0)
1191                return 0;
1192
1193        /* Fill the mask, from max bit to min bit. */
1194        while (vdd_max >= vdd_min)
1195                mask |= 1 << vdd_max--;
1196
1197        return mask;
1198}
1199EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1200
1201#ifdef CONFIG_OF
1202
1203/**
1204 * mmc_of_parse_voltage - return mask of supported voltages
1205 * @np: The device node need to be parsed.
1206 * @mask: mask of voltages available for MMC/SD/SDIO
1207 *
1208 * Parse the "voltage-ranges" DT property, returning zero if it is not
1209 * found, negative errno if the voltage-range specification is invalid,
1210 * or one if the voltage-range is specified and successfully parsed.
1211 */
1212int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1213{
1214        const u32 *voltage_ranges;
1215        int num_ranges, i;
1216
1217        voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1218        num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1219        if (!voltage_ranges) {
1220                pr_debug("%s: voltage-ranges unspecified\n", np->full_name);
1221                return 0;
1222        }
1223        if (!num_ranges) {
1224                pr_err("%s: voltage-ranges empty\n", np->full_name);
1225                return -EINVAL;
1226        }
1227
1228        for (i = 0; i < num_ranges; i++) {
1229                const int j = i * 2;
1230                u32 ocr_mask;
1231
1232                ocr_mask = mmc_vddrange_to_ocrmask(
1233                                be32_to_cpu(voltage_ranges[j]),
1234                                be32_to_cpu(voltage_ranges[j + 1]));
1235                if (!ocr_mask) {
1236                        pr_err("%s: voltage-range #%d is invalid\n",
1237                                np->full_name, i);
1238                        return -EINVAL;
1239                }
1240                *mask |= ocr_mask;
1241        }
1242
1243        return 1;
1244}
1245EXPORT_SYMBOL(mmc_of_parse_voltage);
1246
1247#endif /* CONFIG_OF */
1248
1249static int mmc_of_get_func_num(struct device_node *node)
1250{
1251        u32 reg;
1252        int ret;
1253
1254        ret = of_property_read_u32(node, "reg", &reg);
1255        if (ret < 0)
1256                return ret;
1257
1258        return reg;
1259}
1260
1261struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1262                unsigned func_num)
1263{
1264        struct device_node *node;
1265
1266        if (!host->parent || !host->parent->of_node)
1267                return NULL;
1268
1269        for_each_child_of_node(host->parent->of_node, node) {
1270                if (mmc_of_get_func_num(node) == func_num)
1271                        return node;
1272        }
1273
1274        return NULL;
1275}
1276
1277#ifdef CONFIG_REGULATOR
1278
1279/**
1280 * mmc_ocrbitnum_to_vdd - Convert a OCR bit number to its voltage
1281 * @vdd_bit:    OCR bit number
1282 * @min_uV:     minimum voltage value (mV)
1283 * @max_uV:     maximum voltage value (mV)
1284 *
1285 * This function returns the voltage range according to the provided OCR
1286 * bit number. If conversion is not possible a negative errno value returned.
1287 */
1288static int mmc_ocrbitnum_to_vdd(int vdd_bit, int *min_uV, int *max_uV)
1289{
1290        int             tmp;
1291
1292        if (!vdd_bit)
1293                return -EINVAL;
1294
1295        /*
1296         * REVISIT mmc_vddrange_to_ocrmask() may have set some
1297         * bits this regulator doesn't quite support ... don't
1298         * be too picky, most cards and regulators are OK with
1299         * a 0.1V range goof (it's a small error percentage).
1300         */
1301        tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1302        if (tmp == 0) {
1303                *min_uV = 1650 * 1000;
1304                *max_uV = 1950 * 1000;
1305        } else {
1306                *min_uV = 1900 * 1000 + tmp * 100 * 1000;
1307                *max_uV = *min_uV + 100 * 1000;
1308        }
1309
1310        return 0;
1311}
1312
1313/**
1314 * mmc_regulator_get_ocrmask - return mask of supported voltages
1315 * @supply: regulator to use
1316 *
1317 * This returns either a negative errno, or a mask of voltages that
1318 * can be provided to MMC/SD/SDIO devices using the specified voltage
1319 * regulator.  This would normally be called before registering the
1320 * MMC host adapter.
1321 */
1322int mmc_regulator_get_ocrmask(struct regulator *supply)
1323{
1324        int                     result = 0;
1325        int                     count;
1326        int                     i;
1327        int                     vdd_uV;
1328        int                     vdd_mV;
1329
1330        count = regulator_count_voltages(supply);
1331        if (count < 0)
1332                return count;
1333
1334        for (i = 0; i < count; i++) {
1335                vdd_uV = regulator_list_voltage(supply, i);
1336                if (vdd_uV <= 0)
1337                        continue;
1338
1339                vdd_mV = vdd_uV / 1000;
1340                result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1341        }
1342
1343        if (!result) {
1344                vdd_uV = regulator_get_voltage(supply);
1345                if (vdd_uV <= 0)
1346                        return vdd_uV;
1347
1348                vdd_mV = vdd_uV / 1000;
1349                result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1350        }
1351
1352        return result;
1353}
1354EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1355
1356/**
1357 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1358 * @mmc: the host to regulate
1359 * @supply: regulator to use
1360 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1361 *
1362 * Returns zero on success, else negative errno.
1363 *
1364 * MMC host drivers may use this to enable or disable a regulator using
1365 * a particular supply voltage.  This would normally be called from the
1366 * set_ios() method.
1367 */
1368int mmc_regulator_set_ocr(struct mmc_host *mmc,
1369                        struct regulator *supply,
1370                        unsigned short vdd_bit)
1371{
1372        int                     result = 0;
1373        int                     min_uV, max_uV;
1374
1375        if (vdd_bit) {
1376                mmc_ocrbitnum_to_vdd(vdd_bit, &min_uV, &max_uV);
1377
1378                result = regulator_set_voltage(supply, min_uV, max_uV);
1379                if (result == 0 && !mmc->regulator_enabled) {
1380                        result = regulator_enable(supply);
1381                        if (!result)
1382                                mmc->regulator_enabled = true;
1383                }
1384        } else if (mmc->regulator_enabled) {
1385                result = regulator_disable(supply);
1386                if (result == 0)
1387                        mmc->regulator_enabled = false;
1388        }
1389
1390        if (result)
1391                dev_err(mmc_dev(mmc),
1392                        "could not set regulator OCR (%d)\n", result);
1393        return result;
1394}
1395EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1396
1397static int mmc_regulator_set_voltage_if_supported(struct regulator *regulator,
1398                                                  int min_uV, int target_uV,
1399                                                  int max_uV)
1400{
1401        /*
1402         * Check if supported first to avoid errors since we may try several
1403         * signal levels during power up and don't want to show errors.
1404         */
1405        if (!regulator_is_supported_voltage(regulator, min_uV, max_uV))
1406                return -EINVAL;
1407
1408        return regulator_set_voltage_triplet(regulator, min_uV, target_uV,
1409                                             max_uV);
1410}
1411
1412/**
1413 * mmc_regulator_set_vqmmc - Set VQMMC as per the ios
1414 *
1415 * For 3.3V signaling, we try to match VQMMC to VMMC as closely as possible.
1416 * That will match the behavior of old boards where VQMMC and VMMC were supplied
1417 * by the same supply.  The Bus Operating conditions for 3.3V signaling in the
1418 * SD card spec also define VQMMC in terms of VMMC.
1419 * If this is not possible we'll try the full 2.7-3.6V of the spec.
1420 *
1421 * For 1.2V and 1.8V signaling we'll try to get as close as possible to the
1422 * requested voltage.  This is definitely a good idea for UHS where there's a
1423 * separate regulator on the card that's trying to make 1.8V and it's best if
1424 * we match.
1425 *
1426 * This function is expected to be used by a controller's
1427 * start_signal_voltage_switch() function.
1428 */
1429int mmc_regulator_set_vqmmc(struct mmc_host *mmc, struct mmc_ios *ios)
1430{
1431        struct device *dev = mmc_dev(mmc);
1432        int ret, volt, min_uV, max_uV;
1433
1434        /* If no vqmmc supply then we can't change the voltage */
1435        if (IS_ERR(mmc->supply.vqmmc))
1436                return -EINVAL;
1437
1438        switch (ios->signal_voltage) {
1439        case MMC_SIGNAL_VOLTAGE_120:
1440                return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1441                                                1100000, 1200000, 1300000);
1442        case MMC_SIGNAL_VOLTAGE_180:
1443                return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1444                                                1700000, 1800000, 1950000);
1445        case MMC_SIGNAL_VOLTAGE_330:
1446                ret = mmc_ocrbitnum_to_vdd(mmc->ios.vdd, &volt, &max_uV);
1447                if (ret < 0)
1448                        return ret;
1449
1450                dev_dbg(dev, "%s: found vmmc voltage range of %d-%duV\n",
1451                        __func__, volt, max_uV);
1452
1453                min_uV = max(volt - 300000, 2700000);
1454                max_uV = min(max_uV + 200000, 3600000);
1455
1456                /*
1457                 * Due to a limitation in the current implementation of
1458                 * regulator_set_voltage_triplet() which is taking the lowest
1459                 * voltage possible if below the target, search for a suitable
1460                 * voltage in two steps and try to stay close to vmmc
1461                 * with a 0.3V tolerance at first.
1462                 */
1463                if (!mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1464                                                min_uV, volt, max_uV))
1465                        return 0;
1466
1467                return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1468                                                2700000, volt, 3600000);
1469        default:
1470                return -EINVAL;
1471        }
1472}
1473EXPORT_SYMBOL_GPL(mmc_regulator_set_vqmmc);
1474
1475#endif /* CONFIG_REGULATOR */
1476
1477int mmc_regulator_get_supply(struct mmc_host *mmc)
1478{
1479        struct device *dev = mmc_dev(mmc);
1480        int ret;
1481
1482        mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc");
1483        mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
1484
1485        if (IS_ERR(mmc->supply.vmmc)) {
1486                if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER)
1487                        return -EPROBE_DEFER;
1488                dev_dbg(dev, "No vmmc regulator found\n");
1489        } else {
1490                ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc);
1491                if (ret > 0)
1492                        mmc->ocr_avail = ret;
1493                else
1494                        dev_warn(dev, "Failed getting OCR mask: %d\n", ret);
1495        }
1496
1497        if (IS_ERR(mmc->supply.vqmmc)) {
1498                if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER)
1499                        return -EPROBE_DEFER;
1500                dev_dbg(dev, "No vqmmc regulator found\n");
1501        }
1502
1503        return 0;
1504}
1505EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1506
1507/*
1508 * Mask off any voltages we don't support and select
1509 * the lowest voltage
1510 */
1511u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1512{
1513        int bit;
1514
1515        /*
1516         * Sanity check the voltages that the card claims to
1517         * support.
1518         */
1519        if (ocr & 0x7F) {
1520                dev_warn(mmc_dev(host),
1521                "card claims to support voltages below defined range\n");
1522                ocr &= ~0x7F;
1523        }
1524
1525        ocr &= host->ocr_avail;
1526        if (!ocr) {
1527                dev_warn(mmc_dev(host), "no support for card's volts\n");
1528                return 0;
1529        }
1530
1531        if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1532                bit = ffs(ocr) - 1;
1533                ocr &= 3 << bit;
1534                mmc_power_cycle(host, ocr);
1535        } else {
1536                bit = fls(ocr) - 1;
1537                ocr &= 3 << bit;
1538                if (bit != host->ios.vdd)
1539                        dev_warn(mmc_dev(host), "exceeding card's volts\n");
1540        }
1541
1542        return ocr;
1543}
1544
1545int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1546{
1547        int err = 0;
1548        int old_signal_voltage = host->ios.signal_voltage;
1549
1550        host->ios.signal_voltage = signal_voltage;
1551        if (host->ops->start_signal_voltage_switch)
1552                err = host->ops->start_signal_voltage_switch(host, &host->ios);
1553
1554        if (err)
1555                host->ios.signal_voltage = old_signal_voltage;
1556
1557        return err;
1558
1559}
1560
1561int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, u32 ocr)
1562{
1563        struct mmc_command cmd = {0};
1564        int err = 0;
1565        u32 clock;
1566
1567        BUG_ON(!host);
1568
1569        /*
1570         * Send CMD11 only if the request is to switch the card to
1571         * 1.8V signalling.
1572         */
1573        if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1574                return __mmc_set_signal_voltage(host, signal_voltage);
1575
1576        /*
1577         * If we cannot switch voltages, return failure so the caller
1578         * can continue without UHS mode
1579         */
1580        if (!host->ops->start_signal_voltage_switch)
1581                return -EPERM;
1582        if (!host->ops->card_busy)
1583                pr_warn("%s: cannot verify signal voltage switch\n",
1584                        mmc_hostname(host));
1585
1586        cmd.opcode = SD_SWITCH_VOLTAGE;
1587        cmd.arg = 0;
1588        cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1589
1590        err = mmc_wait_for_cmd(host, &cmd, 0);
1591        if (err)
1592                return err;
1593
1594        if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1595                return -EIO;
1596
1597        /*
1598         * The card should drive cmd and dat[0:3] low immediately
1599         * after the response of cmd11, but wait 1 ms to be sure
1600         */
1601        mmc_delay(1);
1602        if (host->ops->card_busy && !host->ops->card_busy(host)) {
1603                err = -EAGAIN;
1604                goto power_cycle;
1605        }
1606        /*
1607         * During a signal voltage level switch, the clock must be gated
1608         * for 5 ms according to the SD spec
1609         */
1610        clock = host->ios.clock;
1611        host->ios.clock = 0;
1612        mmc_set_ios(host);
1613
1614        if (__mmc_set_signal_voltage(host, signal_voltage)) {
1615                /*
1616                 * Voltages may not have been switched, but we've already
1617                 * sent CMD11, so a power cycle is required anyway
1618                 */
1619                err = -EAGAIN;
1620                goto power_cycle;
1621        }
1622
1623        /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1624        mmc_delay(10);
1625        host->ios.clock = clock;
1626        mmc_set_ios(host);
1627
1628        /* Wait for at least 1 ms according to spec */
1629        mmc_delay(1);
1630
1631        /*
1632         * Failure to switch is indicated by the card holding
1633         * dat[0:3] low
1634         */
1635        if (host->ops->card_busy && host->ops->card_busy(host))
1636                err = -EAGAIN;
1637
1638power_cycle:
1639        if (err) {
1640                pr_debug("%s: Signal voltage switch failed, "
1641                        "power cycling card\n", mmc_hostname(host));
1642                mmc_power_cycle(host, ocr);
1643        }
1644
1645        return err;
1646}
1647
1648/*
1649 * Select timing parameters for host.
1650 */
1651void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1652{
1653        host->ios.timing = timing;
1654        mmc_set_ios(host);
1655}
1656
1657/*
1658 * Select appropriate driver type for host.
1659 */
1660void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1661{
1662        host->ios.drv_type = drv_type;
1663        mmc_set_ios(host);
1664}
1665
1666int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1667                              int card_drv_type, int *drv_type)
1668{
1669        struct mmc_host *host = card->host;
1670        int host_drv_type = SD_DRIVER_TYPE_B;
1671
1672        *drv_type = 0;
1673
1674        if (!host->ops->select_drive_strength)
1675                return 0;
1676
1677        /* Use SD definition of driver strength for hosts */
1678        if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1679                host_drv_type |= SD_DRIVER_TYPE_A;
1680
1681        if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1682                host_drv_type |= SD_DRIVER_TYPE_C;
1683
1684        if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1685                host_drv_type |= SD_DRIVER_TYPE_D;
1686
1687        /*
1688         * The drive strength that the hardware can support
1689         * depends on the board design.  Pass the appropriate
1690         * information and let the hardware specific code
1691         * return what is possible given the options
1692         */
1693        return host->ops->select_drive_strength(card, max_dtr,
1694                                                host_drv_type,
1695                                                card_drv_type,
1696                                                drv_type);
1697}
1698
1699/*
1700 * Apply power to the MMC stack.  This is a two-stage process.
1701 * First, we enable power to the card without the clock running.
1702 * We then wait a bit for the power to stabilise.  Finally,
1703 * enable the bus drivers and clock to the card.
1704 *
1705 * We must _NOT_ enable the clock prior to power stablising.
1706 *
1707 * If a host does all the power sequencing itself, ignore the
1708 * initial MMC_POWER_UP stage.
1709 */
1710void mmc_power_up(struct mmc_host *host, u32 ocr)
1711{
1712        if (host->ios.power_mode == MMC_POWER_ON)
1713                return;
1714
1715        mmc_pwrseq_pre_power_on(host);
1716
1717        host->ios.vdd = fls(ocr) - 1;
1718        host->ios.power_mode = MMC_POWER_UP;
1719        /* Set initial state and call mmc_set_ios */
1720        mmc_set_initial_state(host);
1721
1722        /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1723        if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330) == 0)
1724                dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1725        else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180) == 0)
1726                dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1727        else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120) == 0)
1728                dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1729
1730        /*
1731         * This delay should be sufficient to allow the power supply
1732         * to reach the minimum voltage.
1733         */
1734        mmc_delay(10);
1735
1736        mmc_pwrseq_post_power_on(host);
1737
1738        host->ios.clock = host->f_init;
1739
1740        host->ios.power_mode = MMC_POWER_ON;
1741        mmc_set_ios(host);
1742
1743        /*
1744         * This delay must be at least 74 clock sizes, or 1 ms, or the
1745         * time required to reach a stable voltage.
1746         */
1747        mmc_delay(10);
1748}
1749
1750void mmc_power_off(struct mmc_host *host)
1751{
1752        if (host->ios.power_mode == MMC_POWER_OFF)
1753                return;
1754
1755        mmc_pwrseq_power_off(host);
1756
1757        host->ios.clock = 0;
1758        host->ios.vdd = 0;
1759
1760        host->ios.power_mode = MMC_POWER_OFF;
1761        /* Set initial state and call mmc_set_ios */
1762        mmc_set_initial_state(host);
1763
1764        /*
1765         * Some configurations, such as the 802.11 SDIO card in the OLPC
1766         * XO-1.5, require a short delay after poweroff before the card
1767         * can be successfully turned on again.
1768         */
1769        mmc_delay(1);
1770}
1771
1772void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1773{
1774        mmc_power_off(host);
1775        /* Wait at least 1 ms according to SD spec */
1776        mmc_delay(1);
1777        mmc_power_up(host, ocr);
1778}
1779
1780/*
1781 * Cleanup when the last reference to the bus operator is dropped.
1782 */
1783static void __mmc_release_bus(struct mmc_host *host)
1784{
1785        BUG_ON(!host);
1786        BUG_ON(host->bus_refs);
1787        BUG_ON(!host->bus_dead);
1788
1789        host->bus_ops = NULL;
1790}
1791
1792/*
1793 * Increase reference count of bus operator
1794 */
1795static inline void mmc_bus_get(struct mmc_host *host)
1796{
1797        unsigned long flags;
1798
1799        spin_lock_irqsave(&host->lock, flags);
1800        host->bus_refs++;
1801        spin_unlock_irqrestore(&host->lock, flags);
1802}
1803
1804/*
1805 * Decrease reference count of bus operator and free it if
1806 * it is the last reference.
1807 */
1808static inline void mmc_bus_put(struct mmc_host *host)
1809{
1810        unsigned long flags;
1811
1812        spin_lock_irqsave(&host->lock, flags);
1813        host->bus_refs--;
1814        if ((host->bus_refs == 0) && host->bus_ops)
1815                __mmc_release_bus(host);
1816        spin_unlock_irqrestore(&host->lock, flags);
1817}
1818
1819/*
1820 * Assign a mmc bus handler to a host. Only one bus handler may control a
1821 * host at any given time.
1822 */
1823void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1824{
1825        unsigned long flags;
1826
1827        BUG_ON(!host);
1828        BUG_ON(!ops);
1829
1830        WARN_ON(!host->claimed);
1831
1832        spin_lock_irqsave(&host->lock, flags);
1833
1834        BUG_ON(host->bus_ops);
1835        BUG_ON(host->bus_refs);
1836
1837        host->bus_ops = ops;
1838        host->bus_refs = 1;
1839        host->bus_dead = 0;
1840
1841        spin_unlock_irqrestore(&host->lock, flags);
1842}
1843
1844/*
1845 * Remove the current bus handler from a host.
1846 */
1847void mmc_detach_bus(struct mmc_host *host)
1848{
1849        unsigned long flags;
1850
1851        BUG_ON(!host);
1852
1853        WARN_ON(!host->claimed);
1854        WARN_ON(!host->bus_ops);
1855
1856        spin_lock_irqsave(&host->lock, flags);
1857
1858        host->bus_dead = 1;
1859
1860        spin_unlock_irqrestore(&host->lock, flags);
1861
1862        mmc_bus_put(host);
1863}
1864
1865static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1866                                bool cd_irq)
1867{
1868#ifdef CONFIG_MMC_DEBUG
1869        unsigned long flags;
1870        spin_lock_irqsave(&host->lock, flags);
1871        WARN_ON(host->removed);
1872        spin_unlock_irqrestore(&host->lock, flags);
1873#endif
1874
1875        /*
1876         * If the device is configured as wakeup, we prevent a new sleep for
1877         * 5 s to give provision for user space to consume the event.
1878         */
1879        if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1880                device_can_wakeup(mmc_dev(host)))
1881                pm_wakeup_event(mmc_dev(host), 5000);
1882
1883        host->detect_change = 1;
1884        mmc_schedule_delayed_work(&host->detect, delay);
1885}
1886
1887/**
1888 *      mmc_detect_change - process change of state on a MMC socket
1889 *      @host: host which changed state.
1890 *      @delay: optional delay to wait before detection (jiffies)
1891 *
1892 *      MMC drivers should call this when they detect a card has been
1893 *      inserted or removed. The MMC layer will confirm that any
1894 *      present card is still functional, and initialize any newly
1895 *      inserted.
1896 */
1897void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1898{
1899        _mmc_detect_change(host, delay, true);
1900}
1901EXPORT_SYMBOL(mmc_detect_change);
1902
1903void mmc_init_erase(struct mmc_card *card)
1904{
1905        unsigned int sz;
1906
1907        if (is_power_of_2(card->erase_size))
1908                card->erase_shift = ffs(card->erase_size) - 1;
1909        else
1910                card->erase_shift = 0;
1911
1912        /*
1913         * It is possible to erase an arbitrarily large area of an SD or MMC
1914         * card.  That is not desirable because it can take a long time
1915         * (minutes) potentially delaying more important I/O, and also the
1916         * timeout calculations become increasingly hugely over-estimated.
1917         * Consequently, 'pref_erase' is defined as a guide to limit erases
1918         * to that size and alignment.
1919         *
1920         * For SD cards that define Allocation Unit size, limit erases to one
1921         * Allocation Unit at a time.  For MMC cards that define High Capacity
1922         * Erase Size, whether it is switched on or not, limit to that size.
1923         * Otherwise just have a stab at a good value.  For modern cards it
1924         * will end up being 4MiB.  Note that if the value is too small, it
1925         * can end up taking longer to erase.
1926         */
1927        if (mmc_card_sd(card) && card->ssr.au) {
1928                card->pref_erase = card->ssr.au;
1929                card->erase_shift = ffs(card->ssr.au) - 1;
1930        } else if (card->ext_csd.hc_erase_size) {
1931                card->pref_erase = card->ext_csd.hc_erase_size;
1932        } else if (card->erase_size) {
1933                sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1934                if (sz < 128)
1935                        card->pref_erase = 512 * 1024 / 512;
1936                else if (sz < 512)
1937                        card->pref_erase = 1024 * 1024 / 512;
1938                else if (sz < 1024)
1939                        card->pref_erase = 2 * 1024 * 1024 / 512;
1940                else
1941                        card->pref_erase = 4 * 1024 * 1024 / 512;
1942                if (card->pref_erase < card->erase_size)
1943                        card->pref_erase = card->erase_size;
1944                else {
1945                        sz = card->pref_erase % card->erase_size;
1946                        if (sz)
1947                                card->pref_erase += card->erase_size - sz;
1948                }
1949        } else
1950                card->pref_erase = 0;
1951}
1952
1953static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1954                                          unsigned int arg, unsigned int qty)
1955{
1956        unsigned int erase_timeout;
1957
1958        if (arg == MMC_DISCARD_ARG ||
1959            (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1960                erase_timeout = card->ext_csd.trim_timeout;
1961        } else if (card->ext_csd.erase_group_def & 1) {
1962                /* High Capacity Erase Group Size uses HC timeouts */
1963                if (arg == MMC_TRIM_ARG)
1964                        erase_timeout = card->ext_csd.trim_timeout;
1965                else
1966                        erase_timeout = card->ext_csd.hc_erase_timeout;
1967        } else {
1968                /* CSD Erase Group Size uses write timeout */
1969                unsigned int mult = (10 << card->csd.r2w_factor);
1970                unsigned int timeout_clks = card->csd.tacc_clks * mult;
1971                unsigned int timeout_us;
1972
1973                /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1974                if (card->csd.tacc_ns < 1000000)
1975                        timeout_us = (card->csd.tacc_ns * mult) / 1000;
1976                else
1977                        timeout_us = (card->csd.tacc_ns / 1000) * mult;
1978
1979                /*
1980                 * ios.clock is only a target.  The real clock rate might be
1981                 * less but not that much less, so fudge it by multiplying by 2.
1982                 */
1983                timeout_clks <<= 1;
1984                timeout_us += (timeout_clks * 1000) /
1985                              (card->host->ios.clock / 1000);
1986
1987                erase_timeout = timeout_us / 1000;
1988
1989                /*
1990                 * Theoretically, the calculation could underflow so round up
1991                 * to 1ms in that case.
1992                 */
1993                if (!erase_timeout)
1994                        erase_timeout = 1;
1995        }
1996
1997        /* Multiplier for secure operations */
1998        if (arg & MMC_SECURE_ARGS) {
1999                if (arg == MMC_SECURE_ERASE_ARG)
2000                        erase_timeout *= card->ext_csd.sec_erase_mult;
2001                else
2002                        erase_timeout *= card->ext_csd.sec_trim_mult;
2003        }
2004
2005        erase_timeout *= qty;
2006
2007        /*
2008         * Ensure at least a 1 second timeout for SPI as per
2009         * 'mmc_set_data_timeout()'
2010         */
2011        if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
2012                erase_timeout = 1000;
2013
2014        return erase_timeout;
2015}
2016
2017static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
2018                                         unsigned int arg,
2019                                         unsigned int qty)
2020{
2021        unsigned int erase_timeout;
2022
2023        if (card->ssr.erase_timeout) {
2024                /* Erase timeout specified in SD Status Register (SSR) */
2025                erase_timeout = card->ssr.erase_timeout * qty +
2026                                card->ssr.erase_offset;
2027        } else {
2028                /*
2029                 * Erase timeout not specified in SD Status Register (SSR) so
2030                 * use 250ms per write block.
2031                 */
2032                erase_timeout = 250 * qty;
2033        }
2034
2035        /* Must not be less than 1 second */
2036        if (erase_timeout < 1000)
2037                erase_timeout = 1000;
2038
2039        return erase_timeout;
2040}
2041
2042static unsigned int mmc_erase_timeout(struct mmc_card *card,
2043                                      unsigned int arg,
2044                                      unsigned int qty)
2045{
2046        if (mmc_card_sd(card))
2047                return mmc_sd_erase_timeout(card, arg, qty);
2048        else
2049                return mmc_mmc_erase_timeout(card, arg, qty);
2050}
2051
2052static int mmc_do_erase(struct mmc_card *card, unsigned int from,
2053                        unsigned int to, unsigned int arg)
2054{
2055        struct mmc_command cmd = {0};
2056        unsigned int qty = 0;
2057        unsigned long timeout;
2058        int err;
2059
2060        mmc_retune_hold(card->host);
2061
2062        /*
2063         * qty is used to calculate the erase timeout which depends on how many
2064         * erase groups (or allocation units in SD terminology) are affected.
2065         * We count erasing part of an erase group as one erase group.
2066         * For SD, the allocation units are always a power of 2.  For MMC, the
2067         * erase group size is almost certainly also power of 2, but it does not
2068         * seem to insist on that in the JEDEC standard, so we fall back to
2069         * division in that case.  SD may not specify an allocation unit size,
2070         * in which case the timeout is based on the number of write blocks.
2071         *
2072         * Note that the timeout for secure trim 2 will only be correct if the
2073         * number of erase groups specified is the same as the total of all
2074         * preceding secure trim 1 commands.  Since the power may have been
2075         * lost since the secure trim 1 commands occurred, it is generally
2076         * impossible to calculate the secure trim 2 timeout correctly.
2077         */
2078        if (card->erase_shift)
2079                qty += ((to >> card->erase_shift) -
2080                        (from >> card->erase_shift)) + 1;
2081        else if (mmc_card_sd(card))
2082                qty += to - from + 1;
2083        else
2084                qty += ((to / card->erase_size) -
2085                        (from / card->erase_size)) + 1;
2086
2087        if (!mmc_card_blockaddr(card)) {
2088                from <<= 9;
2089                to <<= 9;
2090        }
2091
2092        if (mmc_card_sd(card))
2093                cmd.opcode = SD_ERASE_WR_BLK_START;
2094        else
2095                cmd.opcode = MMC_ERASE_GROUP_START;
2096        cmd.arg = from;
2097        cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2098        err = mmc_wait_for_cmd(card->host, &cmd, 0);
2099        if (err) {
2100                pr_err("mmc_erase: group start error %d, "
2101                       "status %#x\n", err, cmd.resp[0]);
2102                err = -EIO;
2103                goto out;
2104        }
2105
2106        memset(&cmd, 0, sizeof(struct mmc_command));
2107        if (mmc_card_sd(card))
2108                cmd.opcode = SD_ERASE_WR_BLK_END;
2109        else
2110                cmd.opcode = MMC_ERASE_GROUP_END;
2111        cmd.arg = to;
2112        cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2113        err = mmc_wait_for_cmd(card->host, &cmd, 0);
2114        if (err) {
2115                pr_err("mmc_erase: group end error %d, status %#x\n",
2116                       err, cmd.resp[0]);
2117                err = -EIO;
2118                goto out;
2119        }
2120
2121        memset(&cmd, 0, sizeof(struct mmc_command));
2122        cmd.opcode = MMC_ERASE;
2123        cmd.arg = arg;
2124        cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
2125        cmd.busy_timeout = mmc_erase_timeout(card, arg, qty);
2126        err = mmc_wait_for_cmd(card->host, &cmd, 0);
2127        if (err) {
2128                pr_err("mmc_erase: erase error %d, status %#x\n",
2129                       err, cmd.resp[0]);
2130                err = -EIO;
2131                goto out;
2132        }
2133
2134        if (mmc_host_is_spi(card->host))
2135                goto out;
2136
2137        timeout = jiffies + msecs_to_jiffies(MMC_CORE_TIMEOUT_MS);
2138        do {
2139                memset(&cmd, 0, sizeof(struct mmc_command));
2140                cmd.opcode = MMC_SEND_STATUS;
2141                cmd.arg = card->rca << 16;
2142                cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
2143                /* Do not retry else we can't see errors */
2144                err = mmc_wait_for_cmd(card->host, &cmd, 0);
2145                if (err || (cmd.resp[0] & 0xFDF92000)) {
2146                        pr_err("error %d requesting status %#x\n",
2147                                err, cmd.resp[0]);
2148                        err = -EIO;
2149                        goto out;
2150                }
2151
2152                /* Timeout if the device never becomes ready for data and
2153                 * never leaves the program state.
2154                 */
2155                if (time_after(jiffies, timeout)) {
2156                        pr_err("%s: Card stuck in programming state! %s\n",
2157                                mmc_hostname(card->host), __func__);
2158                        err =  -EIO;
2159                        goto out;
2160                }
2161
2162        } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
2163                 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
2164out:
2165        mmc_retune_release(card->host);
2166        return err;
2167}
2168
2169/**
2170 * mmc_erase - erase sectors.
2171 * @card: card to erase
2172 * @from: first sector to erase
2173 * @nr: number of sectors to erase
2174 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
2175 *
2176 * Caller must claim host before calling this function.
2177 */
2178int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
2179              unsigned int arg)
2180{
2181        unsigned int rem, to = from + nr;
2182        int err;
2183
2184        if (!(card->host->caps & MMC_CAP_ERASE) ||
2185            !(card->csd.cmdclass & CCC_ERASE))
2186                return -EOPNOTSUPP;
2187
2188        if (!card->erase_size)
2189                return -EOPNOTSUPP;
2190
2191        if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2192                return -EOPNOTSUPP;
2193
2194        if ((arg & MMC_SECURE_ARGS) &&
2195            !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2196                return -EOPNOTSUPP;
2197
2198        if ((arg & MMC_TRIM_ARGS) &&
2199            !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2200                return -EOPNOTSUPP;
2201
2202        if (arg == MMC_SECURE_ERASE_ARG) {
2203                if (from % card->erase_size || nr % card->erase_size)
2204                        return -EINVAL;
2205        }
2206
2207        if (arg == MMC_ERASE_ARG) {
2208                rem = from % card->erase_size;
2209                if (rem) {
2210                        rem = card->erase_size - rem;
2211                        from += rem;
2212                        if (nr > rem)
2213                                nr -= rem;
2214                        else
2215                                return 0;
2216                }
2217                rem = nr % card->erase_size;
2218                if (rem)
2219                        nr -= rem;
2220        }
2221
2222        if (nr == 0)
2223                return 0;
2224
2225        to = from + nr;
2226
2227        if (to <= from)
2228                return -EINVAL;
2229
2230        /* 'from' and 'to' are inclusive */
2231        to -= 1;
2232
2233        /*
2234         * Special case where only one erase-group fits in the timeout budget:
2235         * If the region crosses an erase-group boundary on this particular
2236         * case, we will be trimming more than one erase-group which, does not
2237         * fit in the timeout budget of the controller, so we need to split it
2238         * and call mmc_do_erase() twice if necessary. This special case is
2239         * identified by the card->eg_boundary flag.
2240         */
2241        rem = card->erase_size - (from % card->erase_size);
2242        if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
2243                err = mmc_do_erase(card, from, from + rem - 1, arg);
2244                from += rem;
2245                if ((err) || (to <= from))
2246                        return err;
2247        }
2248
2249        return mmc_do_erase(card, from, to, arg);
2250}
2251EXPORT_SYMBOL(mmc_erase);
2252
2253int mmc_can_erase(struct mmc_card *card)
2254{
2255        if ((card->host->caps & MMC_CAP_ERASE) &&
2256            (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2257                return 1;
2258        return 0;
2259}
2260EXPORT_SYMBOL(mmc_can_erase);
2261
2262int mmc_can_trim(struct mmc_card *card)
2263{
2264        if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
2265            (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
2266                return 1;
2267        return 0;
2268}
2269EXPORT_SYMBOL(mmc_can_trim);
2270
2271int mmc_can_discard(struct mmc_card *card)
2272{
2273        /*
2274         * As there's no way to detect the discard support bit at v4.5
2275         * use the s/w feature support filed.
2276         */
2277        if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2278                return 1;
2279        return 0;
2280}
2281EXPORT_SYMBOL(mmc_can_discard);
2282
2283int mmc_can_sanitize(struct mmc_card *card)
2284{
2285        if (!mmc_can_trim(card) && !mmc_can_erase(card))
2286                return 0;
2287        if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2288                return 1;
2289        return 0;
2290}
2291EXPORT_SYMBOL(mmc_can_sanitize);
2292
2293int mmc_can_secure_erase_trim(struct mmc_card *card)
2294{
2295        if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
2296            !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
2297                return 1;
2298        return 0;
2299}
2300EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2301
2302int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2303                            unsigned int nr)
2304{
2305        if (!card->erase_size)
2306                return 0;
2307        if (from % card->erase_size || nr % card->erase_size)
2308                return 0;
2309        return 1;
2310}
2311EXPORT_SYMBOL(mmc_erase_group_aligned);
2312
2313static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2314                                            unsigned int arg)
2315{
2316        struct mmc_host *host = card->host;
2317        unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
2318        unsigned int last_timeout = 0;
2319
2320        if (card->erase_shift)
2321                max_qty = UINT_MAX >> card->erase_shift;
2322        else if (mmc_card_sd(card))
2323                max_qty = UINT_MAX;
2324        else
2325                max_qty = UINT_MAX / card->erase_size;
2326
2327        /* Find the largest qty with an OK timeout */
2328        do {
2329                y = 0;
2330                for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2331                        timeout = mmc_erase_timeout(card, arg, qty + x);
2332                        if (timeout > host->max_busy_timeout)
2333                                break;
2334                        if (timeout < last_timeout)
2335                                break;
2336                        last_timeout = timeout;
2337                        y = x;
2338                }
2339                qty += y;
2340        } while (y);
2341
2342        if (!qty)
2343                return 0;
2344
2345        /*
2346         * When specifying a sector range to trim, chances are we might cross
2347         * an erase-group boundary even if the amount of sectors is less than
2348         * one erase-group.
2349         * If we can only fit one erase-group in the controller timeout budget,
2350         * we have to care that erase-group boundaries are not crossed by a
2351         * single trim operation. We flag that special case with "eg_boundary".
2352         * In all other cases we can just decrement qty and pretend that we
2353         * always touch (qty + 1) erase-groups as a simple optimization.
2354         */
2355        if (qty == 1)
2356                card->eg_boundary = 1;
2357        else
2358                qty--;
2359
2360        /* Convert qty to sectors */
2361        if (card->erase_shift)
2362                max_discard = qty << card->erase_shift;
2363        else if (mmc_card_sd(card))
2364                max_discard = qty + 1;
2365        else
2366                max_discard = qty * card->erase_size;
2367
2368        return max_discard;
2369}
2370
2371unsigned int mmc_calc_max_discard(struct mmc_card *card)
2372{
2373        struct mmc_host *host = card->host;
2374        unsigned int max_discard, max_trim;
2375
2376        if (!host->max_busy_timeout)
2377                return UINT_MAX;
2378
2379        /*
2380         * Without erase_group_def set, MMC erase timeout depends on clock
2381         * frequence which can change.  In that case, the best choice is
2382         * just the preferred erase size.
2383         */
2384        if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2385                return card->pref_erase;
2386
2387        max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2388        if (mmc_can_trim(card)) {
2389                max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2390                if (max_trim < max_discard)
2391                        max_discard = max_trim;
2392        } else if (max_discard < card->erase_size) {
2393                max_discard = 0;
2394        }
2395        pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2396                 mmc_hostname(host), max_discard, host->max_busy_timeout);
2397        return max_discard;
2398}
2399EXPORT_SYMBOL(mmc_calc_max_discard);
2400
2401int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2402{
2403        struct mmc_command cmd = {0};
2404
2405        if (mmc_card_blockaddr(card) || mmc_card_ddr52(card))
2406                return 0;
2407
2408        cmd.opcode = MMC_SET_BLOCKLEN;
2409        cmd.arg = blocklen;
2410        cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2411        return mmc_wait_for_cmd(card->host, &cmd, 5);
2412}
2413EXPORT_SYMBOL(mmc_set_blocklen);
2414
2415int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2416                        bool is_rel_write)
2417{
2418        struct mmc_command cmd = {0};
2419
2420        cmd.opcode = MMC_SET_BLOCK_COUNT;
2421        cmd.arg = blockcount & 0x0000FFFF;
2422        if (is_rel_write)
2423                cmd.arg |= 1 << 31;
2424        cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2425        return mmc_wait_for_cmd(card->host, &cmd, 5);
2426}
2427EXPORT_SYMBOL(mmc_set_blockcount);
2428
2429static void mmc_hw_reset_for_init(struct mmc_host *host)
2430{
2431        if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2432                return;
2433        host->ops->hw_reset(host);
2434}
2435
2436int mmc_hw_reset(struct mmc_host *host)
2437{
2438        int ret;
2439
2440        if (!host->card)
2441                return -EINVAL;
2442
2443        mmc_bus_get(host);
2444        if (!host->bus_ops || host->bus_dead || !host->bus_ops->reset) {
2445                mmc_bus_put(host);
2446                return -EOPNOTSUPP;
2447        }
2448
2449        ret = host->bus_ops->reset(host);
2450        mmc_bus_put(host);
2451
2452        if (ret != -EOPNOTSUPP)
2453                pr_warn("%s: tried to reset card\n", mmc_hostname(host));
2454
2455        return ret;
2456}
2457EXPORT_SYMBOL(mmc_hw_reset);
2458
2459static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2460{
2461        host->f_init = freq;
2462
2463#ifdef CONFIG_MMC_DEBUG
2464        pr_info("%s: %s: trying to init card at %u Hz\n",
2465                mmc_hostname(host), __func__, host->f_init);
2466#endif
2467        mmc_power_up(host, host->ocr_avail);
2468
2469        /*
2470         * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2471         * do a hardware reset if possible.
2472         */
2473        mmc_hw_reset_for_init(host);
2474
2475        /*
2476         * sdio_reset sends CMD52 to reset card.  Since we do not know
2477         * if the card is being re-initialized, just send it.  CMD52
2478         * should be ignored by SD/eMMC cards.
2479         * Skip it if we already know that we do not support SDIO commands
2480         */
2481        if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2482                sdio_reset(host);
2483
2484        mmc_go_idle(host);
2485
2486        mmc_send_if_cond(host, host->ocr_avail);
2487
2488        /* Order's important: probe SDIO, then SD, then MMC */
2489        if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2490                if (!mmc_attach_sdio(host))
2491                        return 0;
2492
2493        if (!mmc_attach_sd(host))
2494                return 0;
2495        if (!mmc_attach_mmc(host))
2496                return 0;
2497
2498        mmc_power_off(host);
2499        return -EIO;
2500}
2501
2502int _mmc_detect_card_removed(struct mmc_host *host)
2503{
2504        int ret;
2505
2506        if (!host->card || mmc_card_removed(host->card))
2507                return 1;
2508
2509        ret = host->bus_ops->alive(host);
2510
2511        /*
2512         * Card detect status and alive check may be out of sync if card is
2513         * removed slowly, when card detect switch changes while card/slot
2514         * pads are still contacted in hardware (refer to "SD Card Mechanical
2515         * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2516         * detect work 200ms later for this case.
2517         */
2518        if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2519                mmc_detect_change(host, msecs_to_jiffies(200));
2520                pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2521        }
2522
2523        if (ret) {
2524                mmc_card_set_removed(host->card);
2525                pr_debug("%s: card remove detected\n", mmc_hostname(host));
2526        }
2527
2528        return ret;
2529}
2530
2531int mmc_detect_card_removed(struct mmc_host *host)
2532{
2533        struct mmc_card *card = host->card;
2534        int ret;
2535
2536        WARN_ON(!host->claimed);
2537
2538        if (!card)
2539                return 1;
2540
2541        if (!mmc_card_is_removable(host))
2542                return 0;
2543
2544        ret = mmc_card_removed(card);
2545        /*
2546         * The card will be considered unchanged unless we have been asked to
2547         * detect a change or host requires polling to provide card detection.
2548         */
2549        if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2550                return ret;
2551
2552        host->detect_change = 0;
2553        if (!ret) {
2554                ret = _mmc_detect_card_removed(host);
2555                if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2556                        /*
2557                         * Schedule a detect work as soon as possible to let a
2558                         * rescan handle the card removal.
2559                         */
2560                        cancel_delayed_work(&host->detect);
2561                        _mmc_detect_change(host, 0, false);
2562                }
2563        }
2564
2565        return ret;
2566}
2567EXPORT_SYMBOL(mmc_detect_card_removed);
2568
2569void mmc_rescan(struct work_struct *work)
2570{
2571        struct mmc_host *host =
2572                container_of(work, struct mmc_host, detect.work);
2573        int i;
2574
2575        if (host->rescan_disable)
2576                return;
2577
2578        /* If there is a non-removable card registered, only scan once */
2579        if (!mmc_card_is_removable(host) && host->rescan_entered)
2580                return;
2581        host->rescan_entered = 1;
2582
2583        if (host->trigger_card_event && host->ops->card_event) {
2584                mmc_claim_host(host);
2585                host->ops->card_event(host);
2586                mmc_release_host(host);
2587                host->trigger_card_event = false;
2588        }
2589
2590        mmc_bus_get(host);
2591
2592        /*
2593         * if there is a _removable_ card registered, check whether it is
2594         * still present
2595         */
2596        if (host->bus_ops && !host->bus_dead && mmc_card_is_removable(host))
2597                host->bus_ops->detect(host);
2598
2599        host->detect_change = 0;
2600
2601        /*
2602         * Let mmc_bus_put() free the bus/bus_ops if we've found that
2603         * the card is no longer present.
2604         */
2605        mmc_bus_put(host);
2606        mmc_bus_get(host);
2607
2608        /* if there still is a card present, stop here */
2609        if (host->bus_ops != NULL) {
2610                mmc_bus_put(host);
2611                goto out;
2612        }
2613
2614        /*
2615         * Only we can add a new handler, so it's safe to
2616         * release the lock here.
2617         */
2618        mmc_bus_put(host);
2619
2620        mmc_claim_host(host);
2621        if (mmc_card_is_removable(host) && host->ops->get_cd &&
2622                        host->ops->get_cd(host) == 0) {
2623                mmc_power_off(host);
2624                mmc_release_host(host);
2625                goto out;
2626        }
2627
2628        for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2629                if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2630                        break;
2631                if (freqs[i] <= host->f_min)
2632                        break;
2633        }
2634        mmc_release_host(host);
2635
2636 out:
2637        if (host->caps & MMC_CAP_NEEDS_POLL)
2638                mmc_schedule_delayed_work(&host->detect, HZ);
2639}
2640
2641void mmc_start_host(struct mmc_host *host)
2642{
2643        host->f_init = max(freqs[0], host->f_min);
2644        host->rescan_disable = 0;
2645        host->ios.power_mode = MMC_POWER_UNDEFINED;
2646
2647        mmc_claim_host(host);
2648        if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)
2649                mmc_power_off(host);
2650        else
2651                mmc_power_up(host, host->ocr_avail);
2652        mmc_release_host(host);
2653
2654        mmc_gpiod_request_cd_irq(host);
2655        _mmc_detect_change(host, 0, false);
2656}
2657
2658void mmc_stop_host(struct mmc_host *host)
2659{
2660#ifdef CONFIG_MMC_DEBUG
2661        unsigned long flags;
2662        spin_lock_irqsave(&host->lock, flags);
2663        host->removed = 1;
2664        spin_unlock_irqrestore(&host->lock, flags);
2665#endif
2666        if (host->slot.cd_irq >= 0)
2667                disable_irq(host->slot.cd_irq);
2668
2669        host->rescan_disable = 1;
2670        cancel_delayed_work_sync(&host->detect);
2671
2672        /* clear pm flags now and let card drivers set them as needed */
2673        host->pm_flags = 0;
2674
2675        mmc_bus_get(host);
2676        if (host->bus_ops && !host->bus_dead) {
2677                /* Calling bus_ops->remove() with a claimed host can deadlock */
2678                host->bus_ops->remove(host);
2679                mmc_claim_host(host);
2680                mmc_detach_bus(host);
2681                mmc_power_off(host);
2682                mmc_release_host(host);
2683                mmc_bus_put(host);
2684                return;
2685        }
2686        mmc_bus_put(host);
2687
2688        BUG_ON(host->card);
2689
2690        mmc_claim_host(host);
2691        mmc_power_off(host);
2692        mmc_release_host(host);
2693}
2694
2695int mmc_power_save_host(struct mmc_host *host)
2696{
2697        int ret = 0;
2698
2699#ifdef CONFIG_MMC_DEBUG
2700        pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2701#endif
2702
2703        mmc_bus_get(host);
2704
2705        if (!host->bus_ops || host->bus_dead) {
2706                mmc_bus_put(host);
2707                return -EINVAL;
2708        }
2709
2710        if (host->bus_ops->power_save)
2711                ret = host->bus_ops->power_save(host);
2712
2713        mmc_bus_put(host);
2714
2715        mmc_power_off(host);
2716
2717        return ret;
2718}
2719EXPORT_SYMBOL(mmc_power_save_host);
2720
2721int mmc_power_restore_host(struct mmc_host *host)
2722{
2723        int ret;
2724
2725#ifdef CONFIG_MMC_DEBUG
2726        pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2727#endif
2728
2729        mmc_bus_get(host);
2730
2731        if (!host->bus_ops || host->bus_dead) {
2732                mmc_bus_put(host);
2733                return -EINVAL;
2734        }
2735
2736        mmc_power_up(host, host->card->ocr);
2737        ret = host->bus_ops->power_restore(host);
2738
2739        mmc_bus_put(host);
2740
2741        return ret;
2742}
2743EXPORT_SYMBOL(mmc_power_restore_host);
2744
2745/*
2746 * Flush the cache to the non-volatile storage.
2747 */
2748int mmc_flush_cache(struct mmc_card *card)
2749{
2750        int err = 0;
2751
2752        if (mmc_card_mmc(card) &&
2753                        (card->ext_csd.cache_size > 0) &&
2754                        (card->ext_csd.cache_ctrl & 1)) {
2755                err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2756                                EXT_CSD_FLUSH_CACHE, 1, 0);
2757                if (err)
2758                        pr_err("%s: cache flush error %d\n",
2759                                        mmc_hostname(card->host), err);
2760        }
2761
2762        return err;
2763}
2764EXPORT_SYMBOL(mmc_flush_cache);
2765
2766#ifdef CONFIG_PM_SLEEP
2767/* Do the card removal on suspend if card is assumed removeable
2768 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2769   to sync the card.
2770*/
2771static int mmc_pm_notify(struct notifier_block *notify_block,
2772                        unsigned long mode, void *unused)
2773{
2774        struct mmc_host *host = container_of(
2775                notify_block, struct mmc_host, pm_notify);
2776        unsigned long flags;
2777        int err = 0;
2778
2779        switch (mode) {
2780        case PM_HIBERNATION_PREPARE:
2781        case PM_SUSPEND_PREPARE:
2782        case PM_RESTORE_PREPARE:
2783                spin_lock_irqsave(&host->lock, flags);
2784                host->rescan_disable = 1;
2785                spin_unlock_irqrestore(&host->lock, flags);
2786                cancel_delayed_work_sync(&host->detect);
2787
2788                if (!host->bus_ops)
2789                        break;
2790
2791                /* Validate prerequisites for suspend */
2792                if (host->bus_ops->pre_suspend)
2793                        err = host->bus_ops->pre_suspend(host);
2794                if (!err)
2795                        break;
2796
2797                /* Calling bus_ops->remove() with a claimed host can deadlock */
2798                host->bus_ops->remove(host);
2799                mmc_claim_host(host);
2800                mmc_detach_bus(host);
2801                mmc_power_off(host);
2802                mmc_release_host(host);
2803                host->pm_flags = 0;
2804                break;
2805
2806        case PM_POST_SUSPEND:
2807        case PM_POST_HIBERNATION:
2808        case PM_POST_RESTORE:
2809
2810                spin_lock_irqsave(&host->lock, flags);
2811                host->rescan_disable = 0;
2812                spin_unlock_irqrestore(&host->lock, flags);
2813                _mmc_detect_change(host, 0, false);
2814
2815        }
2816
2817        return 0;
2818}
2819
2820void mmc_register_pm_notifier(struct mmc_host *host)
2821{
2822        host->pm_notify.notifier_call = mmc_pm_notify;
2823        register_pm_notifier(&host->pm_notify);
2824}
2825
2826void mmc_unregister_pm_notifier(struct mmc_host *host)
2827{
2828        unregister_pm_notifier(&host->pm_notify);
2829}
2830#endif
2831
2832/**
2833 * mmc_init_context_info() - init synchronization context
2834 * @host: mmc host
2835 *
2836 * Init struct context_info needed to implement asynchronous
2837 * request mechanism, used by mmc core, host driver and mmc requests
2838 * supplier.
2839 */
2840void mmc_init_context_info(struct mmc_host *host)
2841{
2842        spin_lock_init(&host->context_info.lock);
2843        host->context_info.is_new_req = false;
2844        host->context_info.is_done_rcv = false;
2845        host->context_info.is_waiting_last_req = false;
2846        init_waitqueue_head(&host->context_info.wait);
2847}
2848
2849static int __init mmc_init(void)
2850{
2851        int ret;
2852
2853        ret = mmc_register_bus();
2854        if (ret)
2855                return ret;
2856
2857        ret = mmc_register_host_class();
2858        if (ret)
2859                goto unregister_bus;
2860
2861        ret = sdio_register_bus();
2862        if (ret)
2863                goto unregister_host_class;
2864
2865        return 0;
2866
2867unregister_host_class:
2868        mmc_unregister_host_class();
2869unregister_bus:
2870        mmc_unregister_bus();
2871        return ret;
2872}
2873
2874static void __exit mmc_exit(void)
2875{
2876        sdio_unregister_bus();
2877        mmc_unregister_host_class();
2878        mmc_unregister_bus();
2879}
2880
2881subsys_initcall(mmc_init);
2882module_exit(mmc_exit);
2883
2884MODULE_LICENSE("GPL");
2885