linux/drivers/mtd/mtdpart.c
<<
>>
Prefs
   1/*
   2 * Simple MTD partitioning layer
   3 *
   4 * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
   5 * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
   6 * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation; either version 2 of the License, or
  11 * (at your option) any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  21 *
  22 */
  23
  24#include <linux/module.h>
  25#include <linux/types.h>
  26#include <linux/kernel.h>
  27#include <linux/slab.h>
  28#include <linux/list.h>
  29#include <linux/kmod.h>
  30#include <linux/mtd/mtd.h>
  31#include <linux/mtd/partitions.h>
  32#include <linux/err.h>
  33#include <linux/kconfig.h>
  34
  35#include "mtdcore.h"
  36
  37/* Our partition linked list */
  38static LIST_HEAD(mtd_partitions);
  39static DEFINE_MUTEX(mtd_partitions_mutex);
  40
  41/* Our partition node structure */
  42struct mtd_part {
  43        struct mtd_info mtd;
  44        struct mtd_info *master;
  45        uint64_t offset;
  46        struct list_head list;
  47};
  48
  49/*
  50 * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
  51 * the pointer to that structure.
  52 */
  53static inline struct mtd_part *mtd_to_part(const struct mtd_info *mtd)
  54{
  55        return container_of(mtd, struct mtd_part, mtd);
  56}
  57
  58
  59/*
  60 * MTD methods which simply translate the effective address and pass through
  61 * to the _real_ device.
  62 */
  63
  64static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
  65                size_t *retlen, u_char *buf)
  66{
  67        struct mtd_part *part = mtd_to_part(mtd);
  68        struct mtd_ecc_stats stats;
  69        int res;
  70
  71        stats = part->master->ecc_stats;
  72        res = part->master->_read(part->master, from + part->offset, len,
  73                                  retlen, buf);
  74        if (unlikely(mtd_is_eccerr(res)))
  75                mtd->ecc_stats.failed +=
  76                        part->master->ecc_stats.failed - stats.failed;
  77        else
  78                mtd->ecc_stats.corrected +=
  79                        part->master->ecc_stats.corrected - stats.corrected;
  80        return res;
  81}
  82
  83static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
  84                size_t *retlen, void **virt, resource_size_t *phys)
  85{
  86        struct mtd_part *part = mtd_to_part(mtd);
  87
  88        return part->master->_point(part->master, from + part->offset, len,
  89                                    retlen, virt, phys);
  90}
  91
  92static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
  93{
  94        struct mtd_part *part = mtd_to_part(mtd);
  95
  96        return part->master->_unpoint(part->master, from + part->offset, len);
  97}
  98
  99static unsigned long part_get_unmapped_area(struct mtd_info *mtd,
 100                                            unsigned long len,
 101                                            unsigned long offset,
 102                                            unsigned long flags)
 103{
 104        struct mtd_part *part = mtd_to_part(mtd);
 105
 106        offset += part->offset;
 107        return part->master->_get_unmapped_area(part->master, len, offset,
 108                                                flags);
 109}
 110
 111static int part_read_oob(struct mtd_info *mtd, loff_t from,
 112                struct mtd_oob_ops *ops)
 113{
 114        struct mtd_part *part = mtd_to_part(mtd);
 115        int res;
 116
 117        if (from >= mtd->size)
 118                return -EINVAL;
 119        if (ops->datbuf && from + ops->len > mtd->size)
 120                return -EINVAL;
 121
 122        /*
 123         * If OOB is also requested, make sure that we do not read past the end
 124         * of this partition.
 125         */
 126        if (ops->oobbuf) {
 127                size_t len, pages;
 128
 129                len = mtd_oobavail(mtd, ops);
 130                pages = mtd_div_by_ws(mtd->size, mtd);
 131                pages -= mtd_div_by_ws(from, mtd);
 132                if (ops->ooboffs + ops->ooblen > pages * len)
 133                        return -EINVAL;
 134        }
 135
 136        res = part->master->_read_oob(part->master, from + part->offset, ops);
 137        if (unlikely(res)) {
 138                if (mtd_is_bitflip(res))
 139                        mtd->ecc_stats.corrected++;
 140                if (mtd_is_eccerr(res))
 141                        mtd->ecc_stats.failed++;
 142        }
 143        return res;
 144}
 145
 146static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
 147                size_t len, size_t *retlen, u_char *buf)
 148{
 149        struct mtd_part *part = mtd_to_part(mtd);
 150        return part->master->_read_user_prot_reg(part->master, from, len,
 151                                                 retlen, buf);
 152}
 153
 154static int part_get_user_prot_info(struct mtd_info *mtd, size_t len,
 155                                   size_t *retlen, struct otp_info *buf)
 156{
 157        struct mtd_part *part = mtd_to_part(mtd);
 158        return part->master->_get_user_prot_info(part->master, len, retlen,
 159                                                 buf);
 160}
 161
 162static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
 163                size_t len, size_t *retlen, u_char *buf)
 164{
 165        struct mtd_part *part = mtd_to_part(mtd);
 166        return part->master->_read_fact_prot_reg(part->master, from, len,
 167                                                 retlen, buf);
 168}
 169
 170static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len,
 171                                   size_t *retlen, struct otp_info *buf)
 172{
 173        struct mtd_part *part = mtd_to_part(mtd);
 174        return part->master->_get_fact_prot_info(part->master, len, retlen,
 175                                                 buf);
 176}
 177
 178static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
 179                size_t *retlen, const u_char *buf)
 180{
 181        struct mtd_part *part = mtd_to_part(mtd);
 182        return part->master->_write(part->master, to + part->offset, len,
 183                                    retlen, buf);
 184}
 185
 186static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
 187                size_t *retlen, const u_char *buf)
 188{
 189        struct mtd_part *part = mtd_to_part(mtd);
 190        return part->master->_panic_write(part->master, to + part->offset, len,
 191                                          retlen, buf);
 192}
 193
 194static int part_write_oob(struct mtd_info *mtd, loff_t to,
 195                struct mtd_oob_ops *ops)
 196{
 197        struct mtd_part *part = mtd_to_part(mtd);
 198
 199        if (to >= mtd->size)
 200                return -EINVAL;
 201        if (ops->datbuf && to + ops->len > mtd->size)
 202                return -EINVAL;
 203        return part->master->_write_oob(part->master, to + part->offset, ops);
 204}
 205
 206static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
 207                size_t len, size_t *retlen, u_char *buf)
 208{
 209        struct mtd_part *part = mtd_to_part(mtd);
 210        return part->master->_write_user_prot_reg(part->master, from, len,
 211                                                  retlen, buf);
 212}
 213
 214static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
 215                size_t len)
 216{
 217        struct mtd_part *part = mtd_to_part(mtd);
 218        return part->master->_lock_user_prot_reg(part->master, from, len);
 219}
 220
 221static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
 222                unsigned long count, loff_t to, size_t *retlen)
 223{
 224        struct mtd_part *part = mtd_to_part(mtd);
 225        return part->master->_writev(part->master, vecs, count,
 226                                     to + part->offset, retlen);
 227}
 228
 229static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
 230{
 231        struct mtd_part *part = mtd_to_part(mtd);
 232        int ret;
 233
 234        instr->addr += part->offset;
 235        ret = part->master->_erase(part->master, instr);
 236        if (ret) {
 237                if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
 238                        instr->fail_addr -= part->offset;
 239                instr->addr -= part->offset;
 240        }
 241        return ret;
 242}
 243
 244void mtd_erase_callback(struct erase_info *instr)
 245{
 246        if (instr->mtd->_erase == part_erase) {
 247                struct mtd_part *part = mtd_to_part(instr->mtd);
 248
 249                if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
 250                        instr->fail_addr -= part->offset;
 251                instr->addr -= part->offset;
 252        }
 253        if (instr->callback)
 254                instr->callback(instr);
 255}
 256EXPORT_SYMBOL_GPL(mtd_erase_callback);
 257
 258static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
 259{
 260        struct mtd_part *part = mtd_to_part(mtd);
 261        return part->master->_lock(part->master, ofs + part->offset, len);
 262}
 263
 264static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
 265{
 266        struct mtd_part *part = mtd_to_part(mtd);
 267        return part->master->_unlock(part->master, ofs + part->offset, len);
 268}
 269
 270static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
 271{
 272        struct mtd_part *part = mtd_to_part(mtd);
 273        return part->master->_is_locked(part->master, ofs + part->offset, len);
 274}
 275
 276static void part_sync(struct mtd_info *mtd)
 277{
 278        struct mtd_part *part = mtd_to_part(mtd);
 279        part->master->_sync(part->master);
 280}
 281
 282static int part_suspend(struct mtd_info *mtd)
 283{
 284        struct mtd_part *part = mtd_to_part(mtd);
 285        return part->master->_suspend(part->master);
 286}
 287
 288static void part_resume(struct mtd_info *mtd)
 289{
 290        struct mtd_part *part = mtd_to_part(mtd);
 291        part->master->_resume(part->master);
 292}
 293
 294static int part_block_isreserved(struct mtd_info *mtd, loff_t ofs)
 295{
 296        struct mtd_part *part = mtd_to_part(mtd);
 297        ofs += part->offset;
 298        return part->master->_block_isreserved(part->master, ofs);
 299}
 300
 301static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
 302{
 303        struct mtd_part *part = mtd_to_part(mtd);
 304        ofs += part->offset;
 305        return part->master->_block_isbad(part->master, ofs);
 306}
 307
 308static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
 309{
 310        struct mtd_part *part = mtd_to_part(mtd);
 311        int res;
 312
 313        ofs += part->offset;
 314        res = part->master->_block_markbad(part->master, ofs);
 315        if (!res)
 316                mtd->ecc_stats.badblocks++;
 317        return res;
 318}
 319
 320static inline void free_partition(struct mtd_part *p)
 321{
 322        kfree(p->mtd.name);
 323        kfree(p);
 324}
 325
 326/*
 327 * This function unregisters and destroy all slave MTD objects which are
 328 * attached to the given master MTD object.
 329 */
 330
 331int del_mtd_partitions(struct mtd_info *master)
 332{
 333        struct mtd_part *slave, *next;
 334        int ret, err = 0;
 335
 336        mutex_lock(&mtd_partitions_mutex);
 337        list_for_each_entry_safe(slave, next, &mtd_partitions, list)
 338                if (slave->master == master) {
 339                        ret = del_mtd_device(&slave->mtd);
 340                        if (ret < 0) {
 341                                err = ret;
 342                                continue;
 343                        }
 344                        list_del(&slave->list);
 345                        free_partition(slave);
 346                }
 347        mutex_unlock(&mtd_partitions_mutex);
 348
 349        return err;
 350}
 351
 352static struct mtd_part *allocate_partition(struct mtd_info *master,
 353                        const struct mtd_partition *part, int partno,
 354                        uint64_t cur_offset)
 355{
 356        struct mtd_part *slave;
 357        char *name;
 358
 359        /* allocate the partition structure */
 360        slave = kzalloc(sizeof(*slave), GFP_KERNEL);
 361        name = kstrdup(part->name, GFP_KERNEL);
 362        if (!name || !slave) {
 363                printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
 364                       master->name);
 365                kfree(name);
 366                kfree(slave);
 367                return ERR_PTR(-ENOMEM);
 368        }
 369
 370        /* set up the MTD object for this partition */
 371        slave->mtd.type = master->type;
 372        slave->mtd.flags = master->flags & ~part->mask_flags;
 373        slave->mtd.size = part->size;
 374        slave->mtd.writesize = master->writesize;
 375        slave->mtd.writebufsize = master->writebufsize;
 376        slave->mtd.oobsize = master->oobsize;
 377        slave->mtd.oobavail = master->oobavail;
 378        slave->mtd.subpage_sft = master->subpage_sft;
 379
 380        slave->mtd.name = name;
 381        slave->mtd.owner = master->owner;
 382
 383        /* NOTE: Historically, we didn't arrange MTDs as a tree out of
 384         * concern for showing the same data in multiple partitions.
 385         * However, it is very useful to have the master node present,
 386         * so the MTD_PARTITIONED_MASTER option allows that. The master
 387         * will have device nodes etc only if this is set, so make the
 388         * parent conditional on that option. Note, this is a way to
 389         * distinguish between the master and the partition in sysfs.
 390         */
 391        slave->mtd.dev.parent = IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER) ?
 392                                &master->dev :
 393                                master->dev.parent;
 394
 395        slave->mtd._read = part_read;
 396        slave->mtd._write = part_write;
 397
 398        if (master->_panic_write)
 399                slave->mtd._panic_write = part_panic_write;
 400
 401        if (master->_point && master->_unpoint) {
 402                slave->mtd._point = part_point;
 403                slave->mtd._unpoint = part_unpoint;
 404        }
 405
 406        if (master->_get_unmapped_area)
 407                slave->mtd._get_unmapped_area = part_get_unmapped_area;
 408        if (master->_read_oob)
 409                slave->mtd._read_oob = part_read_oob;
 410        if (master->_write_oob)
 411                slave->mtd._write_oob = part_write_oob;
 412        if (master->_read_user_prot_reg)
 413                slave->mtd._read_user_prot_reg = part_read_user_prot_reg;
 414        if (master->_read_fact_prot_reg)
 415                slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg;
 416        if (master->_write_user_prot_reg)
 417                slave->mtd._write_user_prot_reg = part_write_user_prot_reg;
 418        if (master->_lock_user_prot_reg)
 419                slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg;
 420        if (master->_get_user_prot_info)
 421                slave->mtd._get_user_prot_info = part_get_user_prot_info;
 422        if (master->_get_fact_prot_info)
 423                slave->mtd._get_fact_prot_info = part_get_fact_prot_info;
 424        if (master->_sync)
 425                slave->mtd._sync = part_sync;
 426        if (!partno && !master->dev.class && master->_suspend &&
 427            master->_resume) {
 428                        slave->mtd._suspend = part_suspend;
 429                        slave->mtd._resume = part_resume;
 430        }
 431        if (master->_writev)
 432                slave->mtd._writev = part_writev;
 433        if (master->_lock)
 434                slave->mtd._lock = part_lock;
 435        if (master->_unlock)
 436                slave->mtd._unlock = part_unlock;
 437        if (master->_is_locked)
 438                slave->mtd._is_locked = part_is_locked;
 439        if (master->_block_isreserved)
 440                slave->mtd._block_isreserved = part_block_isreserved;
 441        if (master->_block_isbad)
 442                slave->mtd._block_isbad = part_block_isbad;
 443        if (master->_block_markbad)
 444                slave->mtd._block_markbad = part_block_markbad;
 445        slave->mtd._erase = part_erase;
 446        slave->master = master;
 447        slave->offset = part->offset;
 448
 449        if (slave->offset == MTDPART_OFS_APPEND)
 450                slave->offset = cur_offset;
 451        if (slave->offset == MTDPART_OFS_NXTBLK) {
 452                slave->offset = cur_offset;
 453                if (mtd_mod_by_eb(cur_offset, master) != 0) {
 454                        /* Round up to next erasesize */
 455                        slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize;
 456                        printk(KERN_NOTICE "Moving partition %d: "
 457                               "0x%012llx -> 0x%012llx\n", partno,
 458                               (unsigned long long)cur_offset, (unsigned long long)slave->offset);
 459                }
 460        }
 461        if (slave->offset == MTDPART_OFS_RETAIN) {
 462                slave->offset = cur_offset;
 463                if (master->size - slave->offset >= slave->mtd.size) {
 464                        slave->mtd.size = master->size - slave->offset
 465                                                        - slave->mtd.size;
 466                } else {
 467                        printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
 468                                part->name, master->size - slave->offset,
 469                                slave->mtd.size);
 470                        /* register to preserve ordering */
 471                        goto out_register;
 472                }
 473        }
 474        if (slave->mtd.size == MTDPART_SIZ_FULL)
 475                slave->mtd.size = master->size - slave->offset;
 476
 477        printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
 478                (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
 479
 480        /* let's do some sanity checks */
 481        if (slave->offset >= master->size) {
 482                /* let's register it anyway to preserve ordering */
 483                slave->offset = 0;
 484                slave->mtd.size = 0;
 485                printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
 486                        part->name);
 487                goto out_register;
 488        }
 489        if (slave->offset + slave->mtd.size > master->size) {
 490                slave->mtd.size = master->size - slave->offset;
 491                printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
 492                        part->name, master->name, (unsigned long long)slave->mtd.size);
 493        }
 494        if (master->numeraseregions > 1) {
 495                /* Deal with variable erase size stuff */
 496                int i, max = master->numeraseregions;
 497                u64 end = slave->offset + slave->mtd.size;
 498                struct mtd_erase_region_info *regions = master->eraseregions;
 499
 500                /* Find the first erase regions which is part of this
 501                 * partition. */
 502                for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
 503                        ;
 504                /* The loop searched for the region _behind_ the first one */
 505                if (i > 0)
 506                        i--;
 507
 508                /* Pick biggest erasesize */
 509                for (; i < max && regions[i].offset < end; i++) {
 510                        if (slave->mtd.erasesize < regions[i].erasesize) {
 511                                slave->mtd.erasesize = regions[i].erasesize;
 512                        }
 513                }
 514                BUG_ON(slave->mtd.erasesize == 0);
 515        } else {
 516                /* Single erase size */
 517                slave->mtd.erasesize = master->erasesize;
 518        }
 519
 520        if ((slave->mtd.flags & MTD_WRITEABLE) &&
 521            mtd_mod_by_eb(slave->offset, &slave->mtd)) {
 522                /* Doesn't start on a boundary of major erase size */
 523                /* FIXME: Let it be writable if it is on a boundary of
 524                 * _minor_ erase size though */
 525                slave->mtd.flags &= ~MTD_WRITEABLE;
 526                printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
 527                        part->name);
 528        }
 529        if ((slave->mtd.flags & MTD_WRITEABLE) &&
 530            mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) {
 531                slave->mtd.flags &= ~MTD_WRITEABLE;
 532                printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
 533                        part->name);
 534        }
 535
 536        slave->mtd.ecclayout = master->ecclayout;
 537        slave->mtd.ecc_step_size = master->ecc_step_size;
 538        slave->mtd.ecc_strength = master->ecc_strength;
 539        slave->mtd.bitflip_threshold = master->bitflip_threshold;
 540
 541        if (master->_block_isbad) {
 542                uint64_t offs = 0;
 543
 544                while (offs < slave->mtd.size) {
 545                        if (mtd_block_isreserved(master, offs + slave->offset))
 546                                slave->mtd.ecc_stats.bbtblocks++;
 547                        else if (mtd_block_isbad(master, offs + slave->offset))
 548                                slave->mtd.ecc_stats.badblocks++;
 549                        offs += slave->mtd.erasesize;
 550                }
 551        }
 552
 553out_register:
 554        return slave;
 555}
 556
 557static ssize_t mtd_partition_offset_show(struct device *dev,
 558                struct device_attribute *attr, char *buf)
 559{
 560        struct mtd_info *mtd = dev_get_drvdata(dev);
 561        struct mtd_part *part = mtd_to_part(mtd);
 562        return snprintf(buf, PAGE_SIZE, "%lld\n", part->offset);
 563}
 564
 565static DEVICE_ATTR(offset, S_IRUGO, mtd_partition_offset_show, NULL);
 566
 567static const struct attribute *mtd_partition_attrs[] = {
 568        &dev_attr_offset.attr,
 569        NULL
 570};
 571
 572static int mtd_add_partition_attrs(struct mtd_part *new)
 573{
 574        int ret = sysfs_create_files(&new->mtd.dev.kobj, mtd_partition_attrs);
 575        if (ret)
 576                printk(KERN_WARNING
 577                       "mtd: failed to create partition attrs, err=%d\n", ret);
 578        return ret;
 579}
 580
 581int mtd_add_partition(struct mtd_info *master, const char *name,
 582                      long long offset, long long length)
 583{
 584        struct mtd_partition part;
 585        struct mtd_part *new;
 586        int ret = 0;
 587
 588        /* the direct offset is expected */
 589        if (offset == MTDPART_OFS_APPEND ||
 590            offset == MTDPART_OFS_NXTBLK)
 591                return -EINVAL;
 592
 593        if (length == MTDPART_SIZ_FULL)
 594                length = master->size - offset;
 595
 596        if (length <= 0)
 597                return -EINVAL;
 598
 599        memset(&part, 0, sizeof(part));
 600        part.name = name;
 601        part.size = length;
 602        part.offset = offset;
 603
 604        new = allocate_partition(master, &part, -1, offset);
 605        if (IS_ERR(new))
 606                return PTR_ERR(new);
 607
 608        mutex_lock(&mtd_partitions_mutex);
 609        list_add(&new->list, &mtd_partitions);
 610        mutex_unlock(&mtd_partitions_mutex);
 611
 612        add_mtd_device(&new->mtd);
 613
 614        mtd_add_partition_attrs(new);
 615
 616        return ret;
 617}
 618EXPORT_SYMBOL_GPL(mtd_add_partition);
 619
 620int mtd_del_partition(struct mtd_info *master, int partno)
 621{
 622        struct mtd_part *slave, *next;
 623        int ret = -EINVAL;
 624
 625        mutex_lock(&mtd_partitions_mutex);
 626        list_for_each_entry_safe(slave, next, &mtd_partitions, list)
 627                if ((slave->master == master) &&
 628                    (slave->mtd.index == partno)) {
 629                        sysfs_remove_files(&slave->mtd.dev.kobj,
 630                                           mtd_partition_attrs);
 631                        ret = del_mtd_device(&slave->mtd);
 632                        if (ret < 0)
 633                                break;
 634
 635                        list_del(&slave->list);
 636                        free_partition(slave);
 637                        break;
 638                }
 639        mutex_unlock(&mtd_partitions_mutex);
 640
 641        return ret;
 642}
 643EXPORT_SYMBOL_GPL(mtd_del_partition);
 644
 645/*
 646 * This function, given a master MTD object and a partition table, creates
 647 * and registers slave MTD objects which are bound to the master according to
 648 * the partition definitions.
 649 *
 650 * For historical reasons, this function's caller only registers the master
 651 * if the MTD_PARTITIONED_MASTER config option is set.
 652 */
 653
 654int add_mtd_partitions(struct mtd_info *master,
 655                       const struct mtd_partition *parts,
 656                       int nbparts)
 657{
 658        struct mtd_part *slave;
 659        uint64_t cur_offset = 0;
 660        int i;
 661
 662        printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
 663
 664        for (i = 0; i < nbparts; i++) {
 665                slave = allocate_partition(master, parts + i, i, cur_offset);
 666                if (IS_ERR(slave)) {
 667                        del_mtd_partitions(master);
 668                        return PTR_ERR(slave);
 669                }
 670
 671                mutex_lock(&mtd_partitions_mutex);
 672                list_add(&slave->list, &mtd_partitions);
 673                mutex_unlock(&mtd_partitions_mutex);
 674
 675                add_mtd_device(&slave->mtd);
 676                mtd_add_partition_attrs(slave);
 677
 678                cur_offset = slave->offset + slave->mtd.size;
 679        }
 680
 681        return 0;
 682}
 683
 684static DEFINE_SPINLOCK(part_parser_lock);
 685static LIST_HEAD(part_parsers);
 686
 687static struct mtd_part_parser *mtd_part_parser_get(const char *name)
 688{
 689        struct mtd_part_parser *p, *ret = NULL;
 690
 691        spin_lock(&part_parser_lock);
 692
 693        list_for_each_entry(p, &part_parsers, list)
 694                if (!strcmp(p->name, name) && try_module_get(p->owner)) {
 695                        ret = p;
 696                        break;
 697                }
 698
 699        spin_unlock(&part_parser_lock);
 700
 701        return ret;
 702}
 703
 704static inline void mtd_part_parser_put(const struct mtd_part_parser *p)
 705{
 706        module_put(p->owner);
 707}
 708
 709/*
 710 * Many partition parsers just expected the core to kfree() all their data in
 711 * one chunk. Do that by default.
 712 */
 713static void mtd_part_parser_cleanup_default(const struct mtd_partition *pparts,
 714                                            int nr_parts)
 715{
 716        kfree(pparts);
 717}
 718
 719int __register_mtd_parser(struct mtd_part_parser *p, struct module *owner)
 720{
 721        p->owner = owner;
 722
 723        if (!p->cleanup)
 724                p->cleanup = &mtd_part_parser_cleanup_default;
 725
 726        spin_lock(&part_parser_lock);
 727        list_add(&p->list, &part_parsers);
 728        spin_unlock(&part_parser_lock);
 729
 730        return 0;
 731}
 732EXPORT_SYMBOL_GPL(__register_mtd_parser);
 733
 734void deregister_mtd_parser(struct mtd_part_parser *p)
 735{
 736        spin_lock(&part_parser_lock);
 737        list_del(&p->list);
 738        spin_unlock(&part_parser_lock);
 739}
 740EXPORT_SYMBOL_GPL(deregister_mtd_parser);
 741
 742/*
 743 * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
 744 * are changing this array!
 745 */
 746static const char * const default_mtd_part_types[] = {
 747        "cmdlinepart",
 748        "ofpart",
 749        NULL
 750};
 751
 752/**
 753 * parse_mtd_partitions - parse MTD partitions
 754 * @master: the master partition (describes whole MTD device)
 755 * @types: names of partition parsers to try or %NULL
 756 * @pparts: info about partitions found is returned here
 757 * @data: MTD partition parser-specific data
 758 *
 759 * This function tries to find partition on MTD device @master. It uses MTD
 760 * partition parsers, specified in @types. However, if @types is %NULL, then
 761 * the default list of parsers is used. The default list contains only the
 762 * "cmdlinepart" and "ofpart" parsers ATM.
 763 * Note: If there are more then one parser in @types, the kernel only takes the
 764 * partitions parsed out by the first parser.
 765 *
 766 * This function may return:
 767 * o a negative error code in case of failure
 768 * o zero otherwise, and @pparts will describe the partitions, number of
 769 *   partitions, and the parser which parsed them. Caller must release
 770 *   resources with mtd_part_parser_cleanup() when finished with the returned
 771 *   data.
 772 */
 773int parse_mtd_partitions(struct mtd_info *master, const char *const *types,
 774                         struct mtd_partitions *pparts,
 775                         struct mtd_part_parser_data *data)
 776{
 777        struct mtd_part_parser *parser;
 778        int ret, err = 0;
 779
 780        if (!types)
 781                types = default_mtd_part_types;
 782
 783        for ( ; *types; types++) {
 784                pr_debug("%s: parsing partitions %s\n", master->name, *types);
 785                parser = mtd_part_parser_get(*types);
 786                if (!parser && !request_module("%s", *types))
 787                        parser = mtd_part_parser_get(*types);
 788                pr_debug("%s: got parser %s\n", master->name,
 789                         parser ? parser->name : NULL);
 790                if (!parser)
 791                        continue;
 792                ret = (*parser->parse_fn)(master, &pparts->parts, data);
 793                pr_debug("%s: parser %s: %i\n",
 794                         master->name, parser->name, ret);
 795                if (ret > 0) {
 796                        printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
 797                               ret, parser->name, master->name);
 798                        pparts->nr_parts = ret;
 799                        pparts->parser = parser;
 800                        return 0;
 801                }
 802                mtd_part_parser_put(parser);
 803                /*
 804                 * Stash the first error we see; only report it if no parser
 805                 * succeeds
 806                 */
 807                if (ret < 0 && !err)
 808                        err = ret;
 809        }
 810        return err;
 811}
 812
 813void mtd_part_parser_cleanup(struct mtd_partitions *parts)
 814{
 815        const struct mtd_part_parser *parser;
 816
 817        if (!parts)
 818                return;
 819
 820        parser = parts->parser;
 821        if (parser) {
 822                if (parser->cleanup)
 823                        parser->cleanup(parts->parts, parts->nr_parts);
 824
 825                mtd_part_parser_put(parser);
 826        }
 827}
 828
 829int mtd_is_partition(const struct mtd_info *mtd)
 830{
 831        struct mtd_part *part;
 832        int ispart = 0;
 833
 834        mutex_lock(&mtd_partitions_mutex);
 835        list_for_each_entry(part, &mtd_partitions, list)
 836                if (&part->mtd == mtd) {
 837                        ispart = 1;
 838                        break;
 839                }
 840        mutex_unlock(&mtd_partitions_mutex);
 841
 842        return ispart;
 843}
 844EXPORT_SYMBOL_GPL(mtd_is_partition);
 845
 846/* Returns the size of the entire flash chip */
 847uint64_t mtd_get_device_size(const struct mtd_info *mtd)
 848{
 849        if (!mtd_is_partition(mtd))
 850                return mtd->size;
 851
 852        return mtd_to_part(mtd)->master->size;
 853}
 854EXPORT_SYMBOL_GPL(mtd_get_device_size);
 855