linux/drivers/mtd/nand/cafe_nand.c
<<
>>
Prefs
   1/*
   2 * Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01
   3 *
   4 * The data sheet for this device can be found at:
   5 *    http://wiki.laptop.org/go/Datasheets 
   6 *
   7 * Copyright © 2006 Red Hat, Inc.
   8 * Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
   9 */
  10
  11#define DEBUG
  12
  13#include <linux/device.h>
  14#undef DEBUG
  15#include <linux/mtd/mtd.h>
  16#include <linux/mtd/nand.h>
  17#include <linux/mtd/partitions.h>
  18#include <linux/rslib.h>
  19#include <linux/pci.h>
  20#include <linux/delay.h>
  21#include <linux/interrupt.h>
  22#include <linux/dma-mapping.h>
  23#include <linux/slab.h>
  24#include <linux/module.h>
  25#include <asm/io.h>
  26
  27#define CAFE_NAND_CTRL1         0x00
  28#define CAFE_NAND_CTRL2         0x04
  29#define CAFE_NAND_CTRL3         0x08
  30#define CAFE_NAND_STATUS        0x0c
  31#define CAFE_NAND_IRQ           0x10
  32#define CAFE_NAND_IRQ_MASK      0x14
  33#define CAFE_NAND_DATA_LEN      0x18
  34#define CAFE_NAND_ADDR1         0x1c
  35#define CAFE_NAND_ADDR2         0x20
  36#define CAFE_NAND_TIMING1       0x24
  37#define CAFE_NAND_TIMING2       0x28
  38#define CAFE_NAND_TIMING3       0x2c
  39#define CAFE_NAND_NONMEM        0x30
  40#define CAFE_NAND_ECC_RESULT    0x3C
  41#define CAFE_NAND_DMA_CTRL      0x40
  42#define CAFE_NAND_DMA_ADDR0     0x44
  43#define CAFE_NAND_DMA_ADDR1     0x48
  44#define CAFE_NAND_ECC_SYN01     0x50
  45#define CAFE_NAND_ECC_SYN23     0x54
  46#define CAFE_NAND_ECC_SYN45     0x58
  47#define CAFE_NAND_ECC_SYN67     0x5c
  48#define CAFE_NAND_READ_DATA     0x1000
  49#define CAFE_NAND_WRITE_DATA    0x2000
  50
  51#define CAFE_GLOBAL_CTRL        0x3004
  52#define CAFE_GLOBAL_IRQ         0x3008
  53#define CAFE_GLOBAL_IRQ_MASK    0x300c
  54#define CAFE_NAND_RESET         0x3034
  55
  56/* Missing from the datasheet: bit 19 of CTRL1 sets CE0 vs. CE1 */
  57#define CTRL1_CHIPSELECT        (1<<19)
  58
  59struct cafe_priv {
  60        struct nand_chip nand;
  61        struct pci_dev *pdev;
  62        void __iomem *mmio;
  63        struct rs_control *rs;
  64        uint32_t ctl1;
  65        uint32_t ctl2;
  66        int datalen;
  67        int nr_data;
  68        int data_pos;
  69        int page_addr;
  70        dma_addr_t dmaaddr;
  71        unsigned char *dmabuf;
  72};
  73
  74static int usedma = 1;
  75module_param(usedma, int, 0644);
  76
  77static int skipbbt = 0;
  78module_param(skipbbt, int, 0644);
  79
  80static int debug = 0;
  81module_param(debug, int, 0644);
  82
  83static int regdebug = 0;
  84module_param(regdebug, int, 0644);
  85
  86static int checkecc = 1;
  87module_param(checkecc, int, 0644);
  88
  89static unsigned int numtimings;
  90static int timing[3];
  91module_param_array(timing, int, &numtimings, 0644);
  92
  93static const char *part_probes[] = { "cmdlinepart", "RedBoot", NULL };
  94
  95/* Hrm. Why isn't this already conditional on something in the struct device? */
  96#define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0)
  97
  98/* Make it easier to switch to PIO if we need to */
  99#define cafe_readl(cafe, addr)                  readl((cafe)->mmio + CAFE_##addr)
 100#define cafe_writel(cafe, datum, addr)          writel(datum, (cafe)->mmio + CAFE_##addr)
 101
 102static int cafe_device_ready(struct mtd_info *mtd)
 103{
 104        struct nand_chip *chip = mtd_to_nand(mtd);
 105        struct cafe_priv *cafe = nand_get_controller_data(chip);
 106        int result = !!(cafe_readl(cafe, NAND_STATUS) & 0x40000000);
 107        uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
 108
 109        cafe_writel(cafe, irqs, NAND_IRQ);
 110
 111        cafe_dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
 112                result?"":" not", irqs, cafe_readl(cafe, NAND_IRQ),
 113                cafe_readl(cafe, GLOBAL_IRQ), cafe_readl(cafe, GLOBAL_IRQ_MASK));
 114
 115        return result;
 116}
 117
 118
 119static void cafe_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
 120{
 121        struct nand_chip *chip = mtd_to_nand(mtd);
 122        struct cafe_priv *cafe = nand_get_controller_data(chip);
 123
 124        if (usedma)
 125                memcpy(cafe->dmabuf + cafe->datalen, buf, len);
 126        else
 127                memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len);
 128
 129        cafe->datalen += len;
 130
 131        cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
 132                len, cafe->datalen);
 133}
 134
 135static void cafe_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
 136{
 137        struct nand_chip *chip = mtd_to_nand(mtd);
 138        struct cafe_priv *cafe = nand_get_controller_data(chip);
 139
 140        if (usedma)
 141                memcpy(buf, cafe->dmabuf + cafe->datalen, len);
 142        else
 143                memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len);
 144
 145        cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
 146                  len, cafe->datalen);
 147        cafe->datalen += len;
 148}
 149
 150static uint8_t cafe_read_byte(struct mtd_info *mtd)
 151{
 152        struct nand_chip *chip = mtd_to_nand(mtd);
 153        struct cafe_priv *cafe = nand_get_controller_data(chip);
 154        uint8_t d;
 155
 156        cafe_read_buf(mtd, &d, 1);
 157        cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d);
 158
 159        return d;
 160}
 161
 162static void cafe_nand_cmdfunc(struct mtd_info *mtd, unsigned command,
 163                              int column, int page_addr)
 164{
 165        struct nand_chip *chip = mtd_to_nand(mtd);
 166        struct cafe_priv *cafe = nand_get_controller_data(chip);
 167        int adrbytes = 0;
 168        uint32_t ctl1;
 169        uint32_t doneint = 0x80000000;
 170
 171        cafe_dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n",
 172                command, column, page_addr);
 173
 174        if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) {
 175                /* Second half of a command we already calculated */
 176                cafe_writel(cafe, cafe->ctl2 | 0x100 | command, NAND_CTRL2);
 177                ctl1 = cafe->ctl1;
 178                cafe->ctl2 &= ~(1<<30);
 179                cafe_dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n",
 180                          cafe->ctl1, cafe->nr_data);
 181                goto do_command;
 182        }
 183        /* Reset ECC engine */
 184        cafe_writel(cafe, 0, NAND_CTRL2);
 185
 186        /* Emulate NAND_CMD_READOOB on large-page chips */
 187        if (mtd->writesize > 512 &&
 188            command == NAND_CMD_READOOB) {
 189                column += mtd->writesize;
 190                command = NAND_CMD_READ0;
 191        }
 192
 193        /* FIXME: Do we need to send read command before sending data
 194           for small-page chips, to position the buffer correctly? */
 195
 196        if (column != -1) {
 197                cafe_writel(cafe, column, NAND_ADDR1);
 198                adrbytes = 2;
 199                if (page_addr != -1)
 200                        goto write_adr2;
 201        } else if (page_addr != -1) {
 202                cafe_writel(cafe, page_addr & 0xffff, NAND_ADDR1);
 203                page_addr >>= 16;
 204        write_adr2:
 205                cafe_writel(cafe, page_addr, NAND_ADDR2);
 206                adrbytes += 2;
 207                if (mtd->size > mtd->writesize << 16)
 208                        adrbytes++;
 209        }
 210
 211        cafe->data_pos = cafe->datalen = 0;
 212
 213        /* Set command valid bit, mask in the chip select bit  */
 214        ctl1 = 0x80000000 | command | (cafe->ctl1 & CTRL1_CHIPSELECT);
 215
 216        /* Set RD or WR bits as appropriate */
 217        if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) {
 218                ctl1 |= (1<<26); /* rd */
 219                /* Always 5 bytes, for now */
 220                cafe->datalen = 4;
 221                /* And one address cycle -- even for STATUS, since the controller doesn't work without */
 222                adrbytes = 1;
 223        } else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
 224                   command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) {
 225                ctl1 |= 1<<26; /* rd */
 226                /* For now, assume just read to end of page */
 227                cafe->datalen = mtd->writesize + mtd->oobsize - column;
 228        } else if (command == NAND_CMD_SEQIN)
 229                ctl1 |= 1<<25; /* wr */
 230
 231        /* Set number of address bytes */
 232        if (adrbytes)
 233                ctl1 |= ((adrbytes-1)|8) << 27;
 234
 235        if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) {
 236                /* Ignore the first command of a pair; the hardware
 237                   deals with them both at once, later */
 238                cafe->ctl1 = ctl1;
 239                cafe_dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n",
 240                          cafe->ctl1, cafe->datalen);
 241                return;
 242        }
 243        /* RNDOUT and READ0 commands need a following byte */
 244        if (command == NAND_CMD_RNDOUT)
 245                cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, NAND_CTRL2);
 246        else if (command == NAND_CMD_READ0 && mtd->writesize > 512)
 247                cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_READSTART, NAND_CTRL2);
 248
 249 do_command:
 250        cafe_dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n",
 251                cafe->datalen, ctl1, cafe_readl(cafe, NAND_CTRL2));
 252
 253        /* NB: The datasheet lies -- we really should be subtracting 1 here */
 254        cafe_writel(cafe, cafe->datalen, NAND_DATA_LEN);
 255        cafe_writel(cafe, 0x90000000, NAND_IRQ);
 256        if (usedma && (ctl1 & (3<<25))) {
 257                uint32_t dmactl = 0xc0000000 + cafe->datalen;
 258                /* If WR or RD bits set, set up DMA */
 259                if (ctl1 & (1<<26)) {
 260                        /* It's a read */
 261                        dmactl |= (1<<29);
 262                        /* ... so it's done when the DMA is done, not just
 263                           the command. */
 264                        doneint = 0x10000000;
 265                }
 266                cafe_writel(cafe, dmactl, NAND_DMA_CTRL);
 267        }
 268        cafe->datalen = 0;
 269
 270        if (unlikely(regdebug)) {
 271                int i;
 272                printk("About to write command %08x to register 0\n", ctl1);
 273                for (i=4; i< 0x5c; i+=4)
 274                        printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
 275        }
 276
 277        cafe_writel(cafe, ctl1, NAND_CTRL1);
 278        /* Apply this short delay always to ensure that we do wait tWB in
 279         * any case on any machine. */
 280        ndelay(100);
 281
 282        if (1) {
 283                int c;
 284                uint32_t irqs;
 285
 286                for (c = 500000; c != 0; c--) {
 287                        irqs = cafe_readl(cafe, NAND_IRQ);
 288                        if (irqs & doneint)
 289                                break;
 290                        udelay(1);
 291                        if (!(c % 100000))
 292                                cafe_dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs);
 293                        cpu_relax();
 294                }
 295                cafe_writel(cafe, doneint, NAND_IRQ);
 296                cafe_dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n",
 297                             command, 500000-c, irqs, cafe_readl(cafe, NAND_IRQ));
 298        }
 299
 300        WARN_ON(cafe->ctl2 & (1<<30));
 301
 302        switch (command) {
 303
 304        case NAND_CMD_CACHEDPROG:
 305        case NAND_CMD_PAGEPROG:
 306        case NAND_CMD_ERASE1:
 307        case NAND_CMD_ERASE2:
 308        case NAND_CMD_SEQIN:
 309        case NAND_CMD_RNDIN:
 310        case NAND_CMD_STATUS:
 311        case NAND_CMD_RNDOUT:
 312                cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
 313                return;
 314        }
 315        nand_wait_ready(mtd);
 316        cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
 317}
 318
 319static void cafe_select_chip(struct mtd_info *mtd, int chipnr)
 320{
 321        struct nand_chip *chip = mtd_to_nand(mtd);
 322        struct cafe_priv *cafe = nand_get_controller_data(chip);
 323
 324        cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);
 325
 326        /* Mask the appropriate bit into the stored value of ctl1
 327           which will be used by cafe_nand_cmdfunc() */
 328        if (chipnr)
 329                cafe->ctl1 |= CTRL1_CHIPSELECT;
 330        else
 331                cafe->ctl1 &= ~CTRL1_CHIPSELECT;
 332}
 333
 334static irqreturn_t cafe_nand_interrupt(int irq, void *id)
 335{
 336        struct mtd_info *mtd = id;
 337        struct nand_chip *chip = mtd_to_nand(mtd);
 338        struct cafe_priv *cafe = nand_get_controller_data(chip);
 339        uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
 340        cafe_writel(cafe, irqs & ~0x90000000, NAND_IRQ);
 341        if (!irqs)
 342                return IRQ_NONE;
 343
 344        cafe_dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, cafe_readl(cafe, NAND_IRQ));
 345        return IRQ_HANDLED;
 346}
 347
 348static void cafe_nand_bug(struct mtd_info *mtd)
 349{
 350        BUG();
 351}
 352
 353static int cafe_nand_write_oob(struct mtd_info *mtd,
 354                               struct nand_chip *chip, int page)
 355{
 356        int status = 0;
 357
 358        chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
 359        chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
 360        chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
 361        status = chip->waitfunc(mtd, chip);
 362
 363        return status & NAND_STATUS_FAIL ? -EIO : 0;
 364}
 365
 366/* Don't use -- use nand_read_oob_std for now */
 367static int cafe_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
 368                              int page)
 369{
 370        chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
 371        chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
 372        return 0;
 373}
 374/**
 375 * cafe_nand_read_page_syndrome - [REPLACEABLE] hardware ecc syndrome based page read
 376 * @mtd:        mtd info structure
 377 * @chip:       nand chip info structure
 378 * @buf:        buffer to store read data
 379 * @oob_required:       caller expects OOB data read to chip->oob_poi
 380 *
 381 * The hw generator calculates the error syndrome automatically. Therefore
 382 * we need a special oob layout and handling.
 383 */
 384static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
 385                               uint8_t *buf, int oob_required, int page)
 386{
 387        struct cafe_priv *cafe = nand_get_controller_data(chip);
 388        unsigned int max_bitflips = 0;
 389
 390        cafe_dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n",
 391                     cafe_readl(cafe, NAND_ECC_RESULT),
 392                     cafe_readl(cafe, NAND_ECC_SYN01));
 393
 394        chip->read_buf(mtd, buf, mtd->writesize);
 395        chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
 396
 397        if (checkecc && cafe_readl(cafe, NAND_ECC_RESULT) & (1<<18)) {
 398                unsigned short syn[8], pat[4];
 399                int pos[4];
 400                u8 *oob = chip->oob_poi;
 401                int i, n;
 402
 403                for (i=0; i<8; i+=2) {
 404                        uint32_t tmp = cafe_readl(cafe, NAND_ECC_SYN01 + (i*2));
 405                        syn[i] = cafe->rs->index_of[tmp & 0xfff];
 406                        syn[i+1] = cafe->rs->index_of[(tmp >> 16) & 0xfff];
 407                }
 408
 409                n = decode_rs16(cafe->rs, NULL, NULL, 1367, syn, 0, pos, 0,
 410                                pat);
 411
 412                for (i = 0; i < n; i++) {
 413                        int p = pos[i];
 414
 415                        /* The 12-bit symbols are mapped to bytes here */
 416
 417                        if (p > 1374) {
 418                                /* out of range */
 419                                n = -1374;
 420                        } else if (p == 0) {
 421                                /* high four bits do not correspond to data */
 422                                if (pat[i] > 0xff)
 423                                        n = -2048;
 424                                else
 425                                        buf[0] ^= pat[i];
 426                        } else if (p == 1365) {
 427                                buf[2047] ^= pat[i] >> 4;
 428                                oob[0] ^= pat[i] << 4;
 429                        } else if (p > 1365) {
 430                                if ((p & 1) == 1) {
 431                                        oob[3*p/2 - 2048] ^= pat[i] >> 4;
 432                                        oob[3*p/2 - 2047] ^= pat[i] << 4;
 433                                } else {
 434                                        oob[3*p/2 - 2049] ^= pat[i] >> 8;
 435                                        oob[3*p/2 - 2048] ^= pat[i];
 436                                }
 437                        } else if ((p & 1) == 1) {
 438                                buf[3*p/2] ^= pat[i] >> 4;
 439                                buf[3*p/2 + 1] ^= pat[i] << 4;
 440                        } else {
 441                                buf[3*p/2 - 1] ^= pat[i] >> 8;
 442                                buf[3*p/2] ^= pat[i];
 443                        }
 444                }
 445
 446                if (n < 0) {
 447                        dev_dbg(&cafe->pdev->dev, "Failed to correct ECC at %08x\n",
 448                                cafe_readl(cafe, NAND_ADDR2) * 2048);
 449                        for (i = 0; i < 0x5c; i += 4)
 450                                printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
 451                        mtd->ecc_stats.failed++;
 452                } else {
 453                        dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", n);
 454                        mtd->ecc_stats.corrected += n;
 455                        max_bitflips = max_t(unsigned int, max_bitflips, n);
 456                }
 457        }
 458
 459        return max_bitflips;
 460}
 461
 462static struct nand_ecclayout cafe_oobinfo_2048 = {
 463        .eccbytes = 14,
 464        .eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
 465        .oobfree = {{14, 50}}
 466};
 467
 468/* Ick. The BBT code really ought to be able to work this bit out
 469   for itself from the above, at least for the 2KiB case */
 470static uint8_t cafe_bbt_pattern_2048[] = { 'B', 'b', 't', '0' };
 471static uint8_t cafe_mirror_pattern_2048[] = { '1', 't', 'b', 'B' };
 472
 473static uint8_t cafe_bbt_pattern_512[] = { 0xBB };
 474static uint8_t cafe_mirror_pattern_512[] = { 0xBC };
 475
 476
 477static struct nand_bbt_descr cafe_bbt_main_descr_2048 = {
 478        .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
 479                | NAND_BBT_2BIT | NAND_BBT_VERSION,
 480        .offs = 14,
 481        .len = 4,
 482        .veroffs = 18,
 483        .maxblocks = 4,
 484        .pattern = cafe_bbt_pattern_2048
 485};
 486
 487static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = {
 488        .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
 489                | NAND_BBT_2BIT | NAND_BBT_VERSION,
 490        .offs = 14,
 491        .len = 4,
 492        .veroffs = 18,
 493        .maxblocks = 4,
 494        .pattern = cafe_mirror_pattern_2048
 495};
 496
 497static struct nand_ecclayout cafe_oobinfo_512 = {
 498        .eccbytes = 14,
 499        .eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
 500        .oobfree = {{14, 2}}
 501};
 502
 503static struct nand_bbt_descr cafe_bbt_main_descr_512 = {
 504        .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
 505                | NAND_BBT_2BIT | NAND_BBT_VERSION,
 506        .offs = 14,
 507        .len = 1,
 508        .veroffs = 15,
 509        .maxblocks = 4,
 510        .pattern = cafe_bbt_pattern_512
 511};
 512
 513static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = {
 514        .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
 515                | NAND_BBT_2BIT | NAND_BBT_VERSION,
 516        .offs = 14,
 517        .len = 1,
 518        .veroffs = 15,
 519        .maxblocks = 4,
 520        .pattern = cafe_mirror_pattern_512
 521};
 522
 523
 524static int cafe_nand_write_page_lowlevel(struct mtd_info *mtd,
 525                                          struct nand_chip *chip,
 526                                          const uint8_t *buf, int oob_required,
 527                                          int page)
 528{
 529        struct cafe_priv *cafe = nand_get_controller_data(chip);
 530
 531        chip->write_buf(mtd, buf, mtd->writesize);
 532        chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
 533
 534        /* Set up ECC autogeneration */
 535        cafe->ctl2 |= (1<<30);
 536
 537        return 0;
 538}
 539
 540static int cafe_nand_block_bad(struct mtd_info *mtd, loff_t ofs)
 541{
 542        return 0;
 543}
 544
 545/* F_2[X]/(X**6+X+1)  */
 546static unsigned short gf64_mul(u8 a, u8 b)
 547{
 548        u8 c;
 549        unsigned int i;
 550
 551        c = 0;
 552        for (i = 0; i < 6; i++) {
 553                if (a & 1)
 554                        c ^= b;
 555                a >>= 1;
 556                b <<= 1;
 557                if ((b & 0x40) != 0)
 558                        b ^= 0x43;
 559        }
 560
 561        return c;
 562}
 563
 564/* F_64[X]/(X**2+X+A**-1) with A the generator of F_64[X]  */
 565static u16 gf4096_mul(u16 a, u16 b)
 566{
 567        u8 ah, al, bh, bl, ch, cl;
 568
 569        ah = a >> 6;
 570        al = a & 0x3f;
 571        bh = b >> 6;
 572        bl = b & 0x3f;
 573
 574        ch = gf64_mul(ah ^ al, bh ^ bl) ^ gf64_mul(al, bl);
 575        cl = gf64_mul(gf64_mul(ah, bh), 0x21) ^ gf64_mul(al, bl);
 576
 577        return (ch << 6) ^ cl;
 578}
 579
 580static int cafe_mul(int x)
 581{
 582        if (x == 0)
 583                return 1;
 584        return gf4096_mul(x, 0xe01);
 585}
 586
 587static int cafe_nand_probe(struct pci_dev *pdev,
 588                                     const struct pci_device_id *ent)
 589{
 590        struct mtd_info *mtd;
 591        struct cafe_priv *cafe;
 592        uint32_t ctrl;
 593        int err = 0;
 594        int old_dma;
 595        struct nand_buffers *nbuf;
 596
 597        /* Very old versions shared the same PCI ident for all three
 598           functions on the chip. Verify the class too... */
 599        if ((pdev->class >> 8) != PCI_CLASS_MEMORY_FLASH)
 600                return -ENODEV;
 601
 602        err = pci_enable_device(pdev);
 603        if (err)
 604                return err;
 605
 606        pci_set_master(pdev);
 607
 608        cafe = kzalloc(sizeof(*cafe), GFP_KERNEL);
 609        if (!cafe)
 610                return  -ENOMEM;
 611
 612        mtd = nand_to_mtd(&cafe->nand);
 613        mtd->dev.parent = &pdev->dev;
 614        nand_set_controller_data(&cafe->nand, cafe);
 615
 616        cafe->pdev = pdev;
 617        cafe->mmio = pci_iomap(pdev, 0, 0);
 618        if (!cafe->mmio) {
 619                dev_warn(&pdev->dev, "failed to iomap\n");
 620                err = -ENOMEM;
 621                goto out_free_mtd;
 622        }
 623
 624        cafe->rs = init_rs_non_canonical(12, &cafe_mul, 0, 1, 8);
 625        if (!cafe->rs) {
 626                err = -ENOMEM;
 627                goto out_ior;
 628        }
 629
 630        cafe->nand.cmdfunc = cafe_nand_cmdfunc;
 631        cafe->nand.dev_ready = cafe_device_ready;
 632        cafe->nand.read_byte = cafe_read_byte;
 633        cafe->nand.read_buf = cafe_read_buf;
 634        cafe->nand.write_buf = cafe_write_buf;
 635        cafe->nand.select_chip = cafe_select_chip;
 636
 637        cafe->nand.chip_delay = 0;
 638
 639        /* Enable the following for a flash based bad block table */
 640        cafe->nand.bbt_options = NAND_BBT_USE_FLASH;
 641        cafe->nand.options = NAND_OWN_BUFFERS;
 642
 643        if (skipbbt) {
 644                cafe->nand.options |= NAND_SKIP_BBTSCAN;
 645                cafe->nand.block_bad = cafe_nand_block_bad;
 646        }
 647
 648        if (numtimings && numtimings != 3) {
 649                dev_warn(&cafe->pdev->dev, "%d timing register values ignored; precisely three are required\n", numtimings);
 650        }
 651
 652        if (numtimings == 3) {
 653                cafe_dev_dbg(&cafe->pdev->dev, "Using provided timings (%08x %08x %08x)\n",
 654                             timing[0], timing[1], timing[2]);
 655        } else {
 656                timing[0] = cafe_readl(cafe, NAND_TIMING1);
 657                timing[1] = cafe_readl(cafe, NAND_TIMING2);
 658                timing[2] = cafe_readl(cafe, NAND_TIMING3);
 659
 660                if (timing[0] | timing[1] | timing[2]) {
 661                        cafe_dev_dbg(&cafe->pdev->dev, "Timing registers already set (%08x %08x %08x)\n",
 662                                     timing[0], timing[1], timing[2]);
 663                } else {
 664                        dev_warn(&cafe->pdev->dev, "Timing registers unset; using most conservative defaults\n");
 665                        timing[0] = timing[1] = timing[2] = 0xffffffff;
 666                }
 667        }
 668
 669        /* Start off by resetting the NAND controller completely */
 670        cafe_writel(cafe, 1, NAND_RESET);
 671        cafe_writel(cafe, 0, NAND_RESET);
 672
 673        cafe_writel(cafe, timing[0], NAND_TIMING1);
 674        cafe_writel(cafe, timing[1], NAND_TIMING2);
 675        cafe_writel(cafe, timing[2], NAND_TIMING3);
 676
 677        cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
 678        err = request_irq(pdev->irq, &cafe_nand_interrupt, IRQF_SHARED,
 679                          "CAFE NAND", mtd);
 680        if (err) {
 681                dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq);
 682                goto out_ior;
 683        }
 684
 685        /* Disable master reset, enable NAND clock */
 686        ctrl = cafe_readl(cafe, GLOBAL_CTRL);
 687        ctrl &= 0xffffeff0;
 688        ctrl |= 0x00007000;
 689        cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
 690        cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
 691        cafe_writel(cafe, 0, NAND_DMA_CTRL);
 692
 693        cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
 694        cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
 695
 696        /* Enable NAND IRQ in global IRQ mask register */
 697        cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
 698        cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n",
 699                cafe_readl(cafe, GLOBAL_CTRL),
 700                cafe_readl(cafe, GLOBAL_IRQ_MASK));
 701
 702        /* Do not use the DMA for the nand_scan_ident() */
 703        old_dma = usedma;
 704        usedma = 0;
 705
 706        /* Scan to find existence of the device */
 707        if (nand_scan_ident(mtd, 2, NULL)) {
 708                err = -ENXIO;
 709                goto out_irq;
 710        }
 711
 712        cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev,
 713                                2112 + sizeof(struct nand_buffers) +
 714                                mtd->writesize + mtd->oobsize,
 715                                &cafe->dmaaddr, GFP_KERNEL);
 716        if (!cafe->dmabuf) {
 717                err = -ENOMEM;
 718                goto out_irq;
 719        }
 720        cafe->nand.buffers = nbuf = (void *)cafe->dmabuf + 2112;
 721
 722        /* Set up DMA address */
 723        cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
 724        if (sizeof(cafe->dmaaddr) > 4)
 725                /* Shift in two parts to shut the compiler up */
 726                cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
 727        else
 728                cafe_writel(cafe, 0, NAND_DMA_ADDR1);
 729
 730        cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n",
 731                cafe_readl(cafe, NAND_DMA_ADDR0), cafe->dmabuf);
 732
 733        /* this driver does not need the @ecccalc and @ecccode */
 734        nbuf->ecccalc = NULL;
 735        nbuf->ecccode = NULL;
 736        nbuf->databuf = (uint8_t *)(nbuf + 1);
 737
 738        /* Restore the DMA flag */
 739        usedma = old_dma;
 740
 741        cafe->ctl2 = 1<<27; /* Reed-Solomon ECC */
 742        if (mtd->writesize == 2048)
 743                cafe->ctl2 |= 1<<29; /* 2KiB page size */
 744
 745        /* Set up ECC according to the type of chip we found */
 746        if (mtd->writesize == 2048) {
 747                cafe->nand.ecc.layout = &cafe_oobinfo_2048;
 748                cafe->nand.bbt_td = &cafe_bbt_main_descr_2048;
 749                cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048;
 750        } else if (mtd->writesize == 512) {
 751                cafe->nand.ecc.layout = &cafe_oobinfo_512;
 752                cafe->nand.bbt_td = &cafe_bbt_main_descr_512;
 753                cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512;
 754        } else {
 755                printk(KERN_WARNING "Unexpected NAND flash writesize %d. Aborting\n",
 756                       mtd->writesize);
 757                goto out_free_dma;
 758        }
 759        cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
 760        cafe->nand.ecc.size = mtd->writesize;
 761        cafe->nand.ecc.bytes = 14;
 762        cafe->nand.ecc.strength = 4;
 763        cafe->nand.ecc.hwctl  = (void *)cafe_nand_bug;
 764        cafe->nand.ecc.calculate = (void *)cafe_nand_bug;
 765        cafe->nand.ecc.correct  = (void *)cafe_nand_bug;
 766        cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel;
 767        cafe->nand.ecc.write_oob = cafe_nand_write_oob;
 768        cafe->nand.ecc.read_page = cafe_nand_read_page;
 769        cafe->nand.ecc.read_oob = cafe_nand_read_oob;
 770
 771        err = nand_scan_tail(mtd);
 772        if (err)
 773                goto out_free_dma;
 774
 775        pci_set_drvdata(pdev, mtd);
 776
 777        mtd->name = "cafe_nand";
 778        mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0);
 779
 780        goto out;
 781
 782 out_free_dma:
 783        dma_free_coherent(&cafe->pdev->dev,
 784                        2112 + sizeof(struct nand_buffers) +
 785                        mtd->writesize + mtd->oobsize,
 786                        cafe->dmabuf, cafe->dmaaddr);
 787 out_irq:
 788        /* Disable NAND IRQ in global IRQ mask register */
 789        cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
 790        free_irq(pdev->irq, mtd);
 791 out_ior:
 792        pci_iounmap(pdev, cafe->mmio);
 793 out_free_mtd:
 794        kfree(cafe);
 795 out:
 796        return err;
 797}
 798
 799static void cafe_nand_remove(struct pci_dev *pdev)
 800{
 801        struct mtd_info *mtd = pci_get_drvdata(pdev);
 802        struct nand_chip *chip = mtd_to_nand(mtd);
 803        struct cafe_priv *cafe = nand_get_controller_data(chip);
 804
 805        /* Disable NAND IRQ in global IRQ mask register */
 806        cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
 807        free_irq(pdev->irq, mtd);
 808        nand_release(mtd);
 809        free_rs(cafe->rs);
 810        pci_iounmap(pdev, cafe->mmio);
 811        dma_free_coherent(&cafe->pdev->dev,
 812                        2112 + sizeof(struct nand_buffers) +
 813                        mtd->writesize + mtd->oobsize,
 814                        cafe->dmabuf, cafe->dmaaddr);
 815        kfree(cafe);
 816}
 817
 818static const struct pci_device_id cafe_nand_tbl[] = {
 819        { PCI_VENDOR_ID_MARVELL, PCI_DEVICE_ID_MARVELL_88ALP01_NAND,
 820          PCI_ANY_ID, PCI_ANY_ID },
 821        { }
 822};
 823
 824MODULE_DEVICE_TABLE(pci, cafe_nand_tbl);
 825
 826static int cafe_nand_resume(struct pci_dev *pdev)
 827{
 828        uint32_t ctrl;
 829        struct mtd_info *mtd = pci_get_drvdata(pdev);
 830        struct nand_chip *chip = mtd_to_nand(mtd);
 831        struct cafe_priv *cafe = nand_get_controller_data(chip);
 832
 833       /* Start off by resetting the NAND controller completely */
 834        cafe_writel(cafe, 1, NAND_RESET);
 835        cafe_writel(cafe, 0, NAND_RESET);
 836        cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
 837
 838        /* Restore timing configuration */
 839        cafe_writel(cafe, timing[0], NAND_TIMING1);
 840        cafe_writel(cafe, timing[1], NAND_TIMING2);
 841        cafe_writel(cafe, timing[2], NAND_TIMING3);
 842
 843        /* Disable master reset, enable NAND clock */
 844        ctrl = cafe_readl(cafe, GLOBAL_CTRL);
 845        ctrl &= 0xffffeff0;
 846        ctrl |= 0x00007000;
 847        cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
 848        cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
 849        cafe_writel(cafe, 0, NAND_DMA_CTRL);
 850        cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
 851        cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
 852
 853        /* Set up DMA address */
 854        cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
 855        if (sizeof(cafe->dmaaddr) > 4)
 856        /* Shift in two parts to shut the compiler up */
 857                cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
 858        else
 859                cafe_writel(cafe, 0, NAND_DMA_ADDR1);
 860
 861        /* Enable NAND IRQ in global IRQ mask register */
 862        cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
 863        return 0;
 864}
 865
 866static struct pci_driver cafe_nand_pci_driver = {
 867        .name = "CAFÉ NAND",
 868        .id_table = cafe_nand_tbl,
 869        .probe = cafe_nand_probe,
 870        .remove = cafe_nand_remove,
 871        .resume = cafe_nand_resume,
 872};
 873
 874module_pci_driver(cafe_nand_pci_driver);
 875
 876MODULE_LICENSE("GPL");
 877MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
 878MODULE_DESCRIPTION("NAND flash driver for OLPC CAFÉ chip");
 879