linux/drivers/mtd/nand/lpc32xx_slc.c
<<
>>
Prefs
   1/*
   2 * NXP LPC32XX NAND SLC driver
   3 *
   4 * Authors:
   5 *    Kevin Wells <kevin.wells@nxp.com>
   6 *    Roland Stigge <stigge@antcom.de>
   7 *
   8 * Copyright © 2011 NXP Semiconductors
   9 * Copyright © 2012 Roland Stigge
  10 *
  11 * This program is free software; you can redistribute it and/or modify
  12 * it under the terms of the GNU General Public License as published by
  13 * the Free Software Foundation; either version 2 of the License, or
  14 * (at your option) any later version.
  15 *
  16 * This program is distributed in the hope that it will be useful,
  17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  19 * GNU General Public License for more details.
  20 */
  21
  22#include <linux/slab.h>
  23#include <linux/module.h>
  24#include <linux/platform_device.h>
  25#include <linux/mtd/mtd.h>
  26#include <linux/mtd/nand.h>
  27#include <linux/mtd/partitions.h>
  28#include <linux/clk.h>
  29#include <linux/err.h>
  30#include <linux/delay.h>
  31#include <linux/io.h>
  32#include <linux/mm.h>
  33#include <linux/dma-mapping.h>
  34#include <linux/dmaengine.h>
  35#include <linux/mtd/nand_ecc.h>
  36#include <linux/gpio.h>
  37#include <linux/of.h>
  38#include <linux/of_mtd.h>
  39#include <linux/of_gpio.h>
  40#include <linux/mtd/lpc32xx_slc.h>
  41
  42#define LPC32XX_MODNAME         "lpc32xx-nand"
  43
  44/**********************************************************************
  45* SLC NAND controller register offsets
  46**********************************************************************/
  47
  48#define SLC_DATA(x)             (x + 0x000)
  49#define SLC_ADDR(x)             (x + 0x004)
  50#define SLC_CMD(x)              (x + 0x008)
  51#define SLC_STOP(x)             (x + 0x00C)
  52#define SLC_CTRL(x)             (x + 0x010)
  53#define SLC_CFG(x)              (x + 0x014)
  54#define SLC_STAT(x)             (x + 0x018)
  55#define SLC_INT_STAT(x)         (x + 0x01C)
  56#define SLC_IEN(x)              (x + 0x020)
  57#define SLC_ISR(x)              (x + 0x024)
  58#define SLC_ICR(x)              (x + 0x028)
  59#define SLC_TAC(x)              (x + 0x02C)
  60#define SLC_TC(x)               (x + 0x030)
  61#define SLC_ECC(x)              (x + 0x034)
  62#define SLC_DMA_DATA(x)         (x + 0x038)
  63
  64/**********************************************************************
  65* slc_ctrl register definitions
  66**********************************************************************/
  67#define SLCCTRL_SW_RESET        (1 << 2) /* Reset the NAND controller bit */
  68#define SLCCTRL_ECC_CLEAR       (1 << 1) /* Reset ECC bit */
  69#define SLCCTRL_DMA_START       (1 << 0) /* Start DMA channel bit */
  70
  71/**********************************************************************
  72* slc_cfg register definitions
  73**********************************************************************/
  74#define SLCCFG_CE_LOW           (1 << 5) /* Force CE low bit */
  75#define SLCCFG_DMA_ECC          (1 << 4) /* Enable DMA ECC bit */
  76#define SLCCFG_ECC_EN           (1 << 3) /* ECC enable bit */
  77#define SLCCFG_DMA_BURST        (1 << 2) /* DMA burst bit */
  78#define SLCCFG_DMA_DIR          (1 << 1) /* DMA write(0)/read(1) bit */
  79#define SLCCFG_WIDTH            (1 << 0) /* External device width, 0=8bit */
  80
  81/**********************************************************************
  82* slc_stat register definitions
  83**********************************************************************/
  84#define SLCSTAT_DMA_FIFO        (1 << 2) /* DMA FIFO has data bit */
  85#define SLCSTAT_SLC_FIFO        (1 << 1) /* SLC FIFO has data bit */
  86#define SLCSTAT_NAND_READY      (1 << 0) /* NAND device is ready bit */
  87
  88/**********************************************************************
  89* slc_int_stat, slc_ien, slc_isr, and slc_icr register definitions
  90**********************************************************************/
  91#define SLCSTAT_INT_TC          (1 << 1) /* Transfer count bit */
  92#define SLCSTAT_INT_RDY_EN      (1 << 0) /* Ready interrupt bit */
  93
  94/**********************************************************************
  95* slc_tac register definitions
  96**********************************************************************/
  97/* Computation of clock cycles on basis of controller and device clock rates */
  98#define SLCTAC_CLOCKS(c, n, s)  (min_t(u32, DIV_ROUND_UP(c, n) - 1, 0xF) << s)
  99
 100/* Clock setting for RDY write sample wait time in 2*n clocks */
 101#define SLCTAC_WDR(n)           (((n) & 0xF) << 28)
 102/* Write pulse width in clock cycles, 1 to 16 clocks */
 103#define SLCTAC_WWIDTH(c, n)     (SLCTAC_CLOCKS(c, n, 24))
 104/* Write hold time of control and data signals, 1 to 16 clocks */
 105#define SLCTAC_WHOLD(c, n)      (SLCTAC_CLOCKS(c, n, 20))
 106/* Write setup time of control and data signals, 1 to 16 clocks */
 107#define SLCTAC_WSETUP(c, n)     (SLCTAC_CLOCKS(c, n, 16))
 108/* Clock setting for RDY read sample wait time in 2*n clocks */
 109#define SLCTAC_RDR(n)           (((n) & 0xF) << 12)
 110/* Read pulse width in clock cycles, 1 to 16 clocks */
 111#define SLCTAC_RWIDTH(c, n)     (SLCTAC_CLOCKS(c, n, 8))
 112/* Read hold time of control and data signals, 1 to 16 clocks */
 113#define SLCTAC_RHOLD(c, n)      (SLCTAC_CLOCKS(c, n, 4))
 114/* Read setup time of control and data signals, 1 to 16 clocks */
 115#define SLCTAC_RSETUP(c, n)     (SLCTAC_CLOCKS(c, n, 0))
 116
 117/**********************************************************************
 118* slc_ecc register definitions
 119**********************************************************************/
 120/* ECC line party fetch macro */
 121#define SLCECC_TO_LINEPAR(n)    (((n) >> 6) & 0x7FFF)
 122#define SLCECC_TO_COLPAR(n)     ((n) & 0x3F)
 123
 124/*
 125 * DMA requires storage space for the DMA local buffer and the hardware ECC
 126 * storage area. The DMA local buffer is only used if DMA mapping fails
 127 * during runtime.
 128 */
 129#define LPC32XX_DMA_DATA_SIZE           4096
 130#define LPC32XX_ECC_SAVE_SIZE           ((4096 / 256) * 4)
 131
 132/* Number of bytes used for ECC stored in NAND per 256 bytes */
 133#define LPC32XX_SLC_DEV_ECC_BYTES       3
 134
 135/*
 136 * If the NAND base clock frequency can't be fetched, this frequency will be
 137 * used instead as the base. This rate is used to setup the timing registers
 138 * used for NAND accesses.
 139 */
 140#define LPC32XX_DEF_BUS_RATE            133250000
 141
 142/* Milliseconds for DMA FIFO timeout (unlikely anyway) */
 143#define LPC32XX_DMA_TIMEOUT             100
 144
 145/*
 146 * NAND ECC Layout for small page NAND devices
 147 * Note: For large and huge page devices, the default layouts are used
 148 */
 149static struct nand_ecclayout lpc32xx_nand_oob_16 = {
 150        .eccbytes = 6,
 151        .eccpos = {10, 11, 12, 13, 14, 15},
 152        .oobfree = {
 153                { .offset = 0, .length = 4 },
 154                { .offset = 6, .length = 4 },
 155        },
 156};
 157
 158static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
 159static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
 160
 161/*
 162 * Small page FLASH BBT descriptors, marker at offset 0, version at offset 6
 163 * Note: Large page devices used the default layout
 164 */
 165static struct nand_bbt_descr bbt_smallpage_main_descr = {
 166        .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
 167                | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
 168        .offs = 0,
 169        .len = 4,
 170        .veroffs = 6,
 171        .maxblocks = 4,
 172        .pattern = bbt_pattern
 173};
 174
 175static struct nand_bbt_descr bbt_smallpage_mirror_descr = {
 176        .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
 177                | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
 178        .offs = 0,
 179        .len = 4,
 180        .veroffs = 6,
 181        .maxblocks = 4,
 182        .pattern = mirror_pattern
 183};
 184
 185/*
 186 * NAND platform configuration structure
 187 */
 188struct lpc32xx_nand_cfg_slc {
 189        uint32_t wdr_clks;
 190        uint32_t wwidth;
 191        uint32_t whold;
 192        uint32_t wsetup;
 193        uint32_t rdr_clks;
 194        uint32_t rwidth;
 195        uint32_t rhold;
 196        uint32_t rsetup;
 197        bool use_bbt;
 198        int wp_gpio;
 199        struct mtd_partition *parts;
 200        unsigned num_parts;
 201};
 202
 203struct lpc32xx_nand_host {
 204        struct nand_chip        nand_chip;
 205        struct lpc32xx_slc_platform_data *pdata;
 206        struct clk              *clk;
 207        void __iomem            *io_base;
 208        struct lpc32xx_nand_cfg_slc *ncfg;
 209
 210        struct completion       comp;
 211        struct dma_chan         *dma_chan;
 212        uint32_t                dma_buf_len;
 213        struct dma_slave_config dma_slave_config;
 214        struct scatterlist      sgl;
 215
 216        /*
 217         * DMA and CPU addresses of ECC work area and data buffer
 218         */
 219        uint32_t                *ecc_buf;
 220        uint8_t                 *data_buf;
 221        dma_addr_t              io_base_dma;
 222};
 223
 224static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host)
 225{
 226        uint32_t clkrate, tmp;
 227
 228        /* Reset SLC controller */
 229        writel(SLCCTRL_SW_RESET, SLC_CTRL(host->io_base));
 230        udelay(1000);
 231
 232        /* Basic setup */
 233        writel(0, SLC_CFG(host->io_base));
 234        writel(0, SLC_IEN(host->io_base));
 235        writel((SLCSTAT_INT_TC | SLCSTAT_INT_RDY_EN),
 236                SLC_ICR(host->io_base));
 237
 238        /* Get base clock for SLC block */
 239        clkrate = clk_get_rate(host->clk);
 240        if (clkrate == 0)
 241                clkrate = LPC32XX_DEF_BUS_RATE;
 242
 243        /* Compute clock setup values */
 244        tmp = SLCTAC_WDR(host->ncfg->wdr_clks) |
 245                SLCTAC_WWIDTH(clkrate, host->ncfg->wwidth) |
 246                SLCTAC_WHOLD(clkrate, host->ncfg->whold) |
 247                SLCTAC_WSETUP(clkrate, host->ncfg->wsetup) |
 248                SLCTAC_RDR(host->ncfg->rdr_clks) |
 249                SLCTAC_RWIDTH(clkrate, host->ncfg->rwidth) |
 250                SLCTAC_RHOLD(clkrate, host->ncfg->rhold) |
 251                SLCTAC_RSETUP(clkrate, host->ncfg->rsetup);
 252        writel(tmp, SLC_TAC(host->io_base));
 253}
 254
 255/*
 256 * Hardware specific access to control lines
 257 */
 258static void lpc32xx_nand_cmd_ctrl(struct mtd_info *mtd, int cmd,
 259        unsigned int ctrl)
 260{
 261        uint32_t tmp;
 262        struct nand_chip *chip = mtd_to_nand(mtd);
 263        struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 264
 265        /* Does CE state need to be changed? */
 266        tmp = readl(SLC_CFG(host->io_base));
 267        if (ctrl & NAND_NCE)
 268                tmp |= SLCCFG_CE_LOW;
 269        else
 270                tmp &= ~SLCCFG_CE_LOW;
 271        writel(tmp, SLC_CFG(host->io_base));
 272
 273        if (cmd != NAND_CMD_NONE) {
 274                if (ctrl & NAND_CLE)
 275                        writel(cmd, SLC_CMD(host->io_base));
 276                else
 277                        writel(cmd, SLC_ADDR(host->io_base));
 278        }
 279}
 280
 281/*
 282 * Read the Device Ready pin
 283 */
 284static int lpc32xx_nand_device_ready(struct mtd_info *mtd)
 285{
 286        struct nand_chip *chip = mtd_to_nand(mtd);
 287        struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 288        int rdy = 0;
 289
 290        if ((readl(SLC_STAT(host->io_base)) & SLCSTAT_NAND_READY) != 0)
 291                rdy = 1;
 292
 293        return rdy;
 294}
 295
 296/*
 297 * Enable NAND write protect
 298 */
 299static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host)
 300{
 301        if (gpio_is_valid(host->ncfg->wp_gpio))
 302                gpio_set_value(host->ncfg->wp_gpio, 0);
 303}
 304
 305/*
 306 * Disable NAND write protect
 307 */
 308static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host)
 309{
 310        if (gpio_is_valid(host->ncfg->wp_gpio))
 311                gpio_set_value(host->ncfg->wp_gpio, 1);
 312}
 313
 314/*
 315 * Prepares SLC for transfers with H/W ECC enabled
 316 */
 317static void lpc32xx_nand_ecc_enable(struct mtd_info *mtd, int mode)
 318{
 319        /* Hardware ECC is enabled automatically in hardware as needed */
 320}
 321
 322/*
 323 * Calculates the ECC for the data
 324 */
 325static int lpc32xx_nand_ecc_calculate(struct mtd_info *mtd,
 326                                      const unsigned char *buf,
 327                                      unsigned char *code)
 328{
 329        /*
 330         * ECC is calculated automatically in hardware during syndrome read
 331         * and write operations, so it doesn't need to be calculated here.
 332         */
 333        return 0;
 334}
 335
 336/*
 337 * Read a single byte from NAND device
 338 */
 339static uint8_t lpc32xx_nand_read_byte(struct mtd_info *mtd)
 340{
 341        struct nand_chip *chip = mtd_to_nand(mtd);
 342        struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 343
 344        return (uint8_t)readl(SLC_DATA(host->io_base));
 345}
 346
 347/*
 348 * Simple device read without ECC
 349 */
 350static void lpc32xx_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
 351{
 352        struct nand_chip *chip = mtd_to_nand(mtd);
 353        struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 354
 355        /* Direct device read with no ECC */
 356        while (len-- > 0)
 357                *buf++ = (uint8_t)readl(SLC_DATA(host->io_base));
 358}
 359
 360/*
 361 * Simple device write without ECC
 362 */
 363static void lpc32xx_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
 364{
 365        struct nand_chip *chip = mtd_to_nand(mtd);
 366        struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 367
 368        /* Direct device write with no ECC */
 369        while (len-- > 0)
 370                writel((uint32_t)*buf++, SLC_DATA(host->io_base));
 371}
 372
 373/*
 374 * Read the OOB data from the device without ECC using FIFO method
 375 */
 376static int lpc32xx_nand_read_oob_syndrome(struct mtd_info *mtd,
 377                                          struct nand_chip *chip, int page)
 378{
 379        chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
 380        chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
 381
 382        return 0;
 383}
 384
 385/*
 386 * Write the OOB data to the device without ECC using FIFO method
 387 */
 388static int lpc32xx_nand_write_oob_syndrome(struct mtd_info *mtd,
 389        struct nand_chip *chip, int page)
 390{
 391        int status;
 392
 393        chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
 394        chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
 395
 396        /* Send command to program the OOB data */
 397        chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
 398
 399        status = chip->waitfunc(mtd, chip);
 400
 401        return status & NAND_STATUS_FAIL ? -EIO : 0;
 402}
 403
 404/*
 405 * Fills in the ECC fields in the OOB buffer with the hardware generated ECC
 406 */
 407static void lpc32xx_slc_ecc_copy(uint8_t *spare, const uint32_t *ecc, int count)
 408{
 409        int i;
 410
 411        for (i = 0; i < (count * 3); i += 3) {
 412                uint32_t ce = ecc[i / 3];
 413                ce = ~(ce << 2) & 0xFFFFFF;
 414                spare[i + 2] = (uint8_t)(ce & 0xFF);
 415                ce >>= 8;
 416                spare[i + 1] = (uint8_t)(ce & 0xFF);
 417                ce >>= 8;
 418                spare[i] = (uint8_t)(ce & 0xFF);
 419        }
 420}
 421
 422static void lpc32xx_dma_complete_func(void *completion)
 423{
 424        complete(completion);
 425}
 426
 427static int lpc32xx_xmit_dma(struct mtd_info *mtd, dma_addr_t dma,
 428                            void *mem, int len, enum dma_transfer_direction dir)
 429{
 430        struct nand_chip *chip = mtd_to_nand(mtd);
 431        struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 432        struct dma_async_tx_descriptor *desc;
 433        int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
 434        int res;
 435
 436        host->dma_slave_config.direction = dir;
 437        host->dma_slave_config.src_addr = dma;
 438        host->dma_slave_config.dst_addr = dma;
 439        host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 440        host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 441        host->dma_slave_config.src_maxburst = 4;
 442        host->dma_slave_config.dst_maxburst = 4;
 443        /* DMA controller does flow control: */
 444        host->dma_slave_config.device_fc = false;
 445        if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) {
 446                dev_err(mtd->dev.parent, "Failed to setup DMA slave\n");
 447                return -ENXIO;
 448        }
 449
 450        sg_init_one(&host->sgl, mem, len);
 451
 452        res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1,
 453                         DMA_BIDIRECTIONAL);
 454        if (res != 1) {
 455                dev_err(mtd->dev.parent, "Failed to map sg list\n");
 456                return -ENXIO;
 457        }
 458        desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir,
 459                                       flags);
 460        if (!desc) {
 461                dev_err(mtd->dev.parent, "Failed to prepare slave sg\n");
 462                goto out1;
 463        }
 464
 465        init_completion(&host->comp);
 466        desc->callback = lpc32xx_dma_complete_func;
 467        desc->callback_param = &host->comp;
 468
 469        dmaengine_submit(desc);
 470        dma_async_issue_pending(host->dma_chan);
 471
 472        wait_for_completion_timeout(&host->comp, msecs_to_jiffies(1000));
 473
 474        dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
 475                     DMA_BIDIRECTIONAL);
 476
 477        return 0;
 478out1:
 479        dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
 480                     DMA_BIDIRECTIONAL);
 481        return -ENXIO;
 482}
 483
 484/*
 485 * DMA read/write transfers with ECC support
 486 */
 487static int lpc32xx_xfer(struct mtd_info *mtd, uint8_t *buf, int eccsubpages,
 488                        int read)
 489{
 490        struct nand_chip *chip = mtd_to_nand(mtd);
 491        struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 492        int i, status = 0;
 493        unsigned long timeout;
 494        int res;
 495        enum dma_transfer_direction dir =
 496                read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
 497        uint8_t *dma_buf;
 498        bool dma_mapped;
 499
 500        if ((void *)buf <= high_memory) {
 501                dma_buf = buf;
 502                dma_mapped = true;
 503        } else {
 504                dma_buf = host->data_buf;
 505                dma_mapped = false;
 506                if (!read)
 507                        memcpy(host->data_buf, buf, mtd->writesize);
 508        }
 509
 510        if (read) {
 511                writel(readl(SLC_CFG(host->io_base)) |
 512                       SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC |
 513                       SLCCFG_DMA_BURST, SLC_CFG(host->io_base));
 514        } else {
 515                writel((readl(SLC_CFG(host->io_base)) |
 516                        SLCCFG_ECC_EN | SLCCFG_DMA_ECC | SLCCFG_DMA_BURST) &
 517                       ~SLCCFG_DMA_DIR,
 518                        SLC_CFG(host->io_base));
 519        }
 520
 521        /* Clear initial ECC */
 522        writel(SLCCTRL_ECC_CLEAR, SLC_CTRL(host->io_base));
 523
 524        /* Transfer size is data area only */
 525        writel(mtd->writesize, SLC_TC(host->io_base));
 526
 527        /* Start transfer in the NAND controller */
 528        writel(readl(SLC_CTRL(host->io_base)) | SLCCTRL_DMA_START,
 529               SLC_CTRL(host->io_base));
 530
 531        for (i = 0; i < chip->ecc.steps; i++) {
 532                /* Data */
 533                res = lpc32xx_xmit_dma(mtd, SLC_DMA_DATA(host->io_base_dma),
 534                                       dma_buf + i * chip->ecc.size,
 535                                       mtd->writesize / chip->ecc.steps, dir);
 536                if (res)
 537                        return res;
 538
 539                /* Always _read_ ECC */
 540                if (i == chip->ecc.steps - 1)
 541                        break;
 542                if (!read) /* ECC availability delayed on write */
 543                        udelay(10);
 544                res = lpc32xx_xmit_dma(mtd, SLC_ECC(host->io_base_dma),
 545                                       &host->ecc_buf[i], 4, DMA_DEV_TO_MEM);
 546                if (res)
 547                        return res;
 548        }
 549
 550        /*
 551         * According to NXP, the DMA can be finished here, but the NAND
 552         * controller may still have buffered data. After porting to using the
 553         * dmaengine DMA driver (amba-pl080), the condition (DMA_FIFO empty)
 554         * appears to be always true, according to tests. Keeping the check for
 555         * safety reasons for now.
 556         */
 557        if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) {
 558                dev_warn(mtd->dev.parent, "FIFO not empty!\n");
 559                timeout = jiffies + msecs_to_jiffies(LPC32XX_DMA_TIMEOUT);
 560                while ((readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) &&
 561                       time_before(jiffies, timeout))
 562                        cpu_relax();
 563                if (!time_before(jiffies, timeout)) {
 564                        dev_err(mtd->dev.parent, "FIFO held data too long\n");
 565                        status = -EIO;
 566                }
 567        }
 568
 569        /* Read last calculated ECC value */
 570        if (!read)
 571                udelay(10);
 572        host->ecc_buf[chip->ecc.steps - 1] =
 573                readl(SLC_ECC(host->io_base));
 574
 575        /* Flush DMA */
 576        dmaengine_terminate_all(host->dma_chan);
 577
 578        if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO ||
 579            readl(SLC_TC(host->io_base))) {
 580                /* Something is left in the FIFO, something is wrong */
 581                dev_err(mtd->dev.parent, "DMA FIFO failure\n");
 582                status = -EIO;
 583        }
 584
 585        /* Stop DMA & HW ECC */
 586        writel(readl(SLC_CTRL(host->io_base)) & ~SLCCTRL_DMA_START,
 587               SLC_CTRL(host->io_base));
 588        writel(readl(SLC_CFG(host->io_base)) &
 589               ~(SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC |
 590                 SLCCFG_DMA_BURST), SLC_CFG(host->io_base));
 591
 592        if (!dma_mapped && read)
 593                memcpy(buf, host->data_buf, mtd->writesize);
 594
 595        return status;
 596}
 597
 598/*
 599 * Read the data and OOB data from the device, use ECC correction with the
 600 * data, disable ECC for the OOB data
 601 */
 602static int lpc32xx_nand_read_page_syndrome(struct mtd_info *mtd,
 603                                           struct nand_chip *chip, uint8_t *buf,
 604                                           int oob_required, int page)
 605{
 606        struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 607        int stat, i, status;
 608        uint8_t *oobecc, tmpecc[LPC32XX_ECC_SAVE_SIZE];
 609
 610        /* Issue read command */
 611        chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
 612
 613        /* Read data and oob, calculate ECC */
 614        status = lpc32xx_xfer(mtd, buf, chip->ecc.steps, 1);
 615
 616        /* Get OOB data */
 617        chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
 618
 619        /* Convert to stored ECC format */
 620        lpc32xx_slc_ecc_copy(tmpecc, (uint32_t *) host->ecc_buf, chip->ecc.steps);
 621
 622        /* Pointer to ECC data retrieved from NAND spare area */
 623        oobecc = chip->oob_poi + chip->ecc.layout->eccpos[0];
 624
 625        for (i = 0; i < chip->ecc.steps; i++) {
 626                stat = chip->ecc.correct(mtd, buf, oobecc,
 627                                         &tmpecc[i * chip->ecc.bytes]);
 628                if (stat < 0)
 629                        mtd->ecc_stats.failed++;
 630                else
 631                        mtd->ecc_stats.corrected += stat;
 632
 633                buf += chip->ecc.size;
 634                oobecc += chip->ecc.bytes;
 635        }
 636
 637        return status;
 638}
 639
 640/*
 641 * Read the data and OOB data from the device, no ECC correction with the
 642 * data or OOB data
 643 */
 644static int lpc32xx_nand_read_page_raw_syndrome(struct mtd_info *mtd,
 645                                               struct nand_chip *chip,
 646                                               uint8_t *buf, int oob_required,
 647                                               int page)
 648{
 649        /* Issue read command */
 650        chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
 651
 652        /* Raw reads can just use the FIFO interface */
 653        chip->read_buf(mtd, buf, chip->ecc.size * chip->ecc.steps);
 654        chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
 655
 656        return 0;
 657}
 658
 659/*
 660 * Write the data and OOB data to the device, use ECC with the data,
 661 * disable ECC for the OOB data
 662 */
 663static int lpc32xx_nand_write_page_syndrome(struct mtd_info *mtd,
 664                                            struct nand_chip *chip,
 665                                            const uint8_t *buf,
 666                                            int oob_required, int page)
 667{
 668        struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 669        uint8_t *pb = chip->oob_poi + chip->ecc.layout->eccpos[0];
 670        int error;
 671
 672        /* Write data, calculate ECC on outbound data */
 673        error = lpc32xx_xfer(mtd, (uint8_t *)buf, chip->ecc.steps, 0);
 674        if (error)
 675                return error;
 676
 677        /*
 678         * The calculated ECC needs some manual work done to it before
 679         * committing it to NAND. Process the calculated ECC and place
 680         * the resultant values directly into the OOB buffer. */
 681        lpc32xx_slc_ecc_copy(pb, (uint32_t *)host->ecc_buf, chip->ecc.steps);
 682
 683        /* Write ECC data to device */
 684        chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
 685        return 0;
 686}
 687
 688/*
 689 * Write the data and OOB data to the device, no ECC correction with the
 690 * data or OOB data
 691 */
 692static int lpc32xx_nand_write_page_raw_syndrome(struct mtd_info *mtd,
 693                                                struct nand_chip *chip,
 694                                                const uint8_t *buf,
 695                                                int oob_required, int page)
 696{
 697        /* Raw writes can just use the FIFO interface */
 698        chip->write_buf(mtd, buf, chip->ecc.size * chip->ecc.steps);
 699        chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
 700        return 0;
 701}
 702
 703static int lpc32xx_nand_dma_setup(struct lpc32xx_nand_host *host)
 704{
 705        struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
 706        dma_cap_mask_t mask;
 707
 708        if (!host->pdata || !host->pdata->dma_filter) {
 709                dev_err(mtd->dev.parent, "no DMA platform data\n");
 710                return -ENOENT;
 711        }
 712
 713        dma_cap_zero(mask);
 714        dma_cap_set(DMA_SLAVE, mask);
 715        host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter,
 716                                             "nand-slc");
 717        if (!host->dma_chan) {
 718                dev_err(mtd->dev.parent, "Failed to request DMA channel\n");
 719                return -EBUSY;
 720        }
 721
 722        return 0;
 723}
 724
 725static struct lpc32xx_nand_cfg_slc *lpc32xx_parse_dt(struct device *dev)
 726{
 727        struct lpc32xx_nand_cfg_slc *ncfg;
 728        struct device_node *np = dev->of_node;
 729
 730        ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL);
 731        if (!ncfg)
 732                return NULL;
 733
 734        of_property_read_u32(np, "nxp,wdr-clks", &ncfg->wdr_clks);
 735        of_property_read_u32(np, "nxp,wwidth", &ncfg->wwidth);
 736        of_property_read_u32(np, "nxp,whold", &ncfg->whold);
 737        of_property_read_u32(np, "nxp,wsetup", &ncfg->wsetup);
 738        of_property_read_u32(np, "nxp,rdr-clks", &ncfg->rdr_clks);
 739        of_property_read_u32(np, "nxp,rwidth", &ncfg->rwidth);
 740        of_property_read_u32(np, "nxp,rhold", &ncfg->rhold);
 741        of_property_read_u32(np, "nxp,rsetup", &ncfg->rsetup);
 742
 743        if (!ncfg->wdr_clks || !ncfg->wwidth || !ncfg->whold ||
 744            !ncfg->wsetup || !ncfg->rdr_clks || !ncfg->rwidth ||
 745            !ncfg->rhold || !ncfg->rsetup) {
 746                dev_err(dev, "chip parameters not specified correctly\n");
 747                return NULL;
 748        }
 749
 750        ncfg->use_bbt = of_get_nand_on_flash_bbt(np);
 751        ncfg->wp_gpio = of_get_named_gpio(np, "gpios", 0);
 752
 753        return ncfg;
 754}
 755
 756/*
 757 * Probe for NAND controller
 758 */
 759static int lpc32xx_nand_probe(struct platform_device *pdev)
 760{
 761        struct lpc32xx_nand_host *host;
 762        struct mtd_info *mtd;
 763        struct nand_chip *chip;
 764        struct resource *rc;
 765        int res;
 766
 767        rc = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 768        if (rc == NULL) {
 769                dev_err(&pdev->dev, "No memory resource found for device\n");
 770                return -EBUSY;
 771        }
 772
 773        /* Allocate memory for the device structure (and zero it) */
 774        host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
 775        if (!host)
 776                return -ENOMEM;
 777        host->io_base_dma = rc->start;
 778
 779        host->io_base = devm_ioremap_resource(&pdev->dev, rc);
 780        if (IS_ERR(host->io_base))
 781                return PTR_ERR(host->io_base);
 782
 783        if (pdev->dev.of_node)
 784                host->ncfg = lpc32xx_parse_dt(&pdev->dev);
 785        if (!host->ncfg) {
 786                dev_err(&pdev->dev,
 787                        "Missing or bad NAND config from device tree\n");
 788                return -ENOENT;
 789        }
 790        if (host->ncfg->wp_gpio == -EPROBE_DEFER)
 791                return -EPROBE_DEFER;
 792        if (gpio_is_valid(host->ncfg->wp_gpio) && devm_gpio_request(&pdev->dev,
 793                        host->ncfg->wp_gpio, "NAND WP")) {
 794                dev_err(&pdev->dev, "GPIO not available\n");
 795                return -EBUSY;
 796        }
 797        lpc32xx_wp_disable(host);
 798
 799        host->pdata = dev_get_platdata(&pdev->dev);
 800
 801        chip = &host->nand_chip;
 802        mtd = nand_to_mtd(chip);
 803        nand_set_controller_data(chip, host);
 804        nand_set_flash_node(chip, pdev->dev.of_node);
 805        mtd->owner = THIS_MODULE;
 806        mtd->dev.parent = &pdev->dev;
 807
 808        /* Get NAND clock */
 809        host->clk = devm_clk_get(&pdev->dev, NULL);
 810        if (IS_ERR(host->clk)) {
 811                dev_err(&pdev->dev, "Clock failure\n");
 812                res = -ENOENT;
 813                goto err_exit1;
 814        }
 815        clk_prepare_enable(host->clk);
 816
 817        /* Set NAND IO addresses and command/ready functions */
 818        chip->IO_ADDR_R = SLC_DATA(host->io_base);
 819        chip->IO_ADDR_W = SLC_DATA(host->io_base);
 820        chip->cmd_ctrl = lpc32xx_nand_cmd_ctrl;
 821        chip->dev_ready = lpc32xx_nand_device_ready;
 822        chip->chip_delay = 20; /* 20us command delay time */
 823
 824        /* Init NAND controller */
 825        lpc32xx_nand_setup(host);
 826
 827        platform_set_drvdata(pdev, host);
 828
 829        /* NAND callbacks for LPC32xx SLC hardware */
 830        chip->ecc.mode = NAND_ECC_HW_SYNDROME;
 831        chip->read_byte = lpc32xx_nand_read_byte;
 832        chip->read_buf = lpc32xx_nand_read_buf;
 833        chip->write_buf = lpc32xx_nand_write_buf;
 834        chip->ecc.read_page_raw = lpc32xx_nand_read_page_raw_syndrome;
 835        chip->ecc.read_page = lpc32xx_nand_read_page_syndrome;
 836        chip->ecc.write_page_raw = lpc32xx_nand_write_page_raw_syndrome;
 837        chip->ecc.write_page = lpc32xx_nand_write_page_syndrome;
 838        chip->ecc.write_oob = lpc32xx_nand_write_oob_syndrome;
 839        chip->ecc.read_oob = lpc32xx_nand_read_oob_syndrome;
 840        chip->ecc.calculate = lpc32xx_nand_ecc_calculate;
 841        chip->ecc.correct = nand_correct_data;
 842        chip->ecc.strength = 1;
 843        chip->ecc.hwctl = lpc32xx_nand_ecc_enable;
 844
 845        /*
 846         * Allocate a large enough buffer for a single huge page plus
 847         * extra space for the spare area and ECC storage area
 848         */
 849        host->dma_buf_len = LPC32XX_DMA_DATA_SIZE + LPC32XX_ECC_SAVE_SIZE;
 850        host->data_buf = devm_kzalloc(&pdev->dev, host->dma_buf_len,
 851                                      GFP_KERNEL);
 852        if (host->data_buf == NULL) {
 853                res = -ENOMEM;
 854                goto err_exit2;
 855        }
 856
 857        res = lpc32xx_nand_dma_setup(host);
 858        if (res) {
 859                res = -EIO;
 860                goto err_exit2;
 861        }
 862
 863        /* Find NAND device */
 864        if (nand_scan_ident(mtd, 1, NULL)) {
 865                res = -ENXIO;
 866                goto err_exit3;
 867        }
 868
 869        /* OOB and ECC CPU and DMA work areas */
 870        host->ecc_buf = (uint32_t *)(host->data_buf + LPC32XX_DMA_DATA_SIZE);
 871
 872        /*
 873         * Small page FLASH has a unique OOB layout, but large and huge
 874         * page FLASH use the standard layout. Small page FLASH uses a
 875         * custom BBT marker layout.
 876         */
 877        if (mtd->writesize <= 512)
 878                chip->ecc.layout = &lpc32xx_nand_oob_16;
 879
 880        /* These sizes remain the same regardless of page size */
 881        chip->ecc.size = 256;
 882        chip->ecc.bytes = LPC32XX_SLC_DEV_ECC_BYTES;
 883        chip->ecc.prepad = chip->ecc.postpad = 0;
 884
 885        /* Avoid extra scan if using BBT, setup BBT support */
 886        if (host->ncfg->use_bbt) {
 887                chip->bbt_options |= NAND_BBT_USE_FLASH;
 888
 889                /*
 890                 * Use a custom BBT marker setup for small page FLASH that
 891                 * won't interfere with the ECC layout. Large and huge page
 892                 * FLASH use the standard layout.
 893                 */
 894                if (mtd->writesize <= 512) {
 895                        chip->bbt_td = &bbt_smallpage_main_descr;
 896                        chip->bbt_md = &bbt_smallpage_mirror_descr;
 897                }
 898        }
 899
 900        /*
 901         * Fills out all the uninitialized function pointers with the defaults
 902         */
 903        if (nand_scan_tail(mtd)) {
 904                res = -ENXIO;
 905                goto err_exit3;
 906        }
 907
 908        mtd->name = "nxp_lpc3220_slc";
 909        res = mtd_device_register(mtd, host->ncfg->parts,
 910                                  host->ncfg->num_parts);
 911        if (!res)
 912                return res;
 913
 914        nand_release(mtd);
 915
 916err_exit3:
 917        dma_release_channel(host->dma_chan);
 918err_exit2:
 919        clk_disable_unprepare(host->clk);
 920err_exit1:
 921        lpc32xx_wp_enable(host);
 922
 923        return res;
 924}
 925
 926/*
 927 * Remove NAND device.
 928 */
 929static int lpc32xx_nand_remove(struct platform_device *pdev)
 930{
 931        uint32_t tmp;
 932        struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
 933        struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
 934
 935        nand_release(mtd);
 936        dma_release_channel(host->dma_chan);
 937
 938        /* Force CE high */
 939        tmp = readl(SLC_CTRL(host->io_base));
 940        tmp &= ~SLCCFG_CE_LOW;
 941        writel(tmp, SLC_CTRL(host->io_base));
 942
 943        clk_disable_unprepare(host->clk);
 944        lpc32xx_wp_enable(host);
 945
 946        return 0;
 947}
 948
 949#ifdef CONFIG_PM
 950static int lpc32xx_nand_resume(struct platform_device *pdev)
 951{
 952        struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
 953
 954        /* Re-enable NAND clock */
 955        clk_prepare_enable(host->clk);
 956
 957        /* Fresh init of NAND controller */
 958        lpc32xx_nand_setup(host);
 959
 960        /* Disable write protect */
 961        lpc32xx_wp_disable(host);
 962
 963        return 0;
 964}
 965
 966static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm)
 967{
 968        uint32_t tmp;
 969        struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
 970
 971        /* Force CE high */
 972        tmp = readl(SLC_CTRL(host->io_base));
 973        tmp &= ~SLCCFG_CE_LOW;
 974        writel(tmp, SLC_CTRL(host->io_base));
 975
 976        /* Enable write protect for safety */
 977        lpc32xx_wp_enable(host);
 978
 979        /* Disable clock */
 980        clk_disable_unprepare(host->clk);
 981
 982        return 0;
 983}
 984
 985#else
 986#define lpc32xx_nand_resume NULL
 987#define lpc32xx_nand_suspend NULL
 988#endif
 989
 990static const struct of_device_id lpc32xx_nand_match[] = {
 991        { .compatible = "nxp,lpc3220-slc" },
 992        { /* sentinel */ },
 993};
 994MODULE_DEVICE_TABLE(of, lpc32xx_nand_match);
 995
 996static struct platform_driver lpc32xx_nand_driver = {
 997        .probe          = lpc32xx_nand_probe,
 998        .remove         = lpc32xx_nand_remove,
 999        .resume         = lpc32xx_nand_resume,
1000        .suspend        = lpc32xx_nand_suspend,
1001        .driver         = {
1002                .name   = LPC32XX_MODNAME,
1003                .of_match_table = lpc32xx_nand_match,
1004        },
1005};
1006
1007module_platform_driver(lpc32xx_nand_driver);
1008
1009MODULE_LICENSE("GPL");
1010MODULE_AUTHOR("Kevin Wells <kevin.wells@nxp.com>");
1011MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
1012MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX SLC controller");
1013