linux/drivers/mtd/nand/qcom_nandc.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2016, The Linux Foundation. All rights reserved.
   3 *
   4 * This software is licensed under the terms of the GNU General Public
   5 * License version 2, as published by the Free Software Foundation, and
   6 * may be copied, distributed, and modified under those terms.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  11 * GNU General Public License for more details.
  12 */
  13
  14#include <linux/clk.h>
  15#include <linux/slab.h>
  16#include <linux/bitops.h>
  17#include <linux/dma-mapping.h>
  18#include <linux/dmaengine.h>
  19#include <linux/module.h>
  20#include <linux/mtd/nand.h>
  21#include <linux/mtd/partitions.h>
  22#include <linux/of.h>
  23#include <linux/of_device.h>
  24#include <linux/of_mtd.h>
  25#include <linux/delay.h>
  26
  27/* NANDc reg offsets */
  28#define NAND_FLASH_CMD                  0x00
  29#define NAND_ADDR0                      0x04
  30#define NAND_ADDR1                      0x08
  31#define NAND_FLASH_CHIP_SELECT          0x0c
  32#define NAND_EXEC_CMD                   0x10
  33#define NAND_FLASH_STATUS               0x14
  34#define NAND_BUFFER_STATUS              0x18
  35#define NAND_DEV0_CFG0                  0x20
  36#define NAND_DEV0_CFG1                  0x24
  37#define NAND_DEV0_ECC_CFG               0x28
  38#define NAND_DEV1_ECC_CFG               0x2c
  39#define NAND_DEV1_CFG0                  0x30
  40#define NAND_DEV1_CFG1                  0x34
  41#define NAND_READ_ID                    0x40
  42#define NAND_READ_STATUS                0x44
  43#define NAND_DEV_CMD0                   0xa0
  44#define NAND_DEV_CMD1                   0xa4
  45#define NAND_DEV_CMD2                   0xa8
  46#define NAND_DEV_CMD_VLD                0xac
  47#define SFLASHC_BURST_CFG               0xe0
  48#define NAND_ERASED_CW_DETECT_CFG       0xe8
  49#define NAND_ERASED_CW_DETECT_STATUS    0xec
  50#define NAND_EBI2_ECC_BUF_CFG           0xf0
  51#define FLASH_BUF_ACC                   0x100
  52
  53#define NAND_CTRL                       0xf00
  54#define NAND_VERSION                    0xf08
  55#define NAND_READ_LOCATION_0            0xf20
  56#define NAND_READ_LOCATION_1            0xf24
  57
  58/* dummy register offsets, used by write_reg_dma */
  59#define NAND_DEV_CMD1_RESTORE           0xdead
  60#define NAND_DEV_CMD_VLD_RESTORE        0xbeef
  61
  62/* NAND_FLASH_CMD bits */
  63#define PAGE_ACC                        BIT(4)
  64#define LAST_PAGE                       BIT(5)
  65
  66/* NAND_FLASH_CHIP_SELECT bits */
  67#define NAND_DEV_SEL                    0
  68#define DM_EN                           BIT(2)
  69
  70/* NAND_FLASH_STATUS bits */
  71#define FS_OP_ERR                       BIT(4)
  72#define FS_READY_BSY_N                  BIT(5)
  73#define FS_MPU_ERR                      BIT(8)
  74#define FS_DEVICE_STS_ERR               BIT(16)
  75#define FS_DEVICE_WP                    BIT(23)
  76
  77/* NAND_BUFFER_STATUS bits */
  78#define BS_UNCORRECTABLE_BIT            BIT(8)
  79#define BS_CORRECTABLE_ERR_MSK          0x1f
  80
  81/* NAND_DEVn_CFG0 bits */
  82#define DISABLE_STATUS_AFTER_WRITE      4
  83#define CW_PER_PAGE                     6
  84#define UD_SIZE_BYTES                   9
  85#define ECC_PARITY_SIZE_BYTES_RS        19
  86#define SPARE_SIZE_BYTES                23
  87#define NUM_ADDR_CYCLES                 27
  88#define STATUS_BFR_READ                 30
  89#define SET_RD_MODE_AFTER_STATUS        31
  90
  91/* NAND_DEVn_CFG0 bits */
  92#define DEV0_CFG1_ECC_DISABLE           0
  93#define WIDE_FLASH                      1
  94#define NAND_RECOVERY_CYCLES            2
  95#define CS_ACTIVE_BSY                   5
  96#define BAD_BLOCK_BYTE_NUM              6
  97#define BAD_BLOCK_IN_SPARE_AREA         16
  98#define WR_RD_BSY_GAP                   17
  99#define ENABLE_BCH_ECC                  27
 100
 101/* NAND_DEV0_ECC_CFG bits */
 102#define ECC_CFG_ECC_DISABLE             0
 103#define ECC_SW_RESET                    1
 104#define ECC_MODE                        4
 105#define ECC_PARITY_SIZE_BYTES_BCH       8
 106#define ECC_NUM_DATA_BYTES              16
 107#define ECC_FORCE_CLK_OPEN              30
 108
 109/* NAND_DEV_CMD1 bits */
 110#define READ_ADDR                       0
 111
 112/* NAND_DEV_CMD_VLD bits */
 113#define READ_START_VLD                  0
 114
 115/* NAND_EBI2_ECC_BUF_CFG bits */
 116#define NUM_STEPS                       0
 117
 118/* NAND_ERASED_CW_DETECT_CFG bits */
 119#define ERASED_CW_ECC_MASK              1
 120#define AUTO_DETECT_RES                 0
 121#define MASK_ECC                        (1 << ERASED_CW_ECC_MASK)
 122#define RESET_ERASED_DET                (1 << AUTO_DETECT_RES)
 123#define ACTIVE_ERASED_DET               (0 << AUTO_DETECT_RES)
 124#define CLR_ERASED_PAGE_DET             (RESET_ERASED_DET | MASK_ECC)
 125#define SET_ERASED_PAGE_DET             (ACTIVE_ERASED_DET | MASK_ECC)
 126
 127/* NAND_ERASED_CW_DETECT_STATUS bits */
 128#define PAGE_ALL_ERASED                 BIT(7)
 129#define CODEWORD_ALL_ERASED             BIT(6)
 130#define PAGE_ERASED                     BIT(5)
 131#define CODEWORD_ERASED                 BIT(4)
 132#define ERASED_PAGE                     (PAGE_ALL_ERASED | PAGE_ERASED)
 133#define ERASED_CW                       (CODEWORD_ALL_ERASED | CODEWORD_ERASED)
 134
 135/* Version Mask */
 136#define NAND_VERSION_MAJOR_MASK         0xf0000000
 137#define NAND_VERSION_MAJOR_SHIFT        28
 138#define NAND_VERSION_MINOR_MASK         0x0fff0000
 139#define NAND_VERSION_MINOR_SHIFT        16
 140
 141/* NAND OP_CMDs */
 142#define PAGE_READ                       0x2
 143#define PAGE_READ_WITH_ECC              0x3
 144#define PAGE_READ_WITH_ECC_SPARE        0x4
 145#define PROGRAM_PAGE                    0x6
 146#define PAGE_PROGRAM_WITH_ECC           0x7
 147#define PROGRAM_PAGE_SPARE              0x9
 148#define BLOCK_ERASE                     0xa
 149#define FETCH_ID                        0xb
 150#define RESET_DEVICE                    0xd
 151
 152/*
 153 * the NAND controller performs reads/writes with ECC in 516 byte chunks.
 154 * the driver calls the chunks 'step' or 'codeword' interchangeably
 155 */
 156#define NANDC_STEP_SIZE                 512
 157
 158/*
 159 * the largest page size we support is 8K, this will have 16 steps/codewords
 160 * of 512 bytes each
 161 */
 162#define MAX_NUM_STEPS                   (SZ_8K / NANDC_STEP_SIZE)
 163
 164/* we read at most 3 registers per codeword scan */
 165#define MAX_REG_RD                      (3 * MAX_NUM_STEPS)
 166
 167/* ECC modes supported by the controller */
 168#define ECC_NONE        BIT(0)
 169#define ECC_RS_4BIT     BIT(1)
 170#define ECC_BCH_4BIT    BIT(2)
 171#define ECC_BCH_8BIT    BIT(3)
 172
 173struct desc_info {
 174        struct list_head node;
 175
 176        enum dma_data_direction dir;
 177        struct scatterlist sgl;
 178        struct dma_async_tx_descriptor *dma_desc;
 179};
 180
 181/*
 182 * holds the current register values that we want to write. acts as a contiguous
 183 * chunk of memory which we use to write the controller registers through DMA.
 184 */
 185struct nandc_regs {
 186        __le32 cmd;
 187        __le32 addr0;
 188        __le32 addr1;
 189        __le32 chip_sel;
 190        __le32 exec;
 191
 192        __le32 cfg0;
 193        __le32 cfg1;
 194        __le32 ecc_bch_cfg;
 195
 196        __le32 clrflashstatus;
 197        __le32 clrreadstatus;
 198
 199        __le32 cmd1;
 200        __le32 vld;
 201
 202        __le32 orig_cmd1;
 203        __le32 orig_vld;
 204
 205        __le32 ecc_buf_cfg;
 206};
 207
 208/*
 209 * NAND controller data struct
 210 *
 211 * @controller:                 base controller structure
 212 * @host_list:                  list containing all the chips attached to the
 213 *                              controller
 214 * @dev:                        parent device
 215 * @base:                       MMIO base
 216 * @base_dma:                   physical base address of controller registers
 217 * @core_clk:                   controller clock
 218 * @aon_clk:                    another controller clock
 219 *
 220 * @chan:                       dma channel
 221 * @cmd_crci:                   ADM DMA CRCI for command flow control
 222 * @data_crci:                  ADM DMA CRCI for data flow control
 223 * @desc_list:                  DMA descriptor list (list of desc_infos)
 224 *
 225 * @data_buffer:                our local DMA buffer for page read/writes,
 226 *                              used when we can't use the buffer provided
 227 *                              by upper layers directly
 228 * @buf_size/count/start:       markers for chip->read_buf/write_buf functions
 229 * @reg_read_buf:               local buffer for reading back registers via DMA
 230 * @reg_read_pos:               marker for data read in reg_read_buf
 231 *
 232 * @regs:                       a contiguous chunk of memory for DMA register
 233 *                              writes. contains the register values to be
 234 *                              written to controller
 235 * @cmd1/vld:                   some fixed controller register values
 236 * @ecc_modes:                  supported ECC modes by the current controller,
 237 *                              initialized via DT match data
 238 */
 239struct qcom_nand_controller {
 240        struct nand_hw_control controller;
 241        struct list_head host_list;
 242
 243        struct device *dev;
 244
 245        void __iomem *base;
 246        dma_addr_t base_dma;
 247
 248        struct clk *core_clk;
 249        struct clk *aon_clk;
 250
 251        struct dma_chan *chan;
 252        unsigned int cmd_crci;
 253        unsigned int data_crci;
 254        struct list_head desc_list;
 255
 256        u8              *data_buffer;
 257        int             buf_size;
 258        int             buf_count;
 259        int             buf_start;
 260
 261        __le32 *reg_read_buf;
 262        int reg_read_pos;
 263
 264        struct nandc_regs *regs;
 265
 266        u32 cmd1, vld;
 267        u32 ecc_modes;
 268};
 269
 270/*
 271 * NAND chip structure
 272 *
 273 * @chip:                       base NAND chip structure
 274 * @node:                       list node to add itself to host_list in
 275 *                              qcom_nand_controller
 276 *
 277 * @cs:                         chip select value for this chip
 278 * @cw_size:                    the number of bytes in a single step/codeword
 279 *                              of a page, consisting of all data, ecc, spare
 280 *                              and reserved bytes
 281 * @cw_data:                    the number of bytes within a codeword protected
 282 *                              by ECC
 283 * @use_ecc:                    request the controller to use ECC for the
 284 *                              upcoming read/write
 285 * @bch_enabled:                flag to tell whether BCH ECC mode is used
 286 * @ecc_bytes_hw:               ECC bytes used by controller hardware for this
 287 *                              chip
 288 * @status:                     value to be returned if NAND_CMD_STATUS command
 289 *                              is executed
 290 * @last_command:               keeps track of last command on this chip. used
 291 *                              for reading correct status
 292 *
 293 * @cfg0, cfg1, cfg0_raw..:     NANDc register configurations needed for
 294 *                              ecc/non-ecc mode for the current nand flash
 295 *                              device
 296 */
 297struct qcom_nand_host {
 298        struct nand_chip chip;
 299        struct list_head node;
 300
 301        int cs;
 302        int cw_size;
 303        int cw_data;
 304        bool use_ecc;
 305        bool bch_enabled;
 306        int ecc_bytes_hw;
 307        int spare_bytes;
 308        int bbm_size;
 309        u8 status;
 310        int last_command;
 311
 312        u32 cfg0, cfg1;
 313        u32 cfg0_raw, cfg1_raw;
 314        u32 ecc_buf_cfg;
 315        u32 ecc_bch_cfg;
 316        u32 clrflashstatus;
 317        u32 clrreadstatus;
 318};
 319
 320static inline struct qcom_nand_host *to_qcom_nand_host(struct nand_chip *chip)
 321{
 322        return container_of(chip, struct qcom_nand_host, chip);
 323}
 324
 325static inline struct qcom_nand_controller *
 326get_qcom_nand_controller(struct nand_chip *chip)
 327{
 328        return container_of(chip->controller, struct qcom_nand_controller,
 329                            controller);
 330}
 331
 332static inline u32 nandc_read(struct qcom_nand_controller *nandc, int offset)
 333{
 334        return ioread32(nandc->base + offset);
 335}
 336
 337static inline void nandc_write(struct qcom_nand_controller *nandc, int offset,
 338                               u32 val)
 339{
 340        iowrite32(val, nandc->base + offset);
 341}
 342
 343static __le32 *offset_to_nandc_reg(struct nandc_regs *regs, int offset)
 344{
 345        switch (offset) {
 346        case NAND_FLASH_CMD:
 347                return &regs->cmd;
 348        case NAND_ADDR0:
 349                return &regs->addr0;
 350        case NAND_ADDR1:
 351                return &regs->addr1;
 352        case NAND_FLASH_CHIP_SELECT:
 353                return &regs->chip_sel;
 354        case NAND_EXEC_CMD:
 355                return &regs->exec;
 356        case NAND_FLASH_STATUS:
 357                return &regs->clrflashstatus;
 358        case NAND_DEV0_CFG0:
 359                return &regs->cfg0;
 360        case NAND_DEV0_CFG1:
 361                return &regs->cfg1;
 362        case NAND_DEV0_ECC_CFG:
 363                return &regs->ecc_bch_cfg;
 364        case NAND_READ_STATUS:
 365                return &regs->clrreadstatus;
 366        case NAND_DEV_CMD1:
 367                return &regs->cmd1;
 368        case NAND_DEV_CMD1_RESTORE:
 369                return &regs->orig_cmd1;
 370        case NAND_DEV_CMD_VLD:
 371                return &regs->vld;
 372        case NAND_DEV_CMD_VLD_RESTORE:
 373                return &regs->orig_vld;
 374        case NAND_EBI2_ECC_BUF_CFG:
 375                return &regs->ecc_buf_cfg;
 376        default:
 377                return NULL;
 378        }
 379}
 380
 381static void nandc_set_reg(struct qcom_nand_controller *nandc, int offset,
 382                          u32 val)
 383{
 384        struct nandc_regs *regs = nandc->regs;
 385        __le32 *reg;
 386
 387        reg = offset_to_nandc_reg(regs, offset);
 388
 389        if (reg)
 390                *reg = cpu_to_le32(val);
 391}
 392
 393/* helper to configure address register values */
 394static void set_address(struct qcom_nand_host *host, u16 column, int page)
 395{
 396        struct nand_chip *chip = &host->chip;
 397        struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
 398
 399        if (chip->options & NAND_BUSWIDTH_16)
 400                column >>= 1;
 401
 402        nandc_set_reg(nandc, NAND_ADDR0, page << 16 | column);
 403        nandc_set_reg(nandc, NAND_ADDR1, page >> 16 & 0xff);
 404}
 405
 406/*
 407 * update_rw_regs:      set up read/write register values, these will be
 408 *                      written to the NAND controller registers via DMA
 409 *
 410 * @num_cw:             number of steps for the read/write operation
 411 * @read:               read or write operation
 412 */
 413static void update_rw_regs(struct qcom_nand_host *host, int num_cw, bool read)
 414{
 415        struct nand_chip *chip = &host->chip;
 416        struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
 417        u32 cmd, cfg0, cfg1, ecc_bch_cfg;
 418
 419        if (read) {
 420                if (host->use_ecc)
 421                        cmd = PAGE_READ_WITH_ECC | PAGE_ACC | LAST_PAGE;
 422                else
 423                        cmd = PAGE_READ | PAGE_ACC | LAST_PAGE;
 424        } else {
 425                        cmd = PROGRAM_PAGE | PAGE_ACC | LAST_PAGE;
 426        }
 427
 428        if (host->use_ecc) {
 429                cfg0 = (host->cfg0 & ~(7U << CW_PER_PAGE)) |
 430                                (num_cw - 1) << CW_PER_PAGE;
 431
 432                cfg1 = host->cfg1;
 433                ecc_bch_cfg = host->ecc_bch_cfg;
 434        } else {
 435                cfg0 = (host->cfg0_raw & ~(7U << CW_PER_PAGE)) |
 436                                (num_cw - 1) << CW_PER_PAGE;
 437
 438                cfg1 = host->cfg1_raw;
 439                ecc_bch_cfg = 1 << ECC_CFG_ECC_DISABLE;
 440        }
 441
 442        nandc_set_reg(nandc, NAND_FLASH_CMD, cmd);
 443        nandc_set_reg(nandc, NAND_DEV0_CFG0, cfg0);
 444        nandc_set_reg(nandc, NAND_DEV0_CFG1, cfg1);
 445        nandc_set_reg(nandc, NAND_DEV0_ECC_CFG, ecc_bch_cfg);
 446        nandc_set_reg(nandc, NAND_EBI2_ECC_BUF_CFG, host->ecc_buf_cfg);
 447        nandc_set_reg(nandc, NAND_FLASH_STATUS, host->clrflashstatus);
 448        nandc_set_reg(nandc, NAND_READ_STATUS, host->clrreadstatus);
 449        nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
 450}
 451
 452static int prep_dma_desc(struct qcom_nand_controller *nandc, bool read,
 453                         int reg_off, const void *vaddr, int size,
 454                         bool flow_control)
 455{
 456        struct desc_info *desc;
 457        struct dma_async_tx_descriptor *dma_desc;
 458        struct scatterlist *sgl;
 459        struct dma_slave_config slave_conf;
 460        enum dma_transfer_direction dir_eng;
 461        int ret;
 462
 463        desc = kzalloc(sizeof(*desc), GFP_KERNEL);
 464        if (!desc)
 465                return -ENOMEM;
 466
 467        sgl = &desc->sgl;
 468
 469        sg_init_one(sgl, vaddr, size);
 470
 471        if (read) {
 472                dir_eng = DMA_DEV_TO_MEM;
 473                desc->dir = DMA_FROM_DEVICE;
 474        } else {
 475                dir_eng = DMA_MEM_TO_DEV;
 476                desc->dir = DMA_TO_DEVICE;
 477        }
 478
 479        ret = dma_map_sg(nandc->dev, sgl, 1, desc->dir);
 480        if (ret == 0) {
 481                ret = -ENOMEM;
 482                goto err;
 483        }
 484
 485        memset(&slave_conf, 0x00, sizeof(slave_conf));
 486
 487        slave_conf.device_fc = flow_control;
 488        if (read) {
 489                slave_conf.src_maxburst = 16;
 490                slave_conf.src_addr = nandc->base_dma + reg_off;
 491                slave_conf.slave_id = nandc->data_crci;
 492        } else {
 493                slave_conf.dst_maxburst = 16;
 494                slave_conf.dst_addr = nandc->base_dma + reg_off;
 495                slave_conf.slave_id = nandc->cmd_crci;
 496        }
 497
 498        ret = dmaengine_slave_config(nandc->chan, &slave_conf);
 499        if (ret) {
 500                dev_err(nandc->dev, "failed to configure dma channel\n");
 501                goto err;
 502        }
 503
 504        dma_desc = dmaengine_prep_slave_sg(nandc->chan, sgl, 1, dir_eng, 0);
 505        if (!dma_desc) {
 506                dev_err(nandc->dev, "failed to prepare desc\n");
 507                ret = -EINVAL;
 508                goto err;
 509        }
 510
 511        desc->dma_desc = dma_desc;
 512
 513        list_add_tail(&desc->node, &nandc->desc_list);
 514
 515        return 0;
 516err:
 517        kfree(desc);
 518
 519        return ret;
 520}
 521
 522/*
 523 * read_reg_dma:        prepares a descriptor to read a given number of
 524 *                      contiguous registers to the reg_read_buf pointer
 525 *
 526 * @first:              offset of the first register in the contiguous block
 527 * @num_regs:           number of registers to read
 528 */
 529static int read_reg_dma(struct qcom_nand_controller *nandc, int first,
 530                        int num_regs)
 531{
 532        bool flow_control = false;
 533        void *vaddr;
 534        int size;
 535
 536        if (first == NAND_READ_ID || first == NAND_FLASH_STATUS)
 537                flow_control = true;
 538
 539        size = num_regs * sizeof(u32);
 540        vaddr = nandc->reg_read_buf + nandc->reg_read_pos;
 541        nandc->reg_read_pos += num_regs;
 542
 543        return prep_dma_desc(nandc, true, first, vaddr, size, flow_control);
 544}
 545
 546/*
 547 * write_reg_dma:       prepares a descriptor to write a given number of
 548 *                      contiguous registers
 549 *
 550 * @first:              offset of the first register in the contiguous block
 551 * @num_regs:           number of registers to write
 552 */
 553static int write_reg_dma(struct qcom_nand_controller *nandc, int first,
 554                         int num_regs)
 555{
 556        bool flow_control = false;
 557        struct nandc_regs *regs = nandc->regs;
 558        void *vaddr;
 559        int size;
 560
 561        vaddr = offset_to_nandc_reg(regs, first);
 562
 563        if (first == NAND_FLASH_CMD)
 564                flow_control = true;
 565
 566        if (first == NAND_DEV_CMD1_RESTORE)
 567                first = NAND_DEV_CMD1;
 568
 569        if (first == NAND_DEV_CMD_VLD_RESTORE)
 570                first = NAND_DEV_CMD_VLD;
 571
 572        size = num_regs * sizeof(u32);
 573
 574        return prep_dma_desc(nandc, false, first, vaddr, size, flow_control);
 575}
 576
 577/*
 578 * read_data_dma:       prepares a DMA descriptor to transfer data from the
 579 *                      controller's internal buffer to the buffer 'vaddr'
 580 *
 581 * @reg_off:            offset within the controller's data buffer
 582 * @vaddr:              virtual address of the buffer we want to write to
 583 * @size:               DMA transaction size in bytes
 584 */
 585static int read_data_dma(struct qcom_nand_controller *nandc, int reg_off,
 586                         const u8 *vaddr, int size)
 587{
 588        return prep_dma_desc(nandc, true, reg_off, vaddr, size, false);
 589}
 590
 591/*
 592 * write_data_dma:      prepares a DMA descriptor to transfer data from
 593 *                      'vaddr' to the controller's internal buffer
 594 *
 595 * @reg_off:            offset within the controller's data buffer
 596 * @vaddr:              virtual address of the buffer we want to read from
 597 * @size:               DMA transaction size in bytes
 598 */
 599static int write_data_dma(struct qcom_nand_controller *nandc, int reg_off,
 600                          const u8 *vaddr, int size)
 601{
 602        return prep_dma_desc(nandc, false, reg_off, vaddr, size, false);
 603}
 604
 605/*
 606 * helper to prepare dma descriptors to configure registers needed for reading a
 607 * codeword/step in a page
 608 */
 609static void config_cw_read(struct qcom_nand_controller *nandc)
 610{
 611        write_reg_dma(nandc, NAND_FLASH_CMD, 3);
 612        write_reg_dma(nandc, NAND_DEV0_CFG0, 3);
 613        write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1);
 614
 615        write_reg_dma(nandc, NAND_EXEC_CMD, 1);
 616
 617        read_reg_dma(nandc, NAND_FLASH_STATUS, 2);
 618        read_reg_dma(nandc, NAND_ERASED_CW_DETECT_STATUS, 1);
 619}
 620
 621/*
 622 * helpers to prepare dma descriptors used to configure registers needed for
 623 * writing a codeword/step in a page
 624 */
 625static void config_cw_write_pre(struct qcom_nand_controller *nandc)
 626{
 627        write_reg_dma(nandc, NAND_FLASH_CMD, 3);
 628        write_reg_dma(nandc, NAND_DEV0_CFG0, 3);
 629        write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1);
 630}
 631
 632static void config_cw_write_post(struct qcom_nand_controller *nandc)
 633{
 634        write_reg_dma(nandc, NAND_EXEC_CMD, 1);
 635
 636        read_reg_dma(nandc, NAND_FLASH_STATUS, 1);
 637
 638        write_reg_dma(nandc, NAND_FLASH_STATUS, 1);
 639        write_reg_dma(nandc, NAND_READ_STATUS, 1);
 640}
 641
 642/*
 643 * the following functions are used within chip->cmdfunc() to perform different
 644 * NAND_CMD_* commands
 645 */
 646
 647/* sets up descriptors for NAND_CMD_PARAM */
 648static int nandc_param(struct qcom_nand_host *host)
 649{
 650        struct nand_chip *chip = &host->chip;
 651        struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
 652
 653        /*
 654         * NAND_CMD_PARAM is called before we know much about the FLASH chip
 655         * in use. we configure the controller to perform a raw read of 512
 656         * bytes to read onfi params
 657         */
 658        nandc_set_reg(nandc, NAND_FLASH_CMD, PAGE_READ | PAGE_ACC | LAST_PAGE);
 659        nandc_set_reg(nandc, NAND_ADDR0, 0);
 660        nandc_set_reg(nandc, NAND_ADDR1, 0);
 661        nandc_set_reg(nandc, NAND_DEV0_CFG0, 0 << CW_PER_PAGE
 662                                        | 512 << UD_SIZE_BYTES
 663                                        | 5 << NUM_ADDR_CYCLES
 664                                        | 0 << SPARE_SIZE_BYTES);
 665        nandc_set_reg(nandc, NAND_DEV0_CFG1, 7 << NAND_RECOVERY_CYCLES
 666                                        | 0 << CS_ACTIVE_BSY
 667                                        | 17 << BAD_BLOCK_BYTE_NUM
 668                                        | 1 << BAD_BLOCK_IN_SPARE_AREA
 669                                        | 2 << WR_RD_BSY_GAP
 670                                        | 0 << WIDE_FLASH
 671                                        | 1 << DEV0_CFG1_ECC_DISABLE);
 672        nandc_set_reg(nandc, NAND_EBI2_ECC_BUF_CFG, 1 << ECC_CFG_ECC_DISABLE);
 673
 674        /* configure CMD1 and VLD for ONFI param probing */
 675        nandc_set_reg(nandc, NAND_DEV_CMD_VLD,
 676                      (nandc->vld & ~(1 << READ_START_VLD))
 677                      | 0 << READ_START_VLD);
 678        nandc_set_reg(nandc, NAND_DEV_CMD1,
 679                      (nandc->cmd1 & ~(0xFF << READ_ADDR))
 680                      | NAND_CMD_PARAM << READ_ADDR);
 681
 682        nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
 683
 684        nandc_set_reg(nandc, NAND_DEV_CMD1_RESTORE, nandc->cmd1);
 685        nandc_set_reg(nandc, NAND_DEV_CMD_VLD_RESTORE, nandc->vld);
 686
 687        write_reg_dma(nandc, NAND_DEV_CMD_VLD, 1);
 688        write_reg_dma(nandc, NAND_DEV_CMD1, 1);
 689
 690        nandc->buf_count = 512;
 691        memset(nandc->data_buffer, 0xff, nandc->buf_count);
 692
 693        config_cw_read(nandc);
 694
 695        read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer,
 696                      nandc->buf_count);
 697
 698        /* restore CMD1 and VLD regs */
 699        write_reg_dma(nandc, NAND_DEV_CMD1_RESTORE, 1);
 700        write_reg_dma(nandc, NAND_DEV_CMD_VLD_RESTORE, 1);
 701
 702        return 0;
 703}
 704
 705/* sets up descriptors for NAND_CMD_ERASE1 */
 706static int erase_block(struct qcom_nand_host *host, int page_addr)
 707{
 708        struct nand_chip *chip = &host->chip;
 709        struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
 710
 711        nandc_set_reg(nandc, NAND_FLASH_CMD,
 712                      BLOCK_ERASE | PAGE_ACC | LAST_PAGE);
 713        nandc_set_reg(nandc, NAND_ADDR0, page_addr);
 714        nandc_set_reg(nandc, NAND_ADDR1, 0);
 715        nandc_set_reg(nandc, NAND_DEV0_CFG0,
 716                      host->cfg0_raw & ~(7 << CW_PER_PAGE));
 717        nandc_set_reg(nandc, NAND_DEV0_CFG1, host->cfg1_raw);
 718        nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
 719        nandc_set_reg(nandc, NAND_FLASH_STATUS, host->clrflashstatus);
 720        nandc_set_reg(nandc, NAND_READ_STATUS, host->clrreadstatus);
 721
 722        write_reg_dma(nandc, NAND_FLASH_CMD, 3);
 723        write_reg_dma(nandc, NAND_DEV0_CFG0, 2);
 724        write_reg_dma(nandc, NAND_EXEC_CMD, 1);
 725
 726        read_reg_dma(nandc, NAND_FLASH_STATUS, 1);
 727
 728        write_reg_dma(nandc, NAND_FLASH_STATUS, 1);
 729        write_reg_dma(nandc, NAND_READ_STATUS, 1);
 730
 731        return 0;
 732}
 733
 734/* sets up descriptors for NAND_CMD_READID */
 735static int read_id(struct qcom_nand_host *host, int column)
 736{
 737        struct nand_chip *chip = &host->chip;
 738        struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
 739
 740        if (column == -1)
 741                return 0;
 742
 743        nandc_set_reg(nandc, NAND_FLASH_CMD, FETCH_ID);
 744        nandc_set_reg(nandc, NAND_ADDR0, column);
 745        nandc_set_reg(nandc, NAND_ADDR1, 0);
 746        nandc_set_reg(nandc, NAND_FLASH_CHIP_SELECT, DM_EN);
 747        nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
 748
 749        write_reg_dma(nandc, NAND_FLASH_CMD, 4);
 750        write_reg_dma(nandc, NAND_EXEC_CMD, 1);
 751
 752        read_reg_dma(nandc, NAND_READ_ID, 1);
 753
 754        return 0;
 755}
 756
 757/* sets up descriptors for NAND_CMD_RESET */
 758static int reset(struct qcom_nand_host *host)
 759{
 760        struct nand_chip *chip = &host->chip;
 761        struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
 762
 763        nandc_set_reg(nandc, NAND_FLASH_CMD, RESET_DEVICE);
 764        nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
 765
 766        write_reg_dma(nandc, NAND_FLASH_CMD, 1);
 767        write_reg_dma(nandc, NAND_EXEC_CMD, 1);
 768
 769        read_reg_dma(nandc, NAND_FLASH_STATUS, 1);
 770
 771        return 0;
 772}
 773
 774/* helpers to submit/free our list of dma descriptors */
 775static int submit_descs(struct qcom_nand_controller *nandc)
 776{
 777        struct desc_info *desc;
 778        dma_cookie_t cookie = 0;
 779
 780        list_for_each_entry(desc, &nandc->desc_list, node)
 781                cookie = dmaengine_submit(desc->dma_desc);
 782
 783        if (dma_sync_wait(nandc->chan, cookie) != DMA_COMPLETE)
 784                return -ETIMEDOUT;
 785
 786        return 0;
 787}
 788
 789static void free_descs(struct qcom_nand_controller *nandc)
 790{
 791        struct desc_info *desc, *n;
 792
 793        list_for_each_entry_safe(desc, n, &nandc->desc_list, node) {
 794                list_del(&desc->node);
 795                dma_unmap_sg(nandc->dev, &desc->sgl, 1, desc->dir);
 796                kfree(desc);
 797        }
 798}
 799
 800/* reset the register read buffer for next NAND operation */
 801static void clear_read_regs(struct qcom_nand_controller *nandc)
 802{
 803        nandc->reg_read_pos = 0;
 804        memset(nandc->reg_read_buf, 0,
 805               MAX_REG_RD * sizeof(*nandc->reg_read_buf));
 806}
 807
 808static void pre_command(struct qcom_nand_host *host, int command)
 809{
 810        struct nand_chip *chip = &host->chip;
 811        struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
 812
 813        nandc->buf_count = 0;
 814        nandc->buf_start = 0;
 815        host->use_ecc = false;
 816        host->last_command = command;
 817
 818        clear_read_regs(nandc);
 819}
 820
 821/*
 822 * this is called after NAND_CMD_PAGEPROG and NAND_CMD_ERASE1 to set our
 823 * privately maintained status byte, this status byte can be read after
 824 * NAND_CMD_STATUS is called
 825 */
 826static void parse_erase_write_errors(struct qcom_nand_host *host, int command)
 827{
 828        struct nand_chip *chip = &host->chip;
 829        struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
 830        struct nand_ecc_ctrl *ecc = &chip->ecc;
 831        int num_cw;
 832        int i;
 833
 834        num_cw = command == NAND_CMD_PAGEPROG ? ecc->steps : 1;
 835
 836        for (i = 0; i < num_cw; i++) {
 837                u32 flash_status = le32_to_cpu(nandc->reg_read_buf[i]);
 838
 839                if (flash_status & FS_MPU_ERR)
 840                        host->status &= ~NAND_STATUS_WP;
 841
 842                if (flash_status & FS_OP_ERR || (i == (num_cw - 1) &&
 843                                                 (flash_status &
 844                                                  FS_DEVICE_STS_ERR)))
 845                        host->status |= NAND_STATUS_FAIL;
 846        }
 847}
 848
 849static void post_command(struct qcom_nand_host *host, int command)
 850{
 851        struct nand_chip *chip = &host->chip;
 852        struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
 853
 854        switch (command) {
 855        case NAND_CMD_READID:
 856                memcpy(nandc->data_buffer, nandc->reg_read_buf,
 857                       nandc->buf_count);
 858                break;
 859        case NAND_CMD_PAGEPROG:
 860        case NAND_CMD_ERASE1:
 861                parse_erase_write_errors(host, command);
 862                break;
 863        default:
 864                break;
 865        }
 866}
 867
 868/*
 869 * Implements chip->cmdfunc. It's  only used for a limited set of commands.
 870 * The rest of the commands wouldn't be called by upper layers. For example,
 871 * NAND_CMD_READOOB would never be called because we have our own versions
 872 * of read_oob ops for nand_ecc_ctrl.
 873 */
 874static void qcom_nandc_command(struct mtd_info *mtd, unsigned int command,
 875                               int column, int page_addr)
 876{
 877        struct nand_chip *chip = mtd_to_nand(mtd);
 878        struct qcom_nand_host *host = to_qcom_nand_host(chip);
 879        struct nand_ecc_ctrl *ecc = &chip->ecc;
 880        struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
 881        bool wait = false;
 882        int ret = 0;
 883
 884        pre_command(host, command);
 885
 886        switch (command) {
 887        case NAND_CMD_RESET:
 888                ret = reset(host);
 889                wait = true;
 890                break;
 891
 892        case NAND_CMD_READID:
 893                nandc->buf_count = 4;
 894                ret = read_id(host, column);
 895                wait = true;
 896                break;
 897
 898        case NAND_CMD_PARAM:
 899                ret = nandc_param(host);
 900                wait = true;
 901                break;
 902
 903        case NAND_CMD_ERASE1:
 904                ret = erase_block(host, page_addr);
 905                wait = true;
 906                break;
 907
 908        case NAND_CMD_READ0:
 909                /* we read the entire page for now */
 910                WARN_ON(column != 0);
 911
 912                host->use_ecc = true;
 913                set_address(host, 0, page_addr);
 914                update_rw_regs(host, ecc->steps, true);
 915                break;
 916
 917        case NAND_CMD_SEQIN:
 918                WARN_ON(column != 0);
 919                set_address(host, 0, page_addr);
 920                break;
 921
 922        case NAND_CMD_PAGEPROG:
 923        case NAND_CMD_STATUS:
 924        case NAND_CMD_NONE:
 925        default:
 926                break;
 927        }
 928
 929        if (ret) {
 930                dev_err(nandc->dev, "failure executing command %d\n",
 931                        command);
 932                free_descs(nandc);
 933                return;
 934        }
 935
 936        if (wait) {
 937                ret = submit_descs(nandc);
 938                if (ret)
 939                        dev_err(nandc->dev,
 940                                "failure submitting descs for command %d\n",
 941                                command);
 942        }
 943
 944        free_descs(nandc);
 945
 946        post_command(host, command);
 947}
 948
 949/*
 950 * when using BCH ECC, the HW flags an error in NAND_FLASH_STATUS if it read
 951 * an erased CW, and reports an erased CW in NAND_ERASED_CW_DETECT_STATUS.
 952 *
 953 * when using RS ECC, the HW reports the same erros when reading an erased CW,
 954 * but it notifies that it is an erased CW by placing special characters at
 955 * certain offsets in the buffer.
 956 *
 957 * verify if the page is erased or not, and fix up the page for RS ECC by
 958 * replacing the special characters with 0xff.
 959 */
 960static bool erased_chunk_check_and_fixup(u8 *data_buf, int data_len)
 961{
 962        u8 empty1, empty2;
 963
 964        /*
 965         * an erased page flags an error in NAND_FLASH_STATUS, check if the page
 966         * is erased by looking for 0x54s at offsets 3 and 175 from the
 967         * beginning of each codeword
 968         */
 969
 970        empty1 = data_buf[3];
 971        empty2 = data_buf[175];
 972
 973        /*
 974         * if the erased codework markers, if they exist override them with
 975         * 0xffs
 976         */
 977        if ((empty1 == 0x54 && empty2 == 0xff) ||
 978            (empty1 == 0xff && empty2 == 0x54)) {
 979                data_buf[3] = 0xff;
 980                data_buf[175] = 0xff;
 981        }
 982
 983        /*
 984         * check if the entire chunk contains 0xffs or not. if it doesn't, then
 985         * restore the original values at the special offsets
 986         */
 987        if (memchr_inv(data_buf, 0xff, data_len)) {
 988                data_buf[3] = empty1;
 989                data_buf[175] = empty2;
 990
 991                return false;
 992        }
 993
 994        return true;
 995}
 996
 997struct read_stats {
 998        __le32 flash;
 999        __le32 buffer;
1000        __le32 erased_cw;
1001};
1002
1003/*
1004 * reads back status registers set by the controller to notify page read
1005 * errors. this is equivalent to what 'ecc->correct()' would do.
1006 */
1007static int parse_read_errors(struct qcom_nand_host *host, u8 *data_buf,
1008                             u8 *oob_buf)
1009{
1010        struct nand_chip *chip = &host->chip;
1011        struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1012        struct mtd_info *mtd = nand_to_mtd(chip);
1013        struct nand_ecc_ctrl *ecc = &chip->ecc;
1014        unsigned int max_bitflips = 0;
1015        struct read_stats *buf;
1016        int i;
1017
1018        buf = (struct read_stats *)nandc->reg_read_buf;
1019
1020        for (i = 0; i < ecc->steps; i++, buf++) {
1021                u32 flash, buffer, erased_cw;
1022                int data_len, oob_len;
1023
1024                if (i == (ecc->steps - 1)) {
1025                        data_len = ecc->size - ((ecc->steps - 1) << 2);
1026                        oob_len = ecc->steps << 2;
1027                } else {
1028                        data_len = host->cw_data;
1029                        oob_len = 0;
1030                }
1031
1032                flash = le32_to_cpu(buf->flash);
1033                buffer = le32_to_cpu(buf->buffer);
1034                erased_cw = le32_to_cpu(buf->erased_cw);
1035
1036                if (flash & (FS_OP_ERR | FS_MPU_ERR)) {
1037                        bool erased;
1038
1039                        /* ignore erased codeword errors */
1040                        if (host->bch_enabled) {
1041                                erased = (erased_cw & ERASED_CW) == ERASED_CW ?
1042                                         true : false;
1043                        } else {
1044                                erased = erased_chunk_check_and_fixup(data_buf,
1045                                                                      data_len);
1046                        }
1047
1048                        if (erased) {
1049                                data_buf += data_len;
1050                                if (oob_buf)
1051                                        oob_buf += oob_len + ecc->bytes;
1052                                continue;
1053                        }
1054
1055                        if (buffer & BS_UNCORRECTABLE_BIT) {
1056                                int ret, ecclen, extraooblen;
1057                                void *eccbuf;
1058
1059                                eccbuf = oob_buf ? oob_buf + oob_len : NULL;
1060                                ecclen = oob_buf ? host->ecc_bytes_hw : 0;
1061                                extraooblen = oob_buf ? oob_len : 0;
1062
1063                                /*
1064                                 * make sure it isn't an erased page reported
1065                                 * as not-erased by HW because of a few bitflips
1066                                 */
1067                                ret = nand_check_erased_ecc_chunk(data_buf,
1068                                        data_len, eccbuf, ecclen, oob_buf,
1069                                        extraooblen, ecc->strength);
1070                                if (ret < 0) {
1071                                        mtd->ecc_stats.failed++;
1072                                } else {
1073                                        mtd->ecc_stats.corrected += ret;
1074                                        max_bitflips =
1075                                                max_t(unsigned int, max_bitflips, ret);
1076                                }
1077                        }
1078                } else {
1079                        unsigned int stat;
1080
1081                        stat = buffer & BS_CORRECTABLE_ERR_MSK;
1082                        mtd->ecc_stats.corrected += stat;
1083                        max_bitflips = max(max_bitflips, stat);
1084                }
1085
1086                data_buf += data_len;
1087                if (oob_buf)
1088                        oob_buf += oob_len + ecc->bytes;
1089        }
1090
1091        return max_bitflips;
1092}
1093
1094/*
1095 * helper to perform the actual page read operation, used by ecc->read_page(),
1096 * ecc->read_oob()
1097 */
1098static int read_page_ecc(struct qcom_nand_host *host, u8 *data_buf,
1099                         u8 *oob_buf)
1100{
1101        struct nand_chip *chip = &host->chip;
1102        struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1103        struct nand_ecc_ctrl *ecc = &chip->ecc;
1104        int i, ret;
1105
1106        /* queue cmd descs for each codeword */
1107        for (i = 0; i < ecc->steps; i++) {
1108                int data_size, oob_size;
1109
1110                if (i == (ecc->steps - 1)) {
1111                        data_size = ecc->size - ((ecc->steps - 1) << 2);
1112                        oob_size = (ecc->steps << 2) + host->ecc_bytes_hw +
1113                                   host->spare_bytes;
1114                } else {
1115                        data_size = host->cw_data;
1116                        oob_size = host->ecc_bytes_hw + host->spare_bytes;
1117                }
1118
1119                config_cw_read(nandc);
1120
1121                if (data_buf)
1122                        read_data_dma(nandc, FLASH_BUF_ACC, data_buf,
1123                                      data_size);
1124
1125                /*
1126                 * when ecc is enabled, the controller doesn't read the real
1127                 * or dummy bad block markers in each chunk. To maintain a
1128                 * consistent layout across RAW and ECC reads, we just
1129                 * leave the real/dummy BBM offsets empty (i.e, filled with
1130                 * 0xffs)
1131                 */
1132                if (oob_buf) {
1133                        int j;
1134
1135                        for (j = 0; j < host->bbm_size; j++)
1136                                *oob_buf++ = 0xff;
1137
1138                        read_data_dma(nandc, FLASH_BUF_ACC + data_size,
1139                                      oob_buf, oob_size);
1140                }
1141
1142                if (data_buf)
1143                        data_buf += data_size;
1144                if (oob_buf)
1145                        oob_buf += oob_size;
1146        }
1147
1148        ret = submit_descs(nandc);
1149        if (ret)
1150                dev_err(nandc->dev, "failure to read page/oob\n");
1151
1152        free_descs(nandc);
1153
1154        return ret;
1155}
1156
1157/*
1158 * a helper that copies the last step/codeword of a page (containing free oob)
1159 * into our local buffer
1160 */
1161static int copy_last_cw(struct qcom_nand_host *host, int page)
1162{
1163        struct nand_chip *chip = &host->chip;
1164        struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1165        struct nand_ecc_ctrl *ecc = &chip->ecc;
1166        int size;
1167        int ret;
1168
1169        clear_read_regs(nandc);
1170
1171        size = host->use_ecc ? host->cw_data : host->cw_size;
1172
1173        /* prepare a clean read buffer */
1174        memset(nandc->data_buffer, 0xff, size);
1175
1176        set_address(host, host->cw_size * (ecc->steps - 1), page);
1177        update_rw_regs(host, 1, true);
1178
1179        config_cw_read(nandc);
1180
1181        read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, size);
1182
1183        ret = submit_descs(nandc);
1184        if (ret)
1185                dev_err(nandc->dev, "failed to copy last codeword\n");
1186
1187        free_descs(nandc);
1188
1189        return ret;
1190}
1191
1192/* implements ecc->read_page() */
1193static int qcom_nandc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1194                                uint8_t *buf, int oob_required, int page)
1195{
1196        struct qcom_nand_host *host = to_qcom_nand_host(chip);
1197        struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1198        u8 *data_buf, *oob_buf = NULL;
1199        int ret;
1200
1201        data_buf = buf;
1202        oob_buf = oob_required ? chip->oob_poi : NULL;
1203
1204        ret = read_page_ecc(host, data_buf, oob_buf);
1205        if (ret) {
1206                dev_err(nandc->dev, "failure to read page\n");
1207                return ret;
1208        }
1209
1210        return parse_read_errors(host, data_buf, oob_buf);
1211}
1212
1213/* implements ecc->read_page_raw() */
1214static int qcom_nandc_read_page_raw(struct mtd_info *mtd,
1215                                    struct nand_chip *chip, uint8_t *buf,
1216                                    int oob_required, int page)
1217{
1218        struct qcom_nand_host *host = to_qcom_nand_host(chip);
1219        struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1220        u8 *data_buf, *oob_buf;
1221        struct nand_ecc_ctrl *ecc = &chip->ecc;
1222        int i, ret;
1223
1224        data_buf = buf;
1225        oob_buf = chip->oob_poi;
1226
1227        host->use_ecc = false;
1228        update_rw_regs(host, ecc->steps, true);
1229
1230        for (i = 0; i < ecc->steps; i++) {
1231                int data_size1, data_size2, oob_size1, oob_size2;
1232                int reg_off = FLASH_BUF_ACC;
1233
1234                data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1);
1235                oob_size1 = host->bbm_size;
1236
1237                if (i == (ecc->steps - 1)) {
1238                        data_size2 = ecc->size - data_size1 -
1239                                     ((ecc->steps - 1) << 2);
1240                        oob_size2 = (ecc->steps << 2) + host->ecc_bytes_hw +
1241                                    host->spare_bytes;
1242                } else {
1243                        data_size2 = host->cw_data - data_size1;
1244                        oob_size2 = host->ecc_bytes_hw + host->spare_bytes;
1245                }
1246
1247                config_cw_read(nandc);
1248
1249                read_data_dma(nandc, reg_off, data_buf, data_size1);
1250                reg_off += data_size1;
1251                data_buf += data_size1;
1252
1253                read_data_dma(nandc, reg_off, oob_buf, oob_size1);
1254                reg_off += oob_size1;
1255                oob_buf += oob_size1;
1256
1257                read_data_dma(nandc, reg_off, data_buf, data_size2);
1258                reg_off += data_size2;
1259                data_buf += data_size2;
1260
1261                read_data_dma(nandc, reg_off, oob_buf, oob_size2);
1262                oob_buf += oob_size2;
1263        }
1264
1265        ret = submit_descs(nandc);
1266        if (ret)
1267                dev_err(nandc->dev, "failure to read raw page\n");
1268
1269        free_descs(nandc);
1270
1271        return 0;
1272}
1273
1274/* implements ecc->read_oob() */
1275static int qcom_nandc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1276                               int page)
1277{
1278        struct qcom_nand_host *host = to_qcom_nand_host(chip);
1279        struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1280        struct nand_ecc_ctrl *ecc = &chip->ecc;
1281        int ret;
1282
1283        clear_read_regs(nandc);
1284
1285        host->use_ecc = true;
1286        set_address(host, 0, page);
1287        update_rw_regs(host, ecc->steps, true);
1288
1289        ret = read_page_ecc(host, NULL, chip->oob_poi);
1290        if (ret)
1291                dev_err(nandc->dev, "failure to read oob\n");
1292
1293        return ret;
1294}
1295
1296/* implements ecc->write_page() */
1297static int qcom_nandc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1298                                 const uint8_t *buf, int oob_required, int page)
1299{
1300        struct qcom_nand_host *host = to_qcom_nand_host(chip);
1301        struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1302        struct nand_ecc_ctrl *ecc = &chip->ecc;
1303        u8 *data_buf, *oob_buf;
1304        int i, ret;
1305
1306        clear_read_regs(nandc);
1307
1308        data_buf = (u8 *)buf;
1309        oob_buf = chip->oob_poi;
1310
1311        host->use_ecc = true;
1312        update_rw_regs(host, ecc->steps, false);
1313
1314        for (i = 0; i < ecc->steps; i++) {
1315                int data_size, oob_size;
1316
1317                if (i == (ecc->steps - 1)) {
1318                        data_size = ecc->size - ((ecc->steps - 1) << 2);
1319                        oob_size = (ecc->steps << 2) + host->ecc_bytes_hw +
1320                                   host->spare_bytes;
1321                } else {
1322                        data_size = host->cw_data;
1323                        oob_size = ecc->bytes;
1324                }
1325
1326                config_cw_write_pre(nandc);
1327
1328                write_data_dma(nandc, FLASH_BUF_ACC, data_buf, data_size);
1329
1330                /*
1331                 * when ECC is enabled, we don't really need to write anything
1332                 * to oob for the first n - 1 codewords since these oob regions
1333                 * just contain ECC bytes that's written by the controller
1334                 * itself. For the last codeword, we skip the bbm positions and
1335                 * write to the free oob area.
1336                 */
1337                if (i == (ecc->steps - 1)) {
1338                        oob_buf += host->bbm_size;
1339
1340                        write_data_dma(nandc, FLASH_BUF_ACC + data_size,
1341                                       oob_buf, oob_size);
1342                }
1343
1344                config_cw_write_post(nandc);
1345
1346                data_buf += data_size;
1347                oob_buf += oob_size;
1348        }
1349
1350        ret = submit_descs(nandc);
1351        if (ret)
1352                dev_err(nandc->dev, "failure to write page\n");
1353
1354        free_descs(nandc);
1355
1356        return ret;
1357}
1358
1359/* implements ecc->write_page_raw() */
1360static int qcom_nandc_write_page_raw(struct mtd_info *mtd,
1361                                     struct nand_chip *chip, const uint8_t *buf,
1362                                     int oob_required, int page)
1363{
1364        struct qcom_nand_host *host = to_qcom_nand_host(chip);
1365        struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1366        struct nand_ecc_ctrl *ecc = &chip->ecc;
1367        u8 *data_buf, *oob_buf;
1368        int i, ret;
1369
1370        clear_read_regs(nandc);
1371
1372        data_buf = (u8 *)buf;
1373        oob_buf = chip->oob_poi;
1374
1375        host->use_ecc = false;
1376        update_rw_regs(host, ecc->steps, false);
1377
1378        for (i = 0; i < ecc->steps; i++) {
1379                int data_size1, data_size2, oob_size1, oob_size2;
1380                int reg_off = FLASH_BUF_ACC;
1381
1382                data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1);
1383                oob_size1 = host->bbm_size;
1384
1385                if (i == (ecc->steps - 1)) {
1386                        data_size2 = ecc->size - data_size1 -
1387                                     ((ecc->steps - 1) << 2);
1388                        oob_size2 = (ecc->steps << 2) + host->ecc_bytes_hw +
1389                                    host->spare_bytes;
1390                } else {
1391                        data_size2 = host->cw_data - data_size1;
1392                        oob_size2 = host->ecc_bytes_hw + host->spare_bytes;
1393                }
1394
1395                config_cw_write_pre(nandc);
1396
1397                write_data_dma(nandc, reg_off, data_buf, data_size1);
1398                reg_off += data_size1;
1399                data_buf += data_size1;
1400
1401                write_data_dma(nandc, reg_off, oob_buf, oob_size1);
1402                reg_off += oob_size1;
1403                oob_buf += oob_size1;
1404
1405                write_data_dma(nandc, reg_off, data_buf, data_size2);
1406                reg_off += data_size2;
1407                data_buf += data_size2;
1408
1409                write_data_dma(nandc, reg_off, oob_buf, oob_size2);
1410                oob_buf += oob_size2;
1411
1412                config_cw_write_post(nandc);
1413        }
1414
1415        ret = submit_descs(nandc);
1416        if (ret)
1417                dev_err(nandc->dev, "failure to write raw page\n");
1418
1419        free_descs(nandc);
1420
1421        return ret;
1422}
1423
1424/*
1425 * implements ecc->write_oob()
1426 *
1427 * the NAND controller cannot write only data or only oob within a codeword,
1428 * since ecc is calculated for the combined codeword. we first copy the
1429 * entire contents for the last codeword(data + oob), replace the old oob
1430 * with the new one in chip->oob_poi, and then write the entire codeword.
1431 * this read-copy-write operation results in a slight performance loss.
1432 */
1433static int qcom_nandc_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
1434                                int page)
1435{
1436        struct qcom_nand_host *host = to_qcom_nand_host(chip);
1437        struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1438        struct nand_ecc_ctrl *ecc = &chip->ecc;
1439        u8 *oob = chip->oob_poi;
1440        int free_boff;
1441        int data_size, oob_size;
1442        int ret, status = 0;
1443
1444        host->use_ecc = true;
1445
1446        ret = copy_last_cw(host, page);
1447        if (ret)
1448                return ret;
1449
1450        clear_read_regs(nandc);
1451
1452        /* calculate the data and oob size for the last codeword/step */
1453        data_size = ecc->size - ((ecc->steps - 1) << 2);
1454        oob_size = ecc->steps << 2;
1455
1456        free_boff = ecc->layout->oobfree[0].offset;
1457
1458        /* override new oob content to last codeword */
1459        memcpy(nandc->data_buffer + data_size, oob + free_boff, oob_size);
1460
1461        set_address(host, host->cw_size * (ecc->steps - 1), page);
1462        update_rw_regs(host, 1, false);
1463
1464        config_cw_write_pre(nandc);
1465        write_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer,
1466                       data_size + oob_size);
1467        config_cw_write_post(nandc);
1468
1469        ret = submit_descs(nandc);
1470
1471        free_descs(nandc);
1472
1473        if (ret) {
1474                dev_err(nandc->dev, "failure to write oob\n");
1475                return -EIO;
1476        }
1477
1478        chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1479
1480        status = chip->waitfunc(mtd, chip);
1481
1482        return status & NAND_STATUS_FAIL ? -EIO : 0;
1483}
1484
1485static int qcom_nandc_block_bad(struct mtd_info *mtd, loff_t ofs)
1486{
1487        struct nand_chip *chip = mtd_to_nand(mtd);
1488        struct qcom_nand_host *host = to_qcom_nand_host(chip);
1489        struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1490        struct nand_ecc_ctrl *ecc = &chip->ecc;
1491        int page, ret, bbpos, bad = 0;
1492        u32 flash_status;
1493
1494        page = (int)(ofs >> chip->page_shift) & chip->pagemask;
1495
1496        /*
1497         * configure registers for a raw sub page read, the address is set to
1498         * the beginning of the last codeword, we don't care about reading ecc
1499         * portion of oob. we just want the first few bytes from this codeword
1500         * that contains the BBM
1501         */
1502        host->use_ecc = false;
1503
1504        ret = copy_last_cw(host, page);
1505        if (ret)
1506                goto err;
1507
1508        flash_status = le32_to_cpu(nandc->reg_read_buf[0]);
1509
1510        if (flash_status & (FS_OP_ERR | FS_MPU_ERR)) {
1511                dev_warn(nandc->dev, "error when trying to read BBM\n");
1512                goto err;
1513        }
1514
1515        bbpos = mtd->writesize - host->cw_size * (ecc->steps - 1);
1516
1517        bad = nandc->data_buffer[bbpos] != 0xff;
1518
1519        if (chip->options & NAND_BUSWIDTH_16)
1520                bad = bad || (nandc->data_buffer[bbpos + 1] != 0xff);
1521err:
1522        return bad;
1523}
1524
1525static int qcom_nandc_block_markbad(struct mtd_info *mtd, loff_t ofs)
1526{
1527        struct nand_chip *chip = mtd_to_nand(mtd);
1528        struct qcom_nand_host *host = to_qcom_nand_host(chip);
1529        struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1530        struct nand_ecc_ctrl *ecc = &chip->ecc;
1531        int page, ret, status = 0;
1532
1533        clear_read_regs(nandc);
1534
1535        /*
1536         * to mark the BBM as bad, we flash the entire last codeword with 0s.
1537         * we don't care about the rest of the content in the codeword since
1538         * we aren't going to use this block again
1539         */
1540        memset(nandc->data_buffer, 0x00, host->cw_size);
1541
1542        page = (int)(ofs >> chip->page_shift) & chip->pagemask;
1543
1544        /* prepare write */
1545        host->use_ecc = false;
1546        set_address(host, host->cw_size * (ecc->steps - 1), page);
1547        update_rw_regs(host, 1, false);
1548
1549        config_cw_write_pre(nandc);
1550        write_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, host->cw_size);
1551        config_cw_write_post(nandc);
1552
1553        ret = submit_descs(nandc);
1554
1555        free_descs(nandc);
1556
1557        if (ret) {
1558                dev_err(nandc->dev, "failure to update BBM\n");
1559                return -EIO;
1560        }
1561
1562        chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1563
1564        status = chip->waitfunc(mtd, chip);
1565
1566        return status & NAND_STATUS_FAIL ? -EIO : 0;
1567}
1568
1569/*
1570 * the three functions below implement chip->read_byte(), chip->read_buf()
1571 * and chip->write_buf() respectively. these aren't used for
1572 * reading/writing page data, they are used for smaller data like reading
1573 * id, status etc
1574 */
1575static uint8_t qcom_nandc_read_byte(struct mtd_info *mtd)
1576{
1577        struct nand_chip *chip = mtd_to_nand(mtd);
1578        struct qcom_nand_host *host = to_qcom_nand_host(chip);
1579        struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1580        u8 *buf = nandc->data_buffer;
1581        u8 ret = 0x0;
1582
1583        if (host->last_command == NAND_CMD_STATUS) {
1584                ret = host->status;
1585
1586                host->status = NAND_STATUS_READY | NAND_STATUS_WP;
1587
1588                return ret;
1589        }
1590
1591        if (nandc->buf_start < nandc->buf_count)
1592                ret = buf[nandc->buf_start++];
1593
1594        return ret;
1595}
1596
1597static void qcom_nandc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
1598{
1599        struct nand_chip *chip = mtd_to_nand(mtd);
1600        struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1601        int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start);
1602
1603        memcpy(buf, nandc->data_buffer + nandc->buf_start, real_len);
1604        nandc->buf_start += real_len;
1605}
1606
1607static void qcom_nandc_write_buf(struct mtd_info *mtd, const uint8_t *buf,
1608                                 int len)
1609{
1610        struct nand_chip *chip = mtd_to_nand(mtd);
1611        struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1612        int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start);
1613
1614        memcpy(nandc->data_buffer + nandc->buf_start, buf, real_len);
1615
1616        nandc->buf_start += real_len;
1617}
1618
1619/* we support only one external chip for now */
1620static void qcom_nandc_select_chip(struct mtd_info *mtd, int chipnr)
1621{
1622        struct nand_chip *chip = mtd_to_nand(mtd);
1623        struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1624
1625        if (chipnr <= 0)
1626                return;
1627
1628        dev_warn(nandc->dev, "invalid chip select\n");
1629}
1630
1631/*
1632 * NAND controller page layout info
1633 *
1634 * Layout with ECC enabled:
1635 *
1636 * |----------------------|  |---------------------------------|
1637 * |           xx.......yy|  |             *********xx.......yy|
1638 * |    DATA   xx..ECC..yy|  |    DATA     **SPARE**xx..ECC..yy|
1639 * |   (516)   xx.......yy|  |  (516-n*4)  **(n*4)**xx.......yy|
1640 * |           xx.......yy|  |             *********xx.......yy|
1641 * |----------------------|  |---------------------------------|
1642 *     codeword 1,2..n-1                  codeword n
1643 *  <---(528/532 Bytes)-->    <-------(528/532 Bytes)--------->
1644 *
1645 * n = Number of codewords in the page
1646 * . = ECC bytes
1647 * * = Spare/free bytes
1648 * x = Unused byte(s)
1649 * y = Reserved byte(s)
1650 *
1651 * 2K page: n = 4, spare = 16 bytes
1652 * 4K page: n = 8, spare = 32 bytes
1653 * 8K page: n = 16, spare = 64 bytes
1654 *
1655 * the qcom nand controller operates at a sub page/codeword level. each
1656 * codeword is 528 and 532 bytes for 4 bit and 8 bit ECC modes respectively.
1657 * the number of ECC bytes vary based on the ECC strength and the bus width.
1658 *
1659 * the first n - 1 codewords contains 516 bytes of user data, the remaining
1660 * 12/16 bytes consist of ECC and reserved data. The nth codeword contains
1661 * both user data and spare(oobavail) bytes that sum up to 516 bytes.
1662 *
1663 * When we access a page with ECC enabled, the reserved bytes(s) are not
1664 * accessible at all. When reading, we fill up these unreadable positions
1665 * with 0xffs. When writing, the controller skips writing the inaccessible
1666 * bytes.
1667 *
1668 * Layout with ECC disabled:
1669 *
1670 * |------------------------------|  |---------------------------------------|
1671 * |         yy          xx.......|  |         bb          *********xx.......|
1672 * |  DATA1  yy  DATA2   xx..ECC..|  |  DATA1  bb  DATA2   **SPARE**xx..ECC..|
1673 * | (size1) yy (size2)  xx.......|  | (size1) bb (size2)  **(n*4)**xx.......|
1674 * |         yy          xx.......|  |         bb          *********xx.......|
1675 * |------------------------------|  |---------------------------------------|
1676 *         codeword 1,2..n-1                        codeword n
1677 *  <-------(528/532 Bytes)------>    <-----------(528/532 Bytes)----------->
1678 *
1679 * n = Number of codewords in the page
1680 * . = ECC bytes
1681 * * = Spare/free bytes
1682 * x = Unused byte(s)
1683 * y = Dummy Bad Bock byte(s)
1684 * b = Real Bad Block byte(s)
1685 * size1/size2 = function of codeword size and 'n'
1686 *
1687 * when the ECC block is disabled, one reserved byte (or two for 16 bit bus
1688 * width) is now accessible. For the first n - 1 codewords, these are dummy Bad
1689 * Block Markers. In the last codeword, this position contains the real BBM
1690 *
1691 * In order to have a consistent layout between RAW and ECC modes, we assume
1692 * the following OOB layout arrangement:
1693 *
1694 * |-----------|  |--------------------|
1695 * |yyxx.......|  |bb*********xx.......|
1696 * |yyxx..ECC..|  |bb*FREEOOB*xx..ECC..|
1697 * |yyxx.......|  |bb*********xx.......|
1698 * |yyxx.......|  |bb*********xx.......|
1699 * |-----------|  |--------------------|
1700 *  first n - 1       nth OOB region
1701 *  OOB regions
1702 *
1703 * n = Number of codewords in the page
1704 * . = ECC bytes
1705 * * = FREE OOB bytes
1706 * y = Dummy bad block byte(s) (inaccessible when ECC enabled)
1707 * x = Unused byte(s)
1708 * b = Real bad block byte(s) (inaccessible when ECC enabled)
1709 *
1710 * This layout is read as is when ECC is disabled. When ECC is enabled, the
1711 * inaccessible Bad Block byte(s) are ignored when we write to a page/oob,
1712 * and assumed as 0xffs when we read a page/oob. The ECC, unused and
1713 * dummy/real bad block bytes are grouped as ecc bytes in nand_ecclayout (i.e,
1714 * ecc->bytes is the sum of the three).
1715 */
1716
1717static struct nand_ecclayout *
1718qcom_nand_create_layout(struct qcom_nand_host *host)
1719{
1720        struct nand_chip *chip = &host->chip;
1721        struct mtd_info *mtd = nand_to_mtd(chip);
1722        struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1723        struct nand_ecc_ctrl *ecc = &chip->ecc;
1724        struct nand_ecclayout *layout;
1725        int i, j, steps, pos = 0, shift = 0;
1726
1727        layout = devm_kzalloc(nandc->dev, sizeof(*layout), GFP_KERNEL);
1728        if (!layout)
1729                return NULL;
1730
1731        steps = mtd->writesize / ecc->size;
1732        layout->eccbytes = steps * ecc->bytes;
1733
1734        layout->oobfree[0].offset = (steps - 1) * ecc->bytes + host->bbm_size;
1735        layout->oobfree[0].length = steps << 2;
1736
1737        /*
1738         * the oob bytes in the first n - 1 codewords are all grouped together
1739         * in the format:
1740         * DUMMY_BBM + UNUSED + ECC
1741         */
1742        for (i = 0; i < steps - 1; i++) {
1743                for (j = 0; j < ecc->bytes; j++)
1744                        layout->eccpos[pos++] = i * ecc->bytes + j;
1745        }
1746
1747        /*
1748         * the oob bytes in the last codeword are grouped in the format:
1749         * BBM + FREE OOB + UNUSED + ECC
1750         */
1751
1752        /* fill up the bbm positions */
1753        for (j = 0; j < host->bbm_size; j++)
1754                layout->eccpos[pos++] = i * ecc->bytes + j;
1755
1756        /*
1757         * fill up the ecc and reserved positions, their indices are offseted
1758         * by the free oob region
1759         */
1760        shift = layout->oobfree[0].length + host->bbm_size;
1761
1762        for (j = 0; j < (host->ecc_bytes_hw + host->spare_bytes); j++)
1763                layout->eccpos[pos++] = i * ecc->bytes + shift + j;
1764
1765        return layout;
1766}
1767
1768static int qcom_nand_host_setup(struct qcom_nand_host *host)
1769{
1770        struct nand_chip *chip = &host->chip;
1771        struct mtd_info *mtd = nand_to_mtd(chip);
1772        struct nand_ecc_ctrl *ecc = &chip->ecc;
1773        struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1774        int cwperpage, bad_block_byte;
1775        bool wide_bus;
1776        int ecc_mode = 1;
1777
1778        /*
1779         * the controller requires each step consists of 512 bytes of data.
1780         * bail out if DT has populated a wrong step size.
1781         */
1782        if (ecc->size != NANDC_STEP_SIZE) {
1783                dev_err(nandc->dev, "invalid ecc size\n");
1784                return -EINVAL;
1785        }
1786
1787        wide_bus = chip->options & NAND_BUSWIDTH_16 ? true : false;
1788
1789        if (ecc->strength >= 8) {
1790                /* 8 bit ECC defaults to BCH ECC on all platforms */
1791                host->bch_enabled = true;
1792                ecc_mode = 1;
1793
1794                if (wide_bus) {
1795                        host->ecc_bytes_hw = 14;
1796                        host->spare_bytes = 0;
1797                        host->bbm_size = 2;
1798                } else {
1799                        host->ecc_bytes_hw = 13;
1800                        host->spare_bytes = 2;
1801                        host->bbm_size = 1;
1802                }
1803        } else {
1804                /*
1805                 * if the controller supports BCH for 4 bit ECC, the controller
1806                 * uses lesser bytes for ECC. If RS is used, the ECC bytes is
1807                 * always 10 bytes
1808                 */
1809                if (nandc->ecc_modes & ECC_BCH_4BIT) {
1810                        /* BCH */
1811                        host->bch_enabled = true;
1812                        ecc_mode = 0;
1813
1814                        if (wide_bus) {
1815                                host->ecc_bytes_hw = 8;
1816                                host->spare_bytes = 2;
1817                                host->bbm_size = 2;
1818                        } else {
1819                                host->ecc_bytes_hw = 7;
1820                                host->spare_bytes = 4;
1821                                host->bbm_size = 1;
1822                        }
1823                } else {
1824                        /* RS */
1825                        host->ecc_bytes_hw = 10;
1826
1827                        if (wide_bus) {
1828                                host->spare_bytes = 0;
1829                                host->bbm_size = 2;
1830                        } else {
1831                                host->spare_bytes = 1;
1832                                host->bbm_size = 1;
1833                        }
1834                }
1835        }
1836
1837        /*
1838         * we consider ecc->bytes as the sum of all the non-data content in a
1839         * step. It gives us a clean representation of the oob area (even if
1840         * all the bytes aren't used for ECC).It is always 16 bytes for 8 bit
1841         * ECC and 12 bytes for 4 bit ECC
1842         */
1843        ecc->bytes = host->ecc_bytes_hw + host->spare_bytes + host->bbm_size;
1844
1845        ecc->read_page          = qcom_nandc_read_page;
1846        ecc->read_page_raw      = qcom_nandc_read_page_raw;
1847        ecc->read_oob           = qcom_nandc_read_oob;
1848        ecc->write_page         = qcom_nandc_write_page;
1849        ecc->write_page_raw     = qcom_nandc_write_page_raw;
1850        ecc->write_oob          = qcom_nandc_write_oob;
1851
1852        ecc->mode = NAND_ECC_HW;
1853
1854        ecc->layout = qcom_nand_create_layout(host);
1855        if (!ecc->layout)
1856                return -ENOMEM;
1857
1858        cwperpage = mtd->writesize / ecc->size;
1859
1860        /*
1861         * DATA_UD_BYTES varies based on whether the read/write command protects
1862         * spare data with ECC too. We protect spare data by default, so we set
1863         * it to main + spare data, which are 512 and 4 bytes respectively.
1864         */
1865        host->cw_data = 516;
1866
1867        /*
1868         * total bytes in a step, either 528 bytes for 4 bit ECC, or 532 bytes
1869         * for 8 bit ECC
1870         */
1871        host->cw_size = host->cw_data + ecc->bytes;
1872
1873        if (ecc->bytes * (mtd->writesize / ecc->size) > mtd->oobsize) {
1874                dev_err(nandc->dev, "ecc data doesn't fit in OOB area\n");
1875                return -EINVAL;
1876        }
1877
1878        bad_block_byte = mtd->writesize - host->cw_size * (cwperpage - 1) + 1;
1879
1880        host->cfg0 = (cwperpage - 1) << CW_PER_PAGE
1881                                | host->cw_data << UD_SIZE_BYTES
1882                                | 0 << DISABLE_STATUS_AFTER_WRITE
1883                                | 5 << NUM_ADDR_CYCLES
1884                                | host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_RS
1885                                | 0 << STATUS_BFR_READ
1886                                | 1 << SET_RD_MODE_AFTER_STATUS
1887                                | host->spare_bytes << SPARE_SIZE_BYTES;
1888
1889        host->cfg1 = 7 << NAND_RECOVERY_CYCLES
1890                                | 0 <<  CS_ACTIVE_BSY
1891                                | bad_block_byte << BAD_BLOCK_BYTE_NUM
1892                                | 0 << BAD_BLOCK_IN_SPARE_AREA
1893                                | 2 << WR_RD_BSY_GAP
1894                                | wide_bus << WIDE_FLASH
1895                                | host->bch_enabled << ENABLE_BCH_ECC;
1896
1897        host->cfg0_raw = (cwperpage - 1) << CW_PER_PAGE
1898                                | host->cw_size << UD_SIZE_BYTES
1899                                | 5 << NUM_ADDR_CYCLES
1900                                | 0 << SPARE_SIZE_BYTES;
1901
1902        host->cfg1_raw = 7 << NAND_RECOVERY_CYCLES
1903                                | 0 << CS_ACTIVE_BSY
1904                                | 17 << BAD_BLOCK_BYTE_NUM
1905                                | 1 << BAD_BLOCK_IN_SPARE_AREA
1906                                | 2 << WR_RD_BSY_GAP
1907                                | wide_bus << WIDE_FLASH
1908                                | 1 << DEV0_CFG1_ECC_DISABLE;
1909
1910        host->ecc_bch_cfg = host->bch_enabled << ECC_CFG_ECC_DISABLE
1911                                | 0 << ECC_SW_RESET
1912                                | host->cw_data << ECC_NUM_DATA_BYTES
1913                                | 1 << ECC_FORCE_CLK_OPEN
1914                                | ecc_mode << ECC_MODE
1915                                | host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_BCH;
1916
1917        host->ecc_buf_cfg = 0x203 << NUM_STEPS;
1918
1919        host->clrflashstatus = FS_READY_BSY_N;
1920        host->clrreadstatus = 0xc0;
1921
1922        dev_dbg(nandc->dev,
1923                "cfg0 %x cfg1 %x ecc_buf_cfg %x ecc_bch cfg %x cw_size %d cw_data %d strength %d parity_bytes %d steps %d\n",
1924                host->cfg0, host->cfg1, host->ecc_buf_cfg, host->ecc_bch_cfg,
1925                host->cw_size, host->cw_data, ecc->strength, ecc->bytes,
1926                cwperpage);
1927
1928        return 0;
1929}
1930
1931static int qcom_nandc_alloc(struct qcom_nand_controller *nandc)
1932{
1933        int ret;
1934
1935        ret = dma_set_coherent_mask(nandc->dev, DMA_BIT_MASK(32));
1936        if (ret) {
1937                dev_err(nandc->dev, "failed to set DMA mask\n");
1938                return ret;
1939        }
1940
1941        /*
1942         * we use the internal buffer for reading ONFI params, reading small
1943         * data like ID and status, and preforming read-copy-write operations
1944         * when writing to a codeword partially. 532 is the maximum possible
1945         * size of a codeword for our nand controller
1946         */
1947        nandc->buf_size = 532;
1948
1949        nandc->data_buffer = devm_kzalloc(nandc->dev, nandc->buf_size,
1950                                        GFP_KERNEL);
1951        if (!nandc->data_buffer)
1952                return -ENOMEM;
1953
1954        nandc->regs = devm_kzalloc(nandc->dev, sizeof(*nandc->regs),
1955                                        GFP_KERNEL);
1956        if (!nandc->regs)
1957                return -ENOMEM;
1958
1959        nandc->reg_read_buf = devm_kzalloc(nandc->dev,
1960                                MAX_REG_RD * sizeof(*nandc->reg_read_buf),
1961                                GFP_KERNEL);
1962        if (!nandc->reg_read_buf)
1963                return -ENOMEM;
1964
1965        nandc->chan = dma_request_slave_channel(nandc->dev, "rxtx");
1966        if (!nandc->chan) {
1967                dev_err(nandc->dev, "failed to request slave channel\n");
1968                return -ENODEV;
1969        }
1970
1971        INIT_LIST_HEAD(&nandc->desc_list);
1972        INIT_LIST_HEAD(&nandc->host_list);
1973
1974        spin_lock_init(&nandc->controller.lock);
1975        init_waitqueue_head(&nandc->controller.wq);
1976
1977        return 0;
1978}
1979
1980static void qcom_nandc_unalloc(struct qcom_nand_controller *nandc)
1981{
1982        dma_release_channel(nandc->chan);
1983}
1984
1985/* one time setup of a few nand controller registers */
1986static int qcom_nandc_setup(struct qcom_nand_controller *nandc)
1987{
1988        /* kill onenand */
1989        nandc_write(nandc, SFLASHC_BURST_CFG, 0);
1990
1991        /* enable ADM DMA */
1992        nandc_write(nandc, NAND_FLASH_CHIP_SELECT, DM_EN);
1993
1994        /* save the original values of these registers */
1995        nandc->cmd1 = nandc_read(nandc, NAND_DEV_CMD1);
1996        nandc->vld = nandc_read(nandc, NAND_DEV_CMD_VLD);
1997
1998        return 0;
1999}
2000
2001static int qcom_nand_host_init(struct qcom_nand_controller *nandc,
2002                               struct qcom_nand_host *host,
2003                               struct device_node *dn)
2004{
2005        struct nand_chip *chip = &host->chip;
2006        struct mtd_info *mtd = nand_to_mtd(chip);
2007        struct device *dev = nandc->dev;
2008        int ret;
2009
2010        ret = of_property_read_u32(dn, "reg", &host->cs);
2011        if (ret) {
2012                dev_err(dev, "can't get chip-select\n");
2013                return -ENXIO;
2014        }
2015
2016        nand_set_flash_node(chip, dn);
2017        mtd->name = devm_kasprintf(dev, GFP_KERNEL, "qcom_nand.%d", host->cs);
2018        mtd->owner = THIS_MODULE;
2019        mtd->dev.parent = dev;
2020
2021        chip->cmdfunc           = qcom_nandc_command;
2022        chip->select_chip       = qcom_nandc_select_chip;
2023        chip->read_byte         = qcom_nandc_read_byte;
2024        chip->read_buf          = qcom_nandc_read_buf;
2025        chip->write_buf         = qcom_nandc_write_buf;
2026
2027        /*
2028         * the bad block marker is readable only when we read the last codeword
2029         * of a page with ECC disabled. currently, the nand_base and nand_bbt
2030         * helpers don't allow us to read BB from a nand chip with ECC
2031         * disabled (MTD_OPS_PLACE_OOB is set by default). use the block_bad
2032         * and block_markbad helpers until we permanently switch to using
2033         * MTD_OPS_RAW for all drivers (with the help of badblockbits)
2034         */
2035        chip->block_bad         = qcom_nandc_block_bad;
2036        chip->block_markbad     = qcom_nandc_block_markbad;
2037
2038        chip->controller = &nandc->controller;
2039        chip->options |= NAND_NO_SUBPAGE_WRITE | NAND_USE_BOUNCE_BUFFER |
2040                         NAND_SKIP_BBTSCAN;
2041
2042        /* set up initial status value */
2043        host->status = NAND_STATUS_READY | NAND_STATUS_WP;
2044
2045        ret = nand_scan_ident(mtd, 1, NULL);
2046        if (ret)
2047                return ret;
2048
2049        ret = qcom_nand_host_setup(host);
2050        if (ret)
2051                return ret;
2052
2053        ret = nand_scan_tail(mtd);
2054        if (ret)
2055                return ret;
2056
2057        return mtd_device_register(mtd, NULL, 0);
2058}
2059
2060/* parse custom DT properties here */
2061static int qcom_nandc_parse_dt(struct platform_device *pdev)
2062{
2063        struct qcom_nand_controller *nandc = platform_get_drvdata(pdev);
2064        struct device_node *np = nandc->dev->of_node;
2065        int ret;
2066
2067        ret = of_property_read_u32(np, "qcom,cmd-crci", &nandc->cmd_crci);
2068        if (ret) {
2069                dev_err(nandc->dev, "command CRCI unspecified\n");
2070                return ret;
2071        }
2072
2073        ret = of_property_read_u32(np, "qcom,data-crci", &nandc->data_crci);
2074        if (ret) {
2075                dev_err(nandc->dev, "data CRCI unspecified\n");
2076                return ret;
2077        }
2078
2079        return 0;
2080}
2081
2082static int qcom_nandc_probe(struct platform_device *pdev)
2083{
2084        struct qcom_nand_controller *nandc;
2085        struct qcom_nand_host *host;
2086        const void *dev_data;
2087        struct device *dev = &pdev->dev;
2088        struct device_node *dn = dev->of_node, *child;
2089        struct resource *res;
2090        int ret;
2091
2092        nandc = devm_kzalloc(&pdev->dev, sizeof(*nandc), GFP_KERNEL);
2093        if (!nandc)
2094                return -ENOMEM;
2095
2096        platform_set_drvdata(pdev, nandc);
2097        nandc->dev = dev;
2098
2099        dev_data = of_device_get_match_data(dev);
2100        if (!dev_data) {
2101                dev_err(&pdev->dev, "failed to get device data\n");
2102                return -ENODEV;
2103        }
2104
2105        nandc->ecc_modes = (unsigned long)dev_data;
2106
2107        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2108        nandc->base = devm_ioremap_resource(dev, res);
2109        if (IS_ERR(nandc->base))
2110                return PTR_ERR(nandc->base);
2111
2112        nandc->base_dma = phys_to_dma(dev, (phys_addr_t)res->start);
2113
2114        nandc->core_clk = devm_clk_get(dev, "core");
2115        if (IS_ERR(nandc->core_clk))
2116                return PTR_ERR(nandc->core_clk);
2117
2118        nandc->aon_clk = devm_clk_get(dev, "aon");
2119        if (IS_ERR(nandc->aon_clk))
2120                return PTR_ERR(nandc->aon_clk);
2121
2122        ret = qcom_nandc_parse_dt(pdev);
2123        if (ret)
2124                return ret;
2125
2126        ret = qcom_nandc_alloc(nandc);
2127        if (ret)
2128                return ret;
2129
2130        ret = clk_prepare_enable(nandc->core_clk);
2131        if (ret)
2132                goto err_core_clk;
2133
2134        ret = clk_prepare_enable(nandc->aon_clk);
2135        if (ret)
2136                goto err_aon_clk;
2137
2138        ret = qcom_nandc_setup(nandc);
2139        if (ret)
2140                goto err_setup;
2141
2142        for_each_available_child_of_node(dn, child) {
2143                if (of_device_is_compatible(child, "qcom,nandcs")) {
2144                        host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
2145                        if (!host) {
2146                                of_node_put(child);
2147                                ret = -ENOMEM;
2148                                goto err_cs_init;
2149                        }
2150
2151                        ret = qcom_nand_host_init(nandc, host, child);
2152                        if (ret) {
2153                                devm_kfree(dev, host);
2154                                continue;
2155                        }
2156
2157                        list_add_tail(&host->node, &nandc->host_list);
2158                }
2159        }
2160
2161        if (list_empty(&nandc->host_list)) {
2162                ret = -ENODEV;
2163                goto err_cs_init;
2164        }
2165
2166        return 0;
2167
2168err_cs_init:
2169        list_for_each_entry(host, &nandc->host_list, node)
2170                nand_release(nand_to_mtd(&host->chip));
2171err_setup:
2172        clk_disable_unprepare(nandc->aon_clk);
2173err_aon_clk:
2174        clk_disable_unprepare(nandc->core_clk);
2175err_core_clk:
2176        qcom_nandc_unalloc(nandc);
2177
2178        return ret;
2179}
2180
2181static int qcom_nandc_remove(struct platform_device *pdev)
2182{
2183        struct qcom_nand_controller *nandc = platform_get_drvdata(pdev);
2184        struct qcom_nand_host *host;
2185
2186        list_for_each_entry(host, &nandc->host_list, node)
2187                nand_release(nand_to_mtd(&host->chip));
2188
2189        qcom_nandc_unalloc(nandc);
2190
2191        clk_disable_unprepare(nandc->aon_clk);
2192        clk_disable_unprepare(nandc->core_clk);
2193
2194        return 0;
2195}
2196
2197#define EBI2_NANDC_ECC_MODES    (ECC_RS_4BIT | ECC_BCH_8BIT)
2198
2199/*
2200 * data will hold a struct pointer containing more differences once we support
2201 * more controller variants
2202 */
2203static const struct of_device_id qcom_nandc_of_match[] = {
2204        {       .compatible = "qcom,ipq806x-nand",
2205                .data = (void *)EBI2_NANDC_ECC_MODES,
2206        },
2207        {}
2208};
2209MODULE_DEVICE_TABLE(of, qcom_nandc_of_match);
2210
2211static struct platform_driver qcom_nandc_driver = {
2212        .driver = {
2213                .name = "qcom-nandc",
2214                .of_match_table = qcom_nandc_of_match,
2215        },
2216        .probe   = qcom_nandc_probe,
2217        .remove  = qcom_nandc_remove,
2218};
2219module_platform_driver(qcom_nandc_driver);
2220
2221MODULE_AUTHOR("Archit Taneja <architt@codeaurora.org>");
2222MODULE_DESCRIPTION("Qualcomm NAND Controller driver");
2223MODULE_LICENSE("GPL v2");
2224