linux/drivers/net/ethernet/broadcom/bnx2x/bnx2x_main.c
<<
>>
Prefs
   1/* bnx2x_main.c: QLogic Everest network driver.
   2 *
   3 * Copyright (c) 2007-2013 Broadcom Corporation
   4 * Copyright (c) 2014 QLogic Corporation
   5 * All rights reserved
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License as published by
   9 * the Free Software Foundation.
  10 *
  11 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
  12 * Written by: Eliezer Tamir
  13 * Based on code from Michael Chan's bnx2 driver
  14 * UDP CSUM errata workaround by Arik Gendelman
  15 * Slowpath and fastpath rework by Vladislav Zolotarov
  16 * Statistics and Link management by Yitchak Gertner
  17 *
  18 */
  19
  20#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  21
  22#include <linux/module.h>
  23#include <linux/moduleparam.h>
  24#include <linux/kernel.h>
  25#include <linux/device.h>  /* for dev_info() */
  26#include <linux/timer.h>
  27#include <linux/errno.h>
  28#include <linux/ioport.h>
  29#include <linux/slab.h>
  30#include <linux/interrupt.h>
  31#include <linux/pci.h>
  32#include <linux/aer.h>
  33#include <linux/init.h>
  34#include <linux/netdevice.h>
  35#include <linux/etherdevice.h>
  36#include <linux/skbuff.h>
  37#include <linux/dma-mapping.h>
  38#include <linux/bitops.h>
  39#include <linux/irq.h>
  40#include <linux/delay.h>
  41#include <asm/byteorder.h>
  42#include <linux/time.h>
  43#include <linux/ethtool.h>
  44#include <linux/mii.h>
  45#include <linux/if_vlan.h>
  46#include <linux/crash_dump.h>
  47#include <net/ip.h>
  48#include <net/ipv6.h>
  49#include <net/tcp.h>
  50#include <net/vxlan.h>
  51#include <net/checksum.h>
  52#include <net/ip6_checksum.h>
  53#include <linux/workqueue.h>
  54#include <linux/crc32.h>
  55#include <linux/crc32c.h>
  56#include <linux/prefetch.h>
  57#include <linux/zlib.h>
  58#include <linux/io.h>
  59#include <linux/semaphore.h>
  60#include <linux/stringify.h>
  61#include <linux/vmalloc.h>
  62#if IS_ENABLED(CONFIG_BNX2X_GENEVE)
  63#include <net/geneve.h>
  64#endif
  65#include "bnx2x.h"
  66#include "bnx2x_init.h"
  67#include "bnx2x_init_ops.h"
  68#include "bnx2x_cmn.h"
  69#include "bnx2x_vfpf.h"
  70#include "bnx2x_dcb.h"
  71#include "bnx2x_sp.h"
  72#include <linux/firmware.h>
  73#include "bnx2x_fw_file_hdr.h"
  74/* FW files */
  75#define FW_FILE_VERSION                                 \
  76        __stringify(BCM_5710_FW_MAJOR_VERSION) "."      \
  77        __stringify(BCM_5710_FW_MINOR_VERSION) "."      \
  78        __stringify(BCM_5710_FW_REVISION_VERSION) "."   \
  79        __stringify(BCM_5710_FW_ENGINEERING_VERSION)
  80#define FW_FILE_NAME_E1         "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
  81#define FW_FILE_NAME_E1H        "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
  82#define FW_FILE_NAME_E2         "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
  83
  84/* Time in jiffies before concluding the transmitter is hung */
  85#define TX_TIMEOUT              (5*HZ)
  86
  87static char version[] =
  88        "QLogic 5771x/578xx 10/20-Gigabit Ethernet Driver "
  89        DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  90
  91MODULE_AUTHOR("Eliezer Tamir");
  92MODULE_DESCRIPTION("QLogic "
  93                   "BCM57710/57711/57711E/"
  94                   "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
  95                   "57840/57840_MF Driver");
  96MODULE_LICENSE("GPL");
  97MODULE_VERSION(DRV_MODULE_VERSION);
  98MODULE_FIRMWARE(FW_FILE_NAME_E1);
  99MODULE_FIRMWARE(FW_FILE_NAME_E1H);
 100MODULE_FIRMWARE(FW_FILE_NAME_E2);
 101
 102int bnx2x_num_queues;
 103module_param_named(num_queues, bnx2x_num_queues, int, S_IRUGO);
 104MODULE_PARM_DESC(num_queues,
 105                 " Set number of queues (default is as a number of CPUs)");
 106
 107static int disable_tpa;
 108module_param(disable_tpa, int, S_IRUGO);
 109MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
 110
 111static int int_mode;
 112module_param(int_mode, int, S_IRUGO);
 113MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
 114                                "(1 INT#x; 2 MSI)");
 115
 116static int dropless_fc;
 117module_param(dropless_fc, int, S_IRUGO);
 118MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
 119
 120static int mrrs = -1;
 121module_param(mrrs, int, S_IRUGO);
 122MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
 123
 124static int debug;
 125module_param(debug, int, S_IRUGO);
 126MODULE_PARM_DESC(debug, " Default debug msglevel");
 127
 128static struct workqueue_struct *bnx2x_wq;
 129struct workqueue_struct *bnx2x_iov_wq;
 130
 131struct bnx2x_mac_vals {
 132        u32 xmac_addr;
 133        u32 xmac_val;
 134        u32 emac_addr;
 135        u32 emac_val;
 136        u32 umac_addr[2];
 137        u32 umac_val[2];
 138        u32 bmac_addr;
 139        u32 bmac_val[2];
 140};
 141
 142enum bnx2x_board_type {
 143        BCM57710 = 0,
 144        BCM57711,
 145        BCM57711E,
 146        BCM57712,
 147        BCM57712_MF,
 148        BCM57712_VF,
 149        BCM57800,
 150        BCM57800_MF,
 151        BCM57800_VF,
 152        BCM57810,
 153        BCM57810_MF,
 154        BCM57810_VF,
 155        BCM57840_4_10,
 156        BCM57840_2_20,
 157        BCM57840_MF,
 158        BCM57840_VF,
 159        BCM57811,
 160        BCM57811_MF,
 161        BCM57840_O,
 162        BCM57840_MFO,
 163        BCM57811_VF
 164};
 165
 166/* indexed by board_type, above */
 167static struct {
 168        char *name;
 169} board_info[] = {
 170        [BCM57710]      = { "QLogic BCM57710 10 Gigabit PCIe [Everest]" },
 171        [BCM57711]      = { "QLogic BCM57711 10 Gigabit PCIe" },
 172        [BCM57711E]     = { "QLogic BCM57711E 10 Gigabit PCIe" },
 173        [BCM57712]      = { "QLogic BCM57712 10 Gigabit Ethernet" },
 174        [BCM57712_MF]   = { "QLogic BCM57712 10 Gigabit Ethernet Multi Function" },
 175        [BCM57712_VF]   = { "QLogic BCM57712 10 Gigabit Ethernet Virtual Function" },
 176        [BCM57800]      = { "QLogic BCM57800 10 Gigabit Ethernet" },
 177        [BCM57800_MF]   = { "QLogic BCM57800 10 Gigabit Ethernet Multi Function" },
 178        [BCM57800_VF]   = { "QLogic BCM57800 10 Gigabit Ethernet Virtual Function" },
 179        [BCM57810]      = { "QLogic BCM57810 10 Gigabit Ethernet" },
 180        [BCM57810_MF]   = { "QLogic BCM57810 10 Gigabit Ethernet Multi Function" },
 181        [BCM57810_VF]   = { "QLogic BCM57810 10 Gigabit Ethernet Virtual Function" },
 182        [BCM57840_4_10] = { "QLogic BCM57840 10 Gigabit Ethernet" },
 183        [BCM57840_2_20] = { "QLogic BCM57840 20 Gigabit Ethernet" },
 184        [BCM57840_MF]   = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
 185        [BCM57840_VF]   = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" },
 186        [BCM57811]      = { "QLogic BCM57811 10 Gigabit Ethernet" },
 187        [BCM57811_MF]   = { "QLogic BCM57811 10 Gigabit Ethernet Multi Function" },
 188        [BCM57840_O]    = { "QLogic BCM57840 10/20 Gigabit Ethernet" },
 189        [BCM57840_MFO]  = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
 190        [BCM57811_VF]   = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" }
 191};
 192
 193#ifndef PCI_DEVICE_ID_NX2_57710
 194#define PCI_DEVICE_ID_NX2_57710         CHIP_NUM_57710
 195#endif
 196#ifndef PCI_DEVICE_ID_NX2_57711
 197#define PCI_DEVICE_ID_NX2_57711         CHIP_NUM_57711
 198#endif
 199#ifndef PCI_DEVICE_ID_NX2_57711E
 200#define PCI_DEVICE_ID_NX2_57711E        CHIP_NUM_57711E
 201#endif
 202#ifndef PCI_DEVICE_ID_NX2_57712
 203#define PCI_DEVICE_ID_NX2_57712         CHIP_NUM_57712
 204#endif
 205#ifndef PCI_DEVICE_ID_NX2_57712_MF
 206#define PCI_DEVICE_ID_NX2_57712_MF      CHIP_NUM_57712_MF
 207#endif
 208#ifndef PCI_DEVICE_ID_NX2_57712_VF
 209#define PCI_DEVICE_ID_NX2_57712_VF      CHIP_NUM_57712_VF
 210#endif
 211#ifndef PCI_DEVICE_ID_NX2_57800
 212#define PCI_DEVICE_ID_NX2_57800         CHIP_NUM_57800
 213#endif
 214#ifndef PCI_DEVICE_ID_NX2_57800_MF
 215#define PCI_DEVICE_ID_NX2_57800_MF      CHIP_NUM_57800_MF
 216#endif
 217#ifndef PCI_DEVICE_ID_NX2_57800_VF
 218#define PCI_DEVICE_ID_NX2_57800_VF      CHIP_NUM_57800_VF
 219#endif
 220#ifndef PCI_DEVICE_ID_NX2_57810
 221#define PCI_DEVICE_ID_NX2_57810         CHIP_NUM_57810
 222#endif
 223#ifndef PCI_DEVICE_ID_NX2_57810_MF
 224#define PCI_DEVICE_ID_NX2_57810_MF      CHIP_NUM_57810_MF
 225#endif
 226#ifndef PCI_DEVICE_ID_NX2_57840_O
 227#define PCI_DEVICE_ID_NX2_57840_O       CHIP_NUM_57840_OBSOLETE
 228#endif
 229#ifndef PCI_DEVICE_ID_NX2_57810_VF
 230#define PCI_DEVICE_ID_NX2_57810_VF      CHIP_NUM_57810_VF
 231#endif
 232#ifndef PCI_DEVICE_ID_NX2_57840_4_10
 233#define PCI_DEVICE_ID_NX2_57840_4_10    CHIP_NUM_57840_4_10
 234#endif
 235#ifndef PCI_DEVICE_ID_NX2_57840_2_20
 236#define PCI_DEVICE_ID_NX2_57840_2_20    CHIP_NUM_57840_2_20
 237#endif
 238#ifndef PCI_DEVICE_ID_NX2_57840_MFO
 239#define PCI_DEVICE_ID_NX2_57840_MFO     CHIP_NUM_57840_MF_OBSOLETE
 240#endif
 241#ifndef PCI_DEVICE_ID_NX2_57840_MF
 242#define PCI_DEVICE_ID_NX2_57840_MF      CHIP_NUM_57840_MF
 243#endif
 244#ifndef PCI_DEVICE_ID_NX2_57840_VF
 245#define PCI_DEVICE_ID_NX2_57840_VF      CHIP_NUM_57840_VF
 246#endif
 247#ifndef PCI_DEVICE_ID_NX2_57811
 248#define PCI_DEVICE_ID_NX2_57811         CHIP_NUM_57811
 249#endif
 250#ifndef PCI_DEVICE_ID_NX2_57811_MF
 251#define PCI_DEVICE_ID_NX2_57811_MF      CHIP_NUM_57811_MF
 252#endif
 253#ifndef PCI_DEVICE_ID_NX2_57811_VF
 254#define PCI_DEVICE_ID_NX2_57811_VF      CHIP_NUM_57811_VF
 255#endif
 256
 257static const struct pci_device_id bnx2x_pci_tbl[] = {
 258        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
 259        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
 260        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
 261        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
 262        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
 263        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
 264        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
 265        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
 266        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
 267        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
 268        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
 269        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
 270        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
 271        { PCI_VDEVICE(QLOGIC,   PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
 272        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
 273        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
 274        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
 275        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
 276        { PCI_VDEVICE(QLOGIC,   PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
 277        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
 278        { PCI_VDEVICE(QLOGIC,   PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
 279        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
 280        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
 281        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
 282        { 0 }
 283};
 284
 285MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
 286
 287/* Global resources for unloading a previously loaded device */
 288#define BNX2X_PREV_WAIT_NEEDED 1
 289static DEFINE_SEMAPHORE(bnx2x_prev_sem);
 290static LIST_HEAD(bnx2x_prev_list);
 291
 292/* Forward declaration */
 293static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
 294static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp);
 295static int bnx2x_set_storm_rx_mode(struct bnx2x *bp);
 296
 297/****************************************************************************
 298* General service functions
 299****************************************************************************/
 300
 301static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr);
 302
 303static void __storm_memset_dma_mapping(struct bnx2x *bp,
 304                                       u32 addr, dma_addr_t mapping)
 305{
 306        REG_WR(bp,  addr, U64_LO(mapping));
 307        REG_WR(bp,  addr + 4, U64_HI(mapping));
 308}
 309
 310static void storm_memset_spq_addr(struct bnx2x *bp,
 311                                  dma_addr_t mapping, u16 abs_fid)
 312{
 313        u32 addr = XSEM_REG_FAST_MEMORY +
 314                        XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
 315
 316        __storm_memset_dma_mapping(bp, addr, mapping);
 317}
 318
 319static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
 320                                  u16 pf_id)
 321{
 322        REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
 323                pf_id);
 324        REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
 325                pf_id);
 326        REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
 327                pf_id);
 328        REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
 329                pf_id);
 330}
 331
 332static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
 333                                 u8 enable)
 334{
 335        REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
 336                enable);
 337        REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
 338                enable);
 339        REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
 340                enable);
 341        REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
 342                enable);
 343}
 344
 345static void storm_memset_eq_data(struct bnx2x *bp,
 346                                 struct event_ring_data *eq_data,
 347                                u16 pfid)
 348{
 349        size_t size = sizeof(struct event_ring_data);
 350
 351        u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
 352
 353        __storm_memset_struct(bp, addr, size, (u32 *)eq_data);
 354}
 355
 356static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
 357                                 u16 pfid)
 358{
 359        u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
 360        REG_WR16(bp, addr, eq_prod);
 361}
 362
 363/* used only at init
 364 * locking is done by mcp
 365 */
 366static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
 367{
 368        pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
 369        pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
 370        pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
 371                               PCICFG_VENDOR_ID_OFFSET);
 372}
 373
 374static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
 375{
 376        u32 val;
 377
 378        pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
 379        pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
 380        pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
 381                               PCICFG_VENDOR_ID_OFFSET);
 382
 383        return val;
 384}
 385
 386#define DMAE_DP_SRC_GRC         "grc src_addr [%08x]"
 387#define DMAE_DP_SRC_PCI         "pci src_addr [%x:%08x]"
 388#define DMAE_DP_DST_GRC         "grc dst_addr [%08x]"
 389#define DMAE_DP_DST_PCI         "pci dst_addr [%x:%08x]"
 390#define DMAE_DP_DST_NONE        "dst_addr [none]"
 391
 392static void bnx2x_dp_dmae(struct bnx2x *bp,
 393                          struct dmae_command *dmae, int msglvl)
 394{
 395        u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
 396        int i;
 397
 398        switch (dmae->opcode & DMAE_COMMAND_DST) {
 399        case DMAE_CMD_DST_PCI:
 400                if (src_type == DMAE_CMD_SRC_PCI)
 401                        DP(msglvl, "DMAE: opcode 0x%08x\n"
 402                           "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
 403                           "comp_addr [%x:%08x], comp_val 0x%08x\n",
 404                           dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
 405                           dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
 406                           dmae->comp_addr_hi, dmae->comp_addr_lo,
 407                           dmae->comp_val);
 408                else
 409                        DP(msglvl, "DMAE: opcode 0x%08x\n"
 410                           "src [%08x], len [%d*4], dst [%x:%08x]\n"
 411                           "comp_addr [%x:%08x], comp_val 0x%08x\n",
 412                           dmae->opcode, dmae->src_addr_lo >> 2,
 413                           dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
 414                           dmae->comp_addr_hi, dmae->comp_addr_lo,
 415                           dmae->comp_val);
 416                break;
 417        case DMAE_CMD_DST_GRC:
 418                if (src_type == DMAE_CMD_SRC_PCI)
 419                        DP(msglvl, "DMAE: opcode 0x%08x\n"
 420                           "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
 421                           "comp_addr [%x:%08x], comp_val 0x%08x\n",
 422                           dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
 423                           dmae->len, dmae->dst_addr_lo >> 2,
 424                           dmae->comp_addr_hi, dmae->comp_addr_lo,
 425                           dmae->comp_val);
 426                else
 427                        DP(msglvl, "DMAE: opcode 0x%08x\n"
 428                           "src [%08x], len [%d*4], dst [%08x]\n"
 429                           "comp_addr [%x:%08x], comp_val 0x%08x\n",
 430                           dmae->opcode, dmae->src_addr_lo >> 2,
 431                           dmae->len, dmae->dst_addr_lo >> 2,
 432                           dmae->comp_addr_hi, dmae->comp_addr_lo,
 433                           dmae->comp_val);
 434                break;
 435        default:
 436                if (src_type == DMAE_CMD_SRC_PCI)
 437                        DP(msglvl, "DMAE: opcode 0x%08x\n"
 438                           "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
 439                           "comp_addr [%x:%08x]  comp_val 0x%08x\n",
 440                           dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
 441                           dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
 442                           dmae->comp_val);
 443                else
 444                        DP(msglvl, "DMAE: opcode 0x%08x\n"
 445                           "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
 446                           "comp_addr [%x:%08x]  comp_val 0x%08x\n",
 447                           dmae->opcode, dmae->src_addr_lo >> 2,
 448                           dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
 449                           dmae->comp_val);
 450                break;
 451        }
 452
 453        for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
 454                DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
 455                   i, *(((u32 *)dmae) + i));
 456}
 457
 458/* copy command into DMAE command memory and set DMAE command go */
 459void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
 460{
 461        u32 cmd_offset;
 462        int i;
 463
 464        cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
 465        for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
 466                REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
 467        }
 468        REG_WR(bp, dmae_reg_go_c[idx], 1);
 469}
 470
 471u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
 472{
 473        return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
 474                           DMAE_CMD_C_ENABLE);
 475}
 476
 477u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
 478{
 479        return opcode & ~DMAE_CMD_SRC_RESET;
 480}
 481
 482u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
 483                             bool with_comp, u8 comp_type)
 484{
 485        u32 opcode = 0;
 486
 487        opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
 488                   (dst_type << DMAE_COMMAND_DST_SHIFT));
 489
 490        opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
 491
 492        opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
 493        opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
 494                   (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
 495        opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
 496
 497#ifdef __BIG_ENDIAN
 498        opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
 499#else
 500        opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
 501#endif
 502        if (with_comp)
 503                opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
 504        return opcode;
 505}
 506
 507void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
 508                                      struct dmae_command *dmae,
 509                                      u8 src_type, u8 dst_type)
 510{
 511        memset(dmae, 0, sizeof(struct dmae_command));
 512
 513        /* set the opcode */
 514        dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
 515                                         true, DMAE_COMP_PCI);
 516
 517        /* fill in the completion parameters */
 518        dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
 519        dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
 520        dmae->comp_val = DMAE_COMP_VAL;
 521}
 522
 523/* issue a dmae command over the init-channel and wait for completion */
 524int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
 525                               u32 *comp)
 526{
 527        int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
 528        int rc = 0;
 529
 530        bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
 531
 532        /* Lock the dmae channel. Disable BHs to prevent a dead-lock
 533         * as long as this code is called both from syscall context and
 534         * from ndo_set_rx_mode() flow that may be called from BH.
 535         */
 536
 537        spin_lock_bh(&bp->dmae_lock);
 538
 539        /* reset completion */
 540        *comp = 0;
 541
 542        /* post the command on the channel used for initializations */
 543        bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
 544
 545        /* wait for completion */
 546        udelay(5);
 547        while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
 548
 549                if (!cnt ||
 550                    (bp->recovery_state != BNX2X_RECOVERY_DONE &&
 551                     bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
 552                        BNX2X_ERR("DMAE timeout!\n");
 553                        rc = DMAE_TIMEOUT;
 554                        goto unlock;
 555                }
 556                cnt--;
 557                udelay(50);
 558        }
 559        if (*comp & DMAE_PCI_ERR_FLAG) {
 560                BNX2X_ERR("DMAE PCI error!\n");
 561                rc = DMAE_PCI_ERROR;
 562        }
 563
 564unlock:
 565
 566        spin_unlock_bh(&bp->dmae_lock);
 567
 568        return rc;
 569}
 570
 571void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
 572                      u32 len32)
 573{
 574        int rc;
 575        struct dmae_command dmae;
 576
 577        if (!bp->dmae_ready) {
 578                u32 *data = bnx2x_sp(bp, wb_data[0]);
 579
 580                if (CHIP_IS_E1(bp))
 581                        bnx2x_init_ind_wr(bp, dst_addr, data, len32);
 582                else
 583                        bnx2x_init_str_wr(bp, dst_addr, data, len32);
 584                return;
 585        }
 586
 587        /* set opcode and fixed command fields */
 588        bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
 589
 590        /* fill in addresses and len */
 591        dmae.src_addr_lo = U64_LO(dma_addr);
 592        dmae.src_addr_hi = U64_HI(dma_addr);
 593        dmae.dst_addr_lo = dst_addr >> 2;
 594        dmae.dst_addr_hi = 0;
 595        dmae.len = len32;
 596
 597        /* issue the command and wait for completion */
 598        rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
 599        if (rc) {
 600                BNX2X_ERR("DMAE returned failure %d\n", rc);
 601#ifdef BNX2X_STOP_ON_ERROR
 602                bnx2x_panic();
 603#endif
 604        }
 605}
 606
 607void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
 608{
 609        int rc;
 610        struct dmae_command dmae;
 611
 612        if (!bp->dmae_ready) {
 613                u32 *data = bnx2x_sp(bp, wb_data[0]);
 614                int i;
 615
 616                if (CHIP_IS_E1(bp))
 617                        for (i = 0; i < len32; i++)
 618                                data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
 619                else
 620                        for (i = 0; i < len32; i++)
 621                                data[i] = REG_RD(bp, src_addr + i*4);
 622
 623                return;
 624        }
 625
 626        /* set opcode and fixed command fields */
 627        bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
 628
 629        /* fill in addresses and len */
 630        dmae.src_addr_lo = src_addr >> 2;
 631        dmae.src_addr_hi = 0;
 632        dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
 633        dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
 634        dmae.len = len32;
 635
 636        /* issue the command and wait for completion */
 637        rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
 638        if (rc) {
 639                BNX2X_ERR("DMAE returned failure %d\n", rc);
 640#ifdef BNX2X_STOP_ON_ERROR
 641                bnx2x_panic();
 642#endif
 643        }
 644}
 645
 646static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
 647                                      u32 addr, u32 len)
 648{
 649        int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
 650        int offset = 0;
 651
 652        while (len > dmae_wr_max) {
 653                bnx2x_write_dmae(bp, phys_addr + offset,
 654                                 addr + offset, dmae_wr_max);
 655                offset += dmae_wr_max * 4;
 656                len -= dmae_wr_max;
 657        }
 658
 659        bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
 660}
 661
 662enum storms {
 663           XSTORM,
 664           TSTORM,
 665           CSTORM,
 666           USTORM,
 667           MAX_STORMS
 668};
 669
 670#define STORMS_NUM 4
 671#define REGS_IN_ENTRY 4
 672
 673static inline int bnx2x_get_assert_list_entry(struct bnx2x *bp,
 674                                              enum storms storm,
 675                                              int entry)
 676{
 677        switch (storm) {
 678        case XSTORM:
 679                return XSTORM_ASSERT_LIST_OFFSET(entry);
 680        case TSTORM:
 681                return TSTORM_ASSERT_LIST_OFFSET(entry);
 682        case CSTORM:
 683                return CSTORM_ASSERT_LIST_OFFSET(entry);
 684        case USTORM:
 685                return USTORM_ASSERT_LIST_OFFSET(entry);
 686        case MAX_STORMS:
 687        default:
 688                BNX2X_ERR("unknown storm\n");
 689        }
 690        return -EINVAL;
 691}
 692
 693static int bnx2x_mc_assert(struct bnx2x *bp)
 694{
 695        char last_idx;
 696        int i, j, rc = 0;
 697        enum storms storm;
 698        u32 regs[REGS_IN_ENTRY];
 699        u32 bar_storm_intmem[STORMS_NUM] = {
 700                BAR_XSTRORM_INTMEM,
 701                BAR_TSTRORM_INTMEM,
 702                BAR_CSTRORM_INTMEM,
 703                BAR_USTRORM_INTMEM
 704        };
 705        u32 storm_assert_list_index[STORMS_NUM] = {
 706                XSTORM_ASSERT_LIST_INDEX_OFFSET,
 707                TSTORM_ASSERT_LIST_INDEX_OFFSET,
 708                CSTORM_ASSERT_LIST_INDEX_OFFSET,
 709                USTORM_ASSERT_LIST_INDEX_OFFSET
 710        };
 711        char *storms_string[STORMS_NUM] = {
 712                "XSTORM",
 713                "TSTORM",
 714                "CSTORM",
 715                "USTORM"
 716        };
 717
 718        for (storm = XSTORM; storm < MAX_STORMS; storm++) {
 719                last_idx = REG_RD8(bp, bar_storm_intmem[storm] +
 720                                   storm_assert_list_index[storm]);
 721                if (last_idx)
 722                        BNX2X_ERR("%s_ASSERT_LIST_INDEX 0x%x\n",
 723                                  storms_string[storm], last_idx);
 724
 725                /* print the asserts */
 726                for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
 727                        /* read a single assert entry */
 728                        for (j = 0; j < REGS_IN_ENTRY; j++)
 729                                regs[j] = REG_RD(bp, bar_storm_intmem[storm] +
 730                                          bnx2x_get_assert_list_entry(bp,
 731                                                                      storm,
 732                                                                      i) +
 733                                          sizeof(u32) * j);
 734
 735                        /* log entry if it contains a valid assert */
 736                        if (regs[0] != COMMON_ASM_INVALID_ASSERT_OPCODE) {
 737                                BNX2X_ERR("%s_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
 738                                          storms_string[storm], i, regs[3],
 739                                          regs[2], regs[1], regs[0]);
 740                                rc++;
 741                        } else {
 742                                break;
 743                        }
 744                }
 745        }
 746
 747        BNX2X_ERR("Chip Revision: %s, FW Version: %d_%d_%d\n",
 748                  CHIP_IS_E1(bp) ? "everest1" :
 749                  CHIP_IS_E1H(bp) ? "everest1h" :
 750                  CHIP_IS_E2(bp) ? "everest2" : "everest3",
 751                  BCM_5710_FW_MAJOR_VERSION,
 752                  BCM_5710_FW_MINOR_VERSION,
 753                  BCM_5710_FW_REVISION_VERSION);
 754
 755        return rc;
 756}
 757
 758#define MCPR_TRACE_BUFFER_SIZE  (0x800)
 759#define SCRATCH_BUFFER_SIZE(bp) \
 760        (CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
 761
 762void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
 763{
 764        u32 addr, val;
 765        u32 mark, offset;
 766        __be32 data[9];
 767        int word;
 768        u32 trace_shmem_base;
 769        if (BP_NOMCP(bp)) {
 770                BNX2X_ERR("NO MCP - can not dump\n");
 771                return;
 772        }
 773        netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
 774                (bp->common.bc_ver & 0xff0000) >> 16,
 775                (bp->common.bc_ver & 0xff00) >> 8,
 776                (bp->common.bc_ver & 0xff));
 777
 778        val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
 779        if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
 780                BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
 781
 782        if (BP_PATH(bp) == 0)
 783                trace_shmem_base = bp->common.shmem_base;
 784        else
 785                trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
 786
 787        /* sanity */
 788        if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE ||
 789            trace_shmem_base >= MCPR_SCRATCH_BASE(bp) +
 790                                SCRATCH_BUFFER_SIZE(bp)) {
 791                BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
 792                          trace_shmem_base);
 793                return;
 794        }
 795
 796        addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE;
 797
 798        /* validate TRCB signature */
 799        mark = REG_RD(bp, addr);
 800        if (mark != MFW_TRACE_SIGNATURE) {
 801                BNX2X_ERR("Trace buffer signature is missing.");
 802                return ;
 803        }
 804
 805        /* read cyclic buffer pointer */
 806        addr += 4;
 807        mark = REG_RD(bp, addr);
 808        mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000;
 809        if (mark >= trace_shmem_base || mark < addr + 4) {
 810                BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
 811                return;
 812        }
 813        printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
 814
 815        printk("%s", lvl);
 816
 817        /* dump buffer after the mark */
 818        for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) {
 819                for (word = 0; word < 8; word++)
 820                        data[word] = htonl(REG_RD(bp, offset + 4*word));
 821                data[8] = 0x0;
 822                pr_cont("%s", (char *)data);
 823        }
 824
 825        /* dump buffer before the mark */
 826        for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
 827                for (word = 0; word < 8; word++)
 828                        data[word] = htonl(REG_RD(bp, offset + 4*word));
 829                data[8] = 0x0;
 830                pr_cont("%s", (char *)data);
 831        }
 832        printk("%s" "end of fw dump\n", lvl);
 833}
 834
 835static void bnx2x_fw_dump(struct bnx2x *bp)
 836{
 837        bnx2x_fw_dump_lvl(bp, KERN_ERR);
 838}
 839
 840static void bnx2x_hc_int_disable(struct bnx2x *bp)
 841{
 842        int port = BP_PORT(bp);
 843        u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
 844        u32 val = REG_RD(bp, addr);
 845
 846        /* in E1 we must use only PCI configuration space to disable
 847         * MSI/MSIX capability
 848         * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
 849         */
 850        if (CHIP_IS_E1(bp)) {
 851                /* Since IGU_PF_CONF_MSI_MSIX_EN still always on
 852                 * Use mask register to prevent from HC sending interrupts
 853                 * after we exit the function
 854                 */
 855                REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
 856
 857                val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
 858                         HC_CONFIG_0_REG_INT_LINE_EN_0 |
 859                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
 860        } else
 861                val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
 862                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
 863                         HC_CONFIG_0_REG_INT_LINE_EN_0 |
 864                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
 865
 866        DP(NETIF_MSG_IFDOWN,
 867           "write %x to HC %d (addr 0x%x)\n",
 868           val, port, addr);
 869
 870        /* flush all outstanding writes */
 871        mmiowb();
 872
 873        REG_WR(bp, addr, val);
 874        if (REG_RD(bp, addr) != val)
 875                BNX2X_ERR("BUG! Proper val not read from IGU!\n");
 876}
 877
 878static void bnx2x_igu_int_disable(struct bnx2x *bp)
 879{
 880        u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
 881
 882        val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
 883                 IGU_PF_CONF_INT_LINE_EN |
 884                 IGU_PF_CONF_ATTN_BIT_EN);
 885
 886        DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
 887
 888        /* flush all outstanding writes */
 889        mmiowb();
 890
 891        REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
 892        if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
 893                BNX2X_ERR("BUG! Proper val not read from IGU!\n");
 894}
 895
 896static void bnx2x_int_disable(struct bnx2x *bp)
 897{
 898        if (bp->common.int_block == INT_BLOCK_HC)
 899                bnx2x_hc_int_disable(bp);
 900        else
 901                bnx2x_igu_int_disable(bp);
 902}
 903
 904void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
 905{
 906        int i;
 907        u16 j;
 908        struct hc_sp_status_block_data sp_sb_data;
 909        int func = BP_FUNC(bp);
 910#ifdef BNX2X_STOP_ON_ERROR
 911        u16 start = 0, end = 0;
 912        u8 cos;
 913#endif
 914        if (IS_PF(bp) && disable_int)
 915                bnx2x_int_disable(bp);
 916
 917        bp->stats_state = STATS_STATE_DISABLED;
 918        bp->eth_stats.unrecoverable_error++;
 919        DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
 920
 921        BNX2X_ERR("begin crash dump -----------------\n");
 922
 923        /* Indices */
 924        /* Common */
 925        if (IS_PF(bp)) {
 926                struct host_sp_status_block *def_sb = bp->def_status_blk;
 927                int data_size, cstorm_offset;
 928
 929                BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
 930                          bp->def_idx, bp->def_att_idx, bp->attn_state,
 931                          bp->spq_prod_idx, bp->stats_counter);
 932                BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
 933                          def_sb->atten_status_block.attn_bits,
 934                          def_sb->atten_status_block.attn_bits_ack,
 935                          def_sb->atten_status_block.status_block_id,
 936                          def_sb->atten_status_block.attn_bits_index);
 937                BNX2X_ERR("     def (");
 938                for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
 939                        pr_cont("0x%x%s",
 940                                def_sb->sp_sb.index_values[i],
 941                                (i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
 942
 943                data_size = sizeof(struct hc_sp_status_block_data) /
 944                            sizeof(u32);
 945                cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func);
 946                for (i = 0; i < data_size; i++)
 947                        *((u32 *)&sp_sb_data + i) =
 948                                REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset +
 949                                           i * sizeof(u32));
 950
 951                pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
 952                        sp_sb_data.igu_sb_id,
 953                        sp_sb_data.igu_seg_id,
 954                        sp_sb_data.p_func.pf_id,
 955                        sp_sb_data.p_func.vnic_id,
 956                        sp_sb_data.p_func.vf_id,
 957                        sp_sb_data.p_func.vf_valid,
 958                        sp_sb_data.state);
 959        }
 960
 961        for_each_eth_queue(bp, i) {
 962                struct bnx2x_fastpath *fp = &bp->fp[i];
 963                int loop;
 964                struct hc_status_block_data_e2 sb_data_e2;
 965                struct hc_status_block_data_e1x sb_data_e1x;
 966                struct hc_status_block_sm  *hc_sm_p =
 967                        CHIP_IS_E1x(bp) ?
 968                        sb_data_e1x.common.state_machine :
 969                        sb_data_e2.common.state_machine;
 970                struct hc_index_data *hc_index_p =
 971                        CHIP_IS_E1x(bp) ?
 972                        sb_data_e1x.index_data :
 973                        sb_data_e2.index_data;
 974                u8 data_size, cos;
 975                u32 *sb_data_p;
 976                struct bnx2x_fp_txdata txdata;
 977
 978                if (!bp->fp)
 979                        break;
 980
 981                if (!fp->rx_cons_sb)
 982                        continue;
 983
 984                /* Rx */
 985                BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
 986                          i, fp->rx_bd_prod, fp->rx_bd_cons,
 987                          fp->rx_comp_prod,
 988                          fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
 989                BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
 990                          fp->rx_sge_prod, fp->last_max_sge,
 991                          le16_to_cpu(fp->fp_hc_idx));
 992
 993                /* Tx */
 994                for_each_cos_in_tx_queue(fp, cos)
 995                {
 996                        if (!fp->txdata_ptr[cos])
 997                                break;
 998
 999                        txdata = *fp->txdata_ptr[cos];
1000
1001                        if (!txdata.tx_cons_sb)
1002                                continue;
1003
1004                        BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
1005                                  i, txdata.tx_pkt_prod,
1006                                  txdata.tx_pkt_cons, txdata.tx_bd_prod,
1007                                  txdata.tx_bd_cons,
1008                                  le16_to_cpu(*txdata.tx_cons_sb));
1009                }
1010
1011                loop = CHIP_IS_E1x(bp) ?
1012                        HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
1013
1014                /* host sb data */
1015
1016                if (IS_FCOE_FP(fp))
1017                        continue;
1018
1019                BNX2X_ERR("     run indexes (");
1020                for (j = 0; j < HC_SB_MAX_SM; j++)
1021                        pr_cont("0x%x%s",
1022                               fp->sb_running_index[j],
1023                               (j == HC_SB_MAX_SM - 1) ? ")" : " ");
1024
1025                BNX2X_ERR("     indexes (");
1026                for (j = 0; j < loop; j++)
1027                        pr_cont("0x%x%s",
1028                               fp->sb_index_values[j],
1029                               (j == loop - 1) ? ")" : " ");
1030
1031                /* VF cannot access FW refelection for status block */
1032                if (IS_VF(bp))
1033                        continue;
1034
1035                /* fw sb data */
1036                data_size = CHIP_IS_E1x(bp) ?
1037                        sizeof(struct hc_status_block_data_e1x) :
1038                        sizeof(struct hc_status_block_data_e2);
1039                data_size /= sizeof(u32);
1040                sb_data_p = CHIP_IS_E1x(bp) ?
1041                        (u32 *)&sb_data_e1x :
1042                        (u32 *)&sb_data_e2;
1043                /* copy sb data in here */
1044                for (j = 0; j < data_size; j++)
1045                        *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
1046                                CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1047                                j * sizeof(u32));
1048
1049                if (!CHIP_IS_E1x(bp)) {
1050                        pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1051                                sb_data_e2.common.p_func.pf_id,
1052                                sb_data_e2.common.p_func.vf_id,
1053                                sb_data_e2.common.p_func.vf_valid,
1054                                sb_data_e2.common.p_func.vnic_id,
1055                                sb_data_e2.common.same_igu_sb_1b,
1056                                sb_data_e2.common.state);
1057                } else {
1058                        pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1059                                sb_data_e1x.common.p_func.pf_id,
1060                                sb_data_e1x.common.p_func.vf_id,
1061                                sb_data_e1x.common.p_func.vf_valid,
1062                                sb_data_e1x.common.p_func.vnic_id,
1063                                sb_data_e1x.common.same_igu_sb_1b,
1064                                sb_data_e1x.common.state);
1065                }
1066
1067                /* SB_SMs data */
1068                for (j = 0; j < HC_SB_MAX_SM; j++) {
1069                        pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1070                                j, hc_sm_p[j].__flags,
1071                                hc_sm_p[j].igu_sb_id,
1072                                hc_sm_p[j].igu_seg_id,
1073                                hc_sm_p[j].time_to_expire,
1074                                hc_sm_p[j].timer_value);
1075                }
1076
1077                /* Indices data */
1078                for (j = 0; j < loop; j++) {
1079                        pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1080                               hc_index_p[j].flags,
1081                               hc_index_p[j].timeout);
1082                }
1083        }
1084
1085#ifdef BNX2X_STOP_ON_ERROR
1086        if (IS_PF(bp)) {
1087                /* event queue */
1088                BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1089                for (i = 0; i < NUM_EQ_DESC; i++) {
1090                        u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1091
1092                        BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1093                                  i, bp->eq_ring[i].message.opcode,
1094                                  bp->eq_ring[i].message.error);
1095                        BNX2X_ERR("data: %x %x %x\n",
1096                                  data[0], data[1], data[2]);
1097                }
1098        }
1099
1100        /* Rings */
1101        /* Rx */
1102        for_each_valid_rx_queue(bp, i) {
1103                struct bnx2x_fastpath *fp = &bp->fp[i];
1104
1105                if (!bp->fp)
1106                        break;
1107
1108                if (!fp->rx_cons_sb)
1109                        continue;
1110
1111                start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1112                end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1113                for (j = start; j != end; j = RX_BD(j + 1)) {
1114                        u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1115                        struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1116
1117                        BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1118                                  i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1119                }
1120
1121                start = RX_SGE(fp->rx_sge_prod);
1122                end = RX_SGE(fp->last_max_sge);
1123                for (j = start; j != end; j = RX_SGE(j + 1)) {
1124                        u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1125                        struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1126
1127                        BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1128                                  i, j, rx_sge[1], rx_sge[0], sw_page->page);
1129                }
1130
1131                start = RCQ_BD(fp->rx_comp_cons - 10);
1132                end = RCQ_BD(fp->rx_comp_cons + 503);
1133                for (j = start; j != end; j = RCQ_BD(j + 1)) {
1134                        u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1135
1136                        BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1137                                  i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1138                }
1139        }
1140
1141        /* Tx */
1142        for_each_valid_tx_queue(bp, i) {
1143                struct bnx2x_fastpath *fp = &bp->fp[i];
1144
1145                if (!bp->fp)
1146                        break;
1147
1148                for_each_cos_in_tx_queue(fp, cos) {
1149                        struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1150
1151                        if (!fp->txdata_ptr[cos])
1152                                break;
1153
1154                        if (!txdata->tx_cons_sb)
1155                                continue;
1156
1157                        start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1158                        end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1159                        for (j = start; j != end; j = TX_BD(j + 1)) {
1160                                struct sw_tx_bd *sw_bd =
1161                                        &txdata->tx_buf_ring[j];
1162
1163                                BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1164                                          i, cos, j, sw_bd->skb,
1165                                          sw_bd->first_bd);
1166                        }
1167
1168                        start = TX_BD(txdata->tx_bd_cons - 10);
1169                        end = TX_BD(txdata->tx_bd_cons + 254);
1170                        for (j = start; j != end; j = TX_BD(j + 1)) {
1171                                u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1172
1173                                BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1174                                          i, cos, j, tx_bd[0], tx_bd[1],
1175                                          tx_bd[2], tx_bd[3]);
1176                        }
1177                }
1178        }
1179#endif
1180        if (IS_PF(bp)) {
1181                bnx2x_fw_dump(bp);
1182                bnx2x_mc_assert(bp);
1183        }
1184        BNX2X_ERR("end crash dump -----------------\n");
1185}
1186
1187/*
1188 * FLR Support for E2
1189 *
1190 * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1191 * initialization.
1192 */
1193#define FLR_WAIT_USEC           10000   /* 10 milliseconds */
1194#define FLR_WAIT_INTERVAL       50      /* usec */
1195#define FLR_POLL_CNT            (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1196
1197struct pbf_pN_buf_regs {
1198        int pN;
1199        u32 init_crd;
1200        u32 crd;
1201        u32 crd_freed;
1202};
1203
1204struct pbf_pN_cmd_regs {
1205        int pN;
1206        u32 lines_occup;
1207        u32 lines_freed;
1208};
1209
1210static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1211                                     struct pbf_pN_buf_regs *regs,
1212                                     u32 poll_count)
1213{
1214        u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1215        u32 cur_cnt = poll_count;
1216
1217        crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1218        crd = crd_start = REG_RD(bp, regs->crd);
1219        init_crd = REG_RD(bp, regs->init_crd);
1220
1221        DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1222        DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1223        DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1224
1225        while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1226               (init_crd - crd_start))) {
1227                if (cur_cnt--) {
1228                        udelay(FLR_WAIT_INTERVAL);
1229                        crd = REG_RD(bp, regs->crd);
1230                        crd_freed = REG_RD(bp, regs->crd_freed);
1231                } else {
1232                        DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1233                           regs->pN);
1234                        DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1235                           regs->pN, crd);
1236                        DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1237                           regs->pN, crd_freed);
1238                        break;
1239                }
1240        }
1241        DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1242           poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1243}
1244
1245static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1246                                     struct pbf_pN_cmd_regs *regs,
1247                                     u32 poll_count)
1248{
1249        u32 occup, to_free, freed, freed_start;
1250        u32 cur_cnt = poll_count;
1251
1252        occup = to_free = REG_RD(bp, regs->lines_occup);
1253        freed = freed_start = REG_RD(bp, regs->lines_freed);
1254
1255        DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1256        DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1257
1258        while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1259                if (cur_cnt--) {
1260                        udelay(FLR_WAIT_INTERVAL);
1261                        occup = REG_RD(bp, regs->lines_occup);
1262                        freed = REG_RD(bp, regs->lines_freed);
1263                } else {
1264                        DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1265                           regs->pN);
1266                        DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1267                           regs->pN, occup);
1268                        DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1269                           regs->pN, freed);
1270                        break;
1271                }
1272        }
1273        DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1274           poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1275}
1276
1277static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1278                                    u32 expected, u32 poll_count)
1279{
1280        u32 cur_cnt = poll_count;
1281        u32 val;
1282
1283        while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1284                udelay(FLR_WAIT_INTERVAL);
1285
1286        return val;
1287}
1288
1289int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1290                                    char *msg, u32 poll_cnt)
1291{
1292        u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1293        if (val != 0) {
1294                BNX2X_ERR("%s usage count=%d\n", msg, val);
1295                return 1;
1296        }
1297        return 0;
1298}
1299
1300/* Common routines with VF FLR cleanup */
1301u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1302{
1303        /* adjust polling timeout */
1304        if (CHIP_REV_IS_EMUL(bp))
1305                return FLR_POLL_CNT * 2000;
1306
1307        if (CHIP_REV_IS_FPGA(bp))
1308                return FLR_POLL_CNT * 120;
1309
1310        return FLR_POLL_CNT;
1311}
1312
1313void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1314{
1315        struct pbf_pN_cmd_regs cmd_regs[] = {
1316                {0, (CHIP_IS_E3B0(bp)) ?
1317                        PBF_REG_TQ_OCCUPANCY_Q0 :
1318                        PBF_REG_P0_TQ_OCCUPANCY,
1319                    (CHIP_IS_E3B0(bp)) ?
1320                        PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1321                        PBF_REG_P0_TQ_LINES_FREED_CNT},
1322                {1, (CHIP_IS_E3B0(bp)) ?
1323                        PBF_REG_TQ_OCCUPANCY_Q1 :
1324                        PBF_REG_P1_TQ_OCCUPANCY,
1325                    (CHIP_IS_E3B0(bp)) ?
1326                        PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1327                        PBF_REG_P1_TQ_LINES_FREED_CNT},
1328                {4, (CHIP_IS_E3B0(bp)) ?
1329                        PBF_REG_TQ_OCCUPANCY_LB_Q :
1330                        PBF_REG_P4_TQ_OCCUPANCY,
1331                    (CHIP_IS_E3B0(bp)) ?
1332                        PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1333                        PBF_REG_P4_TQ_LINES_FREED_CNT}
1334        };
1335
1336        struct pbf_pN_buf_regs buf_regs[] = {
1337                {0, (CHIP_IS_E3B0(bp)) ?
1338                        PBF_REG_INIT_CRD_Q0 :
1339                        PBF_REG_P0_INIT_CRD ,
1340                    (CHIP_IS_E3B0(bp)) ?
1341                        PBF_REG_CREDIT_Q0 :
1342                        PBF_REG_P0_CREDIT,
1343                    (CHIP_IS_E3B0(bp)) ?
1344                        PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1345                        PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1346                {1, (CHIP_IS_E3B0(bp)) ?
1347                        PBF_REG_INIT_CRD_Q1 :
1348                        PBF_REG_P1_INIT_CRD,
1349                    (CHIP_IS_E3B0(bp)) ?
1350                        PBF_REG_CREDIT_Q1 :
1351                        PBF_REG_P1_CREDIT,
1352                    (CHIP_IS_E3B0(bp)) ?
1353                        PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1354                        PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1355                {4, (CHIP_IS_E3B0(bp)) ?
1356                        PBF_REG_INIT_CRD_LB_Q :
1357                        PBF_REG_P4_INIT_CRD,
1358                    (CHIP_IS_E3B0(bp)) ?
1359                        PBF_REG_CREDIT_LB_Q :
1360                        PBF_REG_P4_CREDIT,
1361                    (CHIP_IS_E3B0(bp)) ?
1362                        PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1363                        PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1364        };
1365
1366        int i;
1367
1368        /* Verify the command queues are flushed P0, P1, P4 */
1369        for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1370                bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1371
1372        /* Verify the transmission buffers are flushed P0, P1, P4 */
1373        for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1374                bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1375}
1376
1377#define OP_GEN_PARAM(param) \
1378        (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1379
1380#define OP_GEN_TYPE(type) \
1381        (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1382
1383#define OP_GEN_AGG_VECT(index) \
1384        (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1385
1386int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1387{
1388        u32 op_gen_command = 0;
1389        u32 comp_addr = BAR_CSTRORM_INTMEM +
1390                        CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1391        int ret = 0;
1392
1393        if (REG_RD(bp, comp_addr)) {
1394                BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1395                return 1;
1396        }
1397
1398        op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1399        op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1400        op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1401        op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1402
1403        DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1404        REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1405
1406        if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1407                BNX2X_ERR("FW final cleanup did not succeed\n");
1408                DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1409                   (REG_RD(bp, comp_addr)));
1410                bnx2x_panic();
1411                return 1;
1412        }
1413        /* Zero completion for next FLR */
1414        REG_WR(bp, comp_addr, 0);
1415
1416        return ret;
1417}
1418
1419u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1420{
1421        u16 status;
1422
1423        pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1424        return status & PCI_EXP_DEVSTA_TRPND;
1425}
1426
1427/* PF FLR specific routines
1428*/
1429static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1430{
1431        /* wait for CFC PF usage-counter to zero (includes all the VFs) */
1432        if (bnx2x_flr_clnup_poll_hw_counter(bp,
1433                        CFC_REG_NUM_LCIDS_INSIDE_PF,
1434                        "CFC PF usage counter timed out",
1435                        poll_cnt))
1436                return 1;
1437
1438        /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1439        if (bnx2x_flr_clnup_poll_hw_counter(bp,
1440                        DORQ_REG_PF_USAGE_CNT,
1441                        "DQ PF usage counter timed out",
1442                        poll_cnt))
1443                return 1;
1444
1445        /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1446        if (bnx2x_flr_clnup_poll_hw_counter(bp,
1447                        QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1448                        "QM PF usage counter timed out",
1449                        poll_cnt))
1450                return 1;
1451
1452        /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1453        if (bnx2x_flr_clnup_poll_hw_counter(bp,
1454                        TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1455                        "Timers VNIC usage counter timed out",
1456                        poll_cnt))
1457                return 1;
1458        if (bnx2x_flr_clnup_poll_hw_counter(bp,
1459                        TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1460                        "Timers NUM_SCANS usage counter timed out",
1461                        poll_cnt))
1462                return 1;
1463
1464        /* Wait DMAE PF usage counter to zero */
1465        if (bnx2x_flr_clnup_poll_hw_counter(bp,
1466                        dmae_reg_go_c[INIT_DMAE_C(bp)],
1467                        "DMAE command register timed out",
1468                        poll_cnt))
1469                return 1;
1470
1471        return 0;
1472}
1473
1474static void bnx2x_hw_enable_status(struct bnx2x *bp)
1475{
1476        u32 val;
1477
1478        val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1479        DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1480
1481        val = REG_RD(bp, PBF_REG_DISABLE_PF);
1482        DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1483
1484        val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1485        DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1486
1487        val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1488        DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1489
1490        val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1491        DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1492
1493        val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1494        DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1495
1496        val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1497        DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1498
1499        val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1500        DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1501           val);
1502}
1503
1504static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1505{
1506        u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1507
1508        DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1509
1510        /* Re-enable PF target read access */
1511        REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1512
1513        /* Poll HW usage counters */
1514        DP(BNX2X_MSG_SP, "Polling usage counters\n");
1515        if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1516                return -EBUSY;
1517
1518        /* Zero the igu 'trailing edge' and 'leading edge' */
1519
1520        /* Send the FW cleanup command */
1521        if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1522                return -EBUSY;
1523
1524        /* ATC cleanup */
1525
1526        /* Verify TX hw is flushed */
1527        bnx2x_tx_hw_flushed(bp, poll_cnt);
1528
1529        /* Wait 100ms (not adjusted according to platform) */
1530        msleep(100);
1531
1532        /* Verify no pending pci transactions */
1533        if (bnx2x_is_pcie_pending(bp->pdev))
1534                BNX2X_ERR("PCIE Transactions still pending\n");
1535
1536        /* Debug */
1537        bnx2x_hw_enable_status(bp);
1538
1539        /*
1540         * Master enable - Due to WB DMAE writes performed before this
1541         * register is re-initialized as part of the regular function init
1542         */
1543        REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1544
1545        return 0;
1546}
1547
1548static void bnx2x_hc_int_enable(struct bnx2x *bp)
1549{
1550        int port = BP_PORT(bp);
1551        u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1552        u32 val = REG_RD(bp, addr);
1553        bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1554        bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1555        bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1556
1557        if (msix) {
1558                val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1559                         HC_CONFIG_0_REG_INT_LINE_EN_0);
1560                val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1561                        HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1562                if (single_msix)
1563                        val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1564        } else if (msi) {
1565                val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1566                val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1567                        HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1568                        HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1569        } else {
1570                val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1571                        HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1572                        HC_CONFIG_0_REG_INT_LINE_EN_0 |
1573                        HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1574
1575                if (!CHIP_IS_E1(bp)) {
1576                        DP(NETIF_MSG_IFUP,
1577                           "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1578
1579                        REG_WR(bp, addr, val);
1580
1581                        val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1582                }
1583        }
1584
1585        if (CHIP_IS_E1(bp))
1586                REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1587
1588        DP(NETIF_MSG_IFUP,
1589           "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1590           (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1591
1592        REG_WR(bp, addr, val);
1593        /*
1594         * Ensure that HC_CONFIG is written before leading/trailing edge config
1595         */
1596        mmiowb();
1597        barrier();
1598
1599        if (!CHIP_IS_E1(bp)) {
1600                /* init leading/trailing edge */
1601                if (IS_MF(bp)) {
1602                        val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1603                        if (bp->port.pmf)
1604                                /* enable nig and gpio3 attention */
1605                                val |= 0x1100;
1606                } else
1607                        val = 0xffff;
1608
1609                REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1610                REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1611        }
1612
1613        /* Make sure that interrupts are indeed enabled from here on */
1614        mmiowb();
1615}
1616
1617static void bnx2x_igu_int_enable(struct bnx2x *bp)
1618{
1619        u32 val;
1620        bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1621        bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1622        bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1623
1624        val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1625
1626        if (msix) {
1627                val &= ~(IGU_PF_CONF_INT_LINE_EN |
1628                         IGU_PF_CONF_SINGLE_ISR_EN);
1629                val |= (IGU_PF_CONF_MSI_MSIX_EN |
1630                        IGU_PF_CONF_ATTN_BIT_EN);
1631
1632                if (single_msix)
1633                        val |= IGU_PF_CONF_SINGLE_ISR_EN;
1634        } else if (msi) {
1635                val &= ~IGU_PF_CONF_INT_LINE_EN;
1636                val |= (IGU_PF_CONF_MSI_MSIX_EN |
1637                        IGU_PF_CONF_ATTN_BIT_EN |
1638                        IGU_PF_CONF_SINGLE_ISR_EN);
1639        } else {
1640                val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1641                val |= (IGU_PF_CONF_INT_LINE_EN |
1642                        IGU_PF_CONF_ATTN_BIT_EN |
1643                        IGU_PF_CONF_SINGLE_ISR_EN);
1644        }
1645
1646        /* Clean previous status - need to configure igu prior to ack*/
1647        if ((!msix) || single_msix) {
1648                REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1649                bnx2x_ack_int(bp);
1650        }
1651
1652        val |= IGU_PF_CONF_FUNC_EN;
1653
1654        DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1655           val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1656
1657        REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1658
1659        if (val & IGU_PF_CONF_INT_LINE_EN)
1660                pci_intx(bp->pdev, true);
1661
1662        barrier();
1663
1664        /* init leading/trailing edge */
1665        if (IS_MF(bp)) {
1666                val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1667                if (bp->port.pmf)
1668                        /* enable nig and gpio3 attention */
1669                        val |= 0x1100;
1670        } else
1671                val = 0xffff;
1672
1673        REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1674        REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1675
1676        /* Make sure that interrupts are indeed enabled from here on */
1677        mmiowb();
1678}
1679
1680void bnx2x_int_enable(struct bnx2x *bp)
1681{
1682        if (bp->common.int_block == INT_BLOCK_HC)
1683                bnx2x_hc_int_enable(bp);
1684        else
1685                bnx2x_igu_int_enable(bp);
1686}
1687
1688void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1689{
1690        int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1691        int i, offset;
1692
1693        if (disable_hw)
1694                /* prevent the HW from sending interrupts */
1695                bnx2x_int_disable(bp);
1696
1697        /* make sure all ISRs are done */
1698        if (msix) {
1699                synchronize_irq(bp->msix_table[0].vector);
1700                offset = 1;
1701                if (CNIC_SUPPORT(bp))
1702                        offset++;
1703                for_each_eth_queue(bp, i)
1704                        synchronize_irq(bp->msix_table[offset++].vector);
1705        } else
1706                synchronize_irq(bp->pdev->irq);
1707
1708        /* make sure sp_task is not running */
1709        cancel_delayed_work(&bp->sp_task);
1710        cancel_delayed_work(&bp->period_task);
1711        flush_workqueue(bnx2x_wq);
1712}
1713
1714/* fast path */
1715
1716/*
1717 * General service functions
1718 */
1719
1720/* Return true if succeeded to acquire the lock */
1721static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1722{
1723        u32 lock_status;
1724        u32 resource_bit = (1 << resource);
1725        int func = BP_FUNC(bp);
1726        u32 hw_lock_control_reg;
1727
1728        DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1729           "Trying to take a lock on resource %d\n", resource);
1730
1731        /* Validating that the resource is within range */
1732        if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1733                DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1734                   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1735                   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1736                return false;
1737        }
1738
1739        if (func <= 5)
1740                hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1741        else
1742                hw_lock_control_reg =
1743                                (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1744
1745        /* Try to acquire the lock */
1746        REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1747        lock_status = REG_RD(bp, hw_lock_control_reg);
1748        if (lock_status & resource_bit)
1749                return true;
1750
1751        DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1752           "Failed to get a lock on resource %d\n", resource);
1753        return false;
1754}
1755
1756/**
1757 * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1758 *
1759 * @bp: driver handle
1760 *
1761 * Returns the recovery leader resource id according to the engine this function
1762 * belongs to. Currently only only 2 engines is supported.
1763 */
1764static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1765{
1766        if (BP_PATH(bp))
1767                return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1768        else
1769                return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1770}
1771
1772/**
1773 * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1774 *
1775 * @bp: driver handle
1776 *
1777 * Tries to acquire a leader lock for current engine.
1778 */
1779static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1780{
1781        return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1782}
1783
1784static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1785
1786/* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1787static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1788{
1789        /* Set the interrupt occurred bit for the sp-task to recognize it
1790         * must ack the interrupt and transition according to the IGU
1791         * state machine.
1792         */
1793        atomic_set(&bp->interrupt_occurred, 1);
1794
1795        /* The sp_task must execute only after this bit
1796         * is set, otherwise we will get out of sync and miss all
1797         * further interrupts. Hence, the barrier.
1798         */
1799        smp_wmb();
1800
1801        /* schedule sp_task to workqueue */
1802        return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1803}
1804
1805void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1806{
1807        struct bnx2x *bp = fp->bp;
1808        int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1809        int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1810        enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1811        struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1812
1813        DP(BNX2X_MSG_SP,
1814           "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1815           fp->index, cid, command, bp->state,
1816           rr_cqe->ramrod_cqe.ramrod_type);
1817
1818        /* If cid is within VF range, replace the slowpath object with the
1819         * one corresponding to this VF
1820         */
1821        if (cid >= BNX2X_FIRST_VF_CID  &&
1822            cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1823                bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1824
1825        switch (command) {
1826        case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1827                DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1828                drv_cmd = BNX2X_Q_CMD_UPDATE;
1829                break;
1830
1831        case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1832                DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1833                drv_cmd = BNX2X_Q_CMD_SETUP;
1834                break;
1835
1836        case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1837                DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1838                drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1839                break;
1840
1841        case (RAMROD_CMD_ID_ETH_HALT):
1842                DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1843                drv_cmd = BNX2X_Q_CMD_HALT;
1844                break;
1845
1846        case (RAMROD_CMD_ID_ETH_TERMINATE):
1847                DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1848                drv_cmd = BNX2X_Q_CMD_TERMINATE;
1849                break;
1850
1851        case (RAMROD_CMD_ID_ETH_EMPTY):
1852                DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1853                drv_cmd = BNX2X_Q_CMD_EMPTY;
1854                break;
1855
1856        case (RAMROD_CMD_ID_ETH_TPA_UPDATE):
1857                DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid);
1858                drv_cmd = BNX2X_Q_CMD_UPDATE_TPA;
1859                break;
1860
1861        default:
1862                BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1863                          command, fp->index);
1864                return;
1865        }
1866
1867        if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1868            q_obj->complete_cmd(bp, q_obj, drv_cmd))
1869                /* q_obj->complete_cmd() failure means that this was
1870                 * an unexpected completion.
1871                 *
1872                 * In this case we don't want to increase the bp->spq_left
1873                 * because apparently we haven't sent this command the first
1874                 * place.
1875                 */
1876#ifdef BNX2X_STOP_ON_ERROR
1877                bnx2x_panic();
1878#else
1879                return;
1880#endif
1881
1882        smp_mb__before_atomic();
1883        atomic_inc(&bp->cq_spq_left);
1884        /* push the change in bp->spq_left and towards the memory */
1885        smp_mb__after_atomic();
1886
1887        DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1888
1889        if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1890            (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1891                /* if Q update ramrod is completed for last Q in AFEX vif set
1892                 * flow, then ACK MCP at the end
1893                 *
1894                 * mark pending ACK to MCP bit.
1895                 * prevent case that both bits are cleared.
1896                 * At the end of load/unload driver checks that
1897                 * sp_state is cleared, and this order prevents
1898                 * races
1899                 */
1900                smp_mb__before_atomic();
1901                set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1902                wmb();
1903                clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1904                smp_mb__after_atomic();
1905
1906                /* schedule the sp task as mcp ack is required */
1907                bnx2x_schedule_sp_task(bp);
1908        }
1909
1910        return;
1911}
1912
1913irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1914{
1915        struct bnx2x *bp = netdev_priv(dev_instance);
1916        u16 status = bnx2x_ack_int(bp);
1917        u16 mask;
1918        int i;
1919        u8 cos;
1920
1921        /* Return here if interrupt is shared and it's not for us */
1922        if (unlikely(status == 0)) {
1923                DP(NETIF_MSG_INTR, "not our interrupt!\n");
1924                return IRQ_NONE;
1925        }
1926        DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1927
1928#ifdef BNX2X_STOP_ON_ERROR
1929        if (unlikely(bp->panic))
1930                return IRQ_HANDLED;
1931#endif
1932
1933        for_each_eth_queue(bp, i) {
1934                struct bnx2x_fastpath *fp = &bp->fp[i];
1935
1936                mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1937                if (status & mask) {
1938                        /* Handle Rx or Tx according to SB id */
1939                        for_each_cos_in_tx_queue(fp, cos)
1940                                prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1941                        prefetch(&fp->sb_running_index[SM_RX_ID]);
1942                        napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1943                        status &= ~mask;
1944                }
1945        }
1946
1947        if (CNIC_SUPPORT(bp)) {
1948                mask = 0x2;
1949                if (status & (mask | 0x1)) {
1950                        struct cnic_ops *c_ops = NULL;
1951
1952                        rcu_read_lock();
1953                        c_ops = rcu_dereference(bp->cnic_ops);
1954                        if (c_ops && (bp->cnic_eth_dev.drv_state &
1955                                      CNIC_DRV_STATE_HANDLES_IRQ))
1956                                c_ops->cnic_handler(bp->cnic_data, NULL);
1957                        rcu_read_unlock();
1958
1959                        status &= ~mask;
1960                }
1961        }
1962
1963        if (unlikely(status & 0x1)) {
1964
1965                /* schedule sp task to perform default status block work, ack
1966                 * attentions and enable interrupts.
1967                 */
1968                bnx2x_schedule_sp_task(bp);
1969
1970                status &= ~0x1;
1971                if (!status)
1972                        return IRQ_HANDLED;
1973        }
1974
1975        if (unlikely(status))
1976                DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1977                   status);
1978
1979        return IRQ_HANDLED;
1980}
1981
1982/* Link */
1983
1984/*
1985 * General service functions
1986 */
1987
1988int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1989{
1990        u32 lock_status;
1991        u32 resource_bit = (1 << resource);
1992        int func = BP_FUNC(bp);
1993        u32 hw_lock_control_reg;
1994        int cnt;
1995
1996        /* Validating that the resource is within range */
1997        if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1998                BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1999                   resource, HW_LOCK_MAX_RESOURCE_VALUE);
2000                return -EINVAL;
2001        }
2002
2003        if (func <= 5) {
2004                hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2005        } else {
2006                hw_lock_control_reg =
2007                                (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2008        }
2009
2010        /* Validating that the resource is not already taken */
2011        lock_status = REG_RD(bp, hw_lock_control_reg);
2012        if (lock_status & resource_bit) {
2013                BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
2014                   lock_status, resource_bit);
2015                return -EEXIST;
2016        }
2017
2018        /* Try for 5 second every 5ms */
2019        for (cnt = 0; cnt < 1000; cnt++) {
2020                /* Try to acquire the lock */
2021                REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
2022                lock_status = REG_RD(bp, hw_lock_control_reg);
2023                if (lock_status & resource_bit)
2024                        return 0;
2025
2026                usleep_range(5000, 10000);
2027        }
2028        BNX2X_ERR("Timeout\n");
2029        return -EAGAIN;
2030}
2031
2032int bnx2x_release_leader_lock(struct bnx2x *bp)
2033{
2034        return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
2035}
2036
2037int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
2038{
2039        u32 lock_status;
2040        u32 resource_bit = (1 << resource);
2041        int func = BP_FUNC(bp);
2042        u32 hw_lock_control_reg;
2043
2044        /* Validating that the resource is within range */
2045        if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2046                BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2047                   resource, HW_LOCK_MAX_RESOURCE_VALUE);
2048                return -EINVAL;
2049        }
2050
2051        if (func <= 5) {
2052                hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2053        } else {
2054                hw_lock_control_reg =
2055                                (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2056        }
2057
2058        /* Validating that the resource is currently taken */
2059        lock_status = REG_RD(bp, hw_lock_control_reg);
2060        if (!(lock_status & resource_bit)) {
2061                BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
2062                          lock_status, resource_bit);
2063                return -EFAULT;
2064        }
2065
2066        REG_WR(bp, hw_lock_control_reg, resource_bit);
2067        return 0;
2068}
2069
2070int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2071{
2072        /* The GPIO should be swapped if swap register is set and active */
2073        int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2074                         REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2075        int gpio_shift = gpio_num +
2076                        (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2077        u32 gpio_mask = (1 << gpio_shift);
2078        u32 gpio_reg;
2079        int value;
2080
2081        if (gpio_num > MISC_REGISTERS_GPIO_3) {
2082                BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2083                return -EINVAL;
2084        }
2085
2086        /* read GPIO value */
2087        gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2088
2089        /* get the requested pin value */
2090        if ((gpio_reg & gpio_mask) == gpio_mask)
2091                value = 1;
2092        else
2093                value = 0;
2094
2095        return value;
2096}
2097
2098int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2099{
2100        /* The GPIO should be swapped if swap register is set and active */
2101        int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2102                         REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2103        int gpio_shift = gpio_num +
2104                        (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2105        u32 gpio_mask = (1 << gpio_shift);
2106        u32 gpio_reg;
2107
2108        if (gpio_num > MISC_REGISTERS_GPIO_3) {
2109                BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2110                return -EINVAL;
2111        }
2112
2113        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2114        /* read GPIO and mask except the float bits */
2115        gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2116
2117        switch (mode) {
2118        case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2119                DP(NETIF_MSG_LINK,
2120                   "Set GPIO %d (shift %d) -> output low\n",
2121                   gpio_num, gpio_shift);
2122                /* clear FLOAT and set CLR */
2123                gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2124                gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2125                break;
2126
2127        case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2128                DP(NETIF_MSG_LINK,
2129                   "Set GPIO %d (shift %d) -> output high\n",
2130                   gpio_num, gpio_shift);
2131                /* clear FLOAT and set SET */
2132                gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2133                gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2134                break;
2135
2136        case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2137                DP(NETIF_MSG_LINK,
2138                   "Set GPIO %d (shift %d) -> input\n",
2139                   gpio_num, gpio_shift);
2140                /* set FLOAT */
2141                gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2142                break;
2143
2144        default:
2145                break;
2146        }
2147
2148        REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2149        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2150
2151        return 0;
2152}
2153
2154int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2155{
2156        u32 gpio_reg = 0;
2157        int rc = 0;
2158
2159        /* Any port swapping should be handled by caller. */
2160
2161        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2162        /* read GPIO and mask except the float bits */
2163        gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2164        gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2165        gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2166        gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2167
2168        switch (mode) {
2169        case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2170                DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2171                /* set CLR */
2172                gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2173                break;
2174
2175        case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2176                DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2177                /* set SET */
2178                gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2179                break;
2180
2181        case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2182                DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2183                /* set FLOAT */
2184                gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2185                break;
2186
2187        default:
2188                BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2189                rc = -EINVAL;
2190                break;
2191        }
2192
2193        if (rc == 0)
2194                REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2195
2196        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2197
2198        return rc;
2199}
2200
2201int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2202{
2203        /* The GPIO should be swapped if swap register is set and active */
2204        int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2205                         REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2206        int gpio_shift = gpio_num +
2207                        (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2208        u32 gpio_mask = (1 << gpio_shift);
2209        u32 gpio_reg;
2210
2211        if (gpio_num > MISC_REGISTERS_GPIO_3) {
2212                BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2213                return -EINVAL;
2214        }
2215
2216        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2217        /* read GPIO int */
2218        gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2219
2220        switch (mode) {
2221        case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2222                DP(NETIF_MSG_LINK,
2223                   "Clear GPIO INT %d (shift %d) -> output low\n",
2224                   gpio_num, gpio_shift);
2225                /* clear SET and set CLR */
2226                gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2227                gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2228                break;
2229
2230        case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2231                DP(NETIF_MSG_LINK,
2232                   "Set GPIO INT %d (shift %d) -> output high\n",
2233                   gpio_num, gpio_shift);
2234                /* clear CLR and set SET */
2235                gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2236                gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2237                break;
2238
2239        default:
2240                break;
2241        }
2242
2243        REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2244        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2245
2246        return 0;
2247}
2248
2249static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2250{
2251        u32 spio_reg;
2252
2253        /* Only 2 SPIOs are configurable */
2254        if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2255                BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2256                return -EINVAL;
2257        }
2258
2259        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2260        /* read SPIO and mask except the float bits */
2261        spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2262
2263        switch (mode) {
2264        case MISC_SPIO_OUTPUT_LOW:
2265                DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2266                /* clear FLOAT and set CLR */
2267                spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2268                spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2269                break;
2270
2271        case MISC_SPIO_OUTPUT_HIGH:
2272                DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2273                /* clear FLOAT and set SET */
2274                spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2275                spio_reg |=  (spio << MISC_SPIO_SET_POS);
2276                break;
2277
2278        case MISC_SPIO_INPUT_HI_Z:
2279                DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2280                /* set FLOAT */
2281                spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2282                break;
2283
2284        default:
2285                break;
2286        }
2287
2288        REG_WR(bp, MISC_REG_SPIO, spio_reg);
2289        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2290
2291        return 0;
2292}
2293
2294void bnx2x_calc_fc_adv(struct bnx2x *bp)
2295{
2296        u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2297
2298        bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2299                                           ADVERTISED_Pause);
2300        switch (bp->link_vars.ieee_fc &
2301                MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2302        case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2303                bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2304                                                  ADVERTISED_Pause);
2305                break;
2306
2307        case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2308                bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2309                break;
2310
2311        default:
2312                break;
2313        }
2314}
2315
2316static void bnx2x_set_requested_fc(struct bnx2x *bp)
2317{
2318        /* Initialize link parameters structure variables
2319         * It is recommended to turn off RX FC for jumbo frames
2320         *  for better performance
2321         */
2322        if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2323                bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2324        else
2325                bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2326}
2327
2328static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2329{
2330        u32 pause_enabled = 0;
2331
2332        if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2333                if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2334                        pause_enabled = 1;
2335
2336                REG_WR(bp, BAR_USTRORM_INTMEM +
2337                           USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2338                       pause_enabled);
2339        }
2340
2341        DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2342           pause_enabled ? "enabled" : "disabled");
2343}
2344
2345int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2346{
2347        int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2348        u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2349
2350        if (!BP_NOMCP(bp)) {
2351                bnx2x_set_requested_fc(bp);
2352                bnx2x_acquire_phy_lock(bp);
2353
2354                if (load_mode == LOAD_DIAG) {
2355                        struct link_params *lp = &bp->link_params;
2356                        lp->loopback_mode = LOOPBACK_XGXS;
2357                        /* Prefer doing PHY loopback at highest speed */
2358                        if (lp->req_line_speed[cfx_idx] < SPEED_20000) {
2359                                if (lp->speed_cap_mask[cfx_idx] &
2360                                    PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)
2361                                        lp->req_line_speed[cfx_idx] =
2362                                        SPEED_20000;
2363                                else if (lp->speed_cap_mask[cfx_idx] &
2364                                            PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2365                                                lp->req_line_speed[cfx_idx] =
2366                                                SPEED_10000;
2367                                else
2368                                        lp->req_line_speed[cfx_idx] =
2369                                        SPEED_1000;
2370                        }
2371                }
2372
2373                if (load_mode == LOAD_LOOPBACK_EXT) {
2374                        struct link_params *lp = &bp->link_params;
2375                        lp->loopback_mode = LOOPBACK_EXT;
2376                }
2377
2378                rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2379
2380                bnx2x_release_phy_lock(bp);
2381
2382                bnx2x_init_dropless_fc(bp);
2383
2384                bnx2x_calc_fc_adv(bp);
2385
2386                if (bp->link_vars.link_up) {
2387                        bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2388                        bnx2x_link_report(bp);
2389                }
2390                queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2391                bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2392                return rc;
2393        }
2394        BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2395        return -EINVAL;
2396}
2397
2398void bnx2x_link_set(struct bnx2x *bp)
2399{
2400        if (!BP_NOMCP(bp)) {
2401                bnx2x_acquire_phy_lock(bp);
2402                bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2403                bnx2x_release_phy_lock(bp);
2404
2405                bnx2x_init_dropless_fc(bp);
2406
2407                bnx2x_calc_fc_adv(bp);
2408        } else
2409                BNX2X_ERR("Bootcode is missing - can not set link\n");
2410}
2411
2412static void bnx2x__link_reset(struct bnx2x *bp)
2413{
2414        if (!BP_NOMCP(bp)) {
2415                bnx2x_acquire_phy_lock(bp);
2416                bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2417                bnx2x_release_phy_lock(bp);
2418        } else
2419                BNX2X_ERR("Bootcode is missing - can not reset link\n");
2420}
2421
2422void bnx2x_force_link_reset(struct bnx2x *bp)
2423{
2424        bnx2x_acquire_phy_lock(bp);
2425        bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2426        bnx2x_release_phy_lock(bp);
2427}
2428
2429u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2430{
2431        u8 rc = 0;
2432
2433        if (!BP_NOMCP(bp)) {
2434                bnx2x_acquire_phy_lock(bp);
2435                rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2436                                     is_serdes);
2437                bnx2x_release_phy_lock(bp);
2438        } else
2439                BNX2X_ERR("Bootcode is missing - can not test link\n");
2440
2441        return rc;
2442}
2443
2444/* Calculates the sum of vn_min_rates.
2445   It's needed for further normalizing of the min_rates.
2446   Returns:
2447     sum of vn_min_rates.
2448       or
2449     0 - if all the min_rates are 0.
2450     In the later case fairness algorithm should be deactivated.
2451     If not all min_rates are zero then those that are zeroes will be set to 1.
2452 */
2453static void bnx2x_calc_vn_min(struct bnx2x *bp,
2454                                      struct cmng_init_input *input)
2455{
2456        int all_zero = 1;
2457        int vn;
2458
2459        for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2460                u32 vn_cfg = bp->mf_config[vn];
2461                u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2462                                   FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2463
2464                /* Skip hidden vns */
2465                if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2466                        vn_min_rate = 0;
2467                /* If min rate is zero - set it to 1 */
2468                else if (!vn_min_rate)
2469                        vn_min_rate = DEF_MIN_RATE;
2470                else
2471                        all_zero = 0;
2472
2473                input->vnic_min_rate[vn] = vn_min_rate;
2474        }
2475
2476        /* if ETS or all min rates are zeros - disable fairness */
2477        if (BNX2X_IS_ETS_ENABLED(bp)) {
2478                input->flags.cmng_enables &=
2479                                        ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2480                DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2481        } else if (all_zero) {
2482                input->flags.cmng_enables &=
2483                                        ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2484                DP(NETIF_MSG_IFUP,
2485                   "All MIN values are zeroes fairness will be disabled\n");
2486        } else
2487                input->flags.cmng_enables |=
2488                                        CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2489}
2490
2491static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2492                                    struct cmng_init_input *input)
2493{
2494        u16 vn_max_rate;
2495        u32 vn_cfg = bp->mf_config[vn];
2496
2497        if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2498                vn_max_rate = 0;
2499        else {
2500                u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2501
2502                if (IS_MF_PERCENT_BW(bp)) {
2503                        /* maxCfg in percents of linkspeed */
2504                        vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2505                } else /* SD modes */
2506                        /* maxCfg is absolute in 100Mb units */
2507                        vn_max_rate = maxCfg * 100;
2508        }
2509
2510        DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2511
2512        input->vnic_max_rate[vn] = vn_max_rate;
2513}
2514
2515static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2516{
2517        if (CHIP_REV_IS_SLOW(bp))
2518                return CMNG_FNS_NONE;
2519        if (IS_MF(bp))
2520                return CMNG_FNS_MINMAX;
2521
2522        return CMNG_FNS_NONE;
2523}
2524
2525void bnx2x_read_mf_cfg(struct bnx2x *bp)
2526{
2527        int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2528
2529        if (BP_NOMCP(bp))
2530                return; /* what should be the default value in this case */
2531
2532        /* For 2 port configuration the absolute function number formula
2533         * is:
2534         *      abs_func = 2 * vn + BP_PORT + BP_PATH
2535         *
2536         *      and there are 4 functions per port
2537         *
2538         * For 4 port configuration it is
2539         *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2540         *
2541         *      and there are 2 functions per port
2542         */
2543        for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2544                int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2545
2546                if (func >= E1H_FUNC_MAX)
2547                        break;
2548
2549                bp->mf_config[vn] =
2550                        MF_CFG_RD(bp, func_mf_config[func].config);
2551        }
2552        if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2553                DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2554                bp->flags |= MF_FUNC_DIS;
2555        } else {
2556                DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2557                bp->flags &= ~MF_FUNC_DIS;
2558        }
2559}
2560
2561static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2562{
2563        struct cmng_init_input input;
2564        memset(&input, 0, sizeof(struct cmng_init_input));
2565
2566        input.port_rate = bp->link_vars.line_speed;
2567
2568        if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2569                int vn;
2570
2571                /* read mf conf from shmem */
2572                if (read_cfg)
2573                        bnx2x_read_mf_cfg(bp);
2574
2575                /* vn_weight_sum and enable fairness if not 0 */
2576                bnx2x_calc_vn_min(bp, &input);
2577
2578                /* calculate and set min-max rate for each vn */
2579                if (bp->port.pmf)
2580                        for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2581                                bnx2x_calc_vn_max(bp, vn, &input);
2582
2583                /* always enable rate shaping and fairness */
2584                input.flags.cmng_enables |=
2585                                        CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2586
2587                bnx2x_init_cmng(&input, &bp->cmng);
2588                return;
2589        }
2590
2591        /* rate shaping and fairness are disabled */
2592        DP(NETIF_MSG_IFUP,
2593           "rate shaping and fairness are disabled\n");
2594}
2595
2596static void storm_memset_cmng(struct bnx2x *bp,
2597                              struct cmng_init *cmng,
2598                              u8 port)
2599{
2600        int vn;
2601        size_t size = sizeof(struct cmng_struct_per_port);
2602
2603        u32 addr = BAR_XSTRORM_INTMEM +
2604                        XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2605
2606        __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2607
2608        for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2609                int func = func_by_vn(bp, vn);
2610
2611                addr = BAR_XSTRORM_INTMEM +
2612                       XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2613                size = sizeof(struct rate_shaping_vars_per_vn);
2614                __storm_memset_struct(bp, addr, size,
2615                                      (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2616
2617                addr = BAR_XSTRORM_INTMEM +
2618                       XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2619                size = sizeof(struct fairness_vars_per_vn);
2620                __storm_memset_struct(bp, addr, size,
2621                                      (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2622        }
2623}
2624
2625/* init cmng mode in HW according to local configuration */
2626void bnx2x_set_local_cmng(struct bnx2x *bp)
2627{
2628        int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2629
2630        if (cmng_fns != CMNG_FNS_NONE) {
2631                bnx2x_cmng_fns_init(bp, false, cmng_fns);
2632                storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2633        } else {
2634                /* rate shaping and fairness are disabled */
2635                DP(NETIF_MSG_IFUP,
2636                   "single function mode without fairness\n");
2637        }
2638}
2639
2640/* This function is called upon link interrupt */
2641static void bnx2x_link_attn(struct bnx2x *bp)
2642{
2643        /* Make sure that we are synced with the current statistics */
2644        bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2645
2646        bnx2x_link_update(&bp->link_params, &bp->link_vars);
2647
2648        bnx2x_init_dropless_fc(bp);
2649
2650        if (bp->link_vars.link_up) {
2651
2652                if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2653                        struct host_port_stats *pstats;
2654
2655                        pstats = bnx2x_sp(bp, port_stats);
2656                        /* reset old mac stats */
2657                        memset(&(pstats->mac_stx[0]), 0,
2658                               sizeof(struct mac_stx));
2659                }
2660                if (bp->state == BNX2X_STATE_OPEN)
2661                        bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2662        }
2663
2664        if (bp->link_vars.link_up && bp->link_vars.line_speed)
2665                bnx2x_set_local_cmng(bp);
2666
2667        __bnx2x_link_report(bp);
2668
2669        if (IS_MF(bp))
2670                bnx2x_link_sync_notify(bp);
2671}
2672
2673void bnx2x__link_status_update(struct bnx2x *bp)
2674{
2675        if (bp->state != BNX2X_STATE_OPEN)
2676                return;
2677
2678        /* read updated dcb configuration */
2679        if (IS_PF(bp)) {
2680                bnx2x_dcbx_pmf_update(bp);
2681                bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2682                if (bp->link_vars.link_up)
2683                        bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2684                else
2685                        bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2686                        /* indicate link status */
2687                bnx2x_link_report(bp);
2688
2689        } else { /* VF */
2690                bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2691                                          SUPPORTED_10baseT_Full |
2692                                          SUPPORTED_100baseT_Half |
2693                                          SUPPORTED_100baseT_Full |
2694                                          SUPPORTED_1000baseT_Full |
2695                                          SUPPORTED_2500baseX_Full |
2696                                          SUPPORTED_10000baseT_Full |
2697                                          SUPPORTED_TP |
2698                                          SUPPORTED_FIBRE |
2699                                          SUPPORTED_Autoneg |
2700                                          SUPPORTED_Pause |
2701                                          SUPPORTED_Asym_Pause);
2702                bp->port.advertising[0] = bp->port.supported[0];
2703
2704                bp->link_params.bp = bp;
2705                bp->link_params.port = BP_PORT(bp);
2706                bp->link_params.req_duplex[0] = DUPLEX_FULL;
2707                bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2708                bp->link_params.req_line_speed[0] = SPEED_10000;
2709                bp->link_params.speed_cap_mask[0] = 0x7f0000;
2710                bp->link_params.switch_cfg = SWITCH_CFG_10G;
2711                bp->link_vars.mac_type = MAC_TYPE_BMAC;
2712                bp->link_vars.line_speed = SPEED_10000;
2713                bp->link_vars.link_status =
2714                        (LINK_STATUS_LINK_UP |
2715                         LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2716                bp->link_vars.link_up = 1;
2717                bp->link_vars.duplex = DUPLEX_FULL;
2718                bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2719                __bnx2x_link_report(bp);
2720
2721                bnx2x_sample_bulletin(bp);
2722
2723                /* if bulletin board did not have an update for link status
2724                 * __bnx2x_link_report will report current status
2725                 * but it will NOT duplicate report in case of already reported
2726                 * during sampling bulletin board.
2727                 */
2728                bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2729        }
2730}
2731
2732static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2733                                  u16 vlan_val, u8 allowed_prio)
2734{
2735        struct bnx2x_func_state_params func_params = {NULL};
2736        struct bnx2x_func_afex_update_params *f_update_params =
2737                &func_params.params.afex_update;
2738
2739        func_params.f_obj = &bp->func_obj;
2740        func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2741
2742        /* no need to wait for RAMROD completion, so don't
2743         * set RAMROD_COMP_WAIT flag
2744         */
2745
2746        f_update_params->vif_id = vifid;
2747        f_update_params->afex_default_vlan = vlan_val;
2748        f_update_params->allowed_priorities = allowed_prio;
2749
2750        /* if ramrod can not be sent, response to MCP immediately */
2751        if (bnx2x_func_state_change(bp, &func_params) < 0)
2752                bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2753
2754        return 0;
2755}
2756
2757static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2758                                          u16 vif_index, u8 func_bit_map)
2759{
2760        struct bnx2x_func_state_params func_params = {NULL};
2761        struct bnx2x_func_afex_viflists_params *update_params =
2762                &func_params.params.afex_viflists;
2763        int rc;
2764        u32 drv_msg_code;
2765
2766        /* validate only LIST_SET and LIST_GET are received from switch */
2767        if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2768                BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2769                          cmd_type);
2770
2771        func_params.f_obj = &bp->func_obj;
2772        func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2773
2774        /* set parameters according to cmd_type */
2775        update_params->afex_vif_list_command = cmd_type;
2776        update_params->vif_list_index = vif_index;
2777        update_params->func_bit_map =
2778                (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2779        update_params->func_to_clear = 0;
2780        drv_msg_code =
2781                (cmd_type == VIF_LIST_RULE_GET) ?
2782                DRV_MSG_CODE_AFEX_LISTGET_ACK :
2783                DRV_MSG_CODE_AFEX_LISTSET_ACK;
2784
2785        /* if ramrod can not be sent, respond to MCP immediately for
2786         * SET and GET requests (other are not triggered from MCP)
2787         */
2788        rc = bnx2x_func_state_change(bp, &func_params);
2789        if (rc < 0)
2790                bnx2x_fw_command(bp, drv_msg_code, 0);
2791
2792        return 0;
2793}
2794
2795static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2796{
2797        struct afex_stats afex_stats;
2798        u32 func = BP_ABS_FUNC(bp);
2799        u32 mf_config;
2800        u16 vlan_val;
2801        u32 vlan_prio;
2802        u16 vif_id;
2803        u8 allowed_prio;
2804        u8 vlan_mode;
2805        u32 addr_to_write, vifid, addrs, stats_type, i;
2806
2807        if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2808                vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2809                DP(BNX2X_MSG_MCP,
2810                   "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2811                bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2812        }
2813
2814        if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2815                vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2816                addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2817                DP(BNX2X_MSG_MCP,
2818                   "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2819                   vifid, addrs);
2820                bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2821                                               addrs);
2822        }
2823
2824        if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2825                addr_to_write = SHMEM2_RD(bp,
2826                        afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2827                stats_type = SHMEM2_RD(bp,
2828                        afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2829
2830                DP(BNX2X_MSG_MCP,
2831                   "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2832                   addr_to_write);
2833
2834                bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2835
2836                /* write response to scratchpad, for MCP */
2837                for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2838                        REG_WR(bp, addr_to_write + i*sizeof(u32),
2839                               *(((u32 *)(&afex_stats))+i));
2840
2841                /* send ack message to MCP */
2842                bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2843        }
2844
2845        if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2846                mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2847                bp->mf_config[BP_VN(bp)] = mf_config;
2848                DP(BNX2X_MSG_MCP,
2849                   "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2850                   mf_config);
2851
2852                /* if VIF_SET is "enabled" */
2853                if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2854                        /* set rate limit directly to internal RAM */
2855                        struct cmng_init_input cmng_input;
2856                        struct rate_shaping_vars_per_vn m_rs_vn;
2857                        size_t size = sizeof(struct rate_shaping_vars_per_vn);
2858                        u32 addr = BAR_XSTRORM_INTMEM +
2859                            XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2860
2861                        bp->mf_config[BP_VN(bp)] = mf_config;
2862
2863                        bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2864                        m_rs_vn.vn_counter.rate =
2865                                cmng_input.vnic_max_rate[BP_VN(bp)];
2866                        m_rs_vn.vn_counter.quota =
2867                                (m_rs_vn.vn_counter.rate *
2868                                 RS_PERIODIC_TIMEOUT_USEC) / 8;
2869
2870                        __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2871
2872                        /* read relevant values from mf_cfg struct in shmem */
2873                        vif_id =
2874                                (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2875                                 FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2876                                FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2877                        vlan_val =
2878                                (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2879                                 FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2880                                FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2881                        vlan_prio = (mf_config &
2882                                     FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2883                                    FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2884                        vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2885                        vlan_mode =
2886                                (MF_CFG_RD(bp,
2887                                           func_mf_config[func].afex_config) &
2888                                 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2889                                FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2890                        allowed_prio =
2891                                (MF_CFG_RD(bp,
2892                                           func_mf_config[func].afex_config) &
2893                                 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2894                                FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2895
2896                        /* send ramrod to FW, return in case of failure */
2897                        if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2898                                                   allowed_prio))
2899                                return;
2900
2901                        bp->afex_def_vlan_tag = vlan_val;
2902                        bp->afex_vlan_mode = vlan_mode;
2903                } else {
2904                        /* notify link down because BP->flags is disabled */
2905                        bnx2x_link_report(bp);
2906
2907                        /* send INVALID VIF ramrod to FW */
2908                        bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2909
2910                        /* Reset the default afex VLAN */
2911                        bp->afex_def_vlan_tag = -1;
2912                }
2913        }
2914}
2915
2916static void bnx2x_handle_update_svid_cmd(struct bnx2x *bp)
2917{
2918        struct bnx2x_func_switch_update_params *switch_update_params;
2919        struct bnx2x_func_state_params func_params;
2920
2921        memset(&func_params, 0, sizeof(struct bnx2x_func_state_params));
2922        switch_update_params = &func_params.params.switch_update;
2923        func_params.f_obj = &bp->func_obj;
2924        func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
2925
2926        if (IS_MF_UFP(bp) || IS_MF_BD(bp)) {
2927                int func = BP_ABS_FUNC(bp);
2928                u32 val;
2929
2930                /* Re-learn the S-tag from shmem */
2931                val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2932                                FUNC_MF_CFG_E1HOV_TAG_MASK;
2933                if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
2934                        bp->mf_ov = val;
2935                } else {
2936                        BNX2X_ERR("Got an SVID event, but no tag is configured in shmem\n");
2937                        goto fail;
2938                }
2939
2940                /* Configure new S-tag in LLH */
2941                REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + BP_PORT(bp) * 8,
2942                       bp->mf_ov);
2943
2944                /* Send Ramrod to update FW of change */
2945                __set_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG,
2946                          &switch_update_params->changes);
2947                switch_update_params->vlan = bp->mf_ov;
2948
2949                if (bnx2x_func_state_change(bp, &func_params) < 0) {
2950                        BNX2X_ERR("Failed to configure FW of S-tag Change to %02x\n",
2951                                  bp->mf_ov);
2952                        goto fail;
2953                } else {
2954                        DP(BNX2X_MSG_MCP, "Configured S-tag %02x\n",
2955                           bp->mf_ov);
2956                }
2957        } else {
2958                goto fail;
2959        }
2960
2961        bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_OK, 0);
2962        return;
2963fail:
2964        bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_FAILURE, 0);
2965}
2966
2967static void bnx2x_pmf_update(struct bnx2x *bp)
2968{
2969        int port = BP_PORT(bp);
2970        u32 val;
2971
2972        bp->port.pmf = 1;
2973        DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2974
2975        /*
2976         * We need the mb() to ensure the ordering between the writing to
2977         * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2978         */
2979        smp_mb();
2980
2981        /* queue a periodic task */
2982        queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2983
2984        bnx2x_dcbx_pmf_update(bp);
2985
2986        /* enable nig attention */
2987        val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2988        if (bp->common.int_block == INT_BLOCK_HC) {
2989                REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2990                REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2991        } else if (!CHIP_IS_E1x(bp)) {
2992                REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2993                REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2994        }
2995
2996        bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2997}
2998
2999/* end of Link */
3000
3001/* slow path */
3002
3003/*
3004 * General service functions
3005 */
3006
3007/* send the MCP a request, block until there is a reply */
3008u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
3009{
3010        int mb_idx = BP_FW_MB_IDX(bp);
3011        u32 seq;
3012        u32 rc = 0;
3013        u32 cnt = 1;
3014        u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
3015
3016        mutex_lock(&bp->fw_mb_mutex);
3017        seq = ++bp->fw_seq;
3018        SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
3019        SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
3020
3021        DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
3022                        (command | seq), param);
3023
3024        do {
3025                /* let the FW do it's magic ... */
3026                msleep(delay);
3027
3028                rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
3029
3030                /* Give the FW up to 5 second (500*10ms) */
3031        } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
3032
3033        DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
3034           cnt*delay, rc, seq);
3035
3036        /* is this a reply to our command? */
3037        if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
3038                rc &= FW_MSG_CODE_MASK;
3039        else {
3040                /* FW BUG! */
3041                BNX2X_ERR("FW failed to respond!\n");
3042                bnx2x_fw_dump(bp);
3043                rc = 0;
3044        }
3045        mutex_unlock(&bp->fw_mb_mutex);
3046
3047        return rc;
3048}
3049
3050static void storm_memset_func_cfg(struct bnx2x *bp,
3051                                 struct tstorm_eth_function_common_config *tcfg,
3052                                 u16 abs_fid)
3053{
3054        size_t size = sizeof(struct tstorm_eth_function_common_config);
3055
3056        u32 addr = BAR_TSTRORM_INTMEM +
3057                        TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
3058
3059        __storm_memset_struct(bp, addr, size, (u32 *)tcfg);
3060}
3061
3062void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
3063{
3064        if (CHIP_IS_E1x(bp)) {
3065                struct tstorm_eth_function_common_config tcfg = {0};
3066
3067                storm_memset_func_cfg(bp, &tcfg, p->func_id);
3068        }
3069
3070        /* Enable the function in the FW */
3071        storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
3072        storm_memset_func_en(bp, p->func_id, 1);
3073
3074        /* spq */
3075        if (p->spq_active) {
3076                storm_memset_spq_addr(bp, p->spq_map, p->func_id);
3077                REG_WR(bp, XSEM_REG_FAST_MEMORY +
3078                       XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
3079        }
3080}
3081
3082/**
3083 * bnx2x_get_common_flags - Return common flags
3084 *
3085 * @bp          device handle
3086 * @fp          queue handle
3087 * @zero_stats  TRUE if statistics zeroing is needed
3088 *
3089 * Return the flags that are common for the Tx-only and not normal connections.
3090 */
3091static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
3092                                            struct bnx2x_fastpath *fp,
3093                                            bool zero_stats)
3094{
3095        unsigned long flags = 0;
3096
3097        /* PF driver will always initialize the Queue to an ACTIVE state */
3098        __set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
3099
3100        /* tx only connections collect statistics (on the same index as the
3101         * parent connection). The statistics are zeroed when the parent
3102         * connection is initialized.
3103         */
3104
3105        __set_bit(BNX2X_Q_FLG_STATS, &flags);
3106        if (zero_stats)
3107                __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
3108
3109        if (bp->flags & TX_SWITCHING)
3110                __set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags);
3111
3112        __set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
3113        __set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
3114
3115#ifdef BNX2X_STOP_ON_ERROR
3116        __set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
3117#endif
3118
3119        return flags;
3120}
3121
3122static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
3123                                       struct bnx2x_fastpath *fp,
3124                                       bool leading)
3125{
3126        unsigned long flags = 0;
3127
3128        /* calculate other queue flags */
3129        if (IS_MF_SD(bp))
3130                __set_bit(BNX2X_Q_FLG_OV, &flags);
3131
3132        if (IS_FCOE_FP(fp)) {
3133                __set_bit(BNX2X_Q_FLG_FCOE, &flags);
3134                /* For FCoE - force usage of default priority (for afex) */
3135                __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3136        }
3137
3138        if (fp->mode != TPA_MODE_DISABLED) {
3139                __set_bit(BNX2X_Q_FLG_TPA, &flags);
3140                __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3141                if (fp->mode == TPA_MODE_GRO)
3142                        __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3143        }
3144
3145        if (leading) {
3146                __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3147                __set_bit(BNX2X_Q_FLG_MCAST, &flags);
3148        }
3149
3150        /* Always set HW VLAN stripping */
3151        __set_bit(BNX2X_Q_FLG_VLAN, &flags);
3152
3153        /* configure silent vlan removal */
3154        if (IS_MF_AFEX(bp))
3155                __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3156
3157        return flags | bnx2x_get_common_flags(bp, fp, true);
3158}
3159
3160static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3161        struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3162        u8 cos)
3163{
3164        gen_init->stat_id = bnx2x_stats_id(fp);
3165        gen_init->spcl_id = fp->cl_id;
3166
3167        /* Always use mini-jumbo MTU for FCoE L2 ring */
3168        if (IS_FCOE_FP(fp))
3169                gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3170        else
3171                gen_init->mtu = bp->dev->mtu;
3172
3173        gen_init->cos = cos;
3174
3175        gen_init->fp_hsi = ETH_FP_HSI_VERSION;
3176}
3177
3178static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3179        struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3180        struct bnx2x_rxq_setup_params *rxq_init)
3181{
3182        u8 max_sge = 0;
3183        u16 sge_sz = 0;
3184        u16 tpa_agg_size = 0;
3185
3186        if (fp->mode != TPA_MODE_DISABLED) {
3187                pause->sge_th_lo = SGE_TH_LO(bp);
3188                pause->sge_th_hi = SGE_TH_HI(bp);
3189
3190                /* validate SGE ring has enough to cross high threshold */
3191                WARN_ON(bp->dropless_fc &&
3192                                pause->sge_th_hi + FW_PREFETCH_CNT >
3193                                MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3194
3195                tpa_agg_size = TPA_AGG_SIZE;
3196                max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3197                        SGE_PAGE_SHIFT;
3198                max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3199                          (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3200                sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3201        }
3202
3203        /* pause - not for e1 */
3204        if (!CHIP_IS_E1(bp)) {
3205                pause->bd_th_lo = BD_TH_LO(bp);
3206                pause->bd_th_hi = BD_TH_HI(bp);
3207
3208                pause->rcq_th_lo = RCQ_TH_LO(bp);
3209                pause->rcq_th_hi = RCQ_TH_HI(bp);
3210                /*
3211                 * validate that rings have enough entries to cross
3212                 * high thresholds
3213                 */
3214                WARN_ON(bp->dropless_fc &&
3215                                pause->bd_th_hi + FW_PREFETCH_CNT >
3216                                bp->rx_ring_size);
3217                WARN_ON(bp->dropless_fc &&
3218                                pause->rcq_th_hi + FW_PREFETCH_CNT >
3219                                NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3220
3221                pause->pri_map = 1;
3222        }
3223
3224        /* rxq setup */
3225        rxq_init->dscr_map = fp->rx_desc_mapping;
3226        rxq_init->sge_map = fp->rx_sge_mapping;
3227        rxq_init->rcq_map = fp->rx_comp_mapping;
3228        rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3229
3230        /* This should be a maximum number of data bytes that may be
3231         * placed on the BD (not including paddings).
3232         */
3233        rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3234                           BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3235
3236        rxq_init->cl_qzone_id = fp->cl_qzone_id;
3237        rxq_init->tpa_agg_sz = tpa_agg_size;
3238        rxq_init->sge_buf_sz = sge_sz;
3239        rxq_init->max_sges_pkt = max_sge;
3240        rxq_init->rss_engine_id = BP_FUNC(bp);
3241        rxq_init->mcast_engine_id = BP_FUNC(bp);
3242
3243        /* Maximum number or simultaneous TPA aggregation for this Queue.
3244         *
3245         * For PF Clients it should be the maximum available number.
3246         * VF driver(s) may want to define it to a smaller value.
3247         */
3248        rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3249
3250        rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3251        rxq_init->fw_sb_id = fp->fw_sb_id;
3252
3253        if (IS_FCOE_FP(fp))
3254                rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3255        else
3256                rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3257        /* configure silent vlan removal
3258         * if multi function mode is afex, then mask default vlan
3259         */
3260        if (IS_MF_AFEX(bp)) {
3261                rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3262                rxq_init->silent_removal_mask = VLAN_VID_MASK;
3263        }
3264}
3265
3266static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3267        struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3268        u8 cos)
3269{
3270        txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3271        txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3272        txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3273        txq_init->fw_sb_id = fp->fw_sb_id;
3274
3275        /*
3276         * set the tss leading client id for TX classification ==
3277         * leading RSS client id
3278         */
3279        txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3280
3281        if (IS_FCOE_FP(fp)) {
3282                txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3283                txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3284        }
3285}
3286
3287static void bnx2x_pf_init(struct bnx2x *bp)
3288{
3289        struct bnx2x_func_init_params func_init = {0};
3290        struct event_ring_data eq_data = { {0} };
3291
3292        if (!CHIP_IS_E1x(bp)) {
3293                /* reset IGU PF statistics: MSIX + ATTN */
3294                /* PF */
3295                REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3296                           BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3297                           (CHIP_MODE_IS_4_PORT(bp) ?
3298                                BP_FUNC(bp) : BP_VN(bp))*4, 0);
3299                /* ATTN */
3300                REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3301                           BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3302                           BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3303                           (CHIP_MODE_IS_4_PORT(bp) ?
3304                                BP_FUNC(bp) : BP_VN(bp))*4, 0);
3305        }
3306
3307        func_init.spq_active = true;
3308        func_init.pf_id = BP_FUNC(bp);
3309        func_init.func_id = BP_FUNC(bp);
3310        func_init.spq_map = bp->spq_mapping;
3311        func_init.spq_prod = bp->spq_prod_idx;
3312
3313        bnx2x_func_init(bp, &func_init);
3314
3315        memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3316
3317        /*
3318         * Congestion management values depend on the link rate
3319         * There is no active link so initial link rate is set to 10 Gbps.
3320         * When the link comes up The congestion management values are
3321         * re-calculated according to the actual link rate.
3322         */
3323        bp->link_vars.line_speed = SPEED_10000;
3324        bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3325
3326        /* Only the PMF sets the HW */
3327        if (bp->port.pmf)
3328                storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3329
3330        /* init Event Queue - PCI bus guarantees correct endianity*/
3331        eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3332        eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3333        eq_data.producer = bp->eq_prod;
3334        eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3335        eq_data.sb_id = DEF_SB_ID;
3336        storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3337}
3338
3339static void bnx2x_e1h_disable(struct bnx2x *bp)
3340{
3341        int port = BP_PORT(bp);
3342
3343        bnx2x_tx_disable(bp);
3344
3345        REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3346}
3347
3348static void bnx2x_e1h_enable(struct bnx2x *bp)
3349{
3350        int port = BP_PORT(bp);
3351
3352        if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)))
3353                REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
3354
3355        /* Tx queue should be only re-enabled */
3356        netif_tx_wake_all_queues(bp->dev);
3357
3358        /*
3359         * Should not call netif_carrier_on since it will be called if the link
3360         * is up when checking for link state
3361         */
3362}
3363
3364#define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3365
3366static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3367{
3368        struct eth_stats_info *ether_stat =
3369                &bp->slowpath->drv_info_to_mcp.ether_stat;
3370        struct bnx2x_vlan_mac_obj *mac_obj =
3371                &bp->sp_objs->mac_obj;
3372        int i;
3373
3374        strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3375                ETH_STAT_INFO_VERSION_LEN);
3376
3377        /* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3378         * mac_local field in ether_stat struct. The base address is offset by 2
3379         * bytes to account for the field being 8 bytes but a mac address is
3380         * only 6 bytes. Likewise, the stride for the get_n_elements function is
3381         * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3382         * allocated by the ether_stat struct, so the macs will land in their
3383         * proper positions.
3384         */
3385        for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3386                memset(ether_stat->mac_local + i, 0,
3387                       sizeof(ether_stat->mac_local[0]));
3388        mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3389                                DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3390                                ether_stat->mac_local + MAC_PAD, MAC_PAD,
3391                                ETH_ALEN);
3392        ether_stat->mtu_size = bp->dev->mtu;
3393        if (bp->dev->features & NETIF_F_RXCSUM)
3394                ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3395        if (bp->dev->features & NETIF_F_TSO)
3396                ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3397        ether_stat->feature_flags |= bp->common.boot_mode;
3398
3399        ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3400
3401        ether_stat->txq_size = bp->tx_ring_size;
3402        ether_stat->rxq_size = bp->rx_ring_size;
3403
3404#ifdef CONFIG_BNX2X_SRIOV
3405        ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0;
3406#endif
3407}
3408
3409static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3410{
3411        struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3412        struct fcoe_stats_info *fcoe_stat =
3413                &bp->slowpath->drv_info_to_mcp.fcoe_stat;
3414
3415        if (!CNIC_LOADED(bp))
3416                return;
3417
3418        memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3419
3420        fcoe_stat->qos_priority =
3421                app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3422
3423        /* insert FCoE stats from ramrod response */
3424        if (!NO_FCOE(bp)) {
3425                struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3426                        &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3427                        tstorm_queue_statistics;
3428
3429                struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3430                        &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3431                        xstorm_queue_statistics;
3432
3433                struct fcoe_statistics_params *fw_fcoe_stat =
3434                        &bp->fw_stats_data->fcoe;
3435
3436                ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3437                          fcoe_stat->rx_bytes_lo,
3438                          fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3439
3440                ADD_64_LE(fcoe_stat->rx_bytes_hi,
3441                          fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3442                          fcoe_stat->rx_bytes_lo,
3443                          fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3444
3445                ADD_64_LE(fcoe_stat->rx_bytes_hi,
3446                          fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3447                          fcoe_stat->rx_bytes_lo,
3448                          fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3449
3450                ADD_64_LE(fcoe_stat->rx_bytes_hi,
3451                          fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3452                          fcoe_stat->rx_bytes_lo,
3453                          fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3454
3455                ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3456                          fcoe_stat->rx_frames_lo,
3457                          fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3458
3459                ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3460                          fcoe_stat->rx_frames_lo,
3461                          fcoe_q_tstorm_stats->rcv_ucast_pkts);
3462
3463                ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3464                          fcoe_stat->rx_frames_lo,
3465                          fcoe_q_tstorm_stats->rcv_bcast_pkts);
3466
3467                ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3468                          fcoe_stat->rx_frames_lo,
3469                          fcoe_q_tstorm_stats->rcv_mcast_pkts);
3470
3471                ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3472                          fcoe_stat->tx_bytes_lo,
3473                          fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3474
3475                ADD_64_LE(fcoe_stat->tx_bytes_hi,
3476                          fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3477                          fcoe_stat->tx_bytes_lo,
3478                          fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3479
3480                ADD_64_LE(fcoe_stat->tx_bytes_hi,
3481                          fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3482                          fcoe_stat->tx_bytes_lo,
3483                          fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3484
3485                ADD_64_LE(fcoe_stat->tx_bytes_hi,
3486                          fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3487                          fcoe_stat->tx_bytes_lo,
3488                          fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3489
3490                ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3491                          fcoe_stat->tx_frames_lo,
3492                          fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3493
3494                ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3495                          fcoe_stat->tx_frames_lo,
3496                          fcoe_q_xstorm_stats->ucast_pkts_sent);
3497
3498                ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3499                          fcoe_stat->tx_frames_lo,
3500                          fcoe_q_xstorm_stats->bcast_pkts_sent);
3501
3502                ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3503                          fcoe_stat->tx_frames_lo,
3504                          fcoe_q_xstorm_stats->mcast_pkts_sent);
3505        }
3506
3507        /* ask L5 driver to add data to the struct */
3508        bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3509}
3510
3511static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3512{
3513        struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3514        struct iscsi_stats_info *iscsi_stat =
3515                &bp->slowpath->drv_info_to_mcp.iscsi_stat;
3516
3517        if (!CNIC_LOADED(bp))
3518                return;
3519
3520        memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3521               ETH_ALEN);
3522
3523        iscsi_stat->qos_priority =
3524                app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3525
3526        /* ask L5 driver to add data to the struct */
3527        bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3528}
3529
3530/* called due to MCP event (on pmf):
3531 *      reread new bandwidth configuration
3532 *      configure FW
3533 *      notify others function about the change
3534 */
3535static void bnx2x_config_mf_bw(struct bnx2x *bp)
3536{
3537        if (bp->link_vars.link_up) {
3538                bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3539                bnx2x_link_sync_notify(bp);
3540        }
3541        storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3542}
3543
3544static void bnx2x_set_mf_bw(struct bnx2x *bp)
3545{
3546        bnx2x_config_mf_bw(bp);
3547        bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3548}
3549
3550static void bnx2x_handle_eee_event(struct bnx2x *bp)
3551{
3552        DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3553        bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3554}
3555
3556#define BNX2X_UPDATE_DRV_INFO_IND_LENGTH        (20)
3557#define BNX2X_UPDATE_DRV_INFO_IND_COUNT         (25)
3558
3559static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3560{
3561        enum drv_info_opcode op_code;
3562        u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3563        bool release = false;
3564        int wait;
3565
3566        /* if drv_info version supported by MFW doesn't match - send NACK */
3567        if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3568                bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3569                return;
3570        }
3571
3572        op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3573                  DRV_INFO_CONTROL_OP_CODE_SHIFT;
3574
3575        /* Must prevent other flows from accessing drv_info_to_mcp */
3576        mutex_lock(&bp->drv_info_mutex);
3577
3578        memset(&bp->slowpath->drv_info_to_mcp, 0,
3579               sizeof(union drv_info_to_mcp));
3580
3581        switch (op_code) {
3582        case ETH_STATS_OPCODE:
3583                bnx2x_drv_info_ether_stat(bp);
3584                break;
3585        case FCOE_STATS_OPCODE:
3586                bnx2x_drv_info_fcoe_stat(bp);
3587                break;
3588        case ISCSI_STATS_OPCODE:
3589                bnx2x_drv_info_iscsi_stat(bp);
3590                break;
3591        default:
3592                /* if op code isn't supported - send NACK */
3593                bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3594                goto out;
3595        }
3596
3597        /* if we got drv_info attn from MFW then these fields are defined in
3598         * shmem2 for sure
3599         */
3600        SHMEM2_WR(bp, drv_info_host_addr_lo,
3601                U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3602        SHMEM2_WR(bp, drv_info_host_addr_hi,
3603                U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3604
3605        bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3606
3607        /* Since possible management wants both this and get_driver_version
3608         * need to wait until management notifies us it finished utilizing
3609         * the buffer.
3610         */
3611        if (!SHMEM2_HAS(bp, mfw_drv_indication)) {
3612                DP(BNX2X_MSG_MCP, "Management does not support indication\n");
3613        } else if (!bp->drv_info_mng_owner) {
3614                u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1));
3615
3616                for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) {
3617                        u32 indication = SHMEM2_RD(bp, mfw_drv_indication);
3618
3619                        /* Management is done; need to clear indication */
3620                        if (indication & bit) {
3621                                SHMEM2_WR(bp, mfw_drv_indication,
3622                                          indication & ~bit);
3623                                release = true;
3624                                break;
3625                        }
3626
3627                        msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH);
3628                }
3629        }
3630        if (!release) {
3631                DP(BNX2X_MSG_MCP, "Management did not release indication\n");
3632                bp->drv_info_mng_owner = true;
3633        }
3634
3635out:
3636        mutex_unlock(&bp->drv_info_mutex);
3637}
3638
3639static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format)
3640{
3641        u8 vals[4];
3642        int i = 0;
3643
3644        if (bnx2x_format) {
3645                i = sscanf(version, "1.%c%hhd.%hhd.%hhd",
3646                           &vals[0], &vals[1], &vals[2], &vals[3]);
3647                if (i > 0)
3648                        vals[0] -= '0';
3649        } else {
3650                i = sscanf(version, "%hhd.%hhd.%hhd.%hhd",
3651                           &vals[0], &vals[1], &vals[2], &vals[3]);
3652        }
3653
3654        while (i < 4)
3655                vals[i++] = 0;
3656
3657        return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3];
3658}
3659
3660void bnx2x_update_mng_version(struct bnx2x *bp)
3661{
3662        u32 iscsiver = DRV_VER_NOT_LOADED;
3663        u32 fcoever = DRV_VER_NOT_LOADED;
3664        u32 ethver = DRV_VER_NOT_LOADED;
3665        int idx = BP_FW_MB_IDX(bp);
3666        u8 *version;
3667
3668        if (!SHMEM2_HAS(bp, func_os_drv_ver))
3669                return;
3670
3671        mutex_lock(&bp->drv_info_mutex);
3672        /* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */
3673        if (bp->drv_info_mng_owner)
3674                goto out;
3675
3676        if (bp->state != BNX2X_STATE_OPEN)
3677                goto out;
3678
3679        /* Parse ethernet driver version */
3680        ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3681        if (!CNIC_LOADED(bp))
3682                goto out;
3683
3684        /* Try getting storage driver version via cnic */
3685        memset(&bp->slowpath->drv_info_to_mcp, 0,
3686               sizeof(union drv_info_to_mcp));
3687        bnx2x_drv_info_iscsi_stat(bp);
3688        version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version;
3689        iscsiver = bnx2x_update_mng_version_utility(version, false);
3690
3691        memset(&bp->slowpath->drv_info_to_mcp, 0,
3692               sizeof(union drv_info_to_mcp));
3693        bnx2x_drv_info_fcoe_stat(bp);
3694        version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version;
3695        fcoever = bnx2x_update_mng_version_utility(version, false);
3696
3697out:
3698        SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver);
3699        SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver);
3700        SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever);
3701
3702        mutex_unlock(&bp->drv_info_mutex);
3703
3704        DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n",
3705           ethver, iscsiver, fcoever);
3706}
3707
3708void bnx2x_update_mfw_dump(struct bnx2x *bp)
3709{
3710        u32 drv_ver;
3711        u32 valid_dump;
3712
3713        if (!SHMEM2_HAS(bp, drv_info))
3714                return;
3715
3716        /* Update Driver load time, possibly broken in y2038 */
3717        SHMEM2_WR(bp, drv_info.epoc, (u32)ktime_get_real_seconds());
3718
3719        drv_ver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3720        SHMEM2_WR(bp, drv_info.drv_ver, drv_ver);
3721
3722        SHMEM2_WR(bp, drv_info.fw_ver, REG_RD(bp, XSEM_REG_PRAM));
3723
3724        /* Check & notify On-Chip dump. */
3725        valid_dump = SHMEM2_RD(bp, drv_info.valid_dump);
3726
3727        if (valid_dump & FIRST_DUMP_VALID)
3728                DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 1st partition\n");
3729
3730        if (valid_dump & SECOND_DUMP_VALID)
3731                DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 2nd partition\n");
3732}
3733
3734static void bnx2x_oem_event(struct bnx2x *bp, u32 event)
3735{
3736        u32 cmd_ok, cmd_fail;
3737
3738        /* sanity */
3739        if (event & DRV_STATUS_DCC_EVENT_MASK &&
3740            event & DRV_STATUS_OEM_EVENT_MASK) {
3741                BNX2X_ERR("Received simultaneous events %08x\n", event);
3742                return;
3743        }
3744
3745        if (event & DRV_STATUS_DCC_EVENT_MASK) {
3746                cmd_fail = DRV_MSG_CODE_DCC_FAILURE;
3747                cmd_ok = DRV_MSG_CODE_DCC_OK;
3748        } else /* if (event & DRV_STATUS_OEM_EVENT_MASK) */ {
3749                cmd_fail = DRV_MSG_CODE_OEM_FAILURE;
3750                cmd_ok = DRV_MSG_CODE_OEM_OK;
3751        }
3752
3753        DP(BNX2X_MSG_MCP, "oem_event 0x%x\n", event);
3754
3755        if (event & (DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3756                     DRV_STATUS_OEM_DISABLE_ENABLE_PF)) {
3757                /* This is the only place besides the function initialization
3758                 * where the bp->flags can change so it is done without any
3759                 * locks
3760                 */
3761                if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3762                        DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3763                        bp->flags |= MF_FUNC_DIS;
3764
3765                        bnx2x_e1h_disable(bp);
3766                } else {
3767                        DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3768                        bp->flags &= ~MF_FUNC_DIS;
3769
3770                        bnx2x_e1h_enable(bp);
3771                }
3772                event &= ~(DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3773                           DRV_STATUS_OEM_DISABLE_ENABLE_PF);
3774        }
3775
3776        if (event & (DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3777                     DRV_STATUS_OEM_BANDWIDTH_ALLOCATION)) {
3778                bnx2x_config_mf_bw(bp);
3779                event &= ~(DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3780                           DRV_STATUS_OEM_BANDWIDTH_ALLOCATION);
3781        }
3782
3783        /* Report results to MCP */
3784        if (event)
3785                bnx2x_fw_command(bp, cmd_fail, 0);
3786        else
3787                bnx2x_fw_command(bp, cmd_ok, 0);
3788}
3789
3790/* must be called under the spq lock */
3791static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3792{
3793        struct eth_spe *next_spe = bp->spq_prod_bd;
3794
3795        if (bp->spq_prod_bd == bp->spq_last_bd) {
3796                bp->spq_prod_bd = bp->spq;
3797                bp->spq_prod_idx = 0;
3798                DP(BNX2X_MSG_SP, "end of spq\n");
3799        } else {
3800                bp->spq_prod_bd++;
3801                bp->spq_prod_idx++;
3802        }
3803        return next_spe;
3804}
3805
3806/* must be called under the spq lock */
3807static void bnx2x_sp_prod_update(struct bnx2x *bp)
3808{
3809        int func = BP_FUNC(bp);
3810
3811        /*
3812         * Make sure that BD data is updated before writing the producer:
3813         * BD data is written to the memory, the producer is read from the
3814         * memory, thus we need a full memory barrier to ensure the ordering.
3815         */
3816        mb();
3817
3818        REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3819                 bp->spq_prod_idx);
3820        mmiowb();
3821}
3822
3823/**
3824 * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3825 *
3826 * @cmd:        command to check
3827 * @cmd_type:   command type
3828 */
3829static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3830{
3831        if ((cmd_type == NONE_CONNECTION_TYPE) ||
3832            (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3833            (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3834            (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3835            (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3836            (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3837            (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3838                return true;
3839        else
3840                return false;
3841}
3842
3843/**
3844 * bnx2x_sp_post - place a single command on an SP ring
3845 *
3846 * @bp:         driver handle
3847 * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
3848 * @cid:        SW CID the command is related to
3849 * @data_hi:    command private data address (high 32 bits)
3850 * @data_lo:    command private data address (low 32 bits)
3851 * @cmd_type:   command type (e.g. NONE, ETH)
3852 *
3853 * SP data is handled as if it's always an address pair, thus data fields are
3854 * not swapped to little endian in upper functions. Instead this function swaps
3855 * data as if it's two u32 fields.
3856 */
3857int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3858                  u32 data_hi, u32 data_lo, int cmd_type)
3859{
3860        struct eth_spe *spe;
3861        u16 type;
3862        bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3863
3864#ifdef BNX2X_STOP_ON_ERROR
3865        if (unlikely(bp->panic)) {
3866                BNX2X_ERR("Can't post SP when there is panic\n");
3867                return -EIO;
3868        }
3869#endif
3870
3871        spin_lock_bh(&bp->spq_lock);
3872
3873        if (common) {
3874                if (!atomic_read(&bp->eq_spq_left)) {
3875                        BNX2X_ERR("BUG! EQ ring full!\n");
3876                        spin_unlock_bh(&bp->spq_lock);
3877                        bnx2x_panic();
3878                        return -EBUSY;
3879                }
3880        } else if (!atomic_read(&bp->cq_spq_left)) {
3881                        BNX2X_ERR("BUG! SPQ ring full!\n");
3882                        spin_unlock_bh(&bp->spq_lock);
3883                        bnx2x_panic();
3884                        return -EBUSY;
3885        }
3886
3887        spe = bnx2x_sp_get_next(bp);
3888
3889        /* CID needs port number to be encoded int it */
3890        spe->hdr.conn_and_cmd_data =
3891                        cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3892                                    HW_CID(bp, cid));
3893
3894        /* In some cases, type may already contain the func-id
3895         * mainly in SRIOV related use cases, so we add it here only
3896         * if it's not already set.
3897         */
3898        if (!(cmd_type & SPE_HDR_FUNCTION_ID)) {
3899                type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) &
3900                        SPE_HDR_CONN_TYPE;
3901                type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3902                         SPE_HDR_FUNCTION_ID);
3903        } else {
3904                type = cmd_type;
3905        }
3906
3907        spe->hdr.type = cpu_to_le16(type);
3908
3909        spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3910        spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3911
3912        /*
3913         * It's ok if the actual decrement is issued towards the memory
3914         * somewhere between the spin_lock and spin_unlock. Thus no
3915         * more explicit memory barrier is needed.
3916         */
3917        if (common)
3918                atomic_dec(&bp->eq_spq_left);
3919        else
3920                atomic_dec(&bp->cq_spq_left);
3921
3922        DP(BNX2X_MSG_SP,
3923           "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3924           bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3925           (u32)(U64_LO(bp->spq_mapping) +
3926           (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3927           HW_CID(bp, cid), data_hi, data_lo, type,
3928           atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3929
3930        bnx2x_sp_prod_update(bp);
3931        spin_unlock_bh(&bp->spq_lock);
3932        return 0;
3933}
3934
3935/* acquire split MCP access lock register */
3936static int bnx2x_acquire_alr(struct bnx2x *bp)
3937{
3938        u32 j, val;
3939        int rc = 0;
3940
3941        might_sleep();
3942        for (j = 0; j < 1000; j++) {
3943                REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3944                val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3945                if (val & MCPR_ACCESS_LOCK_LOCK)
3946                        break;
3947
3948                usleep_range(5000, 10000);
3949        }
3950        if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3951                BNX2X_ERR("Cannot acquire MCP access lock register\n");
3952                rc = -EBUSY;
3953        }
3954
3955        return rc;
3956}
3957
3958/* release split MCP access lock register */
3959static void bnx2x_release_alr(struct bnx2x *bp)
3960{
3961        REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3962}
3963
3964#define BNX2X_DEF_SB_ATT_IDX    0x0001
3965#define BNX2X_DEF_SB_IDX        0x0002
3966
3967static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3968{
3969        struct host_sp_status_block *def_sb = bp->def_status_blk;
3970        u16 rc = 0;
3971
3972        barrier(); /* status block is written to by the chip */
3973        if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3974                bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3975                rc |= BNX2X_DEF_SB_ATT_IDX;
3976        }
3977
3978        if (bp->def_idx != def_sb->sp_sb.running_index) {
3979                bp->def_idx = def_sb->sp_sb.running_index;
3980                rc |= BNX2X_DEF_SB_IDX;
3981        }
3982
3983        /* Do not reorder: indices reading should complete before handling */
3984        barrier();
3985        return rc;
3986}
3987
3988/*
3989 * slow path service functions
3990 */
3991
3992static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3993{
3994        int port = BP_PORT(bp);
3995        u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3996                              MISC_REG_AEU_MASK_ATTN_FUNC_0;
3997        u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3998                                       NIG_REG_MASK_INTERRUPT_PORT0;
3999        u32 aeu_mask;
4000        u32 nig_mask = 0;
4001        u32 reg_addr;
4002
4003        if (bp->attn_state & asserted)
4004                BNX2X_ERR("IGU ERROR\n");
4005
4006        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4007        aeu_mask = REG_RD(bp, aeu_addr);
4008
4009        DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
4010           aeu_mask, asserted);
4011        aeu_mask &= ~(asserted & 0x3ff);
4012        DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4013
4014        REG_WR(bp, aeu_addr, aeu_mask);
4015        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4016
4017        DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4018        bp->attn_state |= asserted;
4019        DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4020
4021        if (asserted & ATTN_HARD_WIRED_MASK) {
4022                if (asserted & ATTN_NIG_FOR_FUNC) {
4023
4024                        bnx2x_acquire_phy_lock(bp);
4025
4026                        /* save nig interrupt mask */
4027                        nig_mask = REG_RD(bp, nig_int_mask_addr);
4028
4029                        /* If nig_mask is not set, no need to call the update
4030                         * function.
4031                         */
4032                        if (nig_mask) {
4033                                REG_WR(bp, nig_int_mask_addr, 0);
4034
4035                                bnx2x_link_attn(bp);
4036                        }
4037
4038                        /* handle unicore attn? */
4039                }
4040                if (asserted & ATTN_SW_TIMER_4_FUNC)
4041                        DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
4042
4043                if (asserted & GPIO_2_FUNC)
4044                        DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
4045
4046                if (asserted & GPIO_3_FUNC)
4047                        DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
4048
4049                if (asserted & GPIO_4_FUNC)
4050                        DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
4051
4052                if (port == 0) {
4053                        if (asserted & ATTN_GENERAL_ATTN_1) {
4054                                DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
4055                                REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
4056                        }
4057                        if (asserted & ATTN_GENERAL_ATTN_2) {
4058                                DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
4059                                REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
4060                        }
4061                        if (asserted & ATTN_GENERAL_ATTN_3) {
4062                                DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
4063                                REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
4064                        }
4065                } else {
4066                        if (asserted & ATTN_GENERAL_ATTN_4) {
4067                                DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
4068                                REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
4069                        }
4070                        if (asserted & ATTN_GENERAL_ATTN_5) {
4071                                DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
4072                                REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
4073                        }
4074                        if (asserted & ATTN_GENERAL_ATTN_6) {
4075                                DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
4076                                REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
4077                        }
4078                }
4079
4080        } /* if hardwired */
4081
4082        if (bp->common.int_block == INT_BLOCK_HC)
4083                reg_addr = (HC_REG_COMMAND_REG + port*32 +
4084                            COMMAND_REG_ATTN_BITS_SET);
4085        else
4086                reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
4087
4088        DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
4089           (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4090        REG_WR(bp, reg_addr, asserted);
4091
4092        /* now set back the mask */
4093        if (asserted & ATTN_NIG_FOR_FUNC) {
4094                /* Verify that IGU ack through BAR was written before restoring
4095                 * NIG mask. This loop should exit after 2-3 iterations max.
4096                 */
4097                if (bp->common.int_block != INT_BLOCK_HC) {
4098                        u32 cnt = 0, igu_acked;
4099                        do {
4100                                igu_acked = REG_RD(bp,
4101                                                   IGU_REG_ATTENTION_ACK_BITS);
4102                        } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
4103                                 (++cnt < MAX_IGU_ATTN_ACK_TO));
4104                        if (!igu_acked)
4105                                DP(NETIF_MSG_HW,
4106                                   "Failed to verify IGU ack on time\n");
4107                        barrier();
4108                }
4109                REG_WR(bp, nig_int_mask_addr, nig_mask);
4110                bnx2x_release_phy_lock(bp);
4111        }
4112}
4113
4114static void bnx2x_fan_failure(struct bnx2x *bp)
4115{
4116        int port = BP_PORT(bp);
4117        u32 ext_phy_config;
4118        /* mark the failure */
4119        ext_phy_config =
4120                SHMEM_RD(bp,
4121                         dev_info.port_hw_config[port].external_phy_config);
4122
4123        ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
4124        ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
4125        SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
4126                 ext_phy_config);
4127
4128        /* log the failure */
4129        netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
4130                            "Please contact OEM Support for assistance\n");
4131
4132        /* Schedule device reset (unload)
4133         * This is due to some boards consuming sufficient power when driver is
4134         * up to overheat if fan fails.
4135         */
4136        bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0);
4137}
4138
4139static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
4140{
4141        int port = BP_PORT(bp);
4142        int reg_offset;
4143        u32 val;
4144
4145        reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4146                             MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
4147
4148        if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4149
4150                val = REG_RD(bp, reg_offset);
4151                val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4152                REG_WR(bp, reg_offset, val);
4153
4154                BNX2X_ERR("SPIO5 hw attention\n");
4155
4156                /* Fan failure attention */
4157                bnx2x_hw_reset_phy(&bp->link_params);
4158                bnx2x_fan_failure(bp);
4159        }
4160
4161        if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
4162                bnx2x_acquire_phy_lock(bp);
4163                bnx2x_handle_module_detect_int(&bp->link_params);
4164                bnx2x_release_phy_lock(bp);
4165        }
4166
4167        if (attn & HW_INTERRUT_ASSERT_SET_0) {
4168
4169                val = REG_RD(bp, reg_offset);
4170                val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
4171                REG_WR(bp, reg_offset, val);
4172
4173                BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
4174                          (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
4175                bnx2x_panic();
4176        }
4177}
4178
4179static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
4180{
4181        u32 val;
4182
4183        if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
4184
4185                val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
4186                BNX2X_ERR("DB hw attention 0x%x\n", val);
4187                /* DORQ discard attention */
4188                if (val & 0x2)
4189                        BNX2X_ERR("FATAL error from DORQ\n");
4190        }
4191
4192        if (attn & HW_INTERRUT_ASSERT_SET_1) {
4193
4194                int port = BP_PORT(bp);
4195                int reg_offset;
4196
4197                reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
4198                                     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
4199
4200                val = REG_RD(bp, reg_offset);
4201                val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
4202                REG_WR(bp, reg_offset, val);
4203
4204                BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
4205                          (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
4206                bnx2x_panic();
4207        }
4208}
4209
4210static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
4211{
4212        u32 val;
4213
4214        if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
4215
4216                val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
4217                BNX2X_ERR("CFC hw attention 0x%x\n", val);
4218                /* CFC error attention */
4219                if (val & 0x2)
4220                        BNX2X_ERR("FATAL error from CFC\n");
4221        }
4222
4223        if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
4224                val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
4225                BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
4226                /* RQ_USDMDP_FIFO_OVERFLOW */
4227                if (val & 0x18000)
4228                        BNX2X_ERR("FATAL error from PXP\n");
4229
4230                if (!CHIP_IS_E1x(bp)) {
4231                        val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
4232                        BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
4233                }
4234        }
4235
4236        if (attn & HW_INTERRUT_ASSERT_SET_2) {
4237
4238                int port = BP_PORT(bp);
4239                int reg_offset;
4240
4241                reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
4242                                     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
4243
4244                val = REG_RD(bp, reg_offset);
4245                val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
4246                REG_WR(bp, reg_offset, val);
4247
4248                BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
4249                          (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
4250                bnx2x_panic();
4251        }
4252}
4253
4254static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
4255{
4256        u32 val;
4257
4258        if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
4259
4260                if (attn & BNX2X_PMF_LINK_ASSERT) {
4261                        int func = BP_FUNC(bp);
4262
4263                        REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
4264                        bnx2x_read_mf_cfg(bp);
4265                        bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
4266                                        func_mf_config[BP_ABS_FUNC(bp)].config);
4267                        val = SHMEM_RD(bp,
4268                                       func_mb[BP_FW_MB_IDX(bp)].drv_status);
4269
4270                        if (val & (DRV_STATUS_DCC_EVENT_MASK |
4271                                   DRV_STATUS_OEM_EVENT_MASK))
4272                                bnx2x_oem_event(bp,
4273                                        (val & (DRV_STATUS_DCC_EVENT_MASK |
4274                                                DRV_STATUS_OEM_EVENT_MASK)));
4275
4276                        if (val & DRV_STATUS_SET_MF_BW)
4277                                bnx2x_set_mf_bw(bp);
4278
4279                        if (val & DRV_STATUS_DRV_INFO_REQ)
4280                                bnx2x_handle_drv_info_req(bp);
4281
4282                        if (val & DRV_STATUS_VF_DISABLED)
4283                                bnx2x_schedule_iov_task(bp,
4284                                                        BNX2X_IOV_HANDLE_FLR);
4285
4286                        if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
4287                                bnx2x_pmf_update(bp);
4288
4289                        if (bp->port.pmf &&
4290                            (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4291                                bp->dcbx_enabled > 0)
4292                                /* start dcbx state machine */
4293                                bnx2x_dcbx_set_params(bp,
4294                                        BNX2X_DCBX_STATE_NEG_RECEIVED);
4295                        if (val & DRV_STATUS_AFEX_EVENT_MASK)
4296                                bnx2x_handle_afex_cmd(bp,
4297                                        val & DRV_STATUS_AFEX_EVENT_MASK);
4298                        if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4299                                bnx2x_handle_eee_event(bp);
4300
4301                        if (val & DRV_STATUS_OEM_UPDATE_SVID)
4302                                bnx2x_handle_update_svid_cmd(bp);
4303
4304                        if (bp->link_vars.periodic_flags &
4305                            PERIODIC_FLAGS_LINK_EVENT) {
4306                                /*  sync with link */
4307                                bnx2x_acquire_phy_lock(bp);
4308                                bp->link_vars.periodic_flags &=
4309                                        ~PERIODIC_FLAGS_LINK_EVENT;
4310                                bnx2x_release_phy_lock(bp);
4311                                if (IS_MF(bp))
4312                                        bnx2x_link_sync_notify(bp);
4313                                bnx2x_link_report(bp);
4314                        }
4315                        /* Always call it here: bnx2x_link_report() will
4316                         * prevent the link indication duplication.
4317                         */
4318                        bnx2x__link_status_update(bp);
4319                } else if (attn & BNX2X_MC_ASSERT_BITS) {
4320
4321                        BNX2X_ERR("MC assert!\n");
4322                        bnx2x_mc_assert(bp);
4323                        REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4324                        REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4325                        REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4326                        REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4327                        bnx2x_panic();
4328
4329                } else if (attn & BNX2X_MCP_ASSERT) {
4330
4331                        BNX2X_ERR("MCP assert!\n");
4332                        REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4333                        bnx2x_fw_dump(bp);
4334
4335                } else
4336                        BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4337        }
4338
4339        if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4340                BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4341                if (attn & BNX2X_GRC_TIMEOUT) {
4342                        val = CHIP_IS_E1(bp) ? 0 :
4343                                        REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4344                        BNX2X_ERR("GRC time-out 0x%08x\n", val);
4345                }
4346                if (attn & BNX2X_GRC_RSV) {
4347                        val = CHIP_IS_E1(bp) ? 0 :
4348                                        REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4349                        BNX2X_ERR("GRC reserved 0x%08x\n", val);
4350                }
4351                REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4352        }
4353}
4354
4355/*
4356 * Bits map:
4357 * 0-7   - Engine0 load counter.
4358 * 8-15  - Engine1 load counter.
4359 * 16    - Engine0 RESET_IN_PROGRESS bit.
4360 * 17    - Engine1 RESET_IN_PROGRESS bit.
4361 * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4362 *         on the engine
4363 * 19    - Engine1 ONE_IS_LOADED.
4364 * 20    - Chip reset flow bit. When set none-leader must wait for both engines
4365 *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
4366 *         just the one belonging to its engine).
4367 *
4368 */
4369#define BNX2X_RECOVERY_GLOB_REG         MISC_REG_GENERIC_POR_1
4370
4371#define BNX2X_PATH0_LOAD_CNT_MASK       0x000000ff
4372#define BNX2X_PATH0_LOAD_CNT_SHIFT      0
4373#define BNX2X_PATH1_LOAD_CNT_MASK       0x0000ff00
4374#define BNX2X_PATH1_LOAD_CNT_SHIFT      8
4375#define BNX2X_PATH0_RST_IN_PROG_BIT     0x00010000
4376#define BNX2X_PATH1_RST_IN_PROG_BIT     0x00020000
4377#define BNX2X_GLOBAL_RESET_BIT          0x00040000
4378
4379/*
4380 * Set the GLOBAL_RESET bit.
4381 *
4382 * Should be run under rtnl lock
4383 */
4384void bnx2x_set_reset_global(struct bnx2x *bp)
4385{
4386        u32 val;
4387        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4388        val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4389        REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4390        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4391}
4392
4393/*
4394 * Clear the GLOBAL_RESET bit.
4395 *
4396 * Should be run under rtnl lock
4397 */
4398static void bnx2x_clear_reset_global(struct bnx2x *bp)
4399{
4400        u32 val;
4401        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4402        val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4403        REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4404        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4405}
4406
4407/*
4408 * Checks the GLOBAL_RESET bit.
4409 *
4410 * should be run under rtnl lock
4411 */
4412static bool bnx2x_reset_is_global(struct bnx2x *bp)
4413{
4414        u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4415
4416        DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4417        return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4418}
4419
4420/*
4421 * Clear RESET_IN_PROGRESS bit for the current engine.
4422 *
4423 * Should be run under rtnl lock
4424 */
4425static void bnx2x_set_reset_done(struct bnx2x *bp)
4426{
4427        u32 val;
4428        u32 bit = BP_PATH(bp) ?
4429                BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4430        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4431        val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4432
4433        /* Clear the bit */
4434        val &= ~bit;
4435        REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4436
4437        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4438}
4439
4440/*
4441 * Set RESET_IN_PROGRESS for the current engine.
4442 *
4443 * should be run under rtnl lock
4444 */
4445void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4446{
4447        u32 val;
4448        u32 bit = BP_PATH(bp) ?
4449                BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4450        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4451        val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4452
4453        /* Set the bit */
4454        val |= bit;
4455        REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4456        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4457}
4458
4459/*
4460 * Checks the RESET_IN_PROGRESS bit for the given engine.
4461 * should be run under rtnl lock
4462 */
4463bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4464{
4465        u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4466        u32 bit = engine ?
4467                BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4468
4469        /* return false if bit is set */
4470        return (val & bit) ? false : true;
4471}
4472
4473/*
4474 * set pf load for the current pf.
4475 *
4476 * should be run under rtnl lock
4477 */
4478void bnx2x_set_pf_load(struct bnx2x *bp)
4479{
4480        u32 val1, val;
4481        u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4482                             BNX2X_PATH0_LOAD_CNT_MASK;
4483        u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4484                             BNX2X_PATH0_LOAD_CNT_SHIFT;
4485
4486        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4487        val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4488
4489        DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4490
4491        /* get the current counter value */
4492        val1 = (val & mask) >> shift;
4493
4494        /* set bit of that PF */
4495        val1 |= (1 << bp->pf_num);
4496
4497        /* clear the old value */
4498        val &= ~mask;
4499
4500        /* set the new one */
4501        val |= ((val1 << shift) & mask);
4502
4503        REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4504        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4505}
4506
4507/**
4508 * bnx2x_clear_pf_load - clear pf load mark
4509 *
4510 * @bp:         driver handle
4511 *
4512 * Should be run under rtnl lock.
4513 * Decrements the load counter for the current engine. Returns
4514 * whether other functions are still loaded
4515 */
4516bool bnx2x_clear_pf_load(struct bnx2x *bp)
4517{
4518        u32 val1, val;
4519        u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4520                             BNX2X_PATH0_LOAD_CNT_MASK;
4521        u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4522                             BNX2X_PATH0_LOAD_CNT_SHIFT;
4523
4524        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4525        val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4526        DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4527
4528        /* get the current counter value */
4529        val1 = (val & mask) >> shift;
4530
4531        /* clear bit of that PF */
4532        val1 &= ~(1 << bp->pf_num);
4533
4534        /* clear the old value */
4535        val &= ~mask;
4536
4537        /* set the new one */
4538        val |= ((val1 << shift) & mask);
4539
4540        REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4541        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4542        return val1 != 0;
4543}
4544
4545/*
4546 * Read the load status for the current engine.
4547 *
4548 * should be run under rtnl lock
4549 */
4550static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4551{
4552        u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4553                             BNX2X_PATH0_LOAD_CNT_MASK);
4554        u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4555                             BNX2X_PATH0_LOAD_CNT_SHIFT);
4556        u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4557
4558        DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4559
4560        val = (val & mask) >> shift;
4561
4562        DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4563           engine, val);
4564
4565        return val != 0;
4566}
4567
4568static void _print_parity(struct bnx2x *bp, u32 reg)
4569{
4570        pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4571}
4572
4573static void _print_next_block(int idx, const char *blk)
4574{
4575        pr_cont("%s%s", idx ? ", " : "", blk);
4576}
4577
4578static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4579                                            int *par_num, bool print)
4580{
4581        u32 cur_bit;
4582        bool res;
4583        int i;
4584
4585        res = false;
4586
4587        for (i = 0; sig; i++) {
4588                cur_bit = (0x1UL << i);
4589                if (sig & cur_bit) {
4590                        res |= true; /* Each bit is real error! */
4591
4592                        if (print) {
4593                                switch (cur_bit) {
4594                                case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4595                                        _print_next_block((*par_num)++, "BRB");
4596                                        _print_parity(bp,
4597                                                      BRB1_REG_BRB1_PRTY_STS);
4598                                        break;
4599                                case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4600                                        _print_next_block((*par_num)++,
4601                                                          "PARSER");
4602                                        _print_parity(bp, PRS_REG_PRS_PRTY_STS);
4603                                        break;
4604                                case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4605                                        _print_next_block((*par_num)++, "TSDM");
4606                                        _print_parity(bp,
4607                                                      TSDM_REG_TSDM_PRTY_STS);
4608                                        break;
4609                                case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4610                                        _print_next_block((*par_num)++,
4611                                                          "SEARCHER");
4612                                        _print_parity(bp, SRC_REG_SRC_PRTY_STS);
4613                                        break;
4614                                case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4615                                        _print_next_block((*par_num)++, "TCM");
4616                                        _print_parity(bp, TCM_REG_TCM_PRTY_STS);
4617                                        break;
4618                                case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4619                                        _print_next_block((*par_num)++,
4620                                                          "TSEMI");
4621                                        _print_parity(bp,
4622                                                      TSEM_REG_TSEM_PRTY_STS_0);
4623                                        _print_parity(bp,
4624                                                      TSEM_REG_TSEM_PRTY_STS_1);
4625                                        break;
4626                                case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4627                                        _print_next_block((*par_num)++, "XPB");
4628                                        _print_parity(bp, GRCBASE_XPB +
4629                                                          PB_REG_PB_PRTY_STS);
4630                                        break;
4631                                }
4632                        }
4633
4634                        /* Clear the bit */
4635                        sig &= ~cur_bit;
4636                }
4637        }
4638
4639        return res;
4640}
4641
4642static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4643                                            int *par_num, bool *global,
4644                                            bool print)
4645{
4646        u32 cur_bit;
4647        bool res;
4648        int i;
4649
4650        res = false;
4651
4652        for (i = 0; sig; i++) {
4653                cur_bit = (0x1UL << i);
4654                if (sig & cur_bit) {
4655                        res |= true; /* Each bit is real error! */
4656                        switch (cur_bit) {
4657                        case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4658                                if (print) {
4659                                        _print_next_block((*par_num)++, "PBF");
4660                                        _print_parity(bp, PBF_REG_PBF_PRTY_STS);
4661                                }
4662                                break;
4663                        case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4664                                if (print) {
4665                                        _print_next_block((*par_num)++, "QM");
4666                                        _print_parity(bp, QM_REG_QM_PRTY_STS);
4667                                }
4668                                break;
4669                        case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4670                                if (print) {
4671                                        _print_next_block((*par_num)++, "TM");
4672                                        _print_parity(bp, TM_REG_TM_PRTY_STS);
4673                                }
4674                                break;
4675                        case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4676                                if (print) {
4677                                        _print_next_block((*par_num)++, "XSDM");
4678                                        _print_parity(bp,
4679                                                      XSDM_REG_XSDM_PRTY_STS);
4680                                }
4681                                break;
4682                        case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4683                                if (print) {
4684                                        _print_next_block((*par_num)++, "XCM");
4685                                        _print_parity(bp, XCM_REG_XCM_PRTY_STS);
4686                                }
4687                                break;
4688                        case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4689                                if (print) {
4690                                        _print_next_block((*par_num)++,
4691                                                          "XSEMI");
4692                                        _print_parity(bp,
4693                                                      XSEM_REG_XSEM_PRTY_STS_0);
4694                                        _print_parity(bp,
4695                                                      XSEM_REG_XSEM_PRTY_STS_1);
4696                                }
4697                                break;
4698                        case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4699                                if (print) {
4700                                        _print_next_block((*par_num)++,
4701                                                          "DOORBELLQ");
4702                                        _print_parity(bp,
4703                                                      DORQ_REG_DORQ_PRTY_STS);
4704                                }
4705                                break;
4706                        case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4707                                if (print) {
4708                                        _print_next_block((*par_num)++, "NIG");
4709                                        if (CHIP_IS_E1x(bp)) {
4710                                                _print_parity(bp,
4711                                                        NIG_REG_NIG_PRTY_STS);
4712                                        } else {
4713                                                _print_parity(bp,
4714                                                        NIG_REG_NIG_PRTY_STS_0);
4715                                                _print_parity(bp,
4716                                                        NIG_REG_NIG_PRTY_STS_1);
4717                                        }
4718                                }
4719                                break;
4720                        case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4721                                if (print)
4722                                        _print_next_block((*par_num)++,
4723                                                          "VAUX PCI CORE");
4724                                *global = true;
4725                                break;
4726                        case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4727                                if (print) {
4728                                        _print_next_block((*par_num)++,
4729                                                          "DEBUG");
4730                                        _print_parity(bp, DBG_REG_DBG_PRTY_STS);
4731                                }
4732                                break;
4733                        case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4734                                if (print) {
4735                                        _print_next_block((*par_num)++, "USDM");
4736                                        _print_parity(bp,
4737                                                      USDM_REG_USDM_PRTY_STS);
4738                                }
4739                                break;
4740                        case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4741                                if (print) {
4742                                        _print_next_block((*par_num)++, "UCM");
4743                                        _print_parity(bp, UCM_REG_UCM_PRTY_STS);
4744                                }
4745                                break;
4746                        case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4747                                if (print) {
4748                                        _print_next_block((*par_num)++,
4749                                                          "USEMI");
4750                                        _print_parity(bp,
4751                                                      USEM_REG_USEM_PRTY_STS_0);
4752                                        _print_parity(bp,
4753                                                      USEM_REG_USEM_PRTY_STS_1);
4754                                }
4755                                break;
4756                        case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4757                                if (print) {
4758                                        _print_next_block((*par_num)++, "UPB");
4759                                        _print_parity(bp, GRCBASE_UPB +
4760                                                          PB_REG_PB_PRTY_STS);
4761                                }
4762                                break;
4763                        case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4764                                if (print) {
4765                                        _print_next_block((*par_num)++, "CSDM");
4766                                        _print_parity(bp,
4767                                                      CSDM_REG_CSDM_PRTY_STS);
4768                                }
4769                                break;
4770                        case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4771                                if (print) {
4772                                        _print_next_block((*par_num)++, "CCM");
4773                                        _print_parity(bp, CCM_REG_CCM_PRTY_STS);
4774                                }
4775                                break;
4776                        }
4777
4778                        /* Clear the bit */
4779                        sig &= ~cur_bit;
4780                }
4781        }
4782
4783        return res;
4784}
4785
4786static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4787                                            int *par_num, bool print)
4788{
4789        u32 cur_bit;
4790        bool res;
4791        int i;
4792
4793        res = false;
4794
4795        for (i = 0; sig; i++) {
4796                cur_bit = (0x1UL << i);
4797                if (sig & cur_bit) {
4798                        res = true; /* Each bit is real error! */
4799                        if (print) {
4800                                switch (cur_bit) {
4801                                case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4802                                        _print_next_block((*par_num)++,
4803                                                          "CSEMI");
4804                                        _print_parity(bp,
4805                                                      CSEM_REG_CSEM_PRTY_STS_0);
4806                                        _print_parity(bp,
4807                                                      CSEM_REG_CSEM_PRTY_STS_1);
4808                                        break;
4809                                case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4810                                        _print_next_block((*par_num)++, "PXP");
4811                                        _print_parity(bp, PXP_REG_PXP_PRTY_STS);
4812                                        _print_parity(bp,
4813                                                      PXP2_REG_PXP2_PRTY_STS_0);
4814                                        _print_parity(bp,
4815                                                      PXP2_REG_PXP2_PRTY_STS_1);
4816                                        break;
4817                                case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4818                                        _print_next_block((*par_num)++,
4819                                                          "PXPPCICLOCKCLIENT");
4820                                        break;
4821                                case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4822                                        _print_next_block((*par_num)++, "CFC");
4823                                        _print_parity(bp,
4824                                                      CFC_REG_CFC_PRTY_STS);
4825                                        break;
4826                                case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4827                                        _print_next_block((*par_num)++, "CDU");
4828                                        _print_parity(bp, CDU_REG_CDU_PRTY_STS);
4829                                        break;
4830                                case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4831                                        _print_next_block((*par_num)++, "DMAE");
4832                                        _print_parity(bp,
4833                                                      DMAE_REG_DMAE_PRTY_STS);
4834                                        break;
4835                                case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4836                                        _print_next_block((*par_num)++, "IGU");
4837                                        if (CHIP_IS_E1x(bp))
4838                                                _print_parity(bp,
4839                                                        HC_REG_HC_PRTY_STS);
4840                                        else
4841                                                _print_parity(bp,
4842                                                        IGU_REG_IGU_PRTY_STS);
4843                                        break;
4844                                case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4845                                        _print_next_block((*par_num)++, "MISC");
4846                                        _print_parity(bp,
4847                                                      MISC_REG_MISC_PRTY_STS);
4848                                        break;
4849                                }
4850                        }
4851
4852                        /* Clear the bit */
4853                        sig &= ~cur_bit;
4854                }
4855        }
4856
4857        return res;
4858}
4859
4860static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig,
4861                                            int *par_num, bool *global,
4862                                            bool print)
4863{
4864        bool res = false;
4865        u32 cur_bit;
4866        int i;
4867
4868        for (i = 0; sig; i++) {
4869                cur_bit = (0x1UL << i);
4870                if (sig & cur_bit) {
4871                        switch (cur_bit) {
4872                        case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4873                                if (print)
4874                                        _print_next_block((*par_num)++,
4875                                                          "MCP ROM");
4876                                *global = true;
4877                                res = true;
4878                                break;
4879                        case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4880                                if (print)
4881                                        _print_next_block((*par_num)++,
4882                                                          "MCP UMP RX");
4883                                *global = true;
4884                                res = true;
4885                                break;
4886                        case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4887                                if (print)
4888                                        _print_next_block((*par_num)++,
4889                                                          "MCP UMP TX");
4890                                *global = true;
4891                                res = true;
4892                                break;
4893                        case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4894                                (*par_num)++;
4895                                /* clear latched SCPAD PATIRY from MCP */
4896                                REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL,
4897                                       1UL << 10);
4898                                break;
4899                        }
4900
4901                        /* Clear the bit */
4902                        sig &= ~cur_bit;
4903                }
4904        }
4905
4906        return res;
4907}
4908
4909static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4910                                            int *par_num, bool print)
4911{
4912        u32 cur_bit;
4913        bool res;
4914        int i;
4915
4916        res = false;
4917
4918        for (i = 0; sig; i++) {
4919                cur_bit = (0x1UL << i);
4920                if (sig & cur_bit) {
4921                        res = true; /* Each bit is real error! */
4922                        if (print) {
4923                                switch (cur_bit) {
4924                                case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4925                                        _print_next_block((*par_num)++,
4926                                                          "PGLUE_B");
4927                                        _print_parity(bp,
4928                                                      PGLUE_B_REG_PGLUE_B_PRTY_STS);
4929                                        break;
4930                                case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4931                                        _print_next_block((*par_num)++, "ATC");
4932                                        _print_parity(bp,
4933                                                      ATC_REG_ATC_PRTY_STS);
4934                                        break;
4935                                }
4936                        }
4937                        /* Clear the bit */
4938                        sig &= ~cur_bit;
4939                }
4940        }
4941
4942        return res;
4943}
4944
4945static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4946                              u32 *sig)
4947{
4948        bool res = false;
4949
4950        if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4951            (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4952            (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4953            (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4954            (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4955                int par_num = 0;
4956
4957                DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4958                                 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4959                          sig[0] & HW_PRTY_ASSERT_SET_0,
4960                          sig[1] & HW_PRTY_ASSERT_SET_1,
4961                          sig[2] & HW_PRTY_ASSERT_SET_2,
4962                          sig[3] & HW_PRTY_ASSERT_SET_3,
4963                          sig[4] & HW_PRTY_ASSERT_SET_4);
4964                if (print) {
4965                        if (((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4966                             (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4967                             (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4968                             (sig[4] & HW_PRTY_ASSERT_SET_4)) ||
4969                             (sig[3] & HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD)) {
4970                                netdev_err(bp->dev,
4971                                           "Parity errors detected in blocks: ");
4972                        } else {
4973                                print = false;
4974                        }
4975                }
4976                res |= bnx2x_check_blocks_with_parity0(bp,
4977                        sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print);
4978                res |= bnx2x_check_blocks_with_parity1(bp,
4979                        sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print);
4980                res |= bnx2x_check_blocks_with_parity2(bp,
4981                        sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print);
4982                res |= bnx2x_check_blocks_with_parity3(bp,
4983                        sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print);
4984                res |= bnx2x_check_blocks_with_parity4(bp,
4985                        sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print);
4986
4987                if (print)
4988                        pr_cont("\n");
4989        }
4990
4991        return res;
4992}
4993
4994/**
4995 * bnx2x_chk_parity_attn - checks for parity attentions.
4996 *
4997 * @bp:         driver handle
4998 * @global:     true if there was a global attention
4999 * @print:      show parity attention in syslog
5000 */
5001bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
5002{
5003        struct attn_route attn = { {0} };
5004        int port = BP_PORT(bp);
5005
5006        attn.sig[0] = REG_RD(bp,
5007                MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
5008                             port*4);
5009        attn.sig[1] = REG_RD(bp,
5010                MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
5011                             port*4);
5012        attn.sig[2] = REG_RD(bp,
5013                MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
5014                             port*4);
5015        attn.sig[3] = REG_RD(bp,
5016                MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
5017                             port*4);
5018        /* Since MCP attentions can't be disabled inside the block, we need to
5019         * read AEU registers to see whether they're currently disabled
5020         */
5021        attn.sig[3] &= ((REG_RD(bp,
5022                                !port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
5023                                      : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) &
5024                         MISC_AEU_ENABLE_MCP_PRTY_BITS) |
5025                        ~MISC_AEU_ENABLE_MCP_PRTY_BITS);
5026
5027        if (!CHIP_IS_E1x(bp))
5028                attn.sig[4] = REG_RD(bp,
5029                        MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
5030                                     port*4);
5031
5032        return bnx2x_parity_attn(bp, global, print, attn.sig);
5033}
5034
5035static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
5036{
5037        u32 val;
5038        if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
5039
5040                val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
5041                BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
5042                if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
5043                        BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
5044                if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
5045                        BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
5046                if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
5047                        BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
5048                if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
5049                        BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
5050                if (val &
5051                    PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
5052                        BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
5053                if (val &
5054                    PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
5055                        BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
5056                if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
5057                        BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
5058                if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
5059                        BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
5060                if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
5061                        BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
5062        }
5063        if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
5064                val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
5065                BNX2X_ERR("ATC hw attention 0x%x\n", val);
5066                if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
5067                        BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
5068                if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
5069                        BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
5070                if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
5071                        BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
5072                if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
5073                        BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
5074                if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
5075                        BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
5076                if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
5077                        BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
5078        }
5079
5080        if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5081                    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
5082                BNX2X_ERR("FATAL parity attention set4 0x%x\n",
5083                (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5084                    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
5085        }
5086}
5087
5088static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
5089{
5090        struct attn_route attn, *group_mask;
5091        int port = BP_PORT(bp);
5092        int index;
5093        u32 reg_addr;
5094        u32 val;
5095        u32 aeu_mask;
5096        bool global = false;
5097
5098        /* need to take HW lock because MCP or other port might also
5099           try to handle this event */
5100        bnx2x_acquire_alr(bp);
5101
5102        if (bnx2x_chk_parity_attn(bp, &global, true)) {
5103#ifndef BNX2X_STOP_ON_ERROR
5104                bp->recovery_state = BNX2X_RECOVERY_INIT;
5105                schedule_delayed_work(&bp->sp_rtnl_task, 0);
5106                /* Disable HW interrupts */
5107                bnx2x_int_disable(bp);
5108                /* In case of parity errors don't handle attentions so that
5109                 * other function would "see" parity errors.
5110                 */
5111#else
5112                bnx2x_panic();
5113#endif
5114                bnx2x_release_alr(bp);
5115                return;
5116        }
5117
5118        attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
5119        attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
5120        attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
5121        attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
5122        if (!CHIP_IS_E1x(bp))
5123                attn.sig[4] =
5124                      REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
5125        else
5126                attn.sig[4] = 0;
5127
5128        DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
5129           attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
5130
5131        for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5132                if (deasserted & (1 << index)) {
5133                        group_mask = &bp->attn_group[index];
5134
5135                        DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
5136                           index,
5137                           group_mask->sig[0], group_mask->sig[1],
5138                           group_mask->sig[2], group_mask->sig[3],
5139                           group_mask->sig[4]);
5140
5141                        bnx2x_attn_int_deasserted4(bp,
5142                                        attn.sig[4] & group_mask->sig[4]);
5143                        bnx2x_attn_int_deasserted3(bp,
5144                                        attn.sig[3] & group_mask->sig[3]);
5145                        bnx2x_attn_int_deasserted1(bp,
5146                                        attn.sig[1] & group_mask->sig[1]);
5147                        bnx2x_attn_int_deasserted2(bp,
5148                                        attn.sig[2] & group_mask->sig[2]);
5149                        bnx2x_attn_int_deasserted0(bp,
5150                                        attn.sig[0] & group_mask->sig[0]);
5151                }
5152        }
5153
5154        bnx2x_release_alr(bp);
5155
5156        if (bp->common.int_block == INT_BLOCK_HC)
5157                reg_addr = (HC_REG_COMMAND_REG + port*32 +
5158                            COMMAND_REG_ATTN_BITS_CLR);
5159        else
5160                reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
5161
5162        val = ~deasserted;
5163        DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
5164           (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
5165        REG_WR(bp, reg_addr, val);
5166
5167        if (~bp->attn_state & deasserted)
5168                BNX2X_ERR("IGU ERROR\n");
5169
5170        reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
5171                          MISC_REG_AEU_MASK_ATTN_FUNC_0;
5172
5173        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5174        aeu_mask = REG_RD(bp, reg_addr);
5175
5176        DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
5177           aeu_mask, deasserted);
5178        aeu_mask |= (deasserted & 0x3ff);
5179        DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
5180
5181        REG_WR(bp, reg_addr, aeu_mask);
5182        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5183
5184        DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
5185        bp->attn_state &= ~deasserted;
5186        DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
5187}
5188
5189static void bnx2x_attn_int(struct bnx2x *bp)
5190{
5191        /* read local copy of bits */
5192        u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
5193                                                                attn_bits);
5194        u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
5195                                                                attn_bits_ack);
5196        u32 attn_state = bp->attn_state;
5197
5198        /* look for changed bits */
5199        u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
5200        u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
5201
5202        DP(NETIF_MSG_HW,
5203           "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
5204           attn_bits, attn_ack, asserted, deasserted);
5205
5206        if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
5207                BNX2X_ERR("BAD attention state\n");
5208
5209        /* handle bits that were raised */
5210        if (asserted)
5211                bnx2x_attn_int_asserted(bp, asserted);
5212
5213        if (deasserted)
5214                bnx2x_attn_int_deasserted(bp, deasserted);
5215}
5216
5217void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
5218                      u16 index, u8 op, u8 update)
5219{
5220        u32 igu_addr = bp->igu_base_addr;
5221        igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
5222        bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
5223                             igu_addr);
5224}
5225
5226static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
5227{
5228        /* No memory barriers */
5229        storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
5230        mmiowb(); /* keep prod updates ordered */
5231}
5232
5233static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
5234                                      union event_ring_elem *elem)
5235{
5236        u8 err = elem->message.error;
5237
5238        if (!bp->cnic_eth_dev.starting_cid  ||
5239            (cid < bp->cnic_eth_dev.starting_cid &&
5240            cid != bp->cnic_eth_dev.iscsi_l2_cid))
5241                return 1;
5242
5243        DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
5244
5245        if (unlikely(err)) {
5246
5247                BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
5248                          cid);
5249                bnx2x_panic_dump(bp, false);
5250        }
5251        bnx2x_cnic_cfc_comp(bp, cid, err);
5252        return 0;
5253}
5254
5255static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
5256{
5257        struct bnx2x_mcast_ramrod_params rparam;
5258        int rc;
5259
5260        memset(&rparam, 0, sizeof(rparam));
5261
5262        rparam.mcast_obj = &bp->mcast_obj;
5263
5264        netif_addr_lock_bh(bp->dev);
5265
5266        /* Clear pending state for the last command */
5267        bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
5268
5269        /* If there are pending mcast commands - send them */
5270        if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
5271                rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
5272                if (rc < 0)
5273                        BNX2X_ERR("Failed to send pending mcast commands: %d\n",
5274                                  rc);
5275        }
5276
5277        netif_addr_unlock_bh(bp->dev);
5278}
5279
5280static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
5281                                            union event_ring_elem *elem)
5282{
5283        unsigned long ramrod_flags = 0;
5284        int rc = 0;
5285        u32 echo = le32_to_cpu(elem->message.data.eth_event.echo);
5286        u32 cid = echo & BNX2X_SWCID_MASK;
5287        struct bnx2x_vlan_mac_obj *vlan_mac_obj;
5288
5289        /* Always push next commands out, don't wait here */
5290        __set_bit(RAMROD_CONT, &ramrod_flags);
5291
5292        switch (echo >> BNX2X_SWCID_SHIFT) {
5293        case BNX2X_FILTER_MAC_PENDING:
5294                DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
5295                if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
5296                        vlan_mac_obj = &bp->iscsi_l2_mac_obj;
5297                else
5298                        vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
5299
5300                break;
5301        case BNX2X_FILTER_VLAN_PENDING:
5302                DP(BNX2X_MSG_SP, "Got SETUP_VLAN completions\n");
5303                vlan_mac_obj = &bp->sp_objs[cid].vlan_obj;
5304                break;
5305        case BNX2X_FILTER_MCAST_PENDING:
5306                DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
5307                /* This is only relevant for 57710 where multicast MACs are
5308                 * configured as unicast MACs using the same ramrod.
5309                 */
5310                bnx2x_handle_mcast_eqe(bp);
5311                return;
5312        default:
5313                BNX2X_ERR("Unsupported classification command: 0x%x\n", echo);
5314                return;
5315        }
5316
5317        rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
5318
5319        if (rc < 0)
5320                BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
5321        else if (rc > 0)
5322                DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5323}
5324
5325static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5326
5327static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5328{
5329        netif_addr_lock_bh(bp->dev);
5330
5331        clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5332
5333        /* Send rx_mode command again if was requested */
5334        if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5335                bnx2x_set_storm_rx_mode(bp);
5336        else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5337                                    &bp->sp_state))
5338                bnx2x_set_iscsi_eth_rx_mode(bp, true);
5339        else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5340                                    &bp->sp_state))
5341                bnx2x_set_iscsi_eth_rx_mode(bp, false);
5342
5343        netif_addr_unlock_bh(bp->dev);
5344}
5345
5346static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5347                                              union event_ring_elem *elem)
5348{
5349        if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5350                DP(BNX2X_MSG_SP,
5351                   "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5352                   elem->message.data.vif_list_event.func_bit_map);
5353                bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5354                        elem->message.data.vif_list_event.func_bit_map);
5355        } else if (elem->message.data.vif_list_event.echo ==
5356                   VIF_LIST_RULE_SET) {
5357                DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5358                bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5359        }
5360}
5361
5362/* called with rtnl_lock */
5363static void bnx2x_after_function_update(struct bnx2x *bp)
5364{
5365        int q, rc;
5366        struct bnx2x_fastpath *fp;
5367        struct bnx2x_queue_state_params queue_params = {NULL};
5368        struct bnx2x_queue_update_params *q_update_params =
5369                &queue_params.params.update;
5370
5371        /* Send Q update command with afex vlan removal values for all Qs */
5372        queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5373
5374        /* set silent vlan removal values according to vlan mode */
5375        __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5376                  &q_update_params->update_flags);
5377        __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5378                  &q_update_params->update_flags);
5379        __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5380
5381        /* in access mode mark mask and value are 0 to strip all vlans */
5382        if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5383                q_update_params->silent_removal_value = 0;
5384                q_update_params->silent_removal_mask = 0;
5385        } else {
5386                q_update_params->silent_removal_value =
5387                        (bp->afex_def_vlan_tag & VLAN_VID_MASK);
5388                q_update_params->silent_removal_mask = VLAN_VID_MASK;
5389        }
5390
5391        for_each_eth_queue(bp, q) {
5392                /* Set the appropriate Queue object */
5393                fp = &bp->fp[q];
5394                queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5395
5396                /* send the ramrod */
5397                rc = bnx2x_queue_state_change(bp, &queue_params);
5398                if (rc < 0)
5399                        BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5400                                  q);
5401        }
5402
5403        if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5404                fp = &bp->fp[FCOE_IDX(bp)];
5405                queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5406
5407                /* clear pending completion bit */
5408                __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5409
5410                /* mark latest Q bit */
5411                smp_mb__before_atomic();
5412                set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5413                smp_mb__after_atomic();
5414
5415                /* send Q update ramrod for FCoE Q */
5416                rc = bnx2x_queue_state_change(bp, &queue_params);
5417                if (rc < 0)
5418                        BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5419                                  q);
5420        } else {
5421                /* If no FCoE ring - ACK MCP now */
5422                bnx2x_link_report(bp);
5423                bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5424        }
5425}
5426
5427static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5428        struct bnx2x *bp, u32 cid)
5429{
5430        DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5431
5432        if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5433                return &bnx2x_fcoe_sp_obj(bp, q_obj);
5434        else
5435                return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5436}
5437
5438static void bnx2x_eq_int(struct bnx2x *bp)
5439{
5440        u16 hw_cons, sw_cons, sw_prod;
5441        union event_ring_elem *elem;
5442        u8 echo;
5443        u32 cid;
5444        u8 opcode;
5445        int rc, spqe_cnt = 0;
5446        struct bnx2x_queue_sp_obj *q_obj;
5447        struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5448        struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5449
5450        hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5451
5452        /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5453         * when we get the next-page we need to adjust so the loop
5454         * condition below will be met. The next element is the size of a
5455         * regular element and hence incrementing by 1
5456         */
5457        if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5458                hw_cons++;
5459
5460        /* This function may never run in parallel with itself for a
5461         * specific bp, thus there is no need in "paired" read memory
5462         * barrier here.
5463         */
5464        sw_cons = bp->eq_cons;
5465        sw_prod = bp->eq_prod;
5466
5467        DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
5468                        hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5469
5470        for (; sw_cons != hw_cons;
5471              sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5472
5473                elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5474
5475                rc = bnx2x_iov_eq_sp_event(bp, elem);
5476                if (!rc) {
5477                        DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5478                           rc);
5479                        goto next_spqe;
5480                }
5481
5482                opcode = elem->message.opcode;
5483
5484                /* handle eq element */
5485                switch (opcode) {
5486                case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5487                        bnx2x_vf_mbx_schedule(bp,
5488                                              &elem->message.data.vf_pf_event);
5489                        continue;
5490
5491                case EVENT_RING_OPCODE_STAT_QUERY:
5492                        DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS),
5493                               "got statistics comp event %d\n",
5494                               bp->stats_comp++);
5495                        /* nothing to do with stats comp */
5496                        goto next_spqe;
5497
5498                case EVENT_RING_OPCODE_CFC_DEL:
5499                        /* handle according to cid range */
5500                        /*
5501                         * we may want to verify here that the bp state is
5502                         * HALTING
5503                         */
5504
5505                        /* elem CID originates from FW; actually LE */
5506                        cid = SW_CID(elem->message.data.cfc_del_event.cid);
5507
5508                        DP(BNX2X_MSG_SP,
5509                           "got delete ramrod for MULTI[%d]\n", cid);
5510
5511                        if (CNIC_LOADED(bp) &&
5512                            !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5513                                goto next_spqe;
5514
5515                        q_obj = bnx2x_cid_to_q_obj(bp, cid);
5516
5517                        if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5518                                break;
5519
5520                        goto next_spqe;
5521
5522                case EVENT_RING_OPCODE_STOP_TRAFFIC:
5523                        DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5524                        bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5525                        if (f_obj->complete_cmd(bp, f_obj,
5526                                                BNX2X_F_CMD_TX_STOP))
5527                                break;
5528                        goto next_spqe;
5529
5530                case EVENT_RING_OPCODE_START_TRAFFIC:
5531                        DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5532                        bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5533                        if (f_obj->complete_cmd(bp, f_obj,
5534                                                BNX2X_F_CMD_TX_START))
5535                                break;
5536                        goto next_spqe;
5537
5538                case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5539                        echo = elem->message.data.function_update_event.echo;
5540                        if (echo == SWITCH_UPDATE) {
5541                                DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5542                                   "got FUNC_SWITCH_UPDATE ramrod\n");
5543                                if (f_obj->complete_cmd(
5544                                        bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5545                                        break;
5546
5547                        } else {
5548                                int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE;
5549
5550                                DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5551                                   "AFEX: ramrod completed FUNCTION_UPDATE\n");
5552                                f_obj->complete_cmd(bp, f_obj,
5553                                                    BNX2X_F_CMD_AFEX_UPDATE);
5554
5555                                /* We will perform the Queues update from
5556                                 * sp_rtnl task as all Queue SP operations
5557                                 * should run under rtnl_lock.
5558                                 */
5559                                bnx2x_schedule_sp_rtnl(bp, cmd, 0);
5560                        }
5561
5562                        goto next_spqe;
5563
5564                case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5565                        f_obj->complete_cmd(bp, f_obj,
5566                                            BNX2X_F_CMD_AFEX_VIFLISTS);
5567                        bnx2x_after_afex_vif_lists(bp, elem);
5568                        goto next_spqe;
5569                case EVENT_RING_OPCODE_FUNCTION_START:
5570                        DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5571                           "got FUNC_START ramrod\n");
5572                        if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5573                                break;
5574
5575                        goto next_spqe;
5576
5577                case EVENT_RING_OPCODE_FUNCTION_STOP:
5578                        DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5579                           "got FUNC_STOP ramrod\n");
5580                        if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5581                                break;
5582
5583                        goto next_spqe;
5584
5585                case EVENT_RING_OPCODE_SET_TIMESYNC:
5586                        DP(BNX2X_MSG_SP | BNX2X_MSG_PTP,
5587                           "got set_timesync ramrod completion\n");
5588                        if (f_obj->complete_cmd(bp, f_obj,
5589                                                BNX2X_F_CMD_SET_TIMESYNC))
5590                                break;
5591                        goto next_spqe;
5592                }
5593
5594                switch (opcode | bp->state) {
5595                case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5596                      BNX2X_STATE_OPEN):
5597                case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5598                      BNX2X_STATE_OPENING_WAIT4_PORT):
5599                case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5600                      BNX2X_STATE_CLOSING_WAIT4_HALT):
5601                        DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5602                           SW_CID(elem->message.data.eth_event.echo));
5603                        rss_raw->clear_pending(rss_raw);
5604                        break;
5605
5606                case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5607                case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5608                case (EVENT_RING_OPCODE_SET_MAC |
5609                      BNX2X_STATE_CLOSING_WAIT4_HALT):
5610                case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5611                      BNX2X_STATE_OPEN):
5612                case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5613                      BNX2X_STATE_DIAG):
5614                case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5615                      BNX2X_STATE_CLOSING_WAIT4_HALT):
5616                        DP(BNX2X_MSG_SP, "got (un)set vlan/mac ramrod\n");
5617                        bnx2x_handle_classification_eqe(bp, elem);
5618                        break;
5619
5620                case (EVENT_RING_OPCODE_MULTICAST_RULES |
5621                      BNX2X_STATE_OPEN):
5622                case (EVENT_RING_OPCODE_MULTICAST_RULES |
5623                      BNX2X_STATE_DIAG):
5624                case (EVENT_RING_OPCODE_MULTICAST_RULES |
5625                      BNX2X_STATE_CLOSING_WAIT4_HALT):
5626                        DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5627                        bnx2x_handle_mcast_eqe(bp);
5628                        break;
5629
5630                case (EVENT_RING_OPCODE_FILTERS_RULES |
5631                      BNX2X_STATE_OPEN):
5632                case (EVENT_RING_OPCODE_FILTERS_RULES |
5633                      BNX2X_STATE_DIAG):
5634                case (EVENT_RING_OPCODE_FILTERS_RULES |
5635                      BNX2X_STATE_CLOSING_WAIT4_HALT):
5636                        DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5637                        bnx2x_handle_rx_mode_eqe(bp);
5638                        break;
5639                default:
5640                        /* unknown event log error and continue */
5641                        BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5642                                  elem->message.opcode, bp->state);
5643                }
5644next_spqe:
5645                spqe_cnt++;
5646        } /* for */
5647
5648        smp_mb__before_atomic();
5649        atomic_add(spqe_cnt, &bp->eq_spq_left);
5650
5651        bp->eq_cons = sw_cons;
5652        bp->eq_prod = sw_prod;
5653        /* Make sure that above mem writes were issued towards the memory */
5654        smp_wmb();
5655
5656        /* update producer */
5657        bnx2x_update_eq_prod(bp, bp->eq_prod);
5658}
5659
5660static void bnx2x_sp_task(struct work_struct *work)
5661{
5662        struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5663
5664        DP(BNX2X_MSG_SP, "sp task invoked\n");
5665
5666        /* make sure the atomic interrupt_occurred has been written */
5667        smp_rmb();
5668        if (atomic_read(&bp->interrupt_occurred)) {
5669
5670                /* what work needs to be performed? */
5671                u16 status = bnx2x_update_dsb_idx(bp);
5672
5673                DP(BNX2X_MSG_SP, "status %x\n", status);
5674                DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5675                atomic_set(&bp->interrupt_occurred, 0);
5676
5677                /* HW attentions */
5678                if (status & BNX2X_DEF_SB_ATT_IDX) {
5679                        bnx2x_attn_int(bp);
5680                        status &= ~BNX2X_DEF_SB_ATT_IDX;
5681                }
5682
5683                /* SP events: STAT_QUERY and others */
5684                if (status & BNX2X_DEF_SB_IDX) {
5685                        struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5686
5687                        if (FCOE_INIT(bp) &&
5688                            (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5689                                /* Prevent local bottom-halves from running as
5690                                 * we are going to change the local NAPI list.
5691                                 */
5692                                local_bh_disable();
5693                                napi_schedule(&bnx2x_fcoe(bp, napi));
5694                                local_bh_enable();
5695                        }
5696
5697                        /* Handle EQ completions */
5698                        bnx2x_eq_int(bp);
5699                        bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5700                                     le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5701
5702                        status &= ~BNX2X_DEF_SB_IDX;
5703                }
5704
5705                /* if status is non zero then perhaps something went wrong */
5706                if (unlikely(status))
5707                        DP(BNX2X_MSG_SP,
5708                           "got an unknown interrupt! (status 0x%x)\n", status);
5709
5710                /* ack status block only if something was actually handled */
5711                bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5712                             le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5713        }
5714
5715        /* afex - poll to check if VIFSET_ACK should be sent to MFW */
5716        if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5717                               &bp->sp_state)) {
5718                bnx2x_link_report(bp);
5719                bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5720        }
5721}
5722
5723irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5724{
5725        struct net_device *dev = dev_instance;
5726        struct bnx2x *bp = netdev_priv(dev);
5727
5728        bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5729                     IGU_INT_DISABLE, 0);
5730
5731#ifdef BNX2X_STOP_ON_ERROR
5732        if (unlikely(bp->panic))
5733                return IRQ_HANDLED;
5734#endif
5735
5736        if (CNIC_LOADED(bp)) {
5737                struct cnic_ops *c_ops;
5738
5739                rcu_read_lock();
5740                c_ops = rcu_dereference(bp->cnic_ops);
5741                if (c_ops)
5742                        c_ops->cnic_handler(bp->cnic_data, NULL);
5743                rcu_read_unlock();
5744        }
5745
5746        /* schedule sp task to perform default status block work, ack
5747         * attentions and enable interrupts.
5748         */
5749        bnx2x_schedule_sp_task(bp);
5750
5751        return IRQ_HANDLED;
5752}
5753
5754/* end of slow path */
5755
5756void bnx2x_drv_pulse(struct bnx2x *bp)
5757{
5758        SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5759                 bp->fw_drv_pulse_wr_seq);
5760}
5761
5762static void bnx2x_timer(unsigned long data)
5763{
5764        struct bnx2x *bp = (struct bnx2x *) data;
5765
5766        if (!netif_running(bp->dev))
5767                return;
5768
5769        if (IS_PF(bp) &&
5770            !BP_NOMCP(bp)) {
5771                int mb_idx = BP_FW_MB_IDX(bp);
5772                u16 drv_pulse;
5773                u16 mcp_pulse;
5774
5775                ++bp->fw_drv_pulse_wr_seq;
5776                bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5777                drv_pulse = bp->fw_drv_pulse_wr_seq;
5778                bnx2x_drv_pulse(bp);
5779
5780                mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5781                             MCP_PULSE_SEQ_MASK);
5782                /* The delta between driver pulse and mcp response
5783                 * should not get too big. If the MFW is more than 5 pulses
5784                 * behind, we should worry about it enough to generate an error
5785                 * log.
5786                 */
5787                if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
5788                        BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5789                                  drv_pulse, mcp_pulse);
5790        }
5791
5792        if (bp->state == BNX2X_STATE_OPEN)
5793                bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5794
5795        /* sample pf vf bulletin board for new posts from pf */
5796        if (IS_VF(bp))
5797                bnx2x_timer_sriov(bp);
5798
5799        mod_timer(&bp->timer, jiffies + bp->current_interval);
5800}
5801
5802/* end of Statistics */
5803
5804/* nic init */
5805
5806/*
5807 * nic init service functions
5808 */
5809
5810static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5811{
5812        u32 i;
5813        if (!(len%4) && !(addr%4))
5814                for (i = 0; i < len; i += 4)
5815                        REG_WR(bp, addr + i, fill);
5816        else
5817                for (i = 0; i < len; i++)
5818                        REG_WR8(bp, addr + i, fill);
5819}
5820
5821/* helper: writes FP SP data to FW - data_size in dwords */
5822static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5823                                int fw_sb_id,
5824                                u32 *sb_data_p,
5825                                u32 data_size)
5826{
5827        int index;
5828        for (index = 0; index < data_size; index++)
5829                REG_WR(bp, BAR_CSTRORM_INTMEM +
5830                        CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5831                        sizeof(u32)*index,
5832                        *(sb_data_p + index));
5833}
5834
5835static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5836{
5837        u32 *sb_data_p;
5838        u32 data_size = 0;
5839        struct hc_status_block_data_e2 sb_data_e2;
5840        struct hc_status_block_data_e1x sb_data_e1x;
5841
5842        /* disable the function first */
5843        if (!CHIP_IS_E1x(bp)) {
5844                memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5845                sb_data_e2.common.state = SB_DISABLED;
5846                sb_data_e2.common.p_func.vf_valid = false;
5847                sb_data_p = (u32 *)&sb_data_e2;
5848                data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5849        } else {
5850                memset(&sb_data_e1x, 0,
5851                       sizeof(struct hc_status_block_data_e1x));
5852                sb_data_e1x.common.state = SB_DISABLED;
5853                sb_data_e1x.common.p_func.vf_valid = false;
5854                sb_data_p = (u32 *)&sb_data_e1x;
5855                data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5856        }
5857        bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5858
5859        bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5860                        CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5861                        CSTORM_STATUS_BLOCK_SIZE);
5862        bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5863                        CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5864                        CSTORM_SYNC_BLOCK_SIZE);
5865}
5866
5867/* helper:  writes SP SB data to FW */
5868static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5869                struct hc_sp_status_block_data *sp_sb_data)
5870{
5871        int func = BP_FUNC(bp);
5872        int i;
5873        for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5874                REG_WR(bp, BAR_CSTRORM_INTMEM +
5875                        CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5876                        i*sizeof(u32),
5877                        *((u32 *)sp_sb_data + i));
5878}
5879
5880static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5881{
5882        int func = BP_FUNC(bp);
5883        struct hc_sp_status_block_data sp_sb_data;
5884        memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5885
5886        sp_sb_data.state = SB_DISABLED;
5887        sp_sb_data.p_func.vf_valid = false;
5888
5889        bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5890
5891        bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5892                        CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5893                        CSTORM_SP_STATUS_BLOCK_SIZE);
5894        bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5895                        CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5896                        CSTORM_SP_SYNC_BLOCK_SIZE);
5897}
5898
5899static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5900                                           int igu_sb_id, int igu_seg_id)
5901{
5902        hc_sm->igu_sb_id = igu_sb_id;
5903        hc_sm->igu_seg_id = igu_seg_id;
5904        hc_sm->timer_value = 0xFF;
5905        hc_sm->time_to_expire = 0xFFFFFFFF;
5906}
5907
5908/* allocates state machine ids. */
5909static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5910{
5911        /* zero out state machine indices */
5912        /* rx indices */
5913        index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5914
5915        /* tx indices */
5916        index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5917        index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5918        index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5919        index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5920
5921        /* map indices */
5922        /* rx indices */
5923        index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5924                SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5925
5926        /* tx indices */
5927        index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5928                SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5929        index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5930                SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5931        index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5932                SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5933        index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5934                SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5935}
5936
5937void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5938                          u8 vf_valid, int fw_sb_id, int igu_sb_id)
5939{
5940        int igu_seg_id;
5941
5942        struct hc_status_block_data_e2 sb_data_e2;
5943        struct hc_status_block_data_e1x sb_data_e1x;
5944        struct hc_status_block_sm  *hc_sm_p;
5945        int data_size;
5946        u32 *sb_data_p;
5947
5948        if (CHIP_INT_MODE_IS_BC(bp))
5949                igu_seg_id = HC_SEG_ACCESS_NORM;
5950        else
5951                igu_seg_id = IGU_SEG_ACCESS_NORM;
5952
5953        bnx2x_zero_fp_sb(bp, fw_sb_id);
5954
5955        if (!CHIP_IS_E1x(bp)) {
5956                memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5957                sb_data_e2.common.state = SB_ENABLED;
5958                sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5959                sb_data_e2.common.p_func.vf_id = vfid;
5960                sb_data_e2.common.p_func.vf_valid = vf_valid;
5961                sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5962                sb_data_e2.common.same_igu_sb_1b = true;
5963                sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5964                sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5965                hc_sm_p = sb_data_e2.common.state_machine;
5966                sb_data_p = (u32 *)&sb_data_e2;
5967                data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5968                bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5969        } else {
5970                memset(&sb_data_e1x, 0,
5971                       sizeof(struct hc_status_block_data_e1x));
5972                sb_data_e1x.common.state = SB_ENABLED;
5973                sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5974                sb_data_e1x.common.p_func.vf_id = 0xff;
5975                sb_data_e1x.common.p_func.vf_valid = false;
5976                sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5977                sb_data_e1x.common.same_igu_sb_1b = true;
5978                sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5979                sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5980                hc_sm_p = sb_data_e1x.common.state_machine;
5981                sb_data_p = (u32 *)&sb_data_e1x;
5982                data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5983                bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5984        }
5985
5986        bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5987                                       igu_sb_id, igu_seg_id);
5988        bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5989                                       igu_sb_id, igu_seg_id);
5990
5991        DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5992
5993        /* write indices to HW - PCI guarantees endianity of regpairs */
5994        bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5995}
5996
5997static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5998                                     u16 tx_usec, u16 rx_usec)
5999{
6000        bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
6001                                    false, rx_usec);
6002        bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6003                                       HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
6004                                       tx_usec);
6005        bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6006                                       HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
6007                                       tx_usec);
6008        bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6009                                       HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
6010                                       tx_usec);
6011}
6012
6013static void bnx2x_init_def_sb(struct bnx2x *bp)
6014{
6015        struct host_sp_status_block *def_sb = bp->def_status_blk;
6016        dma_addr_t mapping = bp->def_status_blk_mapping;
6017        int igu_sp_sb_index;
6018        int igu_seg_id;
6019        int port = BP_PORT(bp);
6020        int func = BP_FUNC(bp);
6021        int reg_offset, reg_offset_en5;
6022        u64 section;
6023        int index;
6024        struct hc_sp_status_block_data sp_sb_data;
6025        memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
6026
6027        if (CHIP_INT_MODE_IS_BC(bp)) {
6028                igu_sp_sb_index = DEF_SB_IGU_ID;
6029                igu_seg_id = HC_SEG_ACCESS_DEF;
6030        } else {
6031                igu_sp_sb_index = bp->igu_dsb_id;
6032                igu_seg_id = IGU_SEG_ACCESS_DEF;
6033        }
6034
6035        /* ATTN */
6036        section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6037                                            atten_status_block);
6038        def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
6039
6040        bp->attn_state = 0;
6041
6042        reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6043                             MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6044        reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
6045                                 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
6046        for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
6047                int sindex;
6048                /* take care of sig[0]..sig[4] */
6049                for (sindex = 0; sindex < 4; sindex++)
6050                        bp->attn_group[index].sig[sindex] =
6051                           REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
6052
6053                if (!CHIP_IS_E1x(bp))
6054                        /*
6055                         * enable5 is separate from the rest of the registers,
6056                         * and therefore the address skip is 4
6057                         * and not 16 between the different groups
6058                         */
6059                        bp->attn_group[index].sig[4] = REG_RD(bp,
6060                                        reg_offset_en5 + 0x4*index);
6061                else
6062                        bp->attn_group[index].sig[4] = 0;
6063        }
6064
6065        if (bp->common.int_block == INT_BLOCK_HC) {
6066                reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
6067                                     HC_REG_ATTN_MSG0_ADDR_L);
6068
6069                REG_WR(bp, reg_offset, U64_LO(section));
6070                REG_WR(bp, reg_offset + 4, U64_HI(section));
6071        } else if (!CHIP_IS_E1x(bp)) {
6072                REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
6073                REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
6074        }
6075
6076        section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6077                                            sp_sb);
6078
6079        bnx2x_zero_sp_sb(bp);
6080
6081        /* PCI guarantees endianity of regpairs */
6082        sp_sb_data.state                = SB_ENABLED;
6083        sp_sb_data.host_sb_addr.lo      = U64_LO(section);
6084        sp_sb_data.host_sb_addr.hi      = U64_HI(section);
6085        sp_sb_data.igu_sb_id            = igu_sp_sb_index;
6086        sp_sb_data.igu_seg_id           = igu_seg_id;
6087        sp_sb_data.p_func.pf_id         = func;
6088        sp_sb_data.p_func.vnic_id       = BP_VN(bp);
6089        sp_sb_data.p_func.vf_id         = 0xff;
6090
6091        bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
6092
6093        bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
6094}
6095
6096void bnx2x_update_coalesce(struct bnx2x *bp)
6097{
6098        int i;
6099
6100        for_each_eth_queue(bp, i)
6101                bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
6102                                         bp->tx_ticks, bp->rx_ticks);
6103}
6104
6105static void bnx2x_init_sp_ring(struct bnx2x *bp)
6106{
6107        spin_lock_init(&bp->spq_lock);
6108        atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
6109
6110        bp->spq_prod_idx = 0;
6111        bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
6112        bp->spq_prod_bd = bp->spq;
6113        bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
6114}
6115
6116static void bnx2x_init_eq_ring(struct bnx2x *bp)
6117{
6118        int i;
6119        for (i = 1; i <= NUM_EQ_PAGES; i++) {
6120                union event_ring_elem *elem =
6121                        &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
6122
6123                elem->next_page.addr.hi =
6124                        cpu_to_le32(U64_HI(bp->eq_mapping +
6125                                   BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
6126                elem->next_page.addr.lo =
6127                        cpu_to_le32(U64_LO(bp->eq_mapping +
6128                                   BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
6129        }
6130        bp->eq_cons = 0;
6131        bp->eq_prod = NUM_EQ_DESC;
6132        bp->eq_cons_sb = BNX2X_EQ_INDEX;
6133        /* we want a warning message before it gets wrought... */
6134        atomic_set(&bp->eq_spq_left,
6135                min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
6136}
6137
6138/* called with netif_addr_lock_bh() */
6139static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
6140                               unsigned long rx_mode_flags,
6141                               unsigned long rx_accept_flags,
6142                               unsigned long tx_accept_flags,
6143                               unsigned long ramrod_flags)
6144{
6145        struct bnx2x_rx_mode_ramrod_params ramrod_param;
6146        int rc;
6147
6148        memset(&ramrod_param, 0, sizeof(ramrod_param));
6149
6150        /* Prepare ramrod parameters */
6151        ramrod_param.cid = 0;
6152        ramrod_param.cl_id = cl_id;
6153        ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
6154        ramrod_param.func_id = BP_FUNC(bp);
6155
6156        ramrod_param.pstate = &bp->sp_state;
6157        ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
6158
6159        ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
6160        ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
6161
6162        set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
6163
6164        ramrod_param.ramrod_flags = ramrod_flags;
6165        ramrod_param.rx_mode_flags = rx_mode_flags;
6166
6167        ramrod_param.rx_accept_flags = rx_accept_flags;
6168        ramrod_param.tx_accept_flags = tx_accept_flags;
6169
6170        rc = bnx2x_config_rx_mode(bp, &ramrod_param);
6171        if (rc < 0) {
6172                BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
6173                return rc;
6174        }
6175
6176        return 0;
6177}
6178
6179static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
6180                                   unsigned long *rx_accept_flags,
6181                                   unsigned long *tx_accept_flags)
6182{
6183        /* Clear the flags first */
6184        *rx_accept_flags = 0;
6185        *tx_accept_flags = 0;
6186
6187        switch (rx_mode) {
6188        case BNX2X_RX_MODE_NONE:
6189                /*
6190                 * 'drop all' supersedes any accept flags that may have been
6191                 * passed to the function.
6192                 */
6193                break;
6194        case BNX2X_RX_MODE_NORMAL:
6195                __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6196                __set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
6197                __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6198
6199                /* internal switching mode */
6200                __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6201                __set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
6202                __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6203
6204                if (bp->accept_any_vlan) {
6205                        __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6206                        __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6207                }
6208
6209                break;
6210        case BNX2X_RX_MODE_ALLMULTI:
6211                __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6212                __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6213                __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6214
6215                /* internal switching mode */
6216                __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6217                __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6218                __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6219
6220                if (bp->accept_any_vlan) {
6221                        __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6222                        __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6223                }
6224
6225                break;
6226        case BNX2X_RX_MODE_PROMISC:
6227                /* According to definition of SI mode, iface in promisc mode
6228                 * should receive matched and unmatched (in resolution of port)
6229                 * unicast packets.
6230                 */
6231                __set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
6232                __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6233                __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6234                __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6235
6236                /* internal switching mode */
6237                __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6238                __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6239
6240                if (IS_MF_SI(bp))
6241                        __set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
6242                else
6243                        __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6244
6245                __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6246                __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6247
6248                break;
6249        default:
6250                BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
6251                return -EINVAL;
6252        }
6253
6254        return 0;
6255}
6256
6257/* called with netif_addr_lock_bh() */
6258static int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
6259{
6260        unsigned long rx_mode_flags = 0, ramrod_flags = 0;
6261        unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
6262        int rc;
6263
6264        if (!NO_FCOE(bp))
6265                /* Configure rx_mode of FCoE Queue */
6266                __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
6267
6268        rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
6269                                     &tx_accept_flags);
6270        if (rc)
6271                return rc;
6272
6273        __set_bit(RAMROD_RX, &ramrod_flags);
6274        __set_bit(RAMROD_TX, &ramrod_flags);
6275
6276        return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
6277                                   rx_accept_flags, tx_accept_flags,
6278                                   ramrod_flags);
6279}
6280
6281static void bnx2x_init_internal_common(struct bnx2x *bp)
6282{
6283        int i;
6284
6285        /* Zero this manually as its initialization is
6286           currently missing in the initTool */
6287        for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
6288                REG_WR(bp, BAR_USTRORM_INTMEM +
6289                       USTORM_AGG_DATA_OFFSET + i * 4, 0);
6290        if (!CHIP_IS_E1x(bp)) {
6291                REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
6292                        CHIP_INT_MODE_IS_BC(bp) ?
6293                        HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
6294        }
6295}
6296
6297static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
6298{
6299        switch (load_code) {
6300        case FW_MSG_CODE_DRV_LOAD_COMMON:
6301        case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6302                bnx2x_init_internal_common(bp);
6303                /* no break */
6304
6305        case FW_MSG_CODE_DRV_LOAD_PORT:
6306                /* nothing to do */
6307                /* no break */
6308
6309        case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6310                /* internal memory per function is
6311                   initialized inside bnx2x_pf_init */
6312                break;
6313
6314        default:
6315                BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6316                break;
6317        }
6318}
6319
6320static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6321{
6322        return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6323}
6324
6325static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6326{
6327        return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6328}
6329
6330static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6331{
6332        if (CHIP_IS_E1x(fp->bp))
6333                return BP_L_ID(fp->bp) + fp->index;
6334        else    /* We want Client ID to be the same as IGU SB ID for 57712 */
6335                return bnx2x_fp_igu_sb_id(fp);
6336}
6337
6338static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6339{
6340        struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6341        u8 cos;
6342        unsigned long q_type = 0;
6343        u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6344        fp->rx_queue = fp_idx;
6345        fp->cid = fp_idx;
6346        fp->cl_id = bnx2x_fp_cl_id(fp);
6347        fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6348        fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6349        /* qZone id equals to FW (per path) client id */
6350        fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
6351
6352        /* init shortcut */
6353        fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6354
6355        /* Setup SB indices */
6356        fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6357
6358        /* Configure Queue State object */
6359        __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6360        __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6361
6362        BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6363
6364        /* init tx data */
6365        for_each_cos_in_tx_queue(fp, cos) {
6366                bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6367                                  CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6368                                  FP_COS_TO_TXQ(fp, cos, bp),
6369                                  BNX2X_TX_SB_INDEX_BASE + cos, fp);
6370                cids[cos] = fp->txdata_ptr[cos]->cid;
6371        }
6372
6373        /* nothing more for vf to do here */
6374        if (IS_VF(bp))
6375                return;
6376
6377        bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6378                      fp->fw_sb_id, fp->igu_sb_id);
6379        bnx2x_update_fpsb_idx(fp);
6380        bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6381                             fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6382                             bnx2x_sp_mapping(bp, q_rdata), q_type);
6383
6384        /**
6385         * Configure classification DBs: Always enable Tx switching
6386         */
6387        bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6388
6389        DP(NETIF_MSG_IFUP,
6390           "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
6391           fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6392           fp->igu_sb_id);
6393}
6394
6395static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6396{
6397        int i;
6398
6399        for (i = 1; i <= NUM_TX_RINGS; i++) {
6400                struct eth_tx_next_bd *tx_next_bd =
6401                        &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6402
6403                tx_next_bd->addr_hi =
6404                        cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6405                                    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6406                tx_next_bd->addr_lo =
6407                        cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6408                                    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6409        }
6410
6411        *txdata->tx_cons_sb = cpu_to_le16(0);
6412
6413        SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6414        txdata->tx_db.data.zero_fill1 = 0;
6415        txdata->tx_db.data.prod = 0;
6416
6417        txdata->tx_pkt_prod = 0;
6418        txdata->tx_pkt_cons = 0;
6419        txdata->tx_bd_prod = 0;
6420        txdata->tx_bd_cons = 0;
6421        txdata->tx_pkt = 0;
6422}
6423
6424static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6425{
6426        int i;
6427
6428        for_each_tx_queue_cnic(bp, i)
6429                bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6430}
6431
6432static void bnx2x_init_tx_rings(struct bnx2x *bp)
6433{
6434        int i;
6435        u8 cos;
6436
6437        for_each_eth_queue(bp, i)
6438                for_each_cos_in_tx_queue(&bp->fp[i], cos)
6439                        bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6440}
6441
6442static void bnx2x_init_fcoe_fp(struct bnx2x *bp)
6443{
6444        struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
6445        unsigned long q_type = 0;
6446
6447        bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
6448        bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
6449                                                     BNX2X_FCOE_ETH_CL_ID_IDX);
6450        bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp);
6451        bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
6452        bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
6453        bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
6454        bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]),
6455                          fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX,
6456                          fp);
6457
6458        DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index);
6459
6460        /* qZone id equals to FW (per path) client id */
6461        bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
6462        /* init shortcut */
6463        bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
6464                bnx2x_rx_ustorm_prods_offset(fp);
6465
6466        /* Configure Queue State object */
6467        __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6468        __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6469
6470        /* No multi-CoS for FCoE L2 client */
6471        BUG_ON(fp->max_cos != 1);
6472
6473        bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id,
6474                             &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6475                             bnx2x_sp_mapping(bp, q_rdata), q_type);
6476
6477        DP(NETIF_MSG_IFUP,
6478           "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6479           fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6480           fp->igu_sb_id);
6481}
6482
6483void bnx2x_nic_init_cnic(struct bnx2x *bp)
6484{
6485        if (!NO_FCOE(bp))
6486                bnx2x_init_fcoe_fp(bp);
6487
6488        bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6489                      BNX2X_VF_ID_INVALID, false,
6490                      bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6491
6492        /* ensure status block indices were read */
6493        rmb();
6494        bnx2x_init_rx_rings_cnic(bp);
6495        bnx2x_init_tx_rings_cnic(bp);
6496
6497        /* flush all */
6498        mb();
6499        mmiowb();
6500}
6501
6502void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6503{
6504        int i;
6505
6506        /* Setup NIC internals and enable interrupts */
6507        for_each_eth_queue(bp, i)
6508                bnx2x_init_eth_fp(bp, i);
6509
6510        /* ensure status block indices were read */
6511        rmb();
6512        bnx2x_init_rx_rings(bp);
6513        bnx2x_init_tx_rings(bp);
6514
6515        if (IS_PF(bp)) {
6516                /* Initialize MOD_ABS interrupts */
6517                bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6518                                       bp->common.shmem_base,
6519                                       bp->common.shmem2_base, BP_PORT(bp));
6520
6521                /* initialize the default status block and sp ring */
6522                bnx2x_init_def_sb(bp);
6523                bnx2x_update_dsb_idx(bp);
6524                bnx2x_init_sp_ring(bp);
6525        } else {
6526                bnx2x_memset_stats(bp);
6527        }
6528}
6529
6530void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6531{
6532        bnx2x_init_eq_ring(bp);
6533        bnx2x_init_internal(bp, load_code);
6534        bnx2x_pf_init(bp);
6535        bnx2x_stats_init(bp);
6536
6537        /* flush all before enabling interrupts */
6538        mb();
6539        mmiowb();
6540
6541        bnx2x_int_enable(bp);
6542
6543        /* Check for SPIO5 */
6544        bnx2x_attn_int_deasserted0(bp,
6545                REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6546                                   AEU_INPUTS_ATTN_BITS_SPIO5);
6547}
6548
6549/* gzip service functions */
6550static int bnx2x_gunzip_init(struct bnx2x *bp)
6551{
6552        bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6553                                            &bp->gunzip_mapping, GFP_KERNEL);
6554        if (bp->gunzip_buf  == NULL)
6555                goto gunzip_nomem1;
6556
6557        bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6558        if (bp->strm  == NULL)
6559                goto gunzip_nomem2;
6560
6561        bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6562        if (bp->strm->workspace == NULL)
6563                goto gunzip_nomem3;
6564
6565        return 0;
6566
6567gunzip_nomem3:
6568        kfree(bp->strm);
6569        bp->strm = NULL;
6570
6571gunzip_nomem2:
6572        dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6573                          bp->gunzip_mapping);
6574        bp->gunzip_buf = NULL;
6575
6576gunzip_nomem1:
6577        BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6578        return -ENOMEM;
6579}
6580
6581static void bnx2x_gunzip_end(struct bnx2x *bp)
6582{
6583        if (bp->strm) {
6584                vfree(bp->strm->workspace);
6585                kfree(bp->strm);
6586                bp->strm = NULL;
6587        }
6588
6589        if (bp->gunzip_buf) {
6590                dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6591                                  bp->gunzip_mapping);
6592                bp->gunzip_buf = NULL;
6593        }
6594}
6595
6596static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6597{
6598        int n, rc;
6599
6600        /* check gzip header */
6601        if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6602                BNX2X_ERR("Bad gzip header\n");
6603                return -EINVAL;
6604        }
6605
6606        n = 10;
6607
6608#define FNAME                           0x8
6609
6610        if (zbuf[3] & FNAME)
6611                while ((zbuf[n++] != 0) && (n < len));
6612
6613        bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6614        bp->strm->avail_in = len - n;
6615        bp->strm->next_out = bp->gunzip_buf;
6616        bp->strm->avail_out = FW_BUF_SIZE;
6617
6618        rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6619        if (rc != Z_OK)
6620                return rc;
6621
6622        rc = zlib_inflate(bp->strm, Z_FINISH);
6623        if ((rc != Z_OK) && (rc != Z_STREAM_END))
6624                netdev_err(bp->dev, "Firmware decompression error: %s\n",
6625                           bp->strm->msg);
6626
6627        bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6628        if (bp->gunzip_outlen & 0x3)
6629                netdev_err(bp->dev,
6630                           "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6631                                bp->gunzip_outlen);
6632        bp->gunzip_outlen >>= 2;
6633
6634        zlib_inflateEnd(bp->strm);
6635
6636        if (rc == Z_STREAM_END)
6637                return 0;
6638
6639        return rc;
6640}
6641
6642/* nic load/unload */
6643
6644/*
6645 * General service functions
6646 */
6647
6648/* send a NIG loopback debug packet */
6649static void bnx2x_lb_pckt(struct bnx2x *bp)
6650{
6651        u32 wb_write[3];
6652
6653        /* Ethernet source and destination addresses */
6654        wb_write[0] = 0x55555555;
6655        wb_write[1] = 0x55555555;
6656        wb_write[2] = 0x20;             /* SOP */
6657        REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6658
6659        /* NON-IP protocol */
6660        wb_write[0] = 0x09000000;
6661        wb_write[1] = 0x55555555;
6662        wb_write[2] = 0x10;             /* EOP, eop_bvalid = 0 */
6663        REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6664}
6665
6666/* some of the internal memories
6667 * are not directly readable from the driver
6668 * to test them we send debug packets
6669 */
6670static int bnx2x_int_mem_test(struct bnx2x *bp)
6671{
6672        int factor;
6673        int count, i;
6674        u32 val = 0;
6675
6676        if (CHIP_REV_IS_FPGA(bp))
6677                factor = 120;
6678        else if (CHIP_REV_IS_EMUL(bp))
6679                factor = 200;
6680        else
6681                factor = 1;
6682
6683        /* Disable inputs of parser neighbor blocks */
6684        REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6685        REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6686        REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6687        REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6688
6689        /*  Write 0 to parser credits for CFC search request */
6690        REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6691
6692        /* send Ethernet packet */
6693        bnx2x_lb_pckt(bp);
6694
6695        /* TODO do i reset NIG statistic? */
6696        /* Wait until NIG register shows 1 packet of size 0x10 */
6697        count = 1000 * factor;
6698        while (count) {
6699
6700                bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6701                val = *bnx2x_sp(bp, wb_data[0]);
6702                if (val == 0x10)
6703                        break;
6704
6705                usleep_range(10000, 20000);
6706                count--;
6707        }
6708        if (val != 0x10) {
6709                BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6710                return -1;
6711        }
6712
6713        /* Wait until PRS register shows 1 packet */
6714        count = 1000 * factor;
6715        while (count) {
6716                val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6717                if (val == 1)
6718                        break;
6719
6720                usleep_range(10000, 20000);
6721                count--;
6722        }
6723        if (val != 0x1) {
6724                BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6725                return -2;
6726        }
6727
6728        /* Reset and init BRB, PRS */
6729        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6730        msleep(50);
6731        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6732        msleep(50);
6733        bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6734        bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6735
6736        DP(NETIF_MSG_HW, "part2\n");
6737
6738        /* Disable inputs of parser neighbor blocks */
6739        REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6740        REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6741        REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6742        REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6743
6744        /* Write 0 to parser credits for CFC search request */
6745        REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6746
6747        /* send 10 Ethernet packets */
6748        for (i = 0; i < 10; i++)
6749                bnx2x_lb_pckt(bp);
6750
6751        /* Wait until NIG register shows 10 + 1
6752           packets of size 11*0x10 = 0xb0 */
6753        count = 1000 * factor;
6754        while (count) {
6755
6756                bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6757                val = *bnx2x_sp(bp, wb_data[0]);
6758                if (val == 0xb0)
6759                        break;
6760
6761                usleep_range(10000, 20000);
6762                count--;
6763        }
6764        if (val != 0xb0) {
6765                BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6766                return -3;
6767        }
6768
6769        /* Wait until PRS register shows 2 packets */
6770        val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6771        if (val != 2)
6772                BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6773
6774        /* Write 1 to parser credits for CFC search request */
6775        REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6776
6777        /* Wait until PRS register shows 3 packets */
6778        msleep(10 * factor);
6779        /* Wait until NIG register shows 1 packet of size 0x10 */
6780        val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6781        if (val != 3)
6782                BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6783
6784        /* clear NIG EOP FIFO */
6785        for (i = 0; i < 11; i++)
6786                REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6787        val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6788        if (val != 1) {
6789                BNX2X_ERR("clear of NIG failed\n");
6790                return -4;
6791        }
6792
6793        /* Reset and init BRB, PRS, NIG */
6794        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6795        msleep(50);
6796        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6797        msleep(50);
6798        bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6799        bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6800        if (!CNIC_SUPPORT(bp))
6801                /* set NIC mode */
6802                REG_WR(bp, PRS_REG_NIC_MODE, 1);
6803
6804        /* Enable inputs of parser neighbor blocks */
6805        REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6806        REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6807        REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6808        REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6809
6810        DP(NETIF_MSG_HW, "done\n");
6811
6812        return 0; /* OK */
6813}
6814
6815static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6816{
6817        u32 val;
6818
6819        REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6820        if (!CHIP_IS_E1x(bp))
6821                REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6822        else
6823                REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6824        REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6825        REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6826        /*
6827         * mask read length error interrupts in brb for parser
6828         * (parsing unit and 'checksum and crc' unit)
6829         * these errors are legal (PU reads fixed length and CAC can cause
6830         * read length error on truncated packets)
6831         */
6832        REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6833        REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6834        REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6835        REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6836        REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6837        REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6838/*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6839/*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6840        REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6841        REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6842        REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6843/*      REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6844/*      REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6845        REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6846        REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6847        REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6848        REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6849/*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6850/*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6851
6852        val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6853                PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6854                PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6855        if (!CHIP_IS_E1x(bp))
6856                val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6857                        PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6858        REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6859
6860        REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6861        REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6862        REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6863/*      REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6864
6865        if (!CHIP_IS_E1x(bp))
6866                /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6867                REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6868
6869        REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6870        REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6871/*      REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6872        REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);         /* bit 3,4 masked */
6873}
6874
6875static void bnx2x_reset_common(struct bnx2x *bp)
6876{
6877        u32 val = 0x1400;
6878
6879        /* reset_common */
6880        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6881               0xd3ffff7f);
6882
6883        if (CHIP_IS_E3(bp)) {
6884                val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6885                val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6886        }
6887
6888        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6889}
6890
6891static void bnx2x_setup_dmae(struct bnx2x *bp)
6892{
6893        bp->dmae_ready = 0;
6894        spin_lock_init(&bp->dmae_lock);
6895}
6896
6897static void bnx2x_init_pxp(struct bnx2x *bp)
6898{
6899        u16 devctl;
6900        int r_order, w_order;
6901
6902        pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6903        DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6904        w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6905        if (bp->mrrs == -1)
6906                r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6907        else {
6908                DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6909                r_order = bp->mrrs;
6910        }
6911
6912        bnx2x_init_pxp_arb(bp, r_order, w_order);
6913}
6914
6915static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6916{
6917        int is_required;
6918        u32 val;
6919        int port;
6920
6921        if (BP_NOMCP(bp))
6922                return;
6923
6924        is_required = 0;
6925        val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6926              SHARED_HW_CFG_FAN_FAILURE_MASK;
6927
6928        if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6929                is_required = 1;
6930
6931        /*
6932         * The fan failure mechanism is usually related to the PHY type since
6933         * the power consumption of the board is affected by the PHY. Currently,
6934         * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6935         */
6936        else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6937                for (port = PORT_0; port < PORT_MAX; port++) {
6938                        is_required |=
6939                                bnx2x_fan_failure_det_req(
6940                                        bp,
6941                                        bp->common.shmem_base,
6942                                        bp->common.shmem2_base,
6943                                        port);
6944                }
6945
6946        DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6947
6948        if (is_required == 0)
6949                return;
6950
6951        /* Fan failure is indicated by SPIO 5 */
6952        bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6953
6954        /* set to active low mode */
6955        val = REG_RD(bp, MISC_REG_SPIO_INT);
6956        val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6957        REG_WR(bp, MISC_REG_SPIO_INT, val);
6958
6959        /* enable interrupt to signal the IGU */
6960        val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6961        val |= MISC_SPIO_SPIO5;
6962        REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6963}
6964
6965void bnx2x_pf_disable(struct bnx2x *bp)
6966{
6967        u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6968        val &= ~IGU_PF_CONF_FUNC_EN;
6969
6970        REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6971        REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6972        REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6973}
6974
6975static void bnx2x__common_init_phy(struct bnx2x *bp)
6976{
6977        u32 shmem_base[2], shmem2_base[2];
6978        /* Avoid common init in case MFW supports LFA */
6979        if (SHMEM2_RD(bp, size) >
6980            (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6981                return;
6982        shmem_base[0] =  bp->common.shmem_base;
6983        shmem2_base[0] = bp->common.shmem2_base;
6984        if (!CHIP_IS_E1x(bp)) {
6985                shmem_base[1] =
6986                        SHMEM2_RD(bp, other_shmem_base_addr);
6987                shmem2_base[1] =
6988                        SHMEM2_RD(bp, other_shmem2_base_addr);
6989        }
6990        bnx2x_acquire_phy_lock(bp);
6991        bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6992                              bp->common.chip_id);
6993        bnx2x_release_phy_lock(bp);
6994}
6995
6996static void bnx2x_config_endianity(struct bnx2x *bp, u32 val)
6997{
6998        REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, val);
6999        REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, val);
7000        REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, val);
7001        REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, val);
7002        REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, val);
7003
7004        /* make sure this value is 0 */
7005        REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
7006
7007        REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, val);
7008        REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, val);
7009        REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, val);
7010        REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, val);
7011}
7012
7013static void bnx2x_set_endianity(struct bnx2x *bp)
7014{
7015#ifdef __BIG_ENDIAN
7016        bnx2x_config_endianity(bp, 1);
7017#else
7018        bnx2x_config_endianity(bp, 0);
7019#endif
7020}
7021
7022static void bnx2x_reset_endianity(struct bnx2x *bp)
7023{
7024        bnx2x_config_endianity(bp, 0);
7025}
7026
7027/**
7028 * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
7029 *
7030 * @bp:         driver handle
7031 */
7032static int bnx2x_init_hw_common(struct bnx2x *bp)
7033{
7034        u32 val;
7035
7036        DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
7037
7038        /*
7039         * take the RESET lock to protect undi_unload flow from accessing
7040         * registers while we're resetting the chip
7041         */
7042        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7043
7044        bnx2x_reset_common(bp);
7045        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
7046
7047        val = 0xfffc;
7048        if (CHIP_IS_E3(bp)) {
7049                val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
7050                val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
7051        }
7052        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
7053
7054        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7055
7056        bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
7057
7058        if (!CHIP_IS_E1x(bp)) {
7059                u8 abs_func_id;
7060
7061                /**
7062                 * 4-port mode or 2-port mode we need to turn of master-enable
7063                 * for everyone, after that, turn it back on for self.
7064                 * so, we disregard multi-function or not, and always disable
7065                 * for all functions on the given path, this means 0,2,4,6 for
7066                 * path 0 and 1,3,5,7 for path 1
7067                 */
7068                for (abs_func_id = BP_PATH(bp);
7069                     abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
7070                        if (abs_func_id == BP_ABS_FUNC(bp)) {
7071                                REG_WR(bp,
7072                                    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
7073                                    1);
7074                                continue;
7075                        }
7076
7077                        bnx2x_pretend_func(bp, abs_func_id);
7078                        /* clear pf enable */
7079                        bnx2x_pf_disable(bp);
7080                        bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7081                }
7082        }
7083
7084        bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
7085        if (CHIP_IS_E1(bp)) {
7086                /* enable HW interrupt from PXP on USDM overflow
7087                   bit 16 on INT_MASK_0 */
7088                REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
7089        }
7090
7091        bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
7092        bnx2x_init_pxp(bp);
7093        bnx2x_set_endianity(bp);
7094        bnx2x_ilt_init_page_size(bp, INITOP_SET);
7095
7096        if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
7097                REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
7098
7099        /* let the HW do it's magic ... */
7100        msleep(100);
7101        /* finish PXP init */
7102        val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
7103        if (val != 1) {
7104                BNX2X_ERR("PXP2 CFG failed\n");
7105                return -EBUSY;
7106        }
7107        val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
7108        if (val != 1) {
7109                BNX2X_ERR("PXP2 RD_INIT failed\n");
7110                return -EBUSY;
7111        }
7112
7113        /* Timers bug workaround E2 only. We need to set the entire ILT to
7114         * have entries with value "0" and valid bit on.
7115         * This needs to be done by the first PF that is loaded in a path
7116         * (i.e. common phase)
7117         */
7118        if (!CHIP_IS_E1x(bp)) {
7119/* In E2 there is a bug in the timers block that can cause function 6 / 7
7120 * (i.e. vnic3) to start even if it is marked as "scan-off".
7121 * This occurs when a different function (func2,3) is being marked
7122 * as "scan-off". Real-life scenario for example: if a driver is being
7123 * load-unloaded while func6,7 are down. This will cause the timer to access
7124 * the ilt, translate to a logical address and send a request to read/write.
7125 * Since the ilt for the function that is down is not valid, this will cause
7126 * a translation error which is unrecoverable.
7127 * The Workaround is intended to make sure that when this happens nothing fatal
7128 * will occur. The workaround:
7129 *      1.  First PF driver which loads on a path will:
7130 *              a.  After taking the chip out of reset, by using pretend,
7131 *                  it will write "0" to the following registers of
7132 *                  the other vnics.
7133 *                  REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
7134 *                  REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
7135 *                  REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
7136 *                  And for itself it will write '1' to
7137 *                  PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
7138 *                  dmae-operations (writing to pram for example.)
7139 *                  note: can be done for only function 6,7 but cleaner this
7140 *                        way.
7141 *              b.  Write zero+valid to the entire ILT.
7142 *              c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
7143 *                  VNIC3 (of that port). The range allocated will be the
7144 *                  entire ILT. This is needed to prevent  ILT range error.
7145 *      2.  Any PF driver load flow:
7146 *              a.  ILT update with the physical addresses of the allocated
7147 *                  logical pages.
7148 *              b.  Wait 20msec. - note that this timeout is needed to make
7149 *                  sure there are no requests in one of the PXP internal
7150 *                  queues with "old" ILT addresses.
7151 *              c.  PF enable in the PGLC.
7152 *              d.  Clear the was_error of the PF in the PGLC. (could have
7153 *                  occurred while driver was down)
7154 *              e.  PF enable in the CFC (WEAK + STRONG)
7155 *              f.  Timers scan enable
7156 *      3.  PF driver unload flow:
7157 *              a.  Clear the Timers scan_en.
7158 *              b.  Polling for scan_on=0 for that PF.
7159 *              c.  Clear the PF enable bit in the PXP.
7160 *              d.  Clear the PF enable in the CFC (WEAK + STRONG)
7161 *              e.  Write zero+valid to all ILT entries (The valid bit must
7162 *                  stay set)
7163 *              f.  If this is VNIC 3 of a port then also init
7164 *                  first_timers_ilt_entry to zero and last_timers_ilt_entry
7165 *                  to the last entry in the ILT.
7166 *
7167 *      Notes:
7168 *      Currently the PF error in the PGLC is non recoverable.
7169 *      In the future the there will be a recovery routine for this error.
7170 *      Currently attention is masked.
7171 *      Having an MCP lock on the load/unload process does not guarantee that
7172 *      there is no Timer disable during Func6/7 enable. This is because the
7173 *      Timers scan is currently being cleared by the MCP on FLR.
7174 *      Step 2.d can be done only for PF6/7 and the driver can also check if
7175 *      there is error before clearing it. But the flow above is simpler and
7176 *      more general.
7177 *      All ILT entries are written by zero+valid and not just PF6/7
7178 *      ILT entries since in the future the ILT entries allocation for
7179 *      PF-s might be dynamic.
7180 */
7181                struct ilt_client_info ilt_cli;
7182                struct bnx2x_ilt ilt;
7183                memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7184                memset(&ilt, 0, sizeof(struct bnx2x_ilt));
7185
7186                /* initialize dummy TM client */
7187                ilt_cli.start = 0;
7188                ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7189                ilt_cli.client_num = ILT_CLIENT_TM;
7190
7191                /* Step 1: set zeroes to all ilt page entries with valid bit on
7192                 * Step 2: set the timers first/last ilt entry to point
7193                 * to the entire range to prevent ILT range error for 3rd/4th
7194                 * vnic (this code assumes existence of the vnic)
7195                 *
7196                 * both steps performed by call to bnx2x_ilt_client_init_op()
7197                 * with dummy TM client
7198                 *
7199                 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
7200                 * and his brother are split registers
7201                 */
7202                bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
7203                bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
7204                bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7205
7206                REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
7207                REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
7208                REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
7209        }
7210
7211        REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
7212        REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
7213
7214        if (!CHIP_IS_E1x(bp)) {
7215                int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
7216                                (CHIP_REV_IS_FPGA(bp) ? 400 : 0);
7217                bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
7218
7219                bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
7220
7221                /* let the HW do it's magic ... */
7222                do {
7223                        msleep(200);
7224                        val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
7225                } while (factor-- && (val != 1));
7226
7227                if (val != 1) {
7228                        BNX2X_ERR("ATC_INIT failed\n");
7229                        return -EBUSY;
7230                }
7231        }
7232
7233        bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
7234
7235        bnx2x_iov_init_dmae(bp);
7236
7237        /* clean the DMAE memory */
7238        bp->dmae_ready = 1;
7239        bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
7240
7241        bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
7242
7243        bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
7244
7245        bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
7246
7247        bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
7248
7249        bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
7250        bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
7251        bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
7252        bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
7253
7254        bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
7255
7256        /* QM queues pointers table */
7257        bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
7258
7259        /* soft reset pulse */
7260        REG_WR(bp, QM_REG_SOFT_RESET, 1);
7261        REG_WR(bp, QM_REG_SOFT_RESET, 0);
7262
7263        if (CNIC_SUPPORT(bp))
7264                bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
7265
7266        bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
7267
7268        if (!CHIP_REV_IS_SLOW(bp))
7269                /* enable hw interrupt from doorbell Q */
7270                REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
7271
7272        bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
7273
7274        bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
7275        REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
7276
7277        if (!CHIP_IS_E1(bp))
7278                REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
7279
7280        if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
7281                if (IS_MF_AFEX(bp)) {
7282                        /* configure that VNTag and VLAN headers must be
7283                         * received in afex mode
7284                         */
7285                        REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
7286                        REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
7287                        REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
7288                        REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
7289                        REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
7290                } else {
7291                        /* Bit-map indicating which L2 hdrs may appear
7292                         * after the basic Ethernet header
7293                         */
7294                        REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
7295                               bp->path_has_ovlan ? 7 : 6);
7296                }
7297        }
7298
7299        bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
7300        bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
7301        bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
7302        bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
7303
7304        if (!CHIP_IS_E1x(bp)) {
7305                /* reset VFC memories */
7306                REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7307                           VFC_MEMORIES_RST_REG_CAM_RST |
7308                           VFC_MEMORIES_RST_REG_RAM_RST);
7309                REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7310                           VFC_MEMORIES_RST_REG_CAM_RST |
7311                           VFC_MEMORIES_RST_REG_RAM_RST);
7312
7313                msleep(20);
7314        }
7315
7316        bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
7317        bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
7318        bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
7319        bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
7320
7321        /* sync semi rtc */
7322        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
7323               0x80000000);
7324        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
7325               0x80000000);
7326
7327        bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
7328        bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
7329        bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
7330
7331        if (!CHIP_IS_E1x(bp)) {
7332                if (IS_MF_AFEX(bp)) {
7333                        /* configure that VNTag and VLAN headers must be
7334                         * sent in afex mode
7335                         */
7336                        REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
7337                        REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
7338                        REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
7339                        REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
7340                        REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
7341                } else {
7342                        REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
7343                               bp->path_has_ovlan ? 7 : 6);
7344                }
7345        }
7346
7347        REG_WR(bp, SRC_REG_SOFT_RST, 1);
7348
7349        bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
7350
7351        if (CNIC_SUPPORT(bp)) {
7352                REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
7353                REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
7354                REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
7355                REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
7356                REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
7357                REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
7358                REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
7359                REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
7360                REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
7361                REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
7362        }
7363        REG_WR(bp, SRC_REG_SOFT_RST, 0);
7364
7365        if (sizeof(union cdu_context) != 1024)
7366                /* we currently assume that a context is 1024 bytes */
7367                dev_alert(&bp->pdev->dev,
7368                          "please adjust the size of cdu_context(%ld)\n",
7369                          (long)sizeof(union cdu_context));
7370
7371        bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7372        val = (4 << 24) + (0 << 12) + 1024;
7373        REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7374
7375        bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7376        REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7377        /* enable context validation interrupt from CFC */
7378        REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7379
7380        /* set the thresholds to prevent CFC/CDU race */
7381        REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7382
7383        bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7384
7385        if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7386                REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7387
7388        bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7389        bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7390
7391        /* Reset PCIE errors for debug */
7392        REG_WR(bp, 0x2814, 0xffffffff);
7393        REG_WR(bp, 0x3820, 0xffffffff);
7394
7395        if (!CHIP_IS_E1x(bp)) {
7396                REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7397                           (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7398                                PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7399                REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7400                           (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7401                                PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7402                                PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7403                REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7404                           (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7405                                PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7406                                PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7407        }
7408
7409        bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7410        if (!CHIP_IS_E1(bp)) {
7411                /* in E3 this done in per-port section */
7412                if (!CHIP_IS_E3(bp))
7413                        REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7414        }
7415        if (CHIP_IS_E1H(bp))
7416                /* not applicable for E2 (and above ...) */
7417                REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7418
7419        if (CHIP_REV_IS_SLOW(bp))
7420                msleep(200);
7421
7422        /* finish CFC init */
7423        val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7424        if (val != 1) {
7425                BNX2X_ERR("CFC LL_INIT failed\n");
7426                return -EBUSY;
7427        }
7428        val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7429        if (val != 1) {
7430                BNX2X_ERR("CFC AC_INIT failed\n");
7431                return -EBUSY;
7432        }
7433        val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7434        if (val != 1) {
7435                BNX2X_ERR("CFC CAM_INIT failed\n");
7436                return -EBUSY;
7437        }
7438        REG_WR(bp, CFC_REG_DEBUG0, 0);
7439
7440        if (CHIP_IS_E1(bp)) {
7441                /* read NIG statistic
7442                   to see if this is our first up since powerup */
7443                bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7444                val = *bnx2x_sp(bp, wb_data[0]);
7445
7446                /* do internal memory self test */
7447                if ((val == 0) && bnx2x_int_mem_test(bp)) {
7448                        BNX2X_ERR("internal mem self test failed\n");
7449                        return -EBUSY;
7450                }
7451        }
7452
7453        bnx2x_setup_fan_failure_detection(bp);
7454
7455        /* clear PXP2 attentions */
7456        REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7457
7458        bnx2x_enable_blocks_attention(bp);
7459        bnx2x_enable_blocks_parity(bp);
7460
7461        if (!BP_NOMCP(bp)) {
7462                if (CHIP_IS_E1x(bp))
7463                        bnx2x__common_init_phy(bp);
7464        } else
7465                BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7466
7467        if (SHMEM2_HAS(bp, netproc_fw_ver))
7468                SHMEM2_WR(bp, netproc_fw_ver, REG_RD(bp, XSEM_REG_PRAM));
7469
7470        return 0;
7471}
7472
7473/**
7474 * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7475 *
7476 * @bp:         driver handle
7477 */
7478static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7479{
7480        int rc = bnx2x_init_hw_common(bp);
7481
7482        if (rc)
7483                return rc;
7484
7485        /* In E2 2-PORT mode, same ext phy is used for the two paths */
7486        if (!BP_NOMCP(bp))
7487                bnx2x__common_init_phy(bp);
7488
7489        return 0;
7490}
7491
7492static int bnx2x_init_hw_port(struct bnx2x *bp)
7493{
7494        int port = BP_PORT(bp);
7495        int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7496        u32 low, high;
7497        u32 val, reg;
7498
7499        DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
7500
7501        REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7502
7503        bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7504        bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7505        bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7506
7507        /* Timers bug workaround: disables the pf_master bit in pglue at
7508         * common phase, we need to enable it here before any dmae access are
7509         * attempted. Therefore we manually added the enable-master to the
7510         * port phase (it also happens in the function phase)
7511         */
7512        if (!CHIP_IS_E1x(bp))
7513                REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7514
7515        bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7516        bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7517        bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7518        bnx2x_init_block(bp, BLOCK_QM, init_phase);
7519
7520        bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7521        bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7522        bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7523        bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7524
7525        /* QM cid (connection) count */
7526        bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7527
7528        if (CNIC_SUPPORT(bp)) {
7529                bnx2x_init_block(bp, BLOCK_TM, init_phase);
7530                REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7531                REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7532        }
7533
7534        bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7535
7536        bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7537
7538        if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7539
7540                if (IS_MF(bp))
7541                        low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7542                else if (bp->dev->mtu > 4096) {
7543                        if (bp->flags & ONE_PORT_FLAG)
7544                                low = 160;
7545                        else {
7546                                val = bp->dev->mtu;
7547                                /* (24*1024 + val*4)/256 */
7548                                low = 96 + (val/64) +
7549                                                ((val % 64) ? 1 : 0);
7550                        }
7551                } else
7552                        low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7553                high = low + 56;        /* 14*1024/256 */
7554                REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7555                REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7556        }
7557
7558        if (CHIP_MODE_IS_4_PORT(bp))
7559                REG_WR(bp, (BP_PORT(bp) ?
7560                            BRB1_REG_MAC_GUARANTIED_1 :
7561                            BRB1_REG_MAC_GUARANTIED_0), 40);
7562
7563        bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7564        if (CHIP_IS_E3B0(bp)) {
7565                if (IS_MF_AFEX(bp)) {
7566                        /* configure headers for AFEX mode */
7567                        REG_WR(bp, BP_PORT(bp) ?
7568                               PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7569                               PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7570                        REG_WR(bp, BP_PORT(bp) ?
7571                               PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7572                               PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7573                        REG_WR(bp, BP_PORT(bp) ?
7574                               PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7575                               PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7576                } else {
7577                        /* Ovlan exists only if we are in multi-function +
7578                         * switch-dependent mode, in switch-independent there
7579                         * is no ovlan headers
7580                         */
7581                        REG_WR(bp, BP_PORT(bp) ?
7582                               PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7583                               PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7584                               (bp->path_has_ovlan ? 7 : 6));
7585                }
7586        }
7587
7588        bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7589        bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7590        bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7591        bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7592
7593        bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7594        bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7595        bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7596        bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7597
7598        bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7599        bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7600
7601        bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7602
7603        if (CHIP_IS_E1x(bp)) {
7604                /* configure PBF to work without PAUSE mtu 9000 */
7605                REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7606
7607                /* update threshold */
7608                REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7609                /* update init credit */
7610                REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7611
7612                /* probe changes */
7613                REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7614                udelay(50);
7615                REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7616        }
7617
7618        if (CNIC_SUPPORT(bp))
7619                bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7620
7621        bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7622        bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7623
7624        if (CHIP_IS_E1(bp)) {
7625                REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7626                REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7627        }
7628        bnx2x_init_block(bp, BLOCK_HC, init_phase);
7629
7630        bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7631
7632        bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7633        /* init aeu_mask_attn_func_0/1:
7634         *  - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7635         *  - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7636         *             bits 4-7 are used for "per vn group attention" */
7637        val = IS_MF(bp) ? 0xF7 : 0x7;
7638        /* Enable DCBX attention for all but E1 */
7639        val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7640        REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7641
7642        /* SCPAD_PARITY should NOT trigger close the gates */
7643        reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0;
7644        REG_WR(bp, reg,
7645               REG_RD(bp, reg) &
7646               ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7647
7648        reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0;
7649        REG_WR(bp, reg,
7650               REG_RD(bp, reg) &
7651               ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7652
7653        bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7654
7655        if (!CHIP_IS_E1x(bp)) {
7656                /* Bit-map indicating which L2 hdrs may appear after the
7657                 * basic Ethernet header
7658                 */
7659                if (IS_MF_AFEX(bp))
7660                        REG_WR(bp, BP_PORT(bp) ?
7661                               NIG_REG_P1_HDRS_AFTER_BASIC :
7662                               NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7663                else
7664                        REG_WR(bp, BP_PORT(bp) ?
7665                               NIG_REG_P1_HDRS_AFTER_BASIC :
7666                               NIG_REG_P0_HDRS_AFTER_BASIC,
7667                               IS_MF_SD(bp) ? 7 : 6);
7668
7669                if (CHIP_IS_E3(bp))
7670                        REG_WR(bp, BP_PORT(bp) ?
7671                                   NIG_REG_LLH1_MF_MODE :
7672                                   NIG_REG_LLH_MF_MODE, IS_MF(bp));
7673        }
7674        if (!CHIP_IS_E3(bp))
7675                REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7676
7677        if (!CHIP_IS_E1(bp)) {
7678                /* 0x2 disable mf_ov, 0x1 enable */
7679                REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7680                       (IS_MF_SD(bp) ? 0x1 : 0x2));
7681
7682                if (!CHIP_IS_E1x(bp)) {
7683                        val = 0;
7684                        switch (bp->mf_mode) {
7685                        case MULTI_FUNCTION_SD:
7686                                val = 1;
7687                                break;
7688                        case MULTI_FUNCTION_SI:
7689                        case MULTI_FUNCTION_AFEX:
7690                                val = 2;
7691                                break;
7692                        }
7693
7694                        REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7695                                                  NIG_REG_LLH0_CLS_TYPE), val);
7696                }
7697                {
7698                        REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7699                        REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7700                        REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7701                }
7702        }
7703
7704        /* If SPIO5 is set to generate interrupts, enable it for this port */
7705        val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7706        if (val & MISC_SPIO_SPIO5) {
7707                u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7708                                       MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7709                val = REG_RD(bp, reg_addr);
7710                val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7711                REG_WR(bp, reg_addr, val);
7712        }
7713
7714        return 0;
7715}
7716
7717static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7718{
7719        int reg;
7720        u32 wb_write[2];
7721
7722        if (CHIP_IS_E1(bp))
7723                reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7724        else
7725                reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7726
7727        wb_write[0] = ONCHIP_ADDR1(addr);
7728        wb_write[1] = ONCHIP_ADDR2(addr);
7729        REG_WR_DMAE(bp, reg, wb_write, 2);
7730}
7731
7732void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7733{
7734        u32 data, ctl, cnt = 100;
7735        u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7736        u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7737        u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7738        u32 sb_bit =  1 << (idu_sb_id%32);
7739        u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7740        u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7741
7742        /* Not supported in BC mode */
7743        if (CHIP_INT_MODE_IS_BC(bp))
7744                return;
7745
7746        data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7747                        << IGU_REGULAR_CLEANUP_TYPE_SHIFT)      |
7748                IGU_REGULAR_CLEANUP_SET                         |
7749                IGU_REGULAR_BCLEANUP;
7750
7751        ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT         |
7752              func_encode << IGU_CTRL_REG_FID_SHIFT             |
7753              IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7754
7755        DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7756                         data, igu_addr_data);
7757        REG_WR(bp, igu_addr_data, data);
7758        mmiowb();
7759        barrier();
7760        DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7761                          ctl, igu_addr_ctl);
7762        REG_WR(bp, igu_addr_ctl, ctl);
7763        mmiowb();
7764        barrier();
7765
7766        /* wait for clean up to finish */
7767        while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7768                msleep(20);
7769
7770        if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7771                DP(NETIF_MSG_HW,
7772                   "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7773                          idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7774        }
7775}
7776
7777static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7778{
7779        bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7780}
7781
7782static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7783{
7784        u32 i, base = FUNC_ILT_BASE(func);
7785        for (i = base; i < base + ILT_PER_FUNC; i++)
7786                bnx2x_ilt_wr(bp, i, 0);
7787}
7788
7789static void bnx2x_init_searcher(struct bnx2x *bp)
7790{
7791        int port = BP_PORT(bp);
7792        bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7793        /* T1 hash bits value determines the T1 number of entries */
7794        REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7795}
7796
7797static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7798{
7799        int rc;
7800        struct bnx2x_func_state_params func_params = {NULL};
7801        struct bnx2x_func_switch_update_params *switch_update_params =
7802                &func_params.params.switch_update;
7803
7804        /* Prepare parameters for function state transitions */
7805        __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7806        __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7807
7808        func_params.f_obj = &bp->func_obj;
7809        func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7810
7811        /* Function parameters */
7812        __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG,
7813                  &switch_update_params->changes);
7814        if (suspend)
7815                __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND,
7816                          &switch_update_params->changes);
7817
7818        rc = bnx2x_func_state_change(bp, &func_params);
7819
7820        return rc;
7821}
7822
7823static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7824{
7825        int rc, i, port = BP_PORT(bp);
7826        int vlan_en = 0, mac_en[NUM_MACS];
7827
7828        /* Close input from network */
7829        if (bp->mf_mode == SINGLE_FUNCTION) {
7830                bnx2x_set_rx_filter(&bp->link_params, 0);
7831        } else {
7832                vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7833                                   NIG_REG_LLH0_FUNC_EN);
7834                REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7835                          NIG_REG_LLH0_FUNC_EN, 0);
7836                for (i = 0; i < NUM_MACS; i++) {
7837                        mac_en[i] = REG_RD(bp, port ?
7838                                             (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7839                                              4 * i) :
7840                                             (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7841                                              4 * i));
7842                        REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7843                                              4 * i) :
7844                                  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7845                }
7846        }
7847
7848        /* Close BMC to host */
7849        REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7850               NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7851
7852        /* Suspend Tx switching to the PF. Completion of this ramrod
7853         * further guarantees that all the packets of that PF / child
7854         * VFs in BRB were processed by the Parser, so it is safe to
7855         * change the NIC_MODE register.
7856         */
7857        rc = bnx2x_func_switch_update(bp, 1);
7858        if (rc) {
7859                BNX2X_ERR("Can't suspend tx-switching!\n");
7860                return rc;
7861        }
7862
7863        /* Change NIC_MODE register */
7864        REG_WR(bp, PRS_REG_NIC_MODE, 0);
7865
7866        /* Open input from network */
7867        if (bp->mf_mode == SINGLE_FUNCTION) {
7868                bnx2x_set_rx_filter(&bp->link_params, 1);
7869        } else {
7870                REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7871                          NIG_REG_LLH0_FUNC_EN, vlan_en);
7872                for (i = 0; i < NUM_MACS; i++) {
7873                        REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7874                                              4 * i) :
7875                                  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7876                                  mac_en[i]);
7877                }
7878        }
7879
7880        /* Enable BMC to host */
7881        REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7882               NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7883
7884        /* Resume Tx switching to the PF */
7885        rc = bnx2x_func_switch_update(bp, 0);
7886        if (rc) {
7887                BNX2X_ERR("Can't resume tx-switching!\n");
7888                return rc;
7889        }
7890
7891        DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7892        return 0;
7893}
7894
7895int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7896{
7897        int rc;
7898
7899        bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7900
7901        if (CONFIGURE_NIC_MODE(bp)) {
7902                /* Configure searcher as part of function hw init */
7903                bnx2x_init_searcher(bp);
7904
7905                /* Reset NIC mode */
7906                rc = bnx2x_reset_nic_mode(bp);
7907                if (rc)
7908                        BNX2X_ERR("Can't change NIC mode!\n");
7909                return rc;
7910        }
7911
7912        return 0;
7913}
7914
7915/* previous driver DMAE transaction may have occurred when pre-boot stage ended
7916 * and boot began, or when kdump kernel was loaded. Either case would invalidate
7917 * the addresses of the transaction, resulting in was-error bit set in the pci
7918 * causing all hw-to-host pcie transactions to timeout. If this happened we want
7919 * to clear the interrupt which detected this from the pglueb and the was done
7920 * bit
7921 */
7922static void bnx2x_clean_pglue_errors(struct bnx2x *bp)
7923{
7924        if (!CHIP_IS_E1x(bp))
7925                REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
7926                       1 << BP_ABS_FUNC(bp));
7927}
7928
7929static int bnx2x_init_hw_func(struct bnx2x *bp)
7930{
7931        int port = BP_PORT(bp);
7932        int func = BP_FUNC(bp);
7933        int init_phase = PHASE_PF0 + func;
7934        struct bnx2x_ilt *ilt = BP_ILT(bp);
7935        u16 cdu_ilt_start;
7936        u32 addr, val;
7937        u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7938        int i, main_mem_width, rc;
7939
7940        DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7941
7942        /* FLR cleanup - hmmm */
7943        if (!CHIP_IS_E1x(bp)) {
7944                rc = bnx2x_pf_flr_clnup(bp);
7945                if (rc) {
7946                        bnx2x_fw_dump(bp);
7947                        return rc;
7948                }
7949        }
7950
7951        /* set MSI reconfigure capability */
7952        if (bp->common.int_block == INT_BLOCK_HC) {
7953                addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7954                val = REG_RD(bp, addr);
7955                val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7956                REG_WR(bp, addr, val);
7957        }
7958
7959        bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7960        bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7961
7962        ilt = BP_ILT(bp);
7963        cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7964
7965        if (IS_SRIOV(bp))
7966                cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7967        cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7968
7969        /* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7970         * those of the VFs, so start line should be reset
7971         */
7972        cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7973        for (i = 0; i < L2_ILT_LINES(bp); i++) {
7974                ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7975                ilt->lines[cdu_ilt_start + i].page_mapping =
7976                        bp->context[i].cxt_mapping;
7977                ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7978        }
7979
7980        bnx2x_ilt_init_op(bp, INITOP_SET);
7981
7982        if (!CONFIGURE_NIC_MODE(bp)) {
7983                bnx2x_init_searcher(bp);
7984                REG_WR(bp, PRS_REG_NIC_MODE, 0);
7985                DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7986        } else {
7987                /* Set NIC mode */
7988                REG_WR(bp, PRS_REG_NIC_MODE, 1);
7989                DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
7990        }
7991
7992        if (!CHIP_IS_E1x(bp)) {
7993                u32 pf_conf = IGU_PF_CONF_FUNC_EN;
7994
7995                /* Turn on a single ISR mode in IGU if driver is going to use
7996                 * INT#x or MSI
7997                 */
7998                if (!(bp->flags & USING_MSIX_FLAG))
7999                        pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
8000                /*
8001                 * Timers workaround bug: function init part.
8002                 * Need to wait 20msec after initializing ILT,
8003                 * needed to make sure there are no requests in
8004                 * one of the PXP internal queues with "old" ILT addresses
8005                 */
8006                msleep(20);
8007                /*
8008                 * Master enable - Due to WB DMAE writes performed before this
8009                 * register is re-initialized as part of the regular function
8010                 * init
8011                 */
8012                REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
8013                /* Enable the function in IGU */
8014                REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
8015        }
8016
8017        bp->dmae_ready = 1;
8018
8019        bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
8020
8021        bnx2x_clean_pglue_errors(bp);
8022
8023        bnx2x_init_block(bp, BLOCK_ATC, init_phase);
8024        bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
8025        bnx2x_init_block(bp, BLOCK_NIG, init_phase);
8026        bnx2x_init_block(bp, BLOCK_SRC, init_phase);
8027        bnx2x_init_block(bp, BLOCK_MISC, init_phase);
8028        bnx2x_init_block(bp, BLOCK_TCM, init_phase);
8029        bnx2x_init_block(bp, BLOCK_UCM, init_phase);
8030        bnx2x_init_block(bp, BLOCK_CCM, init_phase);
8031        bnx2x_init_block(bp, BLOCK_XCM, init_phase);
8032        bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
8033        bnx2x_init_block(bp, BLOCK_USEM, init_phase);
8034        bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
8035        bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
8036
8037        if (!CHIP_IS_E1x(bp))
8038                REG_WR(bp, QM_REG_PF_EN, 1);
8039
8040        if (!CHIP_IS_E1x(bp)) {
8041                REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8042                REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8043                REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8044                REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8045        }
8046        bnx2x_init_block(bp, BLOCK_QM, init_phase);
8047
8048        bnx2x_init_block(bp, BLOCK_TM, init_phase);
8049        bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
8050        REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
8051
8052        bnx2x_iov_init_dq(bp);
8053
8054        bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
8055        bnx2x_init_block(bp, BLOCK_PRS, init_phase);
8056        bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
8057        bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
8058        bnx2x_init_block(bp, BLOCK_USDM, init_phase);
8059        bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
8060        bnx2x_init_block(bp, BLOCK_UPB, init_phase);
8061        bnx2x_init_block(bp, BLOCK_XPB, init_phase);
8062        bnx2x_init_block(bp, BLOCK_PBF, init_phase);
8063        if (!CHIP_IS_E1x(bp))
8064                REG_WR(bp, PBF_REG_DISABLE_PF, 0);
8065
8066        bnx2x_init_block(bp, BLOCK_CDU, init_phase);
8067
8068        bnx2x_init_block(bp, BLOCK_CFC, init_phase);
8069
8070        if (!CHIP_IS_E1x(bp))
8071                REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
8072
8073        if (IS_MF(bp)) {
8074                if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) {
8075                        REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
8076                        REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8,
8077                               bp->mf_ov);
8078                }
8079        }
8080
8081        bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
8082
8083        /* HC init per function */
8084        if (bp->common.int_block == INT_BLOCK_HC) {
8085                if (CHIP_IS_E1H(bp)) {
8086                        REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8087
8088                        REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8089                        REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8090                }
8091                bnx2x_init_block(bp, BLOCK_HC, init_phase);
8092
8093        } else {
8094                int num_segs, sb_idx, prod_offset;
8095
8096                REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8097
8098                if (!CHIP_IS_E1x(bp)) {
8099                        REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8100                        REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8101                }
8102
8103                bnx2x_init_block(bp, BLOCK_IGU, init_phase);
8104
8105                if (!CHIP_IS_E1x(bp)) {
8106                        int dsb_idx = 0;
8107                        /**
8108                         * Producer memory:
8109                         * E2 mode: address 0-135 match to the mapping memory;
8110                         * 136 - PF0 default prod; 137 - PF1 default prod;
8111                         * 138 - PF2 default prod; 139 - PF3 default prod;
8112                         * 140 - PF0 attn prod;    141 - PF1 attn prod;
8113                         * 142 - PF2 attn prod;    143 - PF3 attn prod;
8114                         * 144-147 reserved.
8115                         *
8116                         * E1.5 mode - In backward compatible mode;
8117                         * for non default SB; each even line in the memory
8118                         * holds the U producer and each odd line hold
8119                         * the C producer. The first 128 producers are for
8120                         * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
8121                         * producers are for the DSB for each PF.
8122                         * Each PF has five segments: (the order inside each
8123                         * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
8124                         * 132-135 C prods; 136-139 X prods; 140-143 T prods;
8125                         * 144-147 attn prods;
8126                         */
8127                        /* non-default-status-blocks */
8128                        num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8129                                IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
8130                        for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
8131                                prod_offset = (bp->igu_base_sb + sb_idx) *
8132                                        num_segs;
8133
8134                                for (i = 0; i < num_segs; i++) {
8135                                        addr = IGU_REG_PROD_CONS_MEMORY +
8136                                                        (prod_offset + i) * 4;
8137                                        REG_WR(bp, addr, 0);
8138                                }
8139                                /* send consumer update with value 0 */
8140                                bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
8141                                             USTORM_ID, 0, IGU_INT_NOP, 1);
8142                                bnx2x_igu_clear_sb(bp,
8143                                                   bp->igu_base_sb + sb_idx);
8144                        }
8145
8146                        /* default-status-blocks */
8147                        num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8148                                IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
8149
8150                        if (CHIP_MODE_IS_4_PORT(bp))
8151                                dsb_idx = BP_FUNC(bp);
8152                        else
8153                                dsb_idx = BP_VN(bp);
8154
8155                        prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
8156                                       IGU_BC_BASE_DSB_PROD + dsb_idx :
8157                                       IGU_NORM_BASE_DSB_PROD + dsb_idx);
8158
8159                        /*
8160                         * igu prods come in chunks of E1HVN_MAX (4) -
8161                         * does not matters what is the current chip mode
8162                         */
8163                        for (i = 0; i < (num_segs * E1HVN_MAX);
8164                             i += E1HVN_MAX) {
8165                                addr = IGU_REG_PROD_CONS_MEMORY +
8166                                                        (prod_offset + i)*4;
8167                                REG_WR(bp, addr, 0);
8168                        }
8169                        /* send consumer update with 0 */
8170                        if (CHIP_INT_MODE_IS_BC(bp)) {
8171                                bnx2x_ack_sb(bp, bp->igu_dsb_id,
8172                                             USTORM_ID, 0, IGU_INT_NOP, 1);
8173                                bnx2x_ack_sb(bp, bp->igu_dsb_id,
8174                                             CSTORM_ID, 0, IGU_INT_NOP, 1);
8175                                bnx2x_ack_sb(bp, bp->igu_dsb_id,
8176                                             XSTORM_ID, 0, IGU_INT_NOP, 1);
8177                                bnx2x_ack_sb(bp, bp->igu_dsb_id,
8178                                             TSTORM_ID, 0, IGU_INT_NOP, 1);
8179                                bnx2x_ack_sb(bp, bp->igu_dsb_id,
8180                                             ATTENTION_ID, 0, IGU_INT_NOP, 1);
8181                        } else {
8182                                bnx2x_ack_sb(bp, bp->igu_dsb_id,
8183                                             USTORM_ID, 0, IGU_INT_NOP, 1);
8184                                bnx2x_ack_sb(bp, bp->igu_dsb_id,
8185                                             ATTENTION_ID, 0, IGU_INT_NOP, 1);
8186                        }
8187                        bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
8188
8189                        /* !!! These should become driver const once
8190                           rf-tool supports split-68 const */
8191                        REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
8192                        REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
8193                        REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
8194                        REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
8195                        REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
8196                        REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
8197                }
8198        }
8199
8200        /* Reset PCIE errors for debug */
8201        REG_WR(bp, 0x2114, 0xffffffff);
8202        REG_WR(bp, 0x2120, 0xffffffff);
8203
8204        if (CHIP_IS_E1x(bp)) {
8205                main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
8206                main_mem_base = HC_REG_MAIN_MEMORY +
8207                                BP_PORT(bp) * (main_mem_size * 4);
8208                main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
8209                main_mem_width = 8;
8210
8211                val = REG_RD(bp, main_mem_prty_clr);
8212                if (val)
8213                        DP(NETIF_MSG_HW,
8214                           "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
8215                           val);
8216
8217                /* Clear "false" parity errors in MSI-X table */
8218                for (i = main_mem_base;
8219                     i < main_mem_base + main_mem_size * 4;
8220                     i += main_mem_width) {
8221                        bnx2x_read_dmae(bp, i, main_mem_width / 4);
8222                        bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
8223                                         i, main_mem_width / 4);
8224                }
8225                /* Clear HC parity attention */
8226                REG_RD(bp, main_mem_prty_clr);
8227        }
8228
8229#ifdef BNX2X_STOP_ON_ERROR
8230        /* Enable STORMs SP logging */
8231        REG_WR8(bp, BAR_USTRORM_INTMEM +
8232               USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8233        REG_WR8(bp, BAR_TSTRORM_INTMEM +
8234               TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8235        REG_WR8(bp, BAR_CSTRORM_INTMEM +
8236               CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8237        REG_WR8(bp, BAR_XSTRORM_INTMEM +
8238               XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8239#endif
8240
8241        bnx2x_phy_probe(&bp->link_params);
8242
8243        return 0;
8244}
8245
8246void bnx2x_free_mem_cnic(struct bnx2x *bp)
8247{
8248        bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
8249
8250        if (!CHIP_IS_E1x(bp))
8251                BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
8252                               sizeof(struct host_hc_status_block_e2));
8253        else
8254                BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
8255                               sizeof(struct host_hc_status_block_e1x));
8256
8257        BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8258}
8259
8260void bnx2x_free_mem(struct bnx2x *bp)
8261{
8262        int i;
8263
8264        BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
8265                       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
8266
8267        if (IS_VF(bp))
8268                return;
8269
8270        BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
8271                       sizeof(struct host_sp_status_block));
8272
8273        BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
8274                       sizeof(struct bnx2x_slowpath));
8275
8276        for (i = 0; i < L2_ILT_LINES(bp); i++)
8277                BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
8278                               bp->context[i].size);
8279        bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
8280
8281        BNX2X_FREE(bp->ilt->lines);
8282
8283        BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
8284
8285        BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
8286                       BCM_PAGE_SIZE * NUM_EQ_PAGES);
8287
8288        BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8289
8290        bnx2x_iov_free_mem(bp);
8291}
8292
8293int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
8294{
8295        if (!CHIP_IS_E1x(bp)) {
8296                /* size = the status block + ramrod buffers */
8297                bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8298                                                    sizeof(struct host_hc_status_block_e2));
8299                if (!bp->cnic_sb.e2_sb)
8300                        goto alloc_mem_err;
8301        } else {
8302                bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8303                                                     sizeof(struct host_hc_status_block_e1x));
8304                if (!bp->cnic_sb.e1x_sb)
8305                        goto alloc_mem_err;
8306        }
8307
8308        if (CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8309                /* allocate searcher T2 table, as it wasn't allocated before */
8310                bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8311                if (!bp->t2)
8312                        goto alloc_mem_err;
8313        }
8314
8315        /* write address to which L5 should insert its values */
8316        bp->cnic_eth_dev.addr_drv_info_to_mcp =
8317                &bp->slowpath->drv_info_to_mcp;
8318
8319        if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
8320                goto alloc_mem_err;
8321
8322        return 0;
8323
8324alloc_mem_err:
8325        bnx2x_free_mem_cnic(bp);
8326        BNX2X_ERR("Can't allocate memory\n");
8327        return -ENOMEM;
8328}
8329
8330int bnx2x_alloc_mem(struct bnx2x *bp)
8331{
8332        int i, allocated, context_size;
8333
8334        if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8335                /* allocate searcher T2 table */
8336                bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8337                if (!bp->t2)
8338                        goto alloc_mem_err;
8339        }
8340
8341        bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping,
8342                                             sizeof(struct host_sp_status_block));
8343        if (!bp->def_status_blk)
8344                goto alloc_mem_err;
8345
8346        bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping,
8347                                       sizeof(struct bnx2x_slowpath));
8348        if (!bp->slowpath)
8349                goto alloc_mem_err;
8350
8351        /* Allocate memory for CDU context:
8352         * This memory is allocated separately and not in the generic ILT
8353         * functions because CDU differs in few aspects:
8354         * 1. There are multiple entities allocating memory for context -
8355         * 'regular' driver, CNIC and SRIOV driver. Each separately controls
8356         * its own ILT lines.
8357         * 2. Since CDU page-size is not a single 4KB page (which is the case
8358         * for the other ILT clients), to be efficient we want to support
8359         * allocation of sub-page-size in the last entry.
8360         * 3. Context pointers are used by the driver to pass to FW / update
8361         * the context (for the other ILT clients the pointers are used just to
8362         * free the memory during unload).
8363         */
8364        context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
8365
8366        for (i = 0, allocated = 0; allocated < context_size; i++) {
8367                bp->context[i].size = min(CDU_ILT_PAGE_SZ,
8368                                          (context_size - allocated));
8369                bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping,
8370                                                      bp->context[i].size);
8371                if (!bp->context[i].vcxt)
8372                        goto alloc_mem_err;
8373                allocated += bp->context[i].size;
8374        }
8375        bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line),
8376                                 GFP_KERNEL);
8377        if (!bp->ilt->lines)
8378                goto alloc_mem_err;
8379
8380        if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
8381                goto alloc_mem_err;
8382
8383        if (bnx2x_iov_alloc_mem(bp))
8384                goto alloc_mem_err;
8385
8386        /* Slow path ring */
8387        bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE);
8388        if (!bp->spq)
8389                goto alloc_mem_err;
8390
8391        /* EQ */
8392        bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping,
8393                                      BCM_PAGE_SIZE * NUM_EQ_PAGES);
8394        if (!bp->eq_ring)
8395                goto alloc_mem_err;
8396
8397        return 0;
8398
8399alloc_mem_err:
8400        bnx2x_free_mem(bp);
8401        BNX2X_ERR("Can't allocate memory\n");
8402        return -ENOMEM;
8403}
8404
8405/*
8406 * Init service functions
8407 */
8408
8409int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
8410                      struct bnx2x_vlan_mac_obj *obj, bool set,
8411                      int mac_type, unsigned long *ramrod_flags)
8412{
8413        int rc;
8414        struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8415
8416        memset(&ramrod_param, 0, sizeof(ramrod_param));
8417
8418        /* Fill general parameters */
8419        ramrod_param.vlan_mac_obj = obj;
8420        ramrod_param.ramrod_flags = *ramrod_flags;
8421
8422        /* Fill a user request section if needed */
8423        if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8424                memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
8425
8426                __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8427
8428                /* Set the command: ADD or DEL */
8429                if (set)
8430                        ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8431                else
8432                        ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8433        }
8434
8435        rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8436
8437        if (rc == -EEXIST) {
8438                DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8439                /* do not treat adding same MAC as error */
8440                rc = 0;
8441        } else if (rc < 0)
8442                BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8443
8444        return rc;
8445}
8446
8447int bnx2x_set_vlan_one(struct bnx2x *bp, u16 vlan,
8448                       struct bnx2x_vlan_mac_obj *obj, bool set,
8449                       unsigned long *ramrod_flags)
8450{
8451        int rc;
8452        struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8453
8454        memset(&ramrod_param, 0, sizeof(ramrod_param));
8455
8456        /* Fill general parameters */
8457        ramrod_param.vlan_mac_obj = obj;
8458        ramrod_param.ramrod_flags = *ramrod_flags;
8459
8460        /* Fill a user request section if needed */
8461        if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8462                ramrod_param.user_req.u.vlan.vlan = vlan;
8463                /* Set the command: ADD or DEL */
8464                if (set)
8465                        ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8466                else
8467                        ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8468        }
8469
8470        rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8471
8472        if (rc == -EEXIST) {
8473                /* Do not treat adding same vlan as error. */
8474                DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8475                rc = 0;
8476        } else if (rc < 0) {
8477                BNX2X_ERR("%s VLAN failed\n", (set ? "Set" : "Del"));
8478        }
8479
8480        return rc;
8481}
8482
8483int bnx2x_del_all_macs(struct bnx2x *bp,
8484                       struct bnx2x_vlan_mac_obj *mac_obj,
8485                       int mac_type, bool wait_for_comp)
8486{
8487        int rc;
8488        unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8489
8490        /* Wait for completion of requested */
8491        if (wait_for_comp)
8492                __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8493
8494        /* Set the mac type of addresses we want to clear */
8495        __set_bit(mac_type, &vlan_mac_flags);
8496
8497        rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8498        if (rc < 0)
8499                BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8500
8501        return rc;
8502}
8503
8504int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8505{
8506        if (IS_PF(bp)) {
8507                unsigned long ramrod_flags = 0;
8508
8509                DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8510                __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8511                return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8512                                         &bp->sp_objs->mac_obj, set,
8513                                         BNX2X_ETH_MAC, &ramrod_flags);
8514        } else { /* vf */
8515                return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8516                                             bp->fp->index, set);
8517        }
8518}
8519
8520int bnx2x_setup_leading(struct bnx2x *bp)
8521{
8522        if (IS_PF(bp))
8523                return bnx2x_setup_queue(bp, &bp->fp[0], true);
8524        else /* VF */
8525                return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8526}
8527
8528/**
8529 * bnx2x_set_int_mode - configure interrupt mode
8530 *
8531 * @bp:         driver handle
8532 *
8533 * In case of MSI-X it will also try to enable MSI-X.
8534 */
8535int bnx2x_set_int_mode(struct bnx2x *bp)
8536{
8537        int rc = 0;
8538
8539        if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8540                BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8541                return -EINVAL;
8542        }
8543
8544        switch (int_mode) {
8545        case BNX2X_INT_MODE_MSIX:
8546                /* attempt to enable msix */
8547                rc = bnx2x_enable_msix(bp);
8548
8549                /* msix attained */
8550                if (!rc)
8551                        return 0;
8552
8553                /* vfs use only msix */
8554                if (rc && IS_VF(bp))
8555                        return rc;
8556
8557                /* failed to enable multiple MSI-X */
8558                BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8559                               bp->num_queues,
8560                               1 + bp->num_cnic_queues);
8561
8562                /* falling through... */
8563        case BNX2X_INT_MODE_MSI:
8564                bnx2x_enable_msi(bp);
8565
8566                /* falling through... */
8567        case BNX2X_INT_MODE_INTX:
8568                bp->num_ethernet_queues = 1;
8569                bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8570                BNX2X_DEV_INFO("set number of queues to 1\n");
8571                break;
8572        default:
8573                BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8574                return -EINVAL;
8575        }
8576        return 0;
8577}
8578
8579/* must be called prior to any HW initializations */
8580static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8581{
8582        if (IS_SRIOV(bp))
8583                return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8584        return L2_ILT_LINES(bp);
8585}
8586
8587void bnx2x_ilt_set_info(struct bnx2x *bp)
8588{
8589        struct ilt_client_info *ilt_client;
8590        struct bnx2x_ilt *ilt = BP_ILT(bp);
8591        u16 line = 0;
8592
8593        ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8594        DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8595
8596        /* CDU */
8597        ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8598        ilt_client->client_num = ILT_CLIENT_CDU;
8599        ilt_client->page_size = CDU_ILT_PAGE_SZ;
8600        ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8601        ilt_client->start = line;
8602        line += bnx2x_cid_ilt_lines(bp);
8603
8604        if (CNIC_SUPPORT(bp))
8605                line += CNIC_ILT_LINES;
8606        ilt_client->end = line - 1;
8607
8608        DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8609           ilt_client->start,
8610           ilt_client->end,
8611           ilt_client->page_size,
8612           ilt_client->flags,
8613           ilog2(ilt_client->page_size >> 12));
8614
8615        /* QM */
8616        if (QM_INIT(bp->qm_cid_count)) {
8617                ilt_client = &ilt->clients[ILT_CLIENT_QM];
8618                ilt_client->client_num = ILT_CLIENT_QM;
8619                ilt_client->page_size = QM_ILT_PAGE_SZ;
8620                ilt_client->flags = 0;
8621                ilt_client->start = line;
8622
8623                /* 4 bytes for each cid */
8624                line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8625                                                         QM_ILT_PAGE_SZ);
8626
8627                ilt_client->end = line - 1;
8628
8629                DP(NETIF_MSG_IFUP,
8630                   "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8631                   ilt_client->start,
8632                   ilt_client->end,
8633                   ilt_client->page_size,
8634                   ilt_client->flags,
8635                   ilog2(ilt_client->page_size >> 12));
8636        }
8637
8638        if (CNIC_SUPPORT(bp)) {
8639                /* SRC */
8640                ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8641                ilt_client->client_num = ILT_CLIENT_SRC;
8642                ilt_client->page_size = SRC_ILT_PAGE_SZ;
8643                ilt_client->flags = 0;
8644                ilt_client->start = line;
8645                line += SRC_ILT_LINES;
8646                ilt_client->end = line - 1;
8647
8648                DP(NETIF_MSG_IFUP,
8649                   "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8650                   ilt_client->start,
8651                   ilt_client->end,
8652                   ilt_client->page_size,
8653                   ilt_client->flags,
8654                   ilog2(ilt_client->page_size >> 12));
8655
8656                /* TM */
8657                ilt_client = &ilt->clients[ILT_CLIENT_TM];
8658                ilt_client->client_num = ILT_CLIENT_TM;
8659                ilt_client->page_size = TM_ILT_PAGE_SZ;
8660                ilt_client->flags = 0;
8661                ilt_client->start = line;
8662                line += TM_ILT_LINES;
8663                ilt_client->end = line - 1;
8664
8665                DP(NETIF_MSG_IFUP,
8666                   "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8667                   ilt_client->start,
8668                   ilt_client->end,
8669                   ilt_client->page_size,
8670                   ilt_client->flags,
8671                   ilog2(ilt_client->page_size >> 12));
8672        }
8673
8674        BUG_ON(line > ILT_MAX_LINES);
8675}
8676
8677/**
8678 * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8679 *
8680 * @bp:                 driver handle
8681 * @fp:                 pointer to fastpath
8682 * @init_params:        pointer to parameters structure
8683 *
8684 * parameters configured:
8685 *      - HC configuration
8686 *      - Queue's CDU context
8687 */
8688static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8689        struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8690{
8691        u8 cos;
8692        int cxt_index, cxt_offset;
8693
8694        /* FCoE Queue uses Default SB, thus has no HC capabilities */
8695        if (!IS_FCOE_FP(fp)) {
8696                __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8697                __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8698
8699                /* If HC is supported, enable host coalescing in the transition
8700                 * to INIT state.
8701                 */
8702                __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8703                __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8704
8705                /* HC rate */
8706                init_params->rx.hc_rate = bp->rx_ticks ?
8707                        (1000000 / bp->rx_ticks) : 0;
8708                init_params->tx.hc_rate = bp->tx_ticks ?
8709                        (1000000 / bp->tx_ticks) : 0;
8710
8711                /* FW SB ID */
8712                init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8713                        fp->fw_sb_id;
8714
8715                /*
8716                 * CQ index among the SB indices: FCoE clients uses the default
8717                 * SB, therefore it's different.
8718                 */
8719                init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8720                init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8721        }
8722
8723        /* set maximum number of COSs supported by this queue */
8724        init_params->max_cos = fp->max_cos;
8725
8726        DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8727            fp->index, init_params->max_cos);
8728
8729        /* set the context pointers queue object */
8730        for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8731                cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8732                cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8733                                ILT_PAGE_CIDS);
8734                init_params->cxts[cos] =
8735                        &bp->context[cxt_index].vcxt[cxt_offset].eth;
8736        }
8737}
8738
8739static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8740                        struct bnx2x_queue_state_params *q_params,
8741                        struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8742                        int tx_index, bool leading)
8743{
8744        memset(tx_only_params, 0, sizeof(*tx_only_params));
8745
8746        /* Set the command */
8747        q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8748
8749        /* Set tx-only QUEUE flags: don't zero statistics */
8750        tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8751
8752        /* choose the index of the cid to send the slow path on */
8753        tx_only_params->cid_index = tx_index;
8754
8755        /* Set general TX_ONLY_SETUP parameters */
8756        bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8757
8758        /* Set Tx TX_ONLY_SETUP parameters */
8759        bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8760
8761        DP(NETIF_MSG_IFUP,
8762           "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8763           tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8764           q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8765           tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8766
8767        /* send the ramrod */
8768        return bnx2x_queue_state_change(bp, q_params);
8769}
8770
8771/**
8772 * bnx2x_setup_queue - setup queue
8773 *
8774 * @bp:         driver handle
8775 * @fp:         pointer to fastpath
8776 * @leading:    is leading
8777 *
8778 * This function performs 2 steps in a Queue state machine
8779 *      actually: 1) RESET->INIT 2) INIT->SETUP
8780 */
8781
8782int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8783                       bool leading)
8784{
8785        struct bnx2x_queue_state_params q_params = {NULL};
8786        struct bnx2x_queue_setup_params *setup_params =
8787                                                &q_params.params.setup;
8788        struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8789                                                &q_params.params.tx_only;
8790        int rc;
8791        u8 tx_index;
8792
8793        DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8794
8795        /* reset IGU state skip FCoE L2 queue */
8796        if (!IS_FCOE_FP(fp))
8797                bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8798                             IGU_INT_ENABLE, 0);
8799
8800        q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8801        /* We want to wait for completion in this context */
8802        __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8803
8804        /* Prepare the INIT parameters */
8805        bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8806
8807        /* Set the command */
8808        q_params.cmd = BNX2X_Q_CMD_INIT;
8809
8810        /* Change the state to INIT */
8811        rc = bnx2x_queue_state_change(bp, &q_params);
8812        if (rc) {
8813                BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8814                return rc;
8815        }
8816
8817        DP(NETIF_MSG_IFUP, "init complete\n");
8818
8819        /* Now move the Queue to the SETUP state... */
8820        memset(setup_params, 0, sizeof(*setup_params));
8821
8822        /* Set QUEUE flags */
8823        setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8824
8825        /* Set general SETUP parameters */
8826        bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8827                                FIRST_TX_COS_INDEX);
8828
8829        bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8830                            &setup_params->rxq_params);
8831
8832        bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8833                           FIRST_TX_COS_INDEX);
8834
8835        /* Set the command */
8836        q_params.cmd = BNX2X_Q_CMD_SETUP;
8837
8838        if (IS_FCOE_FP(fp))
8839                bp->fcoe_init = true;
8840
8841        /* Change the state to SETUP */
8842        rc = bnx2x_queue_state_change(bp, &q_params);
8843        if (rc) {
8844                BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8845                return rc;
8846        }
8847
8848        /* loop through the relevant tx-only indices */
8849        for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8850              tx_index < fp->max_cos;
8851              tx_index++) {
8852
8853                /* prepare and send tx-only ramrod*/
8854                rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8855                                          tx_only_params, tx_index, leading);
8856                if (rc) {
8857                        BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8858                                  fp->index, tx_index);
8859                        return rc;
8860                }
8861        }
8862
8863        return rc;
8864}
8865
8866static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8867{
8868        struct bnx2x_fastpath *fp = &bp->fp[index];
8869        struct bnx2x_fp_txdata *txdata;
8870        struct bnx2x_queue_state_params q_params = {NULL};
8871        int rc, tx_index;
8872
8873        DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8874
8875        q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8876        /* We want to wait for completion in this context */
8877        __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8878
8879        /* close tx-only connections */
8880        for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8881             tx_index < fp->max_cos;
8882             tx_index++){
8883
8884                /* ascertain this is a normal queue*/
8885                txdata = fp->txdata_ptr[tx_index];
8886
8887                DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8888                                                        txdata->txq_index);
8889
8890                /* send halt terminate on tx-only connection */
8891                q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8892                memset(&q_params.params.terminate, 0,
8893                       sizeof(q_params.params.terminate));
8894                q_params.params.terminate.cid_index = tx_index;
8895
8896                rc = bnx2x_queue_state_change(bp, &q_params);
8897                if (rc)
8898                        return rc;
8899
8900                /* send halt terminate on tx-only connection */
8901                q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8902                memset(&q_params.params.cfc_del, 0,
8903                       sizeof(q_params.params.cfc_del));
8904                q_params.params.cfc_del.cid_index = tx_index;
8905                rc = bnx2x_queue_state_change(bp, &q_params);
8906                if (rc)
8907                        return rc;
8908        }
8909        /* Stop the primary connection: */
8910        /* ...halt the connection */
8911        q_params.cmd = BNX2X_Q_CMD_HALT;
8912        rc = bnx2x_queue_state_change(bp, &q_params);
8913        if (rc)
8914                return rc;
8915
8916        /* ...terminate the connection */
8917        q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8918        memset(&q_params.params.terminate, 0,
8919               sizeof(q_params.params.terminate));
8920        q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8921        rc = bnx2x_queue_state_change(bp, &q_params);
8922        if (rc)
8923                return rc;
8924        /* ...delete cfc entry */
8925        q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8926        memset(&q_params.params.cfc_del, 0,
8927               sizeof(q_params.params.cfc_del));
8928        q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8929        return bnx2x_queue_state_change(bp, &q_params);
8930}
8931
8932static void bnx2x_reset_func(struct bnx2x *bp)
8933{
8934        int port = BP_PORT(bp);
8935        int func = BP_FUNC(bp);
8936        int i;
8937
8938        /* Disable the function in the FW */
8939        REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8940        REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8941        REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8942        REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8943
8944        /* FP SBs */
8945        for_each_eth_queue(bp, i) {
8946                struct bnx2x_fastpath *fp = &bp->fp[i];
8947                REG_WR8(bp, BAR_CSTRORM_INTMEM +
8948                           CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8949                           SB_DISABLED);
8950        }
8951
8952        if (CNIC_LOADED(bp))
8953                /* CNIC SB */
8954                REG_WR8(bp, BAR_CSTRORM_INTMEM +
8955                        CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8956                        (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8957
8958        /* SP SB */
8959        REG_WR8(bp, BAR_CSTRORM_INTMEM +
8960                CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8961                SB_DISABLED);
8962
8963        for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8964                REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8965                       0);
8966
8967        /* Configure IGU */
8968        if (bp->common.int_block == INT_BLOCK_HC) {
8969                REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8970                REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8971        } else {
8972                REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8973                REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8974        }
8975
8976        if (CNIC_LOADED(bp)) {
8977                /* Disable Timer scan */
8978                REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
8979                /*
8980                 * Wait for at least 10ms and up to 2 second for the timers
8981                 * scan to complete
8982                 */
8983                for (i = 0; i < 200; i++) {
8984                        usleep_range(10000, 20000);
8985                        if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
8986                                break;
8987                }
8988        }
8989        /* Clear ILT */
8990        bnx2x_clear_func_ilt(bp, func);
8991
8992        /* Timers workaround bug for E2: if this is vnic-3,
8993         * we need to set the entire ilt range for this timers.
8994         */
8995        if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
8996                struct ilt_client_info ilt_cli;
8997                /* use dummy TM client */
8998                memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
8999                ilt_cli.start = 0;
9000                ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
9001                ilt_cli.client_num = ILT_CLIENT_TM;
9002
9003                bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
9004        }
9005
9006        /* this assumes that reset_port() called before reset_func()*/
9007        if (!CHIP_IS_E1x(bp))
9008                bnx2x_pf_disable(bp);
9009
9010        bp->dmae_ready = 0;
9011}
9012
9013static void bnx2x_reset_port(struct bnx2x *bp)
9014{
9015        int port = BP_PORT(bp);
9016        u32 val;
9017
9018        /* Reset physical Link */
9019        bnx2x__link_reset(bp);
9020
9021        REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
9022
9023        /* Do not rcv packets to BRB */
9024        REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
9025        /* Do not direct rcv packets that are not for MCP to the BRB */
9026        REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
9027                           NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
9028
9029        /* Configure AEU */
9030        REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
9031
9032        msleep(100);
9033        /* Check for BRB port occupancy */
9034        val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
9035        if (val)
9036                DP(NETIF_MSG_IFDOWN,
9037                   "BRB1 is not empty  %d blocks are occupied\n", val);
9038
9039        /* TODO: Close Doorbell port? */
9040}
9041
9042static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
9043{
9044        struct bnx2x_func_state_params func_params = {NULL};
9045
9046        /* Prepare parameters for function state transitions */
9047        __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9048
9049        func_params.f_obj = &bp->func_obj;
9050        func_params.cmd = BNX2X_F_CMD_HW_RESET;
9051
9052        func_params.params.hw_init.load_phase = load_code;
9053
9054        return bnx2x_func_state_change(bp, &func_params);
9055}
9056
9057static int bnx2x_func_stop(struct bnx2x *bp)
9058{
9059        struct bnx2x_func_state_params func_params = {NULL};
9060        int rc;
9061
9062        /* Prepare parameters for function state transitions */
9063        __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9064        func_params.f_obj = &bp->func_obj;
9065        func_params.cmd = BNX2X_F_CMD_STOP;
9066
9067        /*
9068         * Try to stop the function the 'good way'. If fails (in case
9069         * of a parity error during bnx2x_chip_cleanup()) and we are
9070         * not in a debug mode, perform a state transaction in order to
9071         * enable further HW_RESET transaction.
9072         */
9073        rc = bnx2x_func_state_change(bp, &func_params);
9074        if (rc) {
9075#ifdef BNX2X_STOP_ON_ERROR
9076                return rc;
9077#else
9078                BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
9079                __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
9080                return bnx2x_func_state_change(bp, &func_params);
9081#endif
9082        }
9083
9084        return 0;
9085}
9086
9087/**
9088 * bnx2x_send_unload_req - request unload mode from the MCP.
9089 *
9090 * @bp:                 driver handle
9091 * @unload_mode:        requested function's unload mode
9092 *
9093 * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
9094 */
9095u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
9096{
9097        u32 reset_code = 0;
9098        int port = BP_PORT(bp);
9099
9100        /* Select the UNLOAD request mode */
9101        if (unload_mode == UNLOAD_NORMAL)
9102                reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9103
9104        else if (bp->flags & NO_WOL_FLAG)
9105                reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
9106
9107        else if (bp->wol) {
9108                u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
9109                u8 *mac_addr = bp->dev->dev_addr;
9110                struct pci_dev *pdev = bp->pdev;
9111                u32 val;
9112                u16 pmc;
9113
9114                /* The mac address is written to entries 1-4 to
9115                 * preserve entry 0 which is used by the PMF
9116                 */
9117                u8 entry = (BP_VN(bp) + 1)*8;
9118
9119                val = (mac_addr[0] << 8) | mac_addr[1];
9120                EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
9121
9122                val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
9123                      (mac_addr[4] << 8) | mac_addr[5];
9124                EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
9125
9126                /* Enable the PME and clear the status */
9127                pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
9128                pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
9129                pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
9130
9131                reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
9132
9133        } else
9134                reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9135
9136        /* Send the request to the MCP */
9137        if (!BP_NOMCP(bp))
9138                reset_code = bnx2x_fw_command(bp, reset_code, 0);
9139        else {
9140                int path = BP_PATH(bp);
9141
9142                DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
9143                   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9144                   bnx2x_load_count[path][2]);
9145                bnx2x_load_count[path][0]--;
9146                bnx2x_load_count[path][1 + port]--;
9147                DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
9148                   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9149                   bnx2x_load_count[path][2]);
9150                if (bnx2x_load_count[path][0] == 0)
9151                        reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
9152                else if (bnx2x_load_count[path][1 + port] == 0)
9153                        reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
9154                else
9155                        reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
9156        }
9157
9158        return reset_code;
9159}
9160
9161/**
9162 * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
9163 *
9164 * @bp:         driver handle
9165 * @keep_link:          true iff link should be kept up
9166 */
9167void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
9168{
9169        u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
9170
9171        /* Report UNLOAD_DONE to MCP */
9172        if (!BP_NOMCP(bp))
9173                bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
9174}
9175
9176static int bnx2x_func_wait_started(struct bnx2x *bp)
9177{
9178        int tout = 50;
9179        int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
9180
9181        if (!bp->port.pmf)
9182                return 0;
9183
9184        /*
9185         * (assumption: No Attention from MCP at this stage)
9186         * PMF probably in the middle of TX disable/enable transaction
9187         * 1. Sync IRS for default SB
9188         * 2. Sync SP queue - this guarantees us that attention handling started
9189         * 3. Wait, that TX disable/enable transaction completes
9190         *
9191         * 1+2 guarantee that if DCBx attention was scheduled it already changed
9192         * pending bit of transaction from STARTED-->TX_STOPPED, if we already
9193         * received completion for the transaction the state is TX_STOPPED.
9194         * State will return to STARTED after completion of TX_STOPPED-->STARTED
9195         * transaction.
9196         */
9197
9198        /* make sure default SB ISR is done */
9199        if (msix)
9200                synchronize_irq(bp->msix_table[0].vector);
9201        else
9202                synchronize_irq(bp->pdev->irq);
9203
9204        flush_workqueue(bnx2x_wq);
9205        flush_workqueue(bnx2x_iov_wq);
9206
9207        while (bnx2x_func_get_state(bp, &bp->func_obj) !=
9208                                BNX2X_F_STATE_STARTED && tout--)
9209                msleep(20);
9210
9211        if (bnx2x_func_get_state(bp, &bp->func_obj) !=
9212                                                BNX2X_F_STATE_STARTED) {
9213#ifdef BNX2X_STOP_ON_ERROR
9214                BNX2X_ERR("Wrong function state\n");
9215                return -EBUSY;
9216#else
9217                /*
9218                 * Failed to complete the transaction in a "good way"
9219                 * Force both transactions with CLR bit
9220                 */
9221                struct bnx2x_func_state_params func_params = {NULL};
9222
9223                DP(NETIF_MSG_IFDOWN,
9224                   "Hmmm... Unexpected function state! Forcing STARTED-->TX_STOPPED-->STARTED\n");
9225
9226                func_params.f_obj = &bp->func_obj;
9227                __set_bit(RAMROD_DRV_CLR_ONLY,
9228                                        &func_params.ramrod_flags);
9229
9230                /* STARTED-->TX_ST0PPED */
9231                func_params.cmd = BNX2X_F_CMD_TX_STOP;
9232                bnx2x_func_state_change(bp, &func_params);
9233
9234                /* TX_ST0PPED-->STARTED */
9235                func_params.cmd = BNX2X_F_CMD_TX_START;
9236                return bnx2x_func_state_change(bp, &func_params);
9237#endif
9238        }
9239
9240        return 0;
9241}
9242
9243static void bnx2x_disable_ptp(struct bnx2x *bp)
9244{
9245        int port = BP_PORT(bp);
9246
9247        /* Disable sending PTP packets to host */
9248        REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
9249               NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
9250
9251        /* Reset PTP event detection rules */
9252        REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
9253               NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
9254        REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
9255               NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
9256        REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
9257               NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
9258        REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
9259               NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
9260
9261        /* Disable the PTP feature */
9262        REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
9263               NIG_REG_P0_PTP_EN, 0x0);
9264}
9265
9266/* Called during unload, to stop PTP-related stuff */
9267static void bnx2x_stop_ptp(struct bnx2x *bp)
9268{
9269        /* Cancel PTP work queue. Should be done after the Tx queues are
9270         * drained to prevent additional scheduling.
9271         */
9272        cancel_work_sync(&bp->ptp_task);
9273
9274        if (bp->ptp_tx_skb) {
9275                dev_kfree_skb_any(bp->ptp_tx_skb);
9276                bp->ptp_tx_skb = NULL;
9277        }
9278
9279        /* Disable PTP in HW */
9280        bnx2x_disable_ptp(bp);
9281
9282        DP(BNX2X_MSG_PTP, "PTP stop ended successfully\n");
9283}
9284
9285void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
9286{
9287        int port = BP_PORT(bp);
9288        int i, rc = 0;
9289        u8 cos;
9290        struct bnx2x_mcast_ramrod_params rparam = {NULL};
9291        u32 reset_code;
9292
9293        /* Wait until tx fastpath tasks complete */
9294        for_each_tx_queue(bp, i) {
9295                struct bnx2x_fastpath *fp = &bp->fp[i];
9296
9297                for_each_cos_in_tx_queue(fp, cos)
9298                        rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
9299#ifdef BNX2X_STOP_ON_ERROR
9300                if (rc)
9301                        return;
9302#endif
9303        }
9304
9305        /* Give HW time to discard old tx messages */
9306        usleep_range(1000, 2000);
9307
9308        /* Clean all ETH MACs */
9309        rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
9310                                false);
9311        if (rc < 0)
9312                BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
9313
9314        /* Clean up UC list  */
9315        rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
9316                                true);
9317        if (rc < 0)
9318                BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
9319                          rc);
9320
9321        /* Disable LLH */
9322        if (!CHIP_IS_E1(bp))
9323                REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
9324
9325        /* Set "drop all" (stop Rx).
9326         * We need to take a netif_addr_lock() here in order to prevent
9327         * a race between the completion code and this code.
9328         */
9329        netif_addr_lock_bh(bp->dev);
9330        /* Schedule the rx_mode command */
9331        if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
9332                set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
9333        else
9334                bnx2x_set_storm_rx_mode(bp);
9335
9336        /* Cleanup multicast configuration */
9337        rparam.mcast_obj = &bp->mcast_obj;
9338        rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
9339        if (rc < 0)
9340                BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
9341
9342        netif_addr_unlock_bh(bp->dev);
9343
9344        bnx2x_iov_chip_cleanup(bp);
9345
9346        /*
9347         * Send the UNLOAD_REQUEST to the MCP. This will return if
9348         * this function should perform FUNC, PORT or COMMON HW
9349         * reset.
9350         */
9351        reset_code = bnx2x_send_unload_req(bp, unload_mode);
9352
9353        /*
9354         * (assumption: No Attention from MCP at this stage)
9355         * PMF probably in the middle of TX disable/enable transaction
9356         */
9357        rc = bnx2x_func_wait_started(bp);
9358        if (rc) {
9359                BNX2X_ERR("bnx2x_func_wait_started failed\n");
9360#ifdef BNX2X_STOP_ON_ERROR
9361                return;
9362#endif
9363        }
9364
9365        /* Close multi and leading connections
9366         * Completions for ramrods are collected in a synchronous way
9367         */
9368        for_each_eth_queue(bp, i)
9369                if (bnx2x_stop_queue(bp, i))
9370#ifdef BNX2X_STOP_ON_ERROR
9371                        return;
9372#else
9373                        goto unload_error;
9374#endif
9375
9376        if (CNIC_LOADED(bp)) {
9377                for_each_cnic_queue(bp, i)
9378                        if (bnx2x_stop_queue(bp, i))
9379#ifdef BNX2X_STOP_ON_ERROR
9380                                return;
9381#else
9382                                goto unload_error;
9383#endif
9384        }
9385
9386        /* If SP settings didn't get completed so far - something
9387         * very wrong has happen.
9388         */
9389        if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
9390                BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
9391
9392#ifndef BNX2X_STOP_ON_ERROR
9393unload_error:
9394#endif
9395        rc = bnx2x_func_stop(bp);
9396        if (rc) {
9397                BNX2X_ERR("Function stop failed!\n");
9398#ifdef BNX2X_STOP_ON_ERROR
9399                return;
9400#endif
9401        }
9402
9403        /* stop_ptp should be after the Tx queues are drained to prevent
9404         * scheduling to the cancelled PTP work queue. It should also be after
9405         * function stop ramrod is sent, since as part of this ramrod FW access
9406         * PTP registers.
9407         */
9408        if (bp->flags & PTP_SUPPORTED)
9409                bnx2x_stop_ptp(bp);
9410
9411        /* Disable HW interrupts, NAPI */
9412        bnx2x_netif_stop(bp, 1);
9413        /* Delete all NAPI objects */
9414        bnx2x_del_all_napi(bp);
9415        if (CNIC_LOADED(bp))
9416                bnx2x_del_all_napi_cnic(bp);
9417
9418        /* Release IRQs */
9419        bnx2x_free_irq(bp);
9420
9421        /* Reset the chip */
9422        rc = bnx2x_reset_hw(bp, reset_code);
9423        if (rc)
9424                BNX2X_ERR("HW_RESET failed\n");
9425
9426        /* Report UNLOAD_DONE to MCP */
9427        bnx2x_send_unload_done(bp, keep_link);
9428}
9429
9430void bnx2x_disable_close_the_gate(struct bnx2x *bp)
9431{
9432        u32 val;
9433
9434        DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
9435
9436        if (CHIP_IS_E1(bp)) {
9437                int port = BP_PORT(bp);
9438                u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
9439                        MISC_REG_AEU_MASK_ATTN_FUNC_0;
9440
9441                val = REG_RD(bp, addr);
9442                val &= ~(0x300);
9443                REG_WR(bp, addr, val);
9444        } else {
9445                val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
9446                val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
9447                         MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
9448                REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
9449        }
9450}
9451
9452/* Close gates #2, #3 and #4: */
9453static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
9454{
9455        u32 val;
9456
9457        /* Gates #2 and #4a are closed/opened for "not E1" only */
9458        if (!CHIP_IS_E1(bp)) {
9459                /* #4 */
9460                REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
9461                /* #2 */
9462                REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
9463        }
9464
9465        /* #3 */
9466        if (CHIP_IS_E1x(bp)) {
9467                /* Prevent interrupts from HC on both ports */
9468                val = REG_RD(bp, HC_REG_CONFIG_1);
9469                REG_WR(bp, HC_REG_CONFIG_1,
9470                       (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
9471                       (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
9472
9473                val = REG_RD(bp, HC_REG_CONFIG_0);
9474                REG_WR(bp, HC_REG_CONFIG_0,
9475                       (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
9476                       (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
9477        } else {
9478                /* Prevent incoming interrupts in IGU */
9479                val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9480
9481                REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
9482                       (!close) ?
9483                       (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
9484                       (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
9485        }
9486
9487        DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
9488                close ? "closing" : "opening");
9489        mmiowb();
9490}
9491
9492#define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
9493
9494static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
9495{
9496        /* Do some magic... */
9497        u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9498        *magic_val = val & SHARED_MF_CLP_MAGIC;
9499        MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
9500}
9501
9502/**
9503 * bnx2x_clp_reset_done - restore the value of the `magic' bit.
9504 *
9505 * @bp:         driver handle
9506 * @magic_val:  old value of the `magic' bit.
9507 */
9508static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9509{
9510        /* Restore the `magic' bit value... */
9511        u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9512        MF_CFG_WR(bp, shared_mf_config.clp_mb,
9513                (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9514}
9515
9516/**
9517 * bnx2x_reset_mcp_prep - prepare for MCP reset.
9518 *
9519 * @bp:         driver handle
9520 * @magic_val:  old value of 'magic' bit.
9521 *
9522 * Takes care of CLP configurations.
9523 */
9524static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9525{
9526        u32 shmem;
9527        u32 validity_offset;
9528
9529        DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9530
9531        /* Set `magic' bit in order to save MF config */
9532        if (!CHIP_IS_E1(bp))
9533                bnx2x_clp_reset_prep(bp, magic_val);
9534
9535        /* Get shmem offset */
9536        shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9537        validity_offset =
9538                offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9539
9540        /* Clear validity map flags */
9541        if (shmem > 0)
9542                REG_WR(bp, shmem + validity_offset, 0);
9543}
9544
9545#define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
9546#define MCP_ONE_TIMEOUT  100    /* 100 ms */
9547
9548/**
9549 * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9550 *
9551 * @bp: driver handle
9552 */
9553static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9554{
9555        /* special handling for emulation and FPGA,
9556           wait 10 times longer */
9557        if (CHIP_REV_IS_SLOW(bp))
9558                msleep(MCP_ONE_TIMEOUT*10);
9559        else
9560                msleep(MCP_ONE_TIMEOUT);
9561}
9562
9563/*
9564 * initializes bp->common.shmem_base and waits for validity signature to appear
9565 */
9566static int bnx2x_init_shmem(struct bnx2x *bp)
9567{
9568        int cnt = 0;
9569        u32 val = 0;
9570
9571        do {
9572                bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9573                if (bp->common.shmem_base) {
9574                        val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9575                        if (val & SHR_MEM_VALIDITY_MB)
9576                                return 0;
9577                }
9578
9579                bnx2x_mcp_wait_one(bp);
9580
9581        } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9582
9583        BNX2X_ERR("BAD MCP validity signature\n");
9584
9585        return -ENODEV;
9586}
9587
9588static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9589{
9590        int rc = bnx2x_init_shmem(bp);
9591
9592        /* Restore the `magic' bit value */
9593        if (!CHIP_IS_E1(bp))
9594                bnx2x_clp_reset_done(bp, magic_val);
9595
9596        return rc;
9597}
9598
9599static void bnx2x_pxp_prep(struct bnx2x *bp)
9600{
9601        if (!CHIP_IS_E1(bp)) {
9602                REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9603                REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9604                mmiowb();
9605        }
9606}
9607
9608/*
9609 * Reset the whole chip except for:
9610 *      - PCIE core
9611 *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9612 *              one reset bit)
9613 *      - IGU
9614 *      - MISC (including AEU)
9615 *      - GRC
9616 *      - RBCN, RBCP
9617 */
9618static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9619{
9620        u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9621        u32 global_bits2, stay_reset2;
9622
9623        /*
9624         * Bits that have to be set in reset_mask2 if we want to reset 'global'
9625         * (per chip) blocks.
9626         */
9627        global_bits2 =
9628                MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9629                MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9630
9631        /* Don't reset the following blocks.
9632         * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9633         *            reset, as in 4 port device they might still be owned
9634         *            by the MCP (there is only one leader per path).
9635         */
9636        not_reset_mask1 =
9637                MISC_REGISTERS_RESET_REG_1_RST_HC |
9638                MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9639                MISC_REGISTERS_RESET_REG_1_RST_PXP;
9640
9641        not_reset_mask2 =
9642                MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9643                MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9644                MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9645                MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9646                MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9647                MISC_REGISTERS_RESET_REG_2_RST_GRC  |
9648                MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9649                MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9650                MISC_REGISTERS_RESET_REG_2_RST_ATC |
9651                MISC_REGISTERS_RESET_REG_2_PGLC |
9652                MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9653                MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9654                MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9655                MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9656                MISC_REGISTERS_RESET_REG_2_UMAC0 |
9657                MISC_REGISTERS_RESET_REG_2_UMAC1;
9658
9659        /*
9660         * Keep the following blocks in reset:
9661         *  - all xxMACs are handled by the bnx2x_link code.
9662         */
9663        stay_reset2 =
9664                MISC_REGISTERS_RESET_REG_2_XMAC |
9665                MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9666
9667        /* Full reset masks according to the chip */
9668        reset_mask1 = 0xffffffff;
9669
9670        if (CHIP_IS_E1(bp))
9671                reset_mask2 = 0xffff;
9672        else if (CHIP_IS_E1H(bp))
9673                reset_mask2 = 0x1ffff;
9674        else if (CHIP_IS_E2(bp))
9675                reset_mask2 = 0xfffff;
9676        else /* CHIP_IS_E3 */
9677                reset_mask2 = 0x3ffffff;
9678
9679        /* Don't reset global blocks unless we need to */
9680        if (!global)
9681                reset_mask2 &= ~global_bits2;
9682
9683        /*
9684         * In case of attention in the QM, we need to reset PXP
9685         * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9686         * because otherwise QM reset would release 'close the gates' shortly
9687         * before resetting the PXP, then the PSWRQ would send a write
9688         * request to PGLUE. Then when PXP is reset, PGLUE would try to
9689         * read the payload data from PSWWR, but PSWWR would not
9690         * respond. The write queue in PGLUE would stuck, dmae commands
9691         * would not return. Therefore it's important to reset the second
9692         * reset register (containing the
9693         * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9694         * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9695         * bit).
9696         */
9697        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9698               reset_mask2 & (~not_reset_mask2));
9699
9700        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9701               reset_mask1 & (~not_reset_mask1));
9702
9703        barrier();
9704        mmiowb();
9705
9706        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9707               reset_mask2 & (~stay_reset2));
9708
9709        barrier();
9710        mmiowb();
9711
9712        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9713        mmiowb();
9714}
9715
9716/**
9717 * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9718 * It should get cleared in no more than 1s.
9719 *
9720 * @bp: driver handle
9721 *
9722 * It should get cleared in no more than 1s. Returns 0 if
9723 * pending writes bit gets cleared.
9724 */
9725static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9726{
9727        u32 cnt = 1000;
9728        u32 pend_bits = 0;
9729
9730        do {
9731                pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9732
9733                if (pend_bits == 0)
9734                        break;
9735
9736                usleep_range(1000, 2000);
9737        } while (cnt-- > 0);
9738
9739        if (cnt <= 0) {
9740                BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9741                          pend_bits);
9742                return -EBUSY;
9743        }
9744
9745        return 0;
9746}
9747
9748static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9749{
9750        int cnt = 1000;
9751        u32 val = 0;
9752        u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9753        u32 tags_63_32 = 0;
9754
9755        /* Empty the Tetris buffer, wait for 1s */
9756        do {
9757                sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9758                blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9759                port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9760                port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9761                pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9762                if (CHIP_IS_E3(bp))
9763                        tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9764
9765                if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9766                    ((port_is_idle_0 & 0x1) == 0x1) &&
9767                    ((port_is_idle_1 & 0x1) == 0x1) &&
9768                    (pgl_exp_rom2 == 0xffffffff) &&
9769                    (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9770                        break;
9771                usleep_range(1000, 2000);
9772        } while (cnt-- > 0);
9773
9774        if (cnt <= 0) {
9775                BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9776                BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9777                          sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9778                          pgl_exp_rom2);
9779                return -EAGAIN;
9780        }
9781
9782        barrier();
9783
9784        /* Close gates #2, #3 and #4 */
9785        bnx2x_set_234_gates(bp, true);
9786
9787        /* Poll for IGU VQs for 57712 and newer chips */
9788        if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9789                return -EAGAIN;
9790
9791        /* TBD: Indicate that "process kill" is in progress to MCP */
9792
9793        /* Clear "unprepared" bit */
9794        REG_WR(bp, MISC_REG_UNPREPARED, 0);
9795        barrier();
9796
9797        /* Make sure all is written to the chip before the reset */
9798        mmiowb();
9799
9800        /* Wait for 1ms to empty GLUE and PCI-E core queues,
9801         * PSWHST, GRC and PSWRD Tetris buffer.
9802         */
9803        usleep_range(1000, 2000);
9804
9805        /* Prepare to chip reset: */
9806        /* MCP */
9807        if (global)
9808                bnx2x_reset_mcp_prep(bp, &val);
9809
9810        /* PXP */
9811        bnx2x_pxp_prep(bp);
9812        barrier();
9813
9814        /* reset the chip */
9815        bnx2x_process_kill_chip_reset(bp, global);
9816        barrier();
9817
9818        /* clear errors in PGB */
9819        if (!CHIP_IS_E1x(bp))
9820                REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
9821
9822        /* Recover after reset: */
9823        /* MCP */
9824        if (global && bnx2x_reset_mcp_comp(bp, val))
9825                return -EAGAIN;
9826
9827        /* TBD: Add resetting the NO_MCP mode DB here */
9828
9829        /* Open the gates #2, #3 and #4 */
9830        bnx2x_set_234_gates(bp, false);
9831
9832        /* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9833         * reset state, re-enable attentions. */
9834
9835        return 0;
9836}
9837
9838static int bnx2x_leader_reset(struct bnx2x *bp)
9839{
9840        int rc = 0;
9841        bool global = bnx2x_reset_is_global(bp);
9842        u32 load_code;
9843
9844        /* if not going to reset MCP - load "fake" driver to reset HW while
9845         * driver is owner of the HW
9846         */
9847        if (!global && !BP_NOMCP(bp)) {
9848                load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9849                                             DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9850                if (!load_code) {
9851                        BNX2X_ERR("MCP response failure, aborting\n");
9852                        rc = -EAGAIN;
9853                        goto exit_leader_reset;
9854                }
9855                if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9856                    (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9857                        BNX2X_ERR("MCP unexpected resp, aborting\n");
9858                        rc = -EAGAIN;
9859                        goto exit_leader_reset2;
9860                }
9861                load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9862                if (!load_code) {
9863                        BNX2X_ERR("MCP response failure, aborting\n");
9864                        rc = -EAGAIN;
9865                        goto exit_leader_reset2;
9866                }
9867        }
9868
9869        /* Try to recover after the failure */
9870        if (bnx2x_process_kill(bp, global)) {
9871                BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9872                          BP_PATH(bp));
9873                rc = -EAGAIN;
9874                goto exit_leader_reset2;
9875        }
9876
9877        /*
9878         * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9879         * state.
9880         */
9881        bnx2x_set_reset_done(bp);
9882        if (global)
9883                bnx2x_clear_reset_global(bp);
9884
9885exit_leader_reset2:
9886        /* unload "fake driver" if it was loaded */
9887        if (!global && !BP_NOMCP(bp)) {
9888                bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9889                bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9890        }
9891exit_leader_reset:
9892        bp->is_leader = 0;
9893        bnx2x_release_leader_lock(bp);
9894        smp_mb();
9895        return rc;
9896}
9897
9898static void bnx2x_recovery_failed(struct bnx2x *bp)
9899{
9900        netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9901
9902        /* Disconnect this device */
9903        netif_device_detach(bp->dev);
9904
9905        /*
9906         * Block ifup for all function on this engine until "process kill"
9907         * or power cycle.
9908         */
9909        bnx2x_set_reset_in_progress(bp);
9910
9911        /* Shut down the power */
9912        bnx2x_set_power_state(bp, PCI_D3hot);
9913
9914        bp->recovery_state = BNX2X_RECOVERY_FAILED;
9915
9916        smp_mb();
9917}
9918
9919/*
9920 * Assumption: runs under rtnl lock. This together with the fact
9921 * that it's called only from bnx2x_sp_rtnl() ensure that it
9922 * will never be called when netif_running(bp->dev) is false.
9923 */
9924static void bnx2x_parity_recover(struct bnx2x *bp)
9925{
9926        bool global = false;
9927        u32 error_recovered, error_unrecovered;
9928        bool is_parity;
9929
9930        DP(NETIF_MSG_HW, "Handling parity\n");
9931        while (1) {
9932                switch (bp->recovery_state) {
9933                case BNX2X_RECOVERY_INIT:
9934                        DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
9935                        is_parity = bnx2x_chk_parity_attn(bp, &global, false);
9936                        WARN_ON(!is_parity);
9937
9938                        /* Try to get a LEADER_LOCK HW lock */
9939                        if (bnx2x_trylock_leader_lock(bp)) {
9940                                bnx2x_set_reset_in_progress(bp);
9941                                /*
9942                                 * Check if there is a global attention and if
9943                                 * there was a global attention, set the global
9944                                 * reset bit.
9945                                 */
9946
9947                                if (global)
9948                                        bnx2x_set_reset_global(bp);
9949
9950                                bp->is_leader = 1;
9951                        }
9952
9953                        /* Stop the driver */
9954                        /* If interface has been removed - break */
9955                        if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
9956                                return;
9957
9958                        bp->recovery_state = BNX2X_RECOVERY_WAIT;
9959
9960                        /* Ensure "is_leader", MCP command sequence and
9961                         * "recovery_state" update values are seen on other
9962                         * CPUs.
9963                         */
9964                        smp_mb();
9965                        break;
9966
9967                case BNX2X_RECOVERY_WAIT:
9968                        DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
9969                        if (bp->is_leader) {
9970                                int other_engine = BP_PATH(bp) ? 0 : 1;
9971                                bool other_load_status =
9972                                        bnx2x_get_load_status(bp, other_engine);
9973                                bool load_status =
9974                                        bnx2x_get_load_status(bp, BP_PATH(bp));
9975                                global = bnx2x_reset_is_global(bp);
9976
9977                                /*
9978                                 * In case of a parity in a global block, let
9979                                 * the first leader that performs a
9980                                 * leader_reset() reset the global blocks in
9981                                 * order to clear global attentions. Otherwise
9982                                 * the gates will remain closed for that
9983                                 * engine.
9984                                 */
9985                                if (load_status ||
9986                                    (global && other_load_status)) {
9987                                        /* Wait until all other functions get
9988                                         * down.
9989                                         */
9990                                        schedule_delayed_work(&bp->sp_rtnl_task,
9991                                                                HZ/10);
9992                                        return;
9993                                } else {
9994                                        /* If all other functions got down -
9995                                         * try to bring the chip back to
9996                                         * normal. In any case it's an exit
9997                                         * point for a leader.
9998                                         */
9999                                        if (bnx2x_leader_reset(bp)) {
10000                                                bnx2x_recovery_failed(bp);
10001                                                return;
10002                                        }
10003
10004                                        /* If we are here, means that the
10005                                         * leader has succeeded and doesn't
10006                                         * want to be a leader any more. Try
10007                                         * to continue as a none-leader.
10008                                         */
10009                                        break;
10010                                }
10011                        } else { /* non-leader */
10012                                if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
10013                                        /* Try to get a LEADER_LOCK HW lock as
10014                                         * long as a former leader may have
10015                                         * been unloaded by the user or
10016                                         * released a leadership by another
10017                                         * reason.
10018                                         */
10019                                        if (bnx2x_trylock_leader_lock(bp)) {
10020                                                /* I'm a leader now! Restart a
10021                                                 * switch case.
10022                                                 */
10023                                                bp->is_leader = 1;
10024                                                break;
10025                                        }
10026
10027                                        schedule_delayed_work(&bp->sp_rtnl_task,
10028                                                                HZ/10);
10029                                        return;
10030
10031                                } else {
10032                                        /*
10033                                         * If there was a global attention, wait
10034                                         * for it to be cleared.
10035                                         */
10036                                        if (bnx2x_reset_is_global(bp)) {
10037                                                schedule_delayed_work(
10038                                                        &bp->sp_rtnl_task,
10039                                                        HZ/10);
10040                                                return;
10041                                        }
10042
10043                                        error_recovered =
10044                                          bp->eth_stats.recoverable_error;
10045                                        error_unrecovered =
10046                                          bp->eth_stats.unrecoverable_error;
10047                                        bp->recovery_state =
10048                                                BNX2X_RECOVERY_NIC_LOADING;
10049                                        if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
10050                                                error_unrecovered++;
10051                                                netdev_err(bp->dev,
10052                                                           "Recovery failed. Power cycle needed\n");
10053                                                /* Disconnect this device */
10054                                                netif_device_detach(bp->dev);
10055                                                /* Shut down the power */
10056                                                bnx2x_set_power_state(
10057                                                        bp, PCI_D3hot);
10058                                                smp_mb();
10059                                        } else {
10060                                                bp->recovery_state =
10061                                                        BNX2X_RECOVERY_DONE;
10062                                                error_recovered++;
10063                                                smp_mb();
10064                                        }
10065                                        bp->eth_stats.recoverable_error =
10066                                                error_recovered;
10067                                        bp->eth_stats.unrecoverable_error =
10068                                                error_unrecovered;
10069
10070                                        return;
10071                                }
10072                        }
10073                default:
10074                        return;
10075                }
10076        }
10077}
10078
10079#if defined(CONFIG_BNX2X_VXLAN) || IS_ENABLED(CONFIG_BNX2X_GENEVE)
10080static int bnx2x_udp_port_update(struct bnx2x *bp)
10081{
10082        struct bnx2x_func_switch_update_params *switch_update_params;
10083        struct bnx2x_func_state_params func_params = {NULL};
10084        struct bnx2x_udp_tunnel *udp_tunnel;
10085        u16 vxlan_port = 0, geneve_port = 0;
10086        int rc;
10087
10088        switch_update_params = &func_params.params.switch_update;
10089
10090        /* Prepare parameters for function state transitions */
10091        __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
10092        __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
10093
10094        func_params.f_obj = &bp->func_obj;
10095        func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
10096
10097        /* Function parameters */
10098        __set_bit(BNX2X_F_UPDATE_TUNNEL_CFG_CHNG,
10099                  &switch_update_params->changes);
10100
10101        if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE].count) {
10102                udp_tunnel = &bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE];
10103                geneve_port = udp_tunnel->dst_port;
10104                switch_update_params->geneve_dst_port = geneve_port;
10105        }
10106
10107        if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN].count) {
10108                udp_tunnel = &bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN];
10109                vxlan_port = udp_tunnel->dst_port;
10110                switch_update_params->vxlan_dst_port = vxlan_port;
10111        }
10112
10113        /* Re-enable inner-rss for the offloaded UDP tunnels */
10114        __set_bit(BNX2X_F_UPDATE_TUNNEL_INNER_RSS,
10115                  &switch_update_params->changes);
10116
10117        rc = bnx2x_func_state_change(bp, &func_params);
10118        if (rc)
10119                BNX2X_ERR("failed to set UDP dst port to %04x %04x (rc = 0x%x)\n",
10120                          vxlan_port, geneve_port, rc);
10121        else
10122                DP(BNX2X_MSG_SP,
10123                   "Configured UDP ports: Vxlan [%04x] Geneve [%04x]\n",
10124                   vxlan_port, geneve_port);
10125
10126        return rc;
10127}
10128
10129static void __bnx2x_add_udp_port(struct bnx2x *bp, u16 port,
10130                                 enum bnx2x_udp_port_type type)
10131{
10132        struct bnx2x_udp_tunnel *udp_port = &bp->udp_tunnel_ports[type];
10133
10134        if (!netif_running(bp->dev) || !IS_PF(bp))
10135                return;
10136
10137        if (udp_port->count && udp_port->dst_port == port) {
10138                udp_port->count++;
10139                return;
10140        }
10141
10142        if (udp_port->count) {
10143                DP(BNX2X_MSG_SP,
10144                   "UDP tunnel [%d] -  destination port limit reached\n",
10145                   type);
10146                return;
10147        }
10148
10149        udp_port->dst_port = port;
10150        udp_port->count = 1;
10151        bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_CHANGE_UDP_PORT, 0);
10152}
10153
10154static void __bnx2x_del_udp_port(struct bnx2x *bp, u16 port,
10155                                 enum bnx2x_udp_port_type type)
10156{
10157        struct bnx2x_udp_tunnel *udp_port = &bp->udp_tunnel_ports[type];
10158
10159        if (!IS_PF(bp))
10160                return;
10161
10162        if (!udp_port->count || udp_port->dst_port != port) {
10163                DP(BNX2X_MSG_SP, "Invalid UDP tunnel [%d] port\n",
10164                   type);
10165                return;
10166        }
10167
10168        /* Remove reference, and make certain it's no longer in use */
10169        udp_port->count--;
10170        if (udp_port->count)
10171                return;
10172        udp_port->dst_port = 0;
10173
10174        if (netif_running(bp->dev))
10175                bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_CHANGE_UDP_PORT, 0);
10176        else
10177                DP(BNX2X_MSG_SP, "Deleted UDP tunnel [%d] port %d\n",
10178                   type, port);
10179}
10180#endif
10181
10182#ifdef CONFIG_BNX2X_VXLAN
10183static void bnx2x_add_vxlan_port(struct net_device *netdev,
10184                                 sa_family_t sa_family, __be16 port)
10185{
10186        struct bnx2x *bp = netdev_priv(netdev);
10187        u16 t_port = ntohs(port);
10188
10189        __bnx2x_add_udp_port(bp, t_port, BNX2X_UDP_PORT_VXLAN);
10190}
10191
10192static void bnx2x_del_vxlan_port(struct net_device *netdev,
10193                                 sa_family_t sa_family, __be16 port)
10194{
10195        struct bnx2x *bp = netdev_priv(netdev);
10196        u16 t_port = ntohs(port);
10197
10198        __bnx2x_del_udp_port(bp, t_port, BNX2X_UDP_PORT_VXLAN);
10199}
10200#endif
10201
10202#if IS_ENABLED(CONFIG_BNX2X_GENEVE)
10203static void bnx2x_add_geneve_port(struct net_device *netdev,
10204                                  sa_family_t sa_family, __be16 port)
10205{
10206        struct bnx2x *bp = netdev_priv(netdev);
10207        u16 t_port = ntohs(port);
10208
10209        __bnx2x_add_udp_port(bp, t_port, BNX2X_UDP_PORT_GENEVE);
10210}
10211
10212static void bnx2x_del_geneve_port(struct net_device *netdev,
10213                                  sa_family_t sa_family, __be16 port)
10214{
10215        struct bnx2x *bp = netdev_priv(netdev);
10216        u16 t_port = ntohs(port);
10217
10218        __bnx2x_del_udp_port(bp, t_port, BNX2X_UDP_PORT_GENEVE);
10219}
10220#endif
10221
10222static int bnx2x_close(struct net_device *dev);
10223
10224/* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
10225 * scheduled on a general queue in order to prevent a dead lock.
10226 */
10227static void bnx2x_sp_rtnl_task(struct work_struct *work)
10228{
10229        struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
10230
10231        rtnl_lock();
10232
10233        if (!netif_running(bp->dev)) {
10234                rtnl_unlock();
10235                return;
10236        }
10237
10238        if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
10239#ifdef BNX2X_STOP_ON_ERROR
10240                BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10241                          "you will need to reboot when done\n");
10242                goto sp_rtnl_not_reset;
10243#endif
10244                /*
10245                 * Clear all pending SP commands as we are going to reset the
10246                 * function anyway.
10247                 */
10248                bp->sp_rtnl_state = 0;
10249                smp_mb();
10250
10251                bnx2x_parity_recover(bp);
10252
10253                rtnl_unlock();
10254                return;
10255        }
10256
10257        if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
10258#ifdef BNX2X_STOP_ON_ERROR
10259                BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10260                          "you will need to reboot when done\n");
10261                goto sp_rtnl_not_reset;
10262#endif
10263
10264                /*
10265                 * Clear all pending SP commands as we are going to reset the
10266                 * function anyway.
10267                 */
10268                bp->sp_rtnl_state = 0;
10269                smp_mb();
10270
10271                bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10272                bnx2x_nic_load(bp, LOAD_NORMAL);
10273
10274                rtnl_unlock();
10275                return;
10276        }
10277#ifdef BNX2X_STOP_ON_ERROR
10278sp_rtnl_not_reset:
10279#endif
10280        if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
10281                bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
10282        if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
10283                bnx2x_after_function_update(bp);
10284        /*
10285         * in case of fan failure we need to reset id if the "stop on error"
10286         * debug flag is set, since we trying to prevent permanent overheating
10287         * damage
10288         */
10289        if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
10290                DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
10291                netif_device_detach(bp->dev);
10292                bnx2x_close(bp->dev);
10293                rtnl_unlock();
10294                return;
10295        }
10296
10297        if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
10298                DP(BNX2X_MSG_SP,
10299                   "sending set mcast vf pf channel message from rtnl sp-task\n");
10300                bnx2x_vfpf_set_mcast(bp->dev);
10301        }
10302        if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
10303                               &bp->sp_rtnl_state)){
10304                if (!test_bit(__LINK_STATE_NOCARRIER, &bp->dev->state)) {
10305                        bnx2x_tx_disable(bp);
10306                        BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
10307                }
10308        }
10309
10310        if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
10311                DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
10312                bnx2x_set_rx_mode_inner(bp);
10313        }
10314
10315        if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
10316                               &bp->sp_rtnl_state))
10317                bnx2x_pf_set_vfs_vlan(bp);
10318
10319        if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) {
10320                bnx2x_dcbx_stop_hw_tx(bp);
10321                bnx2x_dcbx_resume_hw_tx(bp);
10322        }
10323
10324        if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION,
10325                               &bp->sp_rtnl_state))
10326                bnx2x_update_mng_version(bp);
10327
10328#if defined(CONFIG_BNX2X_VXLAN) || IS_ENABLED(CONFIG_BNX2X_GENEVE)
10329        if (test_and_clear_bit(BNX2X_SP_RTNL_CHANGE_UDP_PORT,
10330                               &bp->sp_rtnl_state)) {
10331                if (bnx2x_udp_port_update(bp)) {
10332                        /* On error, forget configuration */
10333                        memset(bp->udp_tunnel_ports, 0,
10334                               sizeof(struct bnx2x_udp_tunnel) *
10335                               BNX2X_UDP_PORT_MAX);
10336                } else {
10337                        /* Since we don't store additional port information,
10338                         * if no port is configured for any feature ask for
10339                         * information about currently configured ports.
10340                         */
10341#ifdef CONFIG_BNX2X_VXLAN
10342                        if (!bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN].count)
10343                                vxlan_get_rx_port(bp->dev);
10344#endif
10345#if IS_ENABLED(CONFIG_BNX2X_GENEVE)
10346                        if (!bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE].count)
10347                                geneve_get_rx_port(bp->dev);
10348#endif
10349                }
10350        }
10351#endif
10352
10353        /* work which needs rtnl lock not-taken (as it takes the lock itself and
10354         * can be called from other contexts as well)
10355         */
10356        rtnl_unlock();
10357
10358        /* enable SR-IOV if applicable */
10359        if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
10360                                               &bp->sp_rtnl_state)) {
10361                bnx2x_disable_sriov(bp);
10362                bnx2x_enable_sriov(bp);
10363        }
10364}
10365
10366static void bnx2x_period_task(struct work_struct *work)
10367{
10368        struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
10369
10370        if (!netif_running(bp->dev))
10371                goto period_task_exit;
10372
10373        if (CHIP_REV_IS_SLOW(bp)) {
10374                BNX2X_ERR("period task called on emulation, ignoring\n");
10375                goto period_task_exit;
10376        }
10377
10378        bnx2x_acquire_phy_lock(bp);
10379        /*
10380         * The barrier is needed to ensure the ordering between the writing to
10381         * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
10382         * the reading here.
10383         */
10384        smp_mb();
10385        if (bp->port.pmf) {
10386                bnx2x_period_func(&bp->link_params, &bp->link_vars);
10387
10388                /* Re-queue task in 1 sec */
10389                queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
10390        }
10391
10392        bnx2x_release_phy_lock(bp);
10393period_task_exit:
10394        return;
10395}
10396
10397/*
10398 * Init service functions
10399 */
10400
10401static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
10402{
10403        u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
10404        u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
10405        return base + (BP_ABS_FUNC(bp)) * stride;
10406}
10407
10408static bool bnx2x_prev_unload_close_umac(struct bnx2x *bp,
10409                                         u8 port, u32 reset_reg,
10410                                         struct bnx2x_mac_vals *vals)
10411{
10412        u32 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
10413        u32 base_addr;
10414
10415        if (!(mask & reset_reg))
10416                return false;
10417
10418        BNX2X_DEV_INFO("Disable umac Rx %02x\n", port);
10419        base_addr = port ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
10420        vals->umac_addr[port] = base_addr + UMAC_REG_COMMAND_CONFIG;
10421        vals->umac_val[port] = REG_RD(bp, vals->umac_addr[port]);
10422        REG_WR(bp, vals->umac_addr[port], 0);
10423
10424        return true;
10425}
10426
10427static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
10428                                        struct bnx2x_mac_vals *vals)
10429{
10430        u32 val, base_addr, offset, mask, reset_reg;
10431        bool mac_stopped = false;
10432        u8 port = BP_PORT(bp);
10433
10434        /* reset addresses as they also mark which values were changed */
10435        memset(vals, 0, sizeof(*vals));
10436
10437        reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
10438
10439        if (!CHIP_IS_E3(bp)) {
10440                val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
10441                mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
10442                if ((mask & reset_reg) && val) {
10443                        u32 wb_data[2];
10444                        BNX2X_DEV_INFO("Disable bmac Rx\n");
10445                        base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
10446                                                : NIG_REG_INGRESS_BMAC0_MEM;
10447                        offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
10448                                                : BIGMAC_REGISTER_BMAC_CONTROL;
10449
10450                        /*
10451                         * use rd/wr since we cannot use dmae. This is safe
10452                         * since MCP won't access the bus due to the request
10453                         * to unload, and no function on the path can be
10454                         * loaded at this time.
10455                         */
10456                        wb_data[0] = REG_RD(bp, base_addr + offset);
10457                        wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
10458                        vals->bmac_addr = base_addr + offset;
10459                        vals->bmac_val[0] = wb_data[0];
10460                        vals->bmac_val[1] = wb_data[1];
10461                        wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
10462                        REG_WR(bp, vals->bmac_addr, wb_data[0]);
10463                        REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
10464                }
10465                BNX2X_DEV_INFO("Disable emac Rx\n");
10466                vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
10467                vals->emac_val = REG_RD(bp, vals->emac_addr);
10468                REG_WR(bp, vals->emac_addr, 0);
10469                mac_stopped = true;
10470        } else {
10471                if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
10472                        BNX2X_DEV_INFO("Disable xmac Rx\n");
10473                        base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
10474                        val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
10475                        REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10476                               val & ~(1 << 1));
10477                        REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10478                               val | (1 << 1));
10479                        vals->xmac_addr = base_addr + XMAC_REG_CTRL;
10480                        vals->xmac_val = REG_RD(bp, vals->xmac_addr);
10481                        REG_WR(bp, vals->xmac_addr, 0);
10482                        mac_stopped = true;
10483                }
10484
10485                mac_stopped |= bnx2x_prev_unload_close_umac(bp, 0,
10486                                                            reset_reg, vals);
10487                mac_stopped |= bnx2x_prev_unload_close_umac(bp, 1,
10488                                                            reset_reg, vals);
10489        }
10490
10491        if (mac_stopped)
10492                msleep(20);
10493}
10494
10495#define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
10496#define BNX2X_PREV_UNDI_PROD_ADDR_H(f) (BAR_TSTRORM_INTMEM + \
10497                                        0x1848 + ((f) << 4))
10498#define BNX2X_PREV_UNDI_RCQ(val)        ((val) & 0xffff)
10499#define BNX2X_PREV_UNDI_BD(val)         ((val) >> 16 & 0xffff)
10500#define BNX2X_PREV_UNDI_PROD(rcq, bd)   ((bd) << 16 | (rcq))
10501
10502#define BCM_5710_UNDI_FW_MF_MAJOR       (0x07)
10503#define BCM_5710_UNDI_FW_MF_MINOR       (0x08)
10504#define BCM_5710_UNDI_FW_MF_VERS        (0x05)
10505
10506static bool bnx2x_prev_is_after_undi(struct bnx2x *bp)
10507{
10508        /* UNDI marks its presence in DORQ -
10509         * it initializes CID offset for normal bell to 0x7
10510         */
10511        if (!(REG_RD(bp, MISC_REG_RESET_REG_1) &
10512            MISC_REGISTERS_RESET_REG_1_RST_DORQ))
10513                return false;
10514
10515        if (REG_RD(bp, DORQ_REG_NORM_CID_OFST) == 0x7) {
10516                BNX2X_DEV_INFO("UNDI previously loaded\n");
10517                return true;
10518        }
10519
10520        return false;
10521}
10522
10523static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 inc)
10524{
10525        u16 rcq, bd;
10526        u32 addr, tmp_reg;
10527
10528        if (BP_FUNC(bp) < 2)
10529                addr = BNX2X_PREV_UNDI_PROD_ADDR(BP_PORT(bp));
10530        else
10531                addr = BNX2X_PREV_UNDI_PROD_ADDR_H(BP_FUNC(bp) - 2);
10532
10533        tmp_reg = REG_RD(bp, addr);
10534        rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
10535        bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
10536
10537        tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
10538        REG_WR(bp, addr, tmp_reg);
10539
10540        BNX2X_DEV_INFO("UNDI producer [%d/%d][%08x] rings bd -> 0x%04x, rcq -> 0x%04x\n",
10541                       BP_PORT(bp), BP_FUNC(bp), addr, bd, rcq);
10542}
10543
10544static int bnx2x_prev_mcp_done(struct bnx2x *bp)
10545{
10546        u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
10547                                  DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
10548        if (!rc) {
10549                BNX2X_ERR("MCP response failure, aborting\n");
10550                return -EBUSY;
10551        }
10552
10553        return 0;
10554}
10555
10556static struct bnx2x_prev_path_list *
10557                bnx2x_prev_path_get_entry(struct bnx2x *bp)
10558{
10559        struct bnx2x_prev_path_list *tmp_list;
10560
10561        list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
10562                if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
10563                    bp->pdev->bus->number == tmp_list->bus &&
10564                    BP_PATH(bp) == tmp_list->path)
10565                        return tmp_list;
10566
10567        return NULL;
10568}
10569
10570static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
10571{
10572        struct bnx2x_prev_path_list *tmp_list;
10573        int rc;
10574
10575        rc = down_interruptible(&bnx2x_prev_sem);
10576        if (rc) {
10577                BNX2X_ERR("Received %d when tried to take lock\n", rc);
10578                return rc;
10579        }
10580
10581        tmp_list = bnx2x_prev_path_get_entry(bp);
10582        if (tmp_list) {
10583                tmp_list->aer = 1;
10584                rc = 0;
10585        } else {
10586                BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
10587                          BP_PATH(bp));
10588        }
10589
10590        up(&bnx2x_prev_sem);
10591
10592        return rc;
10593}
10594
10595static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
10596{
10597        struct bnx2x_prev_path_list *tmp_list;
10598        bool rc = false;
10599
10600        if (down_trylock(&bnx2x_prev_sem))
10601                return false;
10602
10603        tmp_list = bnx2x_prev_path_get_entry(bp);
10604        if (tmp_list) {
10605                if (tmp_list->aer) {
10606                        DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
10607                           BP_PATH(bp));
10608                } else {
10609                        rc = true;
10610                        BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
10611                                       BP_PATH(bp));
10612                }
10613        }
10614
10615        up(&bnx2x_prev_sem);
10616
10617        return rc;
10618}
10619
10620bool bnx2x_port_after_undi(struct bnx2x *bp)
10621{
10622        struct bnx2x_prev_path_list *entry;
10623        bool val;
10624
10625        down(&bnx2x_prev_sem);
10626
10627        entry = bnx2x_prev_path_get_entry(bp);
10628        val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
10629
10630        up(&bnx2x_prev_sem);
10631
10632        return val;
10633}
10634
10635static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
10636{
10637        struct bnx2x_prev_path_list *tmp_list;
10638        int rc;
10639
10640        rc = down_interruptible(&bnx2x_prev_sem);
10641        if (rc) {
10642                BNX2X_ERR("Received %d when tried to take lock\n", rc);
10643                return rc;
10644        }
10645
10646        /* Check whether the entry for this path already exists */
10647        tmp_list = bnx2x_prev_path_get_entry(bp);
10648        if (tmp_list) {
10649                if (!tmp_list->aer) {
10650                        BNX2X_ERR("Re-Marking the path.\n");
10651                } else {
10652                        DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
10653                           BP_PATH(bp));
10654                        tmp_list->aer = 0;
10655                }
10656                up(&bnx2x_prev_sem);
10657                return 0;
10658        }
10659        up(&bnx2x_prev_sem);
10660
10661        /* Create an entry for this path and add it */
10662        tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
10663        if (!tmp_list) {
10664                BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
10665                return -ENOMEM;
10666        }
10667
10668        tmp_list->bus = bp->pdev->bus->number;
10669        tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
10670        tmp_list->path = BP_PATH(bp);
10671        tmp_list->aer = 0;
10672        tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
10673
10674        rc = down_interruptible(&bnx2x_prev_sem);
10675        if (rc) {
10676                BNX2X_ERR("Received %d when tried to take lock\n", rc);
10677                kfree(tmp_list);
10678        } else {
10679                DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
10680                   BP_PATH(bp));
10681                list_add(&tmp_list->list, &bnx2x_prev_list);
10682                up(&bnx2x_prev_sem);
10683        }
10684
10685        return rc;
10686}
10687
10688static int bnx2x_do_flr(struct bnx2x *bp)
10689{
10690        struct pci_dev *dev = bp->pdev;
10691
10692        if (CHIP_IS_E1x(bp)) {
10693                BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
10694                return -EINVAL;
10695        }
10696
10697        /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
10698        if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
10699                BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
10700                          bp->common.bc_ver);
10701                return -EINVAL;
10702        }
10703
10704        if (!pci_wait_for_pending_transaction(dev))
10705                dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
10706
10707        BNX2X_DEV_INFO("Initiating FLR\n");
10708        bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
10709
10710        return 0;
10711}
10712
10713static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
10714{
10715        int rc;
10716
10717        BNX2X_DEV_INFO("Uncommon unload Flow\n");
10718
10719        /* Test if previous unload process was already finished for this path */
10720        if (bnx2x_prev_is_path_marked(bp))
10721                return bnx2x_prev_mcp_done(bp);
10722
10723        BNX2X_DEV_INFO("Path is unmarked\n");
10724
10725        /* Cannot proceed with FLR if UNDI is loaded, since FW does not match */
10726        if (bnx2x_prev_is_after_undi(bp))
10727                goto out;
10728
10729        /* If function has FLR capabilities, and existing FW version matches
10730         * the one required, then FLR will be sufficient to clean any residue
10731         * left by previous driver
10732         */
10733        rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false);
10734
10735        if (!rc) {
10736                /* fw version is good */
10737                BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10738                rc = bnx2x_do_flr(bp);
10739        }
10740
10741        if (!rc) {
10742                /* FLR was performed */
10743                BNX2X_DEV_INFO("FLR successful\n");
10744                return 0;
10745        }
10746
10747        BNX2X_DEV_INFO("Could not FLR\n");
10748
10749out:
10750        /* Close the MCP request, return failure*/
10751        rc = bnx2x_prev_mcp_done(bp);
10752        if (!rc)
10753                rc = BNX2X_PREV_WAIT_NEEDED;
10754
10755        return rc;
10756}
10757
10758static int bnx2x_prev_unload_common(struct bnx2x *bp)
10759{
10760        u32 reset_reg, tmp_reg = 0, rc;
10761        bool prev_undi = false;
10762        struct bnx2x_mac_vals mac_vals;
10763
10764        /* It is possible a previous function received 'common' answer,
10765         * but hasn't loaded yet, therefore creating a scenario of
10766         * multiple functions receiving 'common' on the same path.
10767         */
10768        BNX2X_DEV_INFO("Common unload Flow\n");
10769
10770        memset(&mac_vals, 0, sizeof(mac_vals));
10771
10772        if (bnx2x_prev_is_path_marked(bp))
10773                return bnx2x_prev_mcp_done(bp);
10774
10775        reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10776
10777        /* Reset should be performed after BRB is emptied */
10778        if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10779                u32 timer_count = 1000;
10780
10781                /* Close the MAC Rx to prevent BRB from filling up */
10782                bnx2x_prev_unload_close_mac(bp, &mac_vals);
10783
10784                /* close LLH filters for both ports towards the BRB */
10785                bnx2x_set_rx_filter(&bp->link_params, 0);
10786                bp->link_params.port ^= 1;
10787                bnx2x_set_rx_filter(&bp->link_params, 0);
10788                bp->link_params.port ^= 1;
10789
10790                /* Check if the UNDI driver was previously loaded */
10791                if (bnx2x_prev_is_after_undi(bp)) {
10792                        prev_undi = true;
10793                        /* clear the UNDI indication */
10794                        REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10795                        /* clear possible idle check errors */
10796                        REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10797                }
10798                if (!CHIP_IS_E1x(bp))
10799                        /* block FW from writing to host */
10800                        REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10801
10802                /* wait until BRB is empty */
10803                tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10804                while (timer_count) {
10805                        u32 prev_brb = tmp_reg;
10806
10807                        tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10808                        if (!tmp_reg)
10809                                break;
10810
10811                        BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10812
10813                        /* reset timer as long as BRB actually gets emptied */
10814                        if (prev_brb > tmp_reg)
10815                                timer_count = 1000;
10816                        else
10817                                timer_count--;
10818
10819                        /* If UNDI resides in memory, manually increment it */
10820                        if (prev_undi)
10821                                bnx2x_prev_unload_undi_inc(bp, 1);
10822
10823                        udelay(10);
10824                }
10825
10826                if (!timer_count)
10827                        BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10828        }
10829
10830        /* No packets are in the pipeline, path is ready for reset */
10831        bnx2x_reset_common(bp);
10832
10833        if (mac_vals.xmac_addr)
10834                REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10835        if (mac_vals.umac_addr[0])
10836                REG_WR(bp, mac_vals.umac_addr[0], mac_vals.umac_val[0]);
10837        if (mac_vals.umac_addr[1])
10838                REG_WR(bp, mac_vals.umac_addr[1], mac_vals.umac_val[1]);
10839        if (mac_vals.emac_addr)
10840                REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10841        if (mac_vals.bmac_addr) {
10842                REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10843                REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10844        }
10845
10846        rc = bnx2x_prev_mark_path(bp, prev_undi);
10847        if (rc) {
10848                bnx2x_prev_mcp_done(bp);
10849                return rc;
10850        }
10851
10852        return bnx2x_prev_mcp_done(bp);
10853}
10854
10855static int bnx2x_prev_unload(struct bnx2x *bp)
10856{
10857        int time_counter = 10;
10858        u32 rc, fw, hw_lock_reg, hw_lock_val;
10859        BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10860
10861        /* clear hw from errors which may have resulted from an interrupted
10862         * dmae transaction.
10863         */
10864        bnx2x_clean_pglue_errors(bp);
10865
10866        /* Release previously held locks */
10867        hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10868                      (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10869                      (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10870
10871        hw_lock_val = REG_RD(bp, hw_lock_reg);
10872        if (hw_lock_val) {
10873                if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10874                        BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10875                        REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10876                               (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10877                }
10878
10879                BNX2X_DEV_INFO("Release Previously held hw lock\n");
10880                REG_WR(bp, hw_lock_reg, 0xffffffff);
10881        } else
10882                BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10883
10884        if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10885                BNX2X_DEV_INFO("Release previously held alr\n");
10886                bnx2x_release_alr(bp);
10887        }
10888
10889        do {
10890                int aer = 0;
10891                /* Lock MCP using an unload request */
10892                fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10893                if (!fw) {
10894                        BNX2X_ERR("MCP response failure, aborting\n");
10895                        rc = -EBUSY;
10896                        break;
10897                }
10898
10899                rc = down_interruptible(&bnx2x_prev_sem);
10900                if (rc) {
10901                        BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10902                                  rc);
10903                } else {
10904                        /* If Path is marked by EEH, ignore unload status */
10905                        aer = !!(bnx2x_prev_path_get_entry(bp) &&
10906                                 bnx2x_prev_path_get_entry(bp)->aer);
10907                        up(&bnx2x_prev_sem);
10908                }
10909
10910                if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10911                        rc = bnx2x_prev_unload_common(bp);
10912                        break;
10913                }
10914
10915                /* non-common reply from MCP might require looping */
10916                rc = bnx2x_prev_unload_uncommon(bp);
10917                if (rc != BNX2X_PREV_WAIT_NEEDED)
10918                        break;
10919
10920                msleep(20);
10921        } while (--time_counter);
10922
10923        if (!time_counter || rc) {
10924                BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n");
10925                rc = -EPROBE_DEFER;
10926        }
10927
10928        /* Mark function if its port was used to boot from SAN */
10929        if (bnx2x_port_after_undi(bp))
10930                bp->link_params.feature_config_flags |=
10931                        FEATURE_CONFIG_BOOT_FROM_SAN;
10932
10933        BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10934
10935        return rc;
10936}
10937
10938static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10939{
10940        u32 val, val2, val3, val4, id, boot_mode;
10941        u16 pmc;
10942
10943        /* Get the chip revision id and number. */
10944        /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10945        val = REG_RD(bp, MISC_REG_CHIP_NUM);
10946        id = ((val & 0xffff) << 16);
10947        val = REG_RD(bp, MISC_REG_CHIP_REV);
10948        id |= ((val & 0xf) << 12);
10949
10950        /* Metal is read from PCI regs, but we can't access >=0x400 from
10951         * the configuration space (so we need to reg_rd)
10952         */
10953        val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10954        id |= (((val >> 24) & 0xf) << 4);
10955        val = REG_RD(bp, MISC_REG_BOND_ID);
10956        id |= (val & 0xf);
10957        bp->common.chip_id = id;
10958
10959        /* force 57811 according to MISC register */
10960        if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10961                if (CHIP_IS_57810(bp))
10962                        bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10963                                (bp->common.chip_id & 0x0000FFFF);
10964                else if (CHIP_IS_57810_MF(bp))
10965                        bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10966                                (bp->common.chip_id & 0x0000FFFF);
10967                bp->common.chip_id |= 0x1;
10968        }
10969
10970        /* Set doorbell size */
10971        bp->db_size = (1 << BNX2X_DB_SHIFT);
10972
10973        if (!CHIP_IS_E1x(bp)) {
10974                val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10975                if ((val & 1) == 0)
10976                        val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10977                else
10978                        val = (val >> 1) & 1;
10979                BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10980                                                       "2_PORT_MODE");
10981                bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10982                                                 CHIP_2_PORT_MODE;
10983
10984                if (CHIP_MODE_IS_4_PORT(bp))
10985                        bp->pfid = (bp->pf_num >> 1);   /* 0..3 */
10986                else
10987                        bp->pfid = (bp->pf_num & 0x6);  /* 0, 2, 4, 6 */
10988        } else {
10989                bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10990                bp->pfid = bp->pf_num;                  /* 0..7 */
10991        }
10992
10993        BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10994
10995        bp->link_params.chip_id = bp->common.chip_id;
10996        BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10997
10998        val = (REG_RD(bp, 0x2874) & 0x55);
10999        if ((bp->common.chip_id & 0x1) ||
11000            (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
11001                bp->flags |= ONE_PORT_FLAG;
11002                BNX2X_DEV_INFO("single port device\n");
11003        }
11004
11005        val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
11006        bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
11007                                 (val & MCPR_NVM_CFG4_FLASH_SIZE));
11008        BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
11009                       bp->common.flash_size, bp->common.flash_size);
11010
11011        bnx2x_init_shmem(bp);
11012
11013        bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
11014                                        MISC_REG_GENERIC_CR_1 :
11015                                        MISC_REG_GENERIC_CR_0));
11016
11017        bp->link_params.shmem_base = bp->common.shmem_base;
11018        bp->link_params.shmem2_base = bp->common.shmem2_base;
11019        if (SHMEM2_RD(bp, size) >
11020            (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
11021                bp->link_params.lfa_base =
11022                REG_RD(bp, bp->common.shmem2_base +
11023                       (u32)offsetof(struct shmem2_region,
11024                                     lfa_host_addr[BP_PORT(bp)]));
11025        else
11026                bp->link_params.lfa_base = 0;
11027        BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
11028                       bp->common.shmem_base, bp->common.shmem2_base);
11029
11030        if (!bp->common.shmem_base) {
11031                BNX2X_DEV_INFO("MCP not active\n");
11032                bp->flags |= NO_MCP_FLAG;
11033                return;
11034        }
11035
11036        bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
11037        BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
11038
11039        bp->link_params.hw_led_mode = ((bp->common.hw_config &
11040                                        SHARED_HW_CFG_LED_MODE_MASK) >>
11041                                       SHARED_HW_CFG_LED_MODE_SHIFT);
11042
11043        bp->link_params.feature_config_flags = 0;
11044        val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
11045        if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
11046                bp->link_params.feature_config_flags |=
11047                                FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11048        else
11049                bp->link_params.feature_config_flags &=
11050                                ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11051
11052        val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
11053        bp->common.bc_ver = val;
11054        BNX2X_DEV_INFO("bc_ver %X\n", val);
11055        if (val < BNX2X_BC_VER) {
11056                /* for now only warn
11057                 * later we might need to enforce this */
11058                BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
11059                          BNX2X_BC_VER, val);
11060        }
11061        bp->link_params.feature_config_flags |=
11062                                (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
11063                                FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
11064
11065        bp->link_params.feature_config_flags |=
11066                (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
11067                FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
11068        bp->link_params.feature_config_flags |=
11069                (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
11070                FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
11071        bp->link_params.feature_config_flags |=
11072                (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
11073                FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
11074
11075        bp->link_params.feature_config_flags |=
11076                (val >= REQ_BC_VER_4_MT_SUPPORTED) ?
11077                FEATURE_CONFIG_MT_SUPPORT : 0;
11078
11079        bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
11080                        BC_SUPPORTS_PFC_STATS : 0;
11081
11082        bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
11083                        BC_SUPPORTS_FCOE_FEATURES : 0;
11084
11085        bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
11086                        BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
11087
11088        bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
11089                        BC_SUPPORTS_RMMOD_CMD : 0;
11090
11091        boot_mode = SHMEM_RD(bp,
11092                        dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
11093                        PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
11094        switch (boot_mode) {
11095        case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
11096                bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
11097                break;
11098        case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
11099                bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
11100                break;
11101        case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
11102                bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
11103                break;
11104        case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
11105                bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
11106                break;
11107        }
11108
11109        pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
11110        bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
11111
11112        BNX2X_DEV_INFO("%sWoL capable\n",
11113                       (bp->flags & NO_WOL_FLAG) ? "not " : "");
11114
11115        val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
11116        val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
11117        val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
11118        val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
11119
11120        dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
11121                 val, val2, val3, val4);
11122}
11123
11124#define IGU_FID(val)    GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
11125#define IGU_VEC(val)    GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
11126
11127static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
11128{
11129        int pfid = BP_FUNC(bp);
11130        int igu_sb_id;
11131        u32 val;
11132        u8 fid, igu_sb_cnt = 0;
11133
11134        bp->igu_base_sb = 0xff;
11135        if (CHIP_INT_MODE_IS_BC(bp)) {
11136                int vn = BP_VN(bp);
11137                igu_sb_cnt = bp->igu_sb_cnt;
11138                bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
11139                        FP_SB_MAX_E1x;
11140
11141                bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
11142                        (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
11143
11144                return 0;
11145        }
11146
11147        /* IGU in normal mode - read CAM */
11148        for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
11149             igu_sb_id++) {
11150                val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
11151                if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
11152                        continue;
11153                fid = IGU_FID(val);
11154                if ((fid & IGU_FID_ENCODE_IS_PF)) {
11155                        if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
11156                                continue;
11157                        if (IGU_VEC(val) == 0)
11158                                /* default status block */
11159                                bp->igu_dsb_id = igu_sb_id;
11160                        else {
11161                                if (bp->igu_base_sb == 0xff)
11162                                        bp->igu_base_sb = igu_sb_id;
11163                                igu_sb_cnt++;
11164                        }
11165                }
11166        }
11167
11168#ifdef CONFIG_PCI_MSI
11169        /* Due to new PF resource allocation by MFW T7.4 and above, it's
11170         * optional that number of CAM entries will not be equal to the value
11171         * advertised in PCI.
11172         * Driver should use the minimal value of both as the actual status
11173         * block count
11174         */
11175        bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
11176#endif
11177
11178        if (igu_sb_cnt == 0) {
11179                BNX2X_ERR("CAM configuration error\n");
11180                return -EINVAL;
11181        }
11182
11183        return 0;
11184}
11185
11186static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
11187{
11188        int cfg_size = 0, idx, port = BP_PORT(bp);
11189
11190        /* Aggregation of supported attributes of all external phys */
11191        bp->port.supported[0] = 0;
11192        bp->port.supported[1] = 0;
11193        switch (bp->link_params.num_phys) {
11194        case 1:
11195                bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
11196                cfg_size = 1;
11197                break;
11198        case 2:
11199                bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
11200                cfg_size = 1;
11201                break;
11202        case 3:
11203                if (bp->link_params.multi_phy_config &
11204                    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
11205                        bp->port.supported[1] =
11206                                bp->link_params.phy[EXT_PHY1].supported;
11207                        bp->port.supported[0] =
11208                                bp->link_params.phy[EXT_PHY2].supported;
11209                } else {
11210                        bp->port.supported[0] =
11211                                bp->link_params.phy[EXT_PHY1].supported;
11212                        bp->port.supported[1] =
11213                                bp->link_params.phy[EXT_PHY2].supported;
11214                }
11215                cfg_size = 2;
11216                break;
11217        }
11218
11219        if (!(bp->port.supported[0] || bp->port.supported[1])) {
11220                BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
11221                           SHMEM_RD(bp,
11222                           dev_info.port_hw_config[port].external_phy_config),
11223                           SHMEM_RD(bp,
11224                           dev_info.port_hw_config[port].external_phy_config2));
11225                        return;
11226        }
11227
11228        if (CHIP_IS_E3(bp))
11229                bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
11230        else {
11231                switch (switch_cfg) {
11232                case SWITCH_CFG_1G:
11233                        bp->port.phy_addr = REG_RD(
11234                                bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
11235                        break;
11236                case SWITCH_CFG_10G:
11237                        bp->port.phy_addr = REG_RD(
11238                                bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
11239                        break;
11240                default:
11241                        BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
11242                                  bp->port.link_config[0]);
11243                        return;
11244                }
11245        }
11246        BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
11247        /* mask what we support according to speed_cap_mask per configuration */
11248        for (idx = 0; idx < cfg_size; idx++) {
11249                if (!(bp->link_params.speed_cap_mask[idx] &
11250                                PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
11251                        bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
11252
11253                if (!(bp->link_params.speed_cap_mask[idx] &
11254                                PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
11255                        bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
11256
11257                if (!(bp->link_params.speed_cap_mask[idx] &
11258                                PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
11259                        bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
11260
11261                if (!(bp->link_params.speed_cap_mask[idx] &
11262                                PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
11263                        bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
11264
11265                if (!(bp->link_params.speed_cap_mask[idx] &
11266                                        PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
11267                        bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
11268                                                     SUPPORTED_1000baseT_Full);
11269
11270                if (!(bp->link_params.speed_cap_mask[idx] &
11271                                        PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
11272                        bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
11273
11274                if (!(bp->link_params.speed_cap_mask[idx] &
11275                                        PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
11276                        bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
11277
11278                if (!(bp->link_params.speed_cap_mask[idx] &
11279                                        PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
11280                        bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
11281        }
11282
11283        BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
11284                       bp->port.supported[1]);
11285}
11286
11287static void bnx2x_link_settings_requested(struct bnx2x *bp)
11288{
11289        u32 link_config, idx, cfg_size = 0;
11290        bp->port.advertising[0] = 0;
11291        bp->port.advertising[1] = 0;
11292        switch (bp->link_params.num_phys) {
11293        case 1:
11294        case 2:
11295                cfg_size = 1;
11296                break;
11297        case 3:
11298                cfg_size = 2;
11299                break;
11300        }
11301        for (idx = 0; idx < cfg_size; idx++) {
11302                bp->link_params.req_duplex[idx] = DUPLEX_FULL;
11303                link_config = bp->port.link_config[idx];
11304                switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
11305                case PORT_FEATURE_LINK_SPEED_AUTO:
11306                        if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
11307                                bp->link_params.req_line_speed[idx] =
11308                                        SPEED_AUTO_NEG;
11309                                bp->port.advertising[idx] |=
11310                                        bp->port.supported[idx];
11311                                if (bp->link_params.phy[EXT_PHY1].type ==
11312                                    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
11313                                        bp->port.advertising[idx] |=
11314                                        (SUPPORTED_100baseT_Half |
11315                                         SUPPORTED_100baseT_Full);
11316                        } else {
11317                                /* force 10G, no AN */
11318                                bp->link_params.req_line_speed[idx] =
11319                                        SPEED_10000;
11320                                bp->port.advertising[idx] |=
11321                                        (ADVERTISED_10000baseT_Full |
11322                                         ADVERTISED_FIBRE);
11323                                continue;
11324                        }
11325                        break;
11326
11327                case PORT_FEATURE_LINK_SPEED_10M_FULL:
11328                        if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
11329                                bp->link_params.req_line_speed[idx] =
11330                                        SPEED_10;
11331                                bp->port.advertising[idx] |=
11332                                        (ADVERTISED_10baseT_Full |
11333                                         ADVERTISED_TP);
11334                        } else {
11335                                BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11336                                            link_config,
11337                                    bp->link_params.speed_cap_mask[idx]);
11338                                return;
11339                        }
11340                        break;
11341
11342                case PORT_FEATURE_LINK_SPEED_10M_HALF:
11343                        if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
11344                                bp->link_params.req_line_speed[idx] =
11345                                        SPEED_10;
11346                                bp->link_params.req_duplex[idx] =
11347                                        DUPLEX_HALF;
11348                                bp->port.advertising[idx] |=
11349                                        (ADVERTISED_10baseT_Half |
11350                                         ADVERTISED_TP);
11351                        } else {
11352                                BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11353                                            link_config,
11354                                          bp->link_params.speed_cap_mask[idx]);
11355                                return;
11356                        }
11357                        break;
11358
11359                case PORT_FEATURE_LINK_SPEED_100M_FULL:
11360                        if (bp->port.supported[idx] &
11361                            SUPPORTED_100baseT_Full) {
11362                                bp->link_params.req_line_speed[idx] =
11363                                        SPEED_100;
11364                                bp->port.advertising[idx] |=
11365                                        (ADVERTISED_100baseT_Full |
11366                                         ADVERTISED_TP);
11367                        } else {
11368                                BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11369                                            link_config,
11370                                          bp->link_params.speed_cap_mask[idx]);
11371                                return;
11372                        }
11373                        break;
11374
11375                case PORT_FEATURE_LINK_SPEED_100M_HALF:
11376                        if (bp->port.supported[idx] &
11377                            SUPPORTED_100baseT_Half) {
11378                                bp->link_params.req_line_speed[idx] =
11379                                                                SPEED_100;
11380                                bp->link_params.req_duplex[idx] =
11381                                                                DUPLEX_HALF;
11382                                bp->port.advertising[idx] |=
11383                                        (ADVERTISED_100baseT_Half |
11384                                         ADVERTISED_TP);
11385                        } else {
11386                                BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11387                                    link_config,
11388                                    bp->link_params.speed_cap_mask[idx]);
11389                                return;
11390                        }
11391                        break;
11392
11393                case PORT_FEATURE_LINK_SPEED_1G:
11394                        if (bp->port.supported[idx] &
11395                            SUPPORTED_1000baseT_Full) {
11396                                bp->link_params.req_line_speed[idx] =
11397                                        SPEED_1000;
11398                                bp->port.advertising[idx] |=
11399                                        (ADVERTISED_1000baseT_Full |
11400                                         ADVERTISED_TP);
11401                        } else if (bp->port.supported[idx] &
11402                                   SUPPORTED_1000baseKX_Full) {
11403                                bp->link_params.req_line_speed[idx] =
11404                                        SPEED_1000;
11405                                bp->port.advertising[idx] |=
11406                                        ADVERTISED_1000baseKX_Full;
11407                        } else {
11408                                BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11409                                    link_config,
11410                                    bp->link_params.speed_cap_mask[idx]);
11411                                return;
11412                        }
11413                        break;
11414
11415                case PORT_FEATURE_LINK_SPEED_2_5G:
11416                        if (bp->port.supported[idx] &
11417                            SUPPORTED_2500baseX_Full) {
11418                                bp->link_params.req_line_speed[idx] =
11419                                        SPEED_2500;
11420                                bp->port.advertising[idx] |=
11421                                        (ADVERTISED_2500baseX_Full |
11422                                                ADVERTISED_TP);
11423                        } else {
11424                                BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11425                                    link_config,
11426                                    bp->link_params.speed_cap_mask[idx]);
11427                                return;
11428                        }
11429                        break;
11430
11431                case PORT_FEATURE_LINK_SPEED_10G_CX4:
11432                        if (bp->port.supported[idx] &
11433                            SUPPORTED_10000baseT_Full) {
11434                                bp->link_params.req_line_speed[idx] =
11435                                        SPEED_10000;
11436                                bp->port.advertising[idx] |=
11437                                        (ADVERTISED_10000baseT_Full |
11438                                                ADVERTISED_FIBRE);
11439                        } else if (bp->port.supported[idx] &
11440                                   SUPPORTED_10000baseKR_Full) {
11441                                bp->link_params.req_line_speed[idx] =
11442                                        SPEED_10000;
11443                                bp->port.advertising[idx] |=
11444                                        (ADVERTISED_10000baseKR_Full |
11445                                                ADVERTISED_FIBRE);
11446                        } else {
11447                                BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11448                                    link_config,
11449                                    bp->link_params.speed_cap_mask[idx]);
11450                                return;
11451                        }
11452                        break;
11453                case PORT_FEATURE_LINK_SPEED_20G:
11454                        bp->link_params.req_line_speed[idx] = SPEED_20000;
11455
11456                        break;
11457                default:
11458                        BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
11459                                  link_config);
11460                                bp->link_params.req_line_speed[idx] =
11461                                                        SPEED_AUTO_NEG;
11462                                bp->port.advertising[idx] =
11463                                                bp->port.supported[idx];
11464                        break;
11465                }
11466
11467                bp->link_params.req_flow_ctrl[idx] = (link_config &
11468                                         PORT_FEATURE_FLOW_CONTROL_MASK);
11469                if (bp->link_params.req_flow_ctrl[idx] ==
11470                    BNX2X_FLOW_CTRL_AUTO) {
11471                        if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
11472                                bp->link_params.req_flow_ctrl[idx] =
11473                                                        BNX2X_FLOW_CTRL_NONE;
11474                        else
11475                                bnx2x_set_requested_fc(bp);
11476                }
11477
11478                BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
11479                               bp->link_params.req_line_speed[idx],
11480                               bp->link_params.req_duplex[idx],
11481                               bp->link_params.req_flow_ctrl[idx],
11482                               bp->port.advertising[idx]);
11483        }
11484}
11485
11486static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
11487{
11488        __be16 mac_hi_be = cpu_to_be16(mac_hi);
11489        __be32 mac_lo_be = cpu_to_be32(mac_lo);
11490        memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
11491        memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
11492}
11493
11494static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
11495{
11496        int port = BP_PORT(bp);
11497        u32 config;
11498        u32 ext_phy_type, ext_phy_config, eee_mode;
11499
11500        bp->link_params.bp = bp;
11501        bp->link_params.port = port;
11502
11503        bp->link_params.lane_config =
11504                SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
11505
11506        bp->link_params.speed_cap_mask[0] =
11507                SHMEM_RD(bp,
11508                         dev_info.port_hw_config[port].speed_capability_mask) &
11509                PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11510        bp->link_params.speed_cap_mask[1] =
11511                SHMEM_RD(bp,
11512                         dev_info.port_hw_config[port].speed_capability_mask2) &
11513                PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11514        bp->port.link_config[0] =
11515                SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
11516
11517        bp->port.link_config[1] =
11518                SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
11519
11520        bp->link_params.multi_phy_config =
11521                SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
11522        /* If the device is capable of WoL, set the default state according
11523         * to the HW
11524         */
11525        config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
11526        bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
11527                   (config & PORT_FEATURE_WOL_ENABLED));
11528
11529        if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11530            PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
11531                bp->flags |= NO_ISCSI_FLAG;
11532        if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11533            PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
11534                bp->flags |= NO_FCOE_FLAG;
11535
11536        BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
11537                       bp->link_params.lane_config,
11538                       bp->link_params.speed_cap_mask[0],
11539                       bp->port.link_config[0]);
11540
11541        bp->link_params.switch_cfg = (bp->port.link_config[0] &
11542                                      PORT_FEATURE_CONNECTED_SWITCH_MASK);
11543        bnx2x_phy_probe(&bp->link_params);
11544        bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
11545
11546        bnx2x_link_settings_requested(bp);
11547
11548        /*
11549         * If connected directly, work with the internal PHY, otherwise, work
11550         * with the external PHY
11551         */
11552        ext_phy_config =
11553                SHMEM_RD(bp,
11554                         dev_info.port_hw_config[port].external_phy_config);
11555        ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
11556        if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
11557                bp->mdio.prtad = bp->port.phy_addr;
11558
11559        else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
11560                 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
11561                bp->mdio.prtad =
11562                        XGXS_EXT_PHY_ADDR(ext_phy_config);
11563
11564        /* Configure link feature according to nvram value */
11565        eee_mode = (((SHMEM_RD(bp, dev_info.
11566                      port_feature_config[port].eee_power_mode)) &
11567                     PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
11568                    PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
11569        if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
11570                bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
11571                                           EEE_MODE_ENABLE_LPI |
11572                                           EEE_MODE_OUTPUT_TIME;
11573        } else {
11574                bp->link_params.eee_mode = 0;
11575        }
11576}
11577
11578void bnx2x_get_iscsi_info(struct bnx2x *bp)
11579{
11580        u32 no_flags = NO_ISCSI_FLAG;
11581        int port = BP_PORT(bp);
11582        u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11583                                drv_lic_key[port].max_iscsi_conn);
11584
11585        if (!CNIC_SUPPORT(bp)) {
11586                bp->flags |= no_flags;
11587                return;
11588        }
11589
11590        /* Get the number of maximum allowed iSCSI connections */
11591        bp->cnic_eth_dev.max_iscsi_conn =
11592                (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
11593                BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
11594
11595        BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
11596                       bp->cnic_eth_dev.max_iscsi_conn);
11597
11598        /*
11599         * If maximum allowed number of connections is zero -
11600         * disable the feature.
11601         */
11602        if (!bp->cnic_eth_dev.max_iscsi_conn)
11603                bp->flags |= no_flags;
11604}
11605
11606static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
11607{
11608        /* Port info */
11609        bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11610                MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
11611        bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11612                MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
11613
11614        /* Node info */
11615        bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11616                MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
11617        bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11618                MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
11619}
11620
11621static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
11622{
11623        u8 count = 0;
11624
11625        if (IS_MF(bp)) {
11626                u8 fid;
11627
11628                /* iterate over absolute function ids for this path: */
11629                for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
11630                        if (IS_MF_SD(bp)) {
11631                                u32 cfg = MF_CFG_RD(bp,
11632                                                    func_mf_config[fid].config);
11633
11634                                if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
11635                                    ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
11636                                            FUNC_MF_CFG_PROTOCOL_FCOE))
11637                                        count++;
11638                        } else {
11639                                u32 cfg = MF_CFG_RD(bp,
11640                                                    func_ext_config[fid].
11641                                                                      func_cfg);
11642
11643                                if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
11644                                    (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
11645                                        count++;
11646                        }
11647                }
11648        } else { /* SF */
11649                int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
11650
11651                for (port = 0; port < port_cnt; port++) {
11652                        u32 lic = SHMEM_RD(bp,
11653                                           drv_lic_key[port].max_fcoe_conn) ^
11654                                  FW_ENCODE_32BIT_PATTERN;
11655                        if (lic)
11656                                count++;
11657                }
11658        }
11659
11660        return count;
11661}
11662
11663static void bnx2x_get_fcoe_info(struct bnx2x *bp)
11664{
11665        int port = BP_PORT(bp);
11666        int func = BP_ABS_FUNC(bp);
11667        u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11668                                drv_lic_key[port].max_fcoe_conn);
11669        u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
11670
11671        if (!CNIC_SUPPORT(bp)) {
11672                bp->flags |= NO_FCOE_FLAG;
11673                return;
11674        }
11675
11676        /* Get the number of maximum allowed FCoE connections */
11677        bp->cnic_eth_dev.max_fcoe_conn =
11678                (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
11679                BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
11680
11681        /* Calculate the number of maximum allowed FCoE tasks */
11682        bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
11683
11684        /* check if FCoE resources must be shared between different functions */
11685        if (num_fcoe_func)
11686                bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
11687
11688        /* Read the WWN: */
11689        if (!IS_MF(bp)) {
11690                /* Port info */
11691                bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11692                        SHMEM_RD(bp,
11693                                 dev_info.port_hw_config[port].
11694                                 fcoe_wwn_port_name_upper);
11695                bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11696                        SHMEM_RD(bp,
11697                                 dev_info.port_hw_config[port].
11698                                 fcoe_wwn_port_name_lower);
11699
11700                /* Node info */
11701                bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11702                        SHMEM_RD(bp,
11703                                 dev_info.port_hw_config[port].
11704                                 fcoe_wwn_node_name_upper);
11705                bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11706                        SHMEM_RD(bp,
11707                                 dev_info.port_hw_config[port].
11708                                 fcoe_wwn_node_name_lower);
11709        } else if (!IS_MF_SD(bp)) {
11710                /* Read the WWN info only if the FCoE feature is enabled for
11711                 * this function.
11712                 */
11713                if (BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp))
11714                        bnx2x_get_ext_wwn_info(bp, func);
11715        } else {
11716                if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
11717                        bnx2x_get_ext_wwn_info(bp, func);
11718        }
11719
11720        BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11721
11722        /*
11723         * If maximum allowed number of connections is zero -
11724         * disable the feature.
11725         */
11726        if (!bp->cnic_eth_dev.max_fcoe_conn)
11727                bp->flags |= NO_FCOE_FLAG;
11728}
11729
11730static void bnx2x_get_cnic_info(struct bnx2x *bp)
11731{
11732        /*
11733         * iSCSI may be dynamically disabled but reading
11734         * info here we will decrease memory usage by driver
11735         * if the feature is disabled for good
11736         */
11737        bnx2x_get_iscsi_info(bp);
11738        bnx2x_get_fcoe_info(bp);
11739}
11740
11741static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11742{
11743        u32 val, val2;
11744        int func = BP_ABS_FUNC(bp);
11745        int port = BP_PORT(bp);
11746        u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11747        u8 *fip_mac = bp->fip_mac;
11748
11749        if (IS_MF(bp)) {
11750                /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11751                 * FCoE MAC then the appropriate feature should be disabled.
11752                 * In non SD mode features configuration comes from struct
11753                 * func_ext_config.
11754                 */
11755                if (!IS_MF_SD(bp)) {
11756                        u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11757                        if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11758                                val2 = MF_CFG_RD(bp, func_ext_config[func].
11759                                                 iscsi_mac_addr_upper);
11760                                val = MF_CFG_RD(bp, func_ext_config[func].
11761                                                iscsi_mac_addr_lower);
11762                                bnx2x_set_mac_buf(iscsi_mac, val, val2);
11763                                BNX2X_DEV_INFO
11764                                        ("Read iSCSI MAC: %pM\n", iscsi_mac);
11765                        } else {
11766                                bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11767                        }
11768
11769                        if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11770                                val2 = MF_CFG_RD(bp, func_ext_config[func].
11771                                                 fcoe_mac_addr_upper);
11772                                val = MF_CFG_RD(bp, func_ext_config[func].
11773                                                fcoe_mac_addr_lower);
11774                                bnx2x_set_mac_buf(fip_mac, val, val2);
11775                                BNX2X_DEV_INFO
11776                                        ("Read FCoE L2 MAC: %pM\n", fip_mac);
11777                        } else {
11778                                bp->flags |= NO_FCOE_FLAG;
11779                        }
11780
11781                        bp->mf_ext_config = cfg;
11782
11783                } else { /* SD MODE */
11784                        if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11785                                /* use primary mac as iscsi mac */
11786                                memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11787
11788                                BNX2X_DEV_INFO("SD ISCSI MODE\n");
11789                                BNX2X_DEV_INFO
11790                                        ("Read iSCSI MAC: %pM\n", iscsi_mac);
11791                        } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11792                                /* use primary mac as fip mac */
11793                                memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11794                                BNX2X_DEV_INFO("SD FCoE MODE\n");
11795                                BNX2X_DEV_INFO
11796                                        ("Read FIP MAC: %pM\n", fip_mac);
11797                        }
11798                }
11799
11800                /* If this is a storage-only interface, use SAN mac as
11801                 * primary MAC. Notice that for SD this is already the case,
11802                 * as the SAN mac was copied from the primary MAC.
11803                 */
11804                if (IS_MF_FCOE_AFEX(bp))
11805                        memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11806        } else {
11807                val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11808                                iscsi_mac_upper);
11809                val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11810                               iscsi_mac_lower);
11811                bnx2x_set_mac_buf(iscsi_mac, val, val2);
11812
11813                val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11814                                fcoe_fip_mac_upper);
11815                val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11816                               fcoe_fip_mac_lower);
11817                bnx2x_set_mac_buf(fip_mac, val, val2);
11818        }
11819
11820        /* Disable iSCSI OOO if MAC configuration is invalid. */
11821        if (!is_valid_ether_addr(iscsi_mac)) {
11822                bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11823                eth_zero_addr(iscsi_mac);
11824        }
11825
11826        /* Disable FCoE if MAC configuration is invalid. */
11827        if (!is_valid_ether_addr(fip_mac)) {
11828                bp->flags |= NO_FCOE_FLAG;
11829                eth_zero_addr(bp->fip_mac);
11830        }
11831}
11832
11833static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11834{
11835        u32 val, val2;
11836        int func = BP_ABS_FUNC(bp);
11837        int port = BP_PORT(bp);
11838
11839        /* Zero primary MAC configuration */
11840        eth_zero_addr(bp->dev->dev_addr);
11841
11842        if (BP_NOMCP(bp)) {
11843                BNX2X_ERROR("warning: random MAC workaround active\n");
11844                eth_hw_addr_random(bp->dev);
11845        } else if (IS_MF(bp)) {
11846                val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11847                val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11848                if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11849                    (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11850                        bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11851
11852                if (CNIC_SUPPORT(bp))
11853                        bnx2x_get_cnic_mac_hwinfo(bp);
11854        } else {
11855                /* in SF read MACs from port configuration */
11856                val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11857                val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11858                bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11859
11860                if (CNIC_SUPPORT(bp))
11861                        bnx2x_get_cnic_mac_hwinfo(bp);
11862        }
11863
11864        if (!BP_NOMCP(bp)) {
11865                /* Read physical port identifier from shmem */
11866                val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11867                val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11868                bnx2x_set_mac_buf(bp->phys_port_id, val, val2);
11869                bp->flags |= HAS_PHYS_PORT_ID;
11870        }
11871
11872        memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11873
11874        if (!is_valid_ether_addr(bp->dev->dev_addr))
11875                dev_err(&bp->pdev->dev,
11876                        "bad Ethernet MAC address configuration: %pM\n"
11877                        "change it manually before bringing up the appropriate network interface\n",
11878                        bp->dev->dev_addr);
11879}
11880
11881static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11882{
11883        int tmp;
11884        u32 cfg;
11885
11886        if (IS_VF(bp))
11887                return false;
11888
11889        if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11890                /* Take function: tmp = func */
11891                tmp = BP_ABS_FUNC(bp);
11892                cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11893                cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11894        } else {
11895                /* Take port: tmp = port */
11896                tmp = BP_PORT(bp);
11897                cfg = SHMEM_RD(bp,
11898                               dev_info.port_hw_config[tmp].generic_features);
11899                cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11900        }
11901        return cfg;
11902}
11903
11904static void validate_set_si_mode(struct bnx2x *bp)
11905{
11906        u8 func = BP_ABS_FUNC(bp);
11907        u32 val;
11908
11909        val = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11910
11911        /* check for legal mac (upper bytes) */
11912        if (val != 0xffff) {
11913                bp->mf_mode = MULTI_FUNCTION_SI;
11914                bp->mf_config[BP_VN(bp)] =
11915                        MF_CFG_RD(bp, func_mf_config[func].config);
11916        } else
11917                BNX2X_DEV_INFO("illegal MAC address for SI\n");
11918}
11919
11920static int bnx2x_get_hwinfo(struct bnx2x *bp)
11921{
11922        int /*abs*/func = BP_ABS_FUNC(bp);
11923        int vn, mfw_vn;
11924        u32 val = 0, val2 = 0;
11925        int rc = 0;
11926
11927        /* Validate that chip access is feasible */
11928        if (REG_RD(bp, MISC_REG_CHIP_NUM) == 0xffffffff) {
11929                dev_err(&bp->pdev->dev,
11930                        "Chip read returns all Fs. Preventing probe from continuing\n");
11931                return -EINVAL;
11932        }
11933
11934        bnx2x_get_common_hwinfo(bp);
11935
11936        /*
11937         * initialize IGU parameters
11938         */
11939        if (CHIP_IS_E1x(bp)) {
11940                bp->common.int_block = INT_BLOCK_HC;
11941
11942                bp->igu_dsb_id = DEF_SB_IGU_ID;
11943                bp->igu_base_sb = 0;
11944        } else {
11945                bp->common.int_block = INT_BLOCK_IGU;
11946
11947                /* do not allow device reset during IGU info processing */
11948                bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11949
11950                val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11951
11952                if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11953                        int tout = 5000;
11954
11955                        BNX2X_DEV_INFO("FORCING Normal Mode\n");
11956
11957                        val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11958                        REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11959                        REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11960
11961                        while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11962                                tout--;
11963                                usleep_range(1000, 2000);
11964                        }
11965
11966                        if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11967                                dev_err(&bp->pdev->dev,
11968                                        "FORCING Normal Mode failed!!!\n");
11969                                bnx2x_release_hw_lock(bp,
11970                                                      HW_LOCK_RESOURCE_RESET);
11971                                return -EPERM;
11972                        }
11973                }
11974
11975                if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11976                        BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11977                        bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11978                } else
11979                        BNX2X_DEV_INFO("IGU Normal Mode\n");
11980
11981                rc = bnx2x_get_igu_cam_info(bp);
11982                bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11983                if (rc)
11984                        return rc;
11985        }
11986
11987        /*
11988         * set base FW non-default (fast path) status block id, this value is
11989         * used to initialize the fw_sb_id saved on the fp/queue structure to
11990         * determine the id used by the FW.
11991         */
11992        if (CHIP_IS_E1x(bp))
11993                bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11994        else /*
11995              * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11996              * the same queue are indicated on the same IGU SB). So we prefer
11997              * FW and IGU SBs to be the same value.
11998              */
11999                bp->base_fw_ndsb = bp->igu_base_sb;
12000
12001        BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
12002                       "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
12003                       bp->igu_sb_cnt, bp->base_fw_ndsb);
12004
12005        /*
12006         * Initialize MF configuration
12007         */
12008
12009        bp->mf_ov = 0;
12010        bp->mf_mode = 0;
12011        bp->mf_sub_mode = 0;
12012        vn = BP_VN(bp);
12013        mfw_vn = BP_FW_MB_IDX(bp);
12014
12015        if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
12016                BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
12017                               bp->common.shmem2_base, SHMEM2_RD(bp, size),
12018                              (u32)offsetof(struct shmem2_region, mf_cfg_addr));
12019
12020                if (SHMEM2_HAS(bp, mf_cfg_addr))
12021                        bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
12022                else
12023                        bp->common.mf_cfg_base = bp->common.shmem_base +
12024                                offsetof(struct shmem_region, func_mb) +
12025                                E1H_FUNC_MAX * sizeof(struct drv_func_mb);
12026                /*
12027                 * get mf configuration:
12028                 * 1. Existence of MF configuration
12029                 * 2. MAC address must be legal (check only upper bytes)
12030                 *    for  Switch-Independent mode;
12031                 *    OVLAN must be legal for Switch-Dependent mode
12032                 * 3. SF_MODE configures specific MF mode
12033                 */
12034                if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12035                        /* get mf configuration */
12036                        val = SHMEM_RD(bp,
12037                                       dev_info.shared_feature_config.config);
12038                        val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
12039
12040                        switch (val) {
12041                        case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
12042                                validate_set_si_mode(bp);
12043                                break;
12044                        case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
12045                                if ((!CHIP_IS_E1x(bp)) &&
12046                                    (MF_CFG_RD(bp, func_mf_config[func].
12047                                               mac_upper) != 0xffff) &&
12048                                    (SHMEM2_HAS(bp,
12049                                                afex_driver_support))) {
12050                                        bp->mf_mode = MULTI_FUNCTION_AFEX;
12051                                        bp->mf_config[vn] = MF_CFG_RD(bp,
12052                                                func_mf_config[func].config);
12053                                } else {
12054                                        BNX2X_DEV_INFO("can not configure afex mode\n");
12055                                }
12056                                break;
12057                        case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
12058                                /* get OV configuration */
12059                                val = MF_CFG_RD(bp,
12060                                        func_mf_config[FUNC_0].e1hov_tag);
12061                                val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
12062
12063                                if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12064                                        bp->mf_mode = MULTI_FUNCTION_SD;
12065                                        bp->mf_config[vn] = MF_CFG_RD(bp,
12066                                                func_mf_config[func].config);
12067                                } else
12068                                        BNX2X_DEV_INFO("illegal OV for SD\n");
12069                                break;
12070                        case SHARED_FEAT_CFG_FORCE_SF_MODE_BD_MODE:
12071                                bp->mf_mode = MULTI_FUNCTION_SD;
12072                                bp->mf_sub_mode = SUB_MF_MODE_BD;
12073                                bp->mf_config[vn] =
12074                                        MF_CFG_RD(bp,
12075                                                  func_mf_config[func].config);
12076
12077                                if (SHMEM2_HAS(bp, mtu_size)) {
12078                                        int mtu_idx = BP_FW_MB_IDX(bp);
12079                                        u16 mtu_size;
12080                                        u32 mtu;
12081
12082                                        mtu = SHMEM2_RD(bp, mtu_size[mtu_idx]);
12083                                        mtu_size = (u16)mtu;
12084                                        DP(NETIF_MSG_IFUP, "Read MTU size %04x [%08x]\n",
12085                                           mtu_size, mtu);
12086
12087                                        /* if valid: update device mtu */
12088                                        if (((mtu_size + ETH_HLEN) >=
12089                                             ETH_MIN_PACKET_SIZE) &&
12090                                            (mtu_size <=
12091                                             ETH_MAX_JUMBO_PACKET_SIZE))
12092                                                bp->dev->mtu = mtu_size;
12093                                }
12094                                break;
12095                        case SHARED_FEAT_CFG_FORCE_SF_MODE_UFP_MODE:
12096                                bp->mf_mode = MULTI_FUNCTION_SD;
12097                                bp->mf_sub_mode = SUB_MF_MODE_UFP;
12098                                bp->mf_config[vn] =
12099                                        MF_CFG_RD(bp,
12100                                                  func_mf_config[func].config);
12101                                break;
12102                        case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
12103                                bp->mf_config[vn] = 0;
12104                                break;
12105                        case SHARED_FEAT_CFG_FORCE_SF_MODE_EXTENDED_MODE:
12106                                val2 = SHMEM_RD(bp,
12107                                        dev_info.shared_hw_config.config_3);
12108                                val2 &= SHARED_HW_CFG_EXTENDED_MF_MODE_MASK;
12109                                switch (val2) {
12110                                case SHARED_HW_CFG_EXTENDED_MF_MODE_NPAR1_DOT_5:
12111                                        validate_set_si_mode(bp);
12112                                        bp->mf_sub_mode =
12113                                                        SUB_MF_MODE_NPAR1_DOT_5;
12114                                        break;
12115                                default:
12116                                        /* Unknown configuration */
12117                                        bp->mf_config[vn] = 0;
12118                                        BNX2X_DEV_INFO("unknown extended MF mode 0x%x\n",
12119                                                       val);
12120                                }
12121                                break;
12122                        default:
12123                                /* Unknown configuration: reset mf_config */
12124                                bp->mf_config[vn] = 0;
12125                                BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
12126                        }
12127                }
12128
12129                BNX2X_DEV_INFO("%s function mode\n",
12130                               IS_MF(bp) ? "multi" : "single");
12131
12132                switch (bp->mf_mode) {
12133                case MULTI_FUNCTION_SD:
12134                        val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
12135                              FUNC_MF_CFG_E1HOV_TAG_MASK;
12136                        if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12137                                bp->mf_ov = val;
12138                                bp->path_has_ovlan = true;
12139
12140                                BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
12141                                               func, bp->mf_ov, bp->mf_ov);
12142                        } else if ((bp->mf_sub_mode == SUB_MF_MODE_UFP) ||
12143                                   (bp->mf_sub_mode == SUB_MF_MODE_BD)) {
12144                                dev_err(&bp->pdev->dev,
12145                                        "Unexpected - no valid MF OV for func %d in UFP/BD mode\n",
12146                                        func);
12147                                bp->path_has_ovlan = true;
12148                        } else {
12149                                dev_err(&bp->pdev->dev,
12150                                        "No valid MF OV for func %d, aborting\n",
12151                                        func);
12152                                return -EPERM;
12153                        }
12154                        break;
12155                case MULTI_FUNCTION_AFEX:
12156                        BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
12157                        break;
12158                case MULTI_FUNCTION_SI:
12159                        BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
12160                                       func);
12161                        break;
12162                default:
12163                        if (vn) {
12164                                dev_err(&bp->pdev->dev,
12165                                        "VN %d is in a single function mode, aborting\n",
12166                                        vn);
12167                                return -EPERM;
12168                        }
12169                        break;
12170                }
12171
12172                /* check if other port on the path needs ovlan:
12173                 * Since MF configuration is shared between ports
12174                 * Possible mixed modes are only
12175                 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
12176                 */
12177                if (CHIP_MODE_IS_4_PORT(bp) &&
12178                    !bp->path_has_ovlan &&
12179                    !IS_MF(bp) &&
12180                    bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12181                        u8 other_port = !BP_PORT(bp);
12182                        u8 other_func = BP_PATH(bp) + 2*other_port;
12183                        val = MF_CFG_RD(bp,
12184                                        func_mf_config[other_func].e1hov_tag);
12185                        if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
12186                                bp->path_has_ovlan = true;
12187                }
12188        }
12189
12190        /* adjust igu_sb_cnt to MF for E1H */
12191        if (CHIP_IS_E1H(bp) && IS_MF(bp))
12192                bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT);
12193
12194        /* port info */
12195        bnx2x_get_port_hwinfo(bp);
12196
12197        /* Get MAC addresses */
12198        bnx2x_get_mac_hwinfo(bp);
12199
12200        bnx2x_get_cnic_info(bp);
12201
12202        return rc;
12203}
12204
12205static void bnx2x_read_fwinfo(struct bnx2x *bp)
12206{
12207        int cnt, i, block_end, rodi;
12208        char vpd_start[BNX2X_VPD_LEN+1];
12209        char str_id_reg[VENDOR_ID_LEN+1];
12210        char str_id_cap[VENDOR_ID_LEN+1];
12211        char *vpd_data;
12212        char *vpd_extended_data = NULL;
12213        u8 len;
12214
12215        cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
12216        memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
12217
12218        if (cnt < BNX2X_VPD_LEN)
12219                goto out_not_found;
12220
12221        /* VPD RO tag should be first tag after identifier string, hence
12222         * we should be able to find it in first BNX2X_VPD_LEN chars
12223         */
12224        i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
12225                             PCI_VPD_LRDT_RO_DATA);
12226        if (i < 0)
12227                goto out_not_found;
12228
12229        block_end = i + PCI_VPD_LRDT_TAG_SIZE +
12230                    pci_vpd_lrdt_size(&vpd_start[i]);
12231
12232        i += PCI_VPD_LRDT_TAG_SIZE;
12233
12234        if (block_end > BNX2X_VPD_LEN) {
12235                vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
12236                if (vpd_extended_data  == NULL)
12237                        goto out_not_found;
12238
12239                /* read rest of vpd image into vpd_extended_data */
12240                memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
12241                cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
12242                                   block_end - BNX2X_VPD_LEN,
12243                                   vpd_extended_data + BNX2X_VPD_LEN);
12244                if (cnt < (block_end - BNX2X_VPD_LEN))
12245                        goto out_not_found;
12246                vpd_data = vpd_extended_data;
12247        } else
12248                vpd_data = vpd_start;
12249
12250        /* now vpd_data holds full vpd content in both cases */
12251
12252        rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
12253                                   PCI_VPD_RO_KEYWORD_MFR_ID);
12254        if (rodi < 0)
12255                goto out_not_found;
12256
12257        len = pci_vpd_info_field_size(&vpd_data[rodi]);
12258
12259        if (len != VENDOR_ID_LEN)
12260                goto out_not_found;
12261
12262        rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
12263
12264        /* vendor specific info */
12265        snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
12266        snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
12267        if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
12268            !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
12269
12270                rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
12271                                                PCI_VPD_RO_KEYWORD_VENDOR0);
12272                if (rodi >= 0) {
12273                        len = pci_vpd_info_field_size(&vpd_data[rodi]);
12274
12275                        rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
12276
12277                        if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
12278                                memcpy(bp->fw_ver, &vpd_data[rodi], len);
12279                                bp->fw_ver[len] = ' ';
12280                        }
12281                }
12282                kfree(vpd_extended_data);
12283                return;
12284        }
12285out_not_found:
12286        kfree(vpd_extended_data);
12287        return;
12288}
12289
12290static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
12291{
12292        u32 flags = 0;
12293
12294        if (CHIP_REV_IS_FPGA(bp))
12295                SET_FLAGS(flags, MODE_FPGA);
12296        else if (CHIP_REV_IS_EMUL(bp))
12297                SET_FLAGS(flags, MODE_EMUL);
12298        else
12299                SET_FLAGS(flags, MODE_ASIC);
12300
12301        if (CHIP_MODE_IS_4_PORT(bp))
12302                SET_FLAGS(flags, MODE_PORT4);
12303        else
12304                SET_FLAGS(flags, MODE_PORT2);
12305
12306        if (CHIP_IS_E2(bp))
12307                SET_FLAGS(flags, MODE_E2);
12308        else if (CHIP_IS_E3(bp)) {
12309                SET_FLAGS(flags, MODE_E3);
12310                if (CHIP_REV(bp) == CHIP_REV_Ax)
12311                        SET_FLAGS(flags, MODE_E3_A0);
12312                else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
12313                        SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
12314        }
12315
12316        if (IS_MF(bp)) {
12317                SET_FLAGS(flags, MODE_MF);
12318                switch (bp->mf_mode) {
12319                case MULTI_FUNCTION_SD:
12320                        SET_FLAGS(flags, MODE_MF_SD);
12321                        break;
12322                case MULTI_FUNCTION_SI:
12323                        SET_FLAGS(flags, MODE_MF_SI);
12324                        break;
12325                case MULTI_FUNCTION_AFEX:
12326                        SET_FLAGS(flags, MODE_MF_AFEX);
12327                        break;
12328                }
12329        } else
12330                SET_FLAGS(flags, MODE_SF);
12331
12332#if defined(__LITTLE_ENDIAN)
12333        SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
12334#else /*(__BIG_ENDIAN)*/
12335        SET_FLAGS(flags, MODE_BIG_ENDIAN);
12336#endif
12337        INIT_MODE_FLAGS(bp) = flags;
12338}
12339
12340static int bnx2x_init_bp(struct bnx2x *bp)
12341{
12342        int func;
12343        int rc;
12344
12345        mutex_init(&bp->port.phy_mutex);
12346        mutex_init(&bp->fw_mb_mutex);
12347        mutex_init(&bp->drv_info_mutex);
12348        sema_init(&bp->stats_lock, 1);
12349        bp->drv_info_mng_owner = false;
12350        INIT_LIST_HEAD(&bp->vlan_reg);
12351
12352        INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
12353        INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
12354        INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
12355        INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task);
12356        if (IS_PF(bp)) {
12357                rc = bnx2x_get_hwinfo(bp);
12358                if (rc)
12359                        return rc;
12360        } else {
12361                eth_zero_addr(bp->dev->dev_addr);
12362        }
12363
12364        bnx2x_set_modes_bitmap(bp);
12365
12366        rc = bnx2x_alloc_mem_bp(bp);
12367        if (rc)
12368                return rc;
12369
12370        bnx2x_read_fwinfo(bp);
12371
12372        func = BP_FUNC(bp);
12373
12374        /* need to reset chip if undi was active */
12375        if (IS_PF(bp) && !BP_NOMCP(bp)) {
12376                /* init fw_seq */
12377                bp->fw_seq =
12378                        SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
12379                                                        DRV_MSG_SEQ_NUMBER_MASK;
12380                BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
12381
12382                rc = bnx2x_prev_unload(bp);
12383                if (rc) {
12384                        bnx2x_free_mem_bp(bp);
12385                        return rc;
12386                }
12387        }
12388
12389        if (CHIP_REV_IS_FPGA(bp))
12390                dev_err(&bp->pdev->dev, "FPGA detected\n");
12391
12392        if (BP_NOMCP(bp) && (func == 0))
12393                dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
12394
12395        bp->disable_tpa = disable_tpa;
12396        bp->disable_tpa |= !!IS_MF_STORAGE_ONLY(bp);
12397        /* Reduce memory usage in kdump environment by disabling TPA */
12398        bp->disable_tpa |= is_kdump_kernel();
12399
12400        /* Set TPA flags */
12401        if (bp->disable_tpa) {
12402                bp->dev->hw_features &= ~NETIF_F_LRO;
12403                bp->dev->features &= ~NETIF_F_LRO;
12404        }
12405
12406        if (CHIP_IS_E1(bp))
12407                bp->dropless_fc = 0;
12408        else
12409                bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
12410
12411        bp->mrrs = mrrs;
12412
12413        bp->tx_ring_size = IS_MF_STORAGE_ONLY(bp) ? 0 : MAX_TX_AVAIL;
12414        if (IS_VF(bp))
12415                bp->rx_ring_size = MAX_RX_AVAIL;
12416
12417        /* make sure that the numbers are in the right granularity */
12418        bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
12419        bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
12420
12421        bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
12422
12423        init_timer(&bp->timer);
12424        bp->timer.expires = jiffies + bp->current_interval;
12425        bp->timer.data = (unsigned long) bp;
12426        bp->timer.function = bnx2x_timer;
12427
12428        if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
12429            SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
12430            SHMEM2_HAS(bp, dcbx_en) &&
12431            SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
12432            SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset) &&
12433            SHMEM2_RD(bp, dcbx_en[BP_PORT(bp)])) {
12434                bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
12435                bnx2x_dcbx_init_params(bp);
12436        } else {
12437                bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
12438        }
12439
12440        if (CHIP_IS_E1x(bp))
12441                bp->cnic_base_cl_id = FP_SB_MAX_E1x;
12442        else
12443                bp->cnic_base_cl_id = FP_SB_MAX_E2;
12444
12445        /* multiple tx priority */
12446        if (IS_VF(bp))
12447                bp->max_cos = 1;
12448        else if (CHIP_IS_E1x(bp))
12449                bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
12450        else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
12451                bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
12452        else if (CHIP_IS_E3B0(bp))
12453                bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
12454        else
12455                BNX2X_ERR("unknown chip %x revision %x\n",
12456                          CHIP_NUM(bp), CHIP_REV(bp));
12457        BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
12458
12459        /* We need at least one default status block for slow-path events,
12460         * second status block for the L2 queue, and a third status block for
12461         * CNIC if supported.
12462         */
12463        if (IS_VF(bp))
12464                bp->min_msix_vec_cnt = 1;
12465        else if (CNIC_SUPPORT(bp))
12466                bp->min_msix_vec_cnt = 3;
12467        else /* PF w/o cnic */
12468                bp->min_msix_vec_cnt = 2;
12469        BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
12470
12471        bp->dump_preset_idx = 1;
12472
12473        if (CHIP_IS_E3B0(bp))
12474                bp->flags |= PTP_SUPPORTED;
12475
12476        return rc;
12477}
12478
12479/****************************************************************************
12480* General service functions
12481****************************************************************************/
12482
12483/*
12484 * net_device service functions
12485 */
12486
12487/* called with rtnl_lock */
12488static int bnx2x_open(struct net_device *dev)
12489{
12490        struct bnx2x *bp = netdev_priv(dev);
12491        int rc;
12492
12493        bp->stats_init = true;
12494
12495        netif_carrier_off(dev);
12496
12497        bnx2x_set_power_state(bp, PCI_D0);
12498
12499        /* If parity had happen during the unload, then attentions
12500         * and/or RECOVERY_IN_PROGRES may still be set. In this case we
12501         * want the first function loaded on the current engine to
12502         * complete the recovery.
12503         * Parity recovery is only relevant for PF driver.
12504         */
12505        if (IS_PF(bp)) {
12506                int other_engine = BP_PATH(bp) ? 0 : 1;
12507                bool other_load_status, load_status;
12508                bool global = false;
12509
12510                other_load_status = bnx2x_get_load_status(bp, other_engine);
12511                load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
12512                if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
12513                    bnx2x_chk_parity_attn(bp, &global, true)) {
12514                        do {
12515                                /* If there are attentions and they are in a
12516                                 * global blocks, set the GLOBAL_RESET bit
12517                                 * regardless whether it will be this function
12518                                 * that will complete the recovery or not.
12519                                 */
12520                                if (global)
12521                                        bnx2x_set_reset_global(bp);
12522
12523                                /* Only the first function on the current
12524                                 * engine should try to recover in open. In case
12525                                 * of attentions in global blocks only the first
12526                                 * in the chip should try to recover.
12527                                 */
12528                                if ((!load_status &&
12529                                     (!global || !other_load_status)) &&
12530                                      bnx2x_trylock_leader_lock(bp) &&
12531                                      !bnx2x_leader_reset(bp)) {
12532                                        netdev_info(bp->dev,
12533                                                    "Recovered in open\n");
12534                                        break;
12535                                }
12536
12537                                /* recovery has failed... */
12538                                bnx2x_set_power_state(bp, PCI_D3hot);
12539                                bp->recovery_state = BNX2X_RECOVERY_FAILED;
12540
12541                                BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
12542                                          "If you still see this message after a few retries then power cycle is required.\n");
12543
12544                                return -EAGAIN;
12545                        } while (0);
12546                }
12547        }
12548
12549        bp->recovery_state = BNX2X_RECOVERY_DONE;
12550        rc = bnx2x_nic_load(bp, LOAD_OPEN);
12551        if (rc)
12552                return rc;
12553
12554#ifdef CONFIG_BNX2X_VXLAN
12555        if (IS_PF(bp))
12556                vxlan_get_rx_port(dev);
12557#endif
12558#if IS_ENABLED(CONFIG_BNX2X_GENEVE)
12559        if (IS_PF(bp))
12560                geneve_get_rx_port(dev);
12561#endif
12562
12563        return 0;
12564}
12565
12566/* called with rtnl_lock */
12567static int bnx2x_close(struct net_device *dev)
12568{
12569        struct bnx2x *bp = netdev_priv(dev);
12570
12571        /* Unload the driver, release IRQs */
12572        bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
12573
12574        return 0;
12575}
12576
12577static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
12578                                      struct bnx2x_mcast_ramrod_params *p)
12579{
12580        int mc_count = netdev_mc_count(bp->dev);
12581        struct bnx2x_mcast_list_elem *mc_mac =
12582                kcalloc(mc_count, sizeof(*mc_mac), GFP_ATOMIC);
12583        struct netdev_hw_addr *ha;
12584
12585        if (!mc_mac)
12586                return -ENOMEM;
12587
12588        INIT_LIST_HEAD(&p->mcast_list);
12589
12590        netdev_for_each_mc_addr(ha, bp->dev) {
12591                mc_mac->mac = bnx2x_mc_addr(ha);
12592                list_add_tail(&mc_mac->link, &p->mcast_list);
12593                mc_mac++;
12594        }
12595
12596        p->mcast_list_len = mc_count;
12597
12598        return 0;
12599}
12600
12601static void bnx2x_free_mcast_macs_list(
12602        struct bnx2x_mcast_ramrod_params *p)
12603{
12604        struct bnx2x_mcast_list_elem *mc_mac =
12605                list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
12606                                 link);
12607
12608        WARN_ON(!mc_mac);
12609        kfree(mc_mac);
12610}
12611
12612/**
12613 * bnx2x_set_uc_list - configure a new unicast MACs list.
12614 *
12615 * @bp: driver handle
12616 *
12617 * We will use zero (0) as a MAC type for these MACs.
12618 */
12619static int bnx2x_set_uc_list(struct bnx2x *bp)
12620{
12621        int rc;
12622        struct net_device *dev = bp->dev;
12623        struct netdev_hw_addr *ha;
12624        struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
12625        unsigned long ramrod_flags = 0;
12626
12627        /* First schedule a cleanup up of old configuration */
12628        rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
12629        if (rc < 0) {
12630                BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
12631                return rc;
12632        }
12633
12634        netdev_for_each_uc_addr(ha, dev) {
12635                rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
12636                                       BNX2X_UC_LIST_MAC, &ramrod_flags);
12637                if (rc == -EEXIST) {
12638                        DP(BNX2X_MSG_SP,
12639                           "Failed to schedule ADD operations: %d\n", rc);
12640                        /* do not treat adding same MAC as error */
12641                        rc = 0;
12642
12643                } else if (rc < 0) {
12644
12645                        BNX2X_ERR("Failed to schedule ADD operations: %d\n",
12646                                  rc);
12647                        return rc;
12648                }
12649        }
12650
12651        /* Execute the pending commands */
12652        __set_bit(RAMROD_CONT, &ramrod_flags);
12653        return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
12654                                 BNX2X_UC_LIST_MAC, &ramrod_flags);
12655}
12656
12657static int bnx2x_set_mc_list(struct bnx2x *bp)
12658{
12659        struct net_device *dev = bp->dev;
12660        struct bnx2x_mcast_ramrod_params rparam = {NULL};
12661        int rc = 0;
12662
12663        rparam.mcast_obj = &bp->mcast_obj;
12664
12665        /* first, clear all configured multicast MACs */
12666        rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12667        if (rc < 0) {
12668                BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
12669                return rc;
12670        }
12671
12672        /* then, configure a new MACs list */
12673        if (netdev_mc_count(dev)) {
12674                rc = bnx2x_init_mcast_macs_list(bp, &rparam);
12675                if (rc) {
12676                        BNX2X_ERR("Failed to create multicast MACs list: %d\n",
12677                                  rc);
12678                        return rc;
12679                }
12680
12681                /* Now add the new MACs */
12682                rc = bnx2x_config_mcast(bp, &rparam,
12683                                        BNX2X_MCAST_CMD_ADD);
12684                if (rc < 0)
12685                        BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12686                                  rc);
12687
12688                bnx2x_free_mcast_macs_list(&rparam);
12689        }
12690
12691        return rc;
12692}
12693
12694/* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
12695static void bnx2x_set_rx_mode(struct net_device *dev)
12696{
12697        struct bnx2x *bp = netdev_priv(dev);
12698
12699        if (bp->state != BNX2X_STATE_OPEN) {
12700                DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
12701                return;
12702        } else {
12703                /* Schedule an SP task to handle rest of change */
12704                bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE,
12705                                       NETIF_MSG_IFUP);
12706        }
12707}
12708
12709void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
12710{
12711        u32 rx_mode = BNX2X_RX_MODE_NORMAL;
12712
12713        DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
12714
12715        netif_addr_lock_bh(bp->dev);
12716
12717        if (bp->dev->flags & IFF_PROMISC) {
12718                rx_mode = BNX2X_RX_MODE_PROMISC;
12719        } else if ((bp->dev->flags & IFF_ALLMULTI) ||
12720                   ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
12721                    CHIP_IS_E1(bp))) {
12722                rx_mode = BNX2X_RX_MODE_ALLMULTI;
12723        } else {
12724                if (IS_PF(bp)) {
12725                        /* some multicasts */
12726                        if (bnx2x_set_mc_list(bp) < 0)
12727                                rx_mode = BNX2X_RX_MODE_ALLMULTI;
12728
12729                        /* release bh lock, as bnx2x_set_uc_list might sleep */
12730                        netif_addr_unlock_bh(bp->dev);
12731                        if (bnx2x_set_uc_list(bp) < 0)
12732                                rx_mode = BNX2X_RX_MODE_PROMISC;
12733                        netif_addr_lock_bh(bp->dev);
12734                } else {
12735                        /* configuring mcast to a vf involves sleeping (when we
12736                         * wait for the pf's response).
12737                         */
12738                        bnx2x_schedule_sp_rtnl(bp,
12739                                               BNX2X_SP_RTNL_VFPF_MCAST, 0);
12740                }
12741        }
12742
12743        bp->rx_mode = rx_mode;
12744        /* handle ISCSI SD mode */
12745        if (IS_MF_ISCSI_ONLY(bp))
12746                bp->rx_mode = BNX2X_RX_MODE_NONE;
12747
12748        /* Schedule the rx_mode command */
12749        if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
12750                set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
12751                netif_addr_unlock_bh(bp->dev);
12752                return;
12753        }
12754
12755        if (IS_PF(bp)) {
12756                bnx2x_set_storm_rx_mode(bp);
12757                netif_addr_unlock_bh(bp->dev);
12758        } else {
12759                /* VF will need to request the PF to make this change, and so
12760                 * the VF needs to release the bottom-half lock prior to the
12761                 * request (as it will likely require sleep on the VF side)
12762                 */
12763                netif_addr_unlock_bh(bp->dev);
12764                bnx2x_vfpf_storm_rx_mode(bp);
12765        }
12766}
12767
12768/* called with rtnl_lock */
12769static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
12770                           int devad, u16 addr)
12771{
12772        struct bnx2x *bp = netdev_priv(netdev);
12773        u16 value;
12774        int rc;
12775
12776        DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
12777           prtad, devad, addr);
12778
12779        /* The HW expects different devad if CL22 is used */
12780        devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12781
12782        bnx2x_acquire_phy_lock(bp);
12783        rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
12784        bnx2x_release_phy_lock(bp);
12785        DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
12786
12787        if (!rc)
12788                rc = value;
12789        return rc;
12790}
12791
12792/* called with rtnl_lock */
12793static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
12794                            u16 addr, u16 value)
12795{
12796        struct bnx2x *bp = netdev_priv(netdev);
12797        int rc;
12798
12799        DP(NETIF_MSG_LINK,
12800           "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
12801           prtad, devad, addr, value);
12802
12803        /* The HW expects different devad if CL22 is used */
12804        devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12805
12806        bnx2x_acquire_phy_lock(bp);
12807        rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
12808        bnx2x_release_phy_lock(bp);
12809        return rc;
12810}
12811
12812/* called with rtnl_lock */
12813static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12814{
12815        struct bnx2x *bp = netdev_priv(dev);
12816        struct mii_ioctl_data *mdio = if_mii(ifr);
12817
12818        if (!netif_running(dev))
12819                return -EAGAIN;
12820
12821        switch (cmd) {
12822        case SIOCSHWTSTAMP:
12823                return bnx2x_hwtstamp_ioctl(bp, ifr);
12824        default:
12825                DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12826                   mdio->phy_id, mdio->reg_num, mdio->val_in);
12827                return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12828        }
12829}
12830
12831#ifdef CONFIG_NET_POLL_CONTROLLER
12832static void poll_bnx2x(struct net_device *dev)
12833{
12834        struct bnx2x *bp = netdev_priv(dev);
12835        int i;
12836
12837        for_each_eth_queue(bp, i) {
12838                struct bnx2x_fastpath *fp = &bp->fp[i];
12839                napi_schedule(&bnx2x_fp(bp, fp->index, napi));
12840        }
12841}
12842#endif
12843
12844static int bnx2x_validate_addr(struct net_device *dev)
12845{
12846        struct bnx2x *bp = netdev_priv(dev);
12847
12848        /* query the bulletin board for mac address configured by the PF */
12849        if (IS_VF(bp))
12850                bnx2x_sample_bulletin(bp);
12851
12852        if (!is_valid_ether_addr(dev->dev_addr)) {
12853                BNX2X_ERR("Non-valid Ethernet address\n");
12854                return -EADDRNOTAVAIL;
12855        }
12856        return 0;
12857}
12858
12859static int bnx2x_get_phys_port_id(struct net_device *netdev,
12860                                  struct netdev_phys_item_id *ppid)
12861{
12862        struct bnx2x *bp = netdev_priv(netdev);
12863
12864        if (!(bp->flags & HAS_PHYS_PORT_ID))
12865                return -EOPNOTSUPP;
12866
12867        ppid->id_len = sizeof(bp->phys_port_id);
12868        memcpy(ppid->id, bp->phys_port_id, ppid->id_len);
12869
12870        return 0;
12871}
12872
12873static netdev_features_t bnx2x_features_check(struct sk_buff *skb,
12874                                              struct net_device *dev,
12875                                              netdev_features_t features)
12876{
12877        features = vlan_features_check(skb, features);
12878        return vxlan_features_check(skb, features);
12879}
12880
12881static int __bnx2x_vlan_configure_vid(struct bnx2x *bp, u16 vid, bool add)
12882{
12883        int rc;
12884
12885        if (IS_PF(bp)) {
12886                unsigned long ramrod_flags = 0;
12887
12888                __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12889                rc = bnx2x_set_vlan_one(bp, vid, &bp->sp_objs->vlan_obj,
12890                                        add, &ramrod_flags);
12891        } else {
12892                rc = bnx2x_vfpf_update_vlan(bp, vid, bp->fp->index, add);
12893        }
12894
12895        return rc;
12896}
12897
12898int bnx2x_vlan_reconfigure_vid(struct bnx2x *bp)
12899{
12900        struct bnx2x_vlan_entry *vlan;
12901        int rc = 0;
12902
12903        if (!bp->vlan_cnt) {
12904                DP(NETIF_MSG_IFUP, "No need to re-configure vlan filters\n");
12905                return 0;
12906        }
12907
12908        list_for_each_entry(vlan, &bp->vlan_reg, link) {
12909                /* Prepare for cleanup in case of errors */
12910                if (rc) {
12911                        vlan->hw = false;
12912                        continue;
12913                }
12914
12915                if (!vlan->hw)
12916                        continue;
12917
12918                DP(NETIF_MSG_IFUP, "Re-configuring vlan 0x%04x\n", vlan->vid);
12919
12920                rc = __bnx2x_vlan_configure_vid(bp, vlan->vid, true);
12921                if (rc) {
12922                        BNX2X_ERR("Unable to configure VLAN %d\n", vlan->vid);
12923                        vlan->hw = false;
12924                        rc = -EINVAL;
12925                        continue;
12926                }
12927        }
12928
12929        return rc;
12930}
12931
12932static int bnx2x_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
12933{
12934        struct bnx2x *bp = netdev_priv(dev);
12935        struct bnx2x_vlan_entry *vlan;
12936        bool hw = false;
12937        int rc = 0;
12938
12939        if (!netif_running(bp->dev)) {
12940                DP(NETIF_MSG_IFUP,
12941                   "Ignoring VLAN configuration the interface is down\n");
12942                return -EFAULT;
12943        }
12944
12945        DP(NETIF_MSG_IFUP, "Adding VLAN %d\n", vid);
12946
12947        vlan = kmalloc(sizeof(*vlan), GFP_KERNEL);
12948        if (!vlan)
12949                return -ENOMEM;
12950
12951        bp->vlan_cnt++;
12952        if (bp->vlan_cnt > bp->vlan_credit && !bp->accept_any_vlan) {
12953                DP(NETIF_MSG_IFUP, "Accept all VLAN raised\n");
12954                bp->accept_any_vlan = true;
12955                if (IS_PF(bp))
12956                        bnx2x_set_rx_mode_inner(bp);
12957                else
12958                        bnx2x_vfpf_storm_rx_mode(bp);
12959        } else if (bp->vlan_cnt <= bp->vlan_credit) {
12960                rc = __bnx2x_vlan_configure_vid(bp, vid, true);
12961                hw = true;
12962        }
12963
12964        vlan->vid = vid;
12965        vlan->hw = hw;
12966
12967        if (!rc) {
12968                list_add(&vlan->link, &bp->vlan_reg);
12969        } else {
12970                bp->vlan_cnt--;
12971                kfree(vlan);
12972        }
12973
12974        DP(NETIF_MSG_IFUP, "Adding VLAN result %d\n", rc);
12975
12976        return rc;
12977}
12978
12979static int bnx2x_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
12980{
12981        struct bnx2x *bp = netdev_priv(dev);
12982        struct bnx2x_vlan_entry *vlan;
12983        int rc = 0;
12984
12985        if (!netif_running(bp->dev)) {
12986                DP(NETIF_MSG_IFUP,
12987                   "Ignoring VLAN configuration the interface is down\n");
12988                return -EFAULT;
12989        }
12990
12991        DP(NETIF_MSG_IFUP, "Removing VLAN %d\n", vid);
12992
12993        if (!bp->vlan_cnt) {
12994                BNX2X_ERR("Unable to kill VLAN %d\n", vid);
12995                return -EINVAL;
12996        }
12997
12998        list_for_each_entry(vlan, &bp->vlan_reg, link)
12999                if (vlan->vid == vid)
13000                        break;
13001
13002        if (vlan->vid != vid) {
13003                BNX2X_ERR("Unable to kill VLAN %d - not found\n", vid);
13004                return -EINVAL;
13005        }
13006
13007        if (vlan->hw)
13008                rc = __bnx2x_vlan_configure_vid(bp, vid, false);
13009
13010        list_del(&vlan->link);
13011        kfree(vlan);
13012
13013        bp->vlan_cnt--;
13014
13015        if (bp->vlan_cnt <= bp->vlan_credit && bp->accept_any_vlan) {
13016                /* Configure all non-configured entries */
13017                list_for_each_entry(vlan, &bp->vlan_reg, link) {
13018                        if (vlan->hw)
13019                                continue;
13020
13021                        rc = __bnx2x_vlan_configure_vid(bp, vlan->vid, true);
13022                        if (rc) {
13023                                BNX2X_ERR("Unable to config VLAN %d\n",
13024                                          vlan->vid);
13025                                continue;
13026                        }
13027                        DP(NETIF_MSG_IFUP, "HW configured for VLAN %d\n",
13028                           vlan->vid);
13029                        vlan->hw = true;
13030                }
13031                DP(NETIF_MSG_IFUP, "Accept all VLAN Removed\n");
13032                bp->accept_any_vlan = false;
13033                if (IS_PF(bp))
13034                        bnx2x_set_rx_mode_inner(bp);
13035                else
13036                        bnx2x_vfpf_storm_rx_mode(bp);
13037        }
13038
13039        DP(NETIF_MSG_IFUP, "Removing VLAN result %d\n", rc);
13040
13041        return rc;
13042}
13043
13044static const struct net_device_ops bnx2x_netdev_ops = {
13045        .ndo_open               = bnx2x_open,
13046        .ndo_stop               = bnx2x_close,
13047        .ndo_start_xmit         = bnx2x_start_xmit,
13048        .ndo_select_queue       = bnx2x_select_queue,
13049        .ndo_set_rx_mode        = bnx2x_set_rx_mode,
13050        .ndo_set_mac_address    = bnx2x_change_mac_addr,
13051        .ndo_validate_addr      = bnx2x_validate_addr,
13052        .ndo_do_ioctl           = bnx2x_ioctl,
13053        .ndo_change_mtu         = bnx2x_change_mtu,
13054        .ndo_fix_features       = bnx2x_fix_features,
13055        .ndo_set_features       = bnx2x_set_features,
13056        .ndo_tx_timeout         = bnx2x_tx_timeout,
13057        .ndo_vlan_rx_add_vid    = bnx2x_vlan_rx_add_vid,
13058        .ndo_vlan_rx_kill_vid   = bnx2x_vlan_rx_kill_vid,
13059#ifdef CONFIG_NET_POLL_CONTROLLER
13060        .ndo_poll_controller    = poll_bnx2x,
13061#endif
13062        .ndo_setup_tc           = __bnx2x_setup_tc,
13063#ifdef CONFIG_BNX2X_SRIOV
13064        .ndo_set_vf_mac         = bnx2x_set_vf_mac,
13065        .ndo_set_vf_vlan        = bnx2x_set_vf_vlan,
13066        .ndo_get_vf_config      = bnx2x_get_vf_config,
13067#endif
13068#ifdef NETDEV_FCOE_WWNN
13069        .ndo_fcoe_get_wwn       = bnx2x_fcoe_get_wwn,
13070#endif
13071
13072        .ndo_get_phys_port_id   = bnx2x_get_phys_port_id,
13073        .ndo_set_vf_link_state  = bnx2x_set_vf_link_state,
13074        .ndo_features_check     = bnx2x_features_check,
13075#ifdef CONFIG_BNX2X_VXLAN
13076        .ndo_add_vxlan_port     = bnx2x_add_vxlan_port,
13077        .ndo_del_vxlan_port     = bnx2x_del_vxlan_port,
13078#endif
13079#if IS_ENABLED(CONFIG_BNX2X_GENEVE)
13080        .ndo_add_geneve_port    = bnx2x_add_geneve_port,
13081        .ndo_del_geneve_port    = bnx2x_del_geneve_port,
13082#endif
13083};
13084
13085static int bnx2x_set_coherency_mask(struct bnx2x *bp)
13086{
13087        struct device *dev = &bp->pdev->dev;
13088
13089        if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)) != 0 &&
13090            dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)) != 0) {
13091                dev_err(dev, "System does not support DMA, aborting\n");
13092                return -EIO;
13093        }
13094
13095        return 0;
13096}
13097
13098static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp)
13099{
13100        if (bp->flags & AER_ENABLED) {
13101                pci_disable_pcie_error_reporting(bp->pdev);
13102                bp->flags &= ~AER_ENABLED;
13103        }
13104}
13105
13106static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
13107                          struct net_device *dev, unsigned long board_type)
13108{
13109        int rc;
13110        u32 pci_cfg_dword;
13111        bool chip_is_e1x = (board_type == BCM57710 ||
13112                            board_type == BCM57711 ||
13113                            board_type == BCM57711E);
13114
13115        SET_NETDEV_DEV(dev, &pdev->dev);
13116
13117        bp->dev = dev;
13118        bp->pdev = pdev;
13119
13120        rc = pci_enable_device(pdev);
13121        if (rc) {
13122                dev_err(&bp->pdev->dev,
13123                        "Cannot enable PCI device, aborting\n");
13124                goto err_out;
13125        }
13126
13127        if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
13128                dev_err(&bp->pdev->dev,
13129                        "Cannot find PCI device base address, aborting\n");
13130                rc = -ENODEV;
13131                goto err_out_disable;
13132        }
13133
13134        if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
13135                dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
13136                rc = -ENODEV;
13137                goto err_out_disable;
13138        }
13139
13140        pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
13141        if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
13142            PCICFG_REVESION_ID_ERROR_VAL) {
13143                pr_err("PCI device error, probably due to fan failure, aborting\n");
13144                rc = -ENODEV;
13145                goto err_out_disable;
13146        }
13147
13148        if (atomic_read(&pdev->enable_cnt) == 1) {
13149                rc = pci_request_regions(pdev, DRV_MODULE_NAME);
13150                if (rc) {
13151                        dev_err(&bp->pdev->dev,
13152                                "Cannot obtain PCI resources, aborting\n");
13153                        goto err_out_disable;
13154                }
13155
13156                pci_set_master(pdev);
13157                pci_save_state(pdev);
13158        }
13159
13160        if (IS_PF(bp)) {
13161                if (!pdev->pm_cap) {
13162                        dev_err(&bp->pdev->dev,
13163                                "Cannot find power management capability, aborting\n");
13164                        rc = -EIO;
13165                        goto err_out_release;
13166                }
13167        }
13168
13169        if (!pci_is_pcie(pdev)) {
13170                dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
13171                rc = -EIO;
13172                goto err_out_release;
13173        }
13174
13175        rc = bnx2x_set_coherency_mask(bp);
13176        if (rc)
13177                goto err_out_release;
13178
13179        dev->mem_start = pci_resource_start(pdev, 0);
13180        dev->base_addr = dev->mem_start;
13181        dev->mem_end = pci_resource_end(pdev, 0);
13182
13183        dev->irq = pdev->irq;
13184
13185        bp->regview = pci_ioremap_bar(pdev, 0);
13186        if (!bp->regview) {
13187                dev_err(&bp->pdev->dev,
13188                        "Cannot map register space, aborting\n");
13189                rc = -ENOMEM;
13190                goto err_out_release;
13191        }
13192
13193        /* In E1/E1H use pci device function given by kernel.
13194         * In E2/E3 read physical function from ME register since these chips
13195         * support Physical Device Assignment where kernel BDF maybe arbitrary
13196         * (depending on hypervisor).
13197         */
13198        if (chip_is_e1x) {
13199                bp->pf_num = PCI_FUNC(pdev->devfn);
13200        } else {
13201                /* chip is E2/3*/
13202                pci_read_config_dword(bp->pdev,
13203                                      PCICFG_ME_REGISTER, &pci_cfg_dword);
13204                bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
13205                                  ME_REG_ABS_PF_NUM_SHIFT);
13206        }
13207        BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
13208
13209        /* clean indirect addresses */
13210        pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
13211                               PCICFG_VENDOR_ID_OFFSET);
13212
13213        /* Set PCIe reset type to fundamental for EEH recovery */
13214        pdev->needs_freset = 1;
13215
13216        /* AER (Advanced Error reporting) configuration */
13217        rc = pci_enable_pcie_error_reporting(pdev);
13218        if (!rc)
13219                bp->flags |= AER_ENABLED;
13220        else
13221                BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc);
13222
13223        /*
13224         * Clean the following indirect addresses for all functions since it
13225         * is not used by the driver.
13226         */
13227        if (IS_PF(bp)) {
13228                REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
13229                REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
13230                REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
13231                REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
13232
13233                if (chip_is_e1x) {
13234                        REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
13235                        REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
13236                        REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
13237                        REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
13238                }
13239
13240                /* Enable internal target-read (in case we are probed after PF
13241                 * FLR). Must be done prior to any BAR read access. Only for
13242                 * 57712 and up
13243                 */
13244                if (!chip_is_e1x)
13245                        REG_WR(bp,
13246                               PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
13247        }
13248
13249        dev->watchdog_timeo = TX_TIMEOUT;
13250
13251        dev->netdev_ops = &bnx2x_netdev_ops;
13252        bnx2x_set_ethtool_ops(bp, dev);
13253
13254        dev->priv_flags |= IFF_UNICAST_FLT;
13255
13256        dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13257                NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13258                NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
13259                NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
13260        if (!chip_is_e1x) {
13261                dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL |
13262                                    NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT;
13263                dev->hw_enc_features =
13264                        NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13265                        NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13266                        NETIF_F_GSO_IPIP |
13267                        NETIF_F_GSO_SIT |
13268                        NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL;
13269        }
13270
13271        dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13272                NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
13273
13274        /* VF with OLD Hypervisor or old PF do not support filtering */
13275        if (IS_PF(bp)) {
13276                if (chip_is_e1x)
13277                        bp->accept_any_vlan = true;
13278                else
13279                        dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13280#ifdef CONFIG_BNX2X_SRIOV
13281        } else if (bp->acquire_resp.pfdev_info.pf_cap & PFVF_CAP_VLAN_FILTER) {
13282                dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13283#endif
13284        }
13285
13286        dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
13287        dev->features |= NETIF_F_HIGHDMA;
13288
13289        /* Add Loopback capability to the device */
13290        dev->hw_features |= NETIF_F_LOOPBACK;
13291
13292#ifdef BCM_DCBNL
13293        dev->dcbnl_ops = &bnx2x_dcbnl_ops;
13294#endif
13295
13296        /* get_port_hwinfo() will set prtad and mmds properly */
13297        bp->mdio.prtad = MDIO_PRTAD_NONE;
13298        bp->mdio.mmds = 0;
13299        bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
13300        bp->mdio.dev = dev;
13301        bp->mdio.mdio_read = bnx2x_mdio_read;
13302        bp->mdio.mdio_write = bnx2x_mdio_write;
13303
13304        return 0;
13305
13306err_out_release:
13307        if (atomic_read(&pdev->enable_cnt) == 1)
13308                pci_release_regions(pdev);
13309
13310err_out_disable:
13311        pci_disable_device(pdev);
13312
13313err_out:
13314        return rc;
13315}
13316
13317static int bnx2x_check_firmware(struct bnx2x *bp)
13318{
13319        const struct firmware *firmware = bp->firmware;
13320        struct bnx2x_fw_file_hdr *fw_hdr;
13321        struct bnx2x_fw_file_section *sections;
13322        u32 offset, len, num_ops;
13323        __be16 *ops_offsets;
13324        int i;
13325        const u8 *fw_ver;
13326
13327        if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
13328                BNX2X_ERR("Wrong FW size\n");
13329                return -EINVAL;
13330        }
13331
13332        fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
13333        sections = (struct bnx2x_fw_file_section *)fw_hdr;
13334
13335        /* Make sure none of the offsets and sizes make us read beyond
13336         * the end of the firmware data */
13337        for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
13338                offset = be32_to_cpu(sections[i].offset);
13339                len = be32_to_cpu(sections[i].len);
13340                if (offset + len > firmware->size) {
13341                        BNX2X_ERR("Section %d length is out of bounds\n", i);
13342                        return -EINVAL;
13343                }
13344        }
13345
13346        /* Likewise for the init_ops offsets */
13347        offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
13348        ops_offsets = (__force __be16 *)(firmware->data + offset);
13349        num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
13350
13351        for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
13352                if (be16_to_cpu(ops_offsets[i]) > num_ops) {
13353                        BNX2X_ERR("Section offset %d is out of bounds\n", i);
13354                        return -EINVAL;
13355                }
13356        }
13357
13358        /* Check FW version */
13359        offset = be32_to_cpu(fw_hdr->fw_version.offset);
13360        fw_ver = firmware->data + offset;
13361        if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
13362            (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
13363            (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
13364            (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
13365                BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
13366                       fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
13367                       BCM_5710_FW_MAJOR_VERSION,
13368                       BCM_5710_FW_MINOR_VERSION,
13369                       BCM_5710_FW_REVISION_VERSION,
13370                       BCM_5710_FW_ENGINEERING_VERSION);
13371                return -EINVAL;
13372        }
13373
13374        return 0;
13375}
13376
13377static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13378{
13379        const __be32 *source = (const __be32 *)_source;
13380        u32 *target = (u32 *)_target;
13381        u32 i;
13382
13383        for (i = 0; i < n/4; i++)
13384                target[i] = be32_to_cpu(source[i]);
13385}
13386
13387/*
13388   Ops array is stored in the following format:
13389   {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
13390 */
13391static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
13392{
13393        const __be32 *source = (const __be32 *)_source;
13394        struct raw_op *target = (struct raw_op *)_target;
13395        u32 i, j, tmp;
13396
13397        for (i = 0, j = 0; i < n/8; i++, j += 2) {
13398                tmp = be32_to_cpu(source[j]);
13399                target[i].op = (tmp >> 24) & 0xff;
13400                target[i].offset = tmp & 0xffffff;
13401                target[i].raw_data = be32_to_cpu(source[j + 1]);
13402        }
13403}
13404
13405/* IRO array is stored in the following format:
13406 * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
13407 */
13408static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
13409{
13410        const __be32 *source = (const __be32 *)_source;
13411        struct iro *target = (struct iro *)_target;
13412        u32 i, j, tmp;
13413
13414        for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
13415                target[i].base = be32_to_cpu(source[j]);
13416                j++;
13417                tmp = be32_to_cpu(source[j]);
13418                target[i].m1 = (tmp >> 16) & 0xffff;
13419                target[i].m2 = tmp & 0xffff;
13420                j++;
13421                tmp = be32_to_cpu(source[j]);
13422                target[i].m3 = (tmp >> 16) & 0xffff;
13423                target[i].size = tmp & 0xffff;
13424                j++;
13425        }
13426}
13427
13428static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13429{
13430        const __be16 *source = (const __be16 *)_source;
13431        u16 *target = (u16 *)_target;
13432        u32 i;
13433
13434        for (i = 0; i < n/2; i++)
13435                target[i] = be16_to_cpu(source[i]);
13436}
13437
13438#define BNX2X_ALLOC_AND_SET(arr, lbl, func)                             \
13439do {                                                                    \
13440        u32 len = be32_to_cpu(fw_hdr->arr.len);                         \
13441        bp->arr = kmalloc(len, GFP_KERNEL);                             \
13442        if (!bp->arr)                                                   \
13443                goto lbl;                                               \
13444        func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),      \
13445             (u8 *)bp->arr, len);                                       \
13446} while (0)
13447
13448static int bnx2x_init_firmware(struct bnx2x *bp)
13449{
13450        const char *fw_file_name;
13451        struct bnx2x_fw_file_hdr *fw_hdr;
13452        int rc;
13453
13454        if (bp->firmware)
13455                return 0;
13456
13457        if (CHIP_IS_E1(bp))
13458                fw_file_name = FW_FILE_NAME_E1;
13459        else if (CHIP_IS_E1H(bp))
13460                fw_file_name = FW_FILE_NAME_E1H;
13461        else if (!CHIP_IS_E1x(bp))
13462                fw_file_name = FW_FILE_NAME_E2;
13463        else {
13464                BNX2X_ERR("Unsupported chip revision\n");
13465                return -EINVAL;
13466        }
13467        BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
13468
13469        rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
13470        if (rc) {
13471                BNX2X_ERR("Can't load firmware file %s\n",
13472                          fw_file_name);
13473                goto request_firmware_exit;
13474        }
13475
13476        rc = bnx2x_check_firmware(bp);
13477        if (rc) {
13478                BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
13479                goto request_firmware_exit;
13480        }
13481
13482        fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
13483
13484        /* Initialize the pointers to the init arrays */
13485        /* Blob */
13486        BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
13487
13488        /* Opcodes */
13489        BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
13490
13491        /* Offsets */
13492        BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
13493                            be16_to_cpu_n);
13494
13495        /* STORMs firmware */
13496        INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13497                        be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
13498        INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
13499                        be32_to_cpu(fw_hdr->tsem_pram_data.offset);
13500        INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13501                        be32_to_cpu(fw_hdr->usem_int_table_data.offset);
13502        INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
13503                        be32_to_cpu(fw_hdr->usem_pram_data.offset);
13504        INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13505                        be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
13506        INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
13507                        be32_to_cpu(fw_hdr->xsem_pram_data.offset);
13508        INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13509                        be32_to_cpu(fw_hdr->csem_int_table_data.offset);
13510        INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
13511                        be32_to_cpu(fw_hdr->csem_pram_data.offset);
13512        /* IRO */
13513        BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
13514
13515        return 0;
13516
13517iro_alloc_err:
13518        kfree(bp->init_ops_offsets);
13519init_offsets_alloc_err:
13520        kfree(bp->init_ops);
13521init_ops_alloc_err:
13522        kfree(bp->init_data);
13523request_firmware_exit:
13524        release_firmware(bp->firmware);
13525        bp->firmware = NULL;
13526
13527        return rc;
13528}
13529
13530static void bnx2x_release_firmware(struct bnx2x *bp)
13531{
13532        kfree(bp->init_ops_offsets);
13533        kfree(bp->init_ops);
13534        kfree(bp->init_data);
13535        release_firmware(bp->firmware);
13536        bp->firmware = NULL;
13537}
13538
13539static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
13540        .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
13541        .init_hw_cmn      = bnx2x_init_hw_common,
13542        .init_hw_port     = bnx2x_init_hw_port,
13543        .init_hw_func     = bnx2x_init_hw_func,
13544
13545        .reset_hw_cmn     = bnx2x_reset_common,
13546        .reset_hw_port    = bnx2x_reset_port,
13547        .reset_hw_func    = bnx2x_reset_func,
13548
13549        .gunzip_init      = bnx2x_gunzip_init,
13550        .gunzip_end       = bnx2x_gunzip_end,
13551
13552        .init_fw          = bnx2x_init_firmware,
13553        .release_fw       = bnx2x_release_firmware,
13554};
13555
13556void bnx2x__init_func_obj(struct bnx2x *bp)
13557{
13558        /* Prepare DMAE related driver resources */
13559        bnx2x_setup_dmae(bp);
13560
13561        bnx2x_init_func_obj(bp, &bp->func_obj,
13562                            bnx2x_sp(bp, func_rdata),
13563                            bnx2x_sp_mapping(bp, func_rdata),
13564                            bnx2x_sp(bp, func_afex_rdata),
13565                            bnx2x_sp_mapping(bp, func_afex_rdata),
13566                            &bnx2x_func_sp_drv);
13567}
13568
13569/* must be called after sriov-enable */
13570static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
13571{
13572        int cid_count = BNX2X_L2_MAX_CID(bp);
13573
13574        if (IS_SRIOV(bp))
13575                cid_count += BNX2X_VF_CIDS;
13576
13577        if (CNIC_SUPPORT(bp))
13578                cid_count += CNIC_CID_MAX;
13579
13580        return roundup(cid_count, QM_CID_ROUND);
13581}
13582
13583/**
13584 * bnx2x_get_num_none_def_sbs - return the number of none default SBs
13585 *
13586 * @dev:        pci device
13587 *
13588 */
13589static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
13590{
13591        int index;
13592        u16 control = 0;
13593
13594        /*
13595         * If MSI-X is not supported - return number of SBs needed to support
13596         * one fast path queue: one FP queue + SB for CNIC
13597         */
13598        if (!pdev->msix_cap) {
13599                dev_info(&pdev->dev, "no msix capability found\n");
13600                return 1 + cnic_cnt;
13601        }
13602        dev_info(&pdev->dev, "msix capability found\n");
13603
13604        /*
13605         * The value in the PCI configuration space is the index of the last
13606         * entry, namely one less than the actual size of the table, which is
13607         * exactly what we want to return from this function: number of all SBs
13608         * without the default SB.
13609         * For VFs there is no default SB, then we return (index+1).
13610         */
13611        pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &control);
13612
13613        index = control & PCI_MSIX_FLAGS_QSIZE;
13614
13615        return index;
13616}
13617
13618static int set_max_cos_est(int chip_id)
13619{
13620        switch (chip_id) {
13621        case BCM57710:
13622        case BCM57711:
13623        case BCM57711E:
13624                return BNX2X_MULTI_TX_COS_E1X;
13625        case BCM57712:
13626        case BCM57712_MF:
13627                return BNX2X_MULTI_TX_COS_E2_E3A0;
13628        case BCM57800:
13629        case BCM57800_MF:
13630        case BCM57810:
13631        case BCM57810_MF:
13632        case BCM57840_4_10:
13633        case BCM57840_2_20:
13634        case BCM57840_O:
13635        case BCM57840_MFO:
13636        case BCM57840_MF:
13637        case BCM57811:
13638        case BCM57811_MF:
13639                return BNX2X_MULTI_TX_COS_E3B0;
13640        case BCM57712_VF:
13641        case BCM57800_VF:
13642        case BCM57810_VF:
13643        case BCM57840_VF:
13644        case BCM57811_VF:
13645                return 1;
13646        default:
13647                pr_err("Unknown board_type (%d), aborting\n", chip_id);
13648                return -ENODEV;
13649        }
13650}
13651
13652static int set_is_vf(int chip_id)
13653{
13654        switch (chip_id) {
13655        case BCM57712_VF:
13656        case BCM57800_VF:
13657        case BCM57810_VF:
13658        case BCM57840_VF:
13659        case BCM57811_VF:
13660                return true;
13661        default:
13662                return false;
13663        }
13664}
13665
13666/* nig_tsgen registers relative address */
13667#define tsgen_ctrl 0x0
13668#define tsgen_freecount 0x10
13669#define tsgen_synctime_t0 0x20
13670#define tsgen_offset_t0 0x28
13671#define tsgen_drift_t0 0x30
13672#define tsgen_synctime_t1 0x58
13673#define tsgen_offset_t1 0x60
13674#define tsgen_drift_t1 0x68
13675
13676/* FW workaround for setting drift */
13677static int bnx2x_send_update_drift_ramrod(struct bnx2x *bp, int drift_dir,
13678                                          int best_val, int best_period)
13679{
13680        struct bnx2x_func_state_params func_params = {NULL};
13681        struct bnx2x_func_set_timesync_params *set_timesync_params =
13682                &func_params.params.set_timesync;
13683
13684        /* Prepare parameters for function state transitions */
13685        __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
13686        __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
13687
13688        func_params.f_obj = &bp->func_obj;
13689        func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
13690
13691        /* Function parameters */
13692        set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_SET;
13693        set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
13694        set_timesync_params->add_sub_drift_adjust_value =
13695                drift_dir ? TS_ADD_VALUE : TS_SUB_VALUE;
13696        set_timesync_params->drift_adjust_value = best_val;
13697        set_timesync_params->drift_adjust_period = best_period;
13698
13699        return bnx2x_func_state_change(bp, &func_params);
13700}
13701
13702static int bnx2x_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
13703{
13704        struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13705        int rc;
13706        int drift_dir = 1;
13707        int val, period, period1, period2, dif, dif1, dif2;
13708        int best_dif = BNX2X_MAX_PHC_DRIFT, best_period = 0, best_val = 0;
13709
13710        DP(BNX2X_MSG_PTP, "PTP adjfreq called, ppb = %d\n", ppb);
13711
13712        if (!netif_running(bp->dev)) {
13713                DP(BNX2X_MSG_PTP,
13714                   "PTP adjfreq called while the interface is down\n");
13715                return -EFAULT;
13716        }
13717
13718        if (ppb < 0) {
13719                ppb = -ppb;
13720                drift_dir = 0;
13721        }
13722
13723        if (ppb == 0) {
13724                best_val = 1;
13725                best_period = 0x1FFFFFF;
13726        } else if (ppb >= BNX2X_MAX_PHC_DRIFT) {
13727                best_val = 31;
13728                best_period = 1;
13729        } else {
13730                /* Changed not to allow val = 8, 16, 24 as these values
13731                 * are not supported in workaround.
13732                 */
13733                for (val = 0; val <= 31; val++) {
13734                        if ((val & 0x7) == 0)
13735                                continue;
13736                        period1 = val * 1000000 / ppb;
13737                        period2 = period1 + 1;
13738                        if (period1 != 0)
13739                                dif1 = ppb - (val * 1000000 / period1);
13740                        else
13741                                dif1 = BNX2X_MAX_PHC_DRIFT;
13742                        if (dif1 < 0)
13743                                dif1 = -dif1;
13744                        dif2 = ppb - (val * 1000000 / period2);
13745                        if (dif2 < 0)
13746                                dif2 = -dif2;
13747                        dif = (dif1 < dif2) ? dif1 : dif2;
13748                        period = (dif1 < dif2) ? period1 : period2;
13749                        if (dif < best_dif) {
13750                                best_dif = dif;
13751                                best_val = val;
13752                                best_period = period;
13753                        }
13754                }
13755        }
13756
13757        rc = bnx2x_send_update_drift_ramrod(bp, drift_dir, best_val,
13758                                            best_period);
13759        if (rc) {
13760                BNX2X_ERR("Failed to set drift\n");
13761                return -EFAULT;
13762        }
13763
13764        DP(BNX2X_MSG_PTP, "Configured val = %d, period = %d\n", best_val,
13765           best_period);
13766
13767        return 0;
13768}
13769
13770static int bnx2x_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
13771{
13772        struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13773
13774        DP(BNX2X_MSG_PTP, "PTP adjtime called, delta = %llx\n", delta);
13775
13776        timecounter_adjtime(&bp->timecounter, delta);
13777
13778        return 0;
13779}
13780
13781static int bnx2x_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
13782{
13783        struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13784        u64 ns;
13785
13786        ns = timecounter_read(&bp->timecounter);
13787
13788        DP(BNX2X_MSG_PTP, "PTP gettime called, ns = %llu\n", ns);
13789
13790        *ts = ns_to_timespec64(ns);
13791
13792        return 0;
13793}
13794
13795static int bnx2x_ptp_settime(struct ptp_clock_info *ptp,
13796                             const struct timespec64 *ts)
13797{
13798        struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13799        u64 ns;
13800
13801        ns = timespec64_to_ns(ts);
13802
13803        DP(BNX2X_MSG_PTP, "PTP settime called, ns = %llu\n", ns);
13804
13805        /* Re-init the timecounter */
13806        timecounter_init(&bp->timecounter, &bp->cyclecounter, ns);
13807
13808        return 0;
13809}
13810
13811/* Enable (or disable) ancillary features of the phc subsystem */
13812static int bnx2x_ptp_enable(struct ptp_clock_info *ptp,
13813                            struct ptp_clock_request *rq, int on)
13814{
13815        struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13816
13817        BNX2X_ERR("PHC ancillary features are not supported\n");
13818        return -ENOTSUPP;
13819}
13820
13821static void bnx2x_register_phc(struct bnx2x *bp)
13822{
13823        /* Fill the ptp_clock_info struct and register PTP clock*/
13824        bp->ptp_clock_info.owner = THIS_MODULE;
13825        snprintf(bp->ptp_clock_info.name, 16, "%s", bp->dev->name);
13826        bp->ptp_clock_info.max_adj = BNX2X_MAX_PHC_DRIFT; /* In PPB */
13827        bp->ptp_clock_info.n_alarm = 0;
13828        bp->ptp_clock_info.n_ext_ts = 0;
13829        bp->ptp_clock_info.n_per_out = 0;
13830        bp->ptp_clock_info.pps = 0;
13831        bp->ptp_clock_info.adjfreq = bnx2x_ptp_adjfreq;
13832        bp->ptp_clock_info.adjtime = bnx2x_ptp_adjtime;
13833        bp->ptp_clock_info.gettime64 = bnx2x_ptp_gettime;
13834        bp->ptp_clock_info.settime64 = bnx2x_ptp_settime;
13835        bp->ptp_clock_info.enable = bnx2x_ptp_enable;
13836
13837        bp->ptp_clock = ptp_clock_register(&bp->ptp_clock_info, &bp->pdev->dev);
13838        if (IS_ERR(bp->ptp_clock)) {
13839                bp->ptp_clock = NULL;
13840                BNX2X_ERR("PTP clock registeration failed\n");
13841        }
13842}
13843
13844static int bnx2x_init_one(struct pci_dev *pdev,
13845                                    const struct pci_device_id *ent)
13846{
13847        struct net_device *dev = NULL;
13848        struct bnx2x *bp;
13849        enum pcie_link_width pcie_width;
13850        enum pci_bus_speed pcie_speed;
13851        int rc, max_non_def_sbs;
13852        int rx_count, tx_count, rss_count, doorbell_size;
13853        int max_cos_est;
13854        bool is_vf;
13855        int cnic_cnt;
13856
13857        /* Management FW 'remembers' living interfaces. Allow it some time
13858         * to forget previously living interfaces, allowing a proper re-load.
13859         */
13860        if (is_kdump_kernel()) {
13861                ktime_t now = ktime_get_boottime();
13862                ktime_t fw_ready_time = ktime_set(5, 0);
13863
13864                if (ktime_before(now, fw_ready_time))
13865                        msleep(ktime_ms_delta(fw_ready_time, now));
13866        }
13867
13868        /* An estimated maximum supported CoS number according to the chip
13869         * version.
13870         * We will try to roughly estimate the maximum number of CoSes this chip
13871         * may support in order to minimize the memory allocated for Tx
13872         * netdev_queue's. This number will be accurately calculated during the
13873         * initialization of bp->max_cos based on the chip versions AND chip
13874         * revision in the bnx2x_init_bp().
13875         */
13876        max_cos_est = set_max_cos_est(ent->driver_data);
13877        if (max_cos_est < 0)
13878                return max_cos_est;
13879        is_vf = set_is_vf(ent->driver_data);
13880        cnic_cnt = is_vf ? 0 : 1;
13881
13882        max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
13883
13884        /* add another SB for VF as it has no default SB */
13885        max_non_def_sbs += is_vf ? 1 : 0;
13886
13887        /* Maximum number of RSS queues: one IGU SB goes to CNIC */
13888        rss_count = max_non_def_sbs - cnic_cnt;
13889
13890        if (rss_count < 1)
13891                return -EINVAL;
13892
13893        /* Maximum number of netdev Rx queues: RSS + FCoE L2 */
13894        rx_count = rss_count + cnic_cnt;
13895
13896        /* Maximum number of netdev Tx queues:
13897         * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
13898         */
13899        tx_count = rss_count * max_cos_est + cnic_cnt;
13900
13901        /* dev zeroed in init_etherdev */
13902        dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
13903        if (!dev)
13904                return -ENOMEM;
13905
13906        bp = netdev_priv(dev);
13907
13908        bp->flags = 0;
13909        if (is_vf)
13910                bp->flags |= IS_VF_FLAG;
13911
13912        bp->igu_sb_cnt = max_non_def_sbs;
13913        bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
13914        bp->msg_enable = debug;
13915        bp->cnic_support = cnic_cnt;
13916        bp->cnic_probe = bnx2x_cnic_probe;
13917
13918        pci_set_drvdata(pdev, dev);
13919
13920        rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
13921        if (rc < 0) {
13922                free_netdev(dev);
13923                return rc;
13924        }
13925
13926        BNX2X_DEV_INFO("This is a %s function\n",
13927                       IS_PF(bp) ? "physical" : "virtual");
13928        BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
13929        BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
13930        BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
13931                       tx_count, rx_count);
13932
13933        rc = bnx2x_init_bp(bp);
13934        if (rc)
13935                goto init_one_exit;
13936
13937        /* Map doorbells here as we need the real value of bp->max_cos which
13938         * is initialized in bnx2x_init_bp() to determine the number of
13939         * l2 connections.
13940         */
13941        if (IS_VF(bp)) {
13942                bp->doorbells = bnx2x_vf_doorbells(bp);
13943                rc = bnx2x_vf_pci_alloc(bp);
13944                if (rc)
13945                        goto init_one_exit;
13946        } else {
13947                doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
13948                if (doorbell_size > pci_resource_len(pdev, 2)) {
13949                        dev_err(&bp->pdev->dev,
13950                                "Cannot map doorbells, bar size too small, aborting\n");
13951                        rc = -ENOMEM;
13952                        goto init_one_exit;
13953                }
13954                bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
13955                                                doorbell_size);
13956        }
13957        if (!bp->doorbells) {
13958                dev_err(&bp->pdev->dev,
13959                        "Cannot map doorbell space, aborting\n");
13960                rc = -ENOMEM;
13961                goto init_one_exit;
13962        }
13963
13964        if (IS_VF(bp)) {
13965                rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
13966                if (rc)
13967                        goto init_one_exit;
13968        }
13969
13970        /* Enable SRIOV if capability found in configuration space */
13971        rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
13972        if (rc)
13973                goto init_one_exit;
13974
13975        /* calc qm_cid_count */
13976        bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
13977        BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
13978
13979        /* disable FCOE L2 queue for E1x*/
13980        if (CHIP_IS_E1x(bp))
13981                bp->flags |= NO_FCOE_FLAG;
13982
13983        /* Set bp->num_queues for MSI-X mode*/
13984        bnx2x_set_num_queues(bp);
13985
13986        /* Configure interrupt mode: try to enable MSI-X/MSI if
13987         * needed.
13988         */
13989        rc = bnx2x_set_int_mode(bp);
13990        if (rc) {
13991                dev_err(&pdev->dev, "Cannot set interrupts\n");
13992                goto init_one_exit;
13993        }
13994        BNX2X_DEV_INFO("set interrupts successfully\n");
13995
13996        /* register the net device */
13997        rc = register_netdev(dev);
13998        if (rc) {
13999                dev_err(&pdev->dev, "Cannot register net device\n");
14000                goto init_one_exit;
14001        }
14002        BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
14003
14004        if (!NO_FCOE(bp)) {
14005                /* Add storage MAC address */
14006                rtnl_lock();
14007                dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
14008                rtnl_unlock();
14009        }
14010        if (pcie_get_minimum_link(bp->pdev, &pcie_speed, &pcie_width) ||
14011            pcie_speed == PCI_SPEED_UNKNOWN ||
14012            pcie_width == PCIE_LNK_WIDTH_UNKNOWN)
14013                BNX2X_DEV_INFO("Failed to determine PCI Express Bandwidth\n");
14014        else
14015                BNX2X_DEV_INFO(
14016                       "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
14017                       board_info[ent->driver_data].name,
14018                       (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
14019                       pcie_width,
14020                       pcie_speed == PCIE_SPEED_2_5GT ? "2.5GHz" :
14021                       pcie_speed == PCIE_SPEED_5_0GT ? "5.0GHz" :
14022                       pcie_speed == PCIE_SPEED_8_0GT ? "8.0GHz" :
14023                       "Unknown",
14024                       dev->base_addr, bp->pdev->irq, dev->dev_addr);
14025
14026        bnx2x_register_phc(bp);
14027
14028        if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
14029                bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
14030
14031        return 0;
14032
14033init_one_exit:
14034        bnx2x_disable_pcie_error_reporting(bp);
14035
14036        if (bp->regview)
14037                iounmap(bp->regview);
14038
14039        if (IS_PF(bp) && bp->doorbells)
14040                iounmap(bp->doorbells);
14041
14042        free_netdev(dev);
14043
14044        if (atomic_read(&pdev->enable_cnt) == 1)
14045                pci_release_regions(pdev);
14046
14047        pci_disable_device(pdev);
14048
14049        return rc;
14050}
14051
14052static void __bnx2x_remove(struct pci_dev *pdev,
14053                           struct net_device *dev,
14054                           struct bnx2x *bp,
14055                           bool remove_netdev)
14056{
14057        if (bp->ptp_clock) {
14058                ptp_clock_unregister(bp->ptp_clock);
14059                bp->ptp_clock = NULL;
14060        }
14061
14062        /* Delete storage MAC address */
14063        if (!NO_FCOE(bp)) {
14064                rtnl_lock();
14065                dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
14066                rtnl_unlock();
14067        }
14068
14069#ifdef BCM_DCBNL
14070        /* Delete app tlvs from dcbnl */
14071        bnx2x_dcbnl_update_applist(bp, true);
14072#endif
14073
14074        if (IS_PF(bp) &&
14075            !BP_NOMCP(bp) &&
14076            (bp->flags & BC_SUPPORTS_RMMOD_CMD))
14077                bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
14078
14079        /* Close the interface - either directly or implicitly */
14080        if (remove_netdev) {
14081                unregister_netdev(dev);
14082        } else {
14083                rtnl_lock();
14084                dev_close(dev);
14085                rtnl_unlock();
14086        }
14087
14088        bnx2x_iov_remove_one(bp);
14089
14090        /* Power on: we can't let PCI layer write to us while we are in D3 */
14091        if (IS_PF(bp)) {
14092                bnx2x_set_power_state(bp, PCI_D0);
14093                bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_NOT_LOADED);
14094
14095                /* Set endianity registers to reset values in case next driver
14096                 * boots in different endianty environment.
14097                 */
14098                bnx2x_reset_endianity(bp);
14099        }
14100
14101        /* Disable MSI/MSI-X */
14102        bnx2x_disable_msi(bp);
14103
14104        /* Power off */
14105        if (IS_PF(bp))
14106                bnx2x_set_power_state(bp, PCI_D3hot);
14107
14108        /* Make sure RESET task is not scheduled before continuing */
14109        cancel_delayed_work_sync(&bp->sp_rtnl_task);
14110
14111        /* send message via vfpf channel to release the resources of this vf */
14112        if (IS_VF(bp))
14113                bnx2x_vfpf_release(bp);
14114
14115        /* Assumes no further PCIe PM changes will occur */
14116        if (system_state == SYSTEM_POWER_OFF) {
14117                pci_wake_from_d3(pdev, bp->wol);
14118                pci_set_power_state(pdev, PCI_D3hot);
14119        }
14120
14121        bnx2x_disable_pcie_error_reporting(bp);
14122        if (remove_netdev) {
14123                if (bp->regview)
14124                        iounmap(bp->regview);
14125
14126                /* For vfs, doorbells are part of the regview and were unmapped
14127                 * along with it. FW is only loaded by PF.
14128                 */
14129                if (IS_PF(bp)) {
14130                        if (bp->doorbells)
14131                                iounmap(bp->doorbells);
14132
14133                        bnx2x_release_firmware(bp);
14134                } else {
14135                        bnx2x_vf_pci_dealloc(bp);
14136                }
14137                bnx2x_free_mem_bp(bp);
14138
14139                free_netdev(dev);
14140
14141                if (atomic_read(&pdev->enable_cnt) == 1)
14142                        pci_release_regions(pdev);
14143
14144                pci_disable_device(pdev);
14145        }
14146}
14147
14148static void bnx2x_remove_one(struct pci_dev *pdev)
14149{
14150        struct net_device *dev = pci_get_drvdata(pdev);
14151        struct bnx2x *bp;
14152
14153        if (!dev) {
14154                dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
14155                return;
14156        }
14157        bp = netdev_priv(dev);
14158
14159        __bnx2x_remove(pdev, dev, bp, true);
14160}
14161
14162static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
14163{
14164        bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
14165
14166        bp->rx_mode = BNX2X_RX_MODE_NONE;
14167
14168        if (CNIC_LOADED(bp))
14169                bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
14170
14171        /* Stop Tx */
14172        bnx2x_tx_disable(bp);
14173        /* Delete all NAPI objects */
14174        bnx2x_del_all_napi(bp);
14175        if (CNIC_LOADED(bp))
14176                bnx2x_del_all_napi_cnic(bp);
14177        netdev_reset_tc(bp->dev);
14178
14179        del_timer_sync(&bp->timer);
14180        cancel_delayed_work_sync(&bp->sp_task);
14181        cancel_delayed_work_sync(&bp->period_task);
14182
14183        if (!down_timeout(&bp->stats_lock, HZ / 10)) {
14184                bp->stats_state = STATS_STATE_DISABLED;
14185                up(&bp->stats_lock);
14186        }
14187
14188        bnx2x_save_statistics(bp);
14189
14190        netif_carrier_off(bp->dev);
14191
14192        return 0;
14193}
14194
14195/**
14196 * bnx2x_io_error_detected - called when PCI error is detected
14197 * @pdev: Pointer to PCI device
14198 * @state: The current pci connection state
14199 *
14200 * This function is called after a PCI bus error affecting
14201 * this device has been detected.
14202 */
14203static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
14204                                                pci_channel_state_t state)
14205{
14206        struct net_device *dev = pci_get_drvdata(pdev);
14207        struct bnx2x *bp = netdev_priv(dev);
14208
14209        rtnl_lock();
14210
14211        BNX2X_ERR("IO error detected\n");
14212
14213        netif_device_detach(dev);
14214
14215        if (state == pci_channel_io_perm_failure) {
14216                rtnl_unlock();
14217                return PCI_ERS_RESULT_DISCONNECT;
14218        }
14219
14220        if (netif_running(dev))
14221                bnx2x_eeh_nic_unload(bp);
14222
14223        bnx2x_prev_path_mark_eeh(bp);
14224
14225        pci_disable_device(pdev);
14226
14227        rtnl_unlock();
14228
14229        /* Request a slot reset */
14230        return PCI_ERS_RESULT_NEED_RESET;
14231}
14232
14233/**
14234 * bnx2x_io_slot_reset - called after the PCI bus has been reset
14235 * @pdev: Pointer to PCI device
14236 *
14237 * Restart the card from scratch, as if from a cold-boot.
14238 */
14239static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
14240{
14241        struct net_device *dev = pci_get_drvdata(pdev);
14242        struct bnx2x *bp = netdev_priv(dev);
14243        int i;
14244
14245        rtnl_lock();
14246        BNX2X_ERR("IO slot reset initializing...\n");
14247        if (pci_enable_device(pdev)) {
14248                dev_err(&pdev->dev,
14249                        "Cannot re-enable PCI device after reset\n");
14250                rtnl_unlock();
14251                return PCI_ERS_RESULT_DISCONNECT;
14252        }
14253
14254        pci_set_master(pdev);
14255        pci_restore_state(pdev);
14256        pci_save_state(pdev);
14257
14258        if (netif_running(dev))
14259                bnx2x_set_power_state(bp, PCI_D0);
14260
14261        if (netif_running(dev)) {
14262                BNX2X_ERR("IO slot reset --> driver unload\n");
14263
14264                /* MCP should have been reset; Need to wait for validity */
14265                bnx2x_init_shmem(bp);
14266
14267                if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
14268                        u32 v;
14269
14270                        v = SHMEM2_RD(bp,
14271                                      drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
14272                        SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
14273                                  v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
14274                }
14275                bnx2x_drain_tx_queues(bp);
14276                bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
14277                bnx2x_netif_stop(bp, 1);
14278                bnx2x_free_irq(bp);
14279
14280                /* Report UNLOAD_DONE to MCP */
14281                bnx2x_send_unload_done(bp, true);
14282
14283                bp->sp_state = 0;
14284                bp->port.pmf = 0;
14285
14286                bnx2x_prev_unload(bp);
14287
14288                /* We should have reseted the engine, so It's fair to
14289                 * assume the FW will no longer write to the bnx2x driver.
14290                 */
14291                bnx2x_squeeze_objects(bp);
14292                bnx2x_free_skbs(bp);
14293                for_each_rx_queue(bp, i)
14294                        bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
14295                bnx2x_free_fp_mem(bp);
14296                bnx2x_free_mem(bp);
14297
14298                bp->state = BNX2X_STATE_CLOSED;
14299        }
14300
14301        rtnl_unlock();
14302
14303        /* If AER, perform cleanup of the PCIe registers */
14304        if (bp->flags & AER_ENABLED) {
14305                if (pci_cleanup_aer_uncorrect_error_status(pdev))
14306                        BNX2X_ERR("pci_cleanup_aer_uncorrect_error_status failed\n");
14307                else
14308                        DP(NETIF_MSG_HW, "pci_cleanup_aer_uncorrect_error_status succeeded\n");
14309        }
14310
14311        return PCI_ERS_RESULT_RECOVERED;
14312}
14313
14314/**
14315 * bnx2x_io_resume - called when traffic can start flowing again
14316 * @pdev: Pointer to PCI device
14317 *
14318 * This callback is called when the error recovery driver tells us that
14319 * its OK to resume normal operation.
14320 */
14321static void bnx2x_io_resume(struct pci_dev *pdev)
14322{
14323        struct net_device *dev = pci_get_drvdata(pdev);
14324        struct bnx2x *bp = netdev_priv(dev);
14325
14326        if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
14327                netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
14328                return;
14329        }
14330
14331        rtnl_lock();
14332
14333        bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
14334                                                        DRV_MSG_SEQ_NUMBER_MASK;
14335
14336        if (netif_running(dev))
14337                bnx2x_nic_load(bp, LOAD_NORMAL);
14338
14339        netif_device_attach(dev);
14340
14341        rtnl_unlock();
14342}
14343
14344static const struct pci_error_handlers bnx2x_err_handler = {
14345        .error_detected = bnx2x_io_error_detected,
14346        .slot_reset     = bnx2x_io_slot_reset,
14347        .resume         = bnx2x_io_resume,
14348};
14349
14350static void bnx2x_shutdown(struct pci_dev *pdev)
14351{
14352        struct net_device *dev = pci_get_drvdata(pdev);
14353        struct bnx2x *bp;
14354
14355        if (!dev)
14356                return;
14357
14358        bp = netdev_priv(dev);
14359        if (!bp)
14360                return;
14361
14362        rtnl_lock();
14363        netif_device_detach(dev);
14364        rtnl_unlock();
14365
14366        /* Don't remove the netdevice, as there are scenarios which will cause
14367         * the kernel to hang, e.g., when trying to remove bnx2i while the
14368         * rootfs is mounted from SAN.
14369         */
14370        __bnx2x_remove(pdev, dev, bp, false);
14371}
14372
14373static struct pci_driver bnx2x_pci_driver = {
14374        .name        = DRV_MODULE_NAME,
14375        .id_table    = bnx2x_pci_tbl,
14376        .probe       = bnx2x_init_one,
14377        .remove      = bnx2x_remove_one,
14378        .suspend     = bnx2x_suspend,
14379        .resume      = bnx2x_resume,
14380        .err_handler = &bnx2x_err_handler,
14381#ifdef CONFIG_BNX2X_SRIOV
14382        .sriov_configure = bnx2x_sriov_configure,
14383#endif
14384        .shutdown    = bnx2x_shutdown,
14385};
14386
14387static int __init bnx2x_init(void)
14388{
14389        int ret;
14390
14391        pr_info("%s", version);
14392
14393        bnx2x_wq = create_singlethread_workqueue("bnx2x");
14394        if (bnx2x_wq == NULL) {
14395                pr_err("Cannot create workqueue\n");
14396                return -ENOMEM;
14397        }
14398        bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov");
14399        if (!bnx2x_iov_wq) {
14400                pr_err("Cannot create iov workqueue\n");
14401                destroy_workqueue(bnx2x_wq);
14402                return -ENOMEM;
14403        }
14404
14405        ret = pci_register_driver(&bnx2x_pci_driver);
14406        if (ret) {
14407                pr_err("Cannot register driver\n");
14408                destroy_workqueue(bnx2x_wq);
14409                destroy_workqueue(bnx2x_iov_wq);
14410        }
14411        return ret;
14412}
14413
14414static void __exit bnx2x_cleanup(void)
14415{
14416        struct list_head *pos, *q;
14417
14418        pci_unregister_driver(&bnx2x_pci_driver);
14419
14420        destroy_workqueue(bnx2x_wq);
14421        destroy_workqueue(bnx2x_iov_wq);
14422
14423        /* Free globally allocated resources */
14424        list_for_each_safe(pos, q, &bnx2x_prev_list) {
14425                struct bnx2x_prev_path_list *tmp =
14426                        list_entry(pos, struct bnx2x_prev_path_list, list);
14427                list_del(pos);
14428                kfree(tmp);
14429        }
14430}
14431
14432void bnx2x_notify_link_changed(struct bnx2x *bp)
14433{
14434        REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
14435}
14436
14437module_init(bnx2x_init);
14438module_exit(bnx2x_cleanup);
14439
14440/**
14441 * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
14442 *
14443 * @bp:         driver handle
14444 * @set:        set or clear the CAM entry
14445 *
14446 * This function will wait until the ramrod completion returns.
14447 * Return 0 if success, -ENODEV if ramrod doesn't return.
14448 */
14449static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
14450{
14451        unsigned long ramrod_flags = 0;
14452
14453        __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
14454        return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
14455                                 &bp->iscsi_l2_mac_obj, true,
14456                                 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
14457}
14458
14459/* count denotes the number of new completions we have seen */
14460static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
14461{
14462        struct eth_spe *spe;
14463        int cxt_index, cxt_offset;
14464
14465#ifdef BNX2X_STOP_ON_ERROR
14466        if (unlikely(bp->panic))
14467                return;
14468#endif
14469
14470        spin_lock_bh(&bp->spq_lock);
14471        BUG_ON(bp->cnic_spq_pending < count);
14472        bp->cnic_spq_pending -= count;
14473
14474        for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
14475                u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
14476                                & SPE_HDR_CONN_TYPE) >>
14477                                SPE_HDR_CONN_TYPE_SHIFT;
14478                u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
14479                                >> SPE_HDR_CMD_ID_SHIFT) & 0xff;
14480
14481                /* Set validation for iSCSI L2 client before sending SETUP
14482                 *  ramrod
14483                 */
14484                if (type == ETH_CONNECTION_TYPE) {
14485                        if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
14486                                cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
14487                                        ILT_PAGE_CIDS;
14488                                cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
14489                                        (cxt_index * ILT_PAGE_CIDS);
14490                                bnx2x_set_ctx_validation(bp,
14491                                        &bp->context[cxt_index].
14492                                                         vcxt[cxt_offset].eth,
14493                                        BNX2X_ISCSI_ETH_CID(bp));
14494                        }
14495                }
14496
14497                /*
14498                 * There may be not more than 8 L2, not more than 8 L5 SPEs
14499                 * and in the air. We also check that number of outstanding
14500                 * COMMON ramrods is not more than the EQ and SPQ can
14501                 * accommodate.
14502                 */
14503                if (type == ETH_CONNECTION_TYPE) {
14504                        if (!atomic_read(&bp->cq_spq_left))
14505                                break;
14506                        else
14507                                atomic_dec(&bp->cq_spq_left);
14508                } else if (type == NONE_CONNECTION_TYPE) {
14509                        if (!atomic_read(&bp->eq_spq_left))
14510                                break;
14511                        else
14512                                atomic_dec(&bp->eq_spq_left);
14513                } else if ((type == ISCSI_CONNECTION_TYPE) ||
14514                           (type == FCOE_CONNECTION_TYPE)) {
14515                        if (bp->cnic_spq_pending >=
14516                            bp->cnic_eth_dev.max_kwqe_pending)
14517                                break;
14518                        else
14519                                bp->cnic_spq_pending++;
14520                } else {
14521                        BNX2X_ERR("Unknown SPE type: %d\n", type);
14522                        bnx2x_panic();
14523                        break;
14524                }
14525
14526                spe = bnx2x_sp_get_next(bp);
14527                *spe = *bp->cnic_kwq_cons;
14528
14529                DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
14530                   bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
14531
14532                if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
14533                        bp->cnic_kwq_cons = bp->cnic_kwq;
14534                else
14535                        bp->cnic_kwq_cons++;
14536        }
14537        bnx2x_sp_prod_update(bp);
14538        spin_unlock_bh(&bp->spq_lock);
14539}
14540
14541static int bnx2x_cnic_sp_queue(struct net_device *dev,
14542                               struct kwqe_16 *kwqes[], u32 count)
14543{
14544        struct bnx2x *bp = netdev_priv(dev);
14545        int i;
14546
14547#ifdef BNX2X_STOP_ON_ERROR
14548        if (unlikely(bp->panic)) {
14549                BNX2X_ERR("Can't post to SP queue while panic\n");
14550                return -EIO;
14551        }
14552#endif
14553
14554        if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
14555            (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
14556                BNX2X_ERR("Handling parity error recovery. Try again later\n");
14557                return -EAGAIN;
14558        }
14559
14560        spin_lock_bh(&bp->spq_lock);
14561
14562        for (i = 0; i < count; i++) {
14563                struct eth_spe *spe = (struct eth_spe *)kwqes[i];
14564
14565                if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
14566                        break;
14567
14568                *bp->cnic_kwq_prod = *spe;
14569
14570                bp->cnic_kwq_pending++;
14571
14572                DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
14573                   spe->hdr.conn_and_cmd_data, spe->hdr.type,
14574                   spe->data.update_data_addr.hi,
14575                   spe->data.update_data_addr.lo,
14576                   bp->cnic_kwq_pending);
14577
14578                if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
14579                        bp->cnic_kwq_prod = bp->cnic_kwq;
14580                else
14581                        bp->cnic_kwq_prod++;
14582        }
14583
14584        spin_unlock_bh(&bp->spq_lock);
14585
14586        if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
14587                bnx2x_cnic_sp_post(bp, 0);
14588
14589        return i;
14590}
14591
14592static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14593{
14594        struct cnic_ops *c_ops;
14595        int rc = 0;
14596
14597        mutex_lock(&bp->cnic_mutex);
14598        c_ops = rcu_dereference_protected(bp->cnic_ops,
14599                                          lockdep_is_held(&bp->cnic_mutex));
14600        if (c_ops)
14601                rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14602        mutex_unlock(&bp->cnic_mutex);
14603
14604        return rc;
14605}
14606
14607static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14608{
14609        struct cnic_ops *c_ops;
14610        int rc = 0;
14611
14612        rcu_read_lock();
14613        c_ops = rcu_dereference(bp->cnic_ops);
14614        if (c_ops)
14615                rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14616        rcu_read_unlock();
14617
14618        return rc;
14619}
14620
14621/*
14622 * for commands that have no data
14623 */
14624int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
14625{
14626        struct cnic_ctl_info ctl = {0};
14627
14628        ctl.cmd = cmd;
14629
14630        return bnx2x_cnic_ctl_send(bp, &ctl);
14631}
14632
14633static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
14634{
14635        struct cnic_ctl_info ctl = {0};
14636
14637        /* first we tell CNIC and only then we count this as a completion */
14638        ctl.cmd = CNIC_CTL_COMPLETION_CMD;
14639        ctl.data.comp.cid = cid;
14640        ctl.data.comp.error = err;
14641
14642        bnx2x_cnic_ctl_send_bh(bp, &ctl);
14643        bnx2x_cnic_sp_post(bp, 0);
14644}
14645
14646/* Called with netif_addr_lock_bh() taken.
14647 * Sets an rx_mode config for an iSCSI ETH client.
14648 * Doesn't block.
14649 * Completion should be checked outside.
14650 */
14651static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
14652{
14653        unsigned long accept_flags = 0, ramrod_flags = 0;
14654        u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
14655        int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
14656
14657        if (start) {
14658                /* Start accepting on iSCSI L2 ring. Accept all multicasts
14659                 * because it's the only way for UIO Queue to accept
14660                 * multicasts (in non-promiscuous mode only one Queue per
14661                 * function will receive multicast packets (leading in our
14662                 * case).
14663                 */
14664                __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
14665                __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
14666                __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
14667                __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
14668
14669                /* Clear STOP_PENDING bit if START is requested */
14670                clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
14671
14672                sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
14673        } else
14674                /* Clear START_PENDING bit if STOP is requested */
14675                clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
14676
14677        if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
14678                set_bit(sched_state, &bp->sp_state);
14679        else {
14680                __set_bit(RAMROD_RX, &ramrod_flags);
14681                bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
14682                                    ramrod_flags);
14683        }
14684}
14685
14686static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
14687{
14688        struct bnx2x *bp = netdev_priv(dev);
14689        int rc = 0;
14690
14691        switch (ctl->cmd) {
14692        case DRV_CTL_CTXTBL_WR_CMD: {
14693                u32 index = ctl->data.io.offset;
14694                dma_addr_t addr = ctl->data.io.dma_addr;
14695
14696                bnx2x_ilt_wr(bp, index, addr);
14697                break;
14698        }
14699
14700        case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
14701                int count = ctl->data.credit.credit_count;
14702
14703                bnx2x_cnic_sp_post(bp, count);
14704                break;
14705        }
14706
14707        /* rtnl_lock is held.  */
14708        case DRV_CTL_START_L2_CMD: {
14709                struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14710                unsigned long sp_bits = 0;
14711
14712                /* Configure the iSCSI classification object */
14713                bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
14714                                   cp->iscsi_l2_client_id,
14715                                   cp->iscsi_l2_cid, BP_FUNC(bp),
14716                                   bnx2x_sp(bp, mac_rdata),
14717                                   bnx2x_sp_mapping(bp, mac_rdata),
14718                                   BNX2X_FILTER_MAC_PENDING,
14719                                   &bp->sp_state, BNX2X_OBJ_TYPE_RX,
14720                                   &bp->macs_pool);
14721
14722                /* Set iSCSI MAC address */
14723                rc = bnx2x_set_iscsi_eth_mac_addr(bp);
14724                if (rc)
14725                        break;
14726
14727                mmiowb();
14728                barrier();
14729
14730                /* Start accepting on iSCSI L2 ring */
14731
14732                netif_addr_lock_bh(dev);
14733                bnx2x_set_iscsi_eth_rx_mode(bp, true);
14734                netif_addr_unlock_bh(dev);
14735
14736                /* bits to wait on */
14737                __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14738                __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
14739
14740                if (!bnx2x_wait_sp_comp(bp, sp_bits))
14741                        BNX2X_ERR("rx_mode completion timed out!\n");
14742
14743                break;
14744        }
14745
14746        /* rtnl_lock is held.  */
14747        case DRV_CTL_STOP_L2_CMD: {
14748                unsigned long sp_bits = 0;
14749
14750                /* Stop accepting on iSCSI L2 ring */
14751                netif_addr_lock_bh(dev);
14752                bnx2x_set_iscsi_eth_rx_mode(bp, false);
14753                netif_addr_unlock_bh(dev);
14754
14755                /* bits to wait on */
14756                __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14757                __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
14758
14759                if (!bnx2x_wait_sp_comp(bp, sp_bits))
14760                        BNX2X_ERR("rx_mode completion timed out!\n");
14761
14762                mmiowb();
14763                barrier();
14764
14765                /* Unset iSCSI L2 MAC */
14766                rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
14767                                        BNX2X_ISCSI_ETH_MAC, true);
14768                break;
14769        }
14770        case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
14771                int count = ctl->data.credit.credit_count;
14772
14773                smp_mb__before_atomic();
14774                atomic_add(count, &bp->cq_spq_left);
14775                smp_mb__after_atomic();
14776                break;
14777        }
14778        case DRV_CTL_ULP_REGISTER_CMD: {
14779                int ulp_type = ctl->data.register_data.ulp_type;
14780
14781                if (CHIP_IS_E3(bp)) {
14782                        int idx = BP_FW_MB_IDX(bp);
14783                        u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14784                        int path = BP_PATH(bp);
14785                        int port = BP_PORT(bp);
14786                        int i;
14787                        u32 scratch_offset;
14788                        u32 *host_addr;
14789
14790                        /* first write capability to shmem2 */
14791                        if (ulp_type == CNIC_ULP_ISCSI)
14792                                cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14793                        else if (ulp_type == CNIC_ULP_FCOE)
14794                                cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14795                        SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14796
14797                        if ((ulp_type != CNIC_ULP_FCOE) ||
14798                            (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
14799                            (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
14800                                break;
14801
14802                        /* if reached here - should write fcoe capabilities */
14803                        scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
14804                        if (!scratch_offset)
14805                                break;
14806                        scratch_offset += offsetof(struct glob_ncsi_oem_data,
14807                                                   fcoe_features[path][port]);
14808                        host_addr = (u32 *) &(ctl->data.register_data.
14809                                              fcoe_features);
14810                        for (i = 0; i < sizeof(struct fcoe_capabilities);
14811                             i += 4)
14812                                REG_WR(bp, scratch_offset + i,
14813                                       *(host_addr + i/4));
14814                }
14815                bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14816                break;
14817        }
14818
14819        case DRV_CTL_ULP_UNREGISTER_CMD: {
14820                int ulp_type = ctl->data.ulp_type;
14821
14822                if (CHIP_IS_E3(bp)) {
14823                        int idx = BP_FW_MB_IDX(bp);
14824                        u32 cap;
14825
14826                        cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14827                        if (ulp_type == CNIC_ULP_ISCSI)
14828                                cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14829                        else if (ulp_type == CNIC_ULP_FCOE)
14830                                cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14831                        SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14832                }
14833                bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14834                break;
14835        }
14836
14837        default:
14838                BNX2X_ERR("unknown command %x\n", ctl->cmd);
14839                rc = -EINVAL;
14840        }
14841
14842        /* For storage-only interfaces, change driver state */
14843        if (IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) {
14844                switch (ctl->drv_state) {
14845                case DRV_NOP:
14846                        break;
14847                case DRV_ACTIVE:
14848                        bnx2x_set_os_driver_state(bp,
14849                                                  OS_DRIVER_STATE_ACTIVE);
14850                        break;
14851                case DRV_INACTIVE:
14852                        bnx2x_set_os_driver_state(bp,
14853                                                  OS_DRIVER_STATE_DISABLED);
14854                        break;
14855                case DRV_UNLOADED:
14856                        bnx2x_set_os_driver_state(bp,
14857                                                  OS_DRIVER_STATE_NOT_LOADED);
14858                        break;
14859                default:
14860                BNX2X_ERR("Unknown cnic driver state: %d\n", ctl->drv_state);
14861                }
14862        }
14863
14864        return rc;
14865}
14866
14867static int bnx2x_get_fc_npiv(struct net_device *dev,
14868                             struct cnic_fc_npiv_tbl *cnic_tbl)
14869{
14870        struct bnx2x *bp = netdev_priv(dev);
14871        struct bdn_fc_npiv_tbl *tbl = NULL;
14872        u32 offset, entries;
14873        int rc = -EINVAL;
14874        int i;
14875
14876        if (!SHMEM2_HAS(bp, fc_npiv_nvram_tbl_addr[0]))
14877                goto out;
14878
14879        DP(BNX2X_MSG_MCP, "About to read the FC-NPIV table\n");
14880
14881        tbl = kmalloc(sizeof(*tbl), GFP_KERNEL);
14882        if (!tbl) {
14883                BNX2X_ERR("Failed to allocate fc_npiv table\n");
14884                goto out;
14885        }
14886
14887        offset = SHMEM2_RD(bp, fc_npiv_nvram_tbl_addr[BP_PORT(bp)]);
14888        if (!offset) {
14889                DP(BNX2X_MSG_MCP, "No FC-NPIV in NVRAM\n");
14890                goto out;
14891        }
14892        DP(BNX2X_MSG_MCP, "Offset of FC-NPIV in NVRAM: %08x\n", offset);
14893
14894        /* Read the table contents from nvram */
14895        if (bnx2x_nvram_read(bp, offset, (u8 *)tbl, sizeof(*tbl))) {
14896                BNX2X_ERR("Failed to read FC-NPIV table\n");
14897                goto out;
14898        }
14899
14900        /* Since bnx2x_nvram_read() returns data in be32, we need to convert
14901         * the number of entries back to cpu endianness.
14902         */
14903        entries = tbl->fc_npiv_cfg.num_of_npiv;
14904        entries = (__force u32)be32_to_cpu((__force __be32)entries);
14905        tbl->fc_npiv_cfg.num_of_npiv = entries;
14906
14907        if (!tbl->fc_npiv_cfg.num_of_npiv) {
14908                DP(BNX2X_MSG_MCP,
14909                   "No FC-NPIV table [valid, simply not present]\n");
14910                goto out;
14911        } else if (tbl->fc_npiv_cfg.num_of_npiv > MAX_NUMBER_NPIV) {
14912                BNX2X_ERR("FC-NPIV table with bad length 0x%08x\n",
14913                          tbl->fc_npiv_cfg.num_of_npiv);
14914                goto out;
14915        } else {
14916                DP(BNX2X_MSG_MCP, "Read 0x%08x entries from NVRAM\n",
14917                   tbl->fc_npiv_cfg.num_of_npiv);
14918        }
14919
14920        /* Copy the data into cnic-provided struct */
14921        cnic_tbl->count = tbl->fc_npiv_cfg.num_of_npiv;
14922        for (i = 0; i < cnic_tbl->count; i++) {
14923                memcpy(cnic_tbl->wwpn[i], tbl->settings[i].npiv_wwpn, 8);
14924                memcpy(cnic_tbl->wwnn[i], tbl->settings[i].npiv_wwnn, 8);
14925        }
14926
14927        rc = 0;
14928out:
14929        kfree(tbl);
14930        return rc;
14931}
14932
14933void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
14934{
14935        struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14936
14937        if (bp->flags & USING_MSIX_FLAG) {
14938                cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
14939                cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
14940                cp->irq_arr[0].vector = bp->msix_table[1].vector;
14941        } else {
14942                cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
14943                cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
14944        }
14945        if (!CHIP_IS_E1x(bp))
14946                cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
14947        else
14948                cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
14949
14950        cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
14951        cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
14952        cp->irq_arr[1].status_blk = bp->def_status_blk;
14953        cp->irq_arr[1].status_blk_num = DEF_SB_ID;
14954        cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
14955
14956        cp->num_irq = 2;
14957}
14958
14959void bnx2x_setup_cnic_info(struct bnx2x *bp)
14960{
14961        struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14962
14963        cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
14964                             bnx2x_cid_ilt_lines(bp);
14965        cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
14966        cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
14967        cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
14968
14969        DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
14970           BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
14971           cp->iscsi_l2_cid);
14972
14973        if (NO_ISCSI_OOO(bp))
14974                cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
14975}
14976
14977static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
14978                               void *data)
14979{
14980        struct bnx2x *bp = netdev_priv(dev);
14981        struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14982        int rc;
14983
14984        DP(NETIF_MSG_IFUP, "Register_cnic called\n");
14985
14986        if (ops == NULL) {
14987                BNX2X_ERR("NULL ops received\n");
14988                return -EINVAL;
14989        }
14990
14991        if (!CNIC_SUPPORT(bp)) {
14992                BNX2X_ERR("Can't register CNIC when not supported\n");
14993                return -EOPNOTSUPP;
14994        }
14995
14996        if (!CNIC_LOADED(bp)) {
14997                rc = bnx2x_load_cnic(bp);
14998                if (rc) {
14999                        BNX2X_ERR("CNIC-related load failed\n");
15000                        return rc;
15001                }
15002        }
15003
15004        bp->cnic_enabled = true;
15005
15006        bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
15007        if (!bp->cnic_kwq)
15008                return -ENOMEM;
15009
15010        bp->cnic_kwq_cons = bp->cnic_kwq;
15011        bp->cnic_kwq_prod = bp->cnic_kwq;
15012        bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
15013
15014        bp->cnic_spq_pending = 0;
15015        bp->cnic_kwq_pending = 0;
15016
15017        bp->cnic_data = data;
15018
15019        cp->num_irq = 0;
15020        cp->drv_state |= CNIC_DRV_STATE_REGD;
15021        cp->iro_arr = bp->iro_arr;
15022
15023        bnx2x_setup_cnic_irq_info(bp);
15024
15025        rcu_assign_pointer(bp->cnic_ops, ops);
15026
15027        /* Schedule driver to read CNIC driver versions */
15028        bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
15029
15030        return 0;
15031}
15032
15033static int bnx2x_unregister_cnic(struct net_device *dev)
15034{
15035        struct bnx2x *bp = netdev_priv(dev);
15036        struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15037
15038        mutex_lock(&bp->cnic_mutex);
15039        cp->drv_state = 0;
15040        RCU_INIT_POINTER(bp->cnic_ops, NULL);
15041        mutex_unlock(&bp->cnic_mutex);
15042        synchronize_rcu();
15043        bp->cnic_enabled = false;
15044        kfree(bp->cnic_kwq);
15045        bp->cnic_kwq = NULL;
15046
15047        return 0;
15048}
15049
15050static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
15051{
15052        struct bnx2x *bp = netdev_priv(dev);
15053        struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15054
15055        /* If both iSCSI and FCoE are disabled - return NULL in
15056         * order to indicate CNIC that it should not try to work
15057         * with this device.
15058         */
15059        if (NO_ISCSI(bp) && NO_FCOE(bp))
15060                return NULL;
15061
15062        cp->drv_owner = THIS_MODULE;
15063        cp->chip_id = CHIP_ID(bp);
15064        cp->pdev = bp->pdev;
15065        cp->io_base = bp->regview;
15066        cp->io_base2 = bp->doorbells;
15067        cp->max_kwqe_pending = 8;
15068        cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
15069        cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
15070                             bnx2x_cid_ilt_lines(bp);
15071        cp->ctx_tbl_len = CNIC_ILT_LINES;
15072        cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
15073        cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
15074        cp->drv_ctl = bnx2x_drv_ctl;
15075        cp->drv_get_fc_npiv_tbl = bnx2x_get_fc_npiv;
15076        cp->drv_register_cnic = bnx2x_register_cnic;
15077        cp->drv_unregister_cnic = bnx2x_unregister_cnic;
15078        cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
15079        cp->iscsi_l2_client_id =
15080                bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
15081        cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
15082
15083        if (NO_ISCSI_OOO(bp))
15084                cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
15085
15086        if (NO_ISCSI(bp))
15087                cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
15088
15089        if (NO_FCOE(bp))
15090                cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
15091
15092        BNX2X_DEV_INFO(
15093                "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
15094           cp->ctx_blk_size,
15095           cp->ctx_tbl_offset,
15096           cp->ctx_tbl_len,
15097           cp->starting_cid);
15098        return cp;
15099}
15100
15101static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
15102{
15103        struct bnx2x *bp = fp->bp;
15104        u32 offset = BAR_USTRORM_INTMEM;
15105
15106        if (IS_VF(bp))
15107                return bnx2x_vf_ustorm_prods_offset(bp, fp);
15108        else if (!CHIP_IS_E1x(bp))
15109                offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
15110        else
15111                offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
15112
15113        return offset;
15114}
15115
15116/* called only on E1H or E2.
15117 * When pretending to be PF, the pretend value is the function number 0...7
15118 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
15119 * combination
15120 */
15121int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
15122{
15123        u32 pretend_reg;
15124
15125        if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
15126                return -1;
15127
15128        /* get my own pretend register */
15129        pretend_reg = bnx2x_get_pretend_reg(bp);
15130        REG_WR(bp, pretend_reg, pretend_func_val);
15131        REG_RD(bp, pretend_reg);
15132        return 0;
15133}
15134
15135static void bnx2x_ptp_task(struct work_struct *work)
15136{
15137        struct bnx2x *bp = container_of(work, struct bnx2x, ptp_task);
15138        int port = BP_PORT(bp);
15139        u32 val_seq;
15140        u64 timestamp, ns;
15141        struct skb_shared_hwtstamps shhwtstamps;
15142
15143        /* Read Tx timestamp registers */
15144        val_seq = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15145                         NIG_REG_P0_TLLH_PTP_BUF_SEQID);
15146        if (val_seq & 0x10000) {
15147                /* There is a valid timestamp value */
15148                timestamp = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_MSB :
15149                                   NIG_REG_P0_TLLH_PTP_BUF_TS_MSB);
15150                timestamp <<= 32;
15151                timestamp |= REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_LSB :
15152                                    NIG_REG_P0_TLLH_PTP_BUF_TS_LSB);
15153                /* Reset timestamp register to allow new timestamp */
15154                REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15155                       NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15156                ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15157
15158                memset(&shhwtstamps, 0, sizeof(shhwtstamps));
15159                shhwtstamps.hwtstamp = ns_to_ktime(ns);
15160                skb_tstamp_tx(bp->ptp_tx_skb, &shhwtstamps);
15161                dev_kfree_skb_any(bp->ptp_tx_skb);
15162                bp->ptp_tx_skb = NULL;
15163
15164                DP(BNX2X_MSG_PTP, "Tx timestamp, timestamp cycles = %llu, ns = %llu\n",
15165                   timestamp, ns);
15166        } else {
15167                DP(BNX2X_MSG_PTP, "There is no valid Tx timestamp yet\n");
15168                /* Reschedule to keep checking for a valid timestamp value */
15169                schedule_work(&bp->ptp_task);
15170        }
15171}
15172
15173void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb)
15174{
15175        int port = BP_PORT(bp);
15176        u64 timestamp, ns;
15177
15178        timestamp = REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_MSB :
15179                            NIG_REG_P0_LLH_PTP_HOST_BUF_TS_MSB);
15180        timestamp <<= 32;
15181        timestamp |= REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_LSB :
15182                            NIG_REG_P0_LLH_PTP_HOST_BUF_TS_LSB);
15183
15184        /* Reset timestamp register to allow new timestamp */
15185        REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15186               NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15187
15188        ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15189
15190        skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
15191
15192        DP(BNX2X_MSG_PTP, "Rx timestamp, timestamp cycles = %llu, ns = %llu\n",
15193           timestamp, ns);
15194}
15195
15196/* Read the PHC */
15197static cycle_t bnx2x_cyclecounter_read(const struct cyclecounter *cc)
15198{
15199        struct bnx2x *bp = container_of(cc, struct bnx2x, cyclecounter);
15200        int port = BP_PORT(bp);
15201        u32 wb_data[2];
15202        u64 phc_cycles;
15203
15204        REG_RD_DMAE(bp, port ? NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t1 :
15205                    NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t0, wb_data, 2);
15206        phc_cycles = wb_data[1];
15207        phc_cycles = (phc_cycles << 32) + wb_data[0];
15208
15209        DP(BNX2X_MSG_PTP, "PHC read cycles = %llu\n", phc_cycles);
15210
15211        return phc_cycles;
15212}
15213
15214static void bnx2x_init_cyclecounter(struct bnx2x *bp)
15215{
15216        memset(&bp->cyclecounter, 0, sizeof(bp->cyclecounter));
15217        bp->cyclecounter.read = bnx2x_cyclecounter_read;
15218        bp->cyclecounter.mask = CYCLECOUNTER_MASK(64);
15219        bp->cyclecounter.shift = 1;
15220        bp->cyclecounter.mult = 1;
15221}
15222
15223static int bnx2x_send_reset_timesync_ramrod(struct bnx2x *bp)
15224{
15225        struct bnx2x_func_state_params func_params = {NULL};
15226        struct bnx2x_func_set_timesync_params *set_timesync_params =
15227                &func_params.params.set_timesync;
15228
15229        /* Prepare parameters for function state transitions */
15230        __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
15231        __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
15232
15233        func_params.f_obj = &bp->func_obj;
15234        func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
15235
15236        /* Function parameters */
15237        set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_RESET;
15238        set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
15239
15240        return bnx2x_func_state_change(bp, &func_params);
15241}
15242
15243static int bnx2x_enable_ptp_packets(struct bnx2x *bp)
15244{
15245        struct bnx2x_queue_state_params q_params;
15246        int rc, i;
15247
15248        /* send queue update ramrod to enable PTP packets */
15249        memset(&q_params, 0, sizeof(q_params));
15250        __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
15251        q_params.cmd = BNX2X_Q_CMD_UPDATE;
15252        __set_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG,
15253                  &q_params.params.update.update_flags);
15254        __set_bit(BNX2X_Q_UPDATE_PTP_PKTS,
15255                  &q_params.params.update.update_flags);
15256
15257        /* send the ramrod on all the queues of the PF */
15258        for_each_eth_queue(bp, i) {
15259                struct bnx2x_fastpath *fp = &bp->fp[i];
15260
15261                /* Set the appropriate Queue object */
15262                q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
15263
15264                /* Update the Queue state */
15265                rc = bnx2x_queue_state_change(bp, &q_params);
15266                if (rc) {
15267                        BNX2X_ERR("Failed to enable PTP packets\n");
15268                        return rc;
15269                }
15270        }
15271
15272        return 0;
15273}
15274
15275int bnx2x_configure_ptp_filters(struct bnx2x *bp)
15276{
15277        int port = BP_PORT(bp);
15278        int rc;
15279
15280        if (!bp->hwtstamp_ioctl_called)
15281                return 0;
15282
15283        switch (bp->tx_type) {
15284        case HWTSTAMP_TX_ON:
15285                bp->flags |= TX_TIMESTAMPING_EN;
15286                REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15287                       NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x6AA);
15288                REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15289                       NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3EEE);
15290                break;
15291        case HWTSTAMP_TX_ONESTEP_SYNC:
15292                BNX2X_ERR("One-step timestamping is not supported\n");
15293                return -ERANGE;
15294        }
15295
15296        switch (bp->rx_filter) {
15297        case HWTSTAMP_FILTER_NONE:
15298                break;
15299        case HWTSTAMP_FILTER_ALL:
15300        case HWTSTAMP_FILTER_SOME:
15301                bp->rx_filter = HWTSTAMP_FILTER_NONE;
15302                break;
15303        case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
15304        case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
15305        case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
15306                bp->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
15307                /* Initialize PTP detection for UDP/IPv4 events */
15308                REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15309                       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7EE);
15310                REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15311                       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFE);
15312                break;
15313        case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
15314        case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
15315        case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
15316                bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
15317                /* Initialize PTP detection for UDP/IPv4 or UDP/IPv6 events */
15318                REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15319                       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7EA);
15320                REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15321                       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FEE);
15322                break;
15323        case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
15324        case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
15325        case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
15326                bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
15327                /* Initialize PTP detection L2 events */
15328                REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15329                       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x6BF);
15330                REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15331                       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3EFF);
15332
15333                break;
15334        case HWTSTAMP_FILTER_PTP_V2_EVENT:
15335        case HWTSTAMP_FILTER_PTP_V2_SYNC:
15336        case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
15337                bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
15338                /* Initialize PTP detection L2, UDP/IPv4 or UDP/IPv6 events */
15339                REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15340                       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x6AA);
15341                REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15342                       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3EEE);
15343                break;
15344        }
15345
15346        /* Indicate to FW that this PF expects recorded PTP packets */
15347        rc = bnx2x_enable_ptp_packets(bp);
15348        if (rc)
15349                return rc;
15350
15351        /* Enable sending PTP packets to host */
15352        REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15353               NIG_REG_P0_LLH_PTP_TO_HOST, 0x1);
15354
15355        return 0;
15356}
15357
15358static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr)
15359{
15360        struct hwtstamp_config config;
15361        int rc;
15362
15363        DP(BNX2X_MSG_PTP, "HWTSTAMP IOCTL called\n");
15364
15365        if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
15366                return -EFAULT;
15367
15368        DP(BNX2X_MSG_PTP, "Requested tx_type: %d, requested rx_filters = %d\n",
15369           config.tx_type, config.rx_filter);
15370
15371        if (config.flags) {
15372                BNX2X_ERR("config.flags is reserved for future use\n");
15373                return -EINVAL;
15374        }
15375
15376        bp->hwtstamp_ioctl_called = 1;
15377        bp->tx_type = config.tx_type;
15378        bp->rx_filter = config.rx_filter;
15379
15380        rc = bnx2x_configure_ptp_filters(bp);
15381        if (rc)
15382                return rc;
15383
15384        config.rx_filter = bp->rx_filter;
15385
15386        return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
15387                -EFAULT : 0;
15388}
15389
15390/* Configures HW for PTP */
15391static int bnx2x_configure_ptp(struct bnx2x *bp)
15392{
15393        int rc, port = BP_PORT(bp);
15394        u32 wb_data[2];
15395
15396        /* Reset PTP event detection rules - will be configured in the IOCTL */
15397        REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15398               NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
15399        REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15400               NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
15401        REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15402               NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
15403        REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15404               NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
15405
15406        /* Disable PTP packets to host - will be configured in the IOCTL*/
15407        REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15408               NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
15409
15410        /* Enable the PTP feature */
15411        REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
15412               NIG_REG_P0_PTP_EN, 0x3F);
15413
15414        /* Enable the free-running counter */
15415        wb_data[0] = 0;
15416        wb_data[1] = 0;
15417        REG_WR_DMAE(bp, NIG_REG_TIMESYNC_GEN_REG + tsgen_ctrl, wb_data, 2);
15418
15419        /* Reset drift register (offset register is not reset) */
15420        rc = bnx2x_send_reset_timesync_ramrod(bp);
15421        if (rc) {
15422                BNX2X_ERR("Failed to reset PHC drift register\n");
15423                return -EFAULT;
15424        }
15425
15426        /* Reset possibly old timestamps */
15427        REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15428               NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15429        REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15430               NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15431
15432        return 0;
15433}
15434
15435/* Called during load, to initialize PTP-related stuff */
15436void bnx2x_init_ptp(struct bnx2x *bp)
15437{
15438        int rc;
15439
15440        /* Configure PTP in HW */
15441        rc = bnx2x_configure_ptp(bp);
15442        if (rc) {
15443                BNX2X_ERR("Stopping PTP initialization\n");
15444                return;
15445        }
15446
15447        /* Init work queue for Tx timestamping */
15448        INIT_WORK(&bp->ptp_task, bnx2x_ptp_task);
15449
15450        /* Init cyclecounter and timecounter. This is done only in the first
15451         * load. If done in every load, PTP application will fail when doing
15452         * unload / load (e.g. MTU change) while it is running.
15453         */
15454        if (!bp->timecounter_init_done) {
15455                bnx2x_init_cyclecounter(bp);
15456                timecounter_init(&bp->timecounter, &bp->cyclecounter,
15457                                 ktime_to_ns(ktime_get_real()));
15458                bp->timecounter_init_done = 1;
15459        }
15460
15461        DP(BNX2X_MSG_PTP, "PTP initialization ended successfully\n");
15462}
15463