linux/drivers/net/ethernet/broadcom/genet/bcmgenet.c
<<
>>
Prefs
   1/*
   2 * Broadcom GENET (Gigabit Ethernet) controller driver
   3 *
   4 * Copyright (c) 2014 Broadcom Corporation
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10
  11#define pr_fmt(fmt)                             "bcmgenet: " fmt
  12
  13#include <linux/kernel.h>
  14#include <linux/module.h>
  15#include <linux/sched.h>
  16#include <linux/types.h>
  17#include <linux/fcntl.h>
  18#include <linux/interrupt.h>
  19#include <linux/string.h>
  20#include <linux/if_ether.h>
  21#include <linux/init.h>
  22#include <linux/errno.h>
  23#include <linux/delay.h>
  24#include <linux/platform_device.h>
  25#include <linux/dma-mapping.h>
  26#include <linux/pm.h>
  27#include <linux/clk.h>
  28#include <linux/of.h>
  29#include <linux/of_address.h>
  30#include <linux/of_irq.h>
  31#include <linux/of_net.h>
  32#include <linux/of_platform.h>
  33#include <net/arp.h>
  34
  35#include <linux/mii.h>
  36#include <linux/ethtool.h>
  37#include <linux/netdevice.h>
  38#include <linux/inetdevice.h>
  39#include <linux/etherdevice.h>
  40#include <linux/skbuff.h>
  41#include <linux/in.h>
  42#include <linux/ip.h>
  43#include <linux/ipv6.h>
  44#include <linux/phy.h>
  45#include <linux/platform_data/bcmgenet.h>
  46
  47#include <asm/unaligned.h>
  48
  49#include "bcmgenet.h"
  50
  51/* Maximum number of hardware queues, downsized if needed */
  52#define GENET_MAX_MQ_CNT        4
  53
  54/* Default highest priority queue for multi queue support */
  55#define GENET_Q0_PRIORITY       0
  56
  57#define GENET_Q16_RX_BD_CNT     \
  58        (TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
  59#define GENET_Q16_TX_BD_CNT     \
  60        (TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
  61
  62#define RX_BUF_LENGTH           2048
  63#define SKB_ALIGNMENT           32
  64
  65/* Tx/Rx DMA register offset, skip 256 descriptors */
  66#define WORDS_PER_BD(p)         (p->hw_params->words_per_bd)
  67#define DMA_DESC_SIZE           (WORDS_PER_BD(priv) * sizeof(u32))
  68
  69#define GENET_TDMA_REG_OFF      (priv->hw_params->tdma_offset + \
  70                                TOTAL_DESC * DMA_DESC_SIZE)
  71
  72#define GENET_RDMA_REG_OFF      (priv->hw_params->rdma_offset + \
  73                                TOTAL_DESC * DMA_DESC_SIZE)
  74
  75static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
  76                                             void __iomem *d, u32 value)
  77{
  78        __raw_writel(value, d + DMA_DESC_LENGTH_STATUS);
  79}
  80
  81static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv,
  82                                            void __iomem *d)
  83{
  84        return __raw_readl(d + DMA_DESC_LENGTH_STATUS);
  85}
  86
  87static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
  88                                    void __iomem *d,
  89                                    dma_addr_t addr)
  90{
  91        __raw_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
  92
  93        /* Register writes to GISB bus can take couple hundred nanoseconds
  94         * and are done for each packet, save these expensive writes unless
  95         * the platform is explicitly configured for 64-bits/LPAE.
  96         */
  97#ifdef CONFIG_PHYS_ADDR_T_64BIT
  98        if (priv->hw_params->flags & GENET_HAS_40BITS)
  99                __raw_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
 100#endif
 101}
 102
 103/* Combined address + length/status setter */
 104static inline void dmadesc_set(struct bcmgenet_priv *priv,
 105                               void __iomem *d, dma_addr_t addr, u32 val)
 106{
 107        dmadesc_set_length_status(priv, d, val);
 108        dmadesc_set_addr(priv, d, addr);
 109}
 110
 111static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
 112                                          void __iomem *d)
 113{
 114        dma_addr_t addr;
 115
 116        addr = __raw_readl(d + DMA_DESC_ADDRESS_LO);
 117
 118        /* Register writes to GISB bus can take couple hundred nanoseconds
 119         * and are done for each packet, save these expensive writes unless
 120         * the platform is explicitly configured for 64-bits/LPAE.
 121         */
 122#ifdef CONFIG_PHYS_ADDR_T_64BIT
 123        if (priv->hw_params->flags & GENET_HAS_40BITS)
 124                addr |= (u64)__raw_readl(d + DMA_DESC_ADDRESS_HI) << 32;
 125#endif
 126        return addr;
 127}
 128
 129#define GENET_VER_FMT   "%1d.%1d EPHY: 0x%04x"
 130
 131#define GENET_MSG_DEFAULT       (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
 132                                NETIF_MSG_LINK)
 133
 134static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
 135{
 136        if (GENET_IS_V1(priv))
 137                return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
 138        else
 139                return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
 140}
 141
 142static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
 143{
 144        if (GENET_IS_V1(priv))
 145                bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
 146        else
 147                bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
 148}
 149
 150/* These macros are defined to deal with register map change
 151 * between GENET1.1 and GENET2. Only those currently being used
 152 * by driver are defined.
 153 */
 154static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
 155{
 156        if (GENET_IS_V1(priv))
 157                return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
 158        else
 159                return __raw_readl(priv->base +
 160                                priv->hw_params->tbuf_offset + TBUF_CTRL);
 161}
 162
 163static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
 164{
 165        if (GENET_IS_V1(priv))
 166                bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
 167        else
 168                __raw_writel(val, priv->base +
 169                                priv->hw_params->tbuf_offset + TBUF_CTRL);
 170}
 171
 172static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
 173{
 174        if (GENET_IS_V1(priv))
 175                return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
 176        else
 177                return __raw_readl(priv->base +
 178                                priv->hw_params->tbuf_offset + TBUF_BP_MC);
 179}
 180
 181static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
 182{
 183        if (GENET_IS_V1(priv))
 184                bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
 185        else
 186                __raw_writel(val, priv->base +
 187                                priv->hw_params->tbuf_offset + TBUF_BP_MC);
 188}
 189
 190/* RX/TX DMA register accessors */
 191enum dma_reg {
 192        DMA_RING_CFG = 0,
 193        DMA_CTRL,
 194        DMA_STATUS,
 195        DMA_SCB_BURST_SIZE,
 196        DMA_ARB_CTRL,
 197        DMA_PRIORITY_0,
 198        DMA_PRIORITY_1,
 199        DMA_PRIORITY_2,
 200        DMA_INDEX2RING_0,
 201        DMA_INDEX2RING_1,
 202        DMA_INDEX2RING_2,
 203        DMA_INDEX2RING_3,
 204        DMA_INDEX2RING_4,
 205        DMA_INDEX2RING_5,
 206        DMA_INDEX2RING_6,
 207        DMA_INDEX2RING_7,
 208        DMA_RING0_TIMEOUT,
 209        DMA_RING1_TIMEOUT,
 210        DMA_RING2_TIMEOUT,
 211        DMA_RING3_TIMEOUT,
 212        DMA_RING4_TIMEOUT,
 213        DMA_RING5_TIMEOUT,
 214        DMA_RING6_TIMEOUT,
 215        DMA_RING7_TIMEOUT,
 216        DMA_RING8_TIMEOUT,
 217        DMA_RING9_TIMEOUT,
 218        DMA_RING10_TIMEOUT,
 219        DMA_RING11_TIMEOUT,
 220        DMA_RING12_TIMEOUT,
 221        DMA_RING13_TIMEOUT,
 222        DMA_RING14_TIMEOUT,
 223        DMA_RING15_TIMEOUT,
 224        DMA_RING16_TIMEOUT,
 225};
 226
 227static const u8 bcmgenet_dma_regs_v3plus[] = {
 228        [DMA_RING_CFG]          = 0x00,
 229        [DMA_CTRL]              = 0x04,
 230        [DMA_STATUS]            = 0x08,
 231        [DMA_SCB_BURST_SIZE]    = 0x0C,
 232        [DMA_ARB_CTRL]          = 0x2C,
 233        [DMA_PRIORITY_0]        = 0x30,
 234        [DMA_PRIORITY_1]        = 0x34,
 235        [DMA_PRIORITY_2]        = 0x38,
 236        [DMA_RING0_TIMEOUT]     = 0x2C,
 237        [DMA_RING1_TIMEOUT]     = 0x30,
 238        [DMA_RING2_TIMEOUT]     = 0x34,
 239        [DMA_RING3_TIMEOUT]     = 0x38,
 240        [DMA_RING4_TIMEOUT]     = 0x3c,
 241        [DMA_RING5_TIMEOUT]     = 0x40,
 242        [DMA_RING6_TIMEOUT]     = 0x44,
 243        [DMA_RING7_TIMEOUT]     = 0x48,
 244        [DMA_RING8_TIMEOUT]     = 0x4c,
 245        [DMA_RING9_TIMEOUT]     = 0x50,
 246        [DMA_RING10_TIMEOUT]    = 0x54,
 247        [DMA_RING11_TIMEOUT]    = 0x58,
 248        [DMA_RING12_TIMEOUT]    = 0x5c,
 249        [DMA_RING13_TIMEOUT]    = 0x60,
 250        [DMA_RING14_TIMEOUT]    = 0x64,
 251        [DMA_RING15_TIMEOUT]    = 0x68,
 252        [DMA_RING16_TIMEOUT]    = 0x6C,
 253        [DMA_INDEX2RING_0]      = 0x70,
 254        [DMA_INDEX2RING_1]      = 0x74,
 255        [DMA_INDEX2RING_2]      = 0x78,
 256        [DMA_INDEX2RING_3]      = 0x7C,
 257        [DMA_INDEX2RING_4]      = 0x80,
 258        [DMA_INDEX2RING_5]      = 0x84,
 259        [DMA_INDEX2RING_6]      = 0x88,
 260        [DMA_INDEX2RING_7]      = 0x8C,
 261};
 262
 263static const u8 bcmgenet_dma_regs_v2[] = {
 264        [DMA_RING_CFG]          = 0x00,
 265        [DMA_CTRL]              = 0x04,
 266        [DMA_STATUS]            = 0x08,
 267        [DMA_SCB_BURST_SIZE]    = 0x0C,
 268        [DMA_ARB_CTRL]          = 0x30,
 269        [DMA_PRIORITY_0]        = 0x34,
 270        [DMA_PRIORITY_1]        = 0x38,
 271        [DMA_PRIORITY_2]        = 0x3C,
 272        [DMA_RING0_TIMEOUT]     = 0x2C,
 273        [DMA_RING1_TIMEOUT]     = 0x30,
 274        [DMA_RING2_TIMEOUT]     = 0x34,
 275        [DMA_RING3_TIMEOUT]     = 0x38,
 276        [DMA_RING4_TIMEOUT]     = 0x3c,
 277        [DMA_RING5_TIMEOUT]     = 0x40,
 278        [DMA_RING6_TIMEOUT]     = 0x44,
 279        [DMA_RING7_TIMEOUT]     = 0x48,
 280        [DMA_RING8_TIMEOUT]     = 0x4c,
 281        [DMA_RING9_TIMEOUT]     = 0x50,
 282        [DMA_RING10_TIMEOUT]    = 0x54,
 283        [DMA_RING11_TIMEOUT]    = 0x58,
 284        [DMA_RING12_TIMEOUT]    = 0x5c,
 285        [DMA_RING13_TIMEOUT]    = 0x60,
 286        [DMA_RING14_TIMEOUT]    = 0x64,
 287        [DMA_RING15_TIMEOUT]    = 0x68,
 288        [DMA_RING16_TIMEOUT]    = 0x6C,
 289};
 290
 291static const u8 bcmgenet_dma_regs_v1[] = {
 292        [DMA_CTRL]              = 0x00,
 293        [DMA_STATUS]            = 0x04,
 294        [DMA_SCB_BURST_SIZE]    = 0x0C,
 295        [DMA_ARB_CTRL]          = 0x30,
 296        [DMA_PRIORITY_0]        = 0x34,
 297        [DMA_PRIORITY_1]        = 0x38,
 298        [DMA_PRIORITY_2]        = 0x3C,
 299        [DMA_RING0_TIMEOUT]     = 0x2C,
 300        [DMA_RING1_TIMEOUT]     = 0x30,
 301        [DMA_RING2_TIMEOUT]     = 0x34,
 302        [DMA_RING3_TIMEOUT]     = 0x38,
 303        [DMA_RING4_TIMEOUT]     = 0x3c,
 304        [DMA_RING5_TIMEOUT]     = 0x40,
 305        [DMA_RING6_TIMEOUT]     = 0x44,
 306        [DMA_RING7_TIMEOUT]     = 0x48,
 307        [DMA_RING8_TIMEOUT]     = 0x4c,
 308        [DMA_RING9_TIMEOUT]     = 0x50,
 309        [DMA_RING10_TIMEOUT]    = 0x54,
 310        [DMA_RING11_TIMEOUT]    = 0x58,
 311        [DMA_RING12_TIMEOUT]    = 0x5c,
 312        [DMA_RING13_TIMEOUT]    = 0x60,
 313        [DMA_RING14_TIMEOUT]    = 0x64,
 314        [DMA_RING15_TIMEOUT]    = 0x68,
 315        [DMA_RING16_TIMEOUT]    = 0x6C,
 316};
 317
 318/* Set at runtime once bcmgenet version is known */
 319static const u8 *bcmgenet_dma_regs;
 320
 321static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
 322{
 323        return netdev_priv(dev_get_drvdata(dev));
 324}
 325
 326static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
 327                                      enum dma_reg r)
 328{
 329        return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
 330                        DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
 331}
 332
 333static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
 334                                        u32 val, enum dma_reg r)
 335{
 336        __raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
 337                        DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
 338}
 339
 340static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
 341                                      enum dma_reg r)
 342{
 343        return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
 344                        DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
 345}
 346
 347static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
 348                                        u32 val, enum dma_reg r)
 349{
 350        __raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
 351                        DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
 352}
 353
 354/* RDMA/TDMA ring registers and accessors
 355 * we merge the common fields and just prefix with T/D the registers
 356 * having different meaning depending on the direction
 357 */
 358enum dma_ring_reg {
 359        TDMA_READ_PTR = 0,
 360        RDMA_WRITE_PTR = TDMA_READ_PTR,
 361        TDMA_READ_PTR_HI,
 362        RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
 363        TDMA_CONS_INDEX,
 364        RDMA_PROD_INDEX = TDMA_CONS_INDEX,
 365        TDMA_PROD_INDEX,
 366        RDMA_CONS_INDEX = TDMA_PROD_INDEX,
 367        DMA_RING_BUF_SIZE,
 368        DMA_START_ADDR,
 369        DMA_START_ADDR_HI,
 370        DMA_END_ADDR,
 371        DMA_END_ADDR_HI,
 372        DMA_MBUF_DONE_THRESH,
 373        TDMA_FLOW_PERIOD,
 374        RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
 375        TDMA_WRITE_PTR,
 376        RDMA_READ_PTR = TDMA_WRITE_PTR,
 377        TDMA_WRITE_PTR_HI,
 378        RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
 379};
 380
 381/* GENET v4 supports 40-bits pointer addressing
 382 * for obvious reasons the LO and HI word parts
 383 * are contiguous, but this offsets the other
 384 * registers.
 385 */
 386static const u8 genet_dma_ring_regs_v4[] = {
 387        [TDMA_READ_PTR]                 = 0x00,
 388        [TDMA_READ_PTR_HI]              = 0x04,
 389        [TDMA_CONS_INDEX]               = 0x08,
 390        [TDMA_PROD_INDEX]               = 0x0C,
 391        [DMA_RING_BUF_SIZE]             = 0x10,
 392        [DMA_START_ADDR]                = 0x14,
 393        [DMA_START_ADDR_HI]             = 0x18,
 394        [DMA_END_ADDR]                  = 0x1C,
 395        [DMA_END_ADDR_HI]               = 0x20,
 396        [DMA_MBUF_DONE_THRESH]          = 0x24,
 397        [TDMA_FLOW_PERIOD]              = 0x28,
 398        [TDMA_WRITE_PTR]                = 0x2C,
 399        [TDMA_WRITE_PTR_HI]             = 0x30,
 400};
 401
 402static const u8 genet_dma_ring_regs_v123[] = {
 403        [TDMA_READ_PTR]                 = 0x00,
 404        [TDMA_CONS_INDEX]               = 0x04,
 405        [TDMA_PROD_INDEX]               = 0x08,
 406        [DMA_RING_BUF_SIZE]             = 0x0C,
 407        [DMA_START_ADDR]                = 0x10,
 408        [DMA_END_ADDR]                  = 0x14,
 409        [DMA_MBUF_DONE_THRESH]          = 0x18,
 410        [TDMA_FLOW_PERIOD]              = 0x1C,
 411        [TDMA_WRITE_PTR]                = 0x20,
 412};
 413
 414/* Set at runtime once GENET version is known */
 415static const u8 *genet_dma_ring_regs;
 416
 417static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
 418                                           unsigned int ring,
 419                                           enum dma_ring_reg r)
 420{
 421        return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
 422                        (DMA_RING_SIZE * ring) +
 423                        genet_dma_ring_regs[r]);
 424}
 425
 426static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
 427                                             unsigned int ring, u32 val,
 428                                             enum dma_ring_reg r)
 429{
 430        __raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
 431                        (DMA_RING_SIZE * ring) +
 432                        genet_dma_ring_regs[r]);
 433}
 434
 435static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
 436                                           unsigned int ring,
 437                                           enum dma_ring_reg r)
 438{
 439        return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
 440                        (DMA_RING_SIZE * ring) +
 441                        genet_dma_ring_regs[r]);
 442}
 443
 444static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
 445                                             unsigned int ring, u32 val,
 446                                             enum dma_ring_reg r)
 447{
 448        __raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
 449                        (DMA_RING_SIZE * ring) +
 450                        genet_dma_ring_regs[r]);
 451}
 452
 453static int bcmgenet_get_settings(struct net_device *dev,
 454                                 struct ethtool_cmd *cmd)
 455{
 456        struct bcmgenet_priv *priv = netdev_priv(dev);
 457
 458        if (!netif_running(dev))
 459                return -EINVAL;
 460
 461        if (!priv->phydev)
 462                return -ENODEV;
 463
 464        return phy_ethtool_gset(priv->phydev, cmd);
 465}
 466
 467static int bcmgenet_set_settings(struct net_device *dev,
 468                                 struct ethtool_cmd *cmd)
 469{
 470        struct bcmgenet_priv *priv = netdev_priv(dev);
 471
 472        if (!netif_running(dev))
 473                return -EINVAL;
 474
 475        if (!priv->phydev)
 476                return -ENODEV;
 477
 478        return phy_ethtool_sset(priv->phydev, cmd);
 479}
 480
 481static int bcmgenet_set_rx_csum(struct net_device *dev,
 482                                netdev_features_t wanted)
 483{
 484        struct bcmgenet_priv *priv = netdev_priv(dev);
 485        u32 rbuf_chk_ctrl;
 486        bool rx_csum_en;
 487
 488        rx_csum_en = !!(wanted & NETIF_F_RXCSUM);
 489
 490        rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
 491
 492        /* enable rx checksumming */
 493        if (rx_csum_en)
 494                rbuf_chk_ctrl |= RBUF_RXCHK_EN;
 495        else
 496                rbuf_chk_ctrl &= ~RBUF_RXCHK_EN;
 497        priv->desc_rxchk_en = rx_csum_en;
 498
 499        /* If UniMAC forwards CRC, we need to skip over it to get
 500         * a valid CHK bit to be set in the per-packet status word
 501        */
 502        if (rx_csum_en && priv->crc_fwd_en)
 503                rbuf_chk_ctrl |= RBUF_SKIP_FCS;
 504        else
 505                rbuf_chk_ctrl &= ~RBUF_SKIP_FCS;
 506
 507        bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL);
 508
 509        return 0;
 510}
 511
 512static int bcmgenet_set_tx_csum(struct net_device *dev,
 513                                netdev_features_t wanted)
 514{
 515        struct bcmgenet_priv *priv = netdev_priv(dev);
 516        bool desc_64b_en;
 517        u32 tbuf_ctrl, rbuf_ctrl;
 518
 519        tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv);
 520        rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
 521
 522        desc_64b_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM));
 523
 524        /* enable 64 bytes descriptor in both directions (RBUF and TBUF) */
 525        if (desc_64b_en) {
 526                tbuf_ctrl |= RBUF_64B_EN;
 527                rbuf_ctrl |= RBUF_64B_EN;
 528        } else {
 529                tbuf_ctrl &= ~RBUF_64B_EN;
 530                rbuf_ctrl &= ~RBUF_64B_EN;
 531        }
 532        priv->desc_64b_en = desc_64b_en;
 533
 534        bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl);
 535        bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL);
 536
 537        return 0;
 538}
 539
 540static int bcmgenet_set_features(struct net_device *dev,
 541                                 netdev_features_t features)
 542{
 543        netdev_features_t changed = features ^ dev->features;
 544        netdev_features_t wanted = dev->wanted_features;
 545        int ret = 0;
 546
 547        if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
 548                ret = bcmgenet_set_tx_csum(dev, wanted);
 549        if (changed & (NETIF_F_RXCSUM))
 550                ret = bcmgenet_set_rx_csum(dev, wanted);
 551
 552        return ret;
 553}
 554
 555static u32 bcmgenet_get_msglevel(struct net_device *dev)
 556{
 557        struct bcmgenet_priv *priv = netdev_priv(dev);
 558
 559        return priv->msg_enable;
 560}
 561
 562static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
 563{
 564        struct bcmgenet_priv *priv = netdev_priv(dev);
 565
 566        priv->msg_enable = level;
 567}
 568
 569static int bcmgenet_get_coalesce(struct net_device *dev,
 570                                 struct ethtool_coalesce *ec)
 571{
 572        struct bcmgenet_priv *priv = netdev_priv(dev);
 573
 574        ec->tx_max_coalesced_frames =
 575                bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
 576                                         DMA_MBUF_DONE_THRESH);
 577        ec->rx_max_coalesced_frames =
 578                bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
 579                                         DMA_MBUF_DONE_THRESH);
 580        ec->rx_coalesce_usecs =
 581                bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
 582
 583        return 0;
 584}
 585
 586static int bcmgenet_set_coalesce(struct net_device *dev,
 587                                 struct ethtool_coalesce *ec)
 588{
 589        struct bcmgenet_priv *priv = netdev_priv(dev);
 590        unsigned int i;
 591        u32 reg;
 592
 593        /* Base system clock is 125Mhz, DMA timeout is this reference clock
 594         * divided by 1024, which yields roughly 8.192us, our maximum value
 595         * has to fit in the DMA_TIMEOUT_MASK (16 bits)
 596         */
 597        if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
 598            ec->tx_max_coalesced_frames == 0 ||
 599            ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
 600            ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
 601                return -EINVAL;
 602
 603        if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
 604                return -EINVAL;
 605
 606        /* GENET TDMA hardware does not support a configurable timeout, but will
 607         * always generate an interrupt either after MBDONE packets have been
 608         * transmitted, or when the ring is emtpy.
 609         */
 610        if (ec->tx_coalesce_usecs || ec->tx_coalesce_usecs_high ||
 611            ec->tx_coalesce_usecs_irq || ec->tx_coalesce_usecs_low)
 612                return -EOPNOTSUPP;
 613
 614        /* Program all TX queues with the same values, as there is no
 615         * ethtool knob to do coalescing on a per-queue basis
 616         */
 617        for (i = 0; i < priv->hw_params->tx_queues; i++)
 618                bcmgenet_tdma_ring_writel(priv, i,
 619                                          ec->tx_max_coalesced_frames,
 620                                          DMA_MBUF_DONE_THRESH);
 621        bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
 622                                  ec->tx_max_coalesced_frames,
 623                                  DMA_MBUF_DONE_THRESH);
 624
 625        for (i = 0; i < priv->hw_params->rx_queues; i++) {
 626                bcmgenet_rdma_ring_writel(priv, i,
 627                                          ec->rx_max_coalesced_frames,
 628                                          DMA_MBUF_DONE_THRESH);
 629
 630                reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
 631                reg &= ~DMA_TIMEOUT_MASK;
 632                reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192);
 633                bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
 634        }
 635
 636        bcmgenet_rdma_ring_writel(priv, DESC_INDEX,
 637                                  ec->rx_max_coalesced_frames,
 638                                  DMA_MBUF_DONE_THRESH);
 639
 640        reg = bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT);
 641        reg &= ~DMA_TIMEOUT_MASK;
 642        reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192);
 643        bcmgenet_rdma_writel(priv, reg, DMA_RING16_TIMEOUT);
 644
 645        return 0;
 646}
 647
 648/* standard ethtool support functions. */
 649enum bcmgenet_stat_type {
 650        BCMGENET_STAT_NETDEV = -1,
 651        BCMGENET_STAT_MIB_RX,
 652        BCMGENET_STAT_MIB_TX,
 653        BCMGENET_STAT_RUNT,
 654        BCMGENET_STAT_MISC,
 655        BCMGENET_STAT_SOFT,
 656};
 657
 658struct bcmgenet_stats {
 659        char stat_string[ETH_GSTRING_LEN];
 660        int stat_sizeof;
 661        int stat_offset;
 662        enum bcmgenet_stat_type type;
 663        /* reg offset from UMAC base for misc counters */
 664        u16 reg_offset;
 665};
 666
 667#define STAT_NETDEV(m) { \
 668        .stat_string = __stringify(m), \
 669        .stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
 670        .stat_offset = offsetof(struct net_device_stats, m), \
 671        .type = BCMGENET_STAT_NETDEV, \
 672}
 673
 674#define STAT_GENET_MIB(str, m, _type) { \
 675        .stat_string = str, \
 676        .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
 677        .stat_offset = offsetof(struct bcmgenet_priv, m), \
 678        .type = _type, \
 679}
 680
 681#define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
 682#define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
 683#define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
 684#define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
 685
 686#define STAT_GENET_MISC(str, m, offset) { \
 687        .stat_string = str, \
 688        .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
 689        .stat_offset = offsetof(struct bcmgenet_priv, m), \
 690        .type = BCMGENET_STAT_MISC, \
 691        .reg_offset = offset, \
 692}
 693
 694
 695/* There is a 0xC gap between the end of RX and beginning of TX stats and then
 696 * between the end of TX stats and the beginning of the RX RUNT
 697 */
 698#define BCMGENET_STAT_OFFSET    0xc
 699
 700/* Hardware counters must be kept in sync because the order/offset
 701 * is important here (order in structure declaration = order in hardware)
 702 */
 703static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
 704        /* general stats */
 705        STAT_NETDEV(rx_packets),
 706        STAT_NETDEV(tx_packets),
 707        STAT_NETDEV(rx_bytes),
 708        STAT_NETDEV(tx_bytes),
 709        STAT_NETDEV(rx_errors),
 710        STAT_NETDEV(tx_errors),
 711        STAT_NETDEV(rx_dropped),
 712        STAT_NETDEV(tx_dropped),
 713        STAT_NETDEV(multicast),
 714        /* UniMAC RSV counters */
 715        STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
 716        STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
 717        STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
 718        STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
 719        STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
 720        STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
 721        STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
 722        STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
 723        STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
 724        STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
 725        STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
 726        STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
 727        STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
 728        STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
 729        STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
 730        STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
 731        STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
 732        STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
 733        STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
 734        STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
 735        STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
 736        STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
 737        STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
 738        STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
 739        STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
 740        STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
 741        STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
 742        STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
 743        STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
 744        /* UniMAC TSV counters */
 745        STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
 746        STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
 747        STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
 748        STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
 749        STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
 750        STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
 751        STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
 752        STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
 753        STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
 754        STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
 755        STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
 756        STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
 757        STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
 758        STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
 759        STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
 760        STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
 761        STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
 762        STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
 763        STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
 764        STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
 765        STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
 766        STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
 767        STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
 768        STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
 769        STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
 770        STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
 771        STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
 772        STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
 773        STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
 774        /* UniMAC RUNT counters */
 775        STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
 776        STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
 777        STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
 778        STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
 779        /* Misc UniMAC counters */
 780        STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
 781                        UMAC_RBUF_OVFL_CNT),
 782        STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt, UMAC_RBUF_ERR_CNT),
 783        STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
 784        STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
 785        STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
 786        STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
 787};
 788
 789#define BCMGENET_STATS_LEN      ARRAY_SIZE(bcmgenet_gstrings_stats)
 790
 791static void bcmgenet_get_drvinfo(struct net_device *dev,
 792                                 struct ethtool_drvinfo *info)
 793{
 794        strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
 795        strlcpy(info->version, "v2.0", sizeof(info->version));
 796}
 797
 798static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
 799{
 800        switch (string_set) {
 801        case ETH_SS_STATS:
 802                return BCMGENET_STATS_LEN;
 803        default:
 804                return -EOPNOTSUPP;
 805        }
 806}
 807
 808static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
 809                                 u8 *data)
 810{
 811        int i;
 812
 813        switch (stringset) {
 814        case ETH_SS_STATS:
 815                for (i = 0; i < BCMGENET_STATS_LEN; i++) {
 816                        memcpy(data + i * ETH_GSTRING_LEN,
 817                               bcmgenet_gstrings_stats[i].stat_string,
 818                               ETH_GSTRING_LEN);
 819                }
 820                break;
 821        }
 822}
 823
 824static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
 825{
 826        int i, j = 0;
 827
 828        for (i = 0; i < BCMGENET_STATS_LEN; i++) {
 829                const struct bcmgenet_stats *s;
 830                u8 offset = 0;
 831                u32 val = 0;
 832                char *p;
 833
 834                s = &bcmgenet_gstrings_stats[i];
 835                switch (s->type) {
 836                case BCMGENET_STAT_NETDEV:
 837                case BCMGENET_STAT_SOFT:
 838                        continue;
 839                case BCMGENET_STAT_MIB_RX:
 840                case BCMGENET_STAT_MIB_TX:
 841                case BCMGENET_STAT_RUNT:
 842                        if (s->type != BCMGENET_STAT_MIB_RX)
 843                                offset = BCMGENET_STAT_OFFSET;
 844                        val = bcmgenet_umac_readl(priv,
 845                                                  UMAC_MIB_START + j + offset);
 846                        break;
 847                case BCMGENET_STAT_MISC:
 848                        val = bcmgenet_umac_readl(priv, s->reg_offset);
 849                        /* clear if overflowed */
 850                        if (val == ~0)
 851                                bcmgenet_umac_writel(priv, 0, s->reg_offset);
 852                        break;
 853                }
 854
 855                j += s->stat_sizeof;
 856                p = (char *)priv + s->stat_offset;
 857                *(u32 *)p = val;
 858        }
 859}
 860
 861static void bcmgenet_get_ethtool_stats(struct net_device *dev,
 862                                       struct ethtool_stats *stats,
 863                                       u64 *data)
 864{
 865        struct bcmgenet_priv *priv = netdev_priv(dev);
 866        int i;
 867
 868        if (netif_running(dev))
 869                bcmgenet_update_mib_counters(priv);
 870
 871        for (i = 0; i < BCMGENET_STATS_LEN; i++) {
 872                const struct bcmgenet_stats *s;
 873                char *p;
 874
 875                s = &bcmgenet_gstrings_stats[i];
 876                if (s->type == BCMGENET_STAT_NETDEV)
 877                        p = (char *)&dev->stats;
 878                else
 879                        p = (char *)priv;
 880                p += s->stat_offset;
 881                if (sizeof(unsigned long) != sizeof(u32) &&
 882                    s->stat_sizeof == sizeof(unsigned long))
 883                        data[i] = *(unsigned long *)p;
 884                else
 885                        data[i] = *(u32 *)p;
 886        }
 887}
 888
 889static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
 890{
 891        struct bcmgenet_priv *priv = netdev_priv(dev);
 892        u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
 893        u32 reg;
 894
 895        if (enable && !priv->clk_eee_enabled) {
 896                clk_prepare_enable(priv->clk_eee);
 897                priv->clk_eee_enabled = true;
 898        }
 899
 900        reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
 901        if (enable)
 902                reg |= EEE_EN;
 903        else
 904                reg &= ~EEE_EN;
 905        bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
 906
 907        /* Enable EEE and switch to a 27Mhz clock automatically */
 908        reg = __raw_readl(priv->base + off);
 909        if (enable)
 910                reg |= TBUF_EEE_EN | TBUF_PM_EN;
 911        else
 912                reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
 913        __raw_writel(reg, priv->base + off);
 914
 915        /* Do the same for thing for RBUF */
 916        reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
 917        if (enable)
 918                reg |= RBUF_EEE_EN | RBUF_PM_EN;
 919        else
 920                reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
 921        bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
 922
 923        if (!enable && priv->clk_eee_enabled) {
 924                clk_disable_unprepare(priv->clk_eee);
 925                priv->clk_eee_enabled = false;
 926        }
 927
 928        priv->eee.eee_enabled = enable;
 929        priv->eee.eee_active = enable;
 930}
 931
 932static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
 933{
 934        struct bcmgenet_priv *priv = netdev_priv(dev);
 935        struct ethtool_eee *p = &priv->eee;
 936
 937        if (GENET_IS_V1(priv))
 938                return -EOPNOTSUPP;
 939
 940        e->eee_enabled = p->eee_enabled;
 941        e->eee_active = p->eee_active;
 942        e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
 943
 944        return phy_ethtool_get_eee(priv->phydev, e);
 945}
 946
 947static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
 948{
 949        struct bcmgenet_priv *priv = netdev_priv(dev);
 950        struct ethtool_eee *p = &priv->eee;
 951        int ret = 0;
 952
 953        if (GENET_IS_V1(priv))
 954                return -EOPNOTSUPP;
 955
 956        p->eee_enabled = e->eee_enabled;
 957
 958        if (!p->eee_enabled) {
 959                bcmgenet_eee_enable_set(dev, false);
 960        } else {
 961                ret = phy_init_eee(priv->phydev, 0);
 962                if (ret) {
 963                        netif_err(priv, hw, dev, "EEE initialization failed\n");
 964                        return ret;
 965                }
 966
 967                bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
 968                bcmgenet_eee_enable_set(dev, true);
 969        }
 970
 971        return phy_ethtool_set_eee(priv->phydev, e);
 972}
 973
 974static int bcmgenet_nway_reset(struct net_device *dev)
 975{
 976        struct bcmgenet_priv *priv = netdev_priv(dev);
 977
 978        return genphy_restart_aneg(priv->phydev);
 979}
 980
 981/* standard ethtool support functions. */
 982static struct ethtool_ops bcmgenet_ethtool_ops = {
 983        .get_strings            = bcmgenet_get_strings,
 984        .get_sset_count         = bcmgenet_get_sset_count,
 985        .get_ethtool_stats      = bcmgenet_get_ethtool_stats,
 986        .get_settings           = bcmgenet_get_settings,
 987        .set_settings           = bcmgenet_set_settings,
 988        .get_drvinfo            = bcmgenet_get_drvinfo,
 989        .get_link               = ethtool_op_get_link,
 990        .get_msglevel           = bcmgenet_get_msglevel,
 991        .set_msglevel           = bcmgenet_set_msglevel,
 992        .get_wol                = bcmgenet_get_wol,
 993        .set_wol                = bcmgenet_set_wol,
 994        .get_eee                = bcmgenet_get_eee,
 995        .set_eee                = bcmgenet_set_eee,
 996        .nway_reset             = bcmgenet_nway_reset,
 997        .get_coalesce           = bcmgenet_get_coalesce,
 998        .set_coalesce           = bcmgenet_set_coalesce,
 999};
1000
1001/* Power down the unimac, based on mode. */
1002static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1003                                enum bcmgenet_power_mode mode)
1004{
1005        int ret = 0;
1006        u32 reg;
1007
1008        switch (mode) {
1009        case GENET_POWER_CABLE_SENSE:
1010                phy_detach(priv->phydev);
1011                break;
1012
1013        case GENET_POWER_WOL_MAGIC:
1014                ret = bcmgenet_wol_power_down_cfg(priv, mode);
1015                break;
1016
1017        case GENET_POWER_PASSIVE:
1018                /* Power down LED */
1019                if (priv->hw_params->flags & GENET_HAS_EXT) {
1020                        reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1021                        reg |= (EXT_PWR_DOWN_PHY |
1022                                EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1023                        bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1024
1025                        bcmgenet_phy_power_set(priv->dev, false);
1026                }
1027                break;
1028        default:
1029                break;
1030        }
1031
1032        return 0;
1033}
1034
1035static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1036                              enum bcmgenet_power_mode mode)
1037{
1038        u32 reg;
1039
1040        if (!(priv->hw_params->flags & GENET_HAS_EXT))
1041                return;
1042
1043        reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1044
1045        switch (mode) {
1046        case GENET_POWER_PASSIVE:
1047                reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_PHY |
1048                                EXT_PWR_DOWN_BIAS);
1049                /* fallthrough */
1050        case GENET_POWER_CABLE_SENSE:
1051                /* enable APD */
1052                reg |= EXT_PWR_DN_EN_LD;
1053                break;
1054        case GENET_POWER_WOL_MAGIC:
1055                bcmgenet_wol_power_up_cfg(priv, mode);
1056                return;
1057        default:
1058                break;
1059        }
1060
1061        bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1062        if (mode == GENET_POWER_PASSIVE) {
1063                bcmgenet_phy_power_set(priv->dev, true);
1064                bcmgenet_mii_reset(priv->dev);
1065        }
1066}
1067
1068/* ioctl handle special commands that are not present in ethtool. */
1069static int bcmgenet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1070{
1071        struct bcmgenet_priv *priv = netdev_priv(dev);
1072        int val = 0;
1073
1074        if (!netif_running(dev))
1075                return -EINVAL;
1076
1077        switch (cmd) {
1078        case SIOCGMIIPHY:
1079        case SIOCGMIIREG:
1080        case SIOCSMIIREG:
1081                if (!priv->phydev)
1082                        val = -ENODEV;
1083                else
1084                        val = phy_mii_ioctl(priv->phydev, rq, cmd);
1085                break;
1086
1087        default:
1088                val = -EINVAL;
1089                break;
1090        }
1091
1092        return val;
1093}
1094
1095static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1096                                         struct bcmgenet_tx_ring *ring)
1097{
1098        struct enet_cb *tx_cb_ptr;
1099
1100        tx_cb_ptr = ring->cbs;
1101        tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1102
1103        /* Advancing local write pointer */
1104        if (ring->write_ptr == ring->end_ptr)
1105                ring->write_ptr = ring->cb_ptr;
1106        else
1107                ring->write_ptr++;
1108
1109        return tx_cb_ptr;
1110}
1111
1112/* Simple helper to free a control block's resources */
1113static void bcmgenet_free_cb(struct enet_cb *cb)
1114{
1115        dev_kfree_skb_any(cb->skb);
1116        cb->skb = NULL;
1117        dma_unmap_addr_set(cb, dma_addr, 0);
1118}
1119
1120static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1121{
1122        bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1123                                 INTRL2_CPU_MASK_SET);
1124}
1125
1126static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1127{
1128        bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1129                                 INTRL2_CPU_MASK_CLEAR);
1130}
1131
1132static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1133{
1134        bcmgenet_intrl2_1_writel(ring->priv,
1135                                 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1136                                 INTRL2_CPU_MASK_SET);
1137}
1138
1139static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1140{
1141        bcmgenet_intrl2_1_writel(ring->priv,
1142                                 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1143                                 INTRL2_CPU_MASK_CLEAR);
1144}
1145
1146static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1147{
1148        bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1149                                 INTRL2_CPU_MASK_SET);
1150}
1151
1152static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1153{
1154        bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1155                                 INTRL2_CPU_MASK_CLEAR);
1156}
1157
1158static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1159{
1160        bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1161                                 INTRL2_CPU_MASK_CLEAR);
1162}
1163
1164static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1165{
1166        bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1167                                 INTRL2_CPU_MASK_SET);
1168}
1169
1170/* Unlocked version of the reclaim routine */
1171static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1172                                          struct bcmgenet_tx_ring *ring)
1173{
1174        struct bcmgenet_priv *priv = netdev_priv(dev);
1175        struct enet_cb *tx_cb_ptr;
1176        struct netdev_queue *txq;
1177        unsigned int pkts_compl = 0;
1178        unsigned int bytes_compl = 0;
1179        unsigned int c_index;
1180        unsigned int txbds_ready;
1181        unsigned int txbds_processed = 0;
1182
1183        /* Compute how many buffers are transmitted since last xmit call */
1184        c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
1185        c_index &= DMA_C_INDEX_MASK;
1186
1187        if (likely(c_index >= ring->c_index))
1188                txbds_ready = c_index - ring->c_index;
1189        else
1190                txbds_ready = (DMA_C_INDEX_MASK + 1) - ring->c_index + c_index;
1191
1192        netif_dbg(priv, tx_done, dev,
1193                  "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1194                  __func__, ring->index, ring->c_index, c_index, txbds_ready);
1195
1196        /* Reclaim transmitted buffers */
1197        while (txbds_processed < txbds_ready) {
1198                tx_cb_ptr = &priv->tx_cbs[ring->clean_ptr];
1199                if (tx_cb_ptr->skb) {
1200                        pkts_compl++;
1201                        bytes_compl += GENET_CB(tx_cb_ptr->skb)->bytes_sent;
1202                        dma_unmap_single(&dev->dev,
1203                                         dma_unmap_addr(tx_cb_ptr, dma_addr),
1204                                         dma_unmap_len(tx_cb_ptr, dma_len),
1205                                         DMA_TO_DEVICE);
1206                        bcmgenet_free_cb(tx_cb_ptr);
1207                } else if (dma_unmap_addr(tx_cb_ptr, dma_addr)) {
1208                        dma_unmap_page(&dev->dev,
1209                                       dma_unmap_addr(tx_cb_ptr, dma_addr),
1210                                       dma_unmap_len(tx_cb_ptr, dma_len),
1211                                       DMA_TO_DEVICE);
1212                        dma_unmap_addr_set(tx_cb_ptr, dma_addr, 0);
1213                }
1214
1215                txbds_processed++;
1216                if (likely(ring->clean_ptr < ring->end_ptr))
1217                        ring->clean_ptr++;
1218                else
1219                        ring->clean_ptr = ring->cb_ptr;
1220        }
1221
1222        ring->free_bds += txbds_processed;
1223        ring->c_index = (ring->c_index + txbds_processed) & DMA_C_INDEX_MASK;
1224
1225        dev->stats.tx_packets += pkts_compl;
1226        dev->stats.tx_bytes += bytes_compl;
1227
1228        if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1229                txq = netdev_get_tx_queue(dev, ring->queue);
1230                if (netif_tx_queue_stopped(txq))
1231                        netif_tx_wake_queue(txq);
1232        }
1233
1234        return pkts_compl;
1235}
1236
1237static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1238                                struct bcmgenet_tx_ring *ring)
1239{
1240        unsigned int released;
1241        unsigned long flags;
1242
1243        spin_lock_irqsave(&ring->lock, flags);
1244        released = __bcmgenet_tx_reclaim(dev, ring);
1245        spin_unlock_irqrestore(&ring->lock, flags);
1246
1247        return released;
1248}
1249
1250static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1251{
1252        struct bcmgenet_tx_ring *ring =
1253                container_of(napi, struct bcmgenet_tx_ring, napi);
1254        unsigned int work_done = 0;
1255
1256        work_done = bcmgenet_tx_reclaim(ring->priv->dev, ring);
1257
1258        if (work_done == 0) {
1259                napi_complete(napi);
1260                ring->int_enable(ring);
1261
1262                return 0;
1263        }
1264
1265        return budget;
1266}
1267
1268static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1269{
1270        struct bcmgenet_priv *priv = netdev_priv(dev);
1271        int i;
1272
1273        if (netif_is_multiqueue(dev)) {
1274                for (i = 0; i < priv->hw_params->tx_queues; i++)
1275                        bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1276        }
1277
1278        bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1279}
1280
1281/* Transmits a single SKB (either head of a fragment or a single SKB)
1282 * caller must hold priv->lock
1283 */
1284static int bcmgenet_xmit_single(struct net_device *dev,
1285                                struct sk_buff *skb,
1286                                u16 dma_desc_flags,
1287                                struct bcmgenet_tx_ring *ring)
1288{
1289        struct bcmgenet_priv *priv = netdev_priv(dev);
1290        struct device *kdev = &priv->pdev->dev;
1291        struct enet_cb *tx_cb_ptr;
1292        unsigned int skb_len;
1293        dma_addr_t mapping;
1294        u32 length_status;
1295        int ret;
1296
1297        tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1298
1299        if (unlikely(!tx_cb_ptr))
1300                BUG();
1301
1302        tx_cb_ptr->skb = skb;
1303
1304        skb_len = skb_headlen(skb);
1305
1306        mapping = dma_map_single(kdev, skb->data, skb_len, DMA_TO_DEVICE);
1307        ret = dma_mapping_error(kdev, mapping);
1308        if (ret) {
1309                priv->mib.tx_dma_failed++;
1310                netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
1311                dev_kfree_skb(skb);
1312                return ret;
1313        }
1314
1315        dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1316        dma_unmap_len_set(tx_cb_ptr, dma_len, skb_len);
1317        length_status = (skb_len << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1318                        (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT) |
1319                        DMA_TX_APPEND_CRC;
1320
1321        if (skb->ip_summed == CHECKSUM_PARTIAL)
1322                length_status |= DMA_TX_DO_CSUM;
1323
1324        dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, length_status);
1325
1326        return 0;
1327}
1328
1329/* Transmit a SKB fragment */
1330static int bcmgenet_xmit_frag(struct net_device *dev,
1331                              skb_frag_t *frag,
1332                              u16 dma_desc_flags,
1333                              struct bcmgenet_tx_ring *ring)
1334{
1335        struct bcmgenet_priv *priv = netdev_priv(dev);
1336        struct device *kdev = &priv->pdev->dev;
1337        struct enet_cb *tx_cb_ptr;
1338        dma_addr_t mapping;
1339        int ret;
1340
1341        tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1342
1343        if (unlikely(!tx_cb_ptr))
1344                BUG();
1345        tx_cb_ptr->skb = NULL;
1346
1347        mapping = skb_frag_dma_map(kdev, frag, 0,
1348                                   skb_frag_size(frag), DMA_TO_DEVICE);
1349        ret = dma_mapping_error(kdev, mapping);
1350        if (ret) {
1351                priv->mib.tx_dma_failed++;
1352                netif_err(priv, tx_err, dev, "%s: Tx DMA map failed\n",
1353                          __func__);
1354                return ret;
1355        }
1356
1357        dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1358        dma_unmap_len_set(tx_cb_ptr, dma_len, frag->size);
1359
1360        dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping,
1361                    (frag->size << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1362                    (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT));
1363
1364        return 0;
1365}
1366
1367/* Reallocate the SKB to put enough headroom in front of it and insert
1368 * the transmit checksum offsets in the descriptors
1369 */
1370static struct sk_buff *bcmgenet_put_tx_csum(struct net_device *dev,
1371                                            struct sk_buff *skb)
1372{
1373        struct status_64 *status = NULL;
1374        struct sk_buff *new_skb;
1375        u16 offset;
1376        u8 ip_proto;
1377        u16 ip_ver;
1378        u32 tx_csum_info;
1379
1380        if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1381                /* If 64 byte status block enabled, must make sure skb has
1382                 * enough headroom for us to insert 64B status block.
1383                 */
1384                new_skb = skb_realloc_headroom(skb, sizeof(*status));
1385                dev_kfree_skb(skb);
1386                if (!new_skb) {
1387                        dev->stats.tx_dropped++;
1388                        return NULL;
1389                }
1390                skb = new_skb;
1391        }
1392
1393        skb_push(skb, sizeof(*status));
1394        status = (struct status_64 *)skb->data;
1395
1396        if (skb->ip_summed  == CHECKSUM_PARTIAL) {
1397                ip_ver = htons(skb->protocol);
1398                switch (ip_ver) {
1399                case ETH_P_IP:
1400                        ip_proto = ip_hdr(skb)->protocol;
1401                        break;
1402                case ETH_P_IPV6:
1403                        ip_proto = ipv6_hdr(skb)->nexthdr;
1404                        break;
1405                default:
1406                        return skb;
1407                }
1408
1409                offset = skb_checksum_start_offset(skb) - sizeof(*status);
1410                tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1411                                (offset + skb->csum_offset);
1412
1413                /* Set the length valid bit for TCP and UDP and just set
1414                 * the special UDP flag for IPv4, else just set to 0.
1415                 */
1416                if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) {
1417                        tx_csum_info |= STATUS_TX_CSUM_LV;
1418                        if (ip_proto == IPPROTO_UDP && ip_ver == ETH_P_IP)
1419                                tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1420                } else {
1421                        tx_csum_info = 0;
1422                }
1423
1424                status->tx_csum_info = tx_csum_info;
1425        }
1426
1427        return skb;
1428}
1429
1430static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1431{
1432        struct bcmgenet_priv *priv = netdev_priv(dev);
1433        struct bcmgenet_tx_ring *ring = NULL;
1434        struct netdev_queue *txq;
1435        unsigned long flags = 0;
1436        int nr_frags, index;
1437        u16 dma_desc_flags;
1438        int ret;
1439        int i;
1440
1441        index = skb_get_queue_mapping(skb);
1442        /* Mapping strategy:
1443         * queue_mapping = 0, unclassified, packet xmited through ring16
1444         * queue_mapping = 1, goes to ring 0. (highest priority queue
1445         * queue_mapping = 2, goes to ring 1.
1446         * queue_mapping = 3, goes to ring 2.
1447         * queue_mapping = 4, goes to ring 3.
1448         */
1449        if (index == 0)
1450                index = DESC_INDEX;
1451        else
1452                index -= 1;
1453
1454        nr_frags = skb_shinfo(skb)->nr_frags;
1455        ring = &priv->tx_rings[index];
1456        txq = netdev_get_tx_queue(dev, ring->queue);
1457
1458        spin_lock_irqsave(&ring->lock, flags);
1459        if (ring->free_bds <= nr_frags + 1) {
1460                netif_tx_stop_queue(txq);
1461                netdev_err(dev, "%s: tx ring %d full when queue %d awake\n",
1462                           __func__, index, ring->queue);
1463                ret = NETDEV_TX_BUSY;
1464                goto out;
1465        }
1466
1467        if (skb_padto(skb, ETH_ZLEN)) {
1468                ret = NETDEV_TX_OK;
1469                goto out;
1470        }
1471
1472        /* Retain how many bytes will be sent on the wire, without TSB inserted
1473         * by transmit checksum offload
1474         */
1475        GENET_CB(skb)->bytes_sent = skb->len;
1476
1477        /* set the SKB transmit checksum */
1478        if (priv->desc_64b_en) {
1479                skb = bcmgenet_put_tx_csum(dev, skb);
1480                if (!skb) {
1481                        ret = NETDEV_TX_OK;
1482                        goto out;
1483                }
1484        }
1485
1486        dma_desc_flags = DMA_SOP;
1487        if (nr_frags == 0)
1488                dma_desc_flags |= DMA_EOP;
1489
1490        /* Transmit single SKB or head of fragment list */
1491        ret = bcmgenet_xmit_single(dev, skb, dma_desc_flags, ring);
1492        if (ret) {
1493                ret = NETDEV_TX_OK;
1494                goto out;
1495        }
1496
1497        /* xmit fragment */
1498        for (i = 0; i < nr_frags; i++) {
1499                ret = bcmgenet_xmit_frag(dev,
1500                                         &skb_shinfo(skb)->frags[i],
1501                                         (i == nr_frags - 1) ? DMA_EOP : 0,
1502                                         ring);
1503                if (ret) {
1504                        ret = NETDEV_TX_OK;
1505                        goto out;
1506                }
1507        }
1508
1509        skb_tx_timestamp(skb);
1510
1511        /* Decrement total BD count and advance our write pointer */
1512        ring->free_bds -= nr_frags + 1;
1513        ring->prod_index += nr_frags + 1;
1514        ring->prod_index &= DMA_P_INDEX_MASK;
1515
1516        if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
1517                netif_tx_stop_queue(txq);
1518
1519        if (!skb->xmit_more || netif_xmit_stopped(txq))
1520                /* Packets are ready, update producer index */
1521                bcmgenet_tdma_ring_writel(priv, ring->index,
1522                                          ring->prod_index, TDMA_PROD_INDEX);
1523out:
1524        spin_unlock_irqrestore(&ring->lock, flags);
1525
1526        return ret;
1527}
1528
1529static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
1530                                          struct enet_cb *cb)
1531{
1532        struct device *kdev = &priv->pdev->dev;
1533        struct sk_buff *skb;
1534        struct sk_buff *rx_skb;
1535        dma_addr_t mapping;
1536
1537        /* Allocate a new Rx skb */
1538        skb = netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT);
1539        if (!skb) {
1540                priv->mib.alloc_rx_buff_failed++;
1541                netif_err(priv, rx_err, priv->dev,
1542                          "%s: Rx skb allocation failed\n", __func__);
1543                return NULL;
1544        }
1545
1546        /* DMA-map the new Rx skb */
1547        mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
1548                                 DMA_FROM_DEVICE);
1549        if (dma_mapping_error(kdev, mapping)) {
1550                priv->mib.rx_dma_failed++;
1551                dev_kfree_skb_any(skb);
1552                netif_err(priv, rx_err, priv->dev,
1553                          "%s: Rx skb DMA mapping failed\n", __func__);
1554                return NULL;
1555        }
1556
1557        /* Grab the current Rx skb from the ring and DMA-unmap it */
1558        rx_skb = cb->skb;
1559        if (likely(rx_skb))
1560                dma_unmap_single(kdev, dma_unmap_addr(cb, dma_addr),
1561                                 priv->rx_buf_len, DMA_FROM_DEVICE);
1562
1563        /* Put the new Rx skb on the ring */
1564        cb->skb = skb;
1565        dma_unmap_addr_set(cb, dma_addr, mapping);
1566        dmadesc_set_addr(priv, cb->bd_addr, mapping);
1567
1568        /* Return the current Rx skb to caller */
1569        return rx_skb;
1570}
1571
1572/* bcmgenet_desc_rx - descriptor based rx process.
1573 * this could be called from bottom half, or from NAPI polling method.
1574 */
1575static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
1576                                     unsigned int budget)
1577{
1578        struct bcmgenet_priv *priv = ring->priv;
1579        struct net_device *dev = priv->dev;
1580        struct enet_cb *cb;
1581        struct sk_buff *skb;
1582        u32 dma_length_status;
1583        unsigned long dma_flag;
1584        int len;
1585        unsigned int rxpktprocessed = 0, rxpkttoprocess;
1586        unsigned int p_index;
1587        unsigned int discards;
1588        unsigned int chksum_ok = 0;
1589
1590        p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
1591
1592        discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
1593                   DMA_P_INDEX_DISCARD_CNT_MASK;
1594        if (discards > ring->old_discards) {
1595                discards = discards - ring->old_discards;
1596                dev->stats.rx_missed_errors += discards;
1597                dev->stats.rx_errors += discards;
1598                ring->old_discards += discards;
1599
1600                /* Clear HW register when we reach 75% of maximum 0xFFFF */
1601                if (ring->old_discards >= 0xC000) {
1602                        ring->old_discards = 0;
1603                        bcmgenet_rdma_ring_writel(priv, ring->index, 0,
1604                                                  RDMA_PROD_INDEX);
1605                }
1606        }
1607
1608        p_index &= DMA_P_INDEX_MASK;
1609
1610        if (likely(p_index >= ring->c_index))
1611                rxpkttoprocess = p_index - ring->c_index;
1612        else
1613                rxpkttoprocess = (DMA_C_INDEX_MASK + 1) - ring->c_index +
1614                                 p_index;
1615
1616        netif_dbg(priv, rx_status, dev,
1617                  "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
1618
1619        while ((rxpktprocessed < rxpkttoprocess) &&
1620               (rxpktprocessed < budget)) {
1621                cb = &priv->rx_cbs[ring->read_ptr];
1622                skb = bcmgenet_rx_refill(priv, cb);
1623
1624                if (unlikely(!skb)) {
1625                        dev->stats.rx_dropped++;
1626                        goto next;
1627                }
1628
1629                if (!priv->desc_64b_en) {
1630                        dma_length_status =
1631                                dmadesc_get_length_status(priv, cb->bd_addr);
1632                } else {
1633                        struct status_64 *status;
1634
1635                        status = (struct status_64 *)skb->data;
1636                        dma_length_status = status->length_status;
1637                }
1638
1639                /* DMA flags and length are still valid no matter how
1640                 * we got the Receive Status Vector (64B RSB or register)
1641                 */
1642                dma_flag = dma_length_status & 0xffff;
1643                len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
1644
1645                netif_dbg(priv, rx_status, dev,
1646                          "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1647                          __func__, p_index, ring->c_index,
1648                          ring->read_ptr, dma_length_status);
1649
1650                if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
1651                        netif_err(priv, rx_status, dev,
1652                                  "dropping fragmented packet!\n");
1653                        dev->stats.rx_errors++;
1654                        dev_kfree_skb_any(skb);
1655                        goto next;
1656                }
1657
1658                /* report errors */
1659                if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
1660                                                DMA_RX_OV |
1661                                                DMA_RX_NO |
1662                                                DMA_RX_LG |
1663                                                DMA_RX_RXER))) {
1664                        netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
1665                                  (unsigned int)dma_flag);
1666                        if (dma_flag & DMA_RX_CRC_ERROR)
1667                                dev->stats.rx_crc_errors++;
1668                        if (dma_flag & DMA_RX_OV)
1669                                dev->stats.rx_over_errors++;
1670                        if (dma_flag & DMA_RX_NO)
1671                                dev->stats.rx_frame_errors++;
1672                        if (dma_flag & DMA_RX_LG)
1673                                dev->stats.rx_length_errors++;
1674                        dev->stats.rx_errors++;
1675                        dev_kfree_skb_any(skb);
1676                        goto next;
1677                } /* error packet */
1678
1679                chksum_ok = (dma_flag & priv->dma_rx_chk_bit) &&
1680                             priv->desc_rxchk_en;
1681
1682                skb_put(skb, len);
1683                if (priv->desc_64b_en) {
1684                        skb_pull(skb, 64);
1685                        len -= 64;
1686                }
1687
1688                if (likely(chksum_ok))
1689                        skb->ip_summed = CHECKSUM_UNNECESSARY;
1690
1691                /* remove hardware 2bytes added for IP alignment */
1692                skb_pull(skb, 2);
1693                len -= 2;
1694
1695                if (priv->crc_fwd_en) {
1696                        skb_trim(skb, len - ETH_FCS_LEN);
1697                        len -= ETH_FCS_LEN;
1698                }
1699
1700                /*Finish setting up the received SKB and send it to the kernel*/
1701                skb->protocol = eth_type_trans(skb, priv->dev);
1702                dev->stats.rx_packets++;
1703                dev->stats.rx_bytes += len;
1704                if (dma_flag & DMA_RX_MULT)
1705                        dev->stats.multicast++;
1706
1707                /* Notify kernel */
1708                napi_gro_receive(&ring->napi, skb);
1709                netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
1710
1711next:
1712                rxpktprocessed++;
1713                if (likely(ring->read_ptr < ring->end_ptr))
1714                        ring->read_ptr++;
1715                else
1716                        ring->read_ptr = ring->cb_ptr;
1717
1718                ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
1719                bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
1720        }
1721
1722        return rxpktprocessed;
1723}
1724
1725/* Rx NAPI polling method */
1726static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
1727{
1728        struct bcmgenet_rx_ring *ring = container_of(napi,
1729                        struct bcmgenet_rx_ring, napi);
1730        unsigned int work_done;
1731
1732        work_done = bcmgenet_desc_rx(ring, budget);
1733
1734        if (work_done < budget) {
1735                napi_complete(napi);
1736                ring->int_enable(ring);
1737        }
1738
1739        return work_done;
1740}
1741
1742/* Assign skb to RX DMA descriptor. */
1743static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
1744                                     struct bcmgenet_rx_ring *ring)
1745{
1746        struct enet_cb *cb;
1747        struct sk_buff *skb;
1748        int i;
1749
1750        netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
1751
1752        /* loop here for each buffer needing assign */
1753        for (i = 0; i < ring->size; i++) {
1754                cb = ring->cbs + i;
1755                skb = bcmgenet_rx_refill(priv, cb);
1756                if (skb)
1757                        dev_kfree_skb_any(skb);
1758                if (!cb->skb)
1759                        return -ENOMEM;
1760        }
1761
1762        return 0;
1763}
1764
1765static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
1766{
1767        struct enet_cb *cb;
1768        int i;
1769
1770        for (i = 0; i < priv->num_rx_bds; i++) {
1771                cb = &priv->rx_cbs[i];
1772
1773                if (dma_unmap_addr(cb, dma_addr)) {
1774                        dma_unmap_single(&priv->dev->dev,
1775                                         dma_unmap_addr(cb, dma_addr),
1776                                         priv->rx_buf_len, DMA_FROM_DEVICE);
1777                        dma_unmap_addr_set(cb, dma_addr, 0);
1778                }
1779
1780                if (cb->skb)
1781                        bcmgenet_free_cb(cb);
1782        }
1783}
1784
1785static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
1786{
1787        u32 reg;
1788
1789        reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1790        if (enable)
1791                reg |= mask;
1792        else
1793                reg &= ~mask;
1794        bcmgenet_umac_writel(priv, reg, UMAC_CMD);
1795
1796        /* UniMAC stops on a packet boundary, wait for a full-size packet
1797         * to be processed
1798         */
1799        if (enable == 0)
1800                usleep_range(1000, 2000);
1801}
1802
1803static int reset_umac(struct bcmgenet_priv *priv)
1804{
1805        struct device *kdev = &priv->pdev->dev;
1806        unsigned int timeout = 0;
1807        u32 reg;
1808
1809        /* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
1810        bcmgenet_rbuf_ctrl_set(priv, 0);
1811        udelay(10);
1812
1813        /* disable MAC while updating its registers */
1814        bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1815
1816        /* issue soft reset, wait for it to complete */
1817        bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
1818        while (timeout++ < 1000) {
1819                reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1820                if (!(reg & CMD_SW_RESET))
1821                        return 0;
1822
1823                udelay(1);
1824        }
1825
1826        if (timeout == 1000) {
1827                dev_err(kdev,
1828                        "timeout waiting for MAC to come out of reset\n");
1829                return -ETIMEDOUT;
1830        }
1831
1832        return 0;
1833}
1834
1835static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
1836{
1837        /* Mask all interrupts.*/
1838        bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1839        bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1840        bcmgenet_intrl2_0_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
1841        bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1842        bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1843        bcmgenet_intrl2_1_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
1844}
1845
1846static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
1847{
1848        u32 int0_enable = 0;
1849
1850        /* Monitor cable plug/unplugged event for internal PHY, external PHY
1851         * and MoCA PHY
1852         */
1853        if (priv->internal_phy) {
1854                int0_enable |= UMAC_IRQ_LINK_EVENT;
1855        } else if (priv->ext_phy) {
1856                int0_enable |= UMAC_IRQ_LINK_EVENT;
1857        } else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1858                if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
1859                        int0_enable |= UMAC_IRQ_LINK_EVENT;
1860        }
1861        bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
1862}
1863
1864static int init_umac(struct bcmgenet_priv *priv)
1865{
1866        struct device *kdev = &priv->pdev->dev;
1867        int ret;
1868        u32 reg;
1869        u32 int0_enable = 0;
1870        u32 int1_enable = 0;
1871        int i;
1872
1873        dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
1874
1875        ret = reset_umac(priv);
1876        if (ret)
1877                return ret;
1878
1879        bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1880        /* clear tx/rx counter */
1881        bcmgenet_umac_writel(priv,
1882                             MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
1883                             UMAC_MIB_CTRL);
1884        bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
1885
1886        bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
1887
1888        /* init rx registers, enable ip header optimization */
1889        reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
1890        reg |= RBUF_ALIGN_2B;
1891        bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
1892
1893        if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
1894                bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
1895
1896        bcmgenet_intr_disable(priv);
1897
1898        /* Enable Rx default queue 16 interrupts */
1899        int0_enable |= UMAC_IRQ_RXDMA_DONE;
1900
1901        /* Enable Tx default queue 16 interrupts */
1902        int0_enable |= UMAC_IRQ_TXDMA_DONE;
1903
1904        /* Configure backpressure vectors for MoCA */
1905        if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1906                reg = bcmgenet_bp_mc_get(priv);
1907                reg |= BIT(priv->hw_params->bp_in_en_shift);
1908
1909                /* bp_mask: back pressure mask */
1910                if (netif_is_multiqueue(priv->dev))
1911                        reg |= priv->hw_params->bp_in_mask;
1912                else
1913                        reg &= ~priv->hw_params->bp_in_mask;
1914                bcmgenet_bp_mc_set(priv, reg);
1915        }
1916
1917        /* Enable MDIO interrupts on GENET v3+ */
1918        if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
1919                int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
1920
1921        /* Enable Rx priority queue interrupts */
1922        for (i = 0; i < priv->hw_params->rx_queues; ++i)
1923                int1_enable |= (1 << (UMAC_IRQ1_RX_INTR_SHIFT + i));
1924
1925        /* Enable Tx priority queue interrupts */
1926        for (i = 0; i < priv->hw_params->tx_queues; ++i)
1927                int1_enable |= (1 << i);
1928
1929        bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
1930        bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
1931
1932        /* Enable rx/tx engine.*/
1933        dev_dbg(kdev, "done init umac\n");
1934
1935        return 0;
1936}
1937
1938/* Initialize a Tx ring along with corresponding hardware registers */
1939static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
1940                                  unsigned int index, unsigned int size,
1941                                  unsigned int start_ptr, unsigned int end_ptr)
1942{
1943        struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
1944        u32 words_per_bd = WORDS_PER_BD(priv);
1945        u32 flow_period_val = 0;
1946
1947        spin_lock_init(&ring->lock);
1948        ring->priv = priv;
1949        ring->index = index;
1950        if (index == DESC_INDEX) {
1951                ring->queue = 0;
1952                ring->int_enable = bcmgenet_tx_ring16_int_enable;
1953                ring->int_disable = bcmgenet_tx_ring16_int_disable;
1954        } else {
1955                ring->queue = index + 1;
1956                ring->int_enable = bcmgenet_tx_ring_int_enable;
1957                ring->int_disable = bcmgenet_tx_ring_int_disable;
1958        }
1959        ring->cbs = priv->tx_cbs + start_ptr;
1960        ring->size = size;
1961        ring->clean_ptr = start_ptr;
1962        ring->c_index = 0;
1963        ring->free_bds = size;
1964        ring->write_ptr = start_ptr;
1965        ring->cb_ptr = start_ptr;
1966        ring->end_ptr = end_ptr - 1;
1967        ring->prod_index = 0;
1968
1969        /* Set flow period for ring != 16 */
1970        if (index != DESC_INDEX)
1971                flow_period_val = ENET_MAX_MTU_SIZE << 16;
1972
1973        bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
1974        bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
1975        bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
1976        /* Disable rate control for now */
1977        bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
1978                                  TDMA_FLOW_PERIOD);
1979        bcmgenet_tdma_ring_writel(priv, index,
1980                                  ((size << DMA_RING_SIZE_SHIFT) |
1981                                   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
1982
1983        /* Set start and end address, read and write pointers */
1984        bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
1985                                  DMA_START_ADDR);
1986        bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
1987                                  TDMA_READ_PTR);
1988        bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
1989                                  TDMA_WRITE_PTR);
1990        bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
1991                                  DMA_END_ADDR);
1992}
1993
1994/* Initialize a RDMA ring */
1995static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
1996                                 unsigned int index, unsigned int size,
1997                                 unsigned int start_ptr, unsigned int end_ptr)
1998{
1999        struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2000        u32 words_per_bd = WORDS_PER_BD(priv);
2001        int ret;
2002
2003        ring->priv = priv;
2004        ring->index = index;
2005        if (index == DESC_INDEX) {
2006                ring->int_enable = bcmgenet_rx_ring16_int_enable;
2007                ring->int_disable = bcmgenet_rx_ring16_int_disable;
2008        } else {
2009                ring->int_enable = bcmgenet_rx_ring_int_enable;
2010                ring->int_disable = bcmgenet_rx_ring_int_disable;
2011        }
2012        ring->cbs = priv->rx_cbs + start_ptr;
2013        ring->size = size;
2014        ring->c_index = 0;
2015        ring->read_ptr = start_ptr;
2016        ring->cb_ptr = start_ptr;
2017        ring->end_ptr = end_ptr - 1;
2018
2019        ret = bcmgenet_alloc_rx_buffers(priv, ring);
2020        if (ret)
2021                return ret;
2022
2023        bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2024        bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2025        bcmgenet_rdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2026        bcmgenet_rdma_ring_writel(priv, index,
2027                                  ((size << DMA_RING_SIZE_SHIFT) |
2028                                   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2029        bcmgenet_rdma_ring_writel(priv, index,
2030                                  (DMA_FC_THRESH_LO <<
2031                                   DMA_XOFF_THRESHOLD_SHIFT) |
2032                                   DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2033
2034        /* Set start and end address, read and write pointers */
2035        bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2036                                  DMA_START_ADDR);
2037        bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2038                                  RDMA_READ_PTR);
2039        bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2040                                  RDMA_WRITE_PTR);
2041        bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2042                                  DMA_END_ADDR);
2043
2044        return ret;
2045}
2046
2047static void bcmgenet_init_tx_napi(struct bcmgenet_priv *priv)
2048{
2049        unsigned int i;
2050        struct bcmgenet_tx_ring *ring;
2051
2052        for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2053                ring = &priv->tx_rings[i];
2054                netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
2055        }
2056
2057        ring = &priv->tx_rings[DESC_INDEX];
2058        netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
2059}
2060
2061static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2062{
2063        unsigned int i;
2064        struct bcmgenet_tx_ring *ring;
2065
2066        for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2067                ring = &priv->tx_rings[i];
2068                napi_enable(&ring->napi);
2069        }
2070
2071        ring = &priv->tx_rings[DESC_INDEX];
2072        napi_enable(&ring->napi);
2073}
2074
2075static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2076{
2077        unsigned int i;
2078        struct bcmgenet_tx_ring *ring;
2079
2080        for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2081                ring = &priv->tx_rings[i];
2082                napi_disable(&ring->napi);
2083        }
2084
2085        ring = &priv->tx_rings[DESC_INDEX];
2086        napi_disable(&ring->napi);
2087}
2088
2089static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2090{
2091        unsigned int i;
2092        struct bcmgenet_tx_ring *ring;
2093
2094        for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2095                ring = &priv->tx_rings[i];
2096                netif_napi_del(&ring->napi);
2097        }
2098
2099        ring = &priv->tx_rings[DESC_INDEX];
2100        netif_napi_del(&ring->napi);
2101}
2102
2103/* Initialize Tx queues
2104 *
2105 * Queues 0-3 are priority-based, each one has 32 descriptors,
2106 * with queue 0 being the highest priority queue.
2107 *
2108 * Queue 16 is the default Tx queue with
2109 * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2110 *
2111 * The transmit control block pool is then partitioned as follows:
2112 * - Tx queue 0 uses tx_cbs[0..31]
2113 * - Tx queue 1 uses tx_cbs[32..63]
2114 * - Tx queue 2 uses tx_cbs[64..95]
2115 * - Tx queue 3 uses tx_cbs[96..127]
2116 * - Tx queue 16 uses tx_cbs[128..255]
2117 */
2118static void bcmgenet_init_tx_queues(struct net_device *dev)
2119{
2120        struct bcmgenet_priv *priv = netdev_priv(dev);
2121        u32 i, dma_enable;
2122        u32 dma_ctrl, ring_cfg;
2123        u32 dma_priority[3] = {0, 0, 0};
2124
2125        dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2126        dma_enable = dma_ctrl & DMA_EN;
2127        dma_ctrl &= ~DMA_EN;
2128        bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2129
2130        dma_ctrl = 0;
2131        ring_cfg = 0;
2132
2133        /* Enable strict priority arbiter mode */
2134        bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2135
2136        /* Initialize Tx priority queues */
2137        for (i = 0; i < priv->hw_params->tx_queues; i++) {
2138                bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2139                                      i * priv->hw_params->tx_bds_per_q,
2140                                      (i + 1) * priv->hw_params->tx_bds_per_q);
2141                ring_cfg |= (1 << i);
2142                dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2143                dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2144                        ((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2145        }
2146
2147        /* Initialize Tx default queue 16 */
2148        bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2149                              priv->hw_params->tx_queues *
2150                              priv->hw_params->tx_bds_per_q,
2151                              TOTAL_DESC);
2152        ring_cfg |= (1 << DESC_INDEX);
2153        dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2154        dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2155                ((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2156                 DMA_PRIO_REG_SHIFT(DESC_INDEX));
2157
2158        /* Set Tx queue priorities */
2159        bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2160        bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2161        bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2162
2163        /* Initialize Tx NAPI */
2164        bcmgenet_init_tx_napi(priv);
2165
2166        /* Enable Tx queues */
2167        bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2168
2169        /* Enable Tx DMA */
2170        if (dma_enable)
2171                dma_ctrl |= DMA_EN;
2172        bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2173}
2174
2175static void bcmgenet_init_rx_napi(struct bcmgenet_priv *priv)
2176{
2177        unsigned int i;
2178        struct bcmgenet_rx_ring *ring;
2179
2180        for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2181                ring = &priv->rx_rings[i];
2182                netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
2183        }
2184
2185        ring = &priv->rx_rings[DESC_INDEX];
2186        netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
2187}
2188
2189static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2190{
2191        unsigned int i;
2192        struct bcmgenet_rx_ring *ring;
2193
2194        for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2195                ring = &priv->rx_rings[i];
2196                napi_enable(&ring->napi);
2197        }
2198
2199        ring = &priv->rx_rings[DESC_INDEX];
2200        napi_enable(&ring->napi);
2201}
2202
2203static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2204{
2205        unsigned int i;
2206        struct bcmgenet_rx_ring *ring;
2207
2208        for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2209                ring = &priv->rx_rings[i];
2210                napi_disable(&ring->napi);
2211        }
2212
2213        ring = &priv->rx_rings[DESC_INDEX];
2214        napi_disable(&ring->napi);
2215}
2216
2217static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2218{
2219        unsigned int i;
2220        struct bcmgenet_rx_ring *ring;
2221
2222        for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2223                ring = &priv->rx_rings[i];
2224                netif_napi_del(&ring->napi);
2225        }
2226
2227        ring = &priv->rx_rings[DESC_INDEX];
2228        netif_napi_del(&ring->napi);
2229}
2230
2231/* Initialize Rx queues
2232 *
2233 * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2234 * used to direct traffic to these queues.
2235 *
2236 * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2237 */
2238static int bcmgenet_init_rx_queues(struct net_device *dev)
2239{
2240        struct bcmgenet_priv *priv = netdev_priv(dev);
2241        u32 i;
2242        u32 dma_enable;
2243        u32 dma_ctrl;
2244        u32 ring_cfg;
2245        int ret;
2246
2247        dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2248        dma_enable = dma_ctrl & DMA_EN;
2249        dma_ctrl &= ~DMA_EN;
2250        bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2251
2252        dma_ctrl = 0;
2253        ring_cfg = 0;
2254
2255        /* Initialize Rx priority queues */
2256        for (i = 0; i < priv->hw_params->rx_queues; i++) {
2257                ret = bcmgenet_init_rx_ring(priv, i,
2258                                            priv->hw_params->rx_bds_per_q,
2259                                            i * priv->hw_params->rx_bds_per_q,
2260                                            (i + 1) *
2261                                            priv->hw_params->rx_bds_per_q);
2262                if (ret)
2263                        return ret;
2264
2265                ring_cfg |= (1 << i);
2266                dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2267        }
2268
2269        /* Initialize Rx default queue 16 */
2270        ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2271                                    priv->hw_params->rx_queues *
2272                                    priv->hw_params->rx_bds_per_q,
2273                                    TOTAL_DESC);
2274        if (ret)
2275                return ret;
2276
2277        ring_cfg |= (1 << DESC_INDEX);
2278        dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2279
2280        /* Initialize Rx NAPI */
2281        bcmgenet_init_rx_napi(priv);
2282
2283        /* Enable rings */
2284        bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2285
2286        /* Configure ring as descriptor ring and re-enable DMA if enabled */
2287        if (dma_enable)
2288                dma_ctrl |= DMA_EN;
2289        bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2290
2291        return 0;
2292}
2293
2294static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2295{
2296        int ret = 0;
2297        int timeout = 0;
2298        u32 reg;
2299        u32 dma_ctrl;
2300        int i;
2301
2302        /* Disable TDMA to stop add more frames in TX DMA */
2303        reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2304        reg &= ~DMA_EN;
2305        bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2306
2307        /* Check TDMA status register to confirm TDMA is disabled */
2308        while (timeout++ < DMA_TIMEOUT_VAL) {
2309                reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2310                if (reg & DMA_DISABLED)
2311                        break;
2312
2313                udelay(1);
2314        }
2315
2316        if (timeout == DMA_TIMEOUT_VAL) {
2317                netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2318                ret = -ETIMEDOUT;
2319        }
2320
2321        /* Wait 10ms for packet drain in both tx and rx dma */
2322        usleep_range(10000, 20000);
2323
2324        /* Disable RDMA */
2325        reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2326        reg &= ~DMA_EN;
2327        bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2328
2329        timeout = 0;
2330        /* Check RDMA status register to confirm RDMA is disabled */
2331        while (timeout++ < DMA_TIMEOUT_VAL) {
2332                reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2333                if (reg & DMA_DISABLED)
2334                        break;
2335
2336                udelay(1);
2337        }
2338
2339        if (timeout == DMA_TIMEOUT_VAL) {
2340                netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
2341                ret = -ETIMEDOUT;
2342        }
2343
2344        dma_ctrl = 0;
2345        for (i = 0; i < priv->hw_params->rx_queues; i++)
2346                dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2347        reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2348        reg &= ~dma_ctrl;
2349        bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2350
2351        dma_ctrl = 0;
2352        for (i = 0; i < priv->hw_params->tx_queues; i++)
2353                dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2354        reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2355        reg &= ~dma_ctrl;
2356        bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2357
2358        return ret;
2359}
2360
2361static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2362{
2363        int i;
2364
2365        bcmgenet_fini_rx_napi(priv);
2366        bcmgenet_fini_tx_napi(priv);
2367
2368        /* disable DMA */
2369        bcmgenet_dma_teardown(priv);
2370
2371        for (i = 0; i < priv->num_tx_bds; i++) {
2372                if (priv->tx_cbs[i].skb != NULL) {
2373                        dev_kfree_skb(priv->tx_cbs[i].skb);
2374                        priv->tx_cbs[i].skb = NULL;
2375                }
2376        }
2377
2378        bcmgenet_free_rx_buffers(priv);
2379        kfree(priv->rx_cbs);
2380        kfree(priv->tx_cbs);
2381}
2382
2383/* init_edma: Initialize DMA control register */
2384static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
2385{
2386        int ret;
2387        unsigned int i;
2388        struct enet_cb *cb;
2389
2390        netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2391
2392        /* Initialize common Rx ring structures */
2393        priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
2394        priv->num_rx_bds = TOTAL_DESC;
2395        priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
2396                               GFP_KERNEL);
2397        if (!priv->rx_cbs)
2398                return -ENOMEM;
2399
2400        for (i = 0; i < priv->num_rx_bds; i++) {
2401                cb = priv->rx_cbs + i;
2402                cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
2403        }
2404
2405        /* Initialize common TX ring structures */
2406        priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
2407        priv->num_tx_bds = TOTAL_DESC;
2408        priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
2409                               GFP_KERNEL);
2410        if (!priv->tx_cbs) {
2411                kfree(priv->rx_cbs);
2412                return -ENOMEM;
2413        }
2414
2415        for (i = 0; i < priv->num_tx_bds; i++) {
2416                cb = priv->tx_cbs + i;
2417                cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
2418        }
2419
2420        /* Init rDma */
2421        bcmgenet_rdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2422
2423        /* Initialize Rx queues */
2424        ret = bcmgenet_init_rx_queues(priv->dev);
2425        if (ret) {
2426                netdev_err(priv->dev, "failed to initialize Rx queues\n");
2427                bcmgenet_free_rx_buffers(priv);
2428                kfree(priv->rx_cbs);
2429                kfree(priv->tx_cbs);
2430                return ret;
2431        }
2432
2433        /* Init tDma */
2434        bcmgenet_tdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2435
2436        /* Initialize Tx queues */
2437        bcmgenet_init_tx_queues(priv->dev);
2438
2439        return 0;
2440}
2441
2442/* Interrupt bottom half */
2443static void bcmgenet_irq_task(struct work_struct *work)
2444{
2445        struct bcmgenet_priv *priv = container_of(
2446                        work, struct bcmgenet_priv, bcmgenet_irq_work);
2447
2448        netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
2449
2450        if (priv->irq0_stat & UMAC_IRQ_MPD_R) {
2451                priv->irq0_stat &= ~UMAC_IRQ_MPD_R;
2452                netif_dbg(priv, wol, priv->dev,
2453                          "magic packet detected, waking up\n");
2454                bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
2455        }
2456
2457        /* Link UP/DOWN event */
2458        if (priv->irq0_stat & UMAC_IRQ_LINK_EVENT) {
2459                phy_mac_interrupt(priv->phydev,
2460                                  !!(priv->irq0_stat & UMAC_IRQ_LINK_UP));
2461                priv->irq0_stat &= ~UMAC_IRQ_LINK_EVENT;
2462        }
2463}
2464
2465/* bcmgenet_isr1: handle Rx and Tx priority queues */
2466static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
2467{
2468        struct bcmgenet_priv *priv = dev_id;
2469        struct bcmgenet_rx_ring *rx_ring;
2470        struct bcmgenet_tx_ring *tx_ring;
2471        unsigned int index;
2472
2473        /* Save irq status for bottom-half processing. */
2474        priv->irq1_stat =
2475                bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
2476                ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2477
2478        /* clear interrupts */
2479        bcmgenet_intrl2_1_writel(priv, priv->irq1_stat, INTRL2_CPU_CLEAR);
2480
2481        netif_dbg(priv, intr, priv->dev,
2482                  "%s: IRQ=0x%x\n", __func__, priv->irq1_stat);
2483
2484        /* Check Rx priority queue interrupts */
2485        for (index = 0; index < priv->hw_params->rx_queues; index++) {
2486                if (!(priv->irq1_stat & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
2487                        continue;
2488
2489                rx_ring = &priv->rx_rings[index];
2490
2491                if (likely(napi_schedule_prep(&rx_ring->napi))) {
2492                        rx_ring->int_disable(rx_ring);
2493                        __napi_schedule(&rx_ring->napi);
2494                }
2495        }
2496
2497        /* Check Tx priority queue interrupts */
2498        for (index = 0; index < priv->hw_params->tx_queues; index++) {
2499                if (!(priv->irq1_stat & BIT(index)))
2500                        continue;
2501
2502                tx_ring = &priv->tx_rings[index];
2503
2504                if (likely(napi_schedule_prep(&tx_ring->napi))) {
2505                        tx_ring->int_disable(tx_ring);
2506                        __napi_schedule(&tx_ring->napi);
2507                }
2508        }
2509
2510        return IRQ_HANDLED;
2511}
2512
2513/* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
2514static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
2515{
2516        struct bcmgenet_priv *priv = dev_id;
2517        struct bcmgenet_rx_ring *rx_ring;
2518        struct bcmgenet_tx_ring *tx_ring;
2519
2520        /* Save irq status for bottom-half processing. */
2521        priv->irq0_stat =
2522                bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
2523                ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2524
2525        /* clear interrupts */
2526        bcmgenet_intrl2_0_writel(priv, priv->irq0_stat, INTRL2_CPU_CLEAR);
2527
2528        netif_dbg(priv, intr, priv->dev,
2529                  "IRQ=0x%x\n", priv->irq0_stat);
2530
2531        if (priv->irq0_stat & UMAC_IRQ_RXDMA_DONE) {
2532                rx_ring = &priv->rx_rings[DESC_INDEX];
2533
2534                if (likely(napi_schedule_prep(&rx_ring->napi))) {
2535                        rx_ring->int_disable(rx_ring);
2536                        __napi_schedule(&rx_ring->napi);
2537                }
2538        }
2539
2540        if (priv->irq0_stat & UMAC_IRQ_TXDMA_DONE) {
2541                tx_ring = &priv->tx_rings[DESC_INDEX];
2542
2543                if (likely(napi_schedule_prep(&tx_ring->napi))) {
2544                        tx_ring->int_disable(tx_ring);
2545                        __napi_schedule(&tx_ring->napi);
2546                }
2547        }
2548
2549        if (priv->irq0_stat & (UMAC_IRQ_PHY_DET_R |
2550                                UMAC_IRQ_PHY_DET_F |
2551                                UMAC_IRQ_LINK_EVENT |
2552                                UMAC_IRQ_HFB_SM |
2553                                UMAC_IRQ_HFB_MM |
2554                                UMAC_IRQ_MPD_R)) {
2555                /* all other interested interrupts handled in bottom half */
2556                schedule_work(&priv->bcmgenet_irq_work);
2557        }
2558
2559        if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2560            priv->irq0_stat & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
2561                priv->irq0_stat &= ~(UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2562                wake_up(&priv->wq);
2563        }
2564
2565        return IRQ_HANDLED;
2566}
2567
2568static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
2569{
2570        struct bcmgenet_priv *priv = dev_id;
2571
2572        pm_wakeup_event(&priv->pdev->dev, 0);
2573
2574        return IRQ_HANDLED;
2575}
2576
2577#ifdef CONFIG_NET_POLL_CONTROLLER
2578static void bcmgenet_poll_controller(struct net_device *dev)
2579{
2580        struct bcmgenet_priv *priv = netdev_priv(dev);
2581
2582        /* Invoke the main RX/TX interrupt handler */
2583        disable_irq(priv->irq0);
2584        bcmgenet_isr0(priv->irq0, priv);
2585        enable_irq(priv->irq0);
2586
2587        /* And the interrupt handler for RX/TX priority queues */
2588        disable_irq(priv->irq1);
2589        bcmgenet_isr1(priv->irq1, priv);
2590        enable_irq(priv->irq1);
2591}
2592#endif
2593
2594static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
2595{
2596        u32 reg;
2597
2598        reg = bcmgenet_rbuf_ctrl_get(priv);
2599        reg |= BIT(1);
2600        bcmgenet_rbuf_ctrl_set(priv, reg);
2601        udelay(10);
2602
2603        reg &= ~BIT(1);
2604        bcmgenet_rbuf_ctrl_set(priv, reg);
2605        udelay(10);
2606}
2607
2608static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
2609                                 unsigned char *addr)
2610{
2611        bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
2612                        (addr[2] << 8) | addr[3], UMAC_MAC0);
2613        bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
2614}
2615
2616/* Returns a reusable dma control register value */
2617static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
2618{
2619        u32 reg;
2620        u32 dma_ctrl;
2621
2622        /* disable DMA */
2623        dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
2624        reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2625        reg &= ~dma_ctrl;
2626        bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2627
2628        reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2629        reg &= ~dma_ctrl;
2630        bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2631
2632        bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
2633        udelay(10);
2634        bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
2635
2636        return dma_ctrl;
2637}
2638
2639static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
2640{
2641        u32 reg;
2642
2643        reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2644        reg |= dma_ctrl;
2645        bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2646
2647        reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2648        reg |= dma_ctrl;
2649        bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2650}
2651
2652static bool bcmgenet_hfb_is_filter_enabled(struct bcmgenet_priv *priv,
2653                                           u32 f_index)
2654{
2655        u32 offset;
2656        u32 reg;
2657
2658        offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
2659        reg = bcmgenet_hfb_reg_readl(priv, offset);
2660        return !!(reg & (1 << (f_index % 32)));
2661}
2662
2663static void bcmgenet_hfb_enable_filter(struct bcmgenet_priv *priv, u32 f_index)
2664{
2665        u32 offset;
2666        u32 reg;
2667
2668        offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
2669        reg = bcmgenet_hfb_reg_readl(priv, offset);
2670        reg |= (1 << (f_index % 32));
2671        bcmgenet_hfb_reg_writel(priv, reg, offset);
2672}
2673
2674static void bcmgenet_hfb_set_filter_rx_queue_mapping(struct bcmgenet_priv *priv,
2675                                                     u32 f_index, u32 rx_queue)
2676{
2677        u32 offset;
2678        u32 reg;
2679
2680        offset = f_index / 8;
2681        reg = bcmgenet_rdma_readl(priv, DMA_INDEX2RING_0 + offset);
2682        reg &= ~(0xF << (4 * (f_index % 8)));
2683        reg |= ((rx_queue & 0xF) << (4 * (f_index % 8)));
2684        bcmgenet_rdma_writel(priv, reg, DMA_INDEX2RING_0 + offset);
2685}
2686
2687static void bcmgenet_hfb_set_filter_length(struct bcmgenet_priv *priv,
2688                                           u32 f_index, u32 f_length)
2689{
2690        u32 offset;
2691        u32 reg;
2692
2693        offset = HFB_FLT_LEN_V3PLUS +
2694                 ((priv->hw_params->hfb_filter_cnt - 1 - f_index) / 4) *
2695                 sizeof(u32);
2696        reg = bcmgenet_hfb_reg_readl(priv, offset);
2697        reg &= ~(0xFF << (8 * (f_index % 4)));
2698        reg |= ((f_length & 0xFF) << (8 * (f_index % 4)));
2699        bcmgenet_hfb_reg_writel(priv, reg, offset);
2700}
2701
2702static int bcmgenet_hfb_find_unused_filter(struct bcmgenet_priv *priv)
2703{
2704        u32 f_index;
2705
2706        for (f_index = 0; f_index < priv->hw_params->hfb_filter_cnt; f_index++)
2707                if (!bcmgenet_hfb_is_filter_enabled(priv, f_index))
2708                        return f_index;
2709
2710        return -ENOMEM;
2711}
2712
2713/* bcmgenet_hfb_add_filter
2714 *
2715 * Add new filter to Hardware Filter Block to match and direct Rx traffic to
2716 * desired Rx queue.
2717 *
2718 * f_data is an array of unsigned 32-bit integers where each 32-bit integer
2719 * provides filter data for 2 bytes (4 nibbles) of Rx frame:
2720 *
2721 * bits 31:20 - unused
2722 * bit  19    - nibble 0 match enable
2723 * bit  18    - nibble 1 match enable
2724 * bit  17    - nibble 2 match enable
2725 * bit  16    - nibble 3 match enable
2726 * bits 15:12 - nibble 0 data
2727 * bits 11:8  - nibble 1 data
2728 * bits 7:4   - nibble 2 data
2729 * bits 3:0   - nibble 3 data
2730 *
2731 * Example:
2732 * In order to match:
2733 * - Ethernet frame type = 0x0800 (IP)
2734 * - IP version field = 4
2735 * - IP protocol field = 0x11 (UDP)
2736 *
2737 * The following filter is needed:
2738 * u32 hfb_filter_ipv4_udp[] = {
2739 *   Rx frame offset 0x00: 0x00000000, 0x00000000, 0x00000000, 0x00000000,
2740 *   Rx frame offset 0x08: 0x00000000, 0x00000000, 0x000F0800, 0x00084000,
2741 *   Rx frame offset 0x10: 0x00000000, 0x00000000, 0x00000000, 0x00030011,
2742 * };
2743 *
2744 * To add the filter to HFB and direct the traffic to Rx queue 0, call:
2745 * bcmgenet_hfb_add_filter(priv, hfb_filter_ipv4_udp,
2746 *                         ARRAY_SIZE(hfb_filter_ipv4_udp), 0);
2747 */
2748int bcmgenet_hfb_add_filter(struct bcmgenet_priv *priv, u32 *f_data,
2749                            u32 f_length, u32 rx_queue)
2750{
2751        int f_index;
2752        u32 i;
2753
2754        f_index = bcmgenet_hfb_find_unused_filter(priv);
2755        if (f_index < 0)
2756                return -ENOMEM;
2757
2758        if (f_length > priv->hw_params->hfb_filter_size)
2759                return -EINVAL;
2760
2761        for (i = 0; i < f_length; i++)
2762                bcmgenet_hfb_writel(priv, f_data[i],
2763                        (f_index * priv->hw_params->hfb_filter_size + i) *
2764                        sizeof(u32));
2765
2766        bcmgenet_hfb_set_filter_length(priv, f_index, 2 * f_length);
2767        bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f_index, rx_queue);
2768        bcmgenet_hfb_enable_filter(priv, f_index);
2769        bcmgenet_hfb_reg_writel(priv, 0x1, HFB_CTRL);
2770
2771        return 0;
2772}
2773
2774/* bcmgenet_hfb_clear
2775 *
2776 * Clear Hardware Filter Block and disable all filtering.
2777 */
2778static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
2779{
2780        u32 i;
2781
2782        bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
2783        bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
2784        bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
2785
2786        for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
2787                bcmgenet_rdma_writel(priv, 0x0, i);
2788
2789        for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
2790                bcmgenet_hfb_reg_writel(priv, 0x0,
2791                                        HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
2792
2793        for (i = 0; i < priv->hw_params->hfb_filter_cnt *
2794                        priv->hw_params->hfb_filter_size; i++)
2795                bcmgenet_hfb_writel(priv, 0x0, i * sizeof(u32));
2796}
2797
2798static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
2799{
2800        if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
2801                return;
2802
2803        bcmgenet_hfb_clear(priv);
2804}
2805
2806static void bcmgenet_netif_start(struct net_device *dev)
2807{
2808        struct bcmgenet_priv *priv = netdev_priv(dev);
2809
2810        /* Start the network engine */
2811        bcmgenet_enable_rx_napi(priv);
2812        bcmgenet_enable_tx_napi(priv);
2813
2814        umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
2815
2816        netif_tx_start_all_queues(dev);
2817
2818        /* Monitor link interrupts now */
2819        bcmgenet_link_intr_enable(priv);
2820
2821        phy_start(priv->phydev);
2822}
2823
2824static int bcmgenet_open(struct net_device *dev)
2825{
2826        struct bcmgenet_priv *priv = netdev_priv(dev);
2827        unsigned long dma_ctrl;
2828        u32 reg;
2829        int ret;
2830
2831        netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
2832
2833        /* Turn on the clock */
2834        clk_prepare_enable(priv->clk);
2835
2836        /* If this is an internal GPHY, power it back on now, before UniMAC is
2837         * brought out of reset as absolutely no UniMAC activity is allowed
2838         */
2839        if (priv->internal_phy)
2840                bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
2841
2842        /* take MAC out of reset */
2843        bcmgenet_umac_reset(priv);
2844
2845        ret = init_umac(priv);
2846        if (ret)
2847                goto err_clk_disable;
2848
2849        /* disable ethernet MAC while updating its registers */
2850        umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
2851
2852        /* Make sure we reflect the value of CRC_CMD_FWD */
2853        reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2854        priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
2855
2856        bcmgenet_set_hw_addr(priv, dev->dev_addr);
2857
2858        if (priv->internal_phy) {
2859                reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
2860                reg |= EXT_ENERGY_DET_MASK;
2861                bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
2862        }
2863
2864        /* Disable RX/TX DMA and flush TX queues */
2865        dma_ctrl = bcmgenet_dma_disable(priv);
2866
2867        /* Reinitialize TDMA and RDMA and SW housekeeping */
2868        ret = bcmgenet_init_dma(priv);
2869        if (ret) {
2870                netdev_err(dev, "failed to initialize DMA\n");
2871                goto err_clk_disable;
2872        }
2873
2874        /* Always enable ring 16 - descriptor ring */
2875        bcmgenet_enable_dma(priv, dma_ctrl);
2876
2877        /* HFB init */
2878        bcmgenet_hfb_init(priv);
2879
2880        ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
2881                          dev->name, priv);
2882        if (ret < 0) {
2883                netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
2884                goto err_fini_dma;
2885        }
2886
2887        ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
2888                          dev->name, priv);
2889        if (ret < 0) {
2890                netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
2891                goto err_irq0;
2892        }
2893
2894        ret = bcmgenet_mii_probe(dev);
2895        if (ret) {
2896                netdev_err(dev, "failed to connect to PHY\n");
2897                goto err_irq1;
2898        }
2899
2900        bcmgenet_netif_start(dev);
2901
2902        return 0;
2903
2904err_irq1:
2905        free_irq(priv->irq1, priv);
2906err_irq0:
2907        free_irq(priv->irq0, priv);
2908err_fini_dma:
2909        bcmgenet_fini_dma(priv);
2910err_clk_disable:
2911        clk_disable_unprepare(priv->clk);
2912        return ret;
2913}
2914
2915static void bcmgenet_netif_stop(struct net_device *dev)
2916{
2917        struct bcmgenet_priv *priv = netdev_priv(dev);
2918
2919        netif_tx_stop_all_queues(dev);
2920        phy_stop(priv->phydev);
2921        bcmgenet_intr_disable(priv);
2922        bcmgenet_disable_rx_napi(priv);
2923        bcmgenet_disable_tx_napi(priv);
2924
2925        /* Wait for pending work items to complete. Since interrupts are
2926         * disabled no new work will be scheduled.
2927         */
2928        cancel_work_sync(&priv->bcmgenet_irq_work);
2929
2930        priv->old_link = -1;
2931        priv->old_speed = -1;
2932        priv->old_duplex = -1;
2933        priv->old_pause = -1;
2934}
2935
2936static int bcmgenet_close(struct net_device *dev)
2937{
2938        struct bcmgenet_priv *priv = netdev_priv(dev);
2939        int ret;
2940
2941        netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
2942
2943        bcmgenet_netif_stop(dev);
2944
2945        /* Really kill the PHY state machine and disconnect from it */
2946        phy_disconnect(priv->phydev);
2947
2948        /* Disable MAC receive */
2949        umac_enable_set(priv, CMD_RX_EN, false);
2950
2951        ret = bcmgenet_dma_teardown(priv);
2952        if (ret)
2953                return ret;
2954
2955        /* Disable MAC transmit. TX DMA disabled have to done before this */
2956        umac_enable_set(priv, CMD_TX_EN, false);
2957
2958        /* tx reclaim */
2959        bcmgenet_tx_reclaim_all(dev);
2960        bcmgenet_fini_dma(priv);
2961
2962        free_irq(priv->irq0, priv);
2963        free_irq(priv->irq1, priv);
2964
2965        if (priv->internal_phy)
2966                ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2967
2968        clk_disable_unprepare(priv->clk);
2969
2970        return ret;
2971}
2972
2973static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
2974{
2975        struct bcmgenet_priv *priv = ring->priv;
2976        u32 p_index, c_index, intsts, intmsk;
2977        struct netdev_queue *txq;
2978        unsigned int free_bds;
2979        unsigned long flags;
2980        bool txq_stopped;
2981
2982        if (!netif_msg_tx_err(priv))
2983                return;
2984
2985        txq = netdev_get_tx_queue(priv->dev, ring->queue);
2986
2987        spin_lock_irqsave(&ring->lock, flags);
2988        if (ring->index == DESC_INDEX) {
2989                intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2990                intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
2991        } else {
2992                intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2993                intmsk = 1 << ring->index;
2994        }
2995        c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
2996        p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
2997        txq_stopped = netif_tx_queue_stopped(txq);
2998        free_bds = ring->free_bds;
2999        spin_unlock_irqrestore(&ring->lock, flags);
3000
3001        netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
3002                  "TX queue status: %s, interrupts: %s\n"
3003                  "(sw)free_bds: %d (sw)size: %d\n"
3004                  "(sw)p_index: %d (hw)p_index: %d\n"
3005                  "(sw)c_index: %d (hw)c_index: %d\n"
3006                  "(sw)clean_p: %d (sw)write_p: %d\n"
3007                  "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
3008                  ring->index, ring->queue,
3009                  txq_stopped ? "stopped" : "active",
3010                  intsts & intmsk ? "enabled" : "disabled",
3011                  free_bds, ring->size,
3012                  ring->prod_index, p_index & DMA_P_INDEX_MASK,
3013                  ring->c_index, c_index & DMA_C_INDEX_MASK,
3014                  ring->clean_ptr, ring->write_ptr,
3015                  ring->cb_ptr, ring->end_ptr);
3016}
3017
3018static void bcmgenet_timeout(struct net_device *dev)
3019{
3020        struct bcmgenet_priv *priv = netdev_priv(dev);
3021        u32 int0_enable = 0;
3022        u32 int1_enable = 0;
3023        unsigned int q;
3024
3025        netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3026
3027        for (q = 0; q < priv->hw_params->tx_queues; q++)
3028                bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3029        bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3030
3031        bcmgenet_tx_reclaim_all(dev);
3032
3033        for (q = 0; q < priv->hw_params->tx_queues; q++)
3034                int1_enable |= (1 << q);
3035
3036        int0_enable = UMAC_IRQ_TXDMA_DONE;
3037
3038        /* Re-enable TX interrupts if disabled */
3039        bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3040        bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3041
3042        dev->trans_start = jiffies;
3043
3044        dev->stats.tx_errors++;
3045
3046        netif_tx_wake_all_queues(dev);
3047}
3048
3049#define MAX_MC_COUNT    16
3050
3051static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3052                                         unsigned char *addr,
3053                                         int *i,
3054                                         int *mc)
3055{
3056        u32 reg;
3057
3058        bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3059                             UMAC_MDF_ADDR + (*i * 4));
3060        bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3061                             addr[4] << 8 | addr[5],
3062                             UMAC_MDF_ADDR + ((*i + 1) * 4));
3063        reg = bcmgenet_umac_readl(priv, UMAC_MDF_CTRL);
3064        reg |= (1 << (MAX_MC_COUNT - *mc));
3065        bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3066        *i += 2;
3067        (*mc)++;
3068}
3069
3070static void bcmgenet_set_rx_mode(struct net_device *dev)
3071{
3072        struct bcmgenet_priv *priv = netdev_priv(dev);
3073        struct netdev_hw_addr *ha;
3074        int i, mc;
3075        u32 reg;
3076
3077        netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3078
3079        /* Promiscuous mode */
3080        reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3081        if (dev->flags & IFF_PROMISC) {
3082                reg |= CMD_PROMISC;
3083                bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3084                bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3085                return;
3086        } else {
3087                reg &= ~CMD_PROMISC;
3088                bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3089        }
3090
3091        /* UniMac doesn't support ALLMULTI */
3092        if (dev->flags & IFF_ALLMULTI) {
3093                netdev_warn(dev, "ALLMULTI is not supported\n");
3094                return;
3095        }
3096
3097        /* update MDF filter */
3098        i = 0;
3099        mc = 0;
3100        /* Broadcast */
3101        bcmgenet_set_mdf_addr(priv, dev->broadcast, &i, &mc);
3102        /* my own address.*/
3103        bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i, &mc);
3104        /* Unicast list*/
3105        if (netdev_uc_count(dev) > (MAX_MC_COUNT - mc))
3106                return;
3107
3108        if (!netdev_uc_empty(dev))
3109                netdev_for_each_uc_addr(ha, dev)
3110                        bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
3111        /* Multicast */
3112        if (netdev_mc_empty(dev) || netdev_mc_count(dev) >= (MAX_MC_COUNT - mc))
3113                return;
3114
3115        netdev_for_each_mc_addr(ha, dev)
3116                bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
3117}
3118
3119/* Set the hardware MAC address. */
3120static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3121{
3122        struct sockaddr *addr = p;
3123
3124        /* Setting the MAC address at the hardware level is not possible
3125         * without disabling the UniMAC RX/TX enable bits.
3126         */
3127        if (netif_running(dev))
3128                return -EBUSY;
3129
3130        ether_addr_copy(dev->dev_addr, addr->sa_data);
3131
3132        return 0;
3133}
3134
3135static const struct net_device_ops bcmgenet_netdev_ops = {
3136        .ndo_open               = bcmgenet_open,
3137        .ndo_stop               = bcmgenet_close,
3138        .ndo_start_xmit         = bcmgenet_xmit,
3139        .ndo_tx_timeout         = bcmgenet_timeout,
3140        .ndo_set_rx_mode        = bcmgenet_set_rx_mode,
3141        .ndo_set_mac_address    = bcmgenet_set_mac_addr,
3142        .ndo_do_ioctl           = bcmgenet_ioctl,
3143        .ndo_set_features       = bcmgenet_set_features,
3144#ifdef CONFIG_NET_POLL_CONTROLLER
3145        .ndo_poll_controller    = bcmgenet_poll_controller,
3146#endif
3147};
3148
3149/* Array of GENET hardware parameters/characteristics */
3150static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3151        [GENET_V1] = {
3152                .tx_queues = 0,
3153                .tx_bds_per_q = 0,
3154                .rx_queues = 0,
3155                .rx_bds_per_q = 0,
3156                .bp_in_en_shift = 16,
3157                .bp_in_mask = 0xffff,
3158                .hfb_filter_cnt = 16,
3159                .qtag_mask = 0x1F,
3160                .hfb_offset = 0x1000,
3161                .rdma_offset = 0x2000,
3162                .tdma_offset = 0x3000,
3163                .words_per_bd = 2,
3164        },
3165        [GENET_V2] = {
3166                .tx_queues = 4,
3167                .tx_bds_per_q = 32,
3168                .rx_queues = 0,
3169                .rx_bds_per_q = 0,
3170                .bp_in_en_shift = 16,
3171                .bp_in_mask = 0xffff,
3172                .hfb_filter_cnt = 16,
3173                .qtag_mask = 0x1F,
3174                .tbuf_offset = 0x0600,
3175                .hfb_offset = 0x1000,
3176                .hfb_reg_offset = 0x2000,
3177                .rdma_offset = 0x3000,
3178                .tdma_offset = 0x4000,
3179                .words_per_bd = 2,
3180                .flags = GENET_HAS_EXT,
3181        },
3182        [GENET_V3] = {
3183                .tx_queues = 4,
3184                .tx_bds_per_q = 32,
3185                .rx_queues = 0,
3186                .rx_bds_per_q = 0,
3187                .bp_in_en_shift = 17,
3188                .bp_in_mask = 0x1ffff,
3189                .hfb_filter_cnt = 48,
3190                .hfb_filter_size = 128,
3191                .qtag_mask = 0x3F,
3192                .tbuf_offset = 0x0600,
3193                .hfb_offset = 0x8000,
3194                .hfb_reg_offset = 0xfc00,
3195                .rdma_offset = 0x10000,
3196                .tdma_offset = 0x11000,
3197                .words_per_bd = 2,
3198                .flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3199                         GENET_HAS_MOCA_LINK_DET,
3200        },
3201        [GENET_V4] = {
3202                .tx_queues = 4,
3203                .tx_bds_per_q = 32,
3204                .rx_queues = 0,
3205                .rx_bds_per_q = 0,
3206                .bp_in_en_shift = 17,
3207                .bp_in_mask = 0x1ffff,
3208                .hfb_filter_cnt = 48,
3209                .hfb_filter_size = 128,
3210                .qtag_mask = 0x3F,
3211                .tbuf_offset = 0x0600,
3212                .hfb_offset = 0x8000,
3213                .hfb_reg_offset = 0xfc00,
3214                .rdma_offset = 0x2000,
3215                .tdma_offset = 0x4000,
3216                .words_per_bd = 3,
3217                .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3218                         GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3219        },
3220};
3221
3222/* Infer hardware parameters from the detected GENET version */
3223static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3224{
3225        struct bcmgenet_hw_params *params;
3226        u32 reg;
3227        u8 major;
3228        u16 gphy_rev;
3229
3230        if (GENET_IS_V4(priv)) {
3231                bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3232                genet_dma_ring_regs = genet_dma_ring_regs_v4;
3233                priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3234                priv->version = GENET_V4;
3235        } else if (GENET_IS_V3(priv)) {
3236                bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3237                genet_dma_ring_regs = genet_dma_ring_regs_v123;
3238                priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3239                priv->version = GENET_V3;
3240        } else if (GENET_IS_V2(priv)) {
3241                bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3242                genet_dma_ring_regs = genet_dma_ring_regs_v123;
3243                priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3244                priv->version = GENET_V2;
3245        } else if (GENET_IS_V1(priv)) {
3246                bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3247                genet_dma_ring_regs = genet_dma_ring_regs_v123;
3248                priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3249                priv->version = GENET_V1;
3250        }
3251
3252        /* enum genet_version starts at 1 */
3253        priv->hw_params = &bcmgenet_hw_params[priv->version];
3254        params = priv->hw_params;
3255
3256        /* Read GENET HW version */
3257        reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3258        major = (reg >> 24 & 0x0f);
3259        if (major == 5)
3260                major = 4;
3261        else if (major == 0)
3262                major = 1;
3263        if (major != priv->version) {
3264                dev_err(&priv->pdev->dev,
3265                        "GENET version mismatch, got: %d, configured for: %d\n",
3266                        major, priv->version);
3267        }
3268
3269        /* Print the GENET core version */
3270        dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3271                 major, (reg >> 16) & 0x0f, reg & 0xffff);
3272
3273        /* Store the integrated PHY revision for the MDIO probing function
3274         * to pass this information to the PHY driver. The PHY driver expects
3275         * to find the PHY major revision in bits 15:8 while the GENET register
3276         * stores that information in bits 7:0, account for that.
3277         *
3278         * On newer chips, starting with PHY revision G0, a new scheme is
3279         * deployed similar to the Starfighter 2 switch with GPHY major
3280         * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3281         * is reserved as well as special value 0x01ff, we have a small
3282         * heuristic to check for the new GPHY revision and re-arrange things
3283         * so the GPHY driver is happy.
3284         */
3285        gphy_rev = reg & 0xffff;
3286
3287        /* This is the good old scheme, just GPHY major, no minor nor patch */
3288        if ((gphy_rev & 0xf0) != 0)
3289                priv->gphy_rev = gphy_rev << 8;
3290
3291        /* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3292        else if ((gphy_rev & 0xff00) != 0)
3293                priv->gphy_rev = gphy_rev;
3294
3295        /* This is reserved so should require special treatment */
3296        else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3297                pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3298                return;
3299        }
3300
3301#ifdef CONFIG_PHYS_ADDR_T_64BIT
3302        if (!(params->flags & GENET_HAS_40BITS))
3303                pr_warn("GENET does not support 40-bits PA\n");
3304#endif
3305
3306        pr_debug("Configuration for version: %d\n"
3307                "TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3308                "BP << en: %2d, BP msk: 0x%05x\n"
3309                "HFB count: %2d, QTAQ msk: 0x%05x\n"
3310                "TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3311                "RDMA: 0x%05x, TDMA: 0x%05x\n"
3312                "Words/BD: %d\n",
3313                priv->version,
3314                params->tx_queues, params->tx_bds_per_q,
3315                params->rx_queues, params->rx_bds_per_q,
3316                params->bp_in_en_shift, params->bp_in_mask,
3317                params->hfb_filter_cnt, params->qtag_mask,
3318                params->tbuf_offset, params->hfb_offset,
3319                params->hfb_reg_offset,
3320                params->rdma_offset, params->tdma_offset,
3321                params->words_per_bd);
3322}
3323
3324static const struct of_device_id bcmgenet_match[] = {
3325        { .compatible = "brcm,genet-v1", .data = (void *)GENET_V1 },
3326        { .compatible = "brcm,genet-v2", .data = (void *)GENET_V2 },
3327        { .compatible = "brcm,genet-v3", .data = (void *)GENET_V3 },
3328        { .compatible = "brcm,genet-v4", .data = (void *)GENET_V4 },
3329        { },
3330};
3331MODULE_DEVICE_TABLE(of, bcmgenet_match);
3332
3333static int bcmgenet_probe(struct platform_device *pdev)
3334{
3335        struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3336        struct device_node *dn = pdev->dev.of_node;
3337        const struct of_device_id *of_id = NULL;
3338        struct bcmgenet_priv *priv;
3339        struct net_device *dev;
3340        const void *macaddr;
3341        struct resource *r;
3342        int err = -EIO;
3343
3344        /* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3345        dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3346                                 GENET_MAX_MQ_CNT + 1);
3347        if (!dev) {
3348                dev_err(&pdev->dev, "can't allocate net device\n");
3349                return -ENOMEM;
3350        }
3351
3352        if (dn) {
3353                of_id = of_match_node(bcmgenet_match, dn);
3354                if (!of_id)
3355                        return -EINVAL;
3356        }
3357
3358        priv = netdev_priv(dev);
3359        priv->irq0 = platform_get_irq(pdev, 0);
3360        priv->irq1 = platform_get_irq(pdev, 1);
3361        priv->wol_irq = platform_get_irq(pdev, 2);
3362        if (!priv->irq0 || !priv->irq1) {
3363                dev_err(&pdev->dev, "can't find IRQs\n");
3364                err = -EINVAL;
3365                goto err;
3366        }
3367
3368        if (dn) {
3369                macaddr = of_get_mac_address(dn);
3370                if (!macaddr) {
3371                        dev_err(&pdev->dev, "can't find MAC address\n");
3372                        err = -EINVAL;
3373                        goto err;
3374                }
3375        } else {
3376                macaddr = pd->mac_address;
3377        }
3378
3379        r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3380        priv->base = devm_ioremap_resource(&pdev->dev, r);
3381        if (IS_ERR(priv->base)) {
3382                err = PTR_ERR(priv->base);
3383                goto err;
3384        }
3385
3386        SET_NETDEV_DEV(dev, &pdev->dev);
3387        dev_set_drvdata(&pdev->dev, dev);
3388        ether_addr_copy(dev->dev_addr, macaddr);
3389        dev->watchdog_timeo = 2 * HZ;
3390        dev->ethtool_ops = &bcmgenet_ethtool_ops;
3391        dev->netdev_ops = &bcmgenet_netdev_ops;
3392
3393        priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
3394
3395        /* Set hardware features */
3396        dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM |
3397                NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
3398
3399        /* Request the WOL interrupt and advertise suspend if available */
3400        priv->wol_irq_disabled = true;
3401        err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
3402                               dev->name, priv);
3403        if (!err)
3404                device_set_wakeup_capable(&pdev->dev, 1);
3405
3406        /* Set the needed headroom to account for any possible
3407         * features enabling/disabling at runtime
3408         */
3409        dev->needed_headroom += 64;
3410
3411        netdev_boot_setup_check(dev);
3412
3413        priv->dev = dev;
3414        priv->pdev = pdev;
3415        if (of_id)
3416                priv->version = (enum bcmgenet_version)of_id->data;
3417        else
3418                priv->version = pd->genet_version;
3419
3420        priv->clk = devm_clk_get(&priv->pdev->dev, "enet");
3421        if (IS_ERR(priv->clk)) {
3422                dev_warn(&priv->pdev->dev, "failed to get enet clock\n");
3423                priv->clk = NULL;
3424        }
3425
3426        clk_prepare_enable(priv->clk);
3427
3428        bcmgenet_set_hw_params(priv);
3429
3430        /* Mii wait queue */
3431        init_waitqueue_head(&priv->wq);
3432        /* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
3433        priv->rx_buf_len = RX_BUF_LENGTH;
3434        INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
3435
3436        priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol");
3437        if (IS_ERR(priv->clk_wol)) {
3438                dev_warn(&priv->pdev->dev, "failed to get enet-wol clock\n");
3439                priv->clk_wol = NULL;
3440        }
3441
3442        priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee");
3443        if (IS_ERR(priv->clk_eee)) {
3444                dev_warn(&priv->pdev->dev, "failed to get enet-eee clock\n");
3445                priv->clk_eee = NULL;
3446        }
3447
3448        err = reset_umac(priv);
3449        if (err)
3450                goto err_clk_disable;
3451
3452        err = bcmgenet_mii_init(dev);
3453        if (err)
3454                goto err_clk_disable;
3455
3456        /* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
3457         * just the ring 16 descriptor based TX
3458         */
3459        netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
3460        netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
3461
3462        /* libphy will determine the link state */
3463        netif_carrier_off(dev);
3464
3465        /* Turn off the main clock, WOL clock is handled separately */
3466        clk_disable_unprepare(priv->clk);
3467
3468        err = register_netdev(dev);
3469        if (err)
3470                goto err;
3471
3472        return err;
3473
3474err_clk_disable:
3475        clk_disable_unprepare(priv->clk);
3476err:
3477        free_netdev(dev);
3478        return err;
3479}
3480
3481static int bcmgenet_remove(struct platform_device *pdev)
3482{
3483        struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
3484
3485        dev_set_drvdata(&pdev->dev, NULL);
3486        unregister_netdev(priv->dev);
3487        bcmgenet_mii_exit(priv->dev);
3488        free_netdev(priv->dev);
3489
3490        return 0;
3491}
3492
3493#ifdef CONFIG_PM_SLEEP
3494static int bcmgenet_suspend(struct device *d)
3495{
3496        struct net_device *dev = dev_get_drvdata(d);
3497        struct bcmgenet_priv *priv = netdev_priv(dev);
3498        int ret;
3499
3500        if (!netif_running(dev))
3501                return 0;
3502
3503        bcmgenet_netif_stop(dev);
3504
3505        phy_suspend(priv->phydev);
3506
3507        netif_device_detach(dev);
3508
3509        /* Disable MAC receive */
3510        umac_enable_set(priv, CMD_RX_EN, false);
3511
3512        ret = bcmgenet_dma_teardown(priv);
3513        if (ret)
3514                return ret;
3515
3516        /* Disable MAC transmit. TX DMA disabled have to done before this */
3517        umac_enable_set(priv, CMD_TX_EN, false);
3518
3519        /* tx reclaim */
3520        bcmgenet_tx_reclaim_all(dev);
3521        bcmgenet_fini_dma(priv);
3522
3523        /* Prepare the device for Wake-on-LAN and switch to the slow clock */
3524        if (device_may_wakeup(d) && priv->wolopts) {
3525                ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
3526                clk_prepare_enable(priv->clk_wol);
3527        } else if (priv->internal_phy) {
3528                ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3529        }
3530
3531        /* Turn off the clocks */
3532        clk_disable_unprepare(priv->clk);
3533
3534        return ret;
3535}
3536
3537static int bcmgenet_resume(struct device *d)
3538{
3539        struct net_device *dev = dev_get_drvdata(d);
3540        struct bcmgenet_priv *priv = netdev_priv(dev);
3541        unsigned long dma_ctrl;
3542        int ret;
3543        u32 reg;
3544
3545        if (!netif_running(dev))
3546                return 0;
3547
3548        /* Turn on the clock */
3549        ret = clk_prepare_enable(priv->clk);
3550        if (ret)
3551                return ret;
3552
3553        /* If this is an internal GPHY, power it back on now, before UniMAC is
3554         * brought out of reset as absolutely no UniMAC activity is allowed
3555         */
3556        if (priv->internal_phy)
3557                bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3558
3559        bcmgenet_umac_reset(priv);
3560
3561        ret = init_umac(priv);
3562        if (ret)
3563                goto out_clk_disable;
3564
3565        /* From WOL-enabled suspend, switch to regular clock */
3566        if (priv->wolopts)
3567                clk_disable_unprepare(priv->clk_wol);
3568
3569        phy_init_hw(priv->phydev);
3570        /* Speed settings must be restored */
3571        bcmgenet_mii_config(priv->dev);
3572
3573        /* disable ethernet MAC while updating its registers */
3574        umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
3575
3576        bcmgenet_set_hw_addr(priv, dev->dev_addr);
3577
3578        if (priv->internal_phy) {
3579                reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
3580                reg |= EXT_ENERGY_DET_MASK;
3581                bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
3582        }
3583
3584        if (priv->wolopts)
3585                bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
3586
3587        /* Disable RX/TX DMA and flush TX queues */
3588        dma_ctrl = bcmgenet_dma_disable(priv);
3589
3590        /* Reinitialize TDMA and RDMA and SW housekeeping */
3591        ret = bcmgenet_init_dma(priv);
3592        if (ret) {
3593                netdev_err(dev, "failed to initialize DMA\n");
3594                goto out_clk_disable;
3595        }
3596
3597        /* Always enable ring 16 - descriptor ring */
3598        bcmgenet_enable_dma(priv, dma_ctrl);
3599
3600        netif_device_attach(dev);
3601
3602        phy_resume(priv->phydev);
3603
3604        if (priv->eee.eee_enabled)
3605                bcmgenet_eee_enable_set(dev, true);
3606
3607        bcmgenet_netif_start(dev);
3608
3609        return 0;
3610
3611out_clk_disable:
3612        clk_disable_unprepare(priv->clk);
3613        return ret;
3614}
3615#endif /* CONFIG_PM_SLEEP */
3616
3617static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);
3618
3619static struct platform_driver bcmgenet_driver = {
3620        .probe  = bcmgenet_probe,
3621        .remove = bcmgenet_remove,
3622        .driver = {
3623                .name   = "bcmgenet",
3624                .of_match_table = bcmgenet_match,
3625                .pm     = &bcmgenet_pm_ops,
3626        },
3627};
3628module_platform_driver(bcmgenet_driver);
3629
3630MODULE_AUTHOR("Broadcom Corporation");
3631MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
3632MODULE_ALIAS("platform:bcmgenet");
3633MODULE_LICENSE("GPL");
3634