linux/drivers/net/ethernet/chelsio/cxgb4/sge.c
<<
>>
Prefs
   1/*
   2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
   3 *
   4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
   5 *
   6 * This software is available to you under a choice of one of two
   7 * licenses.  You may choose to be licensed under the terms of the GNU
   8 * General Public License (GPL) Version 2, available from the file
   9 * COPYING in the main directory of this source tree, or the
  10 * OpenIB.org BSD license below:
  11 *
  12 *     Redistribution and use in source and binary forms, with or
  13 *     without modification, are permitted provided that the following
  14 *     conditions are met:
  15 *
  16 *      - Redistributions of source code must retain the above
  17 *        copyright notice, this list of conditions and the following
  18 *        disclaimer.
  19 *
  20 *      - Redistributions in binary form must reproduce the above
  21 *        copyright notice, this list of conditions and the following
  22 *        disclaimer in the documentation and/or other materials
  23 *        provided with the distribution.
  24 *
  25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  32 * SOFTWARE.
  33 */
  34
  35#include <linux/skbuff.h>
  36#include <linux/netdevice.h>
  37#include <linux/etherdevice.h>
  38#include <linux/if_vlan.h>
  39#include <linux/ip.h>
  40#include <linux/dma-mapping.h>
  41#include <linux/jiffies.h>
  42#include <linux/prefetch.h>
  43#include <linux/export.h>
  44#include <net/ipv6.h>
  45#include <net/tcp.h>
  46#ifdef CONFIG_NET_RX_BUSY_POLL
  47#include <net/busy_poll.h>
  48#endif /* CONFIG_NET_RX_BUSY_POLL */
  49#ifdef CONFIG_CHELSIO_T4_FCOE
  50#include <scsi/fc/fc_fcoe.h>
  51#endif /* CONFIG_CHELSIO_T4_FCOE */
  52#include "cxgb4.h"
  53#include "t4_regs.h"
  54#include "t4_values.h"
  55#include "t4_msg.h"
  56#include "t4fw_api.h"
  57
  58/*
  59 * Rx buffer size.  We use largish buffers if possible but settle for single
  60 * pages under memory shortage.
  61 */
  62#if PAGE_SHIFT >= 16
  63# define FL_PG_ORDER 0
  64#else
  65# define FL_PG_ORDER (16 - PAGE_SHIFT)
  66#endif
  67
  68/* RX_PULL_LEN should be <= RX_COPY_THRES */
  69#define RX_COPY_THRES    256
  70#define RX_PULL_LEN      128
  71
  72/*
  73 * Main body length for sk_buffs used for Rx Ethernet packets with fragments.
  74 * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room.
  75 */
  76#define RX_PKT_SKB_LEN   512
  77
  78/*
  79 * Max number of Tx descriptors we clean up at a time.  Should be modest as
  80 * freeing skbs isn't cheap and it happens while holding locks.  We just need
  81 * to free packets faster than they arrive, we eventually catch up and keep
  82 * the amortized cost reasonable.  Must be >= 2 * TXQ_STOP_THRES.
  83 */
  84#define MAX_TX_RECLAIM 16
  85
  86/*
  87 * Max number of Rx buffers we replenish at a time.  Again keep this modest,
  88 * allocating buffers isn't cheap either.
  89 */
  90#define MAX_RX_REFILL 16U
  91
  92/*
  93 * Period of the Rx queue check timer.  This timer is infrequent as it has
  94 * something to do only when the system experiences severe memory shortage.
  95 */
  96#define RX_QCHECK_PERIOD (HZ / 2)
  97
  98/*
  99 * Period of the Tx queue check timer.
 100 */
 101#define TX_QCHECK_PERIOD (HZ / 2)
 102
 103/*
 104 * Max number of Tx descriptors to be reclaimed by the Tx timer.
 105 */
 106#define MAX_TIMER_TX_RECLAIM 100
 107
 108/*
 109 * Timer index used when backing off due to memory shortage.
 110 */
 111#define NOMEM_TMR_IDX (SGE_NTIMERS - 1)
 112
 113/*
 114 * Suspend an Ethernet Tx queue with fewer available descriptors than this.
 115 * This is the same as calc_tx_descs() for a TSO packet with
 116 * nr_frags == MAX_SKB_FRAGS.
 117 */
 118#define ETHTXQ_STOP_THRES \
 119        (1 + DIV_ROUND_UP((3 * MAX_SKB_FRAGS) / 2 + (MAX_SKB_FRAGS & 1), 8))
 120
 121/*
 122 * Suspension threshold for non-Ethernet Tx queues.  We require enough room
 123 * for a full sized WR.
 124 */
 125#define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc))
 126
 127/*
 128 * Max Tx descriptor space we allow for an Ethernet packet to be inlined
 129 * into a WR.
 130 */
 131#define MAX_IMM_TX_PKT_LEN 256
 132
 133/*
 134 * Max size of a WR sent through a control Tx queue.
 135 */
 136#define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN
 137
 138struct tx_sw_desc {                /* SW state per Tx descriptor */
 139        struct sk_buff *skb;
 140        struct ulptx_sgl *sgl;
 141};
 142
 143struct rx_sw_desc {                /* SW state per Rx descriptor */
 144        struct page *page;
 145        dma_addr_t dma_addr;
 146};
 147
 148/*
 149 * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb
 150 * buffer).  We currently only support two sizes for 1500- and 9000-byte MTUs.
 151 * We could easily support more but there doesn't seem to be much need for
 152 * that ...
 153 */
 154#define FL_MTU_SMALL 1500
 155#define FL_MTU_LARGE 9000
 156
 157static inline unsigned int fl_mtu_bufsize(struct adapter *adapter,
 158                                          unsigned int mtu)
 159{
 160        struct sge *s = &adapter->sge;
 161
 162        return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align);
 163}
 164
 165#define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL)
 166#define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE)
 167
 168/*
 169 * Bits 0..3 of rx_sw_desc.dma_addr have special meaning.  The hardware uses
 170 * these to specify the buffer size as an index into the SGE Free List Buffer
 171 * Size register array.  We also use bit 4, when the buffer has been unmapped
 172 * for DMA, but this is of course never sent to the hardware and is only used
 173 * to prevent double unmappings.  All of the above requires that the Free List
 174 * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are
 175 * 32-byte or or a power of 2 greater in alignment.  Since the SGE's minimal
 176 * Free List Buffer alignment is 32 bytes, this works out for us ...
 177 */
 178enum {
 179        RX_BUF_FLAGS     = 0x1f,   /* bottom five bits are special */
 180        RX_BUF_SIZE      = 0x0f,   /* bottom three bits are for buf sizes */
 181        RX_UNMAPPED_BUF  = 0x10,   /* buffer is not mapped */
 182
 183        /*
 184         * XXX We shouldn't depend on being able to use these indices.
 185         * XXX Especially when some other Master PF has initialized the
 186         * XXX adapter or we use the Firmware Configuration File.  We
 187         * XXX should really search through the Host Buffer Size register
 188         * XXX array for the appropriately sized buffer indices.
 189         */
 190        RX_SMALL_PG_BUF  = 0x0,   /* small (PAGE_SIZE) page buffer */
 191        RX_LARGE_PG_BUF  = 0x1,   /* buffer large (FL_PG_ORDER) page buffer */
 192
 193        RX_SMALL_MTU_BUF = 0x2,   /* small MTU buffer */
 194        RX_LARGE_MTU_BUF = 0x3,   /* large MTU buffer */
 195};
 196
 197static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5};
 198#define MIN_NAPI_WORK  1
 199
 200static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d)
 201{
 202        return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS;
 203}
 204
 205static inline bool is_buf_mapped(const struct rx_sw_desc *d)
 206{
 207        return !(d->dma_addr & RX_UNMAPPED_BUF);
 208}
 209
 210/**
 211 *      txq_avail - return the number of available slots in a Tx queue
 212 *      @q: the Tx queue
 213 *
 214 *      Returns the number of descriptors in a Tx queue available to write new
 215 *      packets.
 216 */
 217static inline unsigned int txq_avail(const struct sge_txq *q)
 218{
 219        return q->size - 1 - q->in_use;
 220}
 221
 222/**
 223 *      fl_cap - return the capacity of a free-buffer list
 224 *      @fl: the FL
 225 *
 226 *      Returns the capacity of a free-buffer list.  The capacity is less than
 227 *      the size because one descriptor needs to be left unpopulated, otherwise
 228 *      HW will think the FL is empty.
 229 */
 230static inline unsigned int fl_cap(const struct sge_fl *fl)
 231{
 232        return fl->size - 8;   /* 1 descriptor = 8 buffers */
 233}
 234
 235/**
 236 *      fl_starving - return whether a Free List is starving.
 237 *      @adapter: pointer to the adapter
 238 *      @fl: the Free List
 239 *
 240 *      Tests specified Free List to see whether the number of buffers
 241 *      available to the hardware has falled below our "starvation"
 242 *      threshold.
 243 */
 244static inline bool fl_starving(const struct adapter *adapter,
 245                               const struct sge_fl *fl)
 246{
 247        const struct sge *s = &adapter->sge;
 248
 249        return fl->avail - fl->pend_cred <= s->fl_starve_thres;
 250}
 251
 252static int map_skb(struct device *dev, const struct sk_buff *skb,
 253                   dma_addr_t *addr)
 254{
 255        const skb_frag_t *fp, *end;
 256        const struct skb_shared_info *si;
 257
 258        *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
 259        if (dma_mapping_error(dev, *addr))
 260                goto out_err;
 261
 262        si = skb_shinfo(skb);
 263        end = &si->frags[si->nr_frags];
 264
 265        for (fp = si->frags; fp < end; fp++) {
 266                *++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
 267                                           DMA_TO_DEVICE);
 268                if (dma_mapping_error(dev, *addr))
 269                        goto unwind;
 270        }
 271        return 0;
 272
 273unwind:
 274        while (fp-- > si->frags)
 275                dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
 276
 277        dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
 278out_err:
 279        return -ENOMEM;
 280}
 281
 282#ifdef CONFIG_NEED_DMA_MAP_STATE
 283static void unmap_skb(struct device *dev, const struct sk_buff *skb,
 284                      const dma_addr_t *addr)
 285{
 286        const skb_frag_t *fp, *end;
 287        const struct skb_shared_info *si;
 288
 289        dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE);
 290
 291        si = skb_shinfo(skb);
 292        end = &si->frags[si->nr_frags];
 293        for (fp = si->frags; fp < end; fp++)
 294                dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE);
 295}
 296
 297/**
 298 *      deferred_unmap_destructor - unmap a packet when it is freed
 299 *      @skb: the packet
 300 *
 301 *      This is the packet destructor used for Tx packets that need to remain
 302 *      mapped until they are freed rather than until their Tx descriptors are
 303 *      freed.
 304 */
 305static void deferred_unmap_destructor(struct sk_buff *skb)
 306{
 307        unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head);
 308}
 309#endif
 310
 311static void unmap_sgl(struct device *dev, const struct sk_buff *skb,
 312                      const struct ulptx_sgl *sgl, const struct sge_txq *q)
 313{
 314        const struct ulptx_sge_pair *p;
 315        unsigned int nfrags = skb_shinfo(skb)->nr_frags;
 316
 317        if (likely(skb_headlen(skb)))
 318                dma_unmap_single(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
 319                                 DMA_TO_DEVICE);
 320        else {
 321                dma_unmap_page(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
 322                               DMA_TO_DEVICE);
 323                nfrags--;
 324        }
 325
 326        /*
 327         * the complexity below is because of the possibility of a wrap-around
 328         * in the middle of an SGL
 329         */
 330        for (p = sgl->sge; nfrags >= 2; nfrags -= 2) {
 331                if (likely((u8 *)(p + 1) <= (u8 *)q->stat)) {
 332unmap:                  dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
 333                                       ntohl(p->len[0]), DMA_TO_DEVICE);
 334                        dma_unmap_page(dev, be64_to_cpu(p->addr[1]),
 335                                       ntohl(p->len[1]), DMA_TO_DEVICE);
 336                        p++;
 337                } else if ((u8 *)p == (u8 *)q->stat) {
 338                        p = (const struct ulptx_sge_pair *)q->desc;
 339                        goto unmap;
 340                } else if ((u8 *)p + 8 == (u8 *)q->stat) {
 341                        const __be64 *addr = (const __be64 *)q->desc;
 342
 343                        dma_unmap_page(dev, be64_to_cpu(addr[0]),
 344                                       ntohl(p->len[0]), DMA_TO_DEVICE);
 345                        dma_unmap_page(dev, be64_to_cpu(addr[1]),
 346                                       ntohl(p->len[1]), DMA_TO_DEVICE);
 347                        p = (const struct ulptx_sge_pair *)&addr[2];
 348                } else {
 349                        const __be64 *addr = (const __be64 *)q->desc;
 350
 351                        dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
 352                                       ntohl(p->len[0]), DMA_TO_DEVICE);
 353                        dma_unmap_page(dev, be64_to_cpu(addr[0]),
 354                                       ntohl(p->len[1]), DMA_TO_DEVICE);
 355                        p = (const struct ulptx_sge_pair *)&addr[1];
 356                }
 357        }
 358        if (nfrags) {
 359                __be64 addr;
 360
 361                if ((u8 *)p == (u8 *)q->stat)
 362                        p = (const struct ulptx_sge_pair *)q->desc;
 363                addr = (u8 *)p + 16 <= (u8 *)q->stat ? p->addr[0] :
 364                                                       *(const __be64 *)q->desc;
 365                dma_unmap_page(dev, be64_to_cpu(addr), ntohl(p->len[0]),
 366                               DMA_TO_DEVICE);
 367        }
 368}
 369
 370/**
 371 *      free_tx_desc - reclaims Tx descriptors and their buffers
 372 *      @adapter: the adapter
 373 *      @q: the Tx queue to reclaim descriptors from
 374 *      @n: the number of descriptors to reclaim
 375 *      @unmap: whether the buffers should be unmapped for DMA
 376 *
 377 *      Reclaims Tx descriptors from an SGE Tx queue and frees the associated
 378 *      Tx buffers.  Called with the Tx queue lock held.
 379 */
 380static void free_tx_desc(struct adapter *adap, struct sge_txq *q,
 381                         unsigned int n, bool unmap)
 382{
 383        struct tx_sw_desc *d;
 384        unsigned int cidx = q->cidx;
 385        struct device *dev = adap->pdev_dev;
 386
 387        d = &q->sdesc[cidx];
 388        while (n--) {
 389                if (d->skb) {                       /* an SGL is present */
 390                        if (unmap)
 391                                unmap_sgl(dev, d->skb, d->sgl, q);
 392                        dev_consume_skb_any(d->skb);
 393                        d->skb = NULL;
 394                }
 395                ++d;
 396                if (++cidx == q->size) {
 397                        cidx = 0;
 398                        d = q->sdesc;
 399                }
 400        }
 401        q->cidx = cidx;
 402}
 403
 404/*
 405 * Return the number of reclaimable descriptors in a Tx queue.
 406 */
 407static inline int reclaimable(const struct sge_txq *q)
 408{
 409        int hw_cidx = ntohs(ACCESS_ONCE(q->stat->cidx));
 410        hw_cidx -= q->cidx;
 411        return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx;
 412}
 413
 414/**
 415 *      reclaim_completed_tx - reclaims completed Tx descriptors
 416 *      @adap: the adapter
 417 *      @q: the Tx queue to reclaim completed descriptors from
 418 *      @unmap: whether the buffers should be unmapped for DMA
 419 *
 420 *      Reclaims Tx descriptors that the SGE has indicated it has processed,
 421 *      and frees the associated buffers if possible.  Called with the Tx
 422 *      queue locked.
 423 */
 424static inline void reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
 425                                        bool unmap)
 426{
 427        int avail = reclaimable(q);
 428
 429        if (avail) {
 430                /*
 431                 * Limit the amount of clean up work we do at a time to keep
 432                 * the Tx lock hold time O(1).
 433                 */
 434                if (avail > MAX_TX_RECLAIM)
 435                        avail = MAX_TX_RECLAIM;
 436
 437                free_tx_desc(adap, q, avail, unmap);
 438                q->in_use -= avail;
 439        }
 440}
 441
 442static inline int get_buf_size(struct adapter *adapter,
 443                               const struct rx_sw_desc *d)
 444{
 445        struct sge *s = &adapter->sge;
 446        unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE;
 447        int buf_size;
 448
 449        switch (rx_buf_size_idx) {
 450        case RX_SMALL_PG_BUF:
 451                buf_size = PAGE_SIZE;
 452                break;
 453
 454        case RX_LARGE_PG_BUF:
 455                buf_size = PAGE_SIZE << s->fl_pg_order;
 456                break;
 457
 458        case RX_SMALL_MTU_BUF:
 459                buf_size = FL_MTU_SMALL_BUFSIZE(adapter);
 460                break;
 461
 462        case RX_LARGE_MTU_BUF:
 463                buf_size = FL_MTU_LARGE_BUFSIZE(adapter);
 464                break;
 465
 466        default:
 467                BUG_ON(1);
 468        }
 469
 470        return buf_size;
 471}
 472
 473/**
 474 *      free_rx_bufs - free the Rx buffers on an SGE free list
 475 *      @adap: the adapter
 476 *      @q: the SGE free list to free buffers from
 477 *      @n: how many buffers to free
 478 *
 479 *      Release the next @n buffers on an SGE free-buffer Rx queue.   The
 480 *      buffers must be made inaccessible to HW before calling this function.
 481 */
 482static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n)
 483{
 484        while (n--) {
 485                struct rx_sw_desc *d = &q->sdesc[q->cidx];
 486
 487                if (is_buf_mapped(d))
 488                        dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
 489                                       get_buf_size(adap, d),
 490                                       PCI_DMA_FROMDEVICE);
 491                put_page(d->page);
 492                d->page = NULL;
 493                if (++q->cidx == q->size)
 494                        q->cidx = 0;
 495                q->avail--;
 496        }
 497}
 498
 499/**
 500 *      unmap_rx_buf - unmap the current Rx buffer on an SGE free list
 501 *      @adap: the adapter
 502 *      @q: the SGE free list
 503 *
 504 *      Unmap the current buffer on an SGE free-buffer Rx queue.   The
 505 *      buffer must be made inaccessible to HW before calling this function.
 506 *
 507 *      This is similar to @free_rx_bufs above but does not free the buffer.
 508 *      Do note that the FL still loses any further access to the buffer.
 509 */
 510static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q)
 511{
 512        struct rx_sw_desc *d = &q->sdesc[q->cidx];
 513
 514        if (is_buf_mapped(d))
 515                dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
 516                               get_buf_size(adap, d), PCI_DMA_FROMDEVICE);
 517        d->page = NULL;
 518        if (++q->cidx == q->size)
 519                q->cidx = 0;
 520        q->avail--;
 521}
 522
 523static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
 524{
 525        if (q->pend_cred >= 8) {
 526                u32 val = adap->params.arch.sge_fl_db;
 527
 528                if (is_t4(adap->params.chip))
 529                        val |= PIDX_V(q->pend_cred / 8);
 530                else
 531                        val |= PIDX_T5_V(q->pend_cred / 8);
 532
 533                /* Make sure all memory writes to the Free List queue are
 534                 * committed before we tell the hardware about them.
 535                 */
 536                wmb();
 537
 538                /* If we don't have access to the new User Doorbell (T5+), use
 539                 * the old doorbell mechanism; otherwise use the new BAR2
 540                 * mechanism.
 541                 */
 542                if (unlikely(q->bar2_addr == NULL)) {
 543                        t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
 544                                     val | QID_V(q->cntxt_id));
 545                } else {
 546                        writel(val | QID_V(q->bar2_qid),
 547                               q->bar2_addr + SGE_UDB_KDOORBELL);
 548
 549                        /* This Write memory Barrier will force the write to
 550                         * the User Doorbell area to be flushed.
 551                         */
 552                        wmb();
 553                }
 554                q->pend_cred &= 7;
 555        }
 556}
 557
 558static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg,
 559                                  dma_addr_t mapping)
 560{
 561        sd->page = pg;
 562        sd->dma_addr = mapping;      /* includes size low bits */
 563}
 564
 565/**
 566 *      refill_fl - refill an SGE Rx buffer ring
 567 *      @adap: the adapter
 568 *      @q: the ring to refill
 569 *      @n: the number of new buffers to allocate
 570 *      @gfp: the gfp flags for the allocations
 571 *
 572 *      (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
 573 *      allocated with the supplied gfp flags.  The caller must assure that
 574 *      @n does not exceed the queue's capacity.  If afterwards the queue is
 575 *      found critically low mark it as starving in the bitmap of starving FLs.
 576 *
 577 *      Returns the number of buffers allocated.
 578 */
 579static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n,
 580                              gfp_t gfp)
 581{
 582        struct sge *s = &adap->sge;
 583        struct page *pg;
 584        dma_addr_t mapping;
 585        unsigned int cred = q->avail;
 586        __be64 *d = &q->desc[q->pidx];
 587        struct rx_sw_desc *sd = &q->sdesc[q->pidx];
 588        int node;
 589
 590#ifdef CONFIG_DEBUG_FS
 591        if (test_bit(q->cntxt_id - adap->sge.egr_start, adap->sge.blocked_fl))
 592                goto out;
 593#endif
 594
 595        gfp |= __GFP_NOWARN;
 596        node = dev_to_node(adap->pdev_dev);
 597
 598        if (s->fl_pg_order == 0)
 599                goto alloc_small_pages;
 600
 601        /*
 602         * Prefer large buffers
 603         */
 604        while (n) {
 605                pg = alloc_pages_node(node, gfp | __GFP_COMP, s->fl_pg_order);
 606                if (unlikely(!pg)) {
 607                        q->large_alloc_failed++;
 608                        break;       /* fall back to single pages */
 609                }
 610
 611                mapping = dma_map_page(adap->pdev_dev, pg, 0,
 612                                       PAGE_SIZE << s->fl_pg_order,
 613                                       PCI_DMA_FROMDEVICE);
 614                if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
 615                        __free_pages(pg, s->fl_pg_order);
 616                        q->mapping_err++;
 617                        goto out;   /* do not try small pages for this error */
 618                }
 619                mapping |= RX_LARGE_PG_BUF;
 620                *d++ = cpu_to_be64(mapping);
 621
 622                set_rx_sw_desc(sd, pg, mapping);
 623                sd++;
 624
 625                q->avail++;
 626                if (++q->pidx == q->size) {
 627                        q->pidx = 0;
 628                        sd = q->sdesc;
 629                        d = q->desc;
 630                }
 631                n--;
 632        }
 633
 634alloc_small_pages:
 635        while (n--) {
 636                pg = alloc_pages_node(node, gfp, 0);
 637                if (unlikely(!pg)) {
 638                        q->alloc_failed++;
 639                        break;
 640                }
 641
 642                mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE,
 643                                       PCI_DMA_FROMDEVICE);
 644                if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
 645                        put_page(pg);
 646                        q->mapping_err++;
 647                        goto out;
 648                }
 649                *d++ = cpu_to_be64(mapping);
 650
 651                set_rx_sw_desc(sd, pg, mapping);
 652                sd++;
 653
 654                q->avail++;
 655                if (++q->pidx == q->size) {
 656                        q->pidx = 0;
 657                        sd = q->sdesc;
 658                        d = q->desc;
 659                }
 660        }
 661
 662out:    cred = q->avail - cred;
 663        q->pend_cred += cred;
 664        ring_fl_db(adap, q);
 665
 666        if (unlikely(fl_starving(adap, q))) {
 667                smp_wmb();
 668                q->low++;
 669                set_bit(q->cntxt_id - adap->sge.egr_start,
 670                        adap->sge.starving_fl);
 671        }
 672
 673        return cred;
 674}
 675
 676static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
 677{
 678        refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail),
 679                  GFP_ATOMIC);
 680}
 681
 682/**
 683 *      alloc_ring - allocate resources for an SGE descriptor ring
 684 *      @dev: the PCI device's core device
 685 *      @nelem: the number of descriptors
 686 *      @elem_size: the size of each descriptor
 687 *      @sw_size: the size of the SW state associated with each ring element
 688 *      @phys: the physical address of the allocated ring
 689 *      @metadata: address of the array holding the SW state for the ring
 690 *      @stat_size: extra space in HW ring for status information
 691 *      @node: preferred node for memory allocations
 692 *
 693 *      Allocates resources for an SGE descriptor ring, such as Tx queues,
 694 *      free buffer lists, or response queues.  Each SGE ring requires
 695 *      space for its HW descriptors plus, optionally, space for the SW state
 696 *      associated with each HW entry (the metadata).  The function returns
 697 *      three values: the virtual address for the HW ring (the return value
 698 *      of the function), the bus address of the HW ring, and the address
 699 *      of the SW ring.
 700 */
 701static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size,
 702                        size_t sw_size, dma_addr_t *phys, void *metadata,
 703                        size_t stat_size, int node)
 704{
 705        size_t len = nelem * elem_size + stat_size;
 706        void *s = NULL;
 707        void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL);
 708
 709        if (!p)
 710                return NULL;
 711        if (sw_size) {
 712                s = kzalloc_node(nelem * sw_size, GFP_KERNEL, node);
 713
 714                if (!s) {
 715                        dma_free_coherent(dev, len, p, *phys);
 716                        return NULL;
 717                }
 718        }
 719        if (metadata)
 720                *(void **)metadata = s;
 721        memset(p, 0, len);
 722        return p;
 723}
 724
 725/**
 726 *      sgl_len - calculates the size of an SGL of the given capacity
 727 *      @n: the number of SGL entries
 728 *
 729 *      Calculates the number of flits needed for a scatter/gather list that
 730 *      can hold the given number of entries.
 731 */
 732static inline unsigned int sgl_len(unsigned int n)
 733{
 734        /* A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
 735         * addresses.  The DSGL Work Request starts off with a 32-bit DSGL
 736         * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
 737         * repeated sequences of { Length[i], Length[i+1], Address[i],
 738         * Address[i+1] } (this ensures that all addresses are on 64-bit
 739         * boundaries).  If N is even, then Length[N+1] should be set to 0 and
 740         * Address[N+1] is omitted.
 741         *
 742         * The following calculation incorporates all of the above.  It's
 743         * somewhat hard to follow but, briefly: the "+2" accounts for the
 744         * first two flits which include the DSGL header, Length0 and
 745         * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
 746         * flits for every pair of the remaining N) +1 if (n-1) is odd; and
 747         * finally the "+((n-1)&1)" adds the one remaining flit needed if
 748         * (n-1) is odd ...
 749         */
 750        n--;
 751        return (3 * n) / 2 + (n & 1) + 2;
 752}
 753
 754/**
 755 *      flits_to_desc - returns the num of Tx descriptors for the given flits
 756 *      @n: the number of flits
 757 *
 758 *      Returns the number of Tx descriptors needed for the supplied number
 759 *      of flits.
 760 */
 761static inline unsigned int flits_to_desc(unsigned int n)
 762{
 763        BUG_ON(n > SGE_MAX_WR_LEN / 8);
 764        return DIV_ROUND_UP(n, 8);
 765}
 766
 767/**
 768 *      is_eth_imm - can an Ethernet packet be sent as immediate data?
 769 *      @skb: the packet
 770 *
 771 *      Returns whether an Ethernet packet is small enough to fit as
 772 *      immediate data. Return value corresponds to headroom required.
 773 */
 774static inline int is_eth_imm(const struct sk_buff *skb)
 775{
 776        int hdrlen = skb_shinfo(skb)->gso_size ?
 777                        sizeof(struct cpl_tx_pkt_lso_core) : 0;
 778
 779        hdrlen += sizeof(struct cpl_tx_pkt);
 780        if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen)
 781                return hdrlen;
 782        return 0;
 783}
 784
 785/**
 786 *      calc_tx_flits - calculate the number of flits for a packet Tx WR
 787 *      @skb: the packet
 788 *
 789 *      Returns the number of flits needed for a Tx WR for the given Ethernet
 790 *      packet, including the needed WR and CPL headers.
 791 */
 792static inline unsigned int calc_tx_flits(const struct sk_buff *skb)
 793{
 794        unsigned int flits;
 795        int hdrlen = is_eth_imm(skb);
 796
 797        /* If the skb is small enough, we can pump it out as a work request
 798         * with only immediate data.  In that case we just have to have the
 799         * TX Packet header plus the skb data in the Work Request.
 800         */
 801
 802        if (hdrlen)
 803                return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64));
 804
 805        /* Otherwise, we're going to have to construct a Scatter gather list
 806         * of the skb body and fragments.  We also include the flits necessary
 807         * for the TX Packet Work Request and CPL.  We always have a firmware
 808         * Write Header (incorporated as part of the cpl_tx_pkt_lso and
 809         * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
 810         * message or, if we're doing a Large Send Offload, an LSO CPL message
 811         * with an embedded TX Packet Write CPL message.
 812         */
 813        flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
 814        if (skb_shinfo(skb)->gso_size)
 815                flits += (sizeof(struct fw_eth_tx_pkt_wr) +
 816                          sizeof(struct cpl_tx_pkt_lso_core) +
 817                          sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
 818        else
 819                flits += (sizeof(struct fw_eth_tx_pkt_wr) +
 820                          sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
 821        return flits;
 822}
 823
 824/**
 825 *      calc_tx_descs - calculate the number of Tx descriptors for a packet
 826 *      @skb: the packet
 827 *
 828 *      Returns the number of Tx descriptors needed for the given Ethernet
 829 *      packet, including the needed WR and CPL headers.
 830 */
 831static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
 832{
 833        return flits_to_desc(calc_tx_flits(skb));
 834}
 835
 836/**
 837 *      write_sgl - populate a scatter/gather list for a packet
 838 *      @skb: the packet
 839 *      @q: the Tx queue we are writing into
 840 *      @sgl: starting location for writing the SGL
 841 *      @end: points right after the end of the SGL
 842 *      @start: start offset into skb main-body data to include in the SGL
 843 *      @addr: the list of bus addresses for the SGL elements
 844 *
 845 *      Generates a gather list for the buffers that make up a packet.
 846 *      The caller must provide adequate space for the SGL that will be written.
 847 *      The SGL includes all of the packet's page fragments and the data in its
 848 *      main body except for the first @start bytes.  @sgl must be 16-byte
 849 *      aligned and within a Tx descriptor with available space.  @end points
 850 *      right after the end of the SGL but does not account for any potential
 851 *      wrap around, i.e., @end > @sgl.
 852 */
 853static void write_sgl(const struct sk_buff *skb, struct sge_txq *q,
 854                      struct ulptx_sgl *sgl, u64 *end, unsigned int start,
 855                      const dma_addr_t *addr)
 856{
 857        unsigned int i, len;
 858        struct ulptx_sge_pair *to;
 859        const struct skb_shared_info *si = skb_shinfo(skb);
 860        unsigned int nfrags = si->nr_frags;
 861        struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
 862
 863        len = skb_headlen(skb) - start;
 864        if (likely(len)) {
 865                sgl->len0 = htonl(len);
 866                sgl->addr0 = cpu_to_be64(addr[0] + start);
 867                nfrags++;
 868        } else {
 869                sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
 870                sgl->addr0 = cpu_to_be64(addr[1]);
 871        }
 872
 873        sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
 874                              ULPTX_NSGE_V(nfrags));
 875        if (likely(--nfrags == 0))
 876                return;
 877        /*
 878         * Most of the complexity below deals with the possibility we hit the
 879         * end of the queue in the middle of writing the SGL.  For this case
 880         * only we create the SGL in a temporary buffer and then copy it.
 881         */
 882        to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
 883
 884        for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
 885                to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
 886                to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
 887                to->addr[0] = cpu_to_be64(addr[i]);
 888                to->addr[1] = cpu_to_be64(addr[++i]);
 889        }
 890        if (nfrags) {
 891                to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
 892                to->len[1] = cpu_to_be32(0);
 893                to->addr[0] = cpu_to_be64(addr[i + 1]);
 894        }
 895        if (unlikely((u8 *)end > (u8 *)q->stat)) {
 896                unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;
 897
 898                if (likely(part0))
 899                        memcpy(sgl->sge, buf, part0);
 900                part1 = (u8 *)end - (u8 *)q->stat;
 901                memcpy(q->desc, (u8 *)buf + part0, part1);
 902                end = (void *)q->desc + part1;
 903        }
 904        if ((uintptr_t)end & 8)           /* 0-pad to multiple of 16 */
 905                *end = 0;
 906}
 907
 908/* This function copies 64 byte coalesced work request to
 909 * memory mapped BAR2 space. For coalesced WR SGE fetches
 910 * data from the FIFO instead of from Host.
 911 */
 912static void cxgb_pio_copy(u64 __iomem *dst, u64 *src)
 913{
 914        int count = 8;
 915
 916        while (count) {
 917                writeq(*src, dst);
 918                src++;
 919                dst++;
 920                count--;
 921        }
 922}
 923
 924/**
 925 *      ring_tx_db - check and potentially ring a Tx queue's doorbell
 926 *      @adap: the adapter
 927 *      @q: the Tx queue
 928 *      @n: number of new descriptors to give to HW
 929 *
 930 *      Ring the doorbel for a Tx queue.
 931 */
 932static inline void ring_tx_db(struct adapter *adap, struct sge_txq *q, int n)
 933{
 934        /* Make sure that all writes to the TX Descriptors are committed
 935         * before we tell the hardware about them.
 936         */
 937        wmb();
 938
 939        /* If we don't have access to the new User Doorbell (T5+), use the old
 940         * doorbell mechanism; otherwise use the new BAR2 mechanism.
 941         */
 942        if (unlikely(q->bar2_addr == NULL)) {
 943                u32 val = PIDX_V(n);
 944                unsigned long flags;
 945
 946                /* For T4 we need to participate in the Doorbell Recovery
 947                 * mechanism.
 948                 */
 949                spin_lock_irqsave(&q->db_lock, flags);
 950                if (!q->db_disabled)
 951                        t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
 952                                     QID_V(q->cntxt_id) | val);
 953                else
 954                        q->db_pidx_inc += n;
 955                q->db_pidx = q->pidx;
 956                spin_unlock_irqrestore(&q->db_lock, flags);
 957        } else {
 958                u32 val = PIDX_T5_V(n);
 959
 960                /* T4 and later chips share the same PIDX field offset within
 961                 * the doorbell, but T5 and later shrank the field in order to
 962                 * gain a bit for Doorbell Priority.  The field was absurdly
 963                 * large in the first place (14 bits) so we just use the T5
 964                 * and later limits and warn if a Queue ID is too large.
 965                 */
 966                WARN_ON(val & DBPRIO_F);
 967
 968                /* If we're only writing a single TX Descriptor and we can use
 969                 * Inferred QID registers, we can use the Write Combining
 970                 * Gather Buffer; otherwise we use the simple doorbell.
 971                 */
 972                if (n == 1 && q->bar2_qid == 0) {
 973                        int index = (q->pidx
 974                                     ? (q->pidx - 1)
 975                                     : (q->size - 1));
 976                        u64 *wr = (u64 *)&q->desc[index];
 977
 978                        cxgb_pio_copy((u64 __iomem *)
 979                                      (q->bar2_addr + SGE_UDB_WCDOORBELL),
 980                                      wr);
 981                } else {
 982                        writel(val | QID_V(q->bar2_qid),
 983                               q->bar2_addr + SGE_UDB_KDOORBELL);
 984                }
 985
 986                /* This Write Memory Barrier will force the write to the User
 987                 * Doorbell area to be flushed.  This is needed to prevent
 988                 * writes on different CPUs for the same queue from hitting
 989                 * the adapter out of order.  This is required when some Work
 990                 * Requests take the Write Combine Gather Buffer path (user
 991                 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some
 992                 * take the traditional path where we simply increment the
 993                 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the
 994                 * hardware DMA read the actual Work Request.
 995                 */
 996                wmb();
 997        }
 998}
 999
1000/**
1001 *      inline_tx_skb - inline a packet's data into Tx descriptors
1002 *      @skb: the packet
1003 *      @q: the Tx queue where the packet will be inlined
1004 *      @pos: starting position in the Tx queue where to inline the packet
1005 *
1006 *      Inline a packet's contents directly into Tx descriptors, starting at
1007 *      the given position within the Tx DMA ring.
1008 *      Most of the complexity of this operation is dealing with wrap arounds
1009 *      in the middle of the packet we want to inline.
1010 */
1011static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *q,
1012                          void *pos)
1013{
1014        u64 *p;
1015        int left = (void *)q->stat - pos;
1016
1017        if (likely(skb->len <= left)) {
1018                if (likely(!skb->data_len))
1019                        skb_copy_from_linear_data(skb, pos, skb->len);
1020                else
1021                        skb_copy_bits(skb, 0, pos, skb->len);
1022                pos += skb->len;
1023        } else {
1024                skb_copy_bits(skb, 0, pos, left);
1025                skb_copy_bits(skb, left, q->desc, skb->len - left);
1026                pos = (void *)q->desc + (skb->len - left);
1027        }
1028
1029        /* 0-pad to multiple of 16 */
1030        p = PTR_ALIGN(pos, 8);
1031        if ((uintptr_t)p & 8)
1032                *p = 0;
1033}
1034
1035static void *inline_tx_skb_header(const struct sk_buff *skb,
1036                                  const struct sge_txq *q,  void *pos,
1037                                  int length)
1038{
1039        u64 *p;
1040        int left = (void *)q->stat - pos;
1041
1042        if (likely(length <= left)) {
1043                memcpy(pos, skb->data, length);
1044                pos += length;
1045        } else {
1046                memcpy(pos, skb->data, left);
1047                memcpy(q->desc, skb->data + left, length - left);
1048                pos = (void *)q->desc + (length - left);
1049        }
1050        /* 0-pad to multiple of 16 */
1051        p = PTR_ALIGN(pos, 8);
1052        if ((uintptr_t)p & 8) {
1053                *p = 0;
1054                return p + 1;
1055        }
1056        return p;
1057}
1058
1059/*
1060 * Figure out what HW csum a packet wants and return the appropriate control
1061 * bits.
1062 */
1063static u64 hwcsum(enum chip_type chip, const struct sk_buff *skb)
1064{
1065        int csum_type;
1066        const struct iphdr *iph = ip_hdr(skb);
1067
1068        if (iph->version == 4) {
1069                if (iph->protocol == IPPROTO_TCP)
1070                        csum_type = TX_CSUM_TCPIP;
1071                else if (iph->protocol == IPPROTO_UDP)
1072                        csum_type = TX_CSUM_UDPIP;
1073                else {
1074nocsum:                 /*
1075                         * unknown protocol, disable HW csum
1076                         * and hope a bad packet is detected
1077                         */
1078                        return TXPKT_L4CSUM_DIS_F;
1079                }
1080        } else {
1081                /*
1082                 * this doesn't work with extension headers
1083                 */
1084                const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph;
1085
1086                if (ip6h->nexthdr == IPPROTO_TCP)
1087                        csum_type = TX_CSUM_TCPIP6;
1088                else if (ip6h->nexthdr == IPPROTO_UDP)
1089                        csum_type = TX_CSUM_UDPIP6;
1090                else
1091                        goto nocsum;
1092        }
1093
1094        if (likely(csum_type >= TX_CSUM_TCPIP)) {
1095                u64 hdr_len = TXPKT_IPHDR_LEN_V(skb_network_header_len(skb));
1096                int eth_hdr_len = skb_network_offset(skb) - ETH_HLEN;
1097
1098                if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1099                        hdr_len |= TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1100                else
1101                        hdr_len |= T6_TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1102                return TXPKT_CSUM_TYPE_V(csum_type) | hdr_len;
1103        } else {
1104                int start = skb_transport_offset(skb);
1105
1106                return TXPKT_CSUM_TYPE_V(csum_type) |
1107                        TXPKT_CSUM_START_V(start) |
1108                        TXPKT_CSUM_LOC_V(start + skb->csum_offset);
1109        }
1110}
1111
1112static void eth_txq_stop(struct sge_eth_txq *q)
1113{
1114        netif_tx_stop_queue(q->txq);
1115        q->q.stops++;
1116}
1117
1118static inline void txq_advance(struct sge_txq *q, unsigned int n)
1119{
1120        q->in_use += n;
1121        q->pidx += n;
1122        if (q->pidx >= q->size)
1123                q->pidx -= q->size;
1124}
1125
1126#ifdef CONFIG_CHELSIO_T4_FCOE
1127static inline int
1128cxgb_fcoe_offload(struct sk_buff *skb, struct adapter *adap,
1129                  const struct port_info *pi, u64 *cntrl)
1130{
1131        const struct cxgb_fcoe *fcoe = &pi->fcoe;
1132
1133        if (!(fcoe->flags & CXGB_FCOE_ENABLED))
1134                return 0;
1135
1136        if (skb->protocol != htons(ETH_P_FCOE))
1137                return 0;
1138
1139        skb_reset_mac_header(skb);
1140        skb->mac_len = sizeof(struct ethhdr);
1141
1142        skb_set_network_header(skb, skb->mac_len);
1143        skb_set_transport_header(skb, skb->mac_len + sizeof(struct fcoe_hdr));
1144
1145        if (!cxgb_fcoe_sof_eof_supported(adap, skb))
1146                return -ENOTSUPP;
1147
1148        /* FC CRC offload */
1149        *cntrl = TXPKT_CSUM_TYPE_V(TX_CSUM_FCOE) |
1150                     TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F |
1151                     TXPKT_CSUM_START_V(CXGB_FCOE_TXPKT_CSUM_START) |
1152                     TXPKT_CSUM_END_V(CXGB_FCOE_TXPKT_CSUM_END) |
1153                     TXPKT_CSUM_LOC_V(CXGB_FCOE_TXPKT_CSUM_END);
1154        return 0;
1155}
1156#endif /* CONFIG_CHELSIO_T4_FCOE */
1157
1158/**
1159 *      t4_eth_xmit - add a packet to an Ethernet Tx queue
1160 *      @skb: the packet
1161 *      @dev: the egress net device
1162 *
1163 *      Add a packet to an SGE Ethernet Tx queue.  Runs with softirqs disabled.
1164 */
1165netdev_tx_t t4_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1166{
1167        u32 wr_mid, ctrl0;
1168        u64 cntrl, *end;
1169        int qidx, credits;
1170        unsigned int flits, ndesc;
1171        struct adapter *adap;
1172        struct sge_eth_txq *q;
1173        const struct port_info *pi;
1174        struct fw_eth_tx_pkt_wr *wr;
1175        struct cpl_tx_pkt_core *cpl;
1176        const struct skb_shared_info *ssi;
1177        dma_addr_t addr[MAX_SKB_FRAGS + 1];
1178        bool immediate = false;
1179        int len, max_pkt_len;
1180#ifdef CONFIG_CHELSIO_T4_FCOE
1181        int err;
1182#endif /* CONFIG_CHELSIO_T4_FCOE */
1183
1184        /*
1185         * The chip min packet length is 10 octets but play safe and reject
1186         * anything shorter than an Ethernet header.
1187         */
1188        if (unlikely(skb->len < ETH_HLEN)) {
1189out_free:       dev_kfree_skb_any(skb);
1190                return NETDEV_TX_OK;
1191        }
1192
1193        /* Discard the packet if the length is greater than mtu */
1194        max_pkt_len = ETH_HLEN + dev->mtu;
1195        if (skb_vlan_tag_present(skb))
1196                max_pkt_len += VLAN_HLEN;
1197        if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len)))
1198                goto out_free;
1199
1200        pi = netdev_priv(dev);
1201        adap = pi->adapter;
1202        qidx = skb_get_queue_mapping(skb);
1203        q = &adap->sge.ethtxq[qidx + pi->first_qset];
1204
1205        reclaim_completed_tx(adap, &q->q, true);
1206        cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
1207
1208#ifdef CONFIG_CHELSIO_T4_FCOE
1209        err = cxgb_fcoe_offload(skb, adap, pi, &cntrl);
1210        if (unlikely(err == -ENOTSUPP))
1211                goto out_free;
1212#endif /* CONFIG_CHELSIO_T4_FCOE */
1213
1214        flits = calc_tx_flits(skb);
1215        ndesc = flits_to_desc(flits);
1216        credits = txq_avail(&q->q) - ndesc;
1217
1218        if (unlikely(credits < 0)) {
1219                eth_txq_stop(q);
1220                dev_err(adap->pdev_dev,
1221                        "%s: Tx ring %u full while queue awake!\n",
1222                        dev->name, qidx);
1223                return NETDEV_TX_BUSY;
1224        }
1225
1226        if (is_eth_imm(skb))
1227                immediate = true;
1228
1229        if (!immediate &&
1230            unlikely(map_skb(adap->pdev_dev, skb, addr) < 0)) {
1231                q->mapping_err++;
1232                goto out_free;
1233        }
1234
1235        wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
1236        if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1237                eth_txq_stop(q);
1238                wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
1239        }
1240
1241        wr = (void *)&q->q.desc[q->q.pidx];
1242        wr->equiq_to_len16 = htonl(wr_mid);
1243        wr->r3 = cpu_to_be64(0);
1244        end = (u64 *)wr + flits;
1245
1246        len = immediate ? skb->len : 0;
1247        ssi = skb_shinfo(skb);
1248        if (ssi->gso_size) {
1249                struct cpl_tx_pkt_lso *lso = (void *)wr;
1250                bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
1251                int l3hdr_len = skb_network_header_len(skb);
1252                int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1253
1254                len += sizeof(*lso);
1255                wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
1256                                       FW_WR_IMMDLEN_V(len));
1257                lso->c.lso_ctrl = htonl(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
1258                                        LSO_FIRST_SLICE_F | LSO_LAST_SLICE_F |
1259                                        LSO_IPV6_V(v6) |
1260                                        LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
1261                                        LSO_IPHDR_LEN_V(l3hdr_len / 4) |
1262                                        LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
1263                lso->c.ipid_ofst = htons(0);
1264                lso->c.mss = htons(ssi->gso_size);
1265                lso->c.seqno_offset = htonl(0);
1266                if (is_t4(adap->params.chip))
1267                        lso->c.len = htonl(skb->len);
1268                else
1269                        lso->c.len = htonl(LSO_T5_XFER_SIZE_V(skb->len));
1270                cpl = (void *)(lso + 1);
1271
1272                if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1273                        cntrl = TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1274                else
1275                        cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1276
1277                cntrl |= TXPKT_CSUM_TYPE_V(v6 ?
1278                                           TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
1279                         TXPKT_IPHDR_LEN_V(l3hdr_len);
1280                q->tso++;
1281                q->tx_cso += ssi->gso_segs;
1282        } else {
1283                len += sizeof(*cpl);
1284                wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
1285                                       FW_WR_IMMDLEN_V(len));
1286                cpl = (void *)(wr + 1);
1287                if (skb->ip_summed == CHECKSUM_PARTIAL) {
1288                        cntrl = hwcsum(adap->params.chip, skb) |
1289                                TXPKT_IPCSUM_DIS_F;
1290                        q->tx_cso++;
1291                }
1292        }
1293
1294        if (skb_vlan_tag_present(skb)) {
1295                q->vlan_ins++;
1296                cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
1297#ifdef CONFIG_CHELSIO_T4_FCOE
1298                if (skb->protocol == htons(ETH_P_FCOE))
1299                        cntrl |= TXPKT_VLAN_V(
1300                                 ((skb->priority & 0x7) << VLAN_PRIO_SHIFT));
1301#endif /* CONFIG_CHELSIO_T4_FCOE */
1302        }
1303
1304        ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_INTF_V(pi->tx_chan) |
1305                TXPKT_PF_V(adap->pf);
1306#ifdef CONFIG_CHELSIO_T4_DCB
1307        if (is_t4(adap->params.chip))
1308                ctrl0 |= TXPKT_OVLAN_IDX_V(q->dcb_prio);
1309        else
1310                ctrl0 |= TXPKT_T5_OVLAN_IDX_V(q->dcb_prio);
1311#endif
1312        cpl->ctrl0 = htonl(ctrl0);
1313        cpl->pack = htons(0);
1314        cpl->len = htons(skb->len);
1315        cpl->ctrl1 = cpu_to_be64(cntrl);
1316
1317        if (immediate) {
1318                inline_tx_skb(skb, &q->q, cpl + 1);
1319                dev_consume_skb_any(skb);
1320        } else {
1321                int last_desc;
1322
1323                write_sgl(skb, &q->q, (struct ulptx_sgl *)(cpl + 1), end, 0,
1324                          addr);
1325                skb_orphan(skb);
1326
1327                last_desc = q->q.pidx + ndesc - 1;
1328                if (last_desc >= q->q.size)
1329                        last_desc -= q->q.size;
1330                q->q.sdesc[last_desc].skb = skb;
1331                q->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)(cpl + 1);
1332        }
1333
1334        txq_advance(&q->q, ndesc);
1335
1336        ring_tx_db(adap, &q->q, ndesc);
1337        return NETDEV_TX_OK;
1338}
1339
1340/**
1341 *      reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1342 *      @q: the SGE control Tx queue
1343 *
1344 *      This is a variant of reclaim_completed_tx() that is used for Tx queues
1345 *      that send only immediate data (presently just the control queues) and
1346 *      thus do not have any sk_buffs to release.
1347 */
1348static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1349{
1350        int hw_cidx = ntohs(ACCESS_ONCE(q->stat->cidx));
1351        int reclaim = hw_cidx - q->cidx;
1352
1353        if (reclaim < 0)
1354                reclaim += q->size;
1355
1356        q->in_use -= reclaim;
1357        q->cidx = hw_cidx;
1358}
1359
1360/**
1361 *      is_imm - check whether a packet can be sent as immediate data
1362 *      @skb: the packet
1363 *
1364 *      Returns true if a packet can be sent as a WR with immediate data.
1365 */
1366static inline int is_imm(const struct sk_buff *skb)
1367{
1368        return skb->len <= MAX_CTRL_WR_LEN;
1369}
1370
1371/**
1372 *      ctrlq_check_stop - check if a control queue is full and should stop
1373 *      @q: the queue
1374 *      @wr: most recent WR written to the queue
1375 *
1376 *      Check if a control queue has become full and should be stopped.
1377 *      We clean up control queue descriptors very lazily, only when we are out.
1378 *      If the queue is still full after reclaiming any completed descriptors
1379 *      we suspend it and have the last WR wake it up.
1380 */
1381static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr)
1382{
1383        reclaim_completed_tx_imm(&q->q);
1384        if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
1385                wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
1386                q->q.stops++;
1387                q->full = 1;
1388        }
1389}
1390
1391/**
1392 *      ctrl_xmit - send a packet through an SGE control Tx queue
1393 *      @q: the control queue
1394 *      @skb: the packet
1395 *
1396 *      Send a packet through an SGE control Tx queue.  Packets sent through
1397 *      a control queue must fit entirely as immediate data.
1398 */
1399static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb)
1400{
1401        unsigned int ndesc;
1402        struct fw_wr_hdr *wr;
1403
1404        if (unlikely(!is_imm(skb))) {
1405                WARN_ON(1);
1406                dev_kfree_skb(skb);
1407                return NET_XMIT_DROP;
1408        }
1409
1410        ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc));
1411        spin_lock(&q->sendq.lock);
1412
1413        if (unlikely(q->full)) {
1414                skb->priority = ndesc;                  /* save for restart */
1415                __skb_queue_tail(&q->sendq, skb);
1416                spin_unlock(&q->sendq.lock);
1417                return NET_XMIT_CN;
1418        }
1419
1420        wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
1421        inline_tx_skb(skb, &q->q, wr);
1422
1423        txq_advance(&q->q, ndesc);
1424        if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES))
1425                ctrlq_check_stop(q, wr);
1426
1427        ring_tx_db(q->adap, &q->q, ndesc);
1428        spin_unlock(&q->sendq.lock);
1429
1430        kfree_skb(skb);
1431        return NET_XMIT_SUCCESS;
1432}
1433
1434/**
1435 *      restart_ctrlq - restart a suspended control queue
1436 *      @data: the control queue to restart
1437 *
1438 *      Resumes transmission on a suspended Tx control queue.
1439 */
1440static void restart_ctrlq(unsigned long data)
1441{
1442        struct sk_buff *skb;
1443        unsigned int written = 0;
1444        struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data;
1445
1446        spin_lock(&q->sendq.lock);
1447        reclaim_completed_tx_imm(&q->q);
1448        BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES);  /* q should be empty */
1449
1450        while ((skb = __skb_dequeue(&q->sendq)) != NULL) {
1451                struct fw_wr_hdr *wr;
1452                unsigned int ndesc = skb->priority;     /* previously saved */
1453
1454                written += ndesc;
1455                /* Write descriptors and free skbs outside the lock to limit
1456                 * wait times.  q->full is still set so new skbs will be queued.
1457                 */
1458                wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
1459                txq_advance(&q->q, ndesc);
1460                spin_unlock(&q->sendq.lock);
1461
1462                inline_tx_skb(skb, &q->q, wr);
1463                kfree_skb(skb);
1464
1465                if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
1466                        unsigned long old = q->q.stops;
1467
1468                        ctrlq_check_stop(q, wr);
1469                        if (q->q.stops != old) {          /* suspended anew */
1470                                spin_lock(&q->sendq.lock);
1471                                goto ringdb;
1472                        }
1473                }
1474                if (written > 16) {
1475                        ring_tx_db(q->adap, &q->q, written);
1476                        written = 0;
1477                }
1478                spin_lock(&q->sendq.lock);
1479        }
1480        q->full = 0;
1481ringdb: if (written)
1482                ring_tx_db(q->adap, &q->q, written);
1483        spin_unlock(&q->sendq.lock);
1484}
1485
1486/**
1487 *      t4_mgmt_tx - send a management message
1488 *      @adap: the adapter
1489 *      @skb: the packet containing the management message
1490 *
1491 *      Send a management message through control queue 0.
1492 */
1493int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
1494{
1495        int ret;
1496
1497        local_bh_disable();
1498        ret = ctrl_xmit(&adap->sge.ctrlq[0], skb);
1499        local_bh_enable();
1500        return ret;
1501}
1502
1503/**
1504 *      is_ofld_imm - check whether a packet can be sent as immediate data
1505 *      @skb: the packet
1506 *
1507 *      Returns true if a packet can be sent as an offload WR with immediate
1508 *      data.  We currently use the same limit as for Ethernet packets.
1509 */
1510static inline int is_ofld_imm(const struct sk_buff *skb)
1511{
1512        return skb->len <= MAX_IMM_TX_PKT_LEN;
1513}
1514
1515/**
1516 *      calc_tx_flits_ofld - calculate # of flits for an offload packet
1517 *      @skb: the packet
1518 *
1519 *      Returns the number of flits needed for the given offload packet.
1520 *      These packets are already fully constructed and no additional headers
1521 *      will be added.
1522 */
1523static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb)
1524{
1525        unsigned int flits, cnt;
1526
1527        if (is_ofld_imm(skb))
1528                return DIV_ROUND_UP(skb->len, 8);
1529
1530        flits = skb_transport_offset(skb) / 8U;   /* headers */
1531        cnt = skb_shinfo(skb)->nr_frags;
1532        if (skb_tail_pointer(skb) != skb_transport_header(skb))
1533                cnt++;
1534        return flits + sgl_len(cnt);
1535}
1536
1537/**
1538 *      txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion
1539 *      @adap: the adapter
1540 *      @q: the queue to stop
1541 *
1542 *      Mark a Tx queue stopped due to I/O MMU exhaustion and resulting
1543 *      inability to map packets.  A periodic timer attempts to restart
1544 *      queues so marked.
1545 */
1546static void txq_stop_maperr(struct sge_ofld_txq *q)
1547{
1548        q->mapping_err++;
1549        q->q.stops++;
1550        set_bit(q->q.cntxt_id - q->adap->sge.egr_start,
1551                q->adap->sge.txq_maperr);
1552}
1553
1554/**
1555 *      ofldtxq_stop - stop an offload Tx queue that has become full
1556 *      @q: the queue to stop
1557 *      @skb: the packet causing the queue to become full
1558 *
1559 *      Stops an offload Tx queue that has become full and modifies the packet
1560 *      being written to request a wakeup.
1561 */
1562static void ofldtxq_stop(struct sge_ofld_txq *q, struct sk_buff *skb)
1563{
1564        struct fw_wr_hdr *wr = (struct fw_wr_hdr *)skb->data;
1565
1566        wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
1567        q->q.stops++;
1568        q->full = 1;
1569}
1570
1571/**
1572 *      service_ofldq - service/restart a suspended offload queue
1573 *      @q: the offload queue
1574 *
1575 *      Services an offload Tx queue by moving packets from its Pending Send
1576 *      Queue to the Hardware TX ring.  The function starts and ends with the
1577 *      Send Queue locked, but drops the lock while putting the skb at the
1578 *      head of the Send Queue onto the Hardware TX Ring.  Dropping the lock
1579 *      allows more skbs to be added to the Send Queue by other threads.
1580 *      The packet being processed at the head of the Pending Send Queue is
1581 *      left on the queue in case we experience DMA Mapping errors, etc.
1582 *      and need to give up and restart later.
1583 *
1584 *      service_ofldq() can be thought of as a task which opportunistically
1585 *      uses other threads execution contexts.  We use the Offload Queue
1586 *      boolean "service_ofldq_running" to make sure that only one instance
1587 *      is ever running at a time ...
1588 */
1589static void service_ofldq(struct sge_ofld_txq *q)
1590{
1591        u64 *pos, *before, *end;
1592        int credits;
1593        struct sk_buff *skb;
1594        struct sge_txq *txq;
1595        unsigned int left;
1596        unsigned int written = 0;
1597        unsigned int flits, ndesc;
1598
1599        /* If another thread is currently in service_ofldq() processing the
1600         * Pending Send Queue then there's nothing to do. Otherwise, flag
1601         * that we're doing the work and continue.  Examining/modifying
1602         * the Offload Queue boolean "service_ofldq_running" must be done
1603         * while holding the Pending Send Queue Lock.
1604         */
1605        if (q->service_ofldq_running)
1606                return;
1607        q->service_ofldq_running = true;
1608
1609        while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) {
1610                /* We drop the lock while we're working with the skb at the
1611                 * head of the Pending Send Queue.  This allows more skbs to
1612                 * be added to the Pending Send Queue while we're working on
1613                 * this one.  We don't need to lock to guard the TX Ring
1614                 * updates because only one thread of execution is ever
1615                 * allowed into service_ofldq() at a time.
1616                 */
1617                spin_unlock(&q->sendq.lock);
1618
1619                reclaim_completed_tx(q->adap, &q->q, false);
1620
1621                flits = skb->priority;                /* previously saved */
1622                ndesc = flits_to_desc(flits);
1623                credits = txq_avail(&q->q) - ndesc;
1624                BUG_ON(credits < 0);
1625                if (unlikely(credits < TXQ_STOP_THRES))
1626                        ofldtxq_stop(q, skb);
1627
1628                pos = (u64 *)&q->q.desc[q->q.pidx];
1629                if (is_ofld_imm(skb))
1630                        inline_tx_skb(skb, &q->q, pos);
1631                else if (map_skb(q->adap->pdev_dev, skb,
1632                                 (dma_addr_t *)skb->head)) {
1633                        txq_stop_maperr(q);
1634                        spin_lock(&q->sendq.lock);
1635                        break;
1636                } else {
1637                        int last_desc, hdr_len = skb_transport_offset(skb);
1638
1639                        /* The WR headers  may not fit within one descriptor.
1640                         * So we need to deal with wrap-around here.
1641                         */
1642                        before = (u64 *)pos;
1643                        end = (u64 *)pos + flits;
1644                        txq = &q->q;
1645                        pos = (void *)inline_tx_skb_header(skb, &q->q,
1646                                                           (void *)pos,
1647                                                           hdr_len);
1648                        if (before > (u64 *)pos) {
1649                                left = (u8 *)end - (u8 *)txq->stat;
1650                                end = (void *)txq->desc + left;
1651                        }
1652
1653                        /* If current position is already at the end of the
1654                         * ofld queue, reset the current to point to
1655                         * start of the queue and update the end ptr as well.
1656                         */
1657                        if (pos == (u64 *)txq->stat) {
1658                                left = (u8 *)end - (u8 *)txq->stat;
1659                                end = (void *)txq->desc + left;
1660                                pos = (void *)txq->desc;
1661                        }
1662
1663                        write_sgl(skb, &q->q, (void *)pos,
1664                                  end, hdr_len,
1665                                  (dma_addr_t *)skb->head);
1666#ifdef CONFIG_NEED_DMA_MAP_STATE
1667                        skb->dev = q->adap->port[0];
1668                        skb->destructor = deferred_unmap_destructor;
1669#endif
1670                        last_desc = q->q.pidx + ndesc - 1;
1671                        if (last_desc >= q->q.size)
1672                                last_desc -= q->q.size;
1673                        q->q.sdesc[last_desc].skb = skb;
1674                }
1675
1676                txq_advance(&q->q, ndesc);
1677                written += ndesc;
1678                if (unlikely(written > 32)) {
1679                        ring_tx_db(q->adap, &q->q, written);
1680                        written = 0;
1681                }
1682
1683                /* Reacquire the Pending Send Queue Lock so we can unlink the
1684                 * skb we've just successfully transferred to the TX Ring and
1685                 * loop for the next skb which may be at the head of the
1686                 * Pending Send Queue.
1687                 */
1688                spin_lock(&q->sendq.lock);
1689                __skb_unlink(skb, &q->sendq);
1690                if (is_ofld_imm(skb))
1691                        kfree_skb(skb);
1692        }
1693        if (likely(written))
1694                ring_tx_db(q->adap, &q->q, written);
1695
1696        /*Indicate that no thread is processing the Pending Send Queue
1697         * currently.
1698         */
1699        q->service_ofldq_running = false;
1700}
1701
1702/**
1703 *      ofld_xmit - send a packet through an offload queue
1704 *      @q: the Tx offload queue
1705 *      @skb: the packet
1706 *
1707 *      Send an offload packet through an SGE offload queue.
1708 */
1709static int ofld_xmit(struct sge_ofld_txq *q, struct sk_buff *skb)
1710{
1711        skb->priority = calc_tx_flits_ofld(skb);       /* save for restart */
1712        spin_lock(&q->sendq.lock);
1713
1714        /* Queue the new skb onto the Offload Queue's Pending Send Queue.  If
1715         * that results in this new skb being the only one on the queue, start
1716         * servicing it.  If there are other skbs already on the list, then
1717         * either the queue is currently being processed or it's been stopped
1718         * for some reason and it'll be restarted at a later time.  Restart
1719         * paths are triggered by events like experiencing a DMA Mapping Error
1720         * or filling the Hardware TX Ring.
1721         */
1722        __skb_queue_tail(&q->sendq, skb);
1723        if (q->sendq.qlen == 1)
1724                service_ofldq(q);
1725
1726        spin_unlock(&q->sendq.lock);
1727        return NET_XMIT_SUCCESS;
1728}
1729
1730/**
1731 *      restart_ofldq - restart a suspended offload queue
1732 *      @data: the offload queue to restart
1733 *
1734 *      Resumes transmission on a suspended Tx offload queue.
1735 */
1736static void restart_ofldq(unsigned long data)
1737{
1738        struct sge_ofld_txq *q = (struct sge_ofld_txq *)data;
1739
1740        spin_lock(&q->sendq.lock);
1741        q->full = 0;            /* the queue actually is completely empty now */
1742        service_ofldq(q);
1743        spin_unlock(&q->sendq.lock);
1744}
1745
1746/**
1747 *      skb_txq - return the Tx queue an offload packet should use
1748 *      @skb: the packet
1749 *
1750 *      Returns the Tx queue an offload packet should use as indicated by bits
1751 *      1-15 in the packet's queue_mapping.
1752 */
1753static inline unsigned int skb_txq(const struct sk_buff *skb)
1754{
1755        return skb->queue_mapping >> 1;
1756}
1757
1758/**
1759 *      is_ctrl_pkt - return whether an offload packet is a control packet
1760 *      @skb: the packet
1761 *
1762 *      Returns whether an offload packet should use an OFLD or a CTRL
1763 *      Tx queue as indicated by bit 0 in the packet's queue_mapping.
1764 */
1765static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb)
1766{
1767        return skb->queue_mapping & 1;
1768}
1769
1770static inline int ofld_send(struct adapter *adap, struct sk_buff *skb)
1771{
1772        unsigned int idx = skb_txq(skb);
1773
1774        if (unlikely(is_ctrl_pkt(skb))) {
1775                /* Single ctrl queue is a requirement for LE workaround path */
1776                if (adap->tids.nsftids)
1777                        idx = 0;
1778                return ctrl_xmit(&adap->sge.ctrlq[idx], skb);
1779        }
1780        return ofld_xmit(&adap->sge.ofldtxq[idx], skb);
1781}
1782
1783/**
1784 *      t4_ofld_send - send an offload packet
1785 *      @adap: the adapter
1786 *      @skb: the packet
1787 *
1788 *      Sends an offload packet.  We use the packet queue_mapping to select the
1789 *      appropriate Tx queue as follows: bit 0 indicates whether the packet
1790 *      should be sent as regular or control, bits 1-15 select the queue.
1791 */
1792int t4_ofld_send(struct adapter *adap, struct sk_buff *skb)
1793{
1794        int ret;
1795
1796        local_bh_disable();
1797        ret = ofld_send(adap, skb);
1798        local_bh_enable();
1799        return ret;
1800}
1801
1802/**
1803 *      cxgb4_ofld_send - send an offload packet
1804 *      @dev: the net device
1805 *      @skb: the packet
1806 *
1807 *      Sends an offload packet.  This is an exported version of @t4_ofld_send,
1808 *      intended for ULDs.
1809 */
1810int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb)
1811{
1812        return t4_ofld_send(netdev2adap(dev), skb);
1813}
1814EXPORT_SYMBOL(cxgb4_ofld_send);
1815
1816static inline void copy_frags(struct sk_buff *skb,
1817                              const struct pkt_gl *gl, unsigned int offset)
1818{
1819        int i;
1820
1821        /* usually there's just one frag */
1822        __skb_fill_page_desc(skb, 0, gl->frags[0].page,
1823                             gl->frags[0].offset + offset,
1824                             gl->frags[0].size - offset);
1825        skb_shinfo(skb)->nr_frags = gl->nfrags;
1826        for (i = 1; i < gl->nfrags; i++)
1827                __skb_fill_page_desc(skb, i, gl->frags[i].page,
1828                                     gl->frags[i].offset,
1829                                     gl->frags[i].size);
1830
1831        /* get a reference to the last page, we don't own it */
1832        get_page(gl->frags[gl->nfrags - 1].page);
1833}
1834
1835/**
1836 *      cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list
1837 *      @gl: the gather list
1838 *      @skb_len: size of sk_buff main body if it carries fragments
1839 *      @pull_len: amount of data to move to the sk_buff's main body
1840 *
1841 *      Builds an sk_buff from the given packet gather list.  Returns the
1842 *      sk_buff or %NULL if sk_buff allocation failed.
1843 */
1844struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl,
1845                                   unsigned int skb_len, unsigned int pull_len)
1846{
1847        struct sk_buff *skb;
1848
1849        /*
1850         * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer
1851         * size, which is expected since buffers are at least PAGE_SIZEd.
1852         * In this case packets up to RX_COPY_THRES have only one fragment.
1853         */
1854        if (gl->tot_len <= RX_COPY_THRES) {
1855                skb = dev_alloc_skb(gl->tot_len);
1856                if (unlikely(!skb))
1857                        goto out;
1858                __skb_put(skb, gl->tot_len);
1859                skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
1860        } else {
1861                skb = dev_alloc_skb(skb_len);
1862                if (unlikely(!skb))
1863                        goto out;
1864                __skb_put(skb, pull_len);
1865                skb_copy_to_linear_data(skb, gl->va, pull_len);
1866
1867                copy_frags(skb, gl, pull_len);
1868                skb->len = gl->tot_len;
1869                skb->data_len = skb->len - pull_len;
1870                skb->truesize += skb->data_len;
1871        }
1872out:    return skb;
1873}
1874EXPORT_SYMBOL(cxgb4_pktgl_to_skb);
1875
1876/**
1877 *      t4_pktgl_free - free a packet gather list
1878 *      @gl: the gather list
1879 *
1880 *      Releases the pages of a packet gather list.  We do not own the last
1881 *      page on the list and do not free it.
1882 */
1883static void t4_pktgl_free(const struct pkt_gl *gl)
1884{
1885        int n;
1886        const struct page_frag *p;
1887
1888        for (p = gl->frags, n = gl->nfrags - 1; n--; p++)
1889                put_page(p->page);
1890}
1891
1892/*
1893 * Process an MPS trace packet.  Give it an unused protocol number so it won't
1894 * be delivered to anyone and send it to the stack for capture.
1895 */
1896static noinline int handle_trace_pkt(struct adapter *adap,
1897                                     const struct pkt_gl *gl)
1898{
1899        struct sk_buff *skb;
1900
1901        skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN);
1902        if (unlikely(!skb)) {
1903                t4_pktgl_free(gl);
1904                return 0;
1905        }
1906
1907        if (is_t4(adap->params.chip))
1908                __skb_pull(skb, sizeof(struct cpl_trace_pkt));
1909        else
1910                __skb_pull(skb, sizeof(struct cpl_t5_trace_pkt));
1911
1912        skb_reset_mac_header(skb);
1913        skb->protocol = htons(0xffff);
1914        skb->dev = adap->port[0];
1915        netif_receive_skb(skb);
1916        return 0;
1917}
1918
1919/**
1920 * cxgb4_sgetim_to_hwtstamp - convert sge time stamp to hw time stamp
1921 * @adap: the adapter
1922 * @hwtstamps: time stamp structure to update
1923 * @sgetstamp: 60bit iqe timestamp
1924 *
1925 * Every ingress queue entry has the 60-bit timestamp, convert that timestamp
1926 * which is in Core Clock ticks into ktime_t and assign it
1927 **/
1928static void cxgb4_sgetim_to_hwtstamp(struct adapter *adap,
1929                                     struct skb_shared_hwtstamps *hwtstamps,
1930                                     u64 sgetstamp)
1931{
1932        u64 ns;
1933        u64 tmp = (sgetstamp * 1000 * 1000 + adap->params.vpd.cclk / 2);
1934
1935        ns = div_u64(tmp, adap->params.vpd.cclk);
1936
1937        memset(hwtstamps, 0, sizeof(*hwtstamps));
1938        hwtstamps->hwtstamp = ns_to_ktime(ns);
1939}
1940
1941static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
1942                   const struct cpl_rx_pkt *pkt)
1943{
1944        struct adapter *adapter = rxq->rspq.adap;
1945        struct sge *s = &adapter->sge;
1946        struct port_info *pi;
1947        int ret;
1948        struct sk_buff *skb;
1949
1950        skb = napi_get_frags(&rxq->rspq.napi);
1951        if (unlikely(!skb)) {
1952                t4_pktgl_free(gl);
1953                rxq->stats.rx_drops++;
1954                return;
1955        }
1956
1957        copy_frags(skb, gl, s->pktshift);
1958        skb->len = gl->tot_len - s->pktshift;
1959        skb->data_len = skb->len;
1960        skb->truesize += skb->data_len;
1961        skb->ip_summed = CHECKSUM_UNNECESSARY;
1962        skb_record_rx_queue(skb, rxq->rspq.idx);
1963        pi = netdev_priv(skb->dev);
1964        if (pi->rxtstamp)
1965                cxgb4_sgetim_to_hwtstamp(adapter, skb_hwtstamps(skb),
1966                                         gl->sgetstamp);
1967        if (rxq->rspq.netdev->features & NETIF_F_RXHASH)
1968                skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
1969                             PKT_HASH_TYPE_L3);
1970
1971        if (unlikely(pkt->vlan_ex)) {
1972                __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
1973                rxq->stats.vlan_ex++;
1974        }
1975        ret = napi_gro_frags(&rxq->rspq.napi);
1976        if (ret == GRO_HELD)
1977                rxq->stats.lro_pkts++;
1978        else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
1979                rxq->stats.lro_merged++;
1980        rxq->stats.pkts++;
1981        rxq->stats.rx_cso++;
1982}
1983
1984/**
1985 *      t4_ethrx_handler - process an ingress ethernet packet
1986 *      @q: the response queue that received the packet
1987 *      @rsp: the response queue descriptor holding the RX_PKT message
1988 *      @si: the gather list of packet fragments
1989 *
1990 *      Process an ingress ethernet packet and deliver it to the stack.
1991 */
1992int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp,
1993                     const struct pkt_gl *si)
1994{
1995        bool csum_ok;
1996        struct sk_buff *skb;
1997        const struct cpl_rx_pkt *pkt;
1998        struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
1999        struct sge *s = &q->adap->sge;
2000        int cpl_trace_pkt = is_t4(q->adap->params.chip) ?
2001                            CPL_TRACE_PKT : CPL_TRACE_PKT_T5;
2002        struct port_info *pi;
2003
2004        if (unlikely(*(u8 *)rsp == cpl_trace_pkt))
2005                return handle_trace_pkt(q->adap, si);
2006
2007        pkt = (const struct cpl_rx_pkt *)rsp;
2008        csum_ok = pkt->csum_calc && !pkt->err_vec &&
2009                  (q->netdev->features & NETIF_F_RXCSUM);
2010        if ((pkt->l2info & htonl(RXF_TCP_F)) &&
2011            !(cxgb_poll_busy_polling(q)) &&
2012            (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) {
2013                do_gro(rxq, si, pkt);
2014                return 0;
2015        }
2016
2017        skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN);
2018        if (unlikely(!skb)) {
2019                t4_pktgl_free(si);
2020                rxq->stats.rx_drops++;
2021                return 0;
2022        }
2023
2024        __skb_pull(skb, s->pktshift);      /* remove ethernet header padding */
2025        skb->protocol = eth_type_trans(skb, q->netdev);
2026        skb_record_rx_queue(skb, q->idx);
2027        if (skb->dev->features & NETIF_F_RXHASH)
2028                skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
2029                             PKT_HASH_TYPE_L3);
2030
2031        rxq->stats.pkts++;
2032
2033        pi = netdev_priv(skb->dev);
2034        if (pi->rxtstamp)
2035                cxgb4_sgetim_to_hwtstamp(q->adap, skb_hwtstamps(skb),
2036                                         si->sgetstamp);
2037        if (csum_ok && (pkt->l2info & htonl(RXF_UDP_F | RXF_TCP_F))) {
2038                if (!pkt->ip_frag) {
2039                        skb->ip_summed = CHECKSUM_UNNECESSARY;
2040                        rxq->stats.rx_cso++;
2041                } else if (pkt->l2info & htonl(RXF_IP_F)) {
2042                        __sum16 c = (__force __sum16)pkt->csum;
2043                        skb->csum = csum_unfold(c);
2044                        skb->ip_summed = CHECKSUM_COMPLETE;
2045                        rxq->stats.rx_cso++;
2046                }
2047        } else {
2048                skb_checksum_none_assert(skb);
2049#ifdef CONFIG_CHELSIO_T4_FCOE
2050#define CPL_RX_PKT_FLAGS (RXF_PSH_F | RXF_SYN_F | RXF_UDP_F | \
2051                          RXF_TCP_F | RXF_IP_F | RXF_IP6_F | RXF_LRO_F)
2052
2053                if (!(pkt->l2info & cpu_to_be32(CPL_RX_PKT_FLAGS))) {
2054                        if ((pkt->l2info & cpu_to_be32(RXF_FCOE_F)) &&
2055                            (pi->fcoe.flags & CXGB_FCOE_ENABLED)) {
2056                                if (!(pkt->err_vec & cpu_to_be16(RXERR_CSUM_F)))
2057                                        skb->ip_summed = CHECKSUM_UNNECESSARY;
2058                        }
2059                }
2060
2061#undef CPL_RX_PKT_FLAGS
2062#endif /* CONFIG_CHELSIO_T4_FCOE */
2063        }
2064
2065        if (unlikely(pkt->vlan_ex)) {
2066                __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
2067                rxq->stats.vlan_ex++;
2068        }
2069        skb_mark_napi_id(skb, &q->napi);
2070        netif_receive_skb(skb);
2071        return 0;
2072}
2073
2074/**
2075 *      restore_rx_bufs - put back a packet's Rx buffers
2076 *      @si: the packet gather list
2077 *      @q: the SGE free list
2078 *      @frags: number of FL buffers to restore
2079 *
2080 *      Puts back on an FL the Rx buffers associated with @si.  The buffers
2081 *      have already been unmapped and are left unmapped, we mark them so to
2082 *      prevent further unmapping attempts.
2083 *
2084 *      This function undoes a series of @unmap_rx_buf calls when we find out
2085 *      that the current packet can't be processed right away afterall and we
2086 *      need to come back to it later.  This is a very rare event and there's
2087 *      no effort to make this particularly efficient.
2088 */
2089static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q,
2090                            int frags)
2091{
2092        struct rx_sw_desc *d;
2093
2094        while (frags--) {
2095                if (q->cidx == 0)
2096                        q->cidx = q->size - 1;
2097                else
2098                        q->cidx--;
2099                d = &q->sdesc[q->cidx];
2100                d->page = si->frags[frags].page;
2101                d->dma_addr |= RX_UNMAPPED_BUF;
2102                q->avail++;
2103        }
2104}
2105
2106/**
2107 *      is_new_response - check if a response is newly written
2108 *      @r: the response descriptor
2109 *      @q: the response queue
2110 *
2111 *      Returns true if a response descriptor contains a yet unprocessed
2112 *      response.
2113 */
2114static inline bool is_new_response(const struct rsp_ctrl *r,
2115                                   const struct sge_rspq *q)
2116{
2117        return (r->type_gen >> RSPD_GEN_S) == q->gen;
2118}
2119
2120/**
2121 *      rspq_next - advance to the next entry in a response queue
2122 *      @q: the queue
2123 *
2124 *      Updates the state of a response queue to advance it to the next entry.
2125 */
2126static inline void rspq_next(struct sge_rspq *q)
2127{
2128        q->cur_desc = (void *)q->cur_desc + q->iqe_len;
2129        if (unlikely(++q->cidx == q->size)) {
2130                q->cidx = 0;
2131                q->gen ^= 1;
2132                q->cur_desc = q->desc;
2133        }
2134}
2135
2136/**
2137 *      process_responses - process responses from an SGE response queue
2138 *      @q: the ingress queue to process
2139 *      @budget: how many responses can be processed in this round
2140 *
2141 *      Process responses from an SGE response queue up to the supplied budget.
2142 *      Responses include received packets as well as control messages from FW
2143 *      or HW.
2144 *
2145 *      Additionally choose the interrupt holdoff time for the next interrupt
2146 *      on this queue.  If the system is under memory shortage use a fairly
2147 *      long delay to help recovery.
2148 */
2149static int process_responses(struct sge_rspq *q, int budget)
2150{
2151        int ret, rsp_type;
2152        int budget_left = budget;
2153        const struct rsp_ctrl *rc;
2154        struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
2155        struct adapter *adapter = q->adap;
2156        struct sge *s = &adapter->sge;
2157
2158        while (likely(budget_left)) {
2159                rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
2160                if (!is_new_response(rc, q)) {
2161                        if (q->flush_handler)
2162                                q->flush_handler(q);
2163                        break;
2164                }
2165
2166                dma_rmb();
2167                rsp_type = RSPD_TYPE_G(rc->type_gen);
2168                if (likely(rsp_type == RSPD_TYPE_FLBUF_X)) {
2169                        struct page_frag *fp;
2170                        struct pkt_gl si;
2171                        const struct rx_sw_desc *rsd;
2172                        u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags;
2173
2174                        if (len & RSPD_NEWBUF_F) {
2175                                if (likely(q->offset > 0)) {
2176                                        free_rx_bufs(q->adap, &rxq->fl, 1);
2177                                        q->offset = 0;
2178                                }
2179                                len = RSPD_LEN_G(len);
2180                        }
2181                        si.tot_len = len;
2182
2183                        /* gather packet fragments */
2184                        for (frags = 0, fp = si.frags; ; frags++, fp++) {
2185                                rsd = &rxq->fl.sdesc[rxq->fl.cidx];
2186                                bufsz = get_buf_size(adapter, rsd);
2187                                fp->page = rsd->page;
2188                                fp->offset = q->offset;
2189                                fp->size = min(bufsz, len);
2190                                len -= fp->size;
2191                                if (!len)
2192                                        break;
2193                                unmap_rx_buf(q->adap, &rxq->fl);
2194                        }
2195
2196                        si.sgetstamp = SGE_TIMESTAMP_G(
2197                                        be64_to_cpu(rc->last_flit));
2198                        /*
2199                         * Last buffer remains mapped so explicitly make it
2200                         * coherent for CPU access.
2201                         */
2202                        dma_sync_single_for_cpu(q->adap->pdev_dev,
2203                                                get_buf_addr(rsd),
2204                                                fp->size, DMA_FROM_DEVICE);
2205
2206                        si.va = page_address(si.frags[0].page) +
2207                                si.frags[0].offset;
2208                        prefetch(si.va);
2209
2210                        si.nfrags = frags + 1;
2211                        ret = q->handler(q, q->cur_desc, &si);
2212                        if (likely(ret == 0))
2213                                q->offset += ALIGN(fp->size, s->fl_align);
2214                        else
2215                                restore_rx_bufs(&si, &rxq->fl, frags);
2216                } else if (likely(rsp_type == RSPD_TYPE_CPL_X)) {
2217                        ret = q->handler(q, q->cur_desc, NULL);
2218                } else {
2219                        ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN);
2220                }
2221
2222                if (unlikely(ret)) {
2223                        /* couldn't process descriptor, back off for recovery */
2224                        q->next_intr_params = QINTR_TIMER_IDX_V(NOMEM_TMR_IDX);
2225                        break;
2226                }
2227
2228                rspq_next(q);
2229                budget_left--;
2230        }
2231
2232        if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 16)
2233                __refill_fl(q->adap, &rxq->fl);
2234        return budget - budget_left;
2235}
2236
2237#ifdef CONFIG_NET_RX_BUSY_POLL
2238int cxgb_busy_poll(struct napi_struct *napi)
2239{
2240        struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
2241        unsigned int params, work_done;
2242        u32 val;
2243
2244        if (!cxgb_poll_lock_poll(q))
2245                return LL_FLUSH_BUSY;
2246
2247        work_done = process_responses(q, 4);
2248        params = QINTR_TIMER_IDX_V(TIMERREG_COUNTER0_X) | QINTR_CNT_EN_V(1);
2249        q->next_intr_params = params;
2250        val = CIDXINC_V(work_done) | SEINTARM_V(params);
2251
2252        /* If we don't have access to the new User GTS (T5+), use the old
2253         * doorbell mechanism; otherwise use the new BAR2 mechanism.
2254         */
2255        if (unlikely(!q->bar2_addr))
2256                t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A),
2257                             val | INGRESSQID_V((u32)q->cntxt_id));
2258        else {
2259                writel(val | INGRESSQID_V(q->bar2_qid),
2260                       q->bar2_addr + SGE_UDB_GTS);
2261                wmb();
2262        }
2263
2264        cxgb_poll_unlock_poll(q);
2265        return work_done;
2266}
2267#endif /* CONFIG_NET_RX_BUSY_POLL */
2268
2269/**
2270 *      napi_rx_handler - the NAPI handler for Rx processing
2271 *      @napi: the napi instance
2272 *      @budget: how many packets we can process in this round
2273 *
2274 *      Handler for new data events when using NAPI.  This does not need any
2275 *      locking or protection from interrupts as data interrupts are off at
2276 *      this point and other adapter interrupts do not interfere (the latter
2277 *      in not a concern at all with MSI-X as non-data interrupts then have
2278 *      a separate handler).
2279 */
2280static int napi_rx_handler(struct napi_struct *napi, int budget)
2281{
2282        unsigned int params;
2283        struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
2284        int work_done;
2285        u32 val;
2286
2287        if (!cxgb_poll_lock_napi(q))
2288                return budget;
2289
2290        work_done = process_responses(q, budget);
2291        if (likely(work_done < budget)) {
2292                int timer_index;
2293
2294                napi_complete_done(napi, work_done);
2295                timer_index = QINTR_TIMER_IDX_G(q->next_intr_params);
2296
2297                if (q->adaptive_rx) {
2298                        if (work_done > max(timer_pkt_quota[timer_index],
2299                                            MIN_NAPI_WORK))
2300                                timer_index = (timer_index + 1);
2301                        else
2302                                timer_index = timer_index - 1;
2303
2304                        timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1);
2305                        q->next_intr_params =
2306                                        QINTR_TIMER_IDX_V(timer_index) |
2307                                        QINTR_CNT_EN_V(0);
2308                        params = q->next_intr_params;
2309                } else {
2310                        params = q->next_intr_params;
2311                        q->next_intr_params = q->intr_params;
2312                }
2313        } else
2314                params = QINTR_TIMER_IDX_V(7);
2315
2316        val = CIDXINC_V(work_done) | SEINTARM_V(params);
2317
2318        /* If we don't have access to the new User GTS (T5+), use the old
2319         * doorbell mechanism; otherwise use the new BAR2 mechanism.
2320         */
2321        if (unlikely(q->bar2_addr == NULL)) {
2322                t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A),
2323                             val | INGRESSQID_V((u32)q->cntxt_id));
2324        } else {
2325                writel(val | INGRESSQID_V(q->bar2_qid),
2326                       q->bar2_addr + SGE_UDB_GTS);
2327                wmb();
2328        }
2329        cxgb_poll_unlock_napi(q);
2330        return work_done;
2331}
2332
2333/*
2334 * The MSI-X interrupt handler for an SGE response queue.
2335 */
2336irqreturn_t t4_sge_intr_msix(int irq, void *cookie)
2337{
2338        struct sge_rspq *q = cookie;
2339
2340        napi_schedule(&q->napi);
2341        return IRQ_HANDLED;
2342}
2343
2344/*
2345 * Process the indirect interrupt entries in the interrupt queue and kick off
2346 * NAPI for each queue that has generated an entry.
2347 */
2348static unsigned int process_intrq(struct adapter *adap)
2349{
2350        unsigned int credits;
2351        const struct rsp_ctrl *rc;
2352        struct sge_rspq *q = &adap->sge.intrq;
2353        u32 val;
2354
2355        spin_lock(&adap->sge.intrq_lock);
2356        for (credits = 0; ; credits++) {
2357                rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
2358                if (!is_new_response(rc, q))
2359                        break;
2360
2361                dma_rmb();
2362                if (RSPD_TYPE_G(rc->type_gen) == RSPD_TYPE_INTR_X) {
2363                        unsigned int qid = ntohl(rc->pldbuflen_qid);
2364
2365                        qid -= adap->sge.ingr_start;
2366                        napi_schedule(&adap->sge.ingr_map[qid]->napi);
2367                }
2368
2369                rspq_next(q);
2370        }
2371
2372        val =  CIDXINC_V(credits) | SEINTARM_V(q->intr_params);
2373
2374        /* If we don't have access to the new User GTS (T5+), use the old
2375         * doorbell mechanism; otherwise use the new BAR2 mechanism.
2376         */
2377        if (unlikely(q->bar2_addr == NULL)) {
2378                t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
2379                             val | INGRESSQID_V(q->cntxt_id));
2380        } else {
2381                writel(val | INGRESSQID_V(q->bar2_qid),
2382                       q->bar2_addr + SGE_UDB_GTS);
2383                wmb();
2384        }
2385        spin_unlock(&adap->sge.intrq_lock);
2386        return credits;
2387}
2388
2389/*
2390 * The MSI interrupt handler, which handles data events from SGE response queues
2391 * as well as error and other async events as they all use the same MSI vector.
2392 */
2393static irqreturn_t t4_intr_msi(int irq, void *cookie)
2394{
2395        struct adapter *adap = cookie;
2396
2397        if (adap->flags & MASTER_PF)
2398                t4_slow_intr_handler(adap);
2399        process_intrq(adap);
2400        return IRQ_HANDLED;
2401}
2402
2403/*
2404 * Interrupt handler for legacy INTx interrupts.
2405 * Handles data events from SGE response queues as well as error and other
2406 * async events as they all use the same interrupt line.
2407 */
2408static irqreturn_t t4_intr_intx(int irq, void *cookie)
2409{
2410        struct adapter *adap = cookie;
2411
2412        t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI_A), 0);
2413        if (((adap->flags & MASTER_PF) && t4_slow_intr_handler(adap)) |
2414            process_intrq(adap))
2415                return IRQ_HANDLED;
2416        return IRQ_NONE;             /* probably shared interrupt */
2417}
2418
2419/**
2420 *      t4_intr_handler - select the top-level interrupt handler
2421 *      @adap: the adapter
2422 *
2423 *      Selects the top-level interrupt handler based on the type of interrupts
2424 *      (MSI-X, MSI, or INTx).
2425 */
2426irq_handler_t t4_intr_handler(struct adapter *adap)
2427{
2428        if (adap->flags & USING_MSIX)
2429                return t4_sge_intr_msix;
2430        if (adap->flags & USING_MSI)
2431                return t4_intr_msi;
2432        return t4_intr_intx;
2433}
2434
2435static void sge_rx_timer_cb(unsigned long data)
2436{
2437        unsigned long m;
2438        unsigned int i;
2439        struct adapter *adap = (struct adapter *)data;
2440        struct sge *s = &adap->sge;
2441
2442        for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
2443                for (m = s->starving_fl[i]; m; m &= m - 1) {
2444                        struct sge_eth_rxq *rxq;
2445                        unsigned int id = __ffs(m) + i * BITS_PER_LONG;
2446                        struct sge_fl *fl = s->egr_map[id];
2447
2448                        clear_bit(id, s->starving_fl);
2449                        smp_mb__after_atomic();
2450
2451                        if (fl_starving(adap, fl)) {
2452                                rxq = container_of(fl, struct sge_eth_rxq, fl);
2453                                if (napi_reschedule(&rxq->rspq.napi))
2454                                        fl->starving++;
2455                                else
2456                                        set_bit(id, s->starving_fl);
2457                        }
2458                }
2459        /* The remainder of the SGE RX Timer Callback routine is dedicated to
2460         * global Master PF activities like checking for chip ingress stalls,
2461         * etc.
2462         */
2463        if (!(adap->flags & MASTER_PF))
2464                goto done;
2465
2466        t4_idma_monitor(adap, &s->idma_monitor, HZ, RX_QCHECK_PERIOD);
2467
2468done:
2469        mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
2470}
2471
2472static void sge_tx_timer_cb(unsigned long data)
2473{
2474        unsigned long m;
2475        unsigned int i, budget;
2476        struct adapter *adap = (struct adapter *)data;
2477        struct sge *s = &adap->sge;
2478
2479        for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
2480                for (m = s->txq_maperr[i]; m; m &= m - 1) {
2481                        unsigned long id = __ffs(m) + i * BITS_PER_LONG;
2482                        struct sge_ofld_txq *txq = s->egr_map[id];
2483
2484                        clear_bit(id, s->txq_maperr);
2485                        tasklet_schedule(&txq->qresume_tsk);
2486                }
2487
2488        budget = MAX_TIMER_TX_RECLAIM;
2489        i = s->ethtxq_rover;
2490        do {
2491                struct sge_eth_txq *q = &s->ethtxq[i];
2492
2493                if (q->q.in_use &&
2494                    time_after_eq(jiffies, q->txq->trans_start + HZ / 100) &&
2495                    __netif_tx_trylock(q->txq)) {
2496                        int avail = reclaimable(&q->q);
2497
2498                        if (avail) {
2499                                if (avail > budget)
2500                                        avail = budget;
2501
2502                                free_tx_desc(adap, &q->q, avail, true);
2503                                q->q.in_use -= avail;
2504                                budget -= avail;
2505                        }
2506                        __netif_tx_unlock(q->txq);
2507                }
2508
2509                if (++i >= s->ethqsets)
2510                        i = 0;
2511        } while (budget && i != s->ethtxq_rover);
2512        s->ethtxq_rover = i;
2513        mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2));
2514}
2515
2516/**
2517 *      bar2_address - return the BAR2 address for an SGE Queue's Registers
2518 *      @adapter: the adapter
2519 *      @qid: the SGE Queue ID
2520 *      @qtype: the SGE Queue Type (Egress or Ingress)
2521 *      @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
2522 *
2523 *      Returns the BAR2 address for the SGE Queue Registers associated with
2524 *      @qid.  If BAR2 SGE Registers aren't available, returns NULL.  Also
2525 *      returns the BAR2 Queue ID to be used with writes to the BAR2 SGE
2526 *      Queue Registers.  If the BAR2 Queue ID is 0, then "Inferred Queue ID"
2527 *      Registers are supported (e.g. the Write Combining Doorbell Buffer).
2528 */
2529static void __iomem *bar2_address(struct adapter *adapter,
2530                                  unsigned int qid,
2531                                  enum t4_bar2_qtype qtype,
2532                                  unsigned int *pbar2_qid)
2533{
2534        u64 bar2_qoffset;
2535        int ret;
2536
2537        ret = t4_bar2_sge_qregs(adapter, qid, qtype, 0,
2538                                &bar2_qoffset, pbar2_qid);
2539        if (ret)
2540                return NULL;
2541
2542        return adapter->bar2 + bar2_qoffset;
2543}
2544
2545/* @intr_idx: MSI/MSI-X vector if >=0, -(absolute qid + 1) if < 0
2546 * @cong: < 0 -> no congestion feedback, >= 0 -> congestion channel map
2547 */
2548int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq,
2549                     struct net_device *dev, int intr_idx,
2550                     struct sge_fl *fl, rspq_handler_t hnd,
2551                     rspq_flush_handler_t flush_hnd, int cong)
2552{
2553        int ret, flsz = 0;
2554        struct fw_iq_cmd c;
2555        struct sge *s = &adap->sge;
2556        struct port_info *pi = netdev_priv(dev);
2557
2558        /* Size needs to be multiple of 16, including status entry. */
2559        iq->size = roundup(iq->size, 16);
2560
2561        iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0,
2562                              &iq->phys_addr, NULL, 0,
2563                              dev_to_node(adap->pdev_dev));
2564        if (!iq->desc)
2565                return -ENOMEM;
2566
2567        memset(&c, 0, sizeof(c));
2568        c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
2569                            FW_CMD_WRITE_F | FW_CMD_EXEC_F |
2570                            FW_IQ_CMD_PFN_V(adap->pf) | FW_IQ_CMD_VFN_V(0));
2571        c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC_F | FW_IQ_CMD_IQSTART_F |
2572                                 FW_LEN16(c));
2573        c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) |
2574                FW_IQ_CMD_IQASYNCH_V(fwevtq) | FW_IQ_CMD_VIID_V(pi->viid) |
2575                FW_IQ_CMD_IQANDST_V(intr_idx < 0) |
2576                FW_IQ_CMD_IQANUD_V(UPDATEDELIVERY_INTERRUPT_X) |
2577                FW_IQ_CMD_IQANDSTINDEX_V(intr_idx >= 0 ? intr_idx :
2578                                                        -intr_idx - 1));
2579        c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH_V(pi->tx_chan) |
2580                FW_IQ_CMD_IQGTSMODE_F |
2581                FW_IQ_CMD_IQINTCNTTHRESH_V(iq->pktcnt_idx) |
2582                FW_IQ_CMD_IQESIZE_V(ilog2(iq->iqe_len) - 4));
2583        c.iqsize = htons(iq->size);
2584        c.iqaddr = cpu_to_be64(iq->phys_addr);
2585        if (cong >= 0)
2586                c.iqns_to_fl0congen = htonl(FW_IQ_CMD_IQFLINTCONGEN_F);
2587
2588        if (fl) {
2589                enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
2590
2591                /* Allocate the ring for the hardware free list (with space
2592                 * for its status page) along with the associated software
2593                 * descriptor ring.  The free list size needs to be a multiple
2594                 * of the Egress Queue Unit and at least 2 Egress Units larger
2595                 * than the SGE's Egress Congrestion Threshold
2596                 * (fl_starve_thres - 1).
2597                 */
2598                if (fl->size < s->fl_starve_thres - 1 + 2 * 8)
2599                        fl->size = s->fl_starve_thres - 1 + 2 * 8;
2600                fl->size = roundup(fl->size, 8);
2601                fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64),
2602                                      sizeof(struct rx_sw_desc), &fl->addr,
2603                                      &fl->sdesc, s->stat_len,
2604                                      dev_to_node(adap->pdev_dev));
2605                if (!fl->desc)
2606                        goto fl_nomem;
2607
2608                flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc);
2609                c.iqns_to_fl0congen |= htonl(FW_IQ_CMD_FL0PACKEN_F |
2610                                             FW_IQ_CMD_FL0FETCHRO_F |
2611                                             FW_IQ_CMD_FL0DATARO_F |
2612                                             FW_IQ_CMD_FL0PADEN_F);
2613                if (cong >= 0)
2614                        c.iqns_to_fl0congen |=
2615                                htonl(FW_IQ_CMD_FL0CNGCHMAP_V(cong) |
2616                                      FW_IQ_CMD_FL0CONGCIF_F |
2617                                      FW_IQ_CMD_FL0CONGEN_F);
2618                /* In T6, for egress queue type FL there is internal overhead
2619                 * of 16B for header going into FLM module.  Hence the maximum
2620                 * allowed burst size is 448 bytes.  For T4/T5, the hardware
2621                 * doesn't coalesce fetch requests if more than 64 bytes of
2622                 * Free List pointers are provided, so we use a 128-byte Fetch
2623                 * Burst Minimum there (T6 implements coalescing so we can use
2624                 * the smaller 64-byte value there).
2625                 */
2626                c.fl0dcaen_to_fl0cidxfthresh =
2627                        htons(FW_IQ_CMD_FL0FBMIN_V(chip <= CHELSIO_T5 ?
2628                                                   FETCHBURSTMIN_128B_X :
2629                                                   FETCHBURSTMIN_64B_X) |
2630                              FW_IQ_CMD_FL0FBMAX_V((chip <= CHELSIO_T5) ?
2631                                                   FETCHBURSTMAX_512B_X :
2632                                                   FETCHBURSTMAX_256B_X));
2633                c.fl0size = htons(flsz);
2634                c.fl0addr = cpu_to_be64(fl->addr);
2635        }
2636
2637        ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
2638        if (ret)
2639                goto err;
2640
2641        netif_napi_add(dev, &iq->napi, napi_rx_handler, 64);
2642        iq->cur_desc = iq->desc;
2643        iq->cidx = 0;
2644        iq->gen = 1;
2645        iq->next_intr_params = iq->intr_params;
2646        iq->cntxt_id = ntohs(c.iqid);
2647        iq->abs_id = ntohs(c.physiqid);
2648        iq->bar2_addr = bar2_address(adap,
2649                                     iq->cntxt_id,
2650                                     T4_BAR2_QTYPE_INGRESS,
2651                                     &iq->bar2_qid);
2652        iq->size--;                           /* subtract status entry */
2653        iq->netdev = dev;
2654        iq->handler = hnd;
2655        iq->flush_handler = flush_hnd;
2656
2657        memset(&iq->lro_mgr, 0, sizeof(struct t4_lro_mgr));
2658        skb_queue_head_init(&iq->lro_mgr.lroq);
2659
2660        /* set offset to -1 to distinguish ingress queues without FL */
2661        iq->offset = fl ? 0 : -1;
2662
2663        adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq;
2664
2665        if (fl) {
2666                fl->cntxt_id = ntohs(c.fl0id);
2667                fl->avail = fl->pend_cred = 0;
2668                fl->pidx = fl->cidx = 0;
2669                fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0;
2670                adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl;
2671
2672                /* Note, we must initialize the BAR2 Free List User Doorbell
2673                 * information before refilling the Free List!
2674                 */
2675                fl->bar2_addr = bar2_address(adap,
2676                                             fl->cntxt_id,
2677                                             T4_BAR2_QTYPE_EGRESS,
2678                                             &fl->bar2_qid);
2679                refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL);
2680        }
2681
2682        /* For T5 and later we attempt to set up the Congestion Manager values
2683         * of the new RX Ethernet Queue.  This should really be handled by
2684         * firmware because it's more complex than any host driver wants to
2685         * get involved with and it's different per chip and this is almost
2686         * certainly wrong.  Firmware would be wrong as well, but it would be
2687         * a lot easier to fix in one place ...  For now we do something very
2688         * simple (and hopefully less wrong).
2689         */
2690        if (!is_t4(adap->params.chip) && cong >= 0) {
2691                u32 param, val, ch_map = 0;
2692                int i;
2693                u16 cng_ch_bits_log = adap->params.arch.cng_ch_bits_log;
2694
2695                param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
2696                         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
2697                         FW_PARAMS_PARAM_YZ_V(iq->cntxt_id));
2698                if (cong == 0) {
2699                        val = CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_QUEUE_X);
2700                } else {
2701                        val =
2702                            CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_CHANNEL_X);
2703                        for (i = 0; i < 4; i++) {
2704                                if (cong & (1 << i))
2705                                        ch_map |= 1 << (i << cng_ch_bits_log);
2706                        }
2707                        val |= CONMCTXT_CNGCHMAP_V(ch_map);
2708                }
2709                ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
2710                                    &param, &val);
2711                if (ret)
2712                        dev_warn(adap->pdev_dev, "Failed to set Congestion"
2713                                 " Manager Context for Ingress Queue %d: %d\n",
2714                                 iq->cntxt_id, -ret);
2715        }
2716
2717        return 0;
2718
2719fl_nomem:
2720        ret = -ENOMEM;
2721err:
2722        if (iq->desc) {
2723                dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len,
2724                                  iq->desc, iq->phys_addr);
2725                iq->desc = NULL;
2726        }
2727        if (fl && fl->desc) {
2728                kfree(fl->sdesc);
2729                fl->sdesc = NULL;
2730                dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc),
2731                                  fl->desc, fl->addr);
2732                fl->desc = NULL;
2733        }
2734        return ret;
2735}
2736
2737static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id)
2738{
2739        q->cntxt_id = id;
2740        q->bar2_addr = bar2_address(adap,
2741                                    q->cntxt_id,
2742                                    T4_BAR2_QTYPE_EGRESS,
2743                                    &q->bar2_qid);
2744        q->in_use = 0;
2745        q->cidx = q->pidx = 0;
2746        q->stops = q->restarts = 0;
2747        q->stat = (void *)&q->desc[q->size];
2748        spin_lock_init(&q->db_lock);
2749        adap->sge.egr_map[id - adap->sge.egr_start] = q;
2750}
2751
2752int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq,
2753                         struct net_device *dev, struct netdev_queue *netdevq,
2754                         unsigned int iqid)
2755{
2756        int ret, nentries;
2757        struct fw_eq_eth_cmd c;
2758        struct sge *s = &adap->sge;
2759        struct port_info *pi = netdev_priv(dev);
2760
2761        /* Add status entries */
2762        nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
2763
2764        txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
2765                        sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
2766                        &txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
2767                        netdev_queue_numa_node_read(netdevq));
2768        if (!txq->q.desc)
2769                return -ENOMEM;
2770
2771        memset(&c, 0, sizeof(c));
2772        c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F |
2773                            FW_CMD_WRITE_F | FW_CMD_EXEC_F |
2774                            FW_EQ_ETH_CMD_PFN_V(adap->pf) |
2775                            FW_EQ_ETH_CMD_VFN_V(0));
2776        c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC_F |
2777                                 FW_EQ_ETH_CMD_EQSTART_F | FW_LEN16(c));
2778        c.viid_pkd = htonl(FW_EQ_ETH_CMD_AUTOEQUEQE_F |
2779                           FW_EQ_ETH_CMD_VIID_V(pi->viid));
2780        c.fetchszm_to_iqid =
2781                htonl(FW_EQ_ETH_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
2782                      FW_EQ_ETH_CMD_PCIECHN_V(pi->tx_chan) |
2783                      FW_EQ_ETH_CMD_FETCHRO_F | FW_EQ_ETH_CMD_IQID_V(iqid));
2784        c.dcaen_to_eqsize =
2785                htonl(FW_EQ_ETH_CMD_FBMIN_V(FETCHBURSTMIN_64B_X) |
2786                      FW_EQ_ETH_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
2787                      FW_EQ_ETH_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
2788                      FW_EQ_ETH_CMD_EQSIZE_V(nentries));
2789        c.eqaddr = cpu_to_be64(txq->q.phys_addr);
2790
2791        ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
2792        if (ret) {
2793                kfree(txq->q.sdesc);
2794                txq->q.sdesc = NULL;
2795                dma_free_coherent(adap->pdev_dev,
2796                                  nentries * sizeof(struct tx_desc),
2797                                  txq->q.desc, txq->q.phys_addr);
2798                txq->q.desc = NULL;
2799                return ret;
2800        }
2801
2802        init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_G(ntohl(c.eqid_pkd)));
2803        txq->txq = netdevq;
2804        txq->tso = txq->tx_cso = txq->vlan_ins = 0;
2805        txq->mapping_err = 0;
2806        return 0;
2807}
2808
2809int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq,
2810                          struct net_device *dev, unsigned int iqid,
2811                          unsigned int cmplqid)
2812{
2813        int ret, nentries;
2814        struct fw_eq_ctrl_cmd c;
2815        struct sge *s = &adap->sge;
2816        struct port_info *pi = netdev_priv(dev);
2817
2818        /* Add status entries */
2819        nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
2820
2821        txq->q.desc = alloc_ring(adap->pdev_dev, nentries,
2822                                 sizeof(struct tx_desc), 0, &txq->q.phys_addr,
2823                                 NULL, 0, dev_to_node(adap->pdev_dev));
2824        if (!txq->q.desc)
2825                return -ENOMEM;
2826
2827        c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F |
2828                            FW_CMD_WRITE_F | FW_CMD_EXEC_F |
2829                            FW_EQ_CTRL_CMD_PFN_V(adap->pf) |
2830                            FW_EQ_CTRL_CMD_VFN_V(0));
2831        c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC_F |
2832                                 FW_EQ_CTRL_CMD_EQSTART_F | FW_LEN16(c));
2833        c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID_V(cmplqid));
2834        c.physeqid_pkd = htonl(0);
2835        c.fetchszm_to_iqid =
2836                htonl(FW_EQ_CTRL_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
2837                      FW_EQ_CTRL_CMD_PCIECHN_V(pi->tx_chan) |
2838                      FW_EQ_CTRL_CMD_FETCHRO_F | FW_EQ_CTRL_CMD_IQID_V(iqid));
2839        c.dcaen_to_eqsize =
2840                htonl(FW_EQ_CTRL_CMD_FBMIN_V(FETCHBURSTMIN_64B_X) |
2841                      FW_EQ_CTRL_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
2842                      FW_EQ_CTRL_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
2843                      FW_EQ_CTRL_CMD_EQSIZE_V(nentries));
2844        c.eqaddr = cpu_to_be64(txq->q.phys_addr);
2845
2846        ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
2847        if (ret) {
2848                dma_free_coherent(adap->pdev_dev,
2849                                  nentries * sizeof(struct tx_desc),
2850                                  txq->q.desc, txq->q.phys_addr);
2851                txq->q.desc = NULL;
2852                return ret;
2853        }
2854
2855        init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_G(ntohl(c.cmpliqid_eqid)));
2856        txq->adap = adap;
2857        skb_queue_head_init(&txq->sendq);
2858        tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq);
2859        txq->full = 0;
2860        return 0;
2861}
2862
2863int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_ofld_txq *txq,
2864                          struct net_device *dev, unsigned int iqid)
2865{
2866        int ret, nentries;
2867        struct fw_eq_ofld_cmd c;
2868        struct sge *s = &adap->sge;
2869        struct port_info *pi = netdev_priv(dev);
2870
2871        /* Add status entries */
2872        nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
2873
2874        txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
2875                        sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
2876                        &txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
2877                        NUMA_NO_NODE);
2878        if (!txq->q.desc)
2879                return -ENOMEM;
2880
2881        memset(&c, 0, sizeof(c));
2882        c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST_F |
2883                            FW_CMD_WRITE_F | FW_CMD_EXEC_F |
2884                            FW_EQ_OFLD_CMD_PFN_V(adap->pf) |
2885                            FW_EQ_OFLD_CMD_VFN_V(0));
2886        c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC_F |
2887                                 FW_EQ_OFLD_CMD_EQSTART_F | FW_LEN16(c));
2888        c.fetchszm_to_iqid =
2889                htonl(FW_EQ_OFLD_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
2890                      FW_EQ_OFLD_CMD_PCIECHN_V(pi->tx_chan) |
2891                      FW_EQ_OFLD_CMD_FETCHRO_F | FW_EQ_OFLD_CMD_IQID_V(iqid));
2892        c.dcaen_to_eqsize =
2893                htonl(FW_EQ_OFLD_CMD_FBMIN_V(FETCHBURSTMIN_64B_X) |
2894                      FW_EQ_OFLD_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
2895                      FW_EQ_OFLD_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
2896                      FW_EQ_OFLD_CMD_EQSIZE_V(nentries));
2897        c.eqaddr = cpu_to_be64(txq->q.phys_addr);
2898
2899        ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
2900        if (ret) {
2901                kfree(txq->q.sdesc);
2902                txq->q.sdesc = NULL;
2903                dma_free_coherent(adap->pdev_dev,
2904                                  nentries * sizeof(struct tx_desc),
2905                                  txq->q.desc, txq->q.phys_addr);
2906                txq->q.desc = NULL;
2907                return ret;
2908        }
2909
2910        init_txq(adap, &txq->q, FW_EQ_OFLD_CMD_EQID_G(ntohl(c.eqid_pkd)));
2911        txq->adap = adap;
2912        skb_queue_head_init(&txq->sendq);
2913        tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq);
2914        txq->full = 0;
2915        txq->mapping_err = 0;
2916        return 0;
2917}
2918
2919static void free_txq(struct adapter *adap, struct sge_txq *q)
2920{
2921        struct sge *s = &adap->sge;
2922
2923        dma_free_coherent(adap->pdev_dev,
2924                          q->size * sizeof(struct tx_desc) + s->stat_len,
2925                          q->desc, q->phys_addr);
2926        q->cntxt_id = 0;
2927        q->sdesc = NULL;
2928        q->desc = NULL;
2929}
2930
2931static void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq,
2932                         struct sge_fl *fl)
2933{
2934        struct sge *s = &adap->sge;
2935        unsigned int fl_id = fl ? fl->cntxt_id : 0xffff;
2936
2937        adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL;
2938        t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP,
2939                   rq->cntxt_id, fl_id, 0xffff);
2940        dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len,
2941                          rq->desc, rq->phys_addr);
2942        napi_hash_del(&rq->napi);
2943        netif_napi_del(&rq->napi);
2944        rq->netdev = NULL;
2945        rq->cntxt_id = rq->abs_id = 0;
2946        rq->desc = NULL;
2947
2948        if (fl) {
2949                free_rx_bufs(adap, fl, fl->avail);
2950                dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len,
2951                                  fl->desc, fl->addr);
2952                kfree(fl->sdesc);
2953                fl->sdesc = NULL;
2954                fl->cntxt_id = 0;
2955                fl->desc = NULL;
2956        }
2957}
2958
2959/**
2960 *      t4_free_ofld_rxqs - free a block of consecutive Rx queues
2961 *      @adap: the adapter
2962 *      @n: number of queues
2963 *      @q: pointer to first queue
2964 *
2965 *      Release the resources of a consecutive block of offload Rx queues.
2966 */
2967void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q)
2968{
2969        for ( ; n; n--, q++)
2970                if (q->rspq.desc)
2971                        free_rspq_fl(adap, &q->rspq,
2972                                     q->fl.size ? &q->fl : NULL);
2973}
2974
2975/**
2976 *      t4_free_sge_resources - free SGE resources
2977 *      @adap: the adapter
2978 *
2979 *      Frees resources used by the SGE queue sets.
2980 */
2981void t4_free_sge_resources(struct adapter *adap)
2982{
2983        int i;
2984        struct sge_eth_rxq *eq;
2985        struct sge_eth_txq *etq;
2986
2987        /* stop all Rx queues in order to start them draining */
2988        for (i = 0; i < adap->sge.ethqsets; i++) {
2989                eq = &adap->sge.ethrxq[i];
2990                if (eq->rspq.desc)
2991                        t4_iq_stop(adap, adap->mbox, adap->pf, 0,
2992                                   FW_IQ_TYPE_FL_INT_CAP,
2993                                   eq->rspq.cntxt_id,
2994                                   eq->fl.size ? eq->fl.cntxt_id : 0xffff,
2995                                   0xffff);
2996        }
2997
2998        /* clean up Ethernet Tx/Rx queues */
2999        for (i = 0; i < adap->sge.ethqsets; i++) {
3000                eq = &adap->sge.ethrxq[i];
3001                if (eq->rspq.desc)
3002                        free_rspq_fl(adap, &eq->rspq,
3003                                     eq->fl.size ? &eq->fl : NULL);
3004
3005                etq = &adap->sge.ethtxq[i];
3006                if (etq->q.desc) {
3007                        t4_eth_eq_free(adap, adap->mbox, adap->pf, 0,
3008                                       etq->q.cntxt_id);
3009                        free_tx_desc(adap, &etq->q, etq->q.in_use, true);
3010                        kfree(etq->q.sdesc);
3011                        free_txq(adap, &etq->q);
3012                }
3013        }
3014
3015        /* clean up RDMA and iSCSI Rx queues */
3016        t4_free_ofld_rxqs(adap, adap->sge.iscsiqsets, adap->sge.iscsirxq);
3017        t4_free_ofld_rxqs(adap, adap->sge.niscsitq, adap->sge.iscsitrxq);
3018        t4_free_ofld_rxqs(adap, adap->sge.rdmaqs, adap->sge.rdmarxq);
3019        t4_free_ofld_rxqs(adap, adap->sge.rdmaciqs, adap->sge.rdmaciq);
3020
3021        /* clean up offload Tx queues */
3022        for (i = 0; i < ARRAY_SIZE(adap->sge.ofldtxq); i++) {
3023                struct sge_ofld_txq *q = &adap->sge.ofldtxq[i];
3024
3025                if (q->q.desc) {
3026                        tasklet_kill(&q->qresume_tsk);
3027                        t4_ofld_eq_free(adap, adap->mbox, adap->pf, 0,
3028                                        q->q.cntxt_id);
3029                        free_tx_desc(adap, &q->q, q->q.in_use, false);
3030                        kfree(q->q.sdesc);
3031                        __skb_queue_purge(&q->sendq);
3032                        free_txq(adap, &q->q);
3033                }
3034        }
3035
3036        /* clean up control Tx queues */
3037        for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) {
3038                struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i];
3039
3040                if (cq->q.desc) {
3041                        tasklet_kill(&cq->qresume_tsk);
3042                        t4_ctrl_eq_free(adap, adap->mbox, adap->pf, 0,
3043                                        cq->q.cntxt_id);
3044                        __skb_queue_purge(&cq->sendq);
3045                        free_txq(adap, &cq->q);
3046                }
3047        }
3048
3049        if (adap->sge.fw_evtq.desc)
3050                free_rspq_fl(adap, &adap->sge.fw_evtq, NULL);
3051
3052        if (adap->sge.intrq.desc)
3053                free_rspq_fl(adap, &adap->sge.intrq, NULL);
3054
3055        /* clear the reverse egress queue map */
3056        memset(adap->sge.egr_map, 0,
3057               adap->sge.egr_sz * sizeof(*adap->sge.egr_map));
3058}
3059
3060void t4_sge_start(struct adapter *adap)
3061{
3062        adap->sge.ethtxq_rover = 0;
3063        mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
3064        mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
3065}
3066
3067/**
3068 *      t4_sge_stop - disable SGE operation
3069 *      @adap: the adapter
3070 *
3071 *      Stop tasklets and timers associated with the DMA engine.  Note that
3072 *      this is effective only if measures have been taken to disable any HW
3073 *      events that may restart them.
3074 */
3075void t4_sge_stop(struct adapter *adap)
3076{
3077        int i;
3078        struct sge *s = &adap->sge;
3079
3080        if (in_interrupt())  /* actions below require waiting */
3081                return;
3082
3083        if (s->rx_timer.function)
3084                del_timer_sync(&s->rx_timer);
3085        if (s->tx_timer.function)
3086                del_timer_sync(&s->tx_timer);
3087
3088        for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++) {
3089                struct sge_ofld_txq *q = &s->ofldtxq[i];
3090
3091                if (q->q.desc)
3092                        tasklet_kill(&q->qresume_tsk);
3093        }
3094        for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) {
3095                struct sge_ctrl_txq *cq = &s->ctrlq[i];
3096
3097                if (cq->q.desc)
3098                        tasklet_kill(&cq->qresume_tsk);
3099        }
3100}
3101
3102/**
3103 *      t4_sge_init_soft - grab core SGE values needed by SGE code
3104 *      @adap: the adapter
3105 *
3106 *      We need to grab the SGE operating parameters that we need to have
3107 *      in order to do our job and make sure we can live with them.
3108 */
3109
3110static int t4_sge_init_soft(struct adapter *adap)
3111{
3112        struct sge *s = &adap->sge;
3113        u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu;
3114        u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
3115        u32 ingress_rx_threshold;
3116
3117        /*
3118         * Verify that CPL messages are going to the Ingress Queue for
3119         * process_responses() and that only packet data is going to the
3120         * Free Lists.
3121         */
3122        if ((t4_read_reg(adap, SGE_CONTROL_A) & RXPKTCPLMODE_F) !=
3123            RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) {
3124                dev_err(adap->pdev_dev, "bad SGE CPL MODE\n");
3125                return -EINVAL;
3126        }
3127
3128        /*
3129         * Validate the Host Buffer Register Array indices that we want to
3130         * use ...
3131         *
3132         * XXX Note that we should really read through the Host Buffer Size
3133         * XXX register array and find the indices of the Buffer Sizes which
3134         * XXX meet our needs!
3135         */
3136        #define READ_FL_BUF(x) \
3137                t4_read_reg(adap, SGE_FL_BUFFER_SIZE0_A+(x)*sizeof(u32))
3138
3139        fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF);
3140        fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF);
3141        fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF);
3142        fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF);
3143
3144        /* We only bother using the Large Page logic if the Large Page Buffer
3145         * is larger than our Page Size Buffer.
3146         */
3147        if (fl_large_pg <= fl_small_pg)
3148                fl_large_pg = 0;
3149
3150        #undef READ_FL_BUF
3151
3152        /* The Page Size Buffer must be exactly equal to our Page Size and the
3153         * Large Page Size Buffer should be 0 (per above) or a power of 2.
3154         */
3155        if (fl_small_pg != PAGE_SIZE ||
3156            (fl_large_pg & (fl_large_pg-1)) != 0) {
3157                dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n",
3158                        fl_small_pg, fl_large_pg);
3159                return -EINVAL;
3160        }
3161        if (fl_large_pg)
3162                s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
3163
3164        if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) ||
3165            fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) {
3166                dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n",
3167                        fl_small_mtu, fl_large_mtu);
3168                return -EINVAL;
3169        }
3170
3171        /*
3172         * Retrieve our RX interrupt holdoff timer values and counter
3173         * threshold values from the SGE parameters.
3174         */
3175        timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1_A);
3176        timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3_A);
3177        timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5_A);
3178        s->timer_val[0] = core_ticks_to_us(adap,
3179                TIMERVALUE0_G(timer_value_0_and_1));
3180        s->timer_val[1] = core_ticks_to_us(adap,
3181                TIMERVALUE1_G(timer_value_0_and_1));
3182        s->timer_val[2] = core_ticks_to_us(adap,
3183                TIMERVALUE2_G(timer_value_2_and_3));
3184        s->timer_val[3] = core_ticks_to_us(adap,
3185                TIMERVALUE3_G(timer_value_2_and_3));
3186        s->timer_val[4] = core_ticks_to_us(adap,
3187                TIMERVALUE4_G(timer_value_4_and_5));
3188        s->timer_val[5] = core_ticks_to_us(adap,
3189                TIMERVALUE5_G(timer_value_4_and_5));
3190
3191        ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD_A);
3192        s->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold);
3193        s->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold);
3194        s->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold);
3195        s->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold);
3196
3197        return 0;
3198}
3199
3200/**
3201 *     t4_sge_init - initialize SGE
3202 *     @adap: the adapter
3203 *
3204 *     Perform low-level SGE code initialization needed every time after a
3205 *     chip reset.
3206 */
3207int t4_sge_init(struct adapter *adap)
3208{
3209        struct sge *s = &adap->sge;
3210        u32 sge_control, sge_conm_ctrl;
3211        int ret, egress_threshold;
3212
3213        /*
3214         * Ingress Padding Boundary and Egress Status Page Size are set up by
3215         * t4_fixup_host_params().
3216         */
3217        sge_control = t4_read_reg(adap, SGE_CONTROL_A);
3218        s->pktshift = PKTSHIFT_G(sge_control);
3219        s->stat_len = (sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64;
3220
3221        s->fl_align = t4_fl_pkt_align(adap);
3222        ret = t4_sge_init_soft(adap);
3223        if (ret < 0)
3224                return ret;
3225
3226        /*
3227         * A FL with <= fl_starve_thres buffers is starving and a periodic
3228         * timer will attempt to refill it.  This needs to be larger than the
3229         * SGE's Egress Congestion Threshold.  If it isn't, then we can get
3230         * stuck waiting for new packets while the SGE is waiting for us to
3231         * give it more Free List entries.  (Note that the SGE's Egress
3232         * Congestion Threshold is in units of 2 Free List pointers.) For T4,
3233         * there was only a single field to control this.  For T5 there's the
3234         * original field which now only applies to Unpacked Mode Free List
3235         * buffers and a new field which only applies to Packed Mode Free List
3236         * buffers.
3237         */
3238        sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL_A);
3239        switch (CHELSIO_CHIP_VERSION(adap->params.chip)) {
3240        case CHELSIO_T4:
3241                egress_threshold = EGRTHRESHOLD_G(sge_conm_ctrl);
3242                break;
3243        case CHELSIO_T5:
3244                egress_threshold = EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
3245                break;
3246        case CHELSIO_T6:
3247                egress_threshold = T6_EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
3248                break;
3249        default:
3250                dev_err(adap->pdev_dev, "Unsupported Chip version %d\n",
3251                        CHELSIO_CHIP_VERSION(adap->params.chip));
3252                return -EINVAL;
3253        }
3254        s->fl_starve_thres = 2*egress_threshold + 1;
3255
3256        t4_idma_monitor_init(adap, &s->idma_monitor);
3257
3258        /* Set up timers used for recuring callbacks to process RX and TX
3259         * administrative tasks.
3260         */
3261        setup_timer(&s->rx_timer, sge_rx_timer_cb, (unsigned long)adap);
3262        setup_timer(&s->tx_timer, sge_tx_timer_cb, (unsigned long)adap);
3263
3264        spin_lock_init(&s->intrq_lock);
3265
3266        return 0;
3267}
3268