linux/drivers/net/ethernet/chelsio/cxgb4/t4_hw.c
<<
>>
Prefs
   1/*
   2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
   3 *
   4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
   5 *
   6 * This software is available to you under a choice of one of two
   7 * licenses.  You may choose to be licensed under the terms of the GNU
   8 * General Public License (GPL) Version 2, available from the file
   9 * COPYING in the main directory of this source tree, or the
  10 * OpenIB.org BSD license below:
  11 *
  12 *     Redistribution and use in source and binary forms, with or
  13 *     without modification, are permitted provided that the following
  14 *     conditions are met:
  15 *
  16 *      - Redistributions of source code must retain the above
  17 *        copyright notice, this list of conditions and the following
  18 *        disclaimer.
  19 *
  20 *      - Redistributions in binary form must reproduce the above
  21 *        copyright notice, this list of conditions and the following
  22 *        disclaimer in the documentation and/or other materials
  23 *        provided with the distribution.
  24 *
  25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  32 * SOFTWARE.
  33 */
  34
  35#include <linux/delay.h>
  36#include "cxgb4.h"
  37#include "t4_regs.h"
  38#include "t4_values.h"
  39#include "t4fw_api.h"
  40#include "t4fw_version.h"
  41
  42/**
  43 *      t4_wait_op_done_val - wait until an operation is completed
  44 *      @adapter: the adapter performing the operation
  45 *      @reg: the register to check for completion
  46 *      @mask: a single-bit field within @reg that indicates completion
  47 *      @polarity: the value of the field when the operation is completed
  48 *      @attempts: number of check iterations
  49 *      @delay: delay in usecs between iterations
  50 *      @valp: where to store the value of the register at completion time
  51 *
  52 *      Wait until an operation is completed by checking a bit in a register
  53 *      up to @attempts times.  If @valp is not NULL the value of the register
  54 *      at the time it indicated completion is stored there.  Returns 0 if the
  55 *      operation completes and -EAGAIN otherwise.
  56 */
  57static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
  58                               int polarity, int attempts, int delay, u32 *valp)
  59{
  60        while (1) {
  61                u32 val = t4_read_reg(adapter, reg);
  62
  63                if (!!(val & mask) == polarity) {
  64                        if (valp)
  65                                *valp = val;
  66                        return 0;
  67                }
  68                if (--attempts == 0)
  69                        return -EAGAIN;
  70                if (delay)
  71                        udelay(delay);
  72        }
  73}
  74
  75static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
  76                                  int polarity, int attempts, int delay)
  77{
  78        return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
  79                                   delay, NULL);
  80}
  81
  82/**
  83 *      t4_set_reg_field - set a register field to a value
  84 *      @adapter: the adapter to program
  85 *      @addr: the register address
  86 *      @mask: specifies the portion of the register to modify
  87 *      @val: the new value for the register field
  88 *
  89 *      Sets a register field specified by the supplied mask to the
  90 *      given value.
  91 */
  92void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
  93                      u32 val)
  94{
  95        u32 v = t4_read_reg(adapter, addr) & ~mask;
  96
  97        t4_write_reg(adapter, addr, v | val);
  98        (void) t4_read_reg(adapter, addr);      /* flush */
  99}
 100
 101/**
 102 *      t4_read_indirect - read indirectly addressed registers
 103 *      @adap: the adapter
 104 *      @addr_reg: register holding the indirect address
 105 *      @data_reg: register holding the value of the indirect register
 106 *      @vals: where the read register values are stored
 107 *      @nregs: how many indirect registers to read
 108 *      @start_idx: index of first indirect register to read
 109 *
 110 *      Reads registers that are accessed indirectly through an address/data
 111 *      register pair.
 112 */
 113void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
 114                             unsigned int data_reg, u32 *vals,
 115                             unsigned int nregs, unsigned int start_idx)
 116{
 117        while (nregs--) {
 118                t4_write_reg(adap, addr_reg, start_idx);
 119                *vals++ = t4_read_reg(adap, data_reg);
 120                start_idx++;
 121        }
 122}
 123
 124/**
 125 *      t4_write_indirect - write indirectly addressed registers
 126 *      @adap: the adapter
 127 *      @addr_reg: register holding the indirect addresses
 128 *      @data_reg: register holding the value for the indirect registers
 129 *      @vals: values to write
 130 *      @nregs: how many indirect registers to write
 131 *      @start_idx: address of first indirect register to write
 132 *
 133 *      Writes a sequential block of registers that are accessed indirectly
 134 *      through an address/data register pair.
 135 */
 136void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
 137                       unsigned int data_reg, const u32 *vals,
 138                       unsigned int nregs, unsigned int start_idx)
 139{
 140        while (nregs--) {
 141                t4_write_reg(adap, addr_reg, start_idx++);
 142                t4_write_reg(adap, data_reg, *vals++);
 143        }
 144}
 145
 146/*
 147 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
 148 * mechanism.  This guarantees that we get the real value even if we're
 149 * operating within a Virtual Machine and the Hypervisor is trapping our
 150 * Configuration Space accesses.
 151 */
 152void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
 153{
 154        u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
 155
 156        if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
 157                req |= ENABLE_F;
 158        else
 159                req |= T6_ENABLE_F;
 160
 161        if (is_t4(adap->params.chip))
 162                req |= LOCALCFG_F;
 163
 164        t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
 165        *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
 166
 167        /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
 168         * Configuration Space read.  (None of the other fields matter when
 169         * ENABLE is 0 so a simple register write is easier than a
 170         * read-modify-write via t4_set_reg_field().)
 171         */
 172        t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
 173}
 174
 175/*
 176 * t4_report_fw_error - report firmware error
 177 * @adap: the adapter
 178 *
 179 * The adapter firmware can indicate error conditions to the host.
 180 * If the firmware has indicated an error, print out the reason for
 181 * the firmware error.
 182 */
 183static void t4_report_fw_error(struct adapter *adap)
 184{
 185        static const char *const reason[] = {
 186                "Crash",                        /* PCIE_FW_EVAL_CRASH */
 187                "During Device Preparation",    /* PCIE_FW_EVAL_PREP */
 188                "During Device Configuration",  /* PCIE_FW_EVAL_CONF */
 189                "During Device Initialization", /* PCIE_FW_EVAL_INIT */
 190                "Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
 191                "Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
 192                "Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
 193                "Reserved",                     /* reserved */
 194        };
 195        u32 pcie_fw;
 196
 197        pcie_fw = t4_read_reg(adap, PCIE_FW_A);
 198        if (pcie_fw & PCIE_FW_ERR_F)
 199                dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
 200                        reason[PCIE_FW_EVAL_G(pcie_fw)]);
 201}
 202
 203/*
 204 * Get the reply to a mailbox command and store it in @rpl in big-endian order.
 205 */
 206static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
 207                         u32 mbox_addr)
 208{
 209        for ( ; nflit; nflit--, mbox_addr += 8)
 210                *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
 211}
 212
 213/*
 214 * Handle a FW assertion reported in a mailbox.
 215 */
 216static void fw_asrt(struct adapter *adap, u32 mbox_addr)
 217{
 218        struct fw_debug_cmd asrt;
 219
 220        get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
 221        dev_alert(adap->pdev_dev,
 222                  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
 223                  asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
 224                  be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
 225}
 226
 227static void dump_mbox(struct adapter *adap, int mbox, u32 data_reg)
 228{
 229        dev_err(adap->pdev_dev,
 230                "mbox %d: %llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
 231                (unsigned long long)t4_read_reg64(adap, data_reg),
 232                (unsigned long long)t4_read_reg64(adap, data_reg + 8),
 233                (unsigned long long)t4_read_reg64(adap, data_reg + 16),
 234                (unsigned long long)t4_read_reg64(adap, data_reg + 24),
 235                (unsigned long long)t4_read_reg64(adap, data_reg + 32),
 236                (unsigned long long)t4_read_reg64(adap, data_reg + 40),
 237                (unsigned long long)t4_read_reg64(adap, data_reg + 48),
 238                (unsigned long long)t4_read_reg64(adap, data_reg + 56));
 239}
 240
 241/**
 242 *      t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
 243 *      @adap: the adapter
 244 *      @mbox: index of the mailbox to use
 245 *      @cmd: the command to write
 246 *      @size: command length in bytes
 247 *      @rpl: where to optionally store the reply
 248 *      @sleep_ok: if true we may sleep while awaiting command completion
 249 *      @timeout: time to wait for command to finish before timing out
 250 *
 251 *      Sends the given command to FW through the selected mailbox and waits
 252 *      for the FW to execute the command.  If @rpl is not %NULL it is used to
 253 *      store the FW's reply to the command.  The command and its optional
 254 *      reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
 255 *      to respond.  @sleep_ok determines whether we may sleep while awaiting
 256 *      the response.  If sleeping is allowed we use progressive backoff
 257 *      otherwise we spin.
 258 *
 259 *      The return value is 0 on success or a negative errno on failure.  A
 260 *      failure can happen either because we are not able to execute the
 261 *      command or FW executes it but signals an error.  In the latter case
 262 *      the return value is the error code indicated by FW (negated).
 263 */
 264int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
 265                            int size, void *rpl, bool sleep_ok, int timeout)
 266{
 267        static const int delay[] = {
 268                1, 1, 3, 5, 10, 10, 20, 50, 100, 200
 269        };
 270
 271        u32 v;
 272        u64 res;
 273        int i, ms, delay_idx;
 274        const __be64 *p = cmd;
 275        u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
 276        u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
 277
 278        if ((size & 15) || size > MBOX_LEN)
 279                return -EINVAL;
 280
 281        /*
 282         * If the device is off-line, as in EEH, commands will time out.
 283         * Fail them early so we don't waste time waiting.
 284         */
 285        if (adap->pdev->error_state != pci_channel_io_normal)
 286                return -EIO;
 287
 288        v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
 289        for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
 290                v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
 291
 292        if (v != MBOX_OWNER_DRV)
 293                return v ? -EBUSY : -ETIMEDOUT;
 294
 295        for (i = 0; i < size; i += 8)
 296                t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
 297
 298        t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
 299        t4_read_reg(adap, ctl_reg);          /* flush write */
 300
 301        delay_idx = 0;
 302        ms = delay[0];
 303
 304        for (i = 0; i < timeout; i += ms) {
 305                if (sleep_ok) {
 306                        ms = delay[delay_idx];  /* last element may repeat */
 307                        if (delay_idx < ARRAY_SIZE(delay) - 1)
 308                                delay_idx++;
 309                        msleep(ms);
 310                } else
 311                        mdelay(ms);
 312
 313                v = t4_read_reg(adap, ctl_reg);
 314                if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
 315                        if (!(v & MBMSGVALID_F)) {
 316                                t4_write_reg(adap, ctl_reg, 0);
 317                                continue;
 318                        }
 319
 320                        res = t4_read_reg64(adap, data_reg);
 321                        if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
 322                                fw_asrt(adap, data_reg);
 323                                res = FW_CMD_RETVAL_V(EIO);
 324                        } else if (rpl) {
 325                                get_mbox_rpl(adap, rpl, size / 8, data_reg);
 326                        }
 327
 328                        if (FW_CMD_RETVAL_G((int)res))
 329                                dump_mbox(adap, mbox, data_reg);
 330                        t4_write_reg(adap, ctl_reg, 0);
 331                        return -FW_CMD_RETVAL_G((int)res);
 332                }
 333        }
 334
 335        dump_mbox(adap, mbox, data_reg);
 336        dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
 337                *(const u8 *)cmd, mbox);
 338        t4_report_fw_error(adap);
 339        return -ETIMEDOUT;
 340}
 341
 342int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
 343                    void *rpl, bool sleep_ok)
 344{
 345        return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
 346                                       FW_CMD_MAX_TIMEOUT);
 347}
 348
 349static int t4_edc_err_read(struct adapter *adap, int idx)
 350{
 351        u32 edc_ecc_err_addr_reg;
 352        u32 rdata_reg;
 353
 354        if (is_t4(adap->params.chip)) {
 355                CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
 356                return 0;
 357        }
 358        if (idx != 0 && idx != 1) {
 359                CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
 360                return 0;
 361        }
 362
 363        edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
 364        rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
 365
 366        CH_WARN(adap,
 367                "edc%d err addr 0x%x: 0x%x.\n",
 368                idx, edc_ecc_err_addr_reg,
 369                t4_read_reg(adap, edc_ecc_err_addr_reg));
 370        CH_WARN(adap,
 371                "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
 372                rdata_reg,
 373                (unsigned long long)t4_read_reg64(adap, rdata_reg),
 374                (unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
 375                (unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
 376                (unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
 377                (unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
 378                (unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
 379                (unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
 380                (unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
 381                (unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
 382
 383        return 0;
 384}
 385
 386/**
 387 *      t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
 388 *      @adap: the adapter
 389 *      @win: PCI-E Memory Window to use
 390 *      @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
 391 *      @addr: address within indicated memory type
 392 *      @len: amount of memory to transfer
 393 *      @hbuf: host memory buffer
 394 *      @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
 395 *
 396 *      Reads/writes an [almost] arbitrary memory region in the firmware: the
 397 *      firmware memory address and host buffer must be aligned on 32-bit
 398 *      boudaries; the length may be arbitrary.  The memory is transferred as
 399 *      a raw byte sequence from/to the firmware's memory.  If this memory
 400 *      contains data structures which contain multi-byte integers, it's the
 401 *      caller's responsibility to perform appropriate byte order conversions.
 402 */
 403int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
 404                 u32 len, void *hbuf, int dir)
 405{
 406        u32 pos, offset, resid, memoffset;
 407        u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base;
 408        u32 *buf;
 409
 410        /* Argument sanity checks ...
 411         */
 412        if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
 413                return -EINVAL;
 414        buf = (u32 *)hbuf;
 415
 416        /* It's convenient to be able to handle lengths which aren't a
 417         * multiple of 32-bits because we often end up transferring files to
 418         * the firmware.  So we'll handle that by normalizing the length here
 419         * and then handling any residual transfer at the end.
 420         */
 421        resid = len & 0x3;
 422        len -= resid;
 423
 424        /* Offset into the region of memory which is being accessed
 425         * MEM_EDC0 = 0
 426         * MEM_EDC1 = 1
 427         * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
 428         * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
 429         */
 430        edc_size  = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
 431        if (mtype != MEM_MC1)
 432                memoffset = (mtype * (edc_size * 1024 * 1024));
 433        else {
 434                mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
 435                                                      MA_EXT_MEMORY0_BAR_A));
 436                memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
 437        }
 438
 439        /* Determine the PCIE_MEM_ACCESS_OFFSET */
 440        addr = addr + memoffset;
 441
 442        /* Each PCI-E Memory Window is programmed with a window size -- or
 443         * "aperture" -- which controls the granularity of its mapping onto
 444         * adapter memory.  We need to grab that aperture in order to know
 445         * how to use the specified window.  The window is also programmed
 446         * with the base address of the Memory Window in BAR0's address
 447         * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
 448         * the address is relative to BAR0.
 449         */
 450        mem_reg = t4_read_reg(adap,
 451                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
 452                                                  win));
 453        mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
 454        mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
 455        if (is_t4(adap->params.chip))
 456                mem_base -= adap->t4_bar0;
 457        win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
 458
 459        /* Calculate our initial PCI-E Memory Window Position and Offset into
 460         * that Window.
 461         */
 462        pos = addr & ~(mem_aperture-1);
 463        offset = addr - pos;
 464
 465        /* Set up initial PCI-E Memory Window to cover the start of our
 466         * transfer.  (Read it back to ensure that changes propagate before we
 467         * attempt to use the new value.)
 468         */
 469        t4_write_reg(adap,
 470                     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
 471                     pos | win_pf);
 472        t4_read_reg(adap,
 473                    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
 474
 475        /* Transfer data to/from the adapter as long as there's an integral
 476         * number of 32-bit transfers to complete.
 477         *
 478         * A note on Endianness issues:
 479         *
 480         * The "register" reads and writes below from/to the PCI-E Memory
 481         * Window invoke the standard adapter Big-Endian to PCI-E Link
 482         * Little-Endian "swizzel."  As a result, if we have the following
 483         * data in adapter memory:
 484         *
 485         *     Memory:  ... | b0 | b1 | b2 | b3 | ...
 486         *     Address:      i+0  i+1  i+2  i+3
 487         *
 488         * Then a read of the adapter memory via the PCI-E Memory Window
 489         * will yield:
 490         *
 491         *     x = readl(i)
 492         *         31                  0
 493         *         [ b3 | b2 | b1 | b0 ]
 494         *
 495         * If this value is stored into local memory on a Little-Endian system
 496         * it will show up correctly in local memory as:
 497         *
 498         *     ( ..., b0, b1, b2, b3, ... )
 499         *
 500         * But on a Big-Endian system, the store will show up in memory
 501         * incorrectly swizzled as:
 502         *
 503         *     ( ..., b3, b2, b1, b0, ... )
 504         *
 505         * So we need to account for this in the reads and writes to the
 506         * PCI-E Memory Window below by undoing the register read/write
 507         * swizzels.
 508         */
 509        while (len > 0) {
 510                if (dir == T4_MEMORY_READ)
 511                        *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
 512                                                mem_base + offset));
 513                else
 514                        t4_write_reg(adap, mem_base + offset,
 515                                     (__force u32)cpu_to_le32(*buf++));
 516                offset += sizeof(__be32);
 517                len -= sizeof(__be32);
 518
 519                /* If we've reached the end of our current window aperture,
 520                 * move the PCI-E Memory Window on to the next.  Note that
 521                 * doing this here after "len" may be 0 allows us to set up
 522                 * the PCI-E Memory Window for a possible final residual
 523                 * transfer below ...
 524                 */
 525                if (offset == mem_aperture) {
 526                        pos += mem_aperture;
 527                        offset = 0;
 528                        t4_write_reg(adap,
 529                                PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
 530                                                    win), pos | win_pf);
 531                        t4_read_reg(adap,
 532                                PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
 533                                                    win));
 534                }
 535        }
 536
 537        /* If the original transfer had a length which wasn't a multiple of
 538         * 32-bits, now's where we need to finish off the transfer of the
 539         * residual amount.  The PCI-E Memory Window has already been moved
 540         * above (if necessary) to cover this final transfer.
 541         */
 542        if (resid) {
 543                union {
 544                        u32 word;
 545                        char byte[4];
 546                } last;
 547                unsigned char *bp;
 548                int i;
 549
 550                if (dir == T4_MEMORY_READ) {
 551                        last.word = le32_to_cpu(
 552                                        (__force __le32)t4_read_reg(adap,
 553                                                mem_base + offset));
 554                        for (bp = (unsigned char *)buf, i = resid; i < 4; i++)
 555                                bp[i] = last.byte[i];
 556                } else {
 557                        last.word = *buf;
 558                        for (i = resid; i < 4; i++)
 559                                last.byte[i] = 0;
 560                        t4_write_reg(adap, mem_base + offset,
 561                                     (__force u32)cpu_to_le32(last.word));
 562                }
 563        }
 564
 565        return 0;
 566}
 567
 568/* Return the specified PCI-E Configuration Space register from our Physical
 569 * Function.  We try first via a Firmware LDST Command since we prefer to let
 570 * the firmware own all of these registers, but if that fails we go for it
 571 * directly ourselves.
 572 */
 573u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
 574{
 575        u32 val, ldst_addrspace;
 576
 577        /* If fw_attach != 0, construct and send the Firmware LDST Command to
 578         * retrieve the specified PCI-E Configuration Space register.
 579         */
 580        struct fw_ldst_cmd ldst_cmd;
 581        int ret;
 582
 583        memset(&ldst_cmd, 0, sizeof(ldst_cmd));
 584        ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
 585        ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
 586                                               FW_CMD_REQUEST_F |
 587                                               FW_CMD_READ_F |
 588                                               ldst_addrspace);
 589        ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
 590        ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
 591        ldst_cmd.u.pcie.ctrl_to_fn =
 592                (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
 593        ldst_cmd.u.pcie.r = reg;
 594
 595        /* If the LDST Command succeeds, return the result, otherwise
 596         * fall through to reading it directly ourselves ...
 597         */
 598        ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
 599                         &ldst_cmd);
 600        if (ret == 0)
 601                val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
 602        else
 603                /* Read the desired Configuration Space register via the PCI-E
 604                 * Backdoor mechanism.
 605                 */
 606                t4_hw_pci_read_cfg4(adap, reg, &val);
 607        return val;
 608}
 609
 610/* Get the window based on base passed to it.
 611 * Window aperture is currently unhandled, but there is no use case for it
 612 * right now
 613 */
 614static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
 615                         u32 memwin_base)
 616{
 617        u32 ret;
 618
 619        if (is_t4(adap->params.chip)) {
 620                u32 bar0;
 621
 622                /* Truncation intentional: we only read the bottom 32-bits of
 623                 * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
 624                 * mechanism to read BAR0 instead of using
 625                 * pci_resource_start() because we could be operating from
 626                 * within a Virtual Machine which is trapping our accesses to
 627                 * our Configuration Space and we need to set up the PCI-E
 628                 * Memory Window decoders with the actual addresses which will
 629                 * be coming across the PCI-E link.
 630                 */
 631                bar0 = t4_read_pcie_cfg4(adap, pci_base);
 632                bar0 &= pci_mask;
 633                adap->t4_bar0 = bar0;
 634
 635                ret = bar0 + memwin_base;
 636        } else {
 637                /* For T5, only relative offset inside the PCIe BAR is passed */
 638                ret = memwin_base;
 639        }
 640        return ret;
 641}
 642
 643/* Get the default utility window (win0) used by everyone */
 644u32 t4_get_util_window(struct adapter *adap)
 645{
 646        return t4_get_window(adap, PCI_BASE_ADDRESS_0,
 647                             PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
 648}
 649
 650/* Set up memory window for accessing adapter memory ranges.  (Read
 651 * back MA register to ensure that changes propagate before we attempt
 652 * to use the new values.)
 653 */
 654void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
 655{
 656        t4_write_reg(adap,
 657                     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
 658                     memwin_base | BIR_V(0) |
 659                     WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
 660        t4_read_reg(adap,
 661                    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
 662}
 663
 664/**
 665 *      t4_get_regs_len - return the size of the chips register set
 666 *      @adapter: the adapter
 667 *
 668 *      Returns the size of the chip's BAR0 register space.
 669 */
 670unsigned int t4_get_regs_len(struct adapter *adapter)
 671{
 672        unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
 673
 674        switch (chip_version) {
 675        case CHELSIO_T4:
 676                return T4_REGMAP_SIZE;
 677
 678        case CHELSIO_T5:
 679        case CHELSIO_T6:
 680                return T5_REGMAP_SIZE;
 681        }
 682
 683        dev_err(adapter->pdev_dev,
 684                "Unsupported chip version %d\n", chip_version);
 685        return 0;
 686}
 687
 688/**
 689 *      t4_get_regs - read chip registers into provided buffer
 690 *      @adap: the adapter
 691 *      @buf: register buffer
 692 *      @buf_size: size (in bytes) of register buffer
 693 *
 694 *      If the provided register buffer isn't large enough for the chip's
 695 *      full register range, the register dump will be truncated to the
 696 *      register buffer's size.
 697 */
 698void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
 699{
 700        static const unsigned int t4_reg_ranges[] = {
 701                0x1008, 0x1108,
 702                0x1180, 0x1184,
 703                0x1190, 0x1194,
 704                0x11a0, 0x11a4,
 705                0x11b0, 0x11b4,
 706                0x11fc, 0x123c,
 707                0x1300, 0x173c,
 708                0x1800, 0x18fc,
 709                0x3000, 0x30d8,
 710                0x30e0, 0x30e4,
 711                0x30ec, 0x5910,
 712                0x5920, 0x5924,
 713                0x5960, 0x5960,
 714                0x5968, 0x5968,
 715                0x5970, 0x5970,
 716                0x5978, 0x5978,
 717                0x5980, 0x5980,
 718                0x5988, 0x5988,
 719                0x5990, 0x5990,
 720                0x5998, 0x5998,
 721                0x59a0, 0x59d4,
 722                0x5a00, 0x5ae0,
 723                0x5ae8, 0x5ae8,
 724                0x5af0, 0x5af0,
 725                0x5af8, 0x5af8,
 726                0x6000, 0x6098,
 727                0x6100, 0x6150,
 728                0x6200, 0x6208,
 729                0x6240, 0x6248,
 730                0x6280, 0x62b0,
 731                0x62c0, 0x6338,
 732                0x6370, 0x638c,
 733                0x6400, 0x643c,
 734                0x6500, 0x6524,
 735                0x6a00, 0x6a04,
 736                0x6a14, 0x6a38,
 737                0x6a60, 0x6a70,
 738                0x6a78, 0x6a78,
 739                0x6b00, 0x6b0c,
 740                0x6b1c, 0x6b84,
 741                0x6bf0, 0x6bf8,
 742                0x6c00, 0x6c0c,
 743                0x6c1c, 0x6c84,
 744                0x6cf0, 0x6cf8,
 745                0x6d00, 0x6d0c,
 746                0x6d1c, 0x6d84,
 747                0x6df0, 0x6df8,
 748                0x6e00, 0x6e0c,
 749                0x6e1c, 0x6e84,
 750                0x6ef0, 0x6ef8,
 751                0x6f00, 0x6f0c,
 752                0x6f1c, 0x6f84,
 753                0x6ff0, 0x6ff8,
 754                0x7000, 0x700c,
 755                0x701c, 0x7084,
 756                0x70f0, 0x70f8,
 757                0x7100, 0x710c,
 758                0x711c, 0x7184,
 759                0x71f0, 0x71f8,
 760                0x7200, 0x720c,
 761                0x721c, 0x7284,
 762                0x72f0, 0x72f8,
 763                0x7300, 0x730c,
 764                0x731c, 0x7384,
 765                0x73f0, 0x73f8,
 766                0x7400, 0x7450,
 767                0x7500, 0x7530,
 768                0x7600, 0x760c,
 769                0x7614, 0x761c,
 770                0x7680, 0x76cc,
 771                0x7700, 0x7798,
 772                0x77c0, 0x77fc,
 773                0x7900, 0x79fc,
 774                0x7b00, 0x7b58,
 775                0x7b60, 0x7b84,
 776                0x7b8c, 0x7c38,
 777                0x7d00, 0x7d38,
 778                0x7d40, 0x7d80,
 779                0x7d8c, 0x7ddc,
 780                0x7de4, 0x7e04,
 781                0x7e10, 0x7e1c,
 782                0x7e24, 0x7e38,
 783                0x7e40, 0x7e44,
 784                0x7e4c, 0x7e78,
 785                0x7e80, 0x7ea4,
 786                0x7eac, 0x7edc,
 787                0x7ee8, 0x7efc,
 788                0x8dc0, 0x8e04,
 789                0x8e10, 0x8e1c,
 790                0x8e30, 0x8e78,
 791                0x8ea0, 0x8eb8,
 792                0x8ec0, 0x8f6c,
 793                0x8fc0, 0x9008,
 794                0x9010, 0x9058,
 795                0x9060, 0x9060,
 796                0x9068, 0x9074,
 797                0x90fc, 0x90fc,
 798                0x9400, 0x9408,
 799                0x9410, 0x9458,
 800                0x9600, 0x9600,
 801                0x9608, 0x9638,
 802                0x9640, 0x96bc,
 803                0x9800, 0x9808,
 804                0x9820, 0x983c,
 805                0x9850, 0x9864,
 806                0x9c00, 0x9c6c,
 807                0x9c80, 0x9cec,
 808                0x9d00, 0x9d6c,
 809                0x9d80, 0x9dec,
 810                0x9e00, 0x9e6c,
 811                0x9e80, 0x9eec,
 812                0x9f00, 0x9f6c,
 813                0x9f80, 0x9fec,
 814                0xd004, 0xd004,
 815                0xd010, 0xd03c,
 816                0xdfc0, 0xdfe0,
 817                0xe000, 0xea7c,
 818                0xf000, 0x11190,
 819                0x19040, 0x1906c,
 820                0x19078, 0x19080,
 821                0x1908c, 0x190e4,
 822                0x190f0, 0x190f8,
 823                0x19100, 0x19110,
 824                0x19120, 0x19124,
 825                0x19150, 0x19194,
 826                0x1919c, 0x191b0,
 827                0x191d0, 0x191e8,
 828                0x19238, 0x1924c,
 829                0x193f8, 0x1943c,
 830                0x1944c, 0x19474,
 831                0x19490, 0x194e0,
 832                0x194f0, 0x194f8,
 833                0x19800, 0x19c08,
 834                0x19c10, 0x19c90,
 835                0x19ca0, 0x19ce4,
 836                0x19cf0, 0x19d40,
 837                0x19d50, 0x19d94,
 838                0x19da0, 0x19de8,
 839                0x19df0, 0x19e40,
 840                0x19e50, 0x19e90,
 841                0x19ea0, 0x19f4c,
 842                0x1a000, 0x1a004,
 843                0x1a010, 0x1a06c,
 844                0x1a0b0, 0x1a0e4,
 845                0x1a0ec, 0x1a0f4,
 846                0x1a100, 0x1a108,
 847                0x1a114, 0x1a120,
 848                0x1a128, 0x1a130,
 849                0x1a138, 0x1a138,
 850                0x1a190, 0x1a1c4,
 851                0x1a1fc, 0x1a1fc,
 852                0x1e040, 0x1e04c,
 853                0x1e284, 0x1e28c,
 854                0x1e2c0, 0x1e2c0,
 855                0x1e2e0, 0x1e2e0,
 856                0x1e300, 0x1e384,
 857                0x1e3c0, 0x1e3c8,
 858                0x1e440, 0x1e44c,
 859                0x1e684, 0x1e68c,
 860                0x1e6c0, 0x1e6c0,
 861                0x1e6e0, 0x1e6e0,
 862                0x1e700, 0x1e784,
 863                0x1e7c0, 0x1e7c8,
 864                0x1e840, 0x1e84c,
 865                0x1ea84, 0x1ea8c,
 866                0x1eac0, 0x1eac0,
 867                0x1eae0, 0x1eae0,
 868                0x1eb00, 0x1eb84,
 869                0x1ebc0, 0x1ebc8,
 870                0x1ec40, 0x1ec4c,
 871                0x1ee84, 0x1ee8c,
 872                0x1eec0, 0x1eec0,
 873                0x1eee0, 0x1eee0,
 874                0x1ef00, 0x1ef84,
 875                0x1efc0, 0x1efc8,
 876                0x1f040, 0x1f04c,
 877                0x1f284, 0x1f28c,
 878                0x1f2c0, 0x1f2c0,
 879                0x1f2e0, 0x1f2e0,
 880                0x1f300, 0x1f384,
 881                0x1f3c0, 0x1f3c8,
 882                0x1f440, 0x1f44c,
 883                0x1f684, 0x1f68c,
 884                0x1f6c0, 0x1f6c0,
 885                0x1f6e0, 0x1f6e0,
 886                0x1f700, 0x1f784,
 887                0x1f7c0, 0x1f7c8,
 888                0x1f840, 0x1f84c,
 889                0x1fa84, 0x1fa8c,
 890                0x1fac0, 0x1fac0,
 891                0x1fae0, 0x1fae0,
 892                0x1fb00, 0x1fb84,
 893                0x1fbc0, 0x1fbc8,
 894                0x1fc40, 0x1fc4c,
 895                0x1fe84, 0x1fe8c,
 896                0x1fec0, 0x1fec0,
 897                0x1fee0, 0x1fee0,
 898                0x1ff00, 0x1ff84,
 899                0x1ffc0, 0x1ffc8,
 900                0x20000, 0x2002c,
 901                0x20100, 0x2013c,
 902                0x20190, 0x201a0,
 903                0x201a8, 0x201b8,
 904                0x201c4, 0x201c8,
 905                0x20200, 0x20318,
 906                0x20400, 0x204b4,
 907                0x204c0, 0x20528,
 908                0x20540, 0x20614,
 909                0x21000, 0x21040,
 910                0x2104c, 0x21060,
 911                0x210c0, 0x210ec,
 912                0x21200, 0x21268,
 913                0x21270, 0x21284,
 914                0x212fc, 0x21388,
 915                0x21400, 0x21404,
 916                0x21500, 0x21500,
 917                0x21510, 0x21518,
 918                0x2152c, 0x21530,
 919                0x2153c, 0x2153c,
 920                0x21550, 0x21554,
 921                0x21600, 0x21600,
 922                0x21608, 0x2161c,
 923                0x21624, 0x21628,
 924                0x21630, 0x21634,
 925                0x2163c, 0x2163c,
 926                0x21700, 0x2171c,
 927                0x21780, 0x2178c,
 928                0x21800, 0x21818,
 929                0x21820, 0x21828,
 930                0x21830, 0x21848,
 931                0x21850, 0x21854,
 932                0x21860, 0x21868,
 933                0x21870, 0x21870,
 934                0x21878, 0x21898,
 935                0x218a0, 0x218a8,
 936                0x218b0, 0x218c8,
 937                0x218d0, 0x218d4,
 938                0x218e0, 0x218e8,
 939                0x218f0, 0x218f0,
 940                0x218f8, 0x21a18,
 941                0x21a20, 0x21a28,
 942                0x21a30, 0x21a48,
 943                0x21a50, 0x21a54,
 944                0x21a60, 0x21a68,
 945                0x21a70, 0x21a70,
 946                0x21a78, 0x21a98,
 947                0x21aa0, 0x21aa8,
 948                0x21ab0, 0x21ac8,
 949                0x21ad0, 0x21ad4,
 950                0x21ae0, 0x21ae8,
 951                0x21af0, 0x21af0,
 952                0x21af8, 0x21c18,
 953                0x21c20, 0x21c20,
 954                0x21c28, 0x21c30,
 955                0x21c38, 0x21c38,
 956                0x21c80, 0x21c98,
 957                0x21ca0, 0x21ca8,
 958                0x21cb0, 0x21cc8,
 959                0x21cd0, 0x21cd4,
 960                0x21ce0, 0x21ce8,
 961                0x21cf0, 0x21cf0,
 962                0x21cf8, 0x21d7c,
 963                0x21e00, 0x21e04,
 964                0x22000, 0x2202c,
 965                0x22100, 0x2213c,
 966                0x22190, 0x221a0,
 967                0x221a8, 0x221b8,
 968                0x221c4, 0x221c8,
 969                0x22200, 0x22318,
 970                0x22400, 0x224b4,
 971                0x224c0, 0x22528,
 972                0x22540, 0x22614,
 973                0x23000, 0x23040,
 974                0x2304c, 0x23060,
 975                0x230c0, 0x230ec,
 976                0x23200, 0x23268,
 977                0x23270, 0x23284,
 978                0x232fc, 0x23388,
 979                0x23400, 0x23404,
 980                0x23500, 0x23500,
 981                0x23510, 0x23518,
 982                0x2352c, 0x23530,
 983                0x2353c, 0x2353c,
 984                0x23550, 0x23554,
 985                0x23600, 0x23600,
 986                0x23608, 0x2361c,
 987                0x23624, 0x23628,
 988                0x23630, 0x23634,
 989                0x2363c, 0x2363c,
 990                0x23700, 0x2371c,
 991                0x23780, 0x2378c,
 992                0x23800, 0x23818,
 993                0x23820, 0x23828,
 994                0x23830, 0x23848,
 995                0x23850, 0x23854,
 996                0x23860, 0x23868,
 997                0x23870, 0x23870,
 998                0x23878, 0x23898,
 999                0x238a0, 0x238a8,
1000                0x238b0, 0x238c8,
1001                0x238d0, 0x238d4,
1002                0x238e0, 0x238e8,
1003                0x238f0, 0x238f0,
1004                0x238f8, 0x23a18,
1005                0x23a20, 0x23a28,
1006                0x23a30, 0x23a48,
1007                0x23a50, 0x23a54,
1008                0x23a60, 0x23a68,
1009                0x23a70, 0x23a70,
1010                0x23a78, 0x23a98,
1011                0x23aa0, 0x23aa8,
1012                0x23ab0, 0x23ac8,
1013                0x23ad0, 0x23ad4,
1014                0x23ae0, 0x23ae8,
1015                0x23af0, 0x23af0,
1016                0x23af8, 0x23c18,
1017                0x23c20, 0x23c20,
1018                0x23c28, 0x23c30,
1019                0x23c38, 0x23c38,
1020                0x23c80, 0x23c98,
1021                0x23ca0, 0x23ca8,
1022                0x23cb0, 0x23cc8,
1023                0x23cd0, 0x23cd4,
1024                0x23ce0, 0x23ce8,
1025                0x23cf0, 0x23cf0,
1026                0x23cf8, 0x23d7c,
1027                0x23e00, 0x23e04,
1028                0x24000, 0x2402c,
1029                0x24100, 0x2413c,
1030                0x24190, 0x241a0,
1031                0x241a8, 0x241b8,
1032                0x241c4, 0x241c8,
1033                0x24200, 0x24318,
1034                0x24400, 0x244b4,
1035                0x244c0, 0x24528,
1036                0x24540, 0x24614,
1037                0x25000, 0x25040,
1038                0x2504c, 0x25060,
1039                0x250c0, 0x250ec,
1040                0x25200, 0x25268,
1041                0x25270, 0x25284,
1042                0x252fc, 0x25388,
1043                0x25400, 0x25404,
1044                0x25500, 0x25500,
1045                0x25510, 0x25518,
1046                0x2552c, 0x25530,
1047                0x2553c, 0x2553c,
1048                0x25550, 0x25554,
1049                0x25600, 0x25600,
1050                0x25608, 0x2561c,
1051                0x25624, 0x25628,
1052                0x25630, 0x25634,
1053                0x2563c, 0x2563c,
1054                0x25700, 0x2571c,
1055                0x25780, 0x2578c,
1056                0x25800, 0x25818,
1057                0x25820, 0x25828,
1058                0x25830, 0x25848,
1059                0x25850, 0x25854,
1060                0x25860, 0x25868,
1061                0x25870, 0x25870,
1062                0x25878, 0x25898,
1063                0x258a0, 0x258a8,
1064                0x258b0, 0x258c8,
1065                0x258d0, 0x258d4,
1066                0x258e0, 0x258e8,
1067                0x258f0, 0x258f0,
1068                0x258f8, 0x25a18,
1069                0x25a20, 0x25a28,
1070                0x25a30, 0x25a48,
1071                0x25a50, 0x25a54,
1072                0x25a60, 0x25a68,
1073                0x25a70, 0x25a70,
1074                0x25a78, 0x25a98,
1075                0x25aa0, 0x25aa8,
1076                0x25ab0, 0x25ac8,
1077                0x25ad0, 0x25ad4,
1078                0x25ae0, 0x25ae8,
1079                0x25af0, 0x25af0,
1080                0x25af8, 0x25c18,
1081                0x25c20, 0x25c20,
1082                0x25c28, 0x25c30,
1083                0x25c38, 0x25c38,
1084                0x25c80, 0x25c98,
1085                0x25ca0, 0x25ca8,
1086                0x25cb0, 0x25cc8,
1087                0x25cd0, 0x25cd4,
1088                0x25ce0, 0x25ce8,
1089                0x25cf0, 0x25cf0,
1090                0x25cf8, 0x25d7c,
1091                0x25e00, 0x25e04,
1092                0x26000, 0x2602c,
1093                0x26100, 0x2613c,
1094                0x26190, 0x261a0,
1095                0x261a8, 0x261b8,
1096                0x261c4, 0x261c8,
1097                0x26200, 0x26318,
1098                0x26400, 0x264b4,
1099                0x264c0, 0x26528,
1100                0x26540, 0x26614,
1101                0x27000, 0x27040,
1102                0x2704c, 0x27060,
1103                0x270c0, 0x270ec,
1104                0x27200, 0x27268,
1105                0x27270, 0x27284,
1106                0x272fc, 0x27388,
1107                0x27400, 0x27404,
1108                0x27500, 0x27500,
1109                0x27510, 0x27518,
1110                0x2752c, 0x27530,
1111                0x2753c, 0x2753c,
1112                0x27550, 0x27554,
1113                0x27600, 0x27600,
1114                0x27608, 0x2761c,
1115                0x27624, 0x27628,
1116                0x27630, 0x27634,
1117                0x2763c, 0x2763c,
1118                0x27700, 0x2771c,
1119                0x27780, 0x2778c,
1120                0x27800, 0x27818,
1121                0x27820, 0x27828,
1122                0x27830, 0x27848,
1123                0x27850, 0x27854,
1124                0x27860, 0x27868,
1125                0x27870, 0x27870,
1126                0x27878, 0x27898,
1127                0x278a0, 0x278a8,
1128                0x278b0, 0x278c8,
1129                0x278d0, 0x278d4,
1130                0x278e0, 0x278e8,
1131                0x278f0, 0x278f0,
1132                0x278f8, 0x27a18,
1133                0x27a20, 0x27a28,
1134                0x27a30, 0x27a48,
1135                0x27a50, 0x27a54,
1136                0x27a60, 0x27a68,
1137                0x27a70, 0x27a70,
1138                0x27a78, 0x27a98,
1139                0x27aa0, 0x27aa8,
1140                0x27ab0, 0x27ac8,
1141                0x27ad0, 0x27ad4,
1142                0x27ae0, 0x27ae8,
1143                0x27af0, 0x27af0,
1144                0x27af8, 0x27c18,
1145                0x27c20, 0x27c20,
1146                0x27c28, 0x27c30,
1147                0x27c38, 0x27c38,
1148                0x27c80, 0x27c98,
1149                0x27ca0, 0x27ca8,
1150                0x27cb0, 0x27cc8,
1151                0x27cd0, 0x27cd4,
1152                0x27ce0, 0x27ce8,
1153                0x27cf0, 0x27cf0,
1154                0x27cf8, 0x27d7c,
1155                0x27e00, 0x27e04,
1156        };
1157
1158        static const unsigned int t5_reg_ranges[] = {
1159                0x1008, 0x10c0,
1160                0x10cc, 0x10f8,
1161                0x1100, 0x1100,
1162                0x110c, 0x1148,
1163                0x1180, 0x1184,
1164                0x1190, 0x1194,
1165                0x11a0, 0x11a4,
1166                0x11b0, 0x11b4,
1167                0x11fc, 0x123c,
1168                0x1280, 0x173c,
1169                0x1800, 0x18fc,
1170                0x3000, 0x3028,
1171                0x3060, 0x30b0,
1172                0x30b8, 0x30d8,
1173                0x30e0, 0x30fc,
1174                0x3140, 0x357c,
1175                0x35a8, 0x35cc,
1176                0x35ec, 0x35ec,
1177                0x3600, 0x5624,
1178                0x56cc, 0x56ec,
1179                0x56f4, 0x5720,
1180                0x5728, 0x575c,
1181                0x580c, 0x5814,
1182                0x5890, 0x589c,
1183                0x58a4, 0x58ac,
1184                0x58b8, 0x58bc,
1185                0x5940, 0x59c8,
1186                0x59d0, 0x59dc,
1187                0x59fc, 0x5a18,
1188                0x5a60, 0x5a70,
1189                0x5a80, 0x5a9c,
1190                0x5b94, 0x5bfc,
1191                0x6000, 0x6020,
1192                0x6028, 0x6040,
1193                0x6058, 0x609c,
1194                0x60a8, 0x614c,
1195                0x7700, 0x7798,
1196                0x77c0, 0x78fc,
1197                0x7b00, 0x7b58,
1198                0x7b60, 0x7b84,
1199                0x7b8c, 0x7c54,
1200                0x7d00, 0x7d38,
1201                0x7d40, 0x7d80,
1202                0x7d8c, 0x7ddc,
1203                0x7de4, 0x7e04,
1204                0x7e10, 0x7e1c,
1205                0x7e24, 0x7e38,
1206                0x7e40, 0x7e44,
1207                0x7e4c, 0x7e78,
1208                0x7e80, 0x7edc,
1209                0x7ee8, 0x7efc,
1210                0x8dc0, 0x8de0,
1211                0x8df8, 0x8e04,
1212                0x8e10, 0x8e84,
1213                0x8ea0, 0x8f84,
1214                0x8fc0, 0x9058,
1215                0x9060, 0x9060,
1216                0x9068, 0x90f8,
1217                0x9400, 0x9408,
1218                0x9410, 0x9470,
1219                0x9600, 0x9600,
1220                0x9608, 0x9638,
1221                0x9640, 0x96f4,
1222                0x9800, 0x9808,
1223                0x9820, 0x983c,
1224                0x9850, 0x9864,
1225                0x9c00, 0x9c6c,
1226                0x9c80, 0x9cec,
1227                0x9d00, 0x9d6c,
1228                0x9d80, 0x9dec,
1229                0x9e00, 0x9e6c,
1230                0x9e80, 0x9eec,
1231                0x9f00, 0x9f6c,
1232                0x9f80, 0xa020,
1233                0xd004, 0xd004,
1234                0xd010, 0xd03c,
1235                0xdfc0, 0xdfe0,
1236                0xe000, 0x1106c,
1237                0x11074, 0x11088,
1238                0x1109c, 0x1117c,
1239                0x11190, 0x11204,
1240                0x19040, 0x1906c,
1241                0x19078, 0x19080,
1242                0x1908c, 0x190e8,
1243                0x190f0, 0x190f8,
1244                0x19100, 0x19110,
1245                0x19120, 0x19124,
1246                0x19150, 0x19194,
1247                0x1919c, 0x191b0,
1248                0x191d0, 0x191e8,
1249                0x19238, 0x19290,
1250                0x193f8, 0x19428,
1251                0x19430, 0x19444,
1252                0x1944c, 0x1946c,
1253                0x19474, 0x19474,
1254                0x19490, 0x194cc,
1255                0x194f0, 0x194f8,
1256                0x19c00, 0x19c08,
1257                0x19c10, 0x19c60,
1258                0x19c94, 0x19ce4,
1259                0x19cf0, 0x19d40,
1260                0x19d50, 0x19d94,
1261                0x19da0, 0x19de8,
1262                0x19df0, 0x19e10,
1263                0x19e50, 0x19e90,
1264                0x19ea0, 0x19f24,
1265                0x19f34, 0x19f34,
1266                0x19f40, 0x19f50,
1267                0x19f90, 0x19fb4,
1268                0x19fc4, 0x19fe4,
1269                0x1a000, 0x1a004,
1270                0x1a010, 0x1a06c,
1271                0x1a0b0, 0x1a0e4,
1272                0x1a0ec, 0x1a0f8,
1273                0x1a100, 0x1a108,
1274                0x1a114, 0x1a120,
1275                0x1a128, 0x1a130,
1276                0x1a138, 0x1a138,
1277                0x1a190, 0x1a1c4,
1278                0x1a1fc, 0x1a1fc,
1279                0x1e008, 0x1e00c,
1280                0x1e040, 0x1e044,
1281                0x1e04c, 0x1e04c,
1282                0x1e284, 0x1e290,
1283                0x1e2c0, 0x1e2c0,
1284                0x1e2e0, 0x1e2e0,
1285                0x1e300, 0x1e384,
1286                0x1e3c0, 0x1e3c8,
1287                0x1e408, 0x1e40c,
1288                0x1e440, 0x1e444,
1289                0x1e44c, 0x1e44c,
1290                0x1e684, 0x1e690,
1291                0x1e6c0, 0x1e6c0,
1292                0x1e6e0, 0x1e6e0,
1293                0x1e700, 0x1e784,
1294                0x1e7c0, 0x1e7c8,
1295                0x1e808, 0x1e80c,
1296                0x1e840, 0x1e844,
1297                0x1e84c, 0x1e84c,
1298                0x1ea84, 0x1ea90,
1299                0x1eac0, 0x1eac0,
1300                0x1eae0, 0x1eae0,
1301                0x1eb00, 0x1eb84,
1302                0x1ebc0, 0x1ebc8,
1303                0x1ec08, 0x1ec0c,
1304                0x1ec40, 0x1ec44,
1305                0x1ec4c, 0x1ec4c,
1306                0x1ee84, 0x1ee90,
1307                0x1eec0, 0x1eec0,
1308                0x1eee0, 0x1eee0,
1309                0x1ef00, 0x1ef84,
1310                0x1efc0, 0x1efc8,
1311                0x1f008, 0x1f00c,
1312                0x1f040, 0x1f044,
1313                0x1f04c, 0x1f04c,
1314                0x1f284, 0x1f290,
1315                0x1f2c0, 0x1f2c0,
1316                0x1f2e0, 0x1f2e0,
1317                0x1f300, 0x1f384,
1318                0x1f3c0, 0x1f3c8,
1319                0x1f408, 0x1f40c,
1320                0x1f440, 0x1f444,
1321                0x1f44c, 0x1f44c,
1322                0x1f684, 0x1f690,
1323                0x1f6c0, 0x1f6c0,
1324                0x1f6e0, 0x1f6e0,
1325                0x1f700, 0x1f784,
1326                0x1f7c0, 0x1f7c8,
1327                0x1f808, 0x1f80c,
1328                0x1f840, 0x1f844,
1329                0x1f84c, 0x1f84c,
1330                0x1fa84, 0x1fa90,
1331                0x1fac0, 0x1fac0,
1332                0x1fae0, 0x1fae0,
1333                0x1fb00, 0x1fb84,
1334                0x1fbc0, 0x1fbc8,
1335                0x1fc08, 0x1fc0c,
1336                0x1fc40, 0x1fc44,
1337                0x1fc4c, 0x1fc4c,
1338                0x1fe84, 0x1fe90,
1339                0x1fec0, 0x1fec0,
1340                0x1fee0, 0x1fee0,
1341                0x1ff00, 0x1ff84,
1342                0x1ffc0, 0x1ffc8,
1343                0x30000, 0x30030,
1344                0x30038, 0x30038,
1345                0x30040, 0x30040,
1346                0x30100, 0x30144,
1347                0x30190, 0x301a0,
1348                0x301a8, 0x301b8,
1349                0x301c4, 0x301c8,
1350                0x301d0, 0x301d0,
1351                0x30200, 0x30318,
1352                0x30400, 0x304b4,
1353                0x304c0, 0x3052c,
1354                0x30540, 0x3061c,
1355                0x30800, 0x30828,
1356                0x30834, 0x30834,
1357                0x308c0, 0x30908,
1358                0x30910, 0x309ac,
1359                0x30a00, 0x30a14,
1360                0x30a1c, 0x30a2c,
1361                0x30a44, 0x30a50,
1362                0x30a74, 0x30a74,
1363                0x30a7c, 0x30afc,
1364                0x30b08, 0x30c24,
1365                0x30d00, 0x30d00,
1366                0x30d08, 0x30d14,
1367                0x30d1c, 0x30d20,
1368                0x30d3c, 0x30d3c,
1369                0x30d48, 0x30d50,
1370                0x31200, 0x3120c,
1371                0x31220, 0x31220,
1372                0x31240, 0x31240,
1373                0x31600, 0x3160c,
1374                0x31a00, 0x31a1c,
1375                0x31e00, 0x31e20,
1376                0x31e38, 0x31e3c,
1377                0x31e80, 0x31e80,
1378                0x31e88, 0x31ea8,
1379                0x31eb0, 0x31eb4,
1380                0x31ec8, 0x31ed4,
1381                0x31fb8, 0x32004,
1382                0x32200, 0x32200,
1383                0x32208, 0x32240,
1384                0x32248, 0x32280,
1385                0x32288, 0x322c0,
1386                0x322c8, 0x322fc,
1387                0x32600, 0x32630,
1388                0x32a00, 0x32abc,
1389                0x32b00, 0x32b10,
1390                0x32b20, 0x32b30,
1391                0x32b40, 0x32b50,
1392                0x32b60, 0x32b70,
1393                0x33000, 0x33028,
1394                0x33030, 0x33048,
1395                0x33060, 0x33068,
1396                0x33070, 0x3309c,
1397                0x330f0, 0x33128,
1398                0x33130, 0x33148,
1399                0x33160, 0x33168,
1400                0x33170, 0x3319c,
1401                0x331f0, 0x33238,
1402                0x33240, 0x33240,
1403                0x33248, 0x33250,
1404                0x3325c, 0x33264,
1405                0x33270, 0x332b8,
1406                0x332c0, 0x332e4,
1407                0x332f8, 0x33338,
1408                0x33340, 0x33340,
1409                0x33348, 0x33350,
1410                0x3335c, 0x33364,
1411                0x33370, 0x333b8,
1412                0x333c0, 0x333e4,
1413                0x333f8, 0x33428,
1414                0x33430, 0x33448,
1415                0x33460, 0x33468,
1416                0x33470, 0x3349c,
1417                0x334f0, 0x33528,
1418                0x33530, 0x33548,
1419                0x33560, 0x33568,
1420                0x33570, 0x3359c,
1421                0x335f0, 0x33638,
1422                0x33640, 0x33640,
1423                0x33648, 0x33650,
1424                0x3365c, 0x33664,
1425                0x33670, 0x336b8,
1426                0x336c0, 0x336e4,
1427                0x336f8, 0x33738,
1428                0x33740, 0x33740,
1429                0x33748, 0x33750,
1430                0x3375c, 0x33764,
1431                0x33770, 0x337b8,
1432                0x337c0, 0x337e4,
1433                0x337f8, 0x337fc,
1434                0x33814, 0x33814,
1435                0x3382c, 0x3382c,
1436                0x33880, 0x3388c,
1437                0x338e8, 0x338ec,
1438                0x33900, 0x33928,
1439                0x33930, 0x33948,
1440                0x33960, 0x33968,
1441                0x33970, 0x3399c,
1442                0x339f0, 0x33a38,
1443                0x33a40, 0x33a40,
1444                0x33a48, 0x33a50,
1445                0x33a5c, 0x33a64,
1446                0x33a70, 0x33ab8,
1447                0x33ac0, 0x33ae4,
1448                0x33af8, 0x33b10,
1449                0x33b28, 0x33b28,
1450                0x33b3c, 0x33b50,
1451                0x33bf0, 0x33c10,
1452                0x33c28, 0x33c28,
1453                0x33c3c, 0x33c50,
1454                0x33cf0, 0x33cfc,
1455                0x34000, 0x34030,
1456                0x34038, 0x34038,
1457                0x34040, 0x34040,
1458                0x34100, 0x34144,
1459                0x34190, 0x341a0,
1460                0x341a8, 0x341b8,
1461                0x341c4, 0x341c8,
1462                0x341d0, 0x341d0,
1463                0x34200, 0x34318,
1464                0x34400, 0x344b4,
1465                0x344c0, 0x3452c,
1466                0x34540, 0x3461c,
1467                0x34800, 0x34828,
1468                0x34834, 0x34834,
1469                0x348c0, 0x34908,
1470                0x34910, 0x349ac,
1471                0x34a00, 0x34a14,
1472                0x34a1c, 0x34a2c,
1473                0x34a44, 0x34a50,
1474                0x34a74, 0x34a74,
1475                0x34a7c, 0x34afc,
1476                0x34b08, 0x34c24,
1477                0x34d00, 0x34d00,
1478                0x34d08, 0x34d14,
1479                0x34d1c, 0x34d20,
1480                0x34d3c, 0x34d3c,
1481                0x34d48, 0x34d50,
1482                0x35200, 0x3520c,
1483                0x35220, 0x35220,
1484                0x35240, 0x35240,
1485                0x35600, 0x3560c,
1486                0x35a00, 0x35a1c,
1487                0x35e00, 0x35e20,
1488                0x35e38, 0x35e3c,
1489                0x35e80, 0x35e80,
1490                0x35e88, 0x35ea8,
1491                0x35eb0, 0x35eb4,
1492                0x35ec8, 0x35ed4,
1493                0x35fb8, 0x36004,
1494                0x36200, 0x36200,
1495                0x36208, 0x36240,
1496                0x36248, 0x36280,
1497                0x36288, 0x362c0,
1498                0x362c8, 0x362fc,
1499                0x36600, 0x36630,
1500                0x36a00, 0x36abc,
1501                0x36b00, 0x36b10,
1502                0x36b20, 0x36b30,
1503                0x36b40, 0x36b50,
1504                0x36b60, 0x36b70,
1505                0x37000, 0x37028,
1506                0x37030, 0x37048,
1507                0x37060, 0x37068,
1508                0x37070, 0x3709c,
1509                0x370f0, 0x37128,
1510                0x37130, 0x37148,
1511                0x37160, 0x37168,
1512                0x37170, 0x3719c,
1513                0x371f0, 0x37238,
1514                0x37240, 0x37240,
1515                0x37248, 0x37250,
1516                0x3725c, 0x37264,
1517                0x37270, 0x372b8,
1518                0x372c0, 0x372e4,
1519                0x372f8, 0x37338,
1520                0x37340, 0x37340,
1521                0x37348, 0x37350,
1522                0x3735c, 0x37364,
1523                0x37370, 0x373b8,
1524                0x373c0, 0x373e4,
1525                0x373f8, 0x37428,
1526                0x37430, 0x37448,
1527                0x37460, 0x37468,
1528                0x37470, 0x3749c,
1529                0x374f0, 0x37528,
1530                0x37530, 0x37548,
1531                0x37560, 0x37568,
1532                0x37570, 0x3759c,
1533                0x375f0, 0x37638,
1534                0x37640, 0x37640,
1535                0x37648, 0x37650,
1536                0x3765c, 0x37664,
1537                0x37670, 0x376b8,
1538                0x376c0, 0x376e4,
1539                0x376f8, 0x37738,
1540                0x37740, 0x37740,
1541                0x37748, 0x37750,
1542                0x3775c, 0x37764,
1543                0x37770, 0x377b8,
1544                0x377c0, 0x377e4,
1545                0x377f8, 0x377fc,
1546                0x37814, 0x37814,
1547                0x3782c, 0x3782c,
1548                0x37880, 0x3788c,
1549                0x378e8, 0x378ec,
1550                0x37900, 0x37928,
1551                0x37930, 0x37948,
1552                0x37960, 0x37968,
1553                0x37970, 0x3799c,
1554                0x379f0, 0x37a38,
1555                0x37a40, 0x37a40,
1556                0x37a48, 0x37a50,
1557                0x37a5c, 0x37a64,
1558                0x37a70, 0x37ab8,
1559                0x37ac0, 0x37ae4,
1560                0x37af8, 0x37b10,
1561                0x37b28, 0x37b28,
1562                0x37b3c, 0x37b50,
1563                0x37bf0, 0x37c10,
1564                0x37c28, 0x37c28,
1565                0x37c3c, 0x37c50,
1566                0x37cf0, 0x37cfc,
1567                0x38000, 0x38030,
1568                0x38038, 0x38038,
1569                0x38040, 0x38040,
1570                0x38100, 0x38144,
1571                0x38190, 0x381a0,
1572                0x381a8, 0x381b8,
1573                0x381c4, 0x381c8,
1574                0x381d0, 0x381d0,
1575                0x38200, 0x38318,
1576                0x38400, 0x384b4,
1577                0x384c0, 0x3852c,
1578                0x38540, 0x3861c,
1579                0x38800, 0x38828,
1580                0x38834, 0x38834,
1581                0x388c0, 0x38908,
1582                0x38910, 0x389ac,
1583                0x38a00, 0x38a14,
1584                0x38a1c, 0x38a2c,
1585                0x38a44, 0x38a50,
1586                0x38a74, 0x38a74,
1587                0x38a7c, 0x38afc,
1588                0x38b08, 0x38c24,
1589                0x38d00, 0x38d00,
1590                0x38d08, 0x38d14,
1591                0x38d1c, 0x38d20,
1592                0x38d3c, 0x38d3c,
1593                0x38d48, 0x38d50,
1594                0x39200, 0x3920c,
1595                0x39220, 0x39220,
1596                0x39240, 0x39240,
1597                0x39600, 0x3960c,
1598                0x39a00, 0x39a1c,
1599                0x39e00, 0x39e20,
1600                0x39e38, 0x39e3c,
1601                0x39e80, 0x39e80,
1602                0x39e88, 0x39ea8,
1603                0x39eb0, 0x39eb4,
1604                0x39ec8, 0x39ed4,
1605                0x39fb8, 0x3a004,
1606                0x3a200, 0x3a200,
1607                0x3a208, 0x3a240,
1608                0x3a248, 0x3a280,
1609                0x3a288, 0x3a2c0,
1610                0x3a2c8, 0x3a2fc,
1611                0x3a600, 0x3a630,
1612                0x3aa00, 0x3aabc,
1613                0x3ab00, 0x3ab10,
1614                0x3ab20, 0x3ab30,
1615                0x3ab40, 0x3ab50,
1616                0x3ab60, 0x3ab70,
1617                0x3b000, 0x3b028,
1618                0x3b030, 0x3b048,
1619                0x3b060, 0x3b068,
1620                0x3b070, 0x3b09c,
1621                0x3b0f0, 0x3b128,
1622                0x3b130, 0x3b148,
1623                0x3b160, 0x3b168,
1624                0x3b170, 0x3b19c,
1625                0x3b1f0, 0x3b238,
1626                0x3b240, 0x3b240,
1627                0x3b248, 0x3b250,
1628                0x3b25c, 0x3b264,
1629                0x3b270, 0x3b2b8,
1630                0x3b2c0, 0x3b2e4,
1631                0x3b2f8, 0x3b338,
1632                0x3b340, 0x3b340,
1633                0x3b348, 0x3b350,
1634                0x3b35c, 0x3b364,
1635                0x3b370, 0x3b3b8,
1636                0x3b3c0, 0x3b3e4,
1637                0x3b3f8, 0x3b428,
1638                0x3b430, 0x3b448,
1639                0x3b460, 0x3b468,
1640                0x3b470, 0x3b49c,
1641                0x3b4f0, 0x3b528,
1642                0x3b530, 0x3b548,
1643                0x3b560, 0x3b568,
1644                0x3b570, 0x3b59c,
1645                0x3b5f0, 0x3b638,
1646                0x3b640, 0x3b640,
1647                0x3b648, 0x3b650,
1648                0x3b65c, 0x3b664,
1649                0x3b670, 0x3b6b8,
1650                0x3b6c0, 0x3b6e4,
1651                0x3b6f8, 0x3b738,
1652                0x3b740, 0x3b740,
1653                0x3b748, 0x3b750,
1654                0x3b75c, 0x3b764,
1655                0x3b770, 0x3b7b8,
1656                0x3b7c0, 0x3b7e4,
1657                0x3b7f8, 0x3b7fc,
1658                0x3b814, 0x3b814,
1659                0x3b82c, 0x3b82c,
1660                0x3b880, 0x3b88c,
1661                0x3b8e8, 0x3b8ec,
1662                0x3b900, 0x3b928,
1663                0x3b930, 0x3b948,
1664                0x3b960, 0x3b968,
1665                0x3b970, 0x3b99c,
1666                0x3b9f0, 0x3ba38,
1667                0x3ba40, 0x3ba40,
1668                0x3ba48, 0x3ba50,
1669                0x3ba5c, 0x3ba64,
1670                0x3ba70, 0x3bab8,
1671                0x3bac0, 0x3bae4,
1672                0x3baf8, 0x3bb10,
1673                0x3bb28, 0x3bb28,
1674                0x3bb3c, 0x3bb50,
1675                0x3bbf0, 0x3bc10,
1676                0x3bc28, 0x3bc28,
1677                0x3bc3c, 0x3bc50,
1678                0x3bcf0, 0x3bcfc,
1679                0x3c000, 0x3c030,
1680                0x3c038, 0x3c038,
1681                0x3c040, 0x3c040,
1682                0x3c100, 0x3c144,
1683                0x3c190, 0x3c1a0,
1684                0x3c1a8, 0x3c1b8,
1685                0x3c1c4, 0x3c1c8,
1686                0x3c1d0, 0x3c1d0,
1687                0x3c200, 0x3c318,
1688                0x3c400, 0x3c4b4,
1689                0x3c4c0, 0x3c52c,
1690                0x3c540, 0x3c61c,
1691                0x3c800, 0x3c828,
1692                0x3c834, 0x3c834,
1693                0x3c8c0, 0x3c908,
1694                0x3c910, 0x3c9ac,
1695                0x3ca00, 0x3ca14,
1696                0x3ca1c, 0x3ca2c,
1697                0x3ca44, 0x3ca50,
1698                0x3ca74, 0x3ca74,
1699                0x3ca7c, 0x3cafc,
1700                0x3cb08, 0x3cc24,
1701                0x3cd00, 0x3cd00,
1702                0x3cd08, 0x3cd14,
1703                0x3cd1c, 0x3cd20,
1704                0x3cd3c, 0x3cd3c,
1705                0x3cd48, 0x3cd50,
1706                0x3d200, 0x3d20c,
1707                0x3d220, 0x3d220,
1708                0x3d240, 0x3d240,
1709                0x3d600, 0x3d60c,
1710                0x3da00, 0x3da1c,
1711                0x3de00, 0x3de20,
1712                0x3de38, 0x3de3c,
1713                0x3de80, 0x3de80,
1714                0x3de88, 0x3dea8,
1715                0x3deb0, 0x3deb4,
1716                0x3dec8, 0x3ded4,
1717                0x3dfb8, 0x3e004,
1718                0x3e200, 0x3e200,
1719                0x3e208, 0x3e240,
1720                0x3e248, 0x3e280,
1721                0x3e288, 0x3e2c0,
1722                0x3e2c8, 0x3e2fc,
1723                0x3e600, 0x3e630,
1724                0x3ea00, 0x3eabc,
1725                0x3eb00, 0x3eb10,
1726                0x3eb20, 0x3eb30,
1727                0x3eb40, 0x3eb50,
1728                0x3eb60, 0x3eb70,
1729                0x3f000, 0x3f028,
1730                0x3f030, 0x3f048,
1731                0x3f060, 0x3f068,
1732                0x3f070, 0x3f09c,
1733                0x3f0f0, 0x3f128,
1734                0x3f130, 0x3f148,
1735                0x3f160, 0x3f168,
1736                0x3f170, 0x3f19c,
1737                0x3f1f0, 0x3f238,
1738                0x3f240, 0x3f240,
1739                0x3f248, 0x3f250,
1740                0x3f25c, 0x3f264,
1741                0x3f270, 0x3f2b8,
1742                0x3f2c0, 0x3f2e4,
1743                0x3f2f8, 0x3f338,
1744                0x3f340, 0x3f340,
1745                0x3f348, 0x3f350,
1746                0x3f35c, 0x3f364,
1747                0x3f370, 0x3f3b8,
1748                0x3f3c0, 0x3f3e4,
1749                0x3f3f8, 0x3f428,
1750                0x3f430, 0x3f448,
1751                0x3f460, 0x3f468,
1752                0x3f470, 0x3f49c,
1753                0x3f4f0, 0x3f528,
1754                0x3f530, 0x3f548,
1755                0x3f560, 0x3f568,
1756                0x3f570, 0x3f59c,
1757                0x3f5f0, 0x3f638,
1758                0x3f640, 0x3f640,
1759                0x3f648, 0x3f650,
1760                0x3f65c, 0x3f664,
1761                0x3f670, 0x3f6b8,
1762                0x3f6c0, 0x3f6e4,
1763                0x3f6f8, 0x3f738,
1764                0x3f740, 0x3f740,
1765                0x3f748, 0x3f750,
1766                0x3f75c, 0x3f764,
1767                0x3f770, 0x3f7b8,
1768                0x3f7c0, 0x3f7e4,
1769                0x3f7f8, 0x3f7fc,
1770                0x3f814, 0x3f814,
1771                0x3f82c, 0x3f82c,
1772                0x3f880, 0x3f88c,
1773                0x3f8e8, 0x3f8ec,
1774                0x3f900, 0x3f928,
1775                0x3f930, 0x3f948,
1776                0x3f960, 0x3f968,
1777                0x3f970, 0x3f99c,
1778                0x3f9f0, 0x3fa38,
1779                0x3fa40, 0x3fa40,
1780                0x3fa48, 0x3fa50,
1781                0x3fa5c, 0x3fa64,
1782                0x3fa70, 0x3fab8,
1783                0x3fac0, 0x3fae4,
1784                0x3faf8, 0x3fb10,
1785                0x3fb28, 0x3fb28,
1786                0x3fb3c, 0x3fb50,
1787                0x3fbf0, 0x3fc10,
1788                0x3fc28, 0x3fc28,
1789                0x3fc3c, 0x3fc50,
1790                0x3fcf0, 0x3fcfc,
1791                0x40000, 0x4000c,
1792                0x40040, 0x40050,
1793                0x40060, 0x40068,
1794                0x4007c, 0x4008c,
1795                0x40094, 0x400b0,
1796                0x400c0, 0x40144,
1797                0x40180, 0x4018c,
1798                0x40200, 0x40254,
1799                0x40260, 0x40264,
1800                0x40270, 0x40288,
1801                0x40290, 0x40298,
1802                0x402ac, 0x402c8,
1803                0x402d0, 0x402e0,
1804                0x402f0, 0x402f0,
1805                0x40300, 0x4033c,
1806                0x403f8, 0x403fc,
1807                0x41304, 0x413c4,
1808                0x41400, 0x4140c,
1809                0x41414, 0x4141c,
1810                0x41480, 0x414d0,
1811                0x44000, 0x44054,
1812                0x4405c, 0x44078,
1813                0x440c0, 0x44174,
1814                0x44180, 0x441ac,
1815                0x441b4, 0x441b8,
1816                0x441c0, 0x44254,
1817                0x4425c, 0x44278,
1818                0x442c0, 0x44374,
1819                0x44380, 0x443ac,
1820                0x443b4, 0x443b8,
1821                0x443c0, 0x44454,
1822                0x4445c, 0x44478,
1823                0x444c0, 0x44574,
1824                0x44580, 0x445ac,
1825                0x445b4, 0x445b8,
1826                0x445c0, 0x44654,
1827                0x4465c, 0x44678,
1828                0x446c0, 0x44774,
1829                0x44780, 0x447ac,
1830                0x447b4, 0x447b8,
1831                0x447c0, 0x44854,
1832                0x4485c, 0x44878,
1833                0x448c0, 0x44974,
1834                0x44980, 0x449ac,
1835                0x449b4, 0x449b8,
1836                0x449c0, 0x449fc,
1837                0x45000, 0x45004,
1838                0x45010, 0x45030,
1839                0x45040, 0x45060,
1840                0x45068, 0x45068,
1841                0x45080, 0x45084,
1842                0x450a0, 0x450b0,
1843                0x45200, 0x45204,
1844                0x45210, 0x45230,
1845                0x45240, 0x45260,
1846                0x45268, 0x45268,
1847                0x45280, 0x45284,
1848                0x452a0, 0x452b0,
1849                0x460c0, 0x460e4,
1850                0x47000, 0x4703c,
1851                0x47044, 0x4708c,
1852                0x47200, 0x47250,
1853                0x47400, 0x47408,
1854                0x47414, 0x47420,
1855                0x47600, 0x47618,
1856                0x47800, 0x47814,
1857                0x48000, 0x4800c,
1858                0x48040, 0x48050,
1859                0x48060, 0x48068,
1860                0x4807c, 0x4808c,
1861                0x48094, 0x480b0,
1862                0x480c0, 0x48144,
1863                0x48180, 0x4818c,
1864                0x48200, 0x48254,
1865                0x48260, 0x48264,
1866                0x48270, 0x48288,
1867                0x48290, 0x48298,
1868                0x482ac, 0x482c8,
1869                0x482d0, 0x482e0,
1870                0x482f0, 0x482f0,
1871                0x48300, 0x4833c,
1872                0x483f8, 0x483fc,
1873                0x49304, 0x493c4,
1874                0x49400, 0x4940c,
1875                0x49414, 0x4941c,
1876                0x49480, 0x494d0,
1877                0x4c000, 0x4c054,
1878                0x4c05c, 0x4c078,
1879                0x4c0c0, 0x4c174,
1880                0x4c180, 0x4c1ac,
1881                0x4c1b4, 0x4c1b8,
1882                0x4c1c0, 0x4c254,
1883                0x4c25c, 0x4c278,
1884                0x4c2c0, 0x4c374,
1885                0x4c380, 0x4c3ac,
1886                0x4c3b4, 0x4c3b8,
1887                0x4c3c0, 0x4c454,
1888                0x4c45c, 0x4c478,
1889                0x4c4c0, 0x4c574,
1890                0x4c580, 0x4c5ac,
1891                0x4c5b4, 0x4c5b8,
1892                0x4c5c0, 0x4c654,
1893                0x4c65c, 0x4c678,
1894                0x4c6c0, 0x4c774,
1895                0x4c780, 0x4c7ac,
1896                0x4c7b4, 0x4c7b8,
1897                0x4c7c0, 0x4c854,
1898                0x4c85c, 0x4c878,
1899                0x4c8c0, 0x4c974,
1900                0x4c980, 0x4c9ac,
1901                0x4c9b4, 0x4c9b8,
1902                0x4c9c0, 0x4c9fc,
1903                0x4d000, 0x4d004,
1904                0x4d010, 0x4d030,
1905                0x4d040, 0x4d060,
1906                0x4d068, 0x4d068,
1907                0x4d080, 0x4d084,
1908                0x4d0a0, 0x4d0b0,
1909                0x4d200, 0x4d204,
1910                0x4d210, 0x4d230,
1911                0x4d240, 0x4d260,
1912                0x4d268, 0x4d268,
1913                0x4d280, 0x4d284,
1914                0x4d2a0, 0x4d2b0,
1915                0x4e0c0, 0x4e0e4,
1916                0x4f000, 0x4f03c,
1917                0x4f044, 0x4f08c,
1918                0x4f200, 0x4f250,
1919                0x4f400, 0x4f408,
1920                0x4f414, 0x4f420,
1921                0x4f600, 0x4f618,
1922                0x4f800, 0x4f814,
1923                0x50000, 0x50084,
1924                0x50090, 0x500cc,
1925                0x50400, 0x50400,
1926                0x50800, 0x50884,
1927                0x50890, 0x508cc,
1928                0x50c00, 0x50c00,
1929                0x51000, 0x5101c,
1930                0x51300, 0x51308,
1931        };
1932
1933        static const unsigned int t6_reg_ranges[] = {
1934                0x1008, 0x101c,
1935                0x1024, 0x10a8,
1936                0x10b4, 0x10f8,
1937                0x1100, 0x1114,
1938                0x111c, 0x112c,
1939                0x1138, 0x113c,
1940                0x1144, 0x114c,
1941                0x1180, 0x1184,
1942                0x1190, 0x1194,
1943                0x11a0, 0x11a4,
1944                0x11b0, 0x11b4,
1945                0x11fc, 0x1258,
1946                0x1280, 0x12d4,
1947                0x12d9, 0x12d9,
1948                0x12de, 0x12de,
1949                0x12e3, 0x12e3,
1950                0x12e8, 0x133c,
1951                0x1800, 0x18fc,
1952                0x3000, 0x302c,
1953                0x3060, 0x30b0,
1954                0x30b8, 0x30d8,
1955                0x30e0, 0x30fc,
1956                0x3140, 0x357c,
1957                0x35a8, 0x35cc,
1958                0x35ec, 0x35ec,
1959                0x3600, 0x5624,
1960                0x56cc, 0x56ec,
1961                0x56f4, 0x5720,
1962                0x5728, 0x575c,
1963                0x580c, 0x5814,
1964                0x5890, 0x589c,
1965                0x58a4, 0x58ac,
1966                0x58b8, 0x58bc,
1967                0x5940, 0x595c,
1968                0x5980, 0x598c,
1969                0x59b0, 0x59c8,
1970                0x59d0, 0x59dc,
1971                0x59fc, 0x5a18,
1972                0x5a60, 0x5a6c,
1973                0x5a80, 0x5a8c,
1974                0x5a94, 0x5a9c,
1975                0x5b94, 0x5bfc,
1976                0x5c10, 0x5e48,
1977                0x5e50, 0x5e94,
1978                0x5ea0, 0x5eb0,
1979                0x5ec0, 0x5ec0,
1980                0x5ec8, 0x5ed0,
1981                0x6000, 0x6020,
1982                0x6028, 0x6040,
1983                0x6058, 0x609c,
1984                0x60a8, 0x619c,
1985                0x7700, 0x7798,
1986                0x77c0, 0x7880,
1987                0x78cc, 0x78fc,
1988                0x7b00, 0x7b58,
1989                0x7b60, 0x7b84,
1990                0x7b8c, 0x7c54,
1991                0x7d00, 0x7d38,
1992                0x7d40, 0x7d84,
1993                0x7d8c, 0x7ddc,
1994                0x7de4, 0x7e04,
1995                0x7e10, 0x7e1c,
1996                0x7e24, 0x7e38,
1997                0x7e40, 0x7e44,
1998                0x7e4c, 0x7e78,
1999                0x7e80, 0x7edc,
2000                0x7ee8, 0x7efc,
2001                0x8dc0, 0x8de4,
2002                0x8df8, 0x8e04,
2003                0x8e10, 0x8e84,
2004                0x8ea0, 0x8f88,
2005                0x8fb8, 0x9058,
2006                0x9060, 0x9060,
2007                0x9068, 0x90f8,
2008                0x9100, 0x9124,
2009                0x9400, 0x9470,
2010                0x9600, 0x9600,
2011                0x9608, 0x9638,
2012                0x9640, 0x9704,
2013                0x9710, 0x971c,
2014                0x9800, 0x9808,
2015                0x9820, 0x983c,
2016                0x9850, 0x9864,
2017                0x9c00, 0x9c6c,
2018                0x9c80, 0x9cec,
2019                0x9d00, 0x9d6c,
2020                0x9d80, 0x9dec,
2021                0x9e00, 0x9e6c,
2022                0x9e80, 0x9eec,
2023                0x9f00, 0x9f6c,
2024                0x9f80, 0xa020,
2025                0xd004, 0xd03c,
2026                0xd100, 0xd118,
2027                0xd200, 0xd214,
2028                0xd220, 0xd234,
2029                0xd240, 0xd254,
2030                0xd260, 0xd274,
2031                0xd280, 0xd294,
2032                0xd2a0, 0xd2b4,
2033                0xd2c0, 0xd2d4,
2034                0xd2e0, 0xd2f4,
2035                0xd300, 0xd31c,
2036                0xdfc0, 0xdfe0,
2037                0xe000, 0xf008,
2038                0x11000, 0x11014,
2039                0x11048, 0x1106c,
2040                0x11074, 0x11088,
2041                0x11098, 0x11120,
2042                0x1112c, 0x1117c,
2043                0x11190, 0x112e0,
2044                0x11300, 0x1130c,
2045                0x12000, 0x1206c,
2046                0x19040, 0x1906c,
2047                0x19078, 0x19080,
2048                0x1908c, 0x190e8,
2049                0x190f0, 0x190f8,
2050                0x19100, 0x19110,
2051                0x19120, 0x19124,
2052                0x19150, 0x19194,
2053                0x1919c, 0x191b0,
2054                0x191d0, 0x191e8,
2055                0x19238, 0x19290,
2056                0x192a4, 0x192b0,
2057                0x192bc, 0x192bc,
2058                0x19348, 0x1934c,
2059                0x193f8, 0x19418,
2060                0x19420, 0x19428,
2061                0x19430, 0x19444,
2062                0x1944c, 0x1946c,
2063                0x19474, 0x19474,
2064                0x19490, 0x194cc,
2065                0x194f0, 0x194f8,
2066                0x19c00, 0x19c48,
2067                0x19c50, 0x19c80,
2068                0x19c94, 0x19c98,
2069                0x19ca0, 0x19cbc,
2070                0x19ce4, 0x19ce4,
2071                0x19cf0, 0x19cf8,
2072                0x19d00, 0x19d28,
2073                0x19d50, 0x19d78,
2074                0x19d94, 0x19d98,
2075                0x19da0, 0x19dc8,
2076                0x19df0, 0x19e10,
2077                0x19e50, 0x19e6c,
2078                0x19ea0, 0x19ebc,
2079                0x19ec4, 0x19ef4,
2080                0x19f04, 0x19f2c,
2081                0x19f34, 0x19f34,
2082                0x19f40, 0x19f50,
2083                0x19f90, 0x19fac,
2084                0x19fc4, 0x19fc8,
2085                0x19fd0, 0x19fe4,
2086                0x1a000, 0x1a004,
2087                0x1a010, 0x1a06c,
2088                0x1a0b0, 0x1a0e4,
2089                0x1a0ec, 0x1a0f8,
2090                0x1a100, 0x1a108,
2091                0x1a114, 0x1a120,
2092                0x1a128, 0x1a130,
2093                0x1a138, 0x1a138,
2094                0x1a190, 0x1a1c4,
2095                0x1a1fc, 0x1a1fc,
2096                0x1e008, 0x1e00c,
2097                0x1e040, 0x1e044,
2098                0x1e04c, 0x1e04c,
2099                0x1e284, 0x1e290,
2100                0x1e2c0, 0x1e2c0,
2101                0x1e2e0, 0x1e2e0,
2102                0x1e300, 0x1e384,
2103                0x1e3c0, 0x1e3c8,
2104                0x1e408, 0x1e40c,
2105                0x1e440, 0x1e444,
2106                0x1e44c, 0x1e44c,
2107                0x1e684, 0x1e690,
2108                0x1e6c0, 0x1e6c0,
2109                0x1e6e0, 0x1e6e0,
2110                0x1e700, 0x1e784,
2111                0x1e7c0, 0x1e7c8,
2112                0x1e808, 0x1e80c,
2113                0x1e840, 0x1e844,
2114                0x1e84c, 0x1e84c,
2115                0x1ea84, 0x1ea90,
2116                0x1eac0, 0x1eac0,
2117                0x1eae0, 0x1eae0,
2118                0x1eb00, 0x1eb84,
2119                0x1ebc0, 0x1ebc8,
2120                0x1ec08, 0x1ec0c,
2121                0x1ec40, 0x1ec44,
2122                0x1ec4c, 0x1ec4c,
2123                0x1ee84, 0x1ee90,
2124                0x1eec0, 0x1eec0,
2125                0x1eee0, 0x1eee0,
2126                0x1ef00, 0x1ef84,
2127                0x1efc0, 0x1efc8,
2128                0x1f008, 0x1f00c,
2129                0x1f040, 0x1f044,
2130                0x1f04c, 0x1f04c,
2131                0x1f284, 0x1f290,
2132                0x1f2c0, 0x1f2c0,
2133                0x1f2e0, 0x1f2e0,
2134                0x1f300, 0x1f384,
2135                0x1f3c0, 0x1f3c8,
2136                0x1f408, 0x1f40c,
2137                0x1f440, 0x1f444,
2138                0x1f44c, 0x1f44c,
2139                0x1f684, 0x1f690,
2140                0x1f6c0, 0x1f6c0,
2141                0x1f6e0, 0x1f6e0,
2142                0x1f700, 0x1f784,
2143                0x1f7c0, 0x1f7c8,
2144                0x1f808, 0x1f80c,
2145                0x1f840, 0x1f844,
2146                0x1f84c, 0x1f84c,
2147                0x1fa84, 0x1fa90,
2148                0x1fac0, 0x1fac0,
2149                0x1fae0, 0x1fae0,
2150                0x1fb00, 0x1fb84,
2151                0x1fbc0, 0x1fbc8,
2152                0x1fc08, 0x1fc0c,
2153                0x1fc40, 0x1fc44,
2154                0x1fc4c, 0x1fc4c,
2155                0x1fe84, 0x1fe90,
2156                0x1fec0, 0x1fec0,
2157                0x1fee0, 0x1fee0,
2158                0x1ff00, 0x1ff84,
2159                0x1ffc0, 0x1ffc8,
2160                0x30000, 0x30030,
2161                0x30038, 0x30038,
2162                0x30040, 0x30040,
2163                0x30048, 0x30048,
2164                0x30050, 0x30050,
2165                0x3005c, 0x30060,
2166                0x30068, 0x30068,
2167                0x30070, 0x30070,
2168                0x30100, 0x30168,
2169                0x30190, 0x301a0,
2170                0x301a8, 0x301b8,
2171                0x301c4, 0x301c8,
2172                0x301d0, 0x301d0,
2173                0x30200, 0x30320,
2174                0x30400, 0x304b4,
2175                0x304c0, 0x3052c,
2176                0x30540, 0x3061c,
2177                0x30800, 0x308a0,
2178                0x308c0, 0x30908,
2179                0x30910, 0x309b8,
2180                0x30a00, 0x30a04,
2181                0x30a0c, 0x30a14,
2182                0x30a1c, 0x30a2c,
2183                0x30a44, 0x30a50,
2184                0x30a74, 0x30a74,
2185                0x30a7c, 0x30afc,
2186                0x30b08, 0x30c24,
2187                0x30d00, 0x30d14,
2188                0x30d1c, 0x30d3c,
2189                0x30d44, 0x30d4c,
2190                0x30d54, 0x30d74,
2191                0x30d7c, 0x30d7c,
2192                0x30de0, 0x30de0,
2193                0x30e00, 0x30ed4,
2194                0x30f00, 0x30fa4,
2195                0x30fc0, 0x30fc4,
2196                0x31000, 0x31004,
2197                0x31080, 0x310fc,
2198                0x31208, 0x31220,
2199                0x3123c, 0x31254,
2200                0x31300, 0x31300,
2201                0x31308, 0x3131c,
2202                0x31338, 0x3133c,
2203                0x31380, 0x31380,
2204                0x31388, 0x313a8,
2205                0x313b4, 0x313b4,
2206                0x31400, 0x31420,
2207                0x31438, 0x3143c,
2208                0x31480, 0x31480,
2209                0x314a8, 0x314a8,
2210                0x314b0, 0x314b4,
2211                0x314c8, 0x314d4,
2212                0x31a40, 0x31a4c,
2213                0x31af0, 0x31b20,
2214                0x31b38, 0x31b3c,
2215                0x31b80, 0x31b80,
2216                0x31ba8, 0x31ba8,
2217                0x31bb0, 0x31bb4,
2218                0x31bc8, 0x31bd4,
2219                0x32140, 0x3218c,
2220                0x321f0, 0x321f4,
2221                0x32200, 0x32200,
2222                0x32218, 0x32218,
2223                0x32400, 0x32400,
2224                0x32408, 0x3241c,
2225                0x32618, 0x32620,
2226                0x32664, 0x32664,
2227                0x326a8, 0x326a8,
2228                0x326ec, 0x326ec,
2229                0x32a00, 0x32abc,
2230                0x32b00, 0x32b38,
2231                0x32b40, 0x32b58,
2232                0x32b60, 0x32b78,
2233                0x32c00, 0x32c00,
2234                0x32c08, 0x32c3c,
2235                0x32e00, 0x32e2c,
2236                0x32f00, 0x32f2c,
2237                0x33000, 0x3302c,
2238                0x33034, 0x33050,
2239                0x33058, 0x33058,
2240                0x33060, 0x3308c,
2241                0x3309c, 0x330ac,
2242                0x330c0, 0x330c0,
2243                0x330c8, 0x330d0,
2244                0x330d8, 0x330e0,
2245                0x330ec, 0x3312c,
2246                0x33134, 0x33150,
2247                0x33158, 0x33158,
2248                0x33160, 0x3318c,
2249                0x3319c, 0x331ac,
2250                0x331c0, 0x331c0,
2251                0x331c8, 0x331d0,
2252                0x331d8, 0x331e0,
2253                0x331ec, 0x33290,
2254                0x33298, 0x332c4,
2255                0x332e4, 0x33390,
2256                0x33398, 0x333c4,
2257                0x333e4, 0x3342c,
2258                0x33434, 0x33450,
2259                0x33458, 0x33458,
2260                0x33460, 0x3348c,
2261                0x3349c, 0x334ac,
2262                0x334c0, 0x334c0,
2263                0x334c8, 0x334d0,
2264                0x334d8, 0x334e0,
2265                0x334ec, 0x3352c,
2266                0x33534, 0x33550,
2267                0x33558, 0x33558,
2268                0x33560, 0x3358c,
2269                0x3359c, 0x335ac,
2270                0x335c0, 0x335c0,
2271                0x335c8, 0x335d0,
2272                0x335d8, 0x335e0,
2273                0x335ec, 0x33690,
2274                0x33698, 0x336c4,
2275                0x336e4, 0x33790,
2276                0x33798, 0x337c4,
2277                0x337e4, 0x337fc,
2278                0x33814, 0x33814,
2279                0x33854, 0x33868,
2280                0x33880, 0x3388c,
2281                0x338c0, 0x338d0,
2282                0x338e8, 0x338ec,
2283                0x33900, 0x3392c,
2284                0x33934, 0x33950,
2285                0x33958, 0x33958,
2286                0x33960, 0x3398c,
2287                0x3399c, 0x339ac,
2288                0x339c0, 0x339c0,
2289                0x339c8, 0x339d0,
2290                0x339d8, 0x339e0,
2291                0x339ec, 0x33a90,
2292                0x33a98, 0x33ac4,
2293                0x33ae4, 0x33b10,
2294                0x33b24, 0x33b28,
2295                0x33b38, 0x33b50,
2296                0x33bf0, 0x33c10,
2297                0x33c24, 0x33c28,
2298                0x33c38, 0x33c50,
2299                0x33cf0, 0x33cfc,
2300                0x34000, 0x34030,
2301                0x34038, 0x34038,
2302                0x34040, 0x34040,
2303                0x34048, 0x34048,
2304                0x34050, 0x34050,
2305                0x3405c, 0x34060,
2306                0x34068, 0x34068,
2307                0x34070, 0x34070,
2308                0x34100, 0x34168,
2309                0x34190, 0x341a0,
2310                0x341a8, 0x341b8,
2311                0x341c4, 0x341c8,
2312                0x341d0, 0x341d0,
2313                0x34200, 0x34320,
2314                0x34400, 0x344b4,
2315                0x344c0, 0x3452c,
2316                0x34540, 0x3461c,
2317                0x34800, 0x348a0,
2318                0x348c0, 0x34908,
2319                0x34910, 0x349b8,
2320                0x34a00, 0x34a04,
2321                0x34a0c, 0x34a14,
2322                0x34a1c, 0x34a2c,
2323                0x34a44, 0x34a50,
2324                0x34a74, 0x34a74,
2325                0x34a7c, 0x34afc,
2326                0x34b08, 0x34c24,
2327                0x34d00, 0x34d14,
2328                0x34d1c, 0x34d3c,
2329                0x34d44, 0x34d4c,
2330                0x34d54, 0x34d74,
2331                0x34d7c, 0x34d7c,
2332                0x34de0, 0x34de0,
2333                0x34e00, 0x34ed4,
2334                0x34f00, 0x34fa4,
2335                0x34fc0, 0x34fc4,
2336                0x35000, 0x35004,
2337                0x35080, 0x350fc,
2338                0x35208, 0x35220,
2339                0x3523c, 0x35254,
2340                0x35300, 0x35300,
2341                0x35308, 0x3531c,
2342                0x35338, 0x3533c,
2343                0x35380, 0x35380,
2344                0x35388, 0x353a8,
2345                0x353b4, 0x353b4,
2346                0x35400, 0x35420,
2347                0x35438, 0x3543c,
2348                0x35480, 0x35480,
2349                0x354a8, 0x354a8,
2350                0x354b0, 0x354b4,
2351                0x354c8, 0x354d4,
2352                0x35a40, 0x35a4c,
2353                0x35af0, 0x35b20,
2354                0x35b38, 0x35b3c,
2355                0x35b80, 0x35b80,
2356                0x35ba8, 0x35ba8,
2357                0x35bb0, 0x35bb4,
2358                0x35bc8, 0x35bd4,
2359                0x36140, 0x3618c,
2360                0x361f0, 0x361f4,
2361                0x36200, 0x36200,
2362                0x36218, 0x36218,
2363                0x36400, 0x36400,
2364                0x36408, 0x3641c,
2365                0x36618, 0x36620,
2366                0x36664, 0x36664,
2367                0x366a8, 0x366a8,
2368                0x366ec, 0x366ec,
2369                0x36a00, 0x36abc,
2370                0x36b00, 0x36b38,
2371                0x36b40, 0x36b58,
2372                0x36b60, 0x36b78,
2373                0x36c00, 0x36c00,
2374                0x36c08, 0x36c3c,
2375                0x36e00, 0x36e2c,
2376                0x36f00, 0x36f2c,
2377                0x37000, 0x3702c,
2378                0x37034, 0x37050,
2379                0x37058, 0x37058,
2380                0x37060, 0x3708c,
2381                0x3709c, 0x370ac,
2382                0x370c0, 0x370c0,
2383                0x370c8, 0x370d0,
2384                0x370d8, 0x370e0,
2385                0x370ec, 0x3712c,
2386                0x37134, 0x37150,
2387                0x37158, 0x37158,
2388                0x37160, 0x3718c,
2389                0x3719c, 0x371ac,
2390                0x371c0, 0x371c0,
2391                0x371c8, 0x371d0,
2392                0x371d8, 0x371e0,
2393                0x371ec, 0x37290,
2394                0x37298, 0x372c4,
2395                0x372e4, 0x37390,
2396                0x37398, 0x373c4,
2397                0x373e4, 0x3742c,
2398                0x37434, 0x37450,
2399                0x37458, 0x37458,
2400                0x37460, 0x3748c,
2401                0x3749c, 0x374ac,
2402                0x374c0, 0x374c0,
2403                0x374c8, 0x374d0,
2404                0x374d8, 0x374e0,
2405                0x374ec, 0x3752c,
2406                0x37534, 0x37550,
2407                0x37558, 0x37558,
2408                0x37560, 0x3758c,
2409                0x3759c, 0x375ac,
2410                0x375c0, 0x375c0,
2411                0x375c8, 0x375d0,
2412                0x375d8, 0x375e0,
2413                0x375ec, 0x37690,
2414                0x37698, 0x376c4,
2415                0x376e4, 0x37790,
2416                0x37798, 0x377c4,
2417                0x377e4, 0x377fc,
2418                0x37814, 0x37814,
2419                0x37854, 0x37868,
2420                0x37880, 0x3788c,
2421                0x378c0, 0x378d0,
2422                0x378e8, 0x378ec,
2423                0x37900, 0x3792c,
2424                0x37934, 0x37950,
2425                0x37958, 0x37958,
2426                0x37960, 0x3798c,
2427                0x3799c, 0x379ac,
2428                0x379c0, 0x379c0,
2429                0x379c8, 0x379d0,
2430                0x379d8, 0x379e0,
2431                0x379ec, 0x37a90,
2432                0x37a98, 0x37ac4,
2433                0x37ae4, 0x37b10,
2434                0x37b24, 0x37b28,
2435                0x37b38, 0x37b50,
2436                0x37bf0, 0x37c10,
2437                0x37c24, 0x37c28,
2438                0x37c38, 0x37c50,
2439                0x37cf0, 0x37cfc,
2440                0x40040, 0x40040,
2441                0x40080, 0x40084,
2442                0x40100, 0x40100,
2443                0x40140, 0x401bc,
2444                0x40200, 0x40214,
2445                0x40228, 0x40228,
2446                0x40240, 0x40258,
2447                0x40280, 0x40280,
2448                0x40304, 0x40304,
2449                0x40330, 0x4033c,
2450                0x41304, 0x413b8,
2451                0x413c0, 0x413c8,
2452                0x413d0, 0x413dc,
2453                0x413f0, 0x413f0,
2454                0x41400, 0x4140c,
2455                0x41414, 0x4141c,
2456                0x41480, 0x414d0,
2457                0x44000, 0x4407c,
2458                0x440c0, 0x441ac,
2459                0x441b4, 0x4427c,
2460                0x442c0, 0x443ac,
2461                0x443b4, 0x4447c,
2462                0x444c0, 0x445ac,
2463                0x445b4, 0x4467c,
2464                0x446c0, 0x447ac,
2465                0x447b4, 0x4487c,
2466                0x448c0, 0x449ac,
2467                0x449b4, 0x44a7c,
2468                0x44ac0, 0x44bac,
2469                0x44bb4, 0x44c7c,
2470                0x44cc0, 0x44dac,
2471                0x44db4, 0x44e7c,
2472                0x44ec0, 0x44fac,
2473                0x44fb4, 0x4507c,
2474                0x450c0, 0x451ac,
2475                0x451b4, 0x451fc,
2476                0x45800, 0x45804,
2477                0x45810, 0x45830,
2478                0x45840, 0x45860,
2479                0x45868, 0x45868,
2480                0x45880, 0x45884,
2481                0x458a0, 0x458b0,
2482                0x45a00, 0x45a04,
2483                0x45a10, 0x45a30,
2484                0x45a40, 0x45a60,
2485                0x45a68, 0x45a68,
2486                0x45a80, 0x45a84,
2487                0x45aa0, 0x45ab0,
2488                0x460c0, 0x460e4,
2489                0x47000, 0x4703c,
2490                0x47044, 0x4708c,
2491                0x47200, 0x47250,
2492                0x47400, 0x47408,
2493                0x47414, 0x47420,
2494                0x47600, 0x47618,
2495                0x47800, 0x47814,
2496                0x47820, 0x4782c,
2497                0x50000, 0x50084,
2498                0x50090, 0x500cc,
2499                0x50300, 0x50384,
2500                0x50400, 0x50400,
2501                0x50800, 0x50884,
2502                0x50890, 0x508cc,
2503                0x50b00, 0x50b84,
2504                0x50c00, 0x50c00,
2505                0x51000, 0x51020,
2506                0x51028, 0x510b0,
2507                0x51300, 0x51324,
2508        };
2509
2510        u32 *buf_end = (u32 *)((char *)buf + buf_size);
2511        const unsigned int *reg_ranges;
2512        int reg_ranges_size, range;
2513        unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2514
2515        /* Select the right set of register ranges to dump depending on the
2516         * adapter chip type.
2517         */
2518        switch (chip_version) {
2519        case CHELSIO_T4:
2520                reg_ranges = t4_reg_ranges;
2521                reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2522                break;
2523
2524        case CHELSIO_T5:
2525                reg_ranges = t5_reg_ranges;
2526                reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2527                break;
2528
2529        case CHELSIO_T6:
2530                reg_ranges = t6_reg_ranges;
2531                reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2532                break;
2533
2534        default:
2535                dev_err(adap->pdev_dev,
2536                        "Unsupported chip version %d\n", chip_version);
2537                return;
2538        }
2539
2540        /* Clear the register buffer and insert the appropriate register
2541         * values selected by the above register ranges.
2542         */
2543        memset(buf, 0, buf_size);
2544        for (range = 0; range < reg_ranges_size; range += 2) {
2545                unsigned int reg = reg_ranges[range];
2546                unsigned int last_reg = reg_ranges[range + 1];
2547                u32 *bufp = (u32 *)((char *)buf + reg);
2548
2549                /* Iterate across the register range filling in the register
2550                 * buffer but don't write past the end of the register buffer.
2551                 */
2552                while (reg <= last_reg && bufp < buf_end) {
2553                        *bufp++ = t4_read_reg(adap, reg);
2554                        reg += sizeof(u32);
2555                }
2556        }
2557}
2558
2559#define EEPROM_STAT_ADDR   0x7bfc
2560#define VPD_SIZE           0x800
2561#define VPD_BASE           0x400
2562#define VPD_BASE_OLD       0
2563#define VPD_LEN            1024
2564#define CHELSIO_VPD_UNIQUE_ID 0x82
2565
2566/**
2567 *      t4_seeprom_wp - enable/disable EEPROM write protection
2568 *      @adapter: the adapter
2569 *      @enable: whether to enable or disable write protection
2570 *
2571 *      Enables or disables write protection on the serial EEPROM.
2572 */
2573int t4_seeprom_wp(struct adapter *adapter, bool enable)
2574{
2575        unsigned int v = enable ? 0xc : 0;
2576        int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2577        return ret < 0 ? ret : 0;
2578}
2579
2580/**
2581 *      t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
2582 *      @adapter: adapter to read
2583 *      @p: where to store the parameters
2584 *
2585 *      Reads card parameters stored in VPD EEPROM.
2586 */
2587int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
2588{
2589        int i, ret = 0, addr;
2590        int ec, sn, pn, na;
2591        u8 *vpd, csum;
2592        unsigned int vpdr_len, kw_offset, id_len;
2593
2594        vpd = vmalloc(VPD_LEN);
2595        if (!vpd)
2596                return -ENOMEM;
2597
2598        /* We have two VPD data structures stored in the adapter VPD area.
2599         * By default, Linux calculates the size of the VPD area by traversing
2600         * the first VPD area at offset 0x0, so we need to tell the OS what
2601         * our real VPD size is.
2602         */
2603        ret = pci_set_vpd_size(adapter->pdev, VPD_SIZE);
2604        if (ret < 0)
2605                goto out;
2606
2607        /* Card information normally starts at VPD_BASE but early cards had
2608         * it at 0.
2609         */
2610        ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
2611        if (ret < 0)
2612                goto out;
2613
2614        /* The VPD shall have a unique identifier specified by the PCI SIG.
2615         * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2616         * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2617         * is expected to automatically put this entry at the
2618         * beginning of the VPD.
2619         */
2620        addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2621
2622        ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
2623        if (ret < 0)
2624                goto out;
2625
2626        if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
2627                dev_err(adapter->pdev_dev, "missing VPD ID string\n");
2628                ret = -EINVAL;
2629                goto out;
2630        }
2631
2632        id_len = pci_vpd_lrdt_size(vpd);
2633        if (id_len > ID_LEN)
2634                id_len = ID_LEN;
2635
2636        i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
2637        if (i < 0) {
2638                dev_err(adapter->pdev_dev, "missing VPD-R section\n");
2639                ret = -EINVAL;
2640                goto out;
2641        }
2642
2643        vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
2644        kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
2645        if (vpdr_len + kw_offset > VPD_LEN) {
2646                dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
2647                ret = -EINVAL;
2648                goto out;
2649        }
2650
2651#define FIND_VPD_KW(var, name) do { \
2652        var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
2653        if (var < 0) { \
2654                dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
2655                ret = -EINVAL; \
2656                goto out; \
2657        } \
2658        var += PCI_VPD_INFO_FLD_HDR_SIZE; \
2659} while (0)
2660
2661        FIND_VPD_KW(i, "RV");
2662        for (csum = 0; i >= 0; i--)
2663                csum += vpd[i];
2664
2665        if (csum) {
2666                dev_err(adapter->pdev_dev,
2667                        "corrupted VPD EEPROM, actual csum %u\n", csum);
2668                ret = -EINVAL;
2669                goto out;
2670        }
2671
2672        FIND_VPD_KW(ec, "EC");
2673        FIND_VPD_KW(sn, "SN");
2674        FIND_VPD_KW(pn, "PN");
2675        FIND_VPD_KW(na, "NA");
2676#undef FIND_VPD_KW
2677
2678        memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
2679        strim(p->id);
2680        memcpy(p->ec, vpd + ec, EC_LEN);
2681        strim(p->ec);
2682        i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
2683        memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
2684        strim(p->sn);
2685        i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
2686        memcpy(p->pn, vpd + pn, min(i, PN_LEN));
2687        strim(p->pn);
2688        memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
2689        strim((char *)p->na);
2690
2691out:
2692        vfree(vpd);
2693        return ret;
2694}
2695
2696/**
2697 *      t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2698 *      @adapter: adapter to read
2699 *      @p: where to store the parameters
2700 *
2701 *      Reads card parameters stored in VPD EEPROM and retrieves the Core
2702 *      Clock.  This can only be called after a connection to the firmware
2703 *      is established.
2704 */
2705int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2706{
2707        u32 cclk_param, cclk_val;
2708        int ret;
2709
2710        /* Grab the raw VPD parameters.
2711         */
2712        ret = t4_get_raw_vpd_params(adapter, p);
2713        if (ret)
2714                return ret;
2715
2716        /* Ask firmware for the Core Clock since it knows how to translate the
2717         * Reference Clock ('V2') VPD field into a Core Clock value ...
2718         */
2719        cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2720                      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
2721        ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2722                              1, &cclk_param, &cclk_val);
2723
2724        if (ret)
2725                return ret;
2726        p->cclk = cclk_val;
2727
2728        return 0;
2729}
2730
2731/* serial flash and firmware constants */
2732enum {
2733        SF_ATTEMPTS = 10,             /* max retries for SF operations */
2734
2735        /* flash command opcodes */
2736        SF_PROG_PAGE    = 2,          /* program page */
2737        SF_WR_DISABLE   = 4,          /* disable writes */
2738        SF_RD_STATUS    = 5,          /* read status register */
2739        SF_WR_ENABLE    = 6,          /* enable writes */
2740        SF_RD_DATA_FAST = 0xb,        /* read flash */
2741        SF_RD_ID        = 0x9f,       /* read ID */
2742        SF_ERASE_SECTOR = 0xd8,       /* erase sector */
2743
2744        FW_MAX_SIZE = 16 * SF_SEC_SIZE,
2745};
2746
2747/**
2748 *      sf1_read - read data from the serial flash
2749 *      @adapter: the adapter
2750 *      @byte_cnt: number of bytes to read
2751 *      @cont: whether another operation will be chained
2752 *      @lock: whether to lock SF for PL access only
2753 *      @valp: where to store the read data
2754 *
2755 *      Reads up to 4 bytes of data from the serial flash.  The location of
2756 *      the read needs to be specified prior to calling this by issuing the
2757 *      appropriate commands to the serial flash.
2758 */
2759static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2760                    int lock, u32 *valp)
2761{
2762        int ret;
2763
2764        if (!byte_cnt || byte_cnt > 4)
2765                return -EINVAL;
2766        if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2767                return -EBUSY;
2768        t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2769                     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2770        ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2771        if (!ret)
2772                *valp = t4_read_reg(adapter, SF_DATA_A);
2773        return ret;
2774}
2775
2776/**
2777 *      sf1_write - write data to the serial flash
2778 *      @adapter: the adapter
2779 *      @byte_cnt: number of bytes to write
2780 *      @cont: whether another operation will be chained
2781 *      @lock: whether to lock SF for PL access only
2782 *      @val: value to write
2783 *
2784 *      Writes up to 4 bytes of data to the serial flash.  The location of
2785 *      the write needs to be specified prior to calling this by issuing the
2786 *      appropriate commands to the serial flash.
2787 */
2788static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2789                     int lock, u32 val)
2790{
2791        if (!byte_cnt || byte_cnt > 4)
2792                return -EINVAL;
2793        if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2794                return -EBUSY;
2795        t4_write_reg(adapter, SF_DATA_A, val);
2796        t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2797                     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
2798        return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2799}
2800
2801/**
2802 *      flash_wait_op - wait for a flash operation to complete
2803 *      @adapter: the adapter
2804 *      @attempts: max number of polls of the status register
2805 *      @delay: delay between polls in ms
2806 *
2807 *      Wait for a flash operation to complete by polling the status register.
2808 */
2809static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
2810{
2811        int ret;
2812        u32 status;
2813
2814        while (1) {
2815                if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
2816                    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
2817                        return ret;
2818                if (!(status & 1))
2819                        return 0;
2820                if (--attempts == 0)
2821                        return -EAGAIN;
2822                if (delay)
2823                        msleep(delay);
2824        }
2825}
2826
2827/**
2828 *      t4_read_flash - read words from serial flash
2829 *      @adapter: the adapter
2830 *      @addr: the start address for the read
2831 *      @nwords: how many 32-bit words to read
2832 *      @data: where to store the read data
2833 *      @byte_oriented: whether to store data as bytes or as words
2834 *
2835 *      Read the specified number of 32-bit words from the serial flash.
2836 *      If @byte_oriented is set the read data is stored as a byte array
2837 *      (i.e., big-endian), otherwise as 32-bit words in the platform's
2838 *      natural endianness.
2839 */
2840int t4_read_flash(struct adapter *adapter, unsigned int addr,
2841                  unsigned int nwords, u32 *data, int byte_oriented)
2842{
2843        int ret;
2844
2845        if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
2846                return -EINVAL;
2847
2848        addr = swab32(addr) | SF_RD_DATA_FAST;
2849
2850        if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
2851            (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
2852                return ret;
2853
2854        for ( ; nwords; nwords--, data++) {
2855                ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
2856                if (nwords == 1)
2857                        t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2858                if (ret)
2859                        return ret;
2860                if (byte_oriented)
2861                        *data = (__force __u32)(cpu_to_be32(*data));
2862        }
2863        return 0;
2864}
2865
2866/**
2867 *      t4_write_flash - write up to a page of data to the serial flash
2868 *      @adapter: the adapter
2869 *      @addr: the start address to write
2870 *      @n: length of data to write in bytes
2871 *      @data: the data to write
2872 *
2873 *      Writes up to a page of data (256 bytes) to the serial flash starting
2874 *      at the given address.  All the data must be written to the same page.
2875 */
2876static int t4_write_flash(struct adapter *adapter, unsigned int addr,
2877                          unsigned int n, const u8 *data)
2878{
2879        int ret;
2880        u32 buf[64];
2881        unsigned int i, c, left, val, offset = addr & 0xff;
2882
2883        if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
2884                return -EINVAL;
2885
2886        val = swab32(addr) | SF_PROG_PAGE;
2887
2888        if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
2889            (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
2890                goto unlock;
2891
2892        for (left = n; left; left -= c) {
2893                c = min(left, 4U);
2894                for (val = 0, i = 0; i < c; ++i)
2895                        val = (val << 8) + *data++;
2896
2897                ret = sf1_write(adapter, c, c != left, 1, val);
2898                if (ret)
2899                        goto unlock;
2900        }
2901        ret = flash_wait_op(adapter, 8, 1);
2902        if (ret)
2903                goto unlock;
2904
2905        t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2906
2907        /* Read the page to verify the write succeeded */
2908        ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
2909        if (ret)
2910                return ret;
2911
2912        if (memcmp(data - n, (u8 *)buf + offset, n)) {
2913                dev_err(adapter->pdev_dev,
2914                        "failed to correctly write the flash page at %#x\n",
2915                        addr);
2916                return -EIO;
2917        }
2918        return 0;
2919
2920unlock:
2921        t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2922        return ret;
2923}
2924
2925/**
2926 *      t4_get_fw_version - read the firmware version
2927 *      @adapter: the adapter
2928 *      @vers: where to place the version
2929 *
2930 *      Reads the FW version from flash.
2931 */
2932int t4_get_fw_version(struct adapter *adapter, u32 *vers)
2933{
2934        return t4_read_flash(adapter, FLASH_FW_START +
2935                             offsetof(struct fw_hdr, fw_ver), 1,
2936                             vers, 0);
2937}
2938
2939/**
2940 *      t4_get_tp_version - read the TP microcode version
2941 *      @adapter: the adapter
2942 *      @vers: where to place the version
2943 *
2944 *      Reads the TP microcode version from flash.
2945 */
2946int t4_get_tp_version(struct adapter *adapter, u32 *vers)
2947{
2948        return t4_read_flash(adapter, FLASH_FW_START +
2949                             offsetof(struct fw_hdr, tp_microcode_ver),
2950                             1, vers, 0);
2951}
2952
2953/**
2954 *      t4_get_exprom_version - return the Expansion ROM version (if any)
2955 *      @adapter: the adapter
2956 *      @vers: where to place the version
2957 *
2958 *      Reads the Expansion ROM header from FLASH and returns the version
2959 *      number (if present) through the @vers return value pointer.  We return
2960 *      this in the Firmware Version Format since it's convenient.  Return
2961 *      0 on success, -ENOENT if no Expansion ROM is present.
2962 */
2963int t4_get_exprom_version(struct adapter *adap, u32 *vers)
2964{
2965        struct exprom_header {
2966                unsigned char hdr_arr[16];      /* must start with 0x55aa */
2967                unsigned char hdr_ver[4];       /* Expansion ROM version */
2968        } *hdr;
2969        u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
2970                                           sizeof(u32))];
2971        int ret;
2972
2973        ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
2974                            ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
2975                            0);
2976        if (ret)
2977                return ret;
2978
2979        hdr = (struct exprom_header *)exprom_header_buf;
2980        if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
2981                return -ENOENT;
2982
2983        *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
2984                 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
2985                 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
2986                 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
2987        return 0;
2988}
2989
2990/**
2991 *      t4_check_fw_version - check if the FW is supported with this driver
2992 *      @adap: the adapter
2993 *
2994 *      Checks if an adapter's FW is compatible with the driver.  Returns 0
2995 *      if there's exact match, a negative error if the version could not be
2996 *      read or there's a major version mismatch
2997 */
2998int t4_check_fw_version(struct adapter *adap)
2999{
3000        int i, ret, major, minor, micro;
3001        int exp_major, exp_minor, exp_micro;
3002        unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
3003
3004        ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3005        /* Try multiple times before returning error */
3006        for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
3007                ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3008
3009        if (ret)
3010                return ret;
3011
3012        major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
3013        minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
3014        micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
3015
3016        switch (chip_version) {
3017        case CHELSIO_T4:
3018                exp_major = T4FW_MIN_VERSION_MAJOR;
3019                exp_minor = T4FW_MIN_VERSION_MINOR;
3020                exp_micro = T4FW_MIN_VERSION_MICRO;
3021                break;
3022        case CHELSIO_T5:
3023                exp_major = T5FW_MIN_VERSION_MAJOR;
3024                exp_minor = T5FW_MIN_VERSION_MINOR;
3025                exp_micro = T5FW_MIN_VERSION_MICRO;
3026                break;
3027        case CHELSIO_T6:
3028                exp_major = T6FW_MIN_VERSION_MAJOR;
3029                exp_minor = T6FW_MIN_VERSION_MINOR;
3030                exp_micro = T6FW_MIN_VERSION_MICRO;
3031                break;
3032        default:
3033                dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3034                        adap->chip);
3035                return -EINVAL;
3036        }
3037
3038        if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3039            (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3040                dev_err(adap->pdev_dev,
3041                        "Card has firmware version %u.%u.%u, minimum "
3042                        "supported firmware is %u.%u.%u.\n", major, minor,
3043                        micro, exp_major, exp_minor, exp_micro);
3044                return -EFAULT;
3045        }
3046        return 0;
3047}
3048
3049/* Is the given firmware API compatible with the one the driver was compiled
3050 * with?
3051 */
3052static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
3053{
3054
3055        /* short circuit if it's the exact same firmware version */
3056        if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3057                return 1;
3058
3059#define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3060        if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3061            SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3062                return 1;
3063#undef SAME_INTF
3064
3065        return 0;
3066}
3067
3068/* The firmware in the filesystem is usable, but should it be installed?
3069 * This routine explains itself in detail if it indicates the filesystem
3070 * firmware should be installed.
3071 */
3072static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3073                                int k, int c)
3074{
3075        const char *reason;
3076
3077        if (!card_fw_usable) {
3078                reason = "incompatible or unusable";
3079                goto install;
3080        }
3081
3082        if (k > c) {
3083                reason = "older than the version supported with this driver";
3084                goto install;
3085        }
3086
3087        return 0;
3088
3089install:
3090        dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3091                "installing firmware %u.%u.%u.%u on card.\n",
3092                FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3093                FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3094                FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3095                FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3096
3097        return 1;
3098}
3099
3100int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3101               const u8 *fw_data, unsigned int fw_size,
3102               struct fw_hdr *card_fw, enum dev_state state,
3103               int *reset)
3104{
3105        int ret, card_fw_usable, fs_fw_usable;
3106        const struct fw_hdr *fs_fw;
3107        const struct fw_hdr *drv_fw;
3108
3109        drv_fw = &fw_info->fw_hdr;
3110
3111        /* Read the header of the firmware on the card */
3112        ret = -t4_read_flash(adap, FLASH_FW_START,
3113                            sizeof(*card_fw) / sizeof(uint32_t),
3114                            (uint32_t *)card_fw, 1);
3115        if (ret == 0) {
3116                card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3117        } else {
3118                dev_err(adap->pdev_dev,
3119                        "Unable to read card's firmware header: %d\n", ret);
3120                card_fw_usable = 0;
3121        }
3122
3123        if (fw_data != NULL) {
3124                fs_fw = (const void *)fw_data;
3125                fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3126        } else {
3127                fs_fw = NULL;
3128                fs_fw_usable = 0;
3129        }
3130
3131        if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3132            (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3133                /* Common case: the firmware on the card is an exact match and
3134                 * the filesystem one is an exact match too, or the filesystem
3135                 * one is absent/incompatible.
3136                 */
3137        } else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3138                   should_install_fs_fw(adap, card_fw_usable,
3139                                        be32_to_cpu(fs_fw->fw_ver),
3140                                        be32_to_cpu(card_fw->fw_ver))) {
3141                ret = -t4_fw_upgrade(adap, adap->mbox, fw_data,
3142                                     fw_size, 0);
3143                if (ret != 0) {
3144                        dev_err(adap->pdev_dev,
3145                                "failed to install firmware: %d\n", ret);
3146                        goto bye;
3147                }
3148
3149                /* Installed successfully, update the cached header too. */
3150                *card_fw = *fs_fw;
3151                card_fw_usable = 1;
3152                *reset = 0;     /* already reset as part of load_fw */
3153        }
3154
3155        if (!card_fw_usable) {
3156                uint32_t d, c, k;
3157
3158                d = be32_to_cpu(drv_fw->fw_ver);
3159                c = be32_to_cpu(card_fw->fw_ver);
3160                k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3161
3162                dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3163                        "chip state %d, "
3164                        "driver compiled with %d.%d.%d.%d, "
3165                        "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3166                        state,
3167                        FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3168                        FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3169                        FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3170                        FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3171                        FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3172                        FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3173                ret = EINVAL;
3174                goto bye;
3175        }
3176
3177        /* We're using whatever's on the card and it's known to be good. */
3178        adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3179        adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3180
3181bye:
3182        return ret;
3183}
3184
3185/**
3186 *      t4_flash_erase_sectors - erase a range of flash sectors
3187 *      @adapter: the adapter
3188 *      @start: the first sector to erase
3189 *      @end: the last sector to erase
3190 *
3191 *      Erases the sectors in the given inclusive range.
3192 */
3193static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3194{
3195        int ret = 0;
3196
3197        if (end >= adapter->params.sf_nsec)
3198                return -EINVAL;
3199
3200        while (start <= end) {
3201                if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3202                    (ret = sf1_write(adapter, 4, 0, 1,
3203                                     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3204                    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3205                        dev_err(adapter->pdev_dev,
3206                                "erase of flash sector %d failed, error %d\n",
3207                                start, ret);
3208                        break;
3209                }
3210                start++;
3211        }
3212        t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3213        return ret;
3214}
3215
3216/**
3217 *      t4_flash_cfg_addr - return the address of the flash configuration file
3218 *      @adapter: the adapter
3219 *
3220 *      Return the address within the flash where the Firmware Configuration
3221 *      File is stored.
3222 */
3223unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3224{
3225        if (adapter->params.sf_size == 0x100000)
3226                return FLASH_FPGA_CFG_START;
3227        else
3228                return FLASH_CFG_START;
3229}
3230
3231/* Return TRUE if the specified firmware matches the adapter.  I.e. T4
3232 * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3233 * and emit an error message for mismatched firmware to save our caller the
3234 * effort ...
3235 */
3236static bool t4_fw_matches_chip(const struct adapter *adap,
3237                               const struct fw_hdr *hdr)
3238{
3239        /* The expression below will return FALSE for any unsupported adapter
3240         * which will keep us "honest" in the future ...
3241         */
3242        if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3243            (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3244            (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
3245                return true;
3246
3247        dev_err(adap->pdev_dev,
3248                "FW image (%d) is not suitable for this adapter (%d)\n",
3249                hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3250        return false;
3251}
3252
3253/**
3254 *      t4_load_fw - download firmware
3255 *      @adap: the adapter
3256 *      @fw_data: the firmware image to write
3257 *      @size: image size
3258 *
3259 *      Write the supplied firmware image to the card's serial flash.
3260 */
3261int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3262{
3263        u32 csum;
3264        int ret, addr;
3265        unsigned int i;
3266        u8 first_page[SF_PAGE_SIZE];
3267        const __be32 *p = (const __be32 *)fw_data;
3268        const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3269        unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3270        unsigned int fw_img_start = adap->params.sf_fw_start;
3271        unsigned int fw_start_sec = fw_img_start / sf_sec_size;
3272
3273        if (!size) {
3274                dev_err(adap->pdev_dev, "FW image has no data\n");
3275                return -EINVAL;
3276        }
3277        if (size & 511) {
3278                dev_err(adap->pdev_dev,
3279                        "FW image size not multiple of 512 bytes\n");
3280                return -EINVAL;
3281        }
3282        if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
3283                dev_err(adap->pdev_dev,
3284                        "FW image size differs from size in FW header\n");
3285                return -EINVAL;
3286        }
3287        if (size > FW_MAX_SIZE) {
3288                dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3289                        FW_MAX_SIZE);
3290                return -EFBIG;
3291        }
3292        if (!t4_fw_matches_chip(adap, hdr))
3293                return -EINVAL;
3294
3295        for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3296                csum += be32_to_cpu(p[i]);
3297
3298        if (csum != 0xffffffff) {
3299                dev_err(adap->pdev_dev,
3300                        "corrupted firmware image, checksum %#x\n", csum);
3301                return -EINVAL;
3302        }
3303
3304        i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
3305        ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3306        if (ret)
3307                goto out;
3308
3309        /*
3310         * We write the correct version at the end so the driver can see a bad
3311         * version if the FW write fails.  Start by writing a copy of the
3312         * first page with a bad version.
3313         */
3314        memcpy(first_page, fw_data, SF_PAGE_SIZE);
3315        ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3316        ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page);
3317        if (ret)
3318                goto out;
3319
3320        addr = fw_img_start;
3321        for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3322                addr += SF_PAGE_SIZE;
3323                fw_data += SF_PAGE_SIZE;
3324                ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
3325                if (ret)
3326                        goto out;
3327        }
3328
3329        ret = t4_write_flash(adap,
3330                             fw_img_start + offsetof(struct fw_hdr, fw_ver),
3331                             sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
3332out:
3333        if (ret)
3334                dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3335                        ret);
3336        else
3337                ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3338        return ret;
3339}
3340
3341/**
3342 *      t4_phy_fw_ver - return current PHY firmware version
3343 *      @adap: the adapter
3344 *      @phy_fw_ver: return value buffer for PHY firmware version
3345 *
3346 *      Returns the current version of external PHY firmware on the
3347 *      adapter.
3348 */
3349int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3350{
3351        u32 param, val;
3352        int ret;
3353
3354        param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3355                 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3356                 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3357                 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
3358        ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3359                              &param, &val);
3360        if (ret < 0)
3361                return ret;
3362        *phy_fw_ver = val;
3363        return 0;
3364}
3365
3366/**
3367 *      t4_load_phy_fw - download port PHY firmware
3368 *      @adap: the adapter
3369 *      @win: the PCI-E Memory Window index to use for t4_memory_rw()
3370 *      @win_lock: the lock to use to guard the memory copy
3371 *      @phy_fw_version: function to check PHY firmware versions
3372 *      @phy_fw_data: the PHY firmware image to write
3373 *      @phy_fw_size: image size
3374 *
3375 *      Transfer the specified PHY firmware to the adapter.  If a non-NULL
3376 *      @phy_fw_version is supplied, then it will be used to determine if
3377 *      it's necessary to perform the transfer by comparing the version
3378 *      of any existing adapter PHY firmware with that of the passed in
3379 *      PHY firmware image.  If @win_lock is non-NULL then it will be used
3380 *      around the call to t4_memory_rw() which transfers the PHY firmware
3381 *      to the adapter.
3382 *
3383 *      A negative error number will be returned if an error occurs.  If
3384 *      version number support is available and there's no need to upgrade
3385 *      the firmware, 0 will be returned.  If firmware is successfully
3386 *      transferred to the adapter, 1 will be retured.
3387 *
3388 *      NOTE: some adapters only have local RAM to store the PHY firmware.  As
3389 *      a result, a RESET of the adapter would cause that RAM to lose its
3390 *      contents.  Thus, loading PHY firmware on such adapters must happen
3391 *      after any FW_RESET_CMDs ...
3392 */
3393int t4_load_phy_fw(struct adapter *adap,
3394                   int win, spinlock_t *win_lock,
3395                   int (*phy_fw_version)(const u8 *, size_t),
3396                   const u8 *phy_fw_data, size_t phy_fw_size)
3397{
3398        unsigned long mtype = 0, maddr = 0;
3399        u32 param, val;
3400        int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3401        int ret;
3402
3403        /* If we have version number support, then check to see if the adapter
3404         * already has up-to-date PHY firmware loaded.
3405         */
3406         if (phy_fw_version) {
3407                new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3408                ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3409                if (ret < 0)
3410                        return ret;
3411
3412                if (cur_phy_fw_ver >= new_phy_fw_vers) {
3413                        CH_WARN(adap, "PHY Firmware already up-to-date, "
3414                                "version %#x\n", cur_phy_fw_ver);
3415                        return 0;
3416                }
3417        }
3418
3419        /* Ask the firmware where it wants us to copy the PHY firmware image.
3420         * The size of the file requires a special version of the READ coommand
3421         * which will pass the file size via the values field in PARAMS_CMD and
3422         * retrieve the return value from firmware and place it in the same
3423         * buffer values
3424         */
3425        param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3426                 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3427                 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3428                 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3429        val = phy_fw_size;
3430        ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
3431                                 &param, &val, 1);
3432        if (ret < 0)
3433                return ret;
3434        mtype = val >> 8;
3435        maddr = (val & 0xff) << 16;
3436
3437        /* Copy the supplied PHY Firmware image to the adapter memory location
3438         * allocated by the adapter firmware.
3439         */
3440        if (win_lock)
3441                spin_lock_bh(win_lock);
3442        ret = t4_memory_rw(adap, win, mtype, maddr,
3443                           phy_fw_size, (__be32 *)phy_fw_data,
3444                           T4_MEMORY_WRITE);
3445        if (win_lock)
3446                spin_unlock_bh(win_lock);
3447        if (ret)
3448                return ret;
3449
3450        /* Tell the firmware that the PHY firmware image has been written to
3451         * RAM and it can now start copying it over to the PHYs.  The chip
3452         * firmware will RESET the affected PHYs as part of this operation
3453         * leaving them running the new PHY firmware image.
3454         */
3455        param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3456                 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3457                 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3458                 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3459        ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
3460                                    &param, &val, 30000);
3461
3462        /* If we have version number support, then check to see that the new
3463         * firmware got loaded properly.
3464         */
3465        if (phy_fw_version) {
3466                ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3467                if (ret < 0)
3468                        return ret;
3469
3470                if (cur_phy_fw_ver != new_phy_fw_vers) {
3471                        CH_WARN(adap, "PHY Firmware did not update: "
3472                                "version on adapter %#x, "
3473                                "version flashed %#x\n",
3474                                cur_phy_fw_ver, new_phy_fw_vers);
3475                        return -ENXIO;
3476                }
3477        }
3478
3479        return 1;
3480}
3481
3482/**
3483 *      t4_fwcache - firmware cache operation
3484 *      @adap: the adapter
3485 *      @op  : the operation (flush or flush and invalidate)
3486 */
3487int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3488{
3489        struct fw_params_cmd c;
3490
3491        memset(&c, 0, sizeof(c));
3492        c.op_to_vfn =
3493                cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3494                            FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3495                            FW_PARAMS_CMD_PFN_V(adap->pf) |
3496                            FW_PARAMS_CMD_VFN_V(0));
3497        c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3498        c.param[0].mnem =
3499                cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3500                            FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3501        c.param[0].val = (__force __be32)op;
3502
3503        return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3504}
3505
3506void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3507                        unsigned int *pif_req_wrptr,
3508                        unsigned int *pif_rsp_wrptr)
3509{
3510        int i, j;
3511        u32 cfg, val, req, rsp;
3512
3513        cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3514        if (cfg & LADBGEN_F)
3515                t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3516
3517        val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3518        req = POLADBGWRPTR_G(val);
3519        rsp = PILADBGWRPTR_G(val);
3520        if (pif_req_wrptr)
3521                *pif_req_wrptr = req;
3522        if (pif_rsp_wrptr)
3523                *pif_rsp_wrptr = rsp;
3524
3525        for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3526                for (j = 0; j < 6; j++) {
3527                        t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3528                                     PILADBGRDPTR_V(rsp));
3529                        *pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3530                        *pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3531                        req++;
3532                        rsp++;
3533                }
3534                req = (req + 2) & POLADBGRDPTR_M;
3535                rsp = (rsp + 2) & PILADBGRDPTR_M;
3536        }
3537        t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3538}
3539
3540void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3541{
3542        u32 cfg;
3543        int i, j, idx;
3544
3545        cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3546        if (cfg & LADBGEN_F)
3547                t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3548
3549        for (i = 0; i < CIM_MALA_SIZE; i++) {
3550                for (j = 0; j < 5; j++) {
3551                        idx = 8 * i + j;
3552                        t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3553                                     PILADBGRDPTR_V(idx));
3554                        *ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3555                        *ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3556                }
3557        }
3558        t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3559}
3560
3561void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3562{
3563        unsigned int i, j;
3564
3565        for (i = 0; i < 8; i++) {
3566                u32 *p = la_buf + i;
3567
3568                t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3569                j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3570                t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3571                for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3572                        *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3573        }
3574}
3575
3576#define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
3577                     FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \
3578                     FW_PORT_CAP_ANEG)
3579
3580/**
3581 *      t4_link_l1cfg - apply link configuration to MAC/PHY
3582 *      @phy: the PHY to setup
3583 *      @mac: the MAC to setup
3584 *      @lc: the requested link configuration
3585 *
3586 *      Set up a port's MAC and PHY according to a desired link configuration.
3587 *      - If the PHY can auto-negotiate first decide what to advertise, then
3588 *        enable/disable auto-negotiation as desired, and reset.
3589 *      - If the PHY does not auto-negotiate just reset it.
3590 *      - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3591 *        otherwise do it later based on the outcome of auto-negotiation.
3592 */
3593int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3594                  struct link_config *lc)
3595{
3596        struct fw_port_cmd c;
3597        unsigned int fc = 0, mdi = FW_PORT_CAP_MDI_V(FW_PORT_CAP_MDI_AUTO);
3598
3599        lc->link_ok = 0;
3600        if (lc->requested_fc & PAUSE_RX)
3601                fc |= FW_PORT_CAP_FC_RX;
3602        if (lc->requested_fc & PAUSE_TX)
3603                fc |= FW_PORT_CAP_FC_TX;
3604
3605        memset(&c, 0, sizeof(c));
3606        c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
3607                                     FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
3608                                     FW_PORT_CMD_PORTID_V(port));
3609        c.action_to_len16 =
3610                cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
3611                            FW_LEN16(c));
3612
3613        if (!(lc->supported & FW_PORT_CAP_ANEG)) {
3614                c.u.l1cfg.rcap = cpu_to_be32((lc->supported & ADVERT_MASK) |
3615                                             fc);
3616                lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3617        } else if (lc->autoneg == AUTONEG_DISABLE) {
3618                c.u.l1cfg.rcap = cpu_to_be32(lc->requested_speed | fc | mdi);
3619                lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3620        } else
3621                c.u.l1cfg.rcap = cpu_to_be32(lc->advertising | fc | mdi);
3622
3623        return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3624}
3625
3626/**
3627 *      t4_restart_aneg - restart autonegotiation
3628 *      @adap: the adapter
3629 *      @mbox: mbox to use for the FW command
3630 *      @port: the port id
3631 *
3632 *      Restarts autonegotiation for the selected port.
3633 */
3634int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
3635{
3636        struct fw_port_cmd c;
3637
3638        memset(&c, 0, sizeof(c));
3639        c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
3640                                     FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
3641                                     FW_PORT_CMD_PORTID_V(port));
3642        c.action_to_len16 =
3643                cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
3644                            FW_LEN16(c));
3645        c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
3646        return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3647}
3648
3649typedef void (*int_handler_t)(struct adapter *adap);
3650
3651struct intr_info {
3652        unsigned int mask;       /* bits to check in interrupt status */
3653        const char *msg;         /* message to print or NULL */
3654        short stat_idx;          /* stat counter to increment or -1 */
3655        unsigned short fatal;    /* whether the condition reported is fatal */
3656        int_handler_t int_handler; /* platform-specific int handler */
3657};
3658
3659/**
3660 *      t4_handle_intr_status - table driven interrupt handler
3661 *      @adapter: the adapter that generated the interrupt
3662 *      @reg: the interrupt status register to process
3663 *      @acts: table of interrupt actions
3664 *
3665 *      A table driven interrupt handler that applies a set of masks to an
3666 *      interrupt status word and performs the corresponding actions if the
3667 *      interrupts described by the mask have occurred.  The actions include
3668 *      optionally emitting a warning or alert message.  The table is terminated
3669 *      by an entry specifying mask 0.  Returns the number of fatal interrupt
3670 *      conditions.
3671 */
3672static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
3673                                 const struct intr_info *acts)
3674{
3675        int fatal = 0;
3676        unsigned int mask = 0;
3677        unsigned int status = t4_read_reg(adapter, reg);
3678
3679        for ( ; acts->mask; ++acts) {
3680                if (!(status & acts->mask))
3681                        continue;
3682                if (acts->fatal) {
3683                        fatal++;
3684                        dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
3685                                  status & acts->mask);
3686                } else if (acts->msg && printk_ratelimit())
3687                        dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
3688                                 status & acts->mask);
3689                if (acts->int_handler)
3690                        acts->int_handler(adapter);
3691                mask |= acts->mask;
3692        }
3693        status &= mask;
3694        if (status)                           /* clear processed interrupts */
3695                t4_write_reg(adapter, reg, status);
3696        return fatal;
3697}
3698
3699/*
3700 * Interrupt handler for the PCIE module.
3701 */
3702static void pcie_intr_handler(struct adapter *adapter)
3703{
3704        static const struct intr_info sysbus_intr_info[] = {
3705                { RNPP_F, "RXNP array parity error", -1, 1 },
3706                { RPCP_F, "RXPC array parity error", -1, 1 },
3707                { RCIP_F, "RXCIF array parity error", -1, 1 },
3708                { RCCP_F, "Rx completions control array parity error", -1, 1 },
3709                { RFTP_F, "RXFT array parity error", -1, 1 },
3710                { 0 }
3711        };
3712        static const struct intr_info pcie_port_intr_info[] = {
3713                { TPCP_F, "TXPC array parity error", -1, 1 },
3714                { TNPP_F, "TXNP array parity error", -1, 1 },
3715                { TFTP_F, "TXFT array parity error", -1, 1 },
3716                { TCAP_F, "TXCA array parity error", -1, 1 },
3717                { TCIP_F, "TXCIF array parity error", -1, 1 },
3718                { RCAP_F, "RXCA array parity error", -1, 1 },
3719                { OTDD_F, "outbound request TLP discarded", -1, 1 },
3720                { RDPE_F, "Rx data parity error", -1, 1 },
3721                { TDUE_F, "Tx uncorrectable data error", -1, 1 },
3722                { 0 }
3723        };
3724        static const struct intr_info pcie_intr_info[] = {
3725                { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
3726                { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
3727                { MSIDATAPERR_F, "MSI data parity error", -1, 1 },
3728                { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
3729                { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
3730                { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
3731                { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
3732                { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
3733                { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
3734                { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
3735                { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
3736                { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
3737                { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
3738                { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
3739                { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
3740                { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
3741                { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
3742                { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
3743                { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
3744                { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
3745                { FIDPERR_F, "PCI FID parity error", -1, 1 },
3746                { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
3747                { MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
3748                { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
3749                { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
3750                { RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
3751                { RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
3752                { PCIESINT_F, "PCI core secondary fault", -1, 1 },
3753                { PCIEPINT_F, "PCI core primary fault", -1, 1 },
3754                { UNXSPLCPLERR_F, "PCI unexpected split completion error",
3755                  -1, 0 },
3756                { 0 }
3757        };
3758
3759        static struct intr_info t5_pcie_intr_info[] = {
3760                { MSTGRPPERR_F, "Master Response Read Queue parity error",
3761                  -1, 1 },
3762                { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
3763                { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
3764                { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
3765                { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
3766                { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
3767                { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
3768                { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
3769                  -1, 1 },
3770                { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
3771                  -1, 1 },
3772                { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
3773                { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
3774                { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
3775                { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
3776                { DREQWRPERR_F, "PCI DMA channel write request parity error",
3777                  -1, 1 },
3778                { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
3779                { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
3780                { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
3781                { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
3782                { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
3783                { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
3784                { FIDPERR_F, "PCI FID parity error", -1, 1 },
3785                { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
3786                { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
3787                { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
3788                { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
3789                  -1, 1 },
3790                { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
3791                  -1, 1 },
3792                { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
3793                { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
3794                { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
3795                { READRSPERR_F, "Outbound read error", -1, 0 },
3796                { 0 }
3797        };
3798
3799        int fat;
3800
3801        if (is_t4(adapter->params.chip))
3802                fat = t4_handle_intr_status(adapter,
3803                                PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
3804                                sysbus_intr_info) +
3805                        t4_handle_intr_status(adapter,
3806                                        PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
3807                                        pcie_port_intr_info) +
3808                        t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
3809                                              pcie_intr_info);
3810        else
3811                fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
3812                                            t5_pcie_intr_info);
3813
3814        if (fat)
3815                t4_fatal_err(adapter);
3816}
3817
3818/*
3819 * TP interrupt handler.
3820 */
3821static void tp_intr_handler(struct adapter *adapter)
3822{
3823        static const struct intr_info tp_intr_info[] = {
3824                { 0x3fffffff, "TP parity error", -1, 1 },
3825                { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
3826                { 0 }
3827        };
3828
3829        if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
3830                t4_fatal_err(adapter);
3831}
3832
3833/*
3834 * SGE interrupt handler.
3835 */
3836static void sge_intr_handler(struct adapter *adapter)
3837{
3838        u64 v;
3839        u32 err;
3840
3841        static const struct intr_info sge_intr_info[] = {
3842                { ERR_CPL_EXCEED_IQE_SIZE_F,
3843                  "SGE received CPL exceeding IQE size", -1, 1 },
3844                { ERR_INVALID_CIDX_INC_F,
3845                  "SGE GTS CIDX increment too large", -1, 0 },
3846                { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
3847                { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
3848                { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
3849                  "SGE IQID > 1023 received CPL for FL", -1, 0 },
3850                { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
3851                  0 },
3852                { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
3853                  0 },
3854                { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
3855                  0 },
3856                { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
3857                  0 },
3858                { ERR_ING_CTXT_PRIO_F,
3859                  "SGE too many priority ingress contexts", -1, 0 },
3860                { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
3861                { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
3862                { 0 }
3863        };
3864
3865        static struct intr_info t4t5_sge_intr_info[] = {
3866                { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
3867                { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
3868                { ERR_EGR_CTXT_PRIO_F,
3869                  "SGE too many priority egress contexts", -1, 0 },
3870                { 0 }
3871        };
3872
3873        v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) |
3874                ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32);
3875        if (v) {
3876                dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
3877                                (unsigned long long)v);
3878                t4_write_reg(adapter, SGE_INT_CAUSE1_A, v);
3879                t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32);
3880        }
3881
3882        v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
3883        if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
3884                v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
3885                                           t4t5_sge_intr_info);
3886
3887        err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
3888        if (err & ERROR_QID_VALID_F) {
3889                dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
3890                        ERROR_QID_G(err));
3891                if (err & UNCAPTURED_ERROR_F)
3892                        dev_err(adapter->pdev_dev,
3893                                "SGE UNCAPTURED_ERROR set (clearing)\n");
3894                t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
3895                             UNCAPTURED_ERROR_F);
3896        }
3897
3898        if (v != 0)
3899                t4_fatal_err(adapter);
3900}
3901
3902#define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
3903                      OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
3904#define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
3905                      IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
3906
3907/*
3908 * CIM interrupt handler.
3909 */
3910static void cim_intr_handler(struct adapter *adapter)
3911{
3912        static const struct intr_info cim_intr_info[] = {
3913                { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
3914                { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
3915                { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
3916                { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
3917                { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
3918                { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
3919                { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
3920                { 0 }
3921        };
3922        static const struct intr_info cim_upintr_info[] = {
3923                { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
3924                { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
3925                { ILLWRINT_F, "CIM illegal write", -1, 1 },
3926                { ILLRDINT_F, "CIM illegal read", -1, 1 },
3927                { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
3928                { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
3929                { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
3930                { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
3931                { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
3932                { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
3933                { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
3934                { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
3935                { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
3936                { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
3937                { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
3938                { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
3939                { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
3940                { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
3941                { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
3942                { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
3943                { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
3944                { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
3945                { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
3946                { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
3947                { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
3948                { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
3949                { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
3950                { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
3951                { 0 }
3952        };
3953
3954        int fat;
3955
3956        if (t4_read_reg(adapter, PCIE_FW_A) & PCIE_FW_ERR_F)
3957                t4_report_fw_error(adapter);
3958
3959        fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
3960                                    cim_intr_info) +
3961              t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
3962                                    cim_upintr_info);
3963        if (fat)
3964                t4_fatal_err(adapter);
3965}
3966
3967/*
3968 * ULP RX interrupt handler.
3969 */
3970static void ulprx_intr_handler(struct adapter *adapter)
3971{
3972        static const struct intr_info ulprx_intr_info[] = {
3973                { 0x1800000, "ULPRX context error", -1, 1 },
3974                { 0x7fffff, "ULPRX parity error", -1, 1 },
3975                { 0 }
3976        };
3977
3978        if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
3979                t4_fatal_err(adapter);
3980}
3981
3982/*
3983 * ULP TX interrupt handler.
3984 */
3985static void ulptx_intr_handler(struct adapter *adapter)
3986{
3987        static const struct intr_info ulptx_intr_info[] = {
3988                { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
3989                  0 },
3990                { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
3991                  0 },
3992                { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
3993                  0 },
3994                { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
3995                  0 },
3996                { 0xfffffff, "ULPTX parity error", -1, 1 },
3997                { 0 }
3998        };
3999
4000        if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
4001                t4_fatal_err(adapter);
4002}
4003
4004/*
4005 * PM TX interrupt handler.
4006 */
4007static void pmtx_intr_handler(struct adapter *adapter)
4008{
4009        static const struct intr_info pmtx_intr_info[] = {
4010                { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
4011                { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
4012                { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
4013                { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
4014                { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
4015                { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
4016                { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
4017                  -1, 1 },
4018                { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
4019                { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
4020                { 0 }
4021        };
4022
4023        if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
4024                t4_fatal_err(adapter);
4025}
4026
4027/*
4028 * PM RX interrupt handler.
4029 */
4030static void pmrx_intr_handler(struct adapter *adapter)
4031{
4032        static const struct intr_info pmrx_intr_info[] = {
4033                { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4034                { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4035                { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4036                { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4037                  -1, 1 },
4038                { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4039                { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
4040                { 0 }
4041        };
4042
4043        if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
4044                t4_fatal_err(adapter);
4045}
4046
4047/*
4048 * CPL switch interrupt handler.
4049 */
4050static void cplsw_intr_handler(struct adapter *adapter)
4051{
4052        static const struct intr_info cplsw_intr_info[] = {
4053                { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4054                { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4055                { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4056                { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4057                { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4058                { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
4059                { 0 }
4060        };
4061
4062        if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
4063                t4_fatal_err(adapter);
4064}
4065
4066/*
4067 * LE interrupt handler.
4068 */
4069static void le_intr_handler(struct adapter *adap)
4070{
4071        enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
4072        static const struct intr_info le_intr_info[] = {
4073                { LIPMISS_F, "LE LIP miss", -1, 0 },
4074                { LIP0_F, "LE 0 LIP error", -1, 0 },
4075                { PARITYERR_F, "LE parity error", -1, 1 },
4076                { UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4077                { REQQPARERR_F, "LE request queue parity error", -1, 1 },
4078                { 0 }
4079        };
4080
4081        static struct intr_info t6_le_intr_info[] = {
4082                { T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4083                { T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4084                { TCAMINTPERR_F, "LE parity error", -1, 1 },
4085                { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4086                { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4087                { 0 }
4088        };
4089
4090        if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4091                                  (chip <= CHELSIO_T5) ?
4092                                  le_intr_info : t6_le_intr_info))
4093                t4_fatal_err(adap);
4094}
4095
4096/*
4097 * MPS interrupt handler.
4098 */
4099static void mps_intr_handler(struct adapter *adapter)
4100{
4101        static const struct intr_info mps_rx_intr_info[] = {
4102                { 0xffffff, "MPS Rx parity error", -1, 1 },
4103                { 0 }
4104        };
4105        static const struct intr_info mps_tx_intr_info[] = {
4106                { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4107                { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4108                { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4109                  -1, 1 },
4110                { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4111                  -1, 1 },
4112                { BUBBLE_F, "MPS Tx underflow", -1, 1 },
4113                { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4114                { FRMERR_F, "MPS Tx framing error", -1, 1 },
4115                { 0 }
4116        };
4117        static const struct intr_info mps_trc_intr_info[] = {
4118                { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4119                { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4120                  -1, 1 },
4121                { MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
4122                { 0 }
4123        };
4124        static const struct intr_info mps_stat_sram_intr_info[] = {
4125                { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4126                { 0 }
4127        };
4128        static const struct intr_info mps_stat_tx_intr_info[] = {
4129                { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4130                { 0 }
4131        };
4132        static const struct intr_info mps_stat_rx_intr_info[] = {
4133                { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4134                { 0 }
4135        };
4136        static const struct intr_info mps_cls_intr_info[] = {
4137                { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4138                { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4139                { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
4140                { 0 }
4141        };
4142
4143        int fat;
4144
4145        fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
4146                                    mps_rx_intr_info) +
4147              t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
4148                                    mps_tx_intr_info) +
4149              t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
4150                                    mps_trc_intr_info) +
4151              t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
4152                                    mps_stat_sram_intr_info) +
4153              t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
4154                                    mps_stat_tx_intr_info) +
4155              t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
4156                                    mps_stat_rx_intr_info) +
4157              t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
4158                                    mps_cls_intr_info);
4159
4160        t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4161        t4_read_reg(adapter, MPS_INT_CAUSE_A);                    /* flush */
4162        if (fat)
4163                t4_fatal_err(adapter);
4164}
4165
4166#define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4167                      ECC_UE_INT_CAUSE_F)
4168
4169/*
4170 * EDC/MC interrupt handler.
4171 */
4172static void mem_intr_handler(struct adapter *adapter, int idx)
4173{
4174        static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4175
4176        unsigned int addr, cnt_addr, v;
4177
4178        if (idx <= MEM_EDC1) {
4179                addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4180                cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
4181        } else if (idx == MEM_MC) {
4182                if (is_t4(adapter->params.chip)) {
4183                        addr = MC_INT_CAUSE_A;
4184                        cnt_addr = MC_ECC_STATUS_A;
4185                } else {
4186                        addr = MC_P_INT_CAUSE_A;
4187                        cnt_addr = MC_P_ECC_STATUS_A;
4188                }
4189        } else {
4190                addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4191                cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
4192        }
4193
4194        v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4195        if (v & PERR_INT_CAUSE_F)
4196                dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4197                          name[idx]);
4198        if (v & ECC_CE_INT_CAUSE_F) {
4199                u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
4200
4201                t4_edc_err_read(adapter, idx);
4202
4203                t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
4204                if (printk_ratelimit())
4205                        dev_warn(adapter->pdev_dev,
4206                                 "%u %s correctable ECC data error%s\n",
4207                                 cnt, name[idx], cnt > 1 ? "s" : "");
4208        }
4209        if (v & ECC_UE_INT_CAUSE_F)
4210                dev_alert(adapter->pdev_dev,
4211                          "%s uncorrectable ECC data error\n", name[idx]);
4212
4213        t4_write_reg(adapter, addr, v);
4214        if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
4215                t4_fatal_err(adapter);
4216}
4217
4218/*
4219 * MA interrupt handler.
4220 */
4221static void ma_intr_handler(struct adapter *adap)
4222{
4223        u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
4224
4225        if (status & MEM_PERR_INT_CAUSE_F) {
4226                dev_alert(adap->pdev_dev,
4227                          "MA parity error, parity status %#x\n",
4228                          t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
4229                if (is_t5(adap->params.chip))
4230                        dev_alert(adap->pdev_dev,
4231                                  "MA parity error, parity status %#x\n",
4232                                  t4_read_reg(adap,
4233                                              MA_PARITY_ERROR_STATUS2_A));
4234        }
4235        if (status & MEM_WRAP_INT_CAUSE_F) {
4236                v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
4237                dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4238                          "client %u to address %#x\n",
4239                          MEM_WRAP_CLIENT_NUM_G(v),
4240                          MEM_WRAP_ADDRESS_G(v) << 4);
4241        }
4242        t4_write_reg(adap, MA_INT_CAUSE_A, status);
4243        t4_fatal_err(adap);
4244}
4245
4246/*
4247 * SMB interrupt handler.
4248 */
4249static void smb_intr_handler(struct adapter *adap)
4250{
4251        static const struct intr_info smb_intr_info[] = {
4252                { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4253                { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4254                { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
4255                { 0 }
4256        };
4257
4258        if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
4259                t4_fatal_err(adap);
4260}
4261
4262/*
4263 * NC-SI interrupt handler.
4264 */
4265static void ncsi_intr_handler(struct adapter *adap)
4266{
4267        static const struct intr_info ncsi_intr_info[] = {
4268                { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4269                { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4270                { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4271                { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
4272                { 0 }
4273        };
4274
4275        if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
4276                t4_fatal_err(adap);
4277}
4278
4279/*
4280 * XGMAC interrupt handler.
4281 */
4282static void xgmac_intr_handler(struct adapter *adap, int port)
4283{
4284        u32 v, int_cause_reg;
4285
4286        if (is_t4(adap->params.chip))
4287                int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
4288        else
4289                int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
4290
4291        v = t4_read_reg(adap, int_cause_reg);
4292
4293        v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
4294        if (!v)
4295                return;
4296
4297        if (v & TXFIFO_PRTY_ERR_F)
4298                dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4299                          port);
4300        if (v & RXFIFO_PRTY_ERR_F)
4301                dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4302                          port);
4303        t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
4304        t4_fatal_err(adap);
4305}
4306
4307/*
4308 * PL interrupt handler.
4309 */
4310static void pl_intr_handler(struct adapter *adap)
4311{
4312        static const struct intr_info pl_intr_info[] = {
4313                { FATALPERR_F, "T4 fatal parity error", -1, 1 },
4314                { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
4315                { 0 }
4316        };
4317
4318        if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
4319                t4_fatal_err(adap);
4320}
4321
4322#define PF_INTR_MASK (PFSW_F)
4323#define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
4324                EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
4325                CPL_SWITCH_F | SGE_F | ULP_TX_F)
4326
4327/**
4328 *      t4_slow_intr_handler - control path interrupt handler
4329 *      @adapter: the adapter
4330 *
4331 *      T4 interrupt handler for non-data global interrupt events, e.g., errors.
4332 *      The designation 'slow' is because it involves register reads, while
4333 *      data interrupts typically don't involve any MMIOs.
4334 */
4335int t4_slow_intr_handler(struct adapter *adapter)
4336{
4337        u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
4338
4339        if (!(cause & GLBL_INTR_MASK))
4340                return 0;
4341        if (cause & CIM_F)
4342                cim_intr_handler(adapter);
4343        if (cause & MPS_F)
4344                mps_intr_handler(adapter);
4345        if (cause & NCSI_F)
4346                ncsi_intr_handler(adapter);
4347        if (cause & PL_F)
4348                pl_intr_handler(adapter);
4349        if (cause & SMB_F)
4350                smb_intr_handler(adapter);
4351        if (cause & XGMAC0_F)
4352                xgmac_intr_handler(adapter, 0);
4353        if (cause & XGMAC1_F)
4354                xgmac_intr_handler(adapter, 1);
4355        if (cause & XGMAC_KR0_F)
4356                xgmac_intr_handler(adapter, 2);
4357        if (cause & XGMAC_KR1_F)
4358                xgmac_intr_handler(adapter, 3);
4359        if (cause & PCIE_F)
4360                pcie_intr_handler(adapter);
4361        if (cause & MC_F)
4362                mem_intr_handler(adapter, MEM_MC);
4363        if (is_t5(adapter->params.chip) && (cause & MC1_F))
4364                mem_intr_handler(adapter, MEM_MC1);
4365        if (cause & EDC0_F)
4366                mem_intr_handler(adapter, MEM_EDC0);
4367        if (cause & EDC1_F)
4368                mem_intr_handler(adapter, MEM_EDC1);
4369        if (cause & LE_F)
4370                le_intr_handler(adapter);
4371        if (cause & TP_F)
4372                tp_intr_handler(adapter);
4373        if (cause & MA_F)
4374                ma_intr_handler(adapter);
4375        if (cause & PM_TX_F)
4376                pmtx_intr_handler(adapter);
4377        if (cause & PM_RX_F)
4378                pmrx_intr_handler(adapter);
4379        if (cause & ULP_RX_F)
4380                ulprx_intr_handler(adapter);
4381        if (cause & CPL_SWITCH_F)
4382                cplsw_intr_handler(adapter);
4383        if (cause & SGE_F)
4384                sge_intr_handler(adapter);
4385        if (cause & ULP_TX_F)
4386                ulptx_intr_handler(adapter);
4387
4388        /* Clear the interrupts just processed for which we are the master. */
4389        t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK);
4390        (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
4391        return 1;
4392}
4393
4394/**
4395 *      t4_intr_enable - enable interrupts
4396 *      @adapter: the adapter whose interrupts should be enabled
4397 *
4398 *      Enable PF-specific interrupts for the calling function and the top-level
4399 *      interrupt concentrator for global interrupts.  Interrupts are already
4400 *      enabled at each module, here we just enable the roots of the interrupt
4401 *      hierarchies.
4402 *
4403 *      Note: this function should be called only when the driver manages
4404 *      non PF-specific interrupts from the various HW modules.  Only one PCI
4405 *      function at a time should be doing this.
4406 */
4407void t4_intr_enable(struct adapter *adapter)
4408{
4409        u32 val = 0;
4410        u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4411        u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4412                        SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4413
4414        if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4415                val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
4416        t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
4417                     ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
4418                     ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
4419                     ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
4420                     ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
4421                     ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
4422                     DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
4423        t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
4424        t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
4425}
4426
4427/**
4428 *      t4_intr_disable - disable interrupts
4429 *      @adapter: the adapter whose interrupts should be disabled
4430 *
4431 *      Disable interrupts.  We only disable the top-level interrupt
4432 *      concentrators.  The caller must be a PCI function managing global
4433 *      interrupts.
4434 */
4435void t4_intr_disable(struct adapter *adapter)
4436{
4437        u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4438        u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4439                        SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4440
4441        t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
4442        t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
4443}
4444
4445/**
4446 *      t4_config_rss_range - configure a portion of the RSS mapping table
4447 *      @adapter: the adapter
4448 *      @mbox: mbox to use for the FW command
4449 *      @viid: virtual interface whose RSS subtable is to be written
4450 *      @start: start entry in the table to write
4451 *      @n: how many table entries to write
4452 *      @rspq: values for the response queue lookup table
4453 *      @nrspq: number of values in @rspq
4454 *
4455 *      Programs the selected part of the VI's RSS mapping table with the
4456 *      provided values.  If @nrspq < @n the supplied values are used repeatedly
4457 *      until the full table range is populated.
4458 *
4459 *      The caller must ensure the values in @rspq are in the range allowed for
4460 *      @viid.
4461 */
4462int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
4463                        int start, int n, const u16 *rspq, unsigned int nrspq)
4464{
4465        int ret;
4466        const u16 *rsp = rspq;
4467        const u16 *rsp_end = rspq + nrspq;
4468        struct fw_rss_ind_tbl_cmd cmd;
4469
4470        memset(&cmd, 0, sizeof(cmd));
4471        cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
4472                               FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
4473                               FW_RSS_IND_TBL_CMD_VIID_V(viid));
4474        cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
4475
4476        /* each fw_rss_ind_tbl_cmd takes up to 32 entries */
4477        while (n > 0) {
4478                int nq = min(n, 32);
4479                __be32 *qp = &cmd.iq0_to_iq2;
4480
4481                cmd.niqid = cpu_to_be16(nq);
4482                cmd.startidx = cpu_to_be16(start);
4483
4484                start += nq;
4485                n -= nq;
4486
4487                while (nq > 0) {
4488                        unsigned int v;
4489
4490                        v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
4491                        if (++rsp >= rsp_end)
4492                                rsp = rspq;
4493                        v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
4494                        if (++rsp >= rsp_end)
4495                                rsp = rspq;
4496                        v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
4497                        if (++rsp >= rsp_end)
4498                                rsp = rspq;
4499
4500                        *qp++ = cpu_to_be32(v);
4501                        nq -= 3;
4502                }
4503
4504                ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
4505                if (ret)
4506                        return ret;
4507        }
4508        return 0;
4509}
4510
4511/**
4512 *      t4_config_glbl_rss - configure the global RSS mode
4513 *      @adapter: the adapter
4514 *      @mbox: mbox to use for the FW command
4515 *      @mode: global RSS mode
4516 *      @flags: mode-specific flags
4517 *
4518 *      Sets the global RSS mode.
4519 */
4520int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
4521                       unsigned int flags)
4522{
4523        struct fw_rss_glb_config_cmd c;
4524
4525        memset(&c, 0, sizeof(c));
4526        c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
4527                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
4528        c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4529        if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
4530                c.u.manual.mode_pkd =
4531                        cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
4532        } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
4533                c.u.basicvirtual.mode_pkd =
4534                        cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
4535                c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
4536        } else
4537                return -EINVAL;
4538        return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4539}
4540
4541/**
4542 *      t4_config_vi_rss - configure per VI RSS settings
4543 *      @adapter: the adapter
4544 *      @mbox: mbox to use for the FW command
4545 *      @viid: the VI id
4546 *      @flags: RSS flags
4547 *      @defq: id of the default RSS queue for the VI.
4548 *
4549 *      Configures VI-specific RSS properties.
4550 */
4551int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
4552                     unsigned int flags, unsigned int defq)
4553{
4554        struct fw_rss_vi_config_cmd c;
4555
4556        memset(&c, 0, sizeof(c));
4557        c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
4558                                   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
4559                                   FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
4560        c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4561        c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
4562                                        FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
4563        return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4564}
4565
4566/* Read an RSS table row */
4567static int rd_rss_row(struct adapter *adap, int row, u32 *val)
4568{
4569        t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
4570        return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
4571                                   5, 0, val);
4572}
4573
4574/**
4575 *      t4_read_rss - read the contents of the RSS mapping table
4576 *      @adapter: the adapter
4577 *      @map: holds the contents of the RSS mapping table
4578 *
4579 *      Reads the contents of the RSS hash->queue mapping table.
4580 */
4581int t4_read_rss(struct adapter *adapter, u16 *map)
4582{
4583        u32 val;
4584        int i, ret;
4585
4586        for (i = 0; i < RSS_NENTRIES / 2; ++i) {
4587                ret = rd_rss_row(adapter, i, &val);
4588                if (ret)
4589                        return ret;
4590                *map++ = LKPTBLQUEUE0_G(val);
4591                *map++ = LKPTBLQUEUE1_G(val);
4592        }
4593        return 0;
4594}
4595
4596static unsigned int t4_use_ldst(struct adapter *adap)
4597{
4598        return (adap->flags & FW_OK) || !adap->use_bd;
4599}
4600
4601/**
4602 *      t4_fw_tp_pio_rw - Access TP PIO through LDST
4603 *      @adap: the adapter
4604 *      @vals: where the indirect register values are stored/written
4605 *      @nregs: how many indirect registers to read/write
4606 *      @start_idx: index of first indirect register to read/write
4607 *      @rw: Read (1) or Write (0)
4608 *
4609 *      Access TP PIO registers through LDST
4610 */
4611static void t4_fw_tp_pio_rw(struct adapter *adap, u32 *vals, unsigned int nregs,
4612                            unsigned int start_index, unsigned int rw)
4613{
4614        int ret, i;
4615        int cmd = FW_LDST_ADDRSPC_TP_PIO;
4616        struct fw_ldst_cmd c;
4617
4618        for (i = 0 ; i < nregs; i++) {
4619                memset(&c, 0, sizeof(c));
4620                c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
4621                                                FW_CMD_REQUEST_F |
4622                                                (rw ? FW_CMD_READ_F :
4623                                                      FW_CMD_WRITE_F) |
4624                                                FW_LDST_CMD_ADDRSPACE_V(cmd));
4625                c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4626
4627                c.u.addrval.addr = cpu_to_be32(start_index + i);
4628                c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
4629                ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4630                if (!ret && rw)
4631                        vals[i] = be32_to_cpu(c.u.addrval.val);
4632        }
4633}
4634
4635/**
4636 *      t4_read_rss_key - read the global RSS key
4637 *      @adap: the adapter
4638 *      @key: 10-entry array holding the 320-bit RSS key
4639 *
4640 *      Reads the global 320-bit RSS key.
4641 */
4642void t4_read_rss_key(struct adapter *adap, u32 *key)
4643{
4644        if (t4_use_ldst(adap))
4645                t4_fw_tp_pio_rw(adap, key, 10, TP_RSS_SECRET_KEY0_A, 1);
4646        else
4647                t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
4648                                 TP_RSS_SECRET_KEY0_A);
4649}
4650
4651/**
4652 *      t4_write_rss_key - program one of the RSS keys
4653 *      @adap: the adapter
4654 *      @key: 10-entry array holding the 320-bit RSS key
4655 *      @idx: which RSS key to write
4656 *
4657 *      Writes one of the RSS keys with the given 320-bit value.  If @idx is
4658 *      0..15 the corresponding entry in the RSS key table is written,
4659 *      otherwise the global RSS key is written.
4660 */
4661void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx)
4662{
4663        u8 rss_key_addr_cnt = 16;
4664        u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
4665
4666        /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
4667         * allows access to key addresses 16-63 by using KeyWrAddrX
4668         * as index[5:4](upper 2) into key table
4669         */
4670        if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
4671            (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
4672                rss_key_addr_cnt = 32;
4673
4674        if (t4_use_ldst(adap))
4675                t4_fw_tp_pio_rw(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, 0);
4676        else
4677                t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
4678                                  TP_RSS_SECRET_KEY0_A);
4679
4680        if (idx >= 0 && idx < rss_key_addr_cnt) {
4681                if (rss_key_addr_cnt > 16)
4682                        t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
4683                                     KEYWRADDRX_V(idx >> 4) |
4684                                     T6_VFWRADDR_V(idx) | KEYWREN_F);
4685                else
4686                        t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
4687                                     KEYWRADDR_V(idx) | KEYWREN_F);
4688        }
4689}
4690
4691/**
4692 *      t4_read_rss_pf_config - read PF RSS Configuration Table
4693 *      @adapter: the adapter
4694 *      @index: the entry in the PF RSS table to read
4695 *      @valp: where to store the returned value
4696 *
4697 *      Reads the PF RSS Configuration Table at the specified index and returns
4698 *      the value found there.
4699 */
4700void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
4701                           u32 *valp)
4702{
4703        if (t4_use_ldst(adapter))
4704                t4_fw_tp_pio_rw(adapter, valp, 1,
4705                                TP_RSS_PF0_CONFIG_A + index, 1);
4706        else
4707                t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4708                                 valp, 1, TP_RSS_PF0_CONFIG_A + index);
4709}
4710
4711/**
4712 *      t4_read_rss_vf_config - read VF RSS Configuration Table
4713 *      @adapter: the adapter
4714 *      @index: the entry in the VF RSS table to read
4715 *      @vfl: where to store the returned VFL
4716 *      @vfh: where to store the returned VFH
4717 *
4718 *      Reads the VF RSS Configuration Table at the specified index and returns
4719 *      the (VFL, VFH) values found there.
4720 */
4721void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
4722                           u32 *vfl, u32 *vfh)
4723{
4724        u32 vrt, mask, data;
4725
4726        if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
4727                mask = VFWRADDR_V(VFWRADDR_M);
4728                data = VFWRADDR_V(index);
4729        } else {
4730                 mask =  T6_VFWRADDR_V(T6_VFWRADDR_M);
4731                 data = T6_VFWRADDR_V(index);
4732        }
4733
4734        /* Request that the index'th VF Table values be read into VFL/VFH.
4735         */
4736        vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
4737        vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
4738        vrt |= data | VFRDEN_F;
4739        t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
4740
4741        /* Grab the VFL/VFH values ...
4742         */
4743        if (t4_use_ldst(adapter)) {
4744                t4_fw_tp_pio_rw(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, 1);
4745                t4_fw_tp_pio_rw(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, 1);
4746        } else {
4747                t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4748                                 vfl, 1, TP_RSS_VFL_CONFIG_A);
4749                t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4750                                 vfh, 1, TP_RSS_VFH_CONFIG_A);
4751        }
4752}
4753
4754/**
4755 *      t4_read_rss_pf_map - read PF RSS Map
4756 *      @adapter: the adapter
4757 *
4758 *      Reads the PF RSS Map register and returns its value.
4759 */
4760u32 t4_read_rss_pf_map(struct adapter *adapter)
4761{
4762        u32 pfmap;
4763
4764        if (t4_use_ldst(adapter))
4765                t4_fw_tp_pio_rw(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, 1);
4766        else
4767                t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4768                                 &pfmap, 1, TP_RSS_PF_MAP_A);
4769        return pfmap;
4770}
4771
4772/**
4773 *      t4_read_rss_pf_mask - read PF RSS Mask
4774 *      @adapter: the adapter
4775 *
4776 *      Reads the PF RSS Mask register and returns its value.
4777 */
4778u32 t4_read_rss_pf_mask(struct adapter *adapter)
4779{
4780        u32 pfmask;
4781
4782        if (t4_use_ldst(adapter))
4783                t4_fw_tp_pio_rw(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, 1);
4784        else
4785                t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4786                                 &pfmask, 1, TP_RSS_PF_MSK_A);
4787        return pfmask;
4788}
4789
4790/**
4791 *      t4_tp_get_tcp_stats - read TP's TCP MIB counters
4792 *      @adap: the adapter
4793 *      @v4: holds the TCP/IP counter values
4794 *      @v6: holds the TCP/IPv6 counter values
4795 *
4796 *      Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
4797 *      Either @v4 or @v6 may be %NULL to skip the corresponding stats.
4798 */
4799void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
4800                         struct tp_tcp_stats *v6)
4801{
4802        u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
4803
4804#define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
4805#define STAT(x)     val[STAT_IDX(x)]
4806#define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
4807
4808        if (v4) {
4809                t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4810                                 ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST_A);
4811                v4->tcp_out_rsts = STAT(OUT_RST);
4812                v4->tcp_in_segs  = STAT64(IN_SEG);
4813                v4->tcp_out_segs = STAT64(OUT_SEG);
4814                v4->tcp_retrans_segs = STAT64(RXT_SEG);
4815        }
4816        if (v6) {
4817                t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4818                                 ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST_A);
4819                v6->tcp_out_rsts = STAT(OUT_RST);
4820                v6->tcp_in_segs  = STAT64(IN_SEG);
4821                v6->tcp_out_segs = STAT64(OUT_SEG);
4822                v6->tcp_retrans_segs = STAT64(RXT_SEG);
4823        }
4824#undef STAT64
4825#undef STAT
4826#undef STAT_IDX
4827}
4828
4829/**
4830 *      t4_tp_get_err_stats - read TP's error MIB counters
4831 *      @adap: the adapter
4832 *      @st: holds the counter values
4833 *
4834 *      Returns the values of TP's error counters.
4835 */
4836void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st)
4837{
4838        int nchan = adap->params.arch.nchan;
4839
4840        t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4841                         st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A);
4842        t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4843                         st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A);
4844        t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4845                         st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A);
4846        t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4847                         st->tnl_cong_drops, nchan, TP_MIB_TNL_CNG_DROP_0_A);
4848        t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4849                         st->ofld_chan_drops, nchan, TP_MIB_OFD_CHN_DROP_0_A);
4850        t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4851                         st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A);
4852        t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4853                         st->ofld_vlan_drops, nchan, TP_MIB_OFD_VLN_DROP_0_A);
4854        t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4855                         st->tcp6_in_errs, nchan, TP_MIB_TCP_V6IN_ERR_0_A);
4856
4857        t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4858                         &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A);
4859}
4860
4861/**
4862 *      t4_tp_get_cpl_stats - read TP's CPL MIB counters
4863 *      @adap: the adapter
4864 *      @st: holds the counter values
4865 *
4866 *      Returns the values of TP's CPL counters.
4867 */
4868void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st)
4869{
4870        int nchan = adap->params.arch.nchan;
4871
4872        t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->req,
4873                         nchan, TP_MIB_CPL_IN_REQ_0_A);
4874        t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->rsp,
4875                         nchan, TP_MIB_CPL_OUT_RSP_0_A);
4876
4877}
4878
4879/**
4880 *      t4_tp_get_rdma_stats - read TP's RDMA MIB counters
4881 *      @adap: the adapter
4882 *      @st: holds the counter values
4883 *
4884 *      Returns the values of TP's RDMA counters.
4885 */
4886void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st)
4887{
4888        t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->rqe_dfr_pkt,
4889                         2, TP_MIB_RQE_DFR_PKT_A);
4890}
4891
4892/**
4893 *      t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
4894 *      @adap: the adapter
4895 *      @idx: the port index
4896 *      @st: holds the counter values
4897 *
4898 *      Returns the values of TP's FCoE counters for the selected port.
4899 */
4900void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
4901                       struct tp_fcoe_stats *st)
4902{
4903        u32 val[2];
4904
4905        t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_ddp,
4906                         1, TP_MIB_FCOE_DDP_0_A + idx);
4907        t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_drop,
4908                         1, TP_MIB_FCOE_DROP_0_A + idx);
4909        t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4910                         2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx);
4911        st->octets_ddp = ((u64)val[0] << 32) | val[1];
4912}
4913
4914/**
4915 *      t4_get_usm_stats - read TP's non-TCP DDP MIB counters
4916 *      @adap: the adapter
4917 *      @st: holds the counter values
4918 *
4919 *      Returns the values of TP's counters for non-TCP directly-placed packets.
4920 */
4921void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st)
4922{
4923        u32 val[4];
4924
4925        t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val, 4,
4926                         TP_MIB_USM_PKTS_A);
4927        st->frames = val[0];
4928        st->drops = val[1];
4929        st->octets = ((u64)val[2] << 32) | val[3];
4930}
4931
4932/**
4933 *      t4_read_mtu_tbl - returns the values in the HW path MTU table
4934 *      @adap: the adapter
4935 *      @mtus: where to store the MTU values
4936 *      @mtu_log: where to store the MTU base-2 log (may be %NULL)
4937 *
4938 *      Reads the HW path MTU table.
4939 */
4940void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
4941{
4942        u32 v;
4943        int i;
4944
4945        for (i = 0; i < NMTUS; ++i) {
4946                t4_write_reg(adap, TP_MTU_TABLE_A,
4947                             MTUINDEX_V(0xff) | MTUVALUE_V(i));
4948                v = t4_read_reg(adap, TP_MTU_TABLE_A);
4949                mtus[i] = MTUVALUE_G(v);
4950                if (mtu_log)
4951                        mtu_log[i] = MTUWIDTH_G(v);
4952        }
4953}
4954
4955/**
4956 *      t4_read_cong_tbl - reads the congestion control table
4957 *      @adap: the adapter
4958 *      @incr: where to store the alpha values
4959 *
4960 *      Reads the additive increments programmed into the HW congestion
4961 *      control table.
4962 */
4963void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
4964{
4965        unsigned int mtu, w;
4966
4967        for (mtu = 0; mtu < NMTUS; ++mtu)
4968                for (w = 0; w < NCCTRL_WIN; ++w) {
4969                        t4_write_reg(adap, TP_CCTRL_TABLE_A,
4970                                     ROWINDEX_V(0xffff) | (mtu << 5) | w);
4971                        incr[mtu][w] = (u16)t4_read_reg(adap,
4972                                                TP_CCTRL_TABLE_A) & 0x1fff;
4973                }
4974}
4975
4976/**
4977 *      t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
4978 *      @adap: the adapter
4979 *      @addr: the indirect TP register address
4980 *      @mask: specifies the field within the register to modify
4981 *      @val: new value for the field
4982 *
4983 *      Sets a field of an indirect TP register to the given value.
4984 */
4985void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
4986                            unsigned int mask, unsigned int val)
4987{
4988        t4_write_reg(adap, TP_PIO_ADDR_A, addr);
4989        val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
4990        t4_write_reg(adap, TP_PIO_DATA_A, val);
4991}
4992
4993/**
4994 *      init_cong_ctrl - initialize congestion control parameters
4995 *      @a: the alpha values for congestion control
4996 *      @b: the beta values for congestion control
4997 *
4998 *      Initialize the congestion control parameters.
4999 */
5000static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5001{
5002        a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5003        a[9] = 2;
5004        a[10] = 3;
5005        a[11] = 4;
5006        a[12] = 5;
5007        a[13] = 6;
5008        a[14] = 7;
5009        a[15] = 8;
5010        a[16] = 9;
5011        a[17] = 10;
5012        a[18] = 14;
5013        a[19] = 17;
5014        a[20] = 21;
5015        a[21] = 25;
5016        a[22] = 30;
5017        a[23] = 35;
5018        a[24] = 45;
5019        a[25] = 60;
5020        a[26] = 80;
5021        a[27] = 100;
5022        a[28] = 200;
5023        a[29] = 300;
5024        a[30] = 400;
5025        a[31] = 500;
5026
5027        b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5028        b[9] = b[10] = 1;
5029        b[11] = b[12] = 2;
5030        b[13] = b[14] = b[15] = b[16] = 3;
5031        b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5032        b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5033        b[28] = b[29] = 6;
5034        b[30] = b[31] = 7;
5035}
5036
5037/* The minimum additive increment value for the congestion control table */
5038#define CC_MIN_INCR 2U
5039
5040/**
5041 *      t4_load_mtus - write the MTU and congestion control HW tables
5042 *      @adap: the adapter
5043 *      @mtus: the values for the MTU table
5044 *      @alpha: the values for the congestion control alpha parameter
5045 *      @beta: the values for the congestion control beta parameter
5046 *
5047 *      Write the HW MTU table with the supplied MTUs and the high-speed
5048 *      congestion control table with the supplied alpha, beta, and MTUs.
5049 *      We write the two tables together because the additive increments
5050 *      depend on the MTUs.
5051 */
5052void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5053                  const unsigned short *alpha, const unsigned short *beta)
5054{
5055        static const unsigned int avg_pkts[NCCTRL_WIN] = {
5056                2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5057                896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5058                28672, 40960, 57344, 81920, 114688, 163840, 229376
5059        };
5060
5061        unsigned int i, w;
5062
5063        for (i = 0; i < NMTUS; ++i) {
5064                unsigned int mtu = mtus[i];
5065                unsigned int log2 = fls(mtu);
5066
5067                if (!(mtu & ((1 << log2) >> 2)))     /* round */
5068                        log2--;
5069                t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5070                             MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
5071
5072                for (w = 0; w < NCCTRL_WIN; ++w) {
5073                        unsigned int inc;
5074
5075                        inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5076                                  CC_MIN_INCR);
5077
5078                        t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
5079                                     (w << 16) | (beta[w] << 13) | inc);
5080                }
5081        }
5082}
5083
5084/* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5085 * clocks.  The formula is
5086 *
5087 * bytes/s = bytes256 * 256 * ClkFreq / 4096
5088 *
5089 * which is equivalent to
5090 *
5091 * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5092 */
5093static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5094{
5095        u64 v = bytes256 * adap->params.vpd.cclk;
5096
5097        return v * 62 + v / 2;
5098}
5099
5100/**
5101 *      t4_get_chan_txrate - get the current per channel Tx rates
5102 *      @adap: the adapter
5103 *      @nic_rate: rates for NIC traffic
5104 *      @ofld_rate: rates for offloaded traffic
5105 *
5106 *      Return the current Tx rates in bytes/s for NIC and offloaded traffic
5107 *      for each channel.
5108 */
5109void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5110{
5111        u32 v;
5112
5113        v = t4_read_reg(adap, TP_TX_TRATE_A);
5114        nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5115        nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5116        if (adap->params.arch.nchan == NCHAN) {
5117                nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5118                nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5119        }
5120
5121        v = t4_read_reg(adap, TP_TX_ORATE_A);
5122        ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5123        ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5124        if (adap->params.arch.nchan == NCHAN) {
5125                ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5126                ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5127        }
5128}
5129
5130/**
5131 *      t4_set_trace_filter - configure one of the tracing filters
5132 *      @adap: the adapter
5133 *      @tp: the desired trace filter parameters
5134 *      @idx: which filter to configure
5135 *      @enable: whether to enable or disable the filter
5136 *
5137 *      Configures one of the tracing filters available in HW.  If @enable is
5138 *      %0 @tp is not examined and may be %NULL. The user is responsible to
5139 *      set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5140 */
5141int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5142                        int idx, int enable)
5143{
5144        int i, ofst = idx * 4;
5145        u32 data_reg, mask_reg, cfg;
5146        u32 multitrc = TRCMULTIFILTER_F;
5147
5148        if (!enable) {
5149                t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5150                return 0;
5151        }
5152
5153        cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5154        if (cfg & TRCMULTIFILTER_F) {
5155                /* If multiple tracers are enabled, then maximum
5156                 * capture size is 2.5KB (FIFO size of a single channel)
5157                 * minus 2 flits for CPL_TRACE_PKT header.
5158                 */
5159                if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5160                        return -EINVAL;
5161        } else {
5162                /* If multiple tracers are disabled, to avoid deadlocks
5163                 * maximum packet capture size of 9600 bytes is recommended.
5164                 * Also in this mode, only trace0 can be enabled and running.
5165                 */
5166                multitrc = 0;
5167                if (tp->snap_len > 9600 || idx)
5168                        return -EINVAL;
5169        }
5170
5171        if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5172            tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5173            tp->min_len > TFMINPKTSIZE_M)
5174                return -EINVAL;
5175
5176        /* stop the tracer we'll be changing */
5177        t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5178
5179        idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
5180        data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
5181        mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
5182
5183        for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5184                t4_write_reg(adap, data_reg, tp->data[i]);
5185                t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5186        }
5187        t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
5188                     TFCAPTUREMAX_V(tp->snap_len) |
5189                     TFMINPKTSIZE_V(tp->min_len));
5190        t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
5191                     TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
5192                     (is_t4(adap->params.chip) ?
5193                     TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
5194                     T5_TFPORT_V(tp->port) | T5_TFEN_F |
5195                     T5_TFINVERTMATCH_V(tp->invert)));
5196
5197        return 0;
5198}
5199
5200/**
5201 *      t4_get_trace_filter - query one of the tracing filters
5202 *      @adap: the adapter
5203 *      @tp: the current trace filter parameters
5204 *      @idx: which trace filter to query
5205 *      @enabled: non-zero if the filter is enabled
5206 *
5207 *      Returns the current settings of one of the HW tracing filters.
5208 */
5209void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
5210                         int *enabled)
5211{
5212        u32 ctla, ctlb;
5213        int i, ofst = idx * 4;
5214        u32 data_reg, mask_reg;
5215
5216        ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
5217        ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
5218
5219        if (is_t4(adap->params.chip)) {
5220                *enabled = !!(ctla & TFEN_F);
5221                tp->port =  TFPORT_G(ctla);
5222                tp->invert = !!(ctla & TFINVERTMATCH_F);
5223        } else {
5224                *enabled = !!(ctla & T5_TFEN_F);
5225                tp->port = T5_TFPORT_G(ctla);
5226                tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
5227        }
5228        tp->snap_len = TFCAPTUREMAX_G(ctlb);
5229        tp->min_len = TFMINPKTSIZE_G(ctlb);
5230        tp->skip_ofst = TFOFFSET_G(ctla);
5231        tp->skip_len = TFLENGTH_G(ctla);
5232
5233        ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
5234        data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
5235        mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
5236
5237        for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5238                tp->mask[i] = ~t4_read_reg(adap, mask_reg);
5239                tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
5240        }
5241}
5242
5243/**
5244 *      t4_pmtx_get_stats - returns the HW stats from PMTX
5245 *      @adap: the adapter
5246 *      @cnt: where to store the count statistics
5247 *      @cycles: where to store the cycle statistics
5248 *
5249 *      Returns performance statistics from PMTX.
5250 */
5251void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5252{
5253        int i;
5254        u32 data[2];
5255
5256        for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
5257                t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
5258                cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
5259                if (is_t4(adap->params.chip)) {
5260                        cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
5261                } else {
5262                        t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
5263                                         PM_TX_DBG_DATA_A, data, 2,
5264                                         PM_TX_DBG_STAT_MSB_A);
5265                        cycles[i] = (((u64)data[0] << 32) | data[1]);
5266                }
5267        }
5268}
5269
5270/**
5271 *      t4_pmrx_get_stats - returns the HW stats from PMRX
5272 *      @adap: the adapter
5273 *      @cnt: where to store the count statistics
5274 *      @cycles: where to store the cycle statistics
5275 *
5276 *      Returns performance statistics from PMRX.
5277 */
5278void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5279{
5280        int i;
5281        u32 data[2];
5282
5283        for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
5284                t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
5285                cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
5286                if (is_t4(adap->params.chip)) {
5287                        cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
5288                } else {
5289                        t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
5290                                         PM_RX_DBG_DATA_A, data, 2,
5291                                         PM_RX_DBG_STAT_MSB_A);
5292                        cycles[i] = (((u64)data[0] << 32) | data[1]);
5293                }
5294        }
5295}
5296
5297/**
5298 *      t4_get_mps_bg_map - return the buffer groups associated with a port
5299 *      @adap: the adapter
5300 *      @idx: the port index
5301 *
5302 *      Returns a bitmap indicating which MPS buffer groups are associated
5303 *      with the given port.  Bit i is set if buffer group i is used by the
5304 *      port.
5305 */
5306unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
5307{
5308        u32 n = NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
5309
5310        if (n == 0)
5311                return idx == 0 ? 0xf : 0;
5312        /* In T6 (which is a 2 port card),
5313         * port 0 is mapped to channel 0 and port 1 is mapped to channel 1.
5314         * For 2 port T4/T5 adapter,
5315         * port 0 is mapped to channel 0 and 1,
5316         * port 1 is mapped to channel 2 and 3.
5317         */
5318        if ((n == 1) &&
5319            (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5))
5320                return idx < 2 ? (3 << (2 * idx)) : 0;
5321        return 1 << idx;
5322}
5323
5324/**
5325 *      t4_get_port_type_description - return Port Type string description
5326 *      @port_type: firmware Port Type enumeration
5327 */
5328const char *t4_get_port_type_description(enum fw_port_type port_type)
5329{
5330        static const char *const port_type_description[] = {
5331                "R XFI",
5332                "R XAUI",
5333                "T SGMII",
5334                "T XFI",
5335                "T XAUI",
5336                "KX4",
5337                "CX4",
5338                "KX",
5339                "KR",
5340                "R SFP+",
5341                "KR/KX",
5342                "KR/KX/KX4",
5343                "R QSFP_10G",
5344                "R QSA",
5345                "R QSFP",
5346                "R BP40_BA",
5347        };
5348
5349        if (port_type < ARRAY_SIZE(port_type_description))
5350                return port_type_description[port_type];
5351        return "UNKNOWN";
5352}
5353
5354/**
5355 *      t4_get_port_stats_offset - collect port stats relative to a previous
5356 *                                 snapshot
5357 *      @adap: The adapter
5358 *      @idx: The port
5359 *      @stats: Current stats to fill
5360 *      @offset: Previous stats snapshot
5361 */
5362void t4_get_port_stats_offset(struct adapter *adap, int idx,
5363                              struct port_stats *stats,
5364                              struct port_stats *offset)
5365{
5366        u64 *s, *o;
5367        int i;
5368
5369        t4_get_port_stats(adap, idx, stats);
5370        for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
5371                        i < (sizeof(struct port_stats) / sizeof(u64));
5372                        i++, s++, o++)
5373                *s -= *o;
5374}
5375
5376/**
5377 *      t4_get_port_stats - collect port statistics
5378 *      @adap: the adapter
5379 *      @idx: the port index
5380 *      @p: the stats structure to fill
5381 *
5382 *      Collect statistics related to the given port from HW.
5383 */
5384void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
5385{
5386        u32 bgmap = t4_get_mps_bg_map(adap, idx);
5387
5388#define GET_STAT(name) \
5389        t4_read_reg64(adap, \
5390        (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
5391        T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
5392#define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
5393
5394        p->tx_octets           = GET_STAT(TX_PORT_BYTES);
5395        p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
5396        p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
5397        p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
5398        p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
5399        p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
5400        p->tx_frames_64        = GET_STAT(TX_PORT_64B);
5401        p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
5402        p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
5403        p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
5404        p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
5405        p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
5406        p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
5407        p->tx_drop             = GET_STAT(TX_PORT_DROP);
5408        p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
5409        p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
5410        p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
5411        p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
5412        p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
5413        p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
5414        p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
5415        p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
5416        p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
5417
5418        p->rx_octets           = GET_STAT(RX_PORT_BYTES);
5419        p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
5420        p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
5421        p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
5422        p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
5423        p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
5424        p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
5425        p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
5426        p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
5427        p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
5428        p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
5429        p->rx_frames_64        = GET_STAT(RX_PORT_64B);
5430        p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
5431        p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
5432        p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
5433        p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
5434        p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
5435        p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
5436        p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
5437        p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
5438        p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
5439        p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
5440        p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
5441        p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
5442        p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
5443        p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
5444        p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
5445
5446        p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
5447        p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
5448        p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
5449        p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
5450        p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
5451        p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
5452        p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
5453        p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
5454
5455#undef GET_STAT
5456#undef GET_STAT_COM
5457}
5458
5459/**
5460 *      t4_get_lb_stats - collect loopback port statistics
5461 *      @adap: the adapter
5462 *      @idx: the loopback port index
5463 *      @p: the stats structure to fill
5464 *
5465 *      Return HW statistics for the given loopback port.
5466 */
5467void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
5468{
5469        u32 bgmap = t4_get_mps_bg_map(adap, idx);
5470
5471#define GET_STAT(name) \
5472        t4_read_reg64(adap, \
5473        (is_t4(adap->params.chip) ? \
5474        PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
5475        T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
5476#define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
5477
5478        p->octets           = GET_STAT(BYTES);
5479        p->frames           = GET_STAT(FRAMES);
5480        p->bcast_frames     = GET_STAT(BCAST);
5481        p->mcast_frames     = GET_STAT(MCAST);
5482        p->ucast_frames     = GET_STAT(UCAST);
5483        p->error_frames     = GET_STAT(ERROR);
5484
5485        p->frames_64        = GET_STAT(64B);
5486        p->frames_65_127    = GET_STAT(65B_127B);
5487        p->frames_128_255   = GET_STAT(128B_255B);
5488        p->frames_256_511   = GET_STAT(256B_511B);
5489        p->frames_512_1023  = GET_STAT(512B_1023B);
5490        p->frames_1024_1518 = GET_STAT(1024B_1518B);
5491        p->frames_1519_max  = GET_STAT(1519B_MAX);
5492        p->drop             = GET_STAT(DROP_FRAMES);
5493
5494        p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
5495        p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
5496        p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
5497        p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
5498        p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
5499        p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
5500        p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
5501        p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
5502
5503#undef GET_STAT
5504#undef GET_STAT_COM
5505}
5506
5507/*     t4_mk_filtdelwr - create a delete filter WR
5508 *     @ftid: the filter ID
5509 *     @wr: the filter work request to populate
5510 *     @qid: ingress queue to receive the delete notification
5511 *
5512 *     Creates a filter work request to delete the supplied filter.  If @qid is
5513 *     negative the delete notification is suppressed.
5514 */
5515void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
5516{
5517        memset(wr, 0, sizeof(*wr));
5518        wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
5519        wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
5520        wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
5521                                    FW_FILTER_WR_NOREPLY_V(qid < 0));
5522        wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
5523        if (qid >= 0)
5524                wr->rx_chan_rx_rpl_iq =
5525                        cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
5526}
5527
5528#define INIT_CMD(var, cmd, rd_wr) do { \
5529        (var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
5530                                        FW_CMD_REQUEST_F | \
5531                                        FW_CMD_##rd_wr##_F); \
5532        (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
5533} while (0)
5534
5535int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
5536                          u32 addr, u32 val)
5537{
5538        u32 ldst_addrspace;
5539        struct fw_ldst_cmd c;
5540
5541        memset(&c, 0, sizeof(c));
5542        ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
5543        c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5544                                        FW_CMD_REQUEST_F |
5545                                        FW_CMD_WRITE_F |
5546                                        ldst_addrspace);
5547        c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5548        c.u.addrval.addr = cpu_to_be32(addr);
5549        c.u.addrval.val = cpu_to_be32(val);
5550
5551        return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5552}
5553
5554/**
5555 *      t4_mdio_rd - read a PHY register through MDIO
5556 *      @adap: the adapter
5557 *      @mbox: mailbox to use for the FW command
5558 *      @phy_addr: the PHY address
5559 *      @mmd: the PHY MMD to access (0 for clause 22 PHYs)
5560 *      @reg: the register to read
5561 *      @valp: where to store the value
5562 *
5563 *      Issues a FW command through the given mailbox to read a PHY register.
5564 */
5565int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
5566               unsigned int mmd, unsigned int reg, u16 *valp)
5567{
5568        int ret;
5569        u32 ldst_addrspace;
5570        struct fw_ldst_cmd c;
5571
5572        memset(&c, 0, sizeof(c));
5573        ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
5574        c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5575                                        FW_CMD_REQUEST_F | FW_CMD_READ_F |
5576                                        ldst_addrspace);
5577        c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5578        c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
5579                                         FW_LDST_CMD_MMD_V(mmd));
5580        c.u.mdio.raddr = cpu_to_be16(reg);
5581
5582        ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5583        if (ret == 0)
5584                *valp = be16_to_cpu(c.u.mdio.rval);
5585        return ret;
5586}
5587
5588/**
5589 *      t4_mdio_wr - write a PHY register through MDIO
5590 *      @adap: the adapter
5591 *      @mbox: mailbox to use for the FW command
5592 *      @phy_addr: the PHY address
5593 *      @mmd: the PHY MMD to access (0 for clause 22 PHYs)
5594 *      @reg: the register to write
5595 *      @valp: value to write
5596 *
5597 *      Issues a FW command through the given mailbox to write a PHY register.
5598 */
5599int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
5600               unsigned int mmd, unsigned int reg, u16 val)
5601{
5602        u32 ldst_addrspace;
5603        struct fw_ldst_cmd c;
5604
5605        memset(&c, 0, sizeof(c));
5606        ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
5607        c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5608                                        FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5609                                        ldst_addrspace);
5610        c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5611        c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
5612                                         FW_LDST_CMD_MMD_V(mmd));
5613        c.u.mdio.raddr = cpu_to_be16(reg);
5614        c.u.mdio.rval = cpu_to_be16(val);
5615
5616        return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5617}
5618
5619/**
5620 *      t4_sge_decode_idma_state - decode the idma state
5621 *      @adap: the adapter
5622 *      @state: the state idma is stuck in
5623 */
5624void t4_sge_decode_idma_state(struct adapter *adapter, int state)
5625{
5626        static const char * const t4_decode[] = {
5627                "IDMA_IDLE",
5628                "IDMA_PUSH_MORE_CPL_FIFO",
5629                "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
5630                "Not used",
5631                "IDMA_PHYSADDR_SEND_PCIEHDR",
5632                "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
5633                "IDMA_PHYSADDR_SEND_PAYLOAD",
5634                "IDMA_SEND_FIFO_TO_IMSG",
5635                "IDMA_FL_REQ_DATA_FL_PREP",
5636                "IDMA_FL_REQ_DATA_FL",
5637                "IDMA_FL_DROP",
5638                "IDMA_FL_H_REQ_HEADER_FL",
5639                "IDMA_FL_H_SEND_PCIEHDR",
5640                "IDMA_FL_H_PUSH_CPL_FIFO",
5641                "IDMA_FL_H_SEND_CPL",
5642                "IDMA_FL_H_SEND_IP_HDR_FIRST",
5643                "IDMA_FL_H_SEND_IP_HDR",
5644                "IDMA_FL_H_REQ_NEXT_HEADER_FL",
5645                "IDMA_FL_H_SEND_NEXT_PCIEHDR",
5646                "IDMA_FL_H_SEND_IP_HDR_PADDING",
5647                "IDMA_FL_D_SEND_PCIEHDR",
5648                "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
5649                "IDMA_FL_D_REQ_NEXT_DATA_FL",
5650                "IDMA_FL_SEND_PCIEHDR",
5651                "IDMA_FL_PUSH_CPL_FIFO",
5652                "IDMA_FL_SEND_CPL",
5653                "IDMA_FL_SEND_PAYLOAD_FIRST",
5654                "IDMA_FL_SEND_PAYLOAD",
5655                "IDMA_FL_REQ_NEXT_DATA_FL",
5656                "IDMA_FL_SEND_NEXT_PCIEHDR",
5657                "IDMA_FL_SEND_PADDING",
5658                "IDMA_FL_SEND_COMPLETION_TO_IMSG",
5659                "IDMA_FL_SEND_FIFO_TO_IMSG",
5660                "IDMA_FL_REQ_DATAFL_DONE",
5661                "IDMA_FL_REQ_HEADERFL_DONE",
5662        };
5663        static const char * const t5_decode[] = {
5664                "IDMA_IDLE",
5665                "IDMA_ALMOST_IDLE",
5666                "IDMA_PUSH_MORE_CPL_FIFO",
5667                "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
5668                "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
5669                "IDMA_PHYSADDR_SEND_PCIEHDR",
5670                "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
5671                "IDMA_PHYSADDR_SEND_PAYLOAD",
5672                "IDMA_SEND_FIFO_TO_IMSG",
5673                "IDMA_FL_REQ_DATA_FL",
5674                "IDMA_FL_DROP",
5675                "IDMA_FL_DROP_SEND_INC",
5676                "IDMA_FL_H_REQ_HEADER_FL",
5677                "IDMA_FL_H_SEND_PCIEHDR",
5678                "IDMA_FL_H_PUSH_CPL_FIFO",
5679                "IDMA_FL_H_SEND_CPL",
5680                "IDMA_FL_H_SEND_IP_HDR_FIRST",
5681                "IDMA_FL_H_SEND_IP_HDR",
5682                "IDMA_FL_H_REQ_NEXT_HEADER_FL",
5683                "IDMA_FL_H_SEND_NEXT_PCIEHDR",
5684                "IDMA_FL_H_SEND_IP_HDR_PADDING",
5685                "IDMA_FL_D_SEND_PCIEHDR",
5686                "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
5687                "IDMA_FL_D_REQ_NEXT_DATA_FL",
5688                "IDMA_FL_SEND_PCIEHDR",
5689                "IDMA_FL_PUSH_CPL_FIFO",
5690                "IDMA_FL_SEND_CPL",
5691                "IDMA_FL_SEND_PAYLOAD_FIRST",
5692                "IDMA_FL_SEND_PAYLOAD",
5693                "IDMA_FL_REQ_NEXT_DATA_FL",
5694                "IDMA_FL_SEND_NEXT_PCIEHDR",
5695                "IDMA_FL_SEND_PADDING",
5696                "IDMA_FL_SEND_COMPLETION_TO_IMSG",
5697        };
5698        static const char * const t6_decode[] = {
5699                "IDMA_IDLE",
5700                "IDMA_PUSH_MORE_CPL_FIFO",
5701                "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
5702                "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
5703                "IDMA_PHYSADDR_SEND_PCIEHDR",
5704                "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
5705                "IDMA_PHYSADDR_SEND_PAYLOAD",
5706                "IDMA_FL_REQ_DATA_FL",
5707                "IDMA_FL_DROP",
5708                "IDMA_FL_DROP_SEND_INC",
5709                "IDMA_FL_H_REQ_HEADER_FL",
5710                "IDMA_FL_H_SEND_PCIEHDR",
5711                "IDMA_FL_H_PUSH_CPL_FIFO",
5712                "IDMA_FL_H_SEND_CPL",
5713                "IDMA_FL_H_SEND_IP_HDR_FIRST",
5714                "IDMA_FL_H_SEND_IP_HDR",
5715                "IDMA_FL_H_REQ_NEXT_HEADER_FL",
5716                "IDMA_FL_H_SEND_NEXT_PCIEHDR",
5717                "IDMA_FL_H_SEND_IP_HDR_PADDING",
5718                "IDMA_FL_D_SEND_PCIEHDR",
5719                "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
5720                "IDMA_FL_D_REQ_NEXT_DATA_FL",
5721                "IDMA_FL_SEND_PCIEHDR",
5722                "IDMA_FL_PUSH_CPL_FIFO",
5723                "IDMA_FL_SEND_CPL",
5724                "IDMA_FL_SEND_PAYLOAD_FIRST",
5725                "IDMA_FL_SEND_PAYLOAD",
5726                "IDMA_FL_REQ_NEXT_DATA_FL",
5727                "IDMA_FL_SEND_NEXT_PCIEHDR",
5728                "IDMA_FL_SEND_PADDING",
5729                "IDMA_FL_SEND_COMPLETION_TO_IMSG",
5730        };
5731        static const u32 sge_regs[] = {
5732                SGE_DEBUG_DATA_LOW_INDEX_2_A,
5733                SGE_DEBUG_DATA_LOW_INDEX_3_A,
5734                SGE_DEBUG_DATA_HIGH_INDEX_10_A,
5735        };
5736        const char **sge_idma_decode;
5737        int sge_idma_decode_nstates;
5738        int i;
5739        unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
5740
5741        /* Select the right set of decode strings to dump depending on the
5742         * adapter chip type.
5743         */
5744        switch (chip_version) {
5745        case CHELSIO_T4:
5746                sge_idma_decode = (const char **)t4_decode;
5747                sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
5748                break;
5749
5750        case CHELSIO_T5:
5751                sge_idma_decode = (const char **)t5_decode;
5752                sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
5753                break;
5754
5755        case CHELSIO_T6:
5756                sge_idma_decode = (const char **)t6_decode;
5757                sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
5758                break;
5759
5760        default:
5761                dev_err(adapter->pdev_dev,
5762                        "Unsupported chip version %d\n", chip_version);
5763                return;
5764        }
5765
5766        if (is_t4(adapter->params.chip)) {
5767                sge_idma_decode = (const char **)t4_decode;
5768                sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
5769        } else {
5770                sge_idma_decode = (const char **)t5_decode;
5771                sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
5772        }
5773
5774        if (state < sge_idma_decode_nstates)
5775                CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
5776        else
5777                CH_WARN(adapter, "idma state %d unknown\n", state);
5778
5779        for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
5780                CH_WARN(adapter, "SGE register %#x value %#x\n",
5781                        sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
5782}
5783
5784/**
5785 *      t4_sge_ctxt_flush - flush the SGE context cache
5786 *      @adap: the adapter
5787 *      @mbox: mailbox to use for the FW command
5788 *
5789 *      Issues a FW command through the given mailbox to flush the
5790 *      SGE context cache.
5791 */
5792int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
5793{
5794        int ret;
5795        u32 ldst_addrspace;
5796        struct fw_ldst_cmd c;
5797
5798        memset(&c, 0, sizeof(c));
5799        ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_SGE_EGRC);
5800        c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5801                                        FW_CMD_REQUEST_F | FW_CMD_READ_F |
5802                                        ldst_addrspace);
5803        c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5804        c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
5805
5806        ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5807        return ret;
5808}
5809
5810/**
5811 *      t4_fw_hello - establish communication with FW
5812 *      @adap: the adapter
5813 *      @mbox: mailbox to use for the FW command
5814 *      @evt_mbox: mailbox to receive async FW events
5815 *      @master: specifies the caller's willingness to be the device master
5816 *      @state: returns the current device state (if non-NULL)
5817 *
5818 *      Issues a command to establish communication with FW.  Returns either
5819 *      an error (negative integer) or the mailbox of the Master PF.
5820 */
5821int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
5822                enum dev_master master, enum dev_state *state)
5823{
5824        int ret;
5825        struct fw_hello_cmd c;
5826        u32 v;
5827        unsigned int master_mbox;
5828        int retries = FW_CMD_HELLO_RETRIES;
5829
5830retry:
5831        memset(&c, 0, sizeof(c));
5832        INIT_CMD(c, HELLO, WRITE);
5833        c.err_to_clearinit = cpu_to_be32(
5834                FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
5835                FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
5836                FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
5837                                        mbox : FW_HELLO_CMD_MBMASTER_M) |
5838                FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
5839                FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
5840                FW_HELLO_CMD_CLEARINIT_F);
5841
5842        /*
5843         * Issue the HELLO command to the firmware.  If it's not successful
5844         * but indicates that we got a "busy" or "timeout" condition, retry
5845         * the HELLO until we exhaust our retry limit.  If we do exceed our
5846         * retry limit, check to see if the firmware left us any error
5847         * information and report that if so.
5848         */
5849        ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5850        if (ret < 0) {
5851                if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
5852                        goto retry;
5853                if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
5854                        t4_report_fw_error(adap);
5855                return ret;
5856        }
5857
5858        v = be32_to_cpu(c.err_to_clearinit);
5859        master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
5860        if (state) {
5861                if (v & FW_HELLO_CMD_ERR_F)
5862                        *state = DEV_STATE_ERR;
5863                else if (v & FW_HELLO_CMD_INIT_F)
5864                        *state = DEV_STATE_INIT;
5865                else
5866                        *state = DEV_STATE_UNINIT;
5867        }
5868
5869        /*
5870         * If we're not the Master PF then we need to wait around for the
5871         * Master PF Driver to finish setting up the adapter.
5872         *
5873         * Note that we also do this wait if we're a non-Master-capable PF and
5874         * there is no current Master PF; a Master PF may show up momentarily
5875         * and we wouldn't want to fail pointlessly.  (This can happen when an
5876         * OS loads lots of different drivers rapidly at the same time).  In
5877         * this case, the Master PF returned by the firmware will be
5878         * PCIE_FW_MASTER_M so the test below will work ...
5879         */
5880        if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
5881            master_mbox != mbox) {
5882                int waiting = FW_CMD_HELLO_TIMEOUT;
5883
5884                /*
5885                 * Wait for the firmware to either indicate an error or
5886                 * initialized state.  If we see either of these we bail out
5887                 * and report the issue to the caller.  If we exhaust the
5888                 * "hello timeout" and we haven't exhausted our retries, try
5889                 * again.  Otherwise bail with a timeout error.
5890                 */
5891                for (;;) {
5892                        u32 pcie_fw;
5893
5894                        msleep(50);
5895                        waiting -= 50;
5896
5897                        /*
5898                         * If neither Error nor Initialialized are indicated
5899                         * by the firmware keep waiting till we exaust our
5900                         * timeout ... and then retry if we haven't exhausted
5901                         * our retries ...
5902                         */
5903                        pcie_fw = t4_read_reg(adap, PCIE_FW_A);
5904                        if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
5905                                if (waiting <= 0) {
5906                                        if (retries-- > 0)
5907                                                goto retry;
5908
5909                                        return -ETIMEDOUT;
5910                                }
5911                                continue;
5912                        }
5913
5914                        /*
5915                         * We either have an Error or Initialized condition
5916                         * report errors preferentially.
5917                         */
5918                        if (state) {
5919                                if (pcie_fw & PCIE_FW_ERR_F)
5920                                        *state = DEV_STATE_ERR;
5921                                else if (pcie_fw & PCIE_FW_INIT_F)
5922                                        *state = DEV_STATE_INIT;
5923                        }
5924
5925                        /*
5926                         * If we arrived before a Master PF was selected and
5927                         * there's not a valid Master PF, grab its identity
5928                         * for our caller.
5929                         */
5930                        if (master_mbox == PCIE_FW_MASTER_M &&
5931                            (pcie_fw & PCIE_FW_MASTER_VLD_F))
5932                                master_mbox = PCIE_FW_MASTER_G(pcie_fw);
5933                        break;
5934                }
5935        }
5936
5937        return master_mbox;
5938}
5939
5940/**
5941 *      t4_fw_bye - end communication with FW
5942 *      @adap: the adapter
5943 *      @mbox: mailbox to use for the FW command
5944 *
5945 *      Issues a command to terminate communication with FW.
5946 */
5947int t4_fw_bye(struct adapter *adap, unsigned int mbox)
5948{
5949        struct fw_bye_cmd c;
5950
5951        memset(&c, 0, sizeof(c));
5952        INIT_CMD(c, BYE, WRITE);
5953        return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5954}
5955
5956/**
5957 *      t4_init_cmd - ask FW to initialize the device
5958 *      @adap: the adapter
5959 *      @mbox: mailbox to use for the FW command
5960 *
5961 *      Issues a command to FW to partially initialize the device.  This
5962 *      performs initialization that generally doesn't depend on user input.
5963 */
5964int t4_early_init(struct adapter *adap, unsigned int mbox)
5965{
5966        struct fw_initialize_cmd c;
5967
5968        memset(&c, 0, sizeof(c));
5969        INIT_CMD(c, INITIALIZE, WRITE);
5970        return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5971}
5972
5973/**
5974 *      t4_fw_reset - issue a reset to FW
5975 *      @adap: the adapter
5976 *      @mbox: mailbox to use for the FW command
5977 *      @reset: specifies the type of reset to perform
5978 *
5979 *      Issues a reset command of the specified type to FW.
5980 */
5981int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
5982{
5983        struct fw_reset_cmd c;
5984
5985        memset(&c, 0, sizeof(c));
5986        INIT_CMD(c, RESET, WRITE);
5987        c.val = cpu_to_be32(reset);
5988        return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5989}
5990
5991/**
5992 *      t4_fw_halt - issue a reset/halt to FW and put uP into RESET
5993 *      @adap: the adapter
5994 *      @mbox: mailbox to use for the FW RESET command (if desired)
5995 *      @force: force uP into RESET even if FW RESET command fails
5996 *
5997 *      Issues a RESET command to firmware (if desired) with a HALT indication
5998 *      and then puts the microprocessor into RESET state.  The RESET command
5999 *      will only be issued if a legitimate mailbox is provided (mbox <=
6000 *      PCIE_FW_MASTER_M).
6001 *
6002 *      This is generally used in order for the host to safely manipulate the
6003 *      adapter without fear of conflicting with whatever the firmware might
6004 *      be doing.  The only way out of this state is to RESTART the firmware
6005 *      ...
6006 */
6007static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
6008{
6009        int ret = 0;
6010
6011        /*
6012         * If a legitimate mailbox is provided, issue a RESET command
6013         * with a HALT indication.
6014         */
6015        if (mbox <= PCIE_FW_MASTER_M) {
6016                struct fw_reset_cmd c;
6017
6018                memset(&c, 0, sizeof(c));
6019                INIT_CMD(c, RESET, WRITE);
6020                c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
6021                c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
6022                ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6023        }
6024
6025        /*
6026         * Normally we won't complete the operation if the firmware RESET
6027         * command fails but if our caller insists we'll go ahead and put the
6028         * uP into RESET.  This can be useful if the firmware is hung or even
6029         * missing ...  We'll have to take the risk of putting the uP into
6030         * RESET without the cooperation of firmware in that case.
6031         *
6032         * We also force the firmware's HALT flag to be on in case we bypassed
6033         * the firmware RESET command above or we're dealing with old firmware
6034         * which doesn't have the HALT capability.  This will serve as a flag
6035         * for the incoming firmware to know that it's coming out of a HALT
6036         * rather than a RESET ... if it's new enough to understand that ...
6037         */
6038        if (ret == 0 || force) {
6039                t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
6040                t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
6041                                 PCIE_FW_HALT_F);
6042        }
6043
6044        /*
6045         * And we always return the result of the firmware RESET command
6046         * even when we force the uP into RESET ...
6047         */
6048        return ret;
6049}
6050
6051/**
6052 *      t4_fw_restart - restart the firmware by taking the uP out of RESET
6053 *      @adap: the adapter
6054 *      @reset: if we want to do a RESET to restart things
6055 *
6056 *      Restart firmware previously halted by t4_fw_halt().  On successful
6057 *      return the previous PF Master remains as the new PF Master and there
6058 *      is no need to issue a new HELLO command, etc.
6059 *
6060 *      We do this in two ways:
6061 *
6062 *       1. If we're dealing with newer firmware we'll simply want to take
6063 *          the chip's microprocessor out of RESET.  This will cause the
6064 *          firmware to start up from its start vector.  And then we'll loop
6065 *          until the firmware indicates it's started again (PCIE_FW.HALT
6066 *          reset to 0) or we timeout.
6067 *
6068 *       2. If we're dealing with older firmware then we'll need to RESET
6069 *          the chip since older firmware won't recognize the PCIE_FW.HALT
6070 *          flag and automatically RESET itself on startup.
6071 */
6072static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
6073{
6074        if (reset) {
6075                /*
6076                 * Since we're directing the RESET instead of the firmware
6077                 * doing it automatically, we need to clear the PCIE_FW.HALT
6078                 * bit.
6079                 */
6080                t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
6081
6082                /*
6083                 * If we've been given a valid mailbox, first try to get the
6084                 * firmware to do the RESET.  If that works, great and we can
6085                 * return success.  Otherwise, if we haven't been given a
6086                 * valid mailbox or the RESET command failed, fall back to
6087                 * hitting the chip with a hammer.
6088                 */
6089                if (mbox <= PCIE_FW_MASTER_M) {
6090                        t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6091                        msleep(100);
6092                        if (t4_fw_reset(adap, mbox,
6093                                        PIORST_F | PIORSTMODE_F) == 0)
6094                                return 0;
6095                }
6096
6097                t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
6098                msleep(2000);
6099        } else {
6100                int ms;
6101
6102                t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6103                for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
6104                        if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
6105                                return 0;
6106                        msleep(100);
6107                        ms += 100;
6108                }
6109                return -ETIMEDOUT;
6110        }
6111        return 0;
6112}
6113
6114/**
6115 *      t4_fw_upgrade - perform all of the steps necessary to upgrade FW
6116 *      @adap: the adapter
6117 *      @mbox: mailbox to use for the FW RESET command (if desired)
6118 *      @fw_data: the firmware image to write
6119 *      @size: image size
6120 *      @force: force upgrade even if firmware doesn't cooperate
6121 *
6122 *      Perform all of the steps necessary for upgrading an adapter's
6123 *      firmware image.  Normally this requires the cooperation of the
6124 *      existing firmware in order to halt all existing activities
6125 *      but if an invalid mailbox token is passed in we skip that step
6126 *      (though we'll still put the adapter microprocessor into RESET in
6127 *      that case).
6128 *
6129 *      On successful return the new firmware will have been loaded and
6130 *      the adapter will have been fully RESET losing all previous setup
6131 *      state.  On unsuccessful return the adapter may be completely hosed ...
6132 *      positive errno indicates that the adapter is ~probably~ intact, a
6133 *      negative errno indicates that things are looking bad ...
6134 */
6135int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
6136                  const u8 *fw_data, unsigned int size, int force)
6137{
6138        const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6139        int reset, ret;
6140
6141        if (!t4_fw_matches_chip(adap, fw_hdr))
6142                return -EINVAL;
6143
6144        ret = t4_fw_halt(adap, mbox, force);
6145        if (ret < 0 && !force)
6146                return ret;
6147
6148        ret = t4_load_fw(adap, fw_data, size);
6149        if (ret < 0)
6150                return ret;
6151
6152        /*
6153         * Older versions of the firmware don't understand the new
6154         * PCIE_FW.HALT flag and so won't know to perform a RESET when they
6155         * restart.  So for newly loaded older firmware we'll have to do the
6156         * RESET for it so it starts up on a clean slate.  We can tell if
6157         * the newly loaded firmware will handle this right by checking
6158         * its header flags to see if it advertises the capability.
6159         */
6160        reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
6161        return t4_fw_restart(adap, mbox, reset);
6162}
6163
6164/**
6165 *      t4_fl_pkt_align - return the fl packet alignment
6166 *      @adap: the adapter
6167 *
6168 *      T4 has a single field to specify the packing and padding boundary.
6169 *      T5 onwards has separate fields for this and hence the alignment for
6170 *      next packet offset is maximum of these two.
6171 *
6172 */
6173int t4_fl_pkt_align(struct adapter *adap)
6174{
6175        u32 sge_control, sge_control2;
6176        unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
6177
6178        sge_control = t4_read_reg(adap, SGE_CONTROL_A);
6179
6180        /* T4 uses a single control field to specify both the PCIe Padding and
6181         * Packing Boundary.  T5 introduced the ability to specify these
6182         * separately.  The actual Ingress Packet Data alignment boundary
6183         * within Packed Buffer Mode is the maximum of these two
6184         * specifications.  (Note that it makes no real practical sense to
6185         * have the Pading Boudary be larger than the Packing Boundary but you
6186         * could set the chip up that way and, in fact, legacy T4 code would
6187         * end doing this because it would initialize the Padding Boundary and
6188         * leave the Packing Boundary initialized to 0 (16 bytes).)
6189         * Padding Boundary values in T6 starts from 8B,
6190         * where as it is 32B for T4 and T5.
6191         */
6192        if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
6193                ingpad_shift = INGPADBOUNDARY_SHIFT_X;
6194        else
6195                ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
6196
6197        ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
6198
6199        fl_align = ingpadboundary;
6200        if (!is_t4(adap->params.chip)) {
6201                /* T5 has a weird interpretation of one of the PCIe Packing
6202                 * Boundary values.  No idea why ...
6203                 */
6204                sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
6205                ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
6206                if (ingpackboundary == INGPACKBOUNDARY_16B_X)
6207                        ingpackboundary = 16;
6208                else
6209                        ingpackboundary = 1 << (ingpackboundary +
6210                                                INGPACKBOUNDARY_SHIFT_X);
6211
6212                fl_align = max(ingpadboundary, ingpackboundary);
6213        }
6214        return fl_align;
6215}
6216
6217/**
6218 *      t4_fixup_host_params - fix up host-dependent parameters
6219 *      @adap: the adapter
6220 *      @page_size: the host's Base Page Size
6221 *      @cache_line_size: the host's Cache Line Size
6222 *
6223 *      Various registers in T4 contain values which are dependent on the
6224 *      host's Base Page and Cache Line Sizes.  This function will fix all of
6225 *      those registers with the appropriate values as passed in ...
6226 */
6227int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
6228                         unsigned int cache_line_size)
6229{
6230        unsigned int page_shift = fls(page_size) - 1;
6231        unsigned int sge_hps = page_shift - 10;
6232        unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
6233        unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
6234        unsigned int fl_align_log = fls(fl_align) - 1;
6235        unsigned int ingpad;
6236
6237        t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
6238                     HOSTPAGESIZEPF0_V(sge_hps) |
6239                     HOSTPAGESIZEPF1_V(sge_hps) |
6240                     HOSTPAGESIZEPF2_V(sge_hps) |
6241                     HOSTPAGESIZEPF3_V(sge_hps) |
6242                     HOSTPAGESIZEPF4_V(sge_hps) |
6243                     HOSTPAGESIZEPF5_V(sge_hps) |
6244                     HOSTPAGESIZEPF6_V(sge_hps) |
6245                     HOSTPAGESIZEPF7_V(sge_hps));
6246
6247        if (is_t4(adap->params.chip)) {
6248                t4_set_reg_field(adap, SGE_CONTROL_A,
6249                                 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
6250                                 EGRSTATUSPAGESIZE_F,
6251                                 INGPADBOUNDARY_V(fl_align_log -
6252                                                  INGPADBOUNDARY_SHIFT_X) |
6253                                 EGRSTATUSPAGESIZE_V(stat_len != 64));
6254        } else {
6255                /* T5 introduced the separation of the Free List Padding and
6256                 * Packing Boundaries.  Thus, we can select a smaller Padding
6257                 * Boundary to avoid uselessly chewing up PCIe Link and Memory
6258                 * Bandwidth, and use a Packing Boundary which is large enough
6259                 * to avoid false sharing between CPUs, etc.
6260                 *
6261                 * For the PCI Link, the smaller the Padding Boundary the
6262                 * better.  For the Memory Controller, a smaller Padding
6263                 * Boundary is better until we cross under the Memory Line
6264                 * Size (the minimum unit of transfer to/from Memory).  If we
6265                 * have a Padding Boundary which is smaller than the Memory
6266                 * Line Size, that'll involve a Read-Modify-Write cycle on the
6267                 * Memory Controller which is never good.  For T5 the smallest
6268                 * Padding Boundary which we can select is 32 bytes which is
6269                 * larger than any known Memory Controller Line Size so we'll
6270                 * use that.
6271                 *
6272                 * T5 has a different interpretation of the "0" value for the
6273                 * Packing Boundary.  This corresponds to 16 bytes instead of
6274                 * the expected 32 bytes.  We never have a Packing Boundary
6275                 * less than 32 bytes so we can't use that special value but
6276                 * on the other hand, if we wanted 32 bytes, the best we can
6277                 * really do is 64 bytes.
6278                */
6279                if (fl_align <= 32) {
6280                        fl_align = 64;
6281                        fl_align_log = 6;
6282                }
6283
6284                if (is_t5(adap->params.chip))
6285                        ingpad = INGPCIEBOUNDARY_32B_X;
6286                else
6287                        ingpad = T6_INGPADBOUNDARY_32B_X;
6288
6289                t4_set_reg_field(adap, SGE_CONTROL_A,
6290                                 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
6291                                 EGRSTATUSPAGESIZE_F,
6292                                 INGPADBOUNDARY_V(ingpad) |
6293                                 EGRSTATUSPAGESIZE_V(stat_len != 64));
6294                t4_set_reg_field(adap, SGE_CONTROL2_A,
6295                                 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
6296                                 INGPACKBOUNDARY_V(fl_align_log -
6297                                                   INGPACKBOUNDARY_SHIFT_X));
6298        }
6299        /*
6300         * Adjust various SGE Free List Host Buffer Sizes.
6301         *
6302         * This is something of a crock since we're using fixed indices into
6303         * the array which are also known by the sge.c code and the T4
6304         * Firmware Configuration File.  We need to come up with a much better
6305         * approach to managing this array.  For now, the first four entries
6306         * are:
6307         *
6308         *   0: Host Page Size
6309         *   1: 64KB
6310         *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
6311         *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
6312         *
6313         * For the single-MTU buffers in unpacked mode we need to include
6314         * space for the SGE Control Packet Shift, 14 byte Ethernet header,
6315         * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
6316         * Padding boundary.  All of these are accommodated in the Factory
6317         * Default Firmware Configuration File but we need to adjust it for
6318         * this host's cache line size.
6319         */
6320        t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
6321        t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
6322                     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
6323                     & ~(fl_align-1));
6324        t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
6325                     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
6326                     & ~(fl_align-1));
6327
6328        t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
6329
6330        return 0;
6331}
6332
6333/**
6334 *      t4_fw_initialize - ask FW to initialize the device
6335 *      @adap: the adapter
6336 *      @mbox: mailbox to use for the FW command
6337 *
6338 *      Issues a command to FW to partially initialize the device.  This
6339 *      performs initialization that generally doesn't depend on user input.
6340 */
6341int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
6342{
6343        struct fw_initialize_cmd c;
6344
6345        memset(&c, 0, sizeof(c));
6346        INIT_CMD(c, INITIALIZE, WRITE);
6347        return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6348}
6349
6350/**
6351 *      t4_query_params_rw - query FW or device parameters
6352 *      @adap: the adapter
6353 *      @mbox: mailbox to use for the FW command
6354 *      @pf: the PF
6355 *      @vf: the VF
6356 *      @nparams: the number of parameters
6357 *      @params: the parameter names
6358 *      @val: the parameter values
6359 *      @rw: Write and read flag
6360 *
6361 *      Reads the value of FW or device parameters.  Up to 7 parameters can be
6362 *      queried at once.
6363 */
6364int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
6365                       unsigned int vf, unsigned int nparams, const u32 *params,
6366                       u32 *val, int rw)
6367{
6368        int i, ret;
6369        struct fw_params_cmd c;
6370        __be32 *p = &c.param[0].mnem;
6371
6372        if (nparams > 7)
6373                return -EINVAL;
6374
6375        memset(&c, 0, sizeof(c));
6376        c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
6377                                  FW_CMD_REQUEST_F | FW_CMD_READ_F |
6378                                  FW_PARAMS_CMD_PFN_V(pf) |
6379                                  FW_PARAMS_CMD_VFN_V(vf));
6380        c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6381
6382        for (i = 0; i < nparams; i++) {
6383                *p++ = cpu_to_be32(*params++);
6384                if (rw)
6385                        *p = cpu_to_be32(*(val + i));
6386                p++;
6387        }
6388
6389        ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6390        if (ret == 0)
6391                for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
6392                        *val++ = be32_to_cpu(*p);
6393        return ret;
6394}
6395
6396int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6397                    unsigned int vf, unsigned int nparams, const u32 *params,
6398                    u32 *val)
6399{
6400        return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
6401}
6402
6403/**
6404 *      t4_set_params_timeout - sets FW or device parameters
6405 *      @adap: the adapter
6406 *      @mbox: mailbox to use for the FW command
6407 *      @pf: the PF
6408 *      @vf: the VF
6409 *      @nparams: the number of parameters
6410 *      @params: the parameter names
6411 *      @val: the parameter values
6412 *      @timeout: the timeout time
6413 *
6414 *      Sets the value of FW or device parameters.  Up to 7 parameters can be
6415 *      specified at once.
6416 */
6417int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
6418                          unsigned int pf, unsigned int vf,
6419                          unsigned int nparams, const u32 *params,
6420                          const u32 *val, int timeout)
6421{
6422        struct fw_params_cmd c;
6423        __be32 *p = &c.param[0].mnem;
6424
6425        if (nparams > 7)
6426                return -EINVAL;
6427
6428        memset(&c, 0, sizeof(c));
6429        c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
6430                                  FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6431                                  FW_PARAMS_CMD_PFN_V(pf) |
6432                                  FW_PARAMS_CMD_VFN_V(vf));
6433        c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6434
6435        while (nparams--) {
6436                *p++ = cpu_to_be32(*params++);
6437                *p++ = cpu_to_be32(*val++);
6438        }
6439
6440        return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
6441}
6442
6443/**
6444 *      t4_set_params - sets FW or device parameters
6445 *      @adap: the adapter
6446 *      @mbox: mailbox to use for the FW command
6447 *      @pf: the PF
6448 *      @vf: the VF
6449 *      @nparams: the number of parameters
6450 *      @params: the parameter names
6451 *      @val: the parameter values
6452 *
6453 *      Sets the value of FW or device parameters.  Up to 7 parameters can be
6454 *      specified at once.
6455 */
6456int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6457                  unsigned int vf, unsigned int nparams, const u32 *params,
6458                  const u32 *val)
6459{
6460        return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
6461                                     FW_CMD_MAX_TIMEOUT);
6462}
6463
6464/**
6465 *      t4_cfg_pfvf - configure PF/VF resource limits
6466 *      @adap: the adapter
6467 *      @mbox: mailbox to use for the FW command
6468 *      @pf: the PF being configured
6469 *      @vf: the VF being configured
6470 *      @txq: the max number of egress queues
6471 *      @txq_eth_ctrl: the max number of egress Ethernet or control queues
6472 *      @rxqi: the max number of interrupt-capable ingress queues
6473 *      @rxq: the max number of interruptless ingress queues
6474 *      @tc: the PCI traffic class
6475 *      @vi: the max number of virtual interfaces
6476 *      @cmask: the channel access rights mask for the PF/VF
6477 *      @pmask: the port access rights mask for the PF/VF
6478 *      @nexact: the maximum number of exact MPS filters
6479 *      @rcaps: read capabilities
6480 *      @wxcaps: write/execute capabilities
6481 *
6482 *      Configures resource limits and capabilities for a physical or virtual
6483 *      function.
6484 */
6485int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
6486                unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
6487                unsigned int rxqi, unsigned int rxq, unsigned int tc,
6488                unsigned int vi, unsigned int cmask, unsigned int pmask,
6489                unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
6490{
6491        struct fw_pfvf_cmd c;
6492
6493        memset(&c, 0, sizeof(c));
6494        c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
6495                                  FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
6496                                  FW_PFVF_CMD_VFN_V(vf));
6497        c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6498        c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
6499                                     FW_PFVF_CMD_NIQ_V(rxq));
6500        c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
6501                                    FW_PFVF_CMD_PMASK_V(pmask) |
6502                                    FW_PFVF_CMD_NEQ_V(txq));
6503        c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
6504                                      FW_PFVF_CMD_NVI_V(vi) |
6505                                      FW_PFVF_CMD_NEXACTF_V(nexact));
6506        c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
6507                                        FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
6508                                        FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
6509        return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6510}
6511
6512/**
6513 *      t4_alloc_vi - allocate a virtual interface
6514 *      @adap: the adapter
6515 *      @mbox: mailbox to use for the FW command
6516 *      @port: physical port associated with the VI
6517 *      @pf: the PF owning the VI
6518 *      @vf: the VF owning the VI
6519 *      @nmac: number of MAC addresses needed (1 to 5)
6520 *      @mac: the MAC addresses of the VI
6521 *      @rss_size: size of RSS table slice associated with this VI
6522 *
6523 *      Allocates a virtual interface for the given physical port.  If @mac is
6524 *      not %NULL it contains the MAC addresses of the VI as assigned by FW.
6525 *      @mac should be large enough to hold @nmac Ethernet addresses, they are
6526 *      stored consecutively so the space needed is @nmac * 6 bytes.
6527 *      Returns a negative error number or the non-negative VI id.
6528 */
6529int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
6530                unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
6531                unsigned int *rss_size)
6532{
6533        int ret;
6534        struct fw_vi_cmd c;
6535
6536        memset(&c, 0, sizeof(c));
6537        c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
6538                                  FW_CMD_WRITE_F | FW_CMD_EXEC_F |
6539                                  FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
6540        c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
6541        c.portid_pkd = FW_VI_CMD_PORTID_V(port);
6542        c.nmac = nmac - 1;
6543
6544        ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6545        if (ret)
6546                return ret;
6547
6548        if (mac) {
6549                memcpy(mac, c.mac, sizeof(c.mac));
6550                switch (nmac) {
6551                case 5:
6552                        memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
6553                case 4:
6554                        memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
6555                case 3:
6556                        memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
6557                case 2:
6558                        memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
6559                }
6560        }
6561        if (rss_size)
6562                *rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
6563        return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
6564}
6565
6566/**
6567 *      t4_free_vi - free a virtual interface
6568 *      @adap: the adapter
6569 *      @mbox: mailbox to use for the FW command
6570 *      @pf: the PF owning the VI
6571 *      @vf: the VF owning the VI
6572 *      @viid: virtual interface identifiler
6573 *
6574 *      Free a previously allocated virtual interface.
6575 */
6576int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
6577               unsigned int vf, unsigned int viid)
6578{
6579        struct fw_vi_cmd c;
6580
6581        memset(&c, 0, sizeof(c));
6582        c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
6583                                  FW_CMD_REQUEST_F |
6584                                  FW_CMD_EXEC_F |
6585                                  FW_VI_CMD_PFN_V(pf) |
6586                                  FW_VI_CMD_VFN_V(vf));
6587        c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
6588        c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
6589
6590        return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6591}
6592
6593/**
6594 *      t4_set_rxmode - set Rx properties of a virtual interface
6595 *      @adap: the adapter
6596 *      @mbox: mailbox to use for the FW command
6597 *      @viid: the VI id
6598 *      @mtu: the new MTU or -1
6599 *      @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
6600 *      @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
6601 *      @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
6602 *      @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
6603 *      @sleep_ok: if true we may sleep while awaiting command completion
6604 *
6605 *      Sets Rx properties of a virtual interface.
6606 */
6607int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
6608                  int mtu, int promisc, int all_multi, int bcast, int vlanex,
6609                  bool sleep_ok)
6610{
6611        struct fw_vi_rxmode_cmd c;
6612
6613        /* convert to FW values */
6614        if (mtu < 0)
6615                mtu = FW_RXMODE_MTU_NO_CHG;
6616        if (promisc < 0)
6617                promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
6618        if (all_multi < 0)
6619                all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
6620        if (bcast < 0)
6621                bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
6622        if (vlanex < 0)
6623                vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
6624
6625        memset(&c, 0, sizeof(c));
6626        c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
6627                                   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6628                                   FW_VI_RXMODE_CMD_VIID_V(viid));
6629        c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6630        c.mtu_to_vlanexen =
6631                cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
6632                            FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
6633                            FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
6634                            FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
6635                            FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
6636        return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
6637}
6638
6639/**
6640 *      t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
6641 *      @adap: the adapter
6642 *      @mbox: mailbox to use for the FW command
6643 *      @viid: the VI id
6644 *      @free: if true any existing filters for this VI id are first removed
6645 *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
6646 *      @addr: the MAC address(es)
6647 *      @idx: where to store the index of each allocated filter
6648 *      @hash: pointer to hash address filter bitmap
6649 *      @sleep_ok: call is allowed to sleep
6650 *
6651 *      Allocates an exact-match filter for each of the supplied addresses and
6652 *      sets it to the corresponding address.  If @idx is not %NULL it should
6653 *      have at least @naddr entries, each of which will be set to the index of
6654 *      the filter allocated for the corresponding MAC address.  If a filter
6655 *      could not be allocated for an address its index is set to 0xffff.
6656 *      If @hash is not %NULL addresses that fail to allocate an exact filter
6657 *      are hashed and update the hash filter bitmap pointed at by @hash.
6658 *
6659 *      Returns a negative error number or the number of filters allocated.
6660 */
6661int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
6662                      unsigned int viid, bool free, unsigned int naddr,
6663                      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
6664{
6665        int offset, ret = 0;
6666        struct fw_vi_mac_cmd c;
6667        unsigned int nfilters = 0;
6668        unsigned int max_naddr = adap->params.arch.mps_tcam_size;
6669        unsigned int rem = naddr;
6670
6671        if (naddr > max_naddr)
6672                return -EINVAL;
6673
6674        for (offset = 0; offset < naddr ; /**/) {
6675                unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
6676                                         rem : ARRAY_SIZE(c.u.exact));
6677                size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
6678                                                     u.exact[fw_naddr]), 16);
6679                struct fw_vi_mac_exact *p;
6680                int i;
6681
6682                memset(&c, 0, sizeof(c));
6683                c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6684                                           FW_CMD_REQUEST_F |
6685                                           FW_CMD_WRITE_F |
6686                                           FW_CMD_EXEC_V(free) |
6687                                           FW_VI_MAC_CMD_VIID_V(viid));
6688                c.freemacs_to_len16 =
6689                        cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
6690                                    FW_CMD_LEN16_V(len16));
6691
6692                for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6693                        p->valid_to_idx =
6694                                cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
6695                                            FW_VI_MAC_CMD_IDX_V(
6696                                                    FW_VI_MAC_ADD_MAC));
6697                        memcpy(p->macaddr, addr[offset + i],
6698                               sizeof(p->macaddr));
6699                }
6700
6701                /* It's okay if we run out of space in our MAC address arena.
6702                 * Some of the addresses we submit may get stored so we need
6703                 * to run through the reply to see what the results were ...
6704                 */
6705                ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
6706                if (ret && ret != -FW_ENOMEM)
6707                        break;
6708
6709                for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6710                        u16 index = FW_VI_MAC_CMD_IDX_G(
6711                                        be16_to_cpu(p->valid_to_idx));
6712
6713                        if (idx)
6714                                idx[offset + i] = (index >= max_naddr ?
6715                                                   0xffff : index);
6716                        if (index < max_naddr)
6717                                nfilters++;
6718                        else if (hash)
6719                                *hash |= (1ULL <<
6720                                          hash_mac_addr(addr[offset + i]));
6721                }
6722
6723                free = false;
6724                offset += fw_naddr;
6725                rem -= fw_naddr;
6726        }
6727
6728        if (ret == 0 || ret == -FW_ENOMEM)
6729                ret = nfilters;
6730        return ret;
6731}
6732
6733/**
6734 *      t4_free_mac_filt - frees exact-match filters of given MAC addresses
6735 *      @adap: the adapter
6736 *      @mbox: mailbox to use for the FW command
6737 *      @viid: the VI id
6738 *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
6739 *      @addr: the MAC address(es)
6740 *      @sleep_ok: call is allowed to sleep
6741 *
6742 *      Frees the exact-match filter for each of the supplied addresses
6743 *
6744 *      Returns a negative error number or the number of filters freed.
6745 */
6746int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
6747                     unsigned int viid, unsigned int naddr,
6748                     const u8 **addr, bool sleep_ok)
6749{
6750        int offset, ret = 0;
6751        struct fw_vi_mac_cmd c;
6752        unsigned int nfilters = 0;
6753        unsigned int max_naddr = is_t4(adap->params.chip) ?
6754                                       NUM_MPS_CLS_SRAM_L_INSTANCES :
6755                                       NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
6756        unsigned int rem = naddr;
6757
6758        if (naddr > max_naddr)
6759                return -EINVAL;
6760
6761        for (offset = 0; offset < (int)naddr ; /**/) {
6762                unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
6763                                         ? rem
6764                                         : ARRAY_SIZE(c.u.exact));
6765                size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
6766                                                     u.exact[fw_naddr]), 16);
6767                struct fw_vi_mac_exact *p;
6768                int i;
6769
6770                memset(&c, 0, sizeof(c));
6771                c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6772                                     FW_CMD_REQUEST_F |
6773                                     FW_CMD_WRITE_F |
6774                                     FW_CMD_EXEC_V(0) |
6775                                     FW_VI_MAC_CMD_VIID_V(viid));
6776                c.freemacs_to_len16 =
6777                                cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
6778                                            FW_CMD_LEN16_V(len16));
6779
6780                for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
6781                        p->valid_to_idx = cpu_to_be16(
6782                                FW_VI_MAC_CMD_VALID_F |
6783                                FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
6784                        memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
6785                }
6786
6787                ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
6788                if (ret)
6789                        break;
6790
6791                for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6792                        u16 index = FW_VI_MAC_CMD_IDX_G(
6793                                                be16_to_cpu(p->valid_to_idx));
6794
6795                        if (index < max_naddr)
6796                                nfilters++;
6797                }
6798
6799                offset += fw_naddr;
6800                rem -= fw_naddr;
6801        }
6802
6803        if (ret == 0)
6804                ret = nfilters;
6805        return ret;
6806}
6807
6808/**
6809 *      t4_change_mac - modifies the exact-match filter for a MAC address
6810 *      @adap: the adapter
6811 *      @mbox: mailbox to use for the FW command
6812 *      @viid: the VI id
6813 *      @idx: index of existing filter for old value of MAC address, or -1
6814 *      @addr: the new MAC address value
6815 *      @persist: whether a new MAC allocation should be persistent
6816 *      @add_smt: if true also add the address to the HW SMT
6817 *
6818 *      Modifies an exact-match filter and sets it to the new MAC address.
6819 *      Note that in general it is not possible to modify the value of a given
6820 *      filter so the generic way to modify an address filter is to free the one
6821 *      being used by the old address value and allocate a new filter for the
6822 *      new address value.  @idx can be -1 if the address is a new addition.
6823 *
6824 *      Returns a negative error number or the index of the filter with the new
6825 *      MAC value.
6826 */
6827int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
6828                  int idx, const u8 *addr, bool persist, bool add_smt)
6829{
6830        int ret, mode;
6831        struct fw_vi_mac_cmd c;
6832        struct fw_vi_mac_exact *p = c.u.exact;
6833        unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
6834
6835        if (idx < 0)                             /* new allocation */
6836                idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
6837        mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
6838
6839        memset(&c, 0, sizeof(c));
6840        c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6841                                   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6842                                   FW_VI_MAC_CMD_VIID_V(viid));
6843        c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
6844        p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
6845                                      FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
6846                                      FW_VI_MAC_CMD_IDX_V(idx));
6847        memcpy(p->macaddr, addr, sizeof(p->macaddr));
6848
6849        ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6850        if (ret == 0) {
6851                ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
6852                if (ret >= max_mac_addr)
6853                        ret = -ENOMEM;
6854        }
6855        return ret;
6856}
6857
6858/**
6859 *      t4_set_addr_hash - program the MAC inexact-match hash filter
6860 *      @adap: the adapter
6861 *      @mbox: mailbox to use for the FW command
6862 *      @viid: the VI id
6863 *      @ucast: whether the hash filter should also match unicast addresses
6864 *      @vec: the value to be written to the hash filter
6865 *      @sleep_ok: call is allowed to sleep
6866 *
6867 *      Sets the 64-bit inexact-match hash filter for a virtual interface.
6868 */
6869int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
6870                     bool ucast, u64 vec, bool sleep_ok)
6871{
6872        struct fw_vi_mac_cmd c;
6873
6874        memset(&c, 0, sizeof(c));
6875        c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6876                                   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6877                                   FW_VI_ENABLE_CMD_VIID_V(viid));
6878        c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
6879                                          FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
6880                                          FW_CMD_LEN16_V(1));
6881        c.u.hash.hashvec = cpu_to_be64(vec);
6882        return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
6883}
6884
6885/**
6886 *      t4_enable_vi_params - enable/disable a virtual interface
6887 *      @adap: the adapter
6888 *      @mbox: mailbox to use for the FW command
6889 *      @viid: the VI id
6890 *      @rx_en: 1=enable Rx, 0=disable Rx
6891 *      @tx_en: 1=enable Tx, 0=disable Tx
6892 *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
6893 *
6894 *      Enables/disables a virtual interface.  Note that setting DCB Enable
6895 *      only makes sense when enabling a Virtual Interface ...
6896 */
6897int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
6898                        unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
6899{
6900        struct fw_vi_enable_cmd c;
6901
6902        memset(&c, 0, sizeof(c));
6903        c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
6904                                   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
6905                                   FW_VI_ENABLE_CMD_VIID_V(viid));
6906        c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
6907                                     FW_VI_ENABLE_CMD_EEN_V(tx_en) |
6908                                     FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
6909                                     FW_LEN16(c));
6910        return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
6911}
6912
6913/**
6914 *      t4_enable_vi - enable/disable a virtual interface
6915 *      @adap: the adapter
6916 *      @mbox: mailbox to use for the FW command
6917 *      @viid: the VI id
6918 *      @rx_en: 1=enable Rx, 0=disable Rx
6919 *      @tx_en: 1=enable Tx, 0=disable Tx
6920 *
6921 *      Enables/disables a virtual interface.
6922 */
6923int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
6924                 bool rx_en, bool tx_en)
6925{
6926        return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
6927}
6928
6929/**
6930 *      t4_identify_port - identify a VI's port by blinking its LED
6931 *      @adap: the adapter
6932 *      @mbox: mailbox to use for the FW command
6933 *      @viid: the VI id
6934 *      @nblinks: how many times to blink LED at 2.5 Hz
6935 *
6936 *      Identifies a VI's port by blinking its LED.
6937 */
6938int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
6939                     unsigned int nblinks)
6940{
6941        struct fw_vi_enable_cmd c;
6942
6943        memset(&c, 0, sizeof(c));
6944        c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
6945                                   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
6946                                   FW_VI_ENABLE_CMD_VIID_V(viid));
6947        c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
6948        c.blinkdur = cpu_to_be16(nblinks);
6949        return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6950}
6951
6952/**
6953 *      t4_iq_stop - stop an ingress queue and its FLs
6954 *      @adap: the adapter
6955 *      @mbox: mailbox to use for the FW command
6956 *      @pf: the PF owning the queues
6957 *      @vf: the VF owning the queues
6958 *      @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
6959 *      @iqid: ingress queue id
6960 *      @fl0id: FL0 queue id or 0xffff if no attached FL0
6961 *      @fl1id: FL1 queue id or 0xffff if no attached FL1
6962 *
6963 *      Stops an ingress queue and its associated FLs, if any.  This causes
6964 *      any current or future data/messages destined for these queues to be
6965 *      tossed.
6966 */
6967int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
6968               unsigned int vf, unsigned int iqtype, unsigned int iqid,
6969               unsigned int fl0id, unsigned int fl1id)
6970{
6971        struct fw_iq_cmd c;
6972
6973        memset(&c, 0, sizeof(c));
6974        c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
6975                                  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
6976                                  FW_IQ_CMD_VFN_V(vf));
6977        c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c));
6978        c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
6979        c.iqid = cpu_to_be16(iqid);
6980        c.fl0id = cpu_to_be16(fl0id);
6981        c.fl1id = cpu_to_be16(fl1id);
6982        return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6983}
6984
6985/**
6986 *      t4_iq_free - free an ingress queue and its FLs
6987 *      @adap: the adapter
6988 *      @mbox: mailbox to use for the FW command
6989 *      @pf: the PF owning the queues
6990 *      @vf: the VF owning the queues
6991 *      @iqtype: the ingress queue type
6992 *      @iqid: ingress queue id
6993 *      @fl0id: FL0 queue id or 0xffff if no attached FL0
6994 *      @fl1id: FL1 queue id or 0xffff if no attached FL1
6995 *
6996 *      Frees an ingress queue and its associated FLs, if any.
6997 */
6998int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
6999               unsigned int vf, unsigned int iqtype, unsigned int iqid,
7000               unsigned int fl0id, unsigned int fl1id)
7001{
7002        struct fw_iq_cmd c;
7003
7004        memset(&c, 0, sizeof(c));
7005        c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
7006                                  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
7007                                  FW_IQ_CMD_VFN_V(vf));
7008        c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
7009        c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
7010        c.iqid = cpu_to_be16(iqid);
7011        c.fl0id = cpu_to_be16(fl0id);
7012        c.fl1id = cpu_to_be16(fl1id);
7013        return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7014}
7015
7016/**
7017 *      t4_eth_eq_free - free an Ethernet egress queue
7018 *      @adap: the adapter
7019 *      @mbox: mailbox to use for the FW command
7020 *      @pf: the PF owning the queue
7021 *      @vf: the VF owning the queue
7022 *      @eqid: egress queue id
7023 *
7024 *      Frees an Ethernet egress queue.
7025 */
7026int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7027                   unsigned int vf, unsigned int eqid)
7028{
7029        struct fw_eq_eth_cmd c;
7030
7031        memset(&c, 0, sizeof(c));
7032        c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
7033                                  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7034                                  FW_EQ_ETH_CMD_PFN_V(pf) |
7035                                  FW_EQ_ETH_CMD_VFN_V(vf));
7036        c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
7037        c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
7038        return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7039}
7040
7041/**
7042 *      t4_ctrl_eq_free - free a control egress queue
7043 *      @adap: the adapter
7044 *      @mbox: mailbox to use for the FW command
7045 *      @pf: the PF owning the queue
7046 *      @vf: the VF owning the queue
7047 *      @eqid: egress queue id
7048 *
7049 *      Frees a control egress queue.
7050 */
7051int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7052                    unsigned int vf, unsigned int eqid)
7053{
7054        struct fw_eq_ctrl_cmd c;
7055
7056        memset(&c, 0, sizeof(c));
7057        c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
7058                                  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7059                                  FW_EQ_CTRL_CMD_PFN_V(pf) |
7060                                  FW_EQ_CTRL_CMD_VFN_V(vf));
7061        c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
7062        c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
7063        return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7064}
7065
7066/**
7067 *      t4_ofld_eq_free - free an offload egress queue
7068 *      @adap: the adapter
7069 *      @mbox: mailbox to use for the FW command
7070 *      @pf: the PF owning the queue
7071 *      @vf: the VF owning the queue
7072 *      @eqid: egress queue id
7073 *
7074 *      Frees a control egress queue.
7075 */
7076int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7077                    unsigned int vf, unsigned int eqid)
7078{
7079        struct fw_eq_ofld_cmd c;
7080
7081        memset(&c, 0, sizeof(c));
7082        c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
7083                                  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7084                                  FW_EQ_OFLD_CMD_PFN_V(pf) |
7085                                  FW_EQ_OFLD_CMD_VFN_V(vf));
7086        c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
7087        c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
7088        return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7089}
7090
7091/**
7092 *      t4_handle_fw_rpl - process a FW reply message
7093 *      @adap: the adapter
7094 *      @rpl: start of the FW message
7095 *
7096 *      Processes a FW message, such as link state change messages.
7097 */
7098int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
7099{
7100        u8 opcode = *(const u8 *)rpl;
7101
7102        if (opcode == FW_PORT_CMD) {    /* link/module state change message */
7103                int speed = 0, fc = 0;
7104                const struct fw_port_cmd *p = (void *)rpl;
7105                int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
7106                int port = adap->chan_map[chan];
7107                struct port_info *pi = adap2pinfo(adap, port);
7108                struct link_config *lc = &pi->link_cfg;
7109                u32 stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
7110                int link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0;
7111                u32 mod = FW_PORT_CMD_MODTYPE_G(stat);
7112
7113                if (stat & FW_PORT_CMD_RXPAUSE_F)
7114                        fc |= PAUSE_RX;
7115                if (stat & FW_PORT_CMD_TXPAUSE_F)
7116                        fc |= PAUSE_TX;
7117                if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
7118                        speed = 100;
7119                else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
7120                        speed = 1000;
7121                else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
7122                        speed = 10000;
7123                else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
7124                        speed = 40000;
7125
7126                if (link_ok != lc->link_ok || speed != lc->speed ||
7127                    fc != lc->fc) {                    /* something changed */
7128                        lc->link_ok = link_ok;
7129                        lc->speed = speed;
7130                        lc->fc = fc;
7131                        lc->supported = be16_to_cpu(p->u.info.pcap);
7132                        t4_os_link_changed(adap, port, link_ok);
7133                }
7134                if (mod != pi->mod_type) {
7135                        pi->mod_type = mod;
7136                        t4_os_portmod_changed(adap, port);
7137                }
7138        }
7139        return 0;
7140}
7141
7142static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
7143{
7144        u16 val;
7145
7146        if (pci_is_pcie(adapter->pdev)) {
7147                pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
7148                p->speed = val & PCI_EXP_LNKSTA_CLS;
7149                p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
7150        }
7151}
7152
7153/**
7154 *      init_link_config - initialize a link's SW state
7155 *      @lc: structure holding the link state
7156 *      @caps: link capabilities
7157 *
7158 *      Initializes the SW state maintained for each link, including the link's
7159 *      capabilities and default speed/flow-control/autonegotiation settings.
7160 */
7161static void init_link_config(struct link_config *lc, unsigned int caps)
7162{
7163        lc->supported = caps;
7164        lc->requested_speed = 0;
7165        lc->speed = 0;
7166        lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
7167        if (lc->supported & FW_PORT_CAP_ANEG) {
7168                lc->advertising = lc->supported & ADVERT_MASK;
7169                lc->autoneg = AUTONEG_ENABLE;
7170                lc->requested_fc |= PAUSE_AUTONEG;
7171        } else {
7172                lc->advertising = 0;
7173                lc->autoneg = AUTONEG_DISABLE;
7174        }
7175}
7176
7177#define CIM_PF_NOACCESS 0xeeeeeeee
7178
7179int t4_wait_dev_ready(void __iomem *regs)
7180{
7181        u32 whoami;
7182
7183        whoami = readl(regs + PL_WHOAMI_A);
7184        if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
7185                return 0;
7186
7187        msleep(500);
7188        whoami = readl(regs + PL_WHOAMI_A);
7189        return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
7190}
7191
7192struct flash_desc {
7193        u32 vendor_and_model_id;
7194        u32 size_mb;
7195};
7196
7197static int get_flash_params(struct adapter *adap)
7198{
7199        /* Table for non-Numonix supported flash parts.  Numonix parts are left
7200         * to the preexisting code.  All flash parts have 64KB sectors.
7201         */
7202        static struct flash_desc supported_flash[] = {
7203                { 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
7204        };
7205
7206        int ret;
7207        u32 info;
7208
7209        ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
7210        if (!ret)
7211                ret = sf1_read(adap, 3, 0, 1, &info);
7212        t4_write_reg(adap, SF_OP_A, 0);                    /* unlock SF */
7213        if (ret)
7214                return ret;
7215
7216        for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret)
7217                if (supported_flash[ret].vendor_and_model_id == info) {
7218                        adap->params.sf_size = supported_flash[ret].size_mb;
7219                        adap->params.sf_nsec =
7220                                adap->params.sf_size / SF_SEC_SIZE;
7221                        return 0;
7222                }
7223
7224        if ((info & 0xff) != 0x20)             /* not a Numonix flash */
7225                return -EINVAL;
7226        info >>= 16;                           /* log2 of size */
7227        if (info >= 0x14 && info < 0x18)
7228                adap->params.sf_nsec = 1 << (info - 16);
7229        else if (info == 0x18)
7230                adap->params.sf_nsec = 64;
7231        else
7232                return -EINVAL;
7233        adap->params.sf_size = 1 << info;
7234        adap->params.sf_fw_start =
7235                t4_read_reg(adap, CIM_BOOT_CFG_A) & BOOTADDR_M;
7236
7237        if (adap->params.sf_size < FLASH_MIN_SIZE)
7238                dev_warn(adap->pdev_dev, "WARNING!!! FLASH size %#x < %#x!!!\n",
7239                         adap->params.sf_size, FLASH_MIN_SIZE);
7240        return 0;
7241}
7242
7243static void set_pcie_completion_timeout(struct adapter *adapter, u8 range)
7244{
7245        u16 val;
7246        u32 pcie_cap;
7247
7248        pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
7249        if (pcie_cap) {
7250                pci_read_config_word(adapter->pdev,
7251                                     pcie_cap + PCI_EXP_DEVCTL2, &val);
7252                val &= ~PCI_EXP_DEVCTL2_COMP_TIMEOUT;
7253                val |= range;
7254                pci_write_config_word(adapter->pdev,
7255                                      pcie_cap + PCI_EXP_DEVCTL2, val);
7256        }
7257}
7258
7259/**
7260 *      t4_prep_adapter - prepare SW and HW for operation
7261 *      @adapter: the adapter
7262 *      @reset: if true perform a HW reset
7263 *
7264 *      Initialize adapter SW state for the various HW modules, set initial
7265 *      values for some adapter tunables, take PHYs out of reset, and
7266 *      initialize the MDIO interface.
7267 */
7268int t4_prep_adapter(struct adapter *adapter)
7269{
7270        int ret, ver;
7271        uint16_t device_id;
7272        u32 pl_rev;
7273
7274        get_pci_mode(adapter, &adapter->params.pci);
7275        pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
7276
7277        ret = get_flash_params(adapter);
7278        if (ret < 0) {
7279                dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
7280                return ret;
7281        }
7282
7283        /* Retrieve adapter's device ID
7284         */
7285        pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
7286        ver = device_id >> 12;
7287        adapter->params.chip = 0;
7288        switch (ver) {
7289        case CHELSIO_T4:
7290                adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
7291                adapter->params.arch.sge_fl_db = DBPRIO_F;
7292                adapter->params.arch.mps_tcam_size =
7293                                 NUM_MPS_CLS_SRAM_L_INSTANCES;
7294                adapter->params.arch.mps_rplc_size = 128;
7295                adapter->params.arch.nchan = NCHAN;
7296                adapter->params.arch.pm_stats_cnt = PM_NSTATS;
7297                adapter->params.arch.vfcount = 128;
7298                /* Congestion map is for 4 channels so that
7299                 * MPS can have 4 priority per port.
7300                 */
7301                adapter->params.arch.cng_ch_bits_log = 2;
7302                break;
7303        case CHELSIO_T5:
7304                adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
7305                adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
7306                adapter->params.arch.mps_tcam_size =
7307                                 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
7308                adapter->params.arch.mps_rplc_size = 128;
7309                adapter->params.arch.nchan = NCHAN;
7310                adapter->params.arch.pm_stats_cnt = PM_NSTATS;
7311                adapter->params.arch.vfcount = 128;
7312                adapter->params.arch.cng_ch_bits_log = 2;
7313                break;
7314        case CHELSIO_T6:
7315                adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
7316                adapter->params.arch.sge_fl_db = 0;
7317                adapter->params.arch.mps_tcam_size =
7318                                 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
7319                adapter->params.arch.mps_rplc_size = 256;
7320                adapter->params.arch.nchan = 2;
7321                adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS;
7322                adapter->params.arch.vfcount = 256;
7323                /* Congestion map will be for 2 channels so that
7324                 * MPS can have 8 priority per port.
7325                 */
7326                adapter->params.arch.cng_ch_bits_log = 3;
7327                break;
7328        default:
7329                dev_err(adapter->pdev_dev, "Device %d is not supported\n",
7330                        device_id);
7331                return -EINVAL;
7332        }
7333
7334        adapter->params.cim_la_size = CIMLA_SIZE;
7335        init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
7336
7337        /*
7338         * Default port for debugging in case we can't reach FW.
7339         */
7340        adapter->params.nports = 1;
7341        adapter->params.portvec = 1;
7342        adapter->params.vpd.cclk = 50000;
7343
7344        /* Set pci completion timeout value to 4 seconds. */
7345        set_pcie_completion_timeout(adapter, 0xd);
7346        return 0;
7347}
7348
7349/**
7350 *      t4_bar2_sge_qregs - return BAR2 SGE Queue register information
7351 *      @adapter: the adapter
7352 *      @qid: the Queue ID
7353 *      @qtype: the Ingress or Egress type for @qid
7354 *      @user: true if this request is for a user mode queue
7355 *      @pbar2_qoffset: BAR2 Queue Offset
7356 *      @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
7357 *
7358 *      Returns the BAR2 SGE Queue Registers information associated with the
7359 *      indicated Absolute Queue ID.  These are passed back in return value
7360 *      pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
7361 *      and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
7362 *
7363 *      This may return an error which indicates that BAR2 SGE Queue
7364 *      registers aren't available.  If an error is not returned, then the
7365 *      following values are returned:
7366 *
7367 *        *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
7368 *        *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
7369 *
7370 *      If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
7371 *      require the "Inferred Queue ID" ability may be used.  E.g. the
7372 *      Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
7373 *      then these "Inferred Queue ID" register may not be used.
7374 */
7375int t4_bar2_sge_qregs(struct adapter *adapter,
7376                      unsigned int qid,
7377                      enum t4_bar2_qtype qtype,
7378                      int user,
7379                      u64 *pbar2_qoffset,
7380                      unsigned int *pbar2_qid)
7381{
7382        unsigned int page_shift, page_size, qpp_shift, qpp_mask;
7383        u64 bar2_page_offset, bar2_qoffset;
7384        unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
7385
7386        /* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
7387        if (!user && is_t4(adapter->params.chip))
7388                return -EINVAL;
7389
7390        /* Get our SGE Page Size parameters.
7391         */
7392        page_shift = adapter->params.sge.hps + 10;
7393        page_size = 1 << page_shift;
7394
7395        /* Get the right Queues per Page parameters for our Queue.
7396         */
7397        qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
7398                     ? adapter->params.sge.eq_qpp
7399                     : adapter->params.sge.iq_qpp);
7400        qpp_mask = (1 << qpp_shift) - 1;
7401
7402        /*  Calculate the basics of the BAR2 SGE Queue register area:
7403         *  o The BAR2 page the Queue registers will be in.
7404         *  o The BAR2 Queue ID.
7405         *  o The BAR2 Queue ID Offset into the BAR2 page.
7406         */
7407        bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
7408        bar2_qid = qid & qpp_mask;
7409        bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
7410
7411        /* If the BAR2 Queue ID Offset is less than the Page Size, then the
7412         * hardware will infer the Absolute Queue ID simply from the writes to
7413         * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
7414         * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
7415         * write to the first BAR2 SGE Queue Area within the BAR2 Page with
7416         * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
7417         * from the BAR2 Page and BAR2 Queue ID.
7418         *
7419         * One important censequence of this is that some BAR2 SGE registers
7420         * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
7421         * there.  But other registers synthesize the SGE Queue ID purely
7422         * from the writes to the registers -- the Write Combined Doorbell
7423         * Buffer is a good example.  These BAR2 SGE Registers are only
7424         * available for those BAR2 SGE Register areas where the SGE Absolute
7425         * Queue ID can be inferred from simple writes.
7426         */
7427        bar2_qoffset = bar2_page_offset;
7428        bar2_qinferred = (bar2_qid_offset < page_size);
7429        if (bar2_qinferred) {
7430                bar2_qoffset += bar2_qid_offset;
7431                bar2_qid = 0;
7432        }
7433
7434        *pbar2_qoffset = bar2_qoffset;
7435        *pbar2_qid = bar2_qid;
7436        return 0;
7437}
7438
7439/**
7440 *      t4_init_devlog_params - initialize adapter->params.devlog
7441 *      @adap: the adapter
7442 *
7443 *      Initialize various fields of the adapter's Firmware Device Log
7444 *      Parameters structure.
7445 */
7446int t4_init_devlog_params(struct adapter *adap)
7447{
7448        struct devlog_params *dparams = &adap->params.devlog;
7449        u32 pf_dparams;
7450        unsigned int devlog_meminfo;
7451        struct fw_devlog_cmd devlog_cmd;
7452        int ret;
7453
7454        /* If we're dealing with newer firmware, the Device Log Paramerters
7455         * are stored in a designated register which allows us to access the
7456         * Device Log even if we can't talk to the firmware.
7457         */
7458        pf_dparams =
7459                t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
7460        if (pf_dparams) {
7461                unsigned int nentries, nentries128;
7462
7463                dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
7464                dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
7465
7466                nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
7467                nentries = (nentries128 + 1) * 128;
7468                dparams->size = nentries * sizeof(struct fw_devlog_e);
7469
7470                return 0;
7471        }
7472
7473        /* Otherwise, ask the firmware for it's Device Log Parameters.
7474         */
7475        memset(&devlog_cmd, 0, sizeof(devlog_cmd));
7476        devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
7477                                             FW_CMD_REQUEST_F | FW_CMD_READ_F);
7478        devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
7479        ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
7480                         &devlog_cmd);
7481        if (ret)
7482                return ret;
7483
7484        devlog_meminfo =
7485                be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
7486        dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
7487        dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
7488        dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
7489
7490        return 0;
7491}
7492
7493/**
7494 *      t4_init_sge_params - initialize adap->params.sge
7495 *      @adapter: the adapter
7496 *
7497 *      Initialize various fields of the adapter's SGE Parameters structure.
7498 */
7499int t4_init_sge_params(struct adapter *adapter)
7500{
7501        struct sge_params *sge_params = &adapter->params.sge;
7502        u32 hps, qpp;
7503        unsigned int s_hps, s_qpp;
7504
7505        /* Extract the SGE Page Size for our PF.
7506         */
7507        hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
7508        s_hps = (HOSTPAGESIZEPF0_S +
7509                 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
7510        sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
7511
7512        /* Extract the SGE Egress and Ingess Queues Per Page for our PF.
7513         */
7514        s_qpp = (QUEUESPERPAGEPF0_S +
7515                (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
7516        qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
7517        sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
7518        qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
7519        sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
7520
7521        return 0;
7522}
7523
7524/**
7525 *      t4_init_tp_params - initialize adap->params.tp
7526 *      @adap: the adapter
7527 *
7528 *      Initialize various fields of the adapter's TP Parameters structure.
7529 */
7530int t4_init_tp_params(struct adapter *adap)
7531{
7532        int chan;
7533        u32 v;
7534
7535        v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
7536        adap->params.tp.tre = TIMERRESOLUTION_G(v);
7537        adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
7538
7539        /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
7540        for (chan = 0; chan < NCHAN; chan++)
7541                adap->params.tp.tx_modq[chan] = chan;
7542
7543        /* Cache the adapter's Compressed Filter Mode and global Incress
7544         * Configuration.
7545         */
7546        if (t4_use_ldst(adap)) {
7547                t4_fw_tp_pio_rw(adap, &adap->params.tp.vlan_pri_map, 1,
7548                                TP_VLAN_PRI_MAP_A, 1);
7549                t4_fw_tp_pio_rw(adap, &adap->params.tp.ingress_config, 1,
7550                                TP_INGRESS_CONFIG_A, 1);
7551        } else {
7552                t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
7553                                 &adap->params.tp.vlan_pri_map, 1,
7554                                 TP_VLAN_PRI_MAP_A);
7555                t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
7556                                 &adap->params.tp.ingress_config, 1,
7557                                 TP_INGRESS_CONFIG_A);
7558        }
7559
7560        /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
7561         * shift positions of several elements of the Compressed Filter Tuple
7562         * for this adapter which we need frequently ...
7563         */
7564        adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
7565        adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
7566        adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
7567        adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
7568                                                               PROTOCOL_F);
7569
7570        /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
7571         * represents the presence of an Outer VLAN instead of a VNIC ID.
7572         */
7573        if ((adap->params.tp.ingress_config & VNIC_F) == 0)
7574                adap->params.tp.vnic_shift = -1;
7575
7576        return 0;
7577}
7578
7579/**
7580 *      t4_filter_field_shift - calculate filter field shift
7581 *      @adap: the adapter
7582 *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
7583 *
7584 *      Return the shift position of a filter field within the Compressed
7585 *      Filter Tuple.  The filter field is specified via its selection bit
7586 *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
7587 */
7588int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
7589{
7590        unsigned int filter_mode = adap->params.tp.vlan_pri_map;
7591        unsigned int sel;
7592        int field_shift;
7593
7594        if ((filter_mode & filter_sel) == 0)
7595                return -1;
7596
7597        for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
7598                switch (filter_mode & sel) {
7599                case FCOE_F:
7600                        field_shift += FT_FCOE_W;
7601                        break;
7602                case PORT_F:
7603                        field_shift += FT_PORT_W;
7604                        break;
7605                case VNIC_ID_F:
7606                        field_shift += FT_VNIC_ID_W;
7607                        break;
7608                case VLAN_F:
7609                        field_shift += FT_VLAN_W;
7610                        break;
7611                case TOS_F:
7612                        field_shift += FT_TOS_W;
7613                        break;
7614                case PROTOCOL_F:
7615                        field_shift += FT_PROTOCOL_W;
7616                        break;
7617                case ETHERTYPE_F:
7618                        field_shift += FT_ETHERTYPE_W;
7619                        break;
7620                case MACMATCH_F:
7621                        field_shift += FT_MACMATCH_W;
7622                        break;
7623                case MPSHITTYPE_F:
7624                        field_shift += FT_MPSHITTYPE_W;
7625                        break;
7626                case FRAGMENTATION_F:
7627                        field_shift += FT_FRAGMENTATION_W;
7628                        break;
7629                }
7630        }
7631        return field_shift;
7632}
7633
7634int t4_init_rss_mode(struct adapter *adap, int mbox)
7635{
7636        int i, ret;
7637        struct fw_rss_vi_config_cmd rvc;
7638
7639        memset(&rvc, 0, sizeof(rvc));
7640
7641        for_each_port(adap, i) {
7642                struct port_info *p = adap2pinfo(adap, i);
7643
7644                rvc.op_to_viid =
7645                        cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
7646                                    FW_CMD_REQUEST_F | FW_CMD_READ_F |
7647                                    FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
7648                rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
7649                ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
7650                if (ret)
7651                        return ret;
7652                p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
7653        }
7654        return 0;
7655}
7656
7657int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
7658{
7659        u8 addr[6];
7660        int ret, i, j = 0;
7661        struct fw_port_cmd c;
7662        struct fw_rss_vi_config_cmd rvc;
7663
7664        memset(&c, 0, sizeof(c));
7665        memset(&rvc, 0, sizeof(rvc));
7666
7667        for_each_port(adap, i) {
7668                unsigned int rss_size;
7669                struct port_info *p = adap2pinfo(adap, i);
7670
7671                while ((adap->params.portvec & (1 << j)) == 0)
7672                        j++;
7673
7674                c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
7675                                             FW_CMD_REQUEST_F | FW_CMD_READ_F |
7676                                             FW_PORT_CMD_PORTID_V(j));
7677                c.action_to_len16 = cpu_to_be32(
7678                        FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
7679                        FW_LEN16(c));
7680                ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7681                if (ret)
7682                        return ret;
7683
7684                ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
7685                if (ret < 0)
7686                        return ret;
7687
7688                p->viid = ret;
7689                p->tx_chan = j;
7690                p->lport = j;
7691                p->rss_size = rss_size;
7692                memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
7693                adap->port[i]->dev_port = j;
7694
7695                ret = be32_to_cpu(c.u.info.lstatus_to_modtype);
7696                p->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP_F) ?
7697                        FW_PORT_CMD_MDIOADDR_G(ret) : -1;
7698                p->port_type = FW_PORT_CMD_PTYPE_G(ret);
7699                p->mod_type = FW_PORT_MOD_TYPE_NA;
7700
7701                rvc.op_to_viid =
7702                        cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
7703                                    FW_CMD_REQUEST_F | FW_CMD_READ_F |
7704                                    FW_RSS_VI_CONFIG_CMD_VIID(p->viid));
7705                rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
7706                ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
7707                if (ret)
7708                        return ret;
7709                p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
7710
7711                init_link_config(&p->link_cfg, be16_to_cpu(c.u.info.pcap));
7712                j++;
7713        }
7714        return 0;
7715}
7716
7717/**
7718 *      t4_read_cimq_cfg - read CIM queue configuration
7719 *      @adap: the adapter
7720 *      @base: holds the queue base addresses in bytes
7721 *      @size: holds the queue sizes in bytes
7722 *      @thres: holds the queue full thresholds in bytes
7723 *
7724 *      Returns the current configuration of the CIM queues, starting with
7725 *      the IBQs, then the OBQs.
7726 */
7727void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
7728{
7729        unsigned int i, v;
7730        int cim_num_obq = is_t4(adap->params.chip) ?
7731                                CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
7732
7733        for (i = 0; i < CIM_NUM_IBQ; i++) {
7734                t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
7735                             QUENUMSELECT_V(i));
7736                v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
7737                /* value is in 256-byte units */
7738                *base++ = CIMQBASE_G(v) * 256;
7739                *size++ = CIMQSIZE_G(v) * 256;
7740                *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
7741        }
7742        for (i = 0; i < cim_num_obq; i++) {
7743                t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
7744                             QUENUMSELECT_V(i));
7745                v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
7746                /* value is in 256-byte units */
7747                *base++ = CIMQBASE_G(v) * 256;
7748                *size++ = CIMQSIZE_G(v) * 256;
7749        }
7750}
7751
7752/**
7753 *      t4_read_cim_ibq - read the contents of a CIM inbound queue
7754 *      @adap: the adapter
7755 *      @qid: the queue index
7756 *      @data: where to store the queue contents
7757 *      @n: capacity of @data in 32-bit words
7758 *
7759 *      Reads the contents of the selected CIM queue starting at address 0 up
7760 *      to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
7761 *      error and the number of 32-bit words actually read on success.
7762 */
7763int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
7764{
7765        int i, err, attempts;
7766        unsigned int addr;
7767        const unsigned int nwords = CIM_IBQ_SIZE * 4;
7768
7769        if (qid > 5 || (n & 3))
7770                return -EINVAL;
7771
7772        addr = qid * nwords;
7773        if (n > nwords)
7774                n = nwords;
7775
7776        /* It might take 3-10ms before the IBQ debug read access is allowed.
7777         * Wait for 1 Sec with a delay of 1 usec.
7778         */
7779        attempts = 1000000;
7780
7781        for (i = 0; i < n; i++, addr++) {
7782                t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
7783                             IBQDBGEN_F);
7784                err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
7785                                      attempts, 1);
7786                if (err)
7787                        return err;
7788                *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
7789        }
7790        t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
7791        return i;
7792}
7793
7794/**
7795 *      t4_read_cim_obq - read the contents of a CIM outbound queue
7796 *      @adap: the adapter
7797 *      @qid: the queue index
7798 *      @data: where to store the queue contents
7799 *      @n: capacity of @data in 32-bit words
7800 *
7801 *      Reads the contents of the selected CIM queue starting at address 0 up
7802 *      to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
7803 *      error and the number of 32-bit words actually read on success.
7804 */
7805int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
7806{
7807        int i, err;
7808        unsigned int addr, v, nwords;
7809        int cim_num_obq = is_t4(adap->params.chip) ?
7810                                CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
7811
7812        if ((qid > (cim_num_obq - 1)) || (n & 3))
7813                return -EINVAL;
7814
7815        t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
7816                     QUENUMSELECT_V(qid));
7817        v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
7818
7819        addr = CIMQBASE_G(v) * 64;    /* muliple of 256 -> muliple of 4 */
7820        nwords = CIMQSIZE_G(v) * 64;  /* same */
7821        if (n > nwords)
7822                n = nwords;
7823
7824        for (i = 0; i < n; i++, addr++) {
7825                t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
7826                             OBQDBGEN_F);
7827                err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
7828                                      2, 1);
7829                if (err)
7830                        return err;
7831                *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
7832        }
7833        t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
7834        return i;
7835}
7836
7837/**
7838 *      t4_cim_read - read a block from CIM internal address space
7839 *      @adap: the adapter
7840 *      @addr: the start address within the CIM address space
7841 *      @n: number of words to read
7842 *      @valp: where to store the result
7843 *
7844 *      Reads a block of 4-byte words from the CIM intenal address space.
7845 */
7846int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
7847                unsigned int *valp)
7848{
7849        int ret = 0;
7850
7851        if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
7852                return -EBUSY;
7853
7854        for ( ; !ret && n--; addr += 4) {
7855                t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
7856                ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
7857                                      0, 5, 2);
7858                if (!ret)
7859                        *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
7860        }
7861        return ret;
7862}
7863
7864/**
7865 *      t4_cim_write - write a block into CIM internal address space
7866 *      @adap: the adapter
7867 *      @addr: the start address within the CIM address space
7868 *      @n: number of words to write
7869 *      @valp: set of values to write
7870 *
7871 *      Writes a block of 4-byte words into the CIM intenal address space.
7872 */
7873int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
7874                 const unsigned int *valp)
7875{
7876        int ret = 0;
7877
7878        if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
7879                return -EBUSY;
7880
7881        for ( ; !ret && n--; addr += 4) {
7882                t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
7883                t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
7884                ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
7885                                      0, 5, 2);
7886        }
7887        return ret;
7888}
7889
7890static int t4_cim_write1(struct adapter *adap, unsigned int addr,
7891                         unsigned int val)
7892{
7893        return t4_cim_write(adap, addr, 1, &val);
7894}
7895
7896/**
7897 *      t4_cim_read_la - read CIM LA capture buffer
7898 *      @adap: the adapter
7899 *      @la_buf: where to store the LA data
7900 *      @wrptr: the HW write pointer within the capture buffer
7901 *
7902 *      Reads the contents of the CIM LA buffer with the most recent entry at
7903 *      the end of the returned data and with the entry at @wrptr first.
7904 *      We try to leave the LA in the running state we find it in.
7905 */
7906int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
7907{
7908        int i, ret;
7909        unsigned int cfg, val, idx;
7910
7911        ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
7912        if (ret)
7913                return ret;
7914
7915        if (cfg & UPDBGLAEN_F) {        /* LA is running, freeze it */
7916                ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
7917                if (ret)
7918                        return ret;
7919        }
7920
7921        ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
7922        if (ret)
7923                goto restart;
7924
7925        idx = UPDBGLAWRPTR_G(val);
7926        if (wrptr)
7927                *wrptr = idx;
7928
7929        for (i = 0; i < adap->params.cim_la_size; i++) {
7930                ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
7931                                    UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
7932                if (ret)
7933                        break;
7934                ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
7935                if (ret)
7936                        break;
7937                if (val & UPDBGLARDEN_F) {
7938                        ret = -ETIMEDOUT;
7939                        break;
7940                }
7941                ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
7942                if (ret)
7943                        break;
7944                idx = (idx + 1) & UPDBGLARDPTR_M;
7945        }
7946restart:
7947        if (cfg & UPDBGLAEN_F) {
7948                int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
7949                                      cfg & ~UPDBGLARDEN_F);
7950                if (!ret)
7951                        ret = r;
7952        }
7953        return ret;
7954}
7955
7956/**
7957 *      t4_tp_read_la - read TP LA capture buffer
7958 *      @adap: the adapter
7959 *      @la_buf: where to store the LA data
7960 *      @wrptr: the HW write pointer within the capture buffer
7961 *
7962 *      Reads the contents of the TP LA buffer with the most recent entry at
7963 *      the end of the returned data and with the entry at @wrptr first.
7964 *      We leave the LA in the running state we find it in.
7965 */
7966void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
7967{
7968        bool last_incomplete;
7969        unsigned int i, cfg, val, idx;
7970
7971        cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
7972        if (cfg & DBGLAENABLE_F)                        /* freeze LA */
7973                t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
7974                             adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
7975
7976        val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
7977        idx = DBGLAWPTR_G(val);
7978        last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
7979        if (last_incomplete)
7980                idx = (idx + 1) & DBGLARPTR_M;
7981        if (wrptr)
7982                *wrptr = idx;
7983
7984        val &= 0xffff;
7985        val &= ~DBGLARPTR_V(DBGLARPTR_M);
7986        val |= adap->params.tp.la_mask;
7987
7988        for (i = 0; i < TPLA_SIZE; i++) {
7989                t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
7990                la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
7991                idx = (idx + 1) & DBGLARPTR_M;
7992        }
7993
7994        /* Wipe out last entry if it isn't valid */
7995        if (last_incomplete)
7996                la_buf[TPLA_SIZE - 1] = ~0ULL;
7997
7998        if (cfg & DBGLAENABLE_F)                    /* restore running state */
7999                t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
8000                             cfg | adap->params.tp.la_mask);
8001}
8002
8003/* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
8004 * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
8005 * state for more than the Warning Threshold then we'll issue a warning about
8006 * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
8007 * appears to be hung every Warning Repeat second till the situation clears.
8008 * If the situation clears, we'll note that as well.
8009 */
8010#define SGE_IDMA_WARN_THRESH 1
8011#define SGE_IDMA_WARN_REPEAT 300
8012
8013/**
8014 *      t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
8015 *      @adapter: the adapter
8016 *      @idma: the adapter IDMA Monitor state
8017 *
8018 *      Initialize the state of an SGE Ingress DMA Monitor.
8019 */
8020void t4_idma_monitor_init(struct adapter *adapter,
8021                          struct sge_idma_monitor_state *idma)
8022{
8023        /* Initialize the state variables for detecting an SGE Ingress DMA
8024         * hang.  The SGE has internal counters which count up on each clock
8025         * tick whenever the SGE finds its Ingress DMA State Engines in the
8026         * same state they were on the previous clock tick.  The clock used is
8027         * the Core Clock so we have a limit on the maximum "time" they can
8028         * record; typically a very small number of seconds.  For instance,
8029         * with a 600MHz Core Clock, we can only count up to a bit more than
8030         * 7s.  So we'll synthesize a larger counter in order to not run the
8031         * risk of having the "timers" overflow and give us the flexibility to
8032         * maintain a Hung SGE State Machine of our own which operates across
8033         * a longer time frame.
8034         */
8035        idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
8036        idma->idma_stalled[0] = 0;
8037        idma->idma_stalled[1] = 0;
8038}
8039
8040/**
8041 *      t4_idma_monitor - monitor SGE Ingress DMA state
8042 *      @adapter: the adapter
8043 *      @idma: the adapter IDMA Monitor state
8044 *      @hz: number of ticks/second
8045 *      @ticks: number of ticks since the last IDMA Monitor call
8046 */
8047void t4_idma_monitor(struct adapter *adapter,
8048                     struct sge_idma_monitor_state *idma,
8049                     int hz, int ticks)
8050{
8051        int i, idma_same_state_cnt[2];
8052
8053         /* Read the SGE Debug Ingress DMA Same State Count registers.  These
8054          * are counters inside the SGE which count up on each clock when the
8055          * SGE finds its Ingress DMA State Engines in the same states they
8056          * were in the previous clock.  The counters will peg out at
8057          * 0xffffffff without wrapping around so once they pass the 1s
8058          * threshold they'll stay above that till the IDMA state changes.
8059          */
8060        t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
8061        idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
8062        idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
8063
8064        for (i = 0; i < 2; i++) {
8065                u32 debug0, debug11;
8066
8067                /* If the Ingress DMA Same State Counter ("timer") is less
8068                 * than 1s, then we can reset our synthesized Stall Timer and
8069                 * continue.  If we have previously emitted warnings about a
8070                 * potential stalled Ingress Queue, issue a note indicating
8071                 * that the Ingress Queue has resumed forward progress.
8072                 */
8073                if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
8074                        if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
8075                                dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
8076                                         "resumed after %d seconds\n",
8077                                         i, idma->idma_qid[i],
8078                                         idma->idma_stalled[i] / hz);
8079                        idma->idma_stalled[i] = 0;
8080                        continue;
8081                }
8082
8083                /* Synthesize an SGE Ingress DMA Same State Timer in the Hz
8084                 * domain.  The first time we get here it'll be because we
8085                 * passed the 1s Threshold; each additional time it'll be
8086                 * because the RX Timer Callback is being fired on its regular
8087                 * schedule.
8088                 *
8089                 * If the stall is below our Potential Hung Ingress Queue
8090                 * Warning Threshold, continue.
8091                 */
8092                if (idma->idma_stalled[i] == 0) {
8093                        idma->idma_stalled[i] = hz;
8094                        idma->idma_warn[i] = 0;
8095                } else {
8096                        idma->idma_stalled[i] += ticks;
8097                        idma->idma_warn[i] -= ticks;
8098                }
8099
8100                if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
8101                        continue;
8102
8103                /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
8104                 */
8105                if (idma->idma_warn[i] > 0)
8106                        continue;
8107                idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
8108
8109                /* Read and save the SGE IDMA State and Queue ID information.
8110                 * We do this every time in case it changes across time ...
8111                 * can't be too careful ...
8112                 */
8113                t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
8114                debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
8115                idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
8116
8117                t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
8118                debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
8119                idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
8120
8121                dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
8122                         "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
8123                         i, idma->idma_qid[i], idma->idma_state[i],
8124                         idma->idma_stalled[i] / hz,
8125                         debug0, debug11);
8126                t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
8127        }
8128}
8129