linux/drivers/net/ethernet/chelsio/cxgb4vf/adapter.h
<<
>>
Prefs
   1/*
   2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
   3 * driver for Linux.
   4 *
   5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
   6 *
   7 * This software is available to you under a choice of one of two
   8 * licenses.  You may choose to be licensed under the terms of the GNU
   9 * General Public License (GPL) Version 2, available from the file
  10 * COPYING in the main directory of this source tree, or the
  11 * OpenIB.org BSD license below:
  12 *
  13 *     Redistribution and use in source and binary forms, with or
  14 *     without modification, are permitted provided that the following
  15 *     conditions are met:
  16 *
  17 *      - Redistributions of source code must retain the above
  18 *        copyright notice, this list of conditions and the following
  19 *        disclaimer.
  20 *
  21 *      - Redistributions in binary form must reproduce the above
  22 *        copyright notice, this list of conditions and the following
  23 *        disclaimer in the documentation and/or other materials
  24 *        provided with the distribution.
  25 *
  26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  33 * SOFTWARE.
  34 */
  35
  36/*
  37 * This file should not be included directly.  Include t4vf_common.h instead.
  38 */
  39
  40#ifndef __CXGB4VF_ADAPTER_H__
  41#define __CXGB4VF_ADAPTER_H__
  42
  43#include <linux/interrupt.h>
  44#include <linux/pci.h>
  45#include <linux/spinlock.h>
  46#include <linux/skbuff.h>
  47#include <linux/if_ether.h>
  48#include <linux/netdevice.h>
  49
  50#include "../cxgb4/t4_hw.h"
  51
  52/*
  53 * Constants of the implementation.
  54 */
  55enum {
  56        MAX_NPORTS      = 1,            /* max # of "ports" */
  57        MAX_PORT_QSETS  = 8,            /* max # of Queue Sets / "port" */
  58        MAX_ETH_QSETS   = MAX_NPORTS*MAX_PORT_QSETS,
  59
  60        /*
  61         * MSI-X interrupt index usage.
  62         */
  63        MSIX_FW         = 0,            /* MSI-X index for firmware Q */
  64        MSIX_IQFLINT    = 1,            /* MSI-X index base for Ingress Qs */
  65        MSIX_EXTRAS     = 1,
  66        MSIX_ENTRIES    = MAX_ETH_QSETS + MSIX_EXTRAS,
  67
  68        /*
  69         * The maximum number of Ingress and Egress Queues is determined by
  70         * the maximum number of "Queue Sets" which we support plus any
  71         * ancillary queues.  Each "Queue Set" requires one Ingress Queue
  72         * for RX Packet Ingress Event notifications and two Egress Queues for
  73         * a Free List and an Ethernet TX list.
  74         */
  75        INGQ_EXTRAS     = 2,            /* firmware event queue and */
  76                                        /*   forwarded interrupts */
  77        MAX_INGQ        = MAX_ETH_QSETS+INGQ_EXTRAS,
  78        MAX_EGRQ        = MAX_ETH_QSETS*2,
  79};
  80
  81/*
  82 * Forward structure definition references.
  83 */
  84struct adapter;
  85struct sge_eth_rxq;
  86struct sge_rspq;
  87
  88/*
  89 * Per-"port" information.  This is really per-Virtual Interface information
  90 * but the use of the "port" nomanclature makes it easier to go back and forth
  91 * between the PF and VF drivers ...
  92 */
  93struct port_info {
  94        struct adapter *adapter;        /* our adapter */
  95        u16 viid;                       /* virtual interface ID */
  96        s16 xact_addr_filt;             /* index of our MAC address filter */
  97        u16 rss_size;                   /* size of VI's RSS table slice */
  98        u8 pidx;                        /* index into adapter port[] */
  99        s8 mdio_addr;
 100        u8 port_type;                   /* firmware port type */
 101        u8 mod_type;                    /* firmware module type */
 102        u8 port_id;                     /* physical port ID */
 103        u8 nqsets;                      /* # of "Queue Sets" */
 104        u8 first_qset;                  /* index of first "Queue Set" */
 105        struct link_config link_cfg;    /* physical port configuration */
 106};
 107
 108/*
 109 * Scatter Gather Engine resources for the "adapter".  Our ingress and egress
 110 * queues are organized into "Queue Sets" with one ingress and one egress
 111 * queue per Queue Set.  These Queue Sets are aportionable between the "ports"
 112 * (Virtual Interfaces).  One extra ingress queue is used to receive
 113 * asynchronous messages from the firmware.  Note that the "Queue IDs" that we
 114 * use here are really "Relative Queue IDs" which are returned as part of the
 115 * firmware command to allocate queues.  These queue IDs are relative to the
 116 * absolute Queue ID base of the section of the Queue ID space allocated to
 117 * the PF/VF.
 118 */
 119
 120/*
 121 * SGE free-list queue state.
 122 */
 123struct rx_sw_desc;
 124struct sge_fl {
 125        unsigned int avail;             /* # of available RX buffers */
 126        unsigned int pend_cred;         /* new buffers since last FL DB ring */
 127        unsigned int cidx;              /* consumer index */
 128        unsigned int pidx;              /* producer index */
 129        unsigned long alloc_failed;     /* # of buffer allocation failures */
 130        unsigned long large_alloc_failed;
 131        unsigned long starving;         /* # of times FL was found starving */
 132
 133        /*
 134         * Write-once/infrequently fields.
 135         * -------------------------------
 136         */
 137
 138        unsigned int cntxt_id;          /* SGE relative QID for the free list */
 139        unsigned int abs_id;            /* SGE absolute QID for the free list */
 140        unsigned int size;              /* capacity of free list */
 141        struct rx_sw_desc *sdesc;       /* address of SW RX descriptor ring */
 142        __be64 *desc;                   /* address of HW RX descriptor ring */
 143        dma_addr_t addr;                /* PCI bus address of hardware ring */
 144        void __iomem *bar2_addr;        /* address of BAR2 Queue registers */
 145        unsigned int bar2_qid;          /* Queue ID for BAR2 Queue registers */
 146};
 147
 148/*
 149 * An ingress packet gather list.
 150 */
 151struct pkt_gl {
 152        struct page_frag frags[MAX_SKB_FRAGS];
 153        void *va;                       /* virtual address of first byte */
 154        unsigned int nfrags;            /* # of fragments */
 155        unsigned int tot_len;           /* total length of fragments */
 156};
 157
 158typedef int (*rspq_handler_t)(struct sge_rspq *, const __be64 *,
 159                              const struct pkt_gl *);
 160
 161/*
 162 * State for an SGE Response Queue.
 163 */
 164struct sge_rspq {
 165        struct napi_struct napi;        /* NAPI scheduling control */
 166        const __be64 *cur_desc;         /* current descriptor in queue */
 167        unsigned int cidx;              /* consumer index */
 168        u8 gen;                         /* current generation bit */
 169        u8 next_intr_params;            /* holdoff params for next interrupt */
 170        int offset;                     /* offset into current FL buffer */
 171
 172        unsigned int unhandled_irqs;    /* bogus interrupts */
 173
 174        /*
 175         * Write-once/infrequently fields.
 176         * -------------------------------
 177         */
 178
 179        u8 intr_params;                 /* interrupt holdoff parameters */
 180        u8 pktcnt_idx;                  /* interrupt packet threshold */
 181        u8 idx;                         /* queue index within its group */
 182        u16 cntxt_id;                   /* SGE rel QID for the response Q */
 183        u16 abs_id;                     /* SGE abs QID for the response Q */
 184        __be64 *desc;                   /* address of hardware response ring */
 185        dma_addr_t phys_addr;           /* PCI bus address of ring */
 186        void __iomem *bar2_addr;        /* address of BAR2 Queue registers */
 187        unsigned int bar2_qid;          /* Queue ID for BAR2 Queue registers */
 188        unsigned int iqe_len;           /* entry size */
 189        unsigned int size;              /* capcity of response Q */
 190        struct adapter *adapter;        /* our adapter */
 191        struct net_device *netdev;      /* associated net device */
 192        rspq_handler_t handler;         /* the handler for this response Q */
 193};
 194
 195/*
 196 * Ethernet queue statistics
 197 */
 198struct sge_eth_stats {
 199        unsigned long pkts;             /* # of ethernet packets */
 200        unsigned long lro_pkts;         /* # of LRO super packets */
 201        unsigned long lro_merged;       /* # of wire packets merged by LRO */
 202        unsigned long rx_cso;           /* # of Rx checksum offloads */
 203        unsigned long vlan_ex;          /* # of Rx VLAN extractions */
 204        unsigned long rx_drops;         /* # of packets dropped due to no mem */
 205};
 206
 207/*
 208 * State for an Ethernet Receive Queue.
 209 */
 210struct sge_eth_rxq {
 211        struct sge_rspq rspq;           /* Response Queue */
 212        struct sge_fl fl;               /* Free List */
 213        struct sge_eth_stats stats;     /* receive statistics */
 214};
 215
 216/*
 217 * SGE Transmit Queue state.  This contains all of the resources associated
 218 * with the hardware status of a TX Queue which is a circular ring of hardware
 219 * TX Descriptors.  For convenience, it also contains a pointer to a parallel
 220 * "Software Descriptor" array but we don't know anything about it here other
 221 * than its type name.
 222 */
 223struct tx_desc {
 224        /*
 225         * Egress Queues are measured in units of SGE_EQ_IDXSIZE by the
 226         * hardware: Sizes, Producer and Consumer indices, etc.
 227         */
 228        __be64 flit[SGE_EQ_IDXSIZE/sizeof(__be64)];
 229};
 230struct tx_sw_desc;
 231struct sge_txq {
 232        unsigned int in_use;            /* # of in-use TX descriptors */
 233        unsigned int size;              /* # of descriptors */
 234        unsigned int cidx;              /* SW consumer index */
 235        unsigned int pidx;              /* producer index */
 236        unsigned long stops;            /* # of times queue has been stopped */
 237        unsigned long restarts;         /* # of queue restarts */
 238
 239        /*
 240         * Write-once/infrequently fields.
 241         * -------------------------------
 242         */
 243
 244        unsigned int cntxt_id;          /* SGE relative QID for the TX Q */
 245        unsigned int abs_id;            /* SGE absolute QID for the TX Q */
 246        struct tx_desc *desc;           /* address of HW TX descriptor ring */
 247        struct tx_sw_desc *sdesc;       /* address of SW TX descriptor ring */
 248        struct sge_qstat *stat;         /* queue status entry */
 249        dma_addr_t phys_addr;           /* PCI bus address of hardware ring */
 250        void __iomem *bar2_addr;        /* address of BAR2 Queue registers */
 251        unsigned int bar2_qid;          /* Queue ID for BAR2 Queue registers */
 252};
 253
 254/*
 255 * State for an Ethernet Transmit Queue.
 256 */
 257struct sge_eth_txq {
 258        struct sge_txq q;               /* SGE TX Queue */
 259        struct netdev_queue *txq;       /* associated netdev TX queue */
 260        unsigned long tso;              /* # of TSO requests */
 261        unsigned long tx_cso;           /* # of TX checksum offloads */
 262        unsigned long vlan_ins;         /* # of TX VLAN insertions */
 263        unsigned long mapping_err;      /* # of I/O MMU packet mapping errors */
 264};
 265
 266/*
 267 * The complete set of Scatter/Gather Engine resources.
 268 */
 269struct sge {
 270        /*
 271         * Our "Queue Sets" ...
 272         */
 273        struct sge_eth_txq ethtxq[MAX_ETH_QSETS];
 274        struct sge_eth_rxq ethrxq[MAX_ETH_QSETS];
 275
 276        /*
 277         * Extra ingress queues for asynchronous firmware events and
 278         * forwarded interrupts (when in MSI mode).
 279         */
 280        struct sge_rspq fw_evtq ____cacheline_aligned_in_smp;
 281
 282        struct sge_rspq intrq ____cacheline_aligned_in_smp;
 283        spinlock_t intrq_lock;
 284
 285        /*
 286         * State for managing "starving Free Lists" -- Free Lists which have
 287         * fallen below a certain threshold of buffers available to the
 288         * hardware and attempts to refill them up to that threshold have
 289         * failed.  We have a regular "slow tick" timer process which will
 290         * make periodic attempts to refill these starving Free Lists ...
 291         */
 292        DECLARE_BITMAP(starving_fl, MAX_EGRQ);
 293        struct timer_list rx_timer;
 294
 295        /*
 296         * State for cleaning up completed TX descriptors.
 297         */
 298        struct timer_list tx_timer;
 299
 300        /*
 301         * Write-once/infrequently fields.
 302         * -------------------------------
 303         */
 304
 305        u16 max_ethqsets;               /* # of available Ethernet queue sets */
 306        u16 ethqsets;                   /* # of active Ethernet queue sets */
 307        u16 ethtxq_rover;               /* Tx queue to clean up next */
 308        u16 timer_val[SGE_NTIMERS];     /* interrupt holdoff timer array */
 309        u8 counter_val[SGE_NCOUNTERS];  /* interrupt RX threshold array */
 310
 311        /* Decoded Adapter Parameters.
 312         */
 313        u32 fl_pg_order;                /* large page allocation size */
 314        u32 stat_len;                   /* length of status page at ring end */
 315        u32 pktshift;                   /* padding between CPL & packet data */
 316        u32 fl_align;                   /* response queue message alignment */
 317        u32 fl_starve_thres;            /* Free List starvation threshold */
 318
 319        /*
 320         * Reverse maps from Absolute Queue IDs to associated queue pointers.
 321         * The absolute Queue IDs are in a compact range which start at a
 322         * [potentially large] Base Queue ID.  We perform the reverse map by
 323         * first converting the Absolute Queue ID into a Relative Queue ID by
 324         * subtracting off the Base Queue ID and then use a Relative Queue ID
 325         * indexed table to get the pointer to the corresponding software
 326         * queue structure.
 327         */
 328        unsigned int egr_base;
 329        unsigned int ingr_base;
 330        void *egr_map[MAX_EGRQ];
 331        struct sge_rspq *ingr_map[MAX_INGQ];
 332};
 333
 334/*
 335 * Utility macros to convert Absolute- to Relative-Queue indices and Egress-
 336 * and Ingress-Queues.  The EQ_MAP() and IQ_MAP() macros which provide
 337 * pointers to Ingress- and Egress-Queues can be used as both L- and R-values
 338 */
 339#define EQ_IDX(s, abs_id) ((unsigned int)((abs_id) - (s)->egr_base))
 340#define IQ_IDX(s, abs_id) ((unsigned int)((abs_id) - (s)->ingr_base))
 341
 342#define EQ_MAP(s, abs_id) ((s)->egr_map[EQ_IDX(s, abs_id)])
 343#define IQ_MAP(s, abs_id) ((s)->ingr_map[IQ_IDX(s, abs_id)])
 344
 345/*
 346 * Macro to iterate across Queue Sets ("rxq" is a historic misnomer).
 347 */
 348#define for_each_ethrxq(sge, iter) \
 349        for (iter = 0; iter < (sge)->ethqsets; iter++)
 350
 351struct hash_mac_addr {
 352        struct list_head list;
 353        u8 addr[ETH_ALEN];
 354};
 355
 356/*
 357 * Per-"adapter" (Virtual Function) information.
 358 */
 359struct adapter {
 360        /* PCI resources */
 361        void __iomem *regs;
 362        void __iomem *bar2;
 363        struct pci_dev *pdev;
 364        struct device *pdev_dev;
 365
 366        /* "adapter" resources */
 367        unsigned long registered_device_map;
 368        unsigned long open_device_map;
 369        unsigned long flags;
 370        struct adapter_params params;
 371
 372        /* queue and interrupt resources */
 373        struct {
 374                unsigned short vec;
 375                char desc[22];
 376        } msix_info[MSIX_ENTRIES];
 377        struct sge sge;
 378
 379        /* Linux network device resources */
 380        struct net_device *port[MAX_NPORTS];
 381        const char *name;
 382        unsigned int msg_enable;
 383
 384        /* debugfs resources */
 385        struct dentry *debugfs_root;
 386
 387        /* various locks */
 388        spinlock_t stats_lock;
 389
 390        /* list of MAC addresses in MPS Hash */
 391        struct list_head mac_hlist;
 392};
 393
 394enum { /* adapter flags */
 395        FULL_INIT_DONE     = (1UL << 0),
 396        USING_MSI          = (1UL << 1),
 397        USING_MSIX         = (1UL << 2),
 398        QUEUES_BOUND       = (1UL << 3),
 399};
 400
 401/*
 402 * The following register read/write routine definitions are required by
 403 * the common code.
 404 */
 405
 406/**
 407 * t4_read_reg - read a HW register
 408 * @adapter: the adapter
 409 * @reg_addr: the register address
 410 *
 411 * Returns the 32-bit value of the given HW register.
 412 */
 413static inline u32 t4_read_reg(struct adapter *adapter, u32 reg_addr)
 414{
 415        return readl(adapter->regs + reg_addr);
 416}
 417
 418/**
 419 * t4_write_reg - write a HW register
 420 * @adapter: the adapter
 421 * @reg_addr: the register address
 422 * @val: the value to write
 423 *
 424 * Write a 32-bit value into the given HW register.
 425 */
 426static inline void t4_write_reg(struct adapter *adapter, u32 reg_addr, u32 val)
 427{
 428        writel(val, adapter->regs + reg_addr);
 429}
 430
 431#ifndef readq
 432static inline u64 readq(const volatile void __iomem *addr)
 433{
 434        return readl(addr) + ((u64)readl(addr + 4) << 32);
 435}
 436
 437static inline void writeq(u64 val, volatile void __iomem *addr)
 438{
 439        writel(val, addr);
 440        writel(val >> 32, addr + 4);
 441}
 442#endif
 443
 444/**
 445 * t4_read_reg64 - read a 64-bit HW register
 446 * @adapter: the adapter
 447 * @reg_addr: the register address
 448 *
 449 * Returns the 64-bit value of the given HW register.
 450 */
 451static inline u64 t4_read_reg64(struct adapter *adapter, u32 reg_addr)
 452{
 453        return readq(adapter->regs + reg_addr);
 454}
 455
 456/**
 457 * t4_write_reg64 - write a 64-bit HW register
 458 * @adapter: the adapter
 459 * @reg_addr: the register address
 460 * @val: the value to write
 461 *
 462 * Write a 64-bit value into the given HW register.
 463 */
 464static inline void t4_write_reg64(struct adapter *adapter, u32 reg_addr,
 465                                  u64 val)
 466{
 467        writeq(val, adapter->regs + reg_addr);
 468}
 469
 470/**
 471 * port_name - return the string name of a port
 472 * @adapter: the adapter
 473 * @pidx: the port index
 474 *
 475 * Return the string name of the selected port.
 476 */
 477static inline const char *port_name(struct adapter *adapter, int pidx)
 478{
 479        return adapter->port[pidx]->name;
 480}
 481
 482/**
 483 * t4_os_set_hw_addr - store a port's MAC address in SW
 484 * @adapter: the adapter
 485 * @pidx: the port index
 486 * @hw_addr: the Ethernet address
 487 *
 488 * Store the Ethernet address of the given port in SW.  Called by the common
 489 * code when it retrieves a port's Ethernet address from EEPROM.
 490 */
 491static inline void t4_os_set_hw_addr(struct adapter *adapter, int pidx,
 492                                     u8 hw_addr[])
 493{
 494        memcpy(adapter->port[pidx]->dev_addr, hw_addr, ETH_ALEN);
 495}
 496
 497/**
 498 * netdev2pinfo - return the port_info structure associated with a net_device
 499 * @dev: the netdev
 500 *
 501 * Return the struct port_info associated with a net_device
 502 */
 503static inline struct port_info *netdev2pinfo(const struct net_device *dev)
 504{
 505        return netdev_priv(dev);
 506}
 507
 508/**
 509 * adap2pinfo - return the port_info of a port
 510 * @adap: the adapter
 511 * @pidx: the port index
 512 *
 513 * Return the port_info structure for the adapter.
 514 */
 515static inline struct port_info *adap2pinfo(struct adapter *adapter, int pidx)
 516{
 517        return netdev_priv(adapter->port[pidx]);
 518}
 519
 520/**
 521 * netdev2adap - return the adapter structure associated with a net_device
 522 * @dev: the netdev
 523 *
 524 * Return the struct adapter associated with a net_device
 525 */
 526static inline struct adapter *netdev2adap(const struct net_device *dev)
 527{
 528        return netdev2pinfo(dev)->adapter;
 529}
 530
 531/*
 532 * OS "Callback" function declarations.  These are functions that the OS code
 533 * is "contracted" to provide for the common code.
 534 */
 535void t4vf_os_link_changed(struct adapter *, int, int);
 536void t4vf_os_portmod_changed(struct adapter *, int);
 537
 538/*
 539 * SGE function prototype declarations.
 540 */
 541int t4vf_sge_alloc_rxq(struct adapter *, struct sge_rspq *, bool,
 542                       struct net_device *, int,
 543                       struct sge_fl *, rspq_handler_t);
 544int t4vf_sge_alloc_eth_txq(struct adapter *, struct sge_eth_txq *,
 545                           struct net_device *, struct netdev_queue *,
 546                           unsigned int);
 547void t4vf_free_sge_resources(struct adapter *);
 548
 549int t4vf_eth_xmit(struct sk_buff *, struct net_device *);
 550int t4vf_ethrx_handler(struct sge_rspq *, const __be64 *,
 551                       const struct pkt_gl *);
 552
 553irq_handler_t t4vf_intr_handler(struct adapter *);
 554irqreturn_t t4vf_sge_intr_msix(int, void *);
 555
 556int t4vf_sge_init(struct adapter *);
 557void t4vf_sge_start(struct adapter *);
 558void t4vf_sge_stop(struct adapter *);
 559
 560#endif /* __CXGB4VF_ADAPTER_H__ */
 561