linux/drivers/net/ethernet/freescale/fec_main.c
<<
>>
Prefs
   1/*
   2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
   3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
   4 *
   5 * Right now, I am very wasteful with the buffers.  I allocate memory
   6 * pages and then divide them into 2K frame buffers.  This way I know I
   7 * have buffers large enough to hold one frame within one buffer descriptor.
   8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
   9 * will be much more memory efficient and will easily handle lots of
  10 * small packets.
  11 *
  12 * Much better multiple PHY support by Magnus Damm.
  13 * Copyright (c) 2000 Ericsson Radio Systems AB.
  14 *
  15 * Support for FEC controller of ColdFire processors.
  16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
  17 *
  18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
  19 * Copyright (c) 2004-2006 Macq Electronique SA.
  20 *
  21 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
  22 */
  23
  24#include <linux/module.h>
  25#include <linux/kernel.h>
  26#include <linux/string.h>
  27#include <linux/pm_runtime.h>
  28#include <linux/ptrace.h>
  29#include <linux/errno.h>
  30#include <linux/ioport.h>
  31#include <linux/slab.h>
  32#include <linux/interrupt.h>
  33#include <linux/delay.h>
  34#include <linux/netdevice.h>
  35#include <linux/etherdevice.h>
  36#include <linux/skbuff.h>
  37#include <linux/in.h>
  38#include <linux/ip.h>
  39#include <net/ip.h>
  40#include <net/tso.h>
  41#include <linux/tcp.h>
  42#include <linux/udp.h>
  43#include <linux/icmp.h>
  44#include <linux/spinlock.h>
  45#include <linux/workqueue.h>
  46#include <linux/bitops.h>
  47#include <linux/io.h>
  48#include <linux/irq.h>
  49#include <linux/clk.h>
  50#include <linux/platform_device.h>
  51#include <linux/mdio.h>
  52#include <linux/phy.h>
  53#include <linux/fec.h>
  54#include <linux/of.h>
  55#include <linux/of_device.h>
  56#include <linux/of_gpio.h>
  57#include <linux/of_mdio.h>
  58#include <linux/of_net.h>
  59#include <linux/regulator/consumer.h>
  60#include <linux/if_vlan.h>
  61#include <linux/pinctrl/consumer.h>
  62#include <linux/prefetch.h>
  63
  64#include <asm/cacheflush.h>
  65
  66#include "fec.h"
  67
  68static void set_multicast_list(struct net_device *ndev);
  69static void fec_enet_itr_coal_init(struct net_device *ndev);
  70
  71#define DRIVER_NAME     "fec"
  72
  73#define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
  74
  75/* Pause frame feild and FIFO threshold */
  76#define FEC_ENET_FCE    (1 << 5)
  77#define FEC_ENET_RSEM_V 0x84
  78#define FEC_ENET_RSFL_V 16
  79#define FEC_ENET_RAEM_V 0x8
  80#define FEC_ENET_RAFL_V 0x8
  81#define FEC_ENET_OPD_V  0xFFF0
  82#define FEC_MDIO_PM_TIMEOUT  100 /* ms */
  83
  84static struct platform_device_id fec_devtype[] = {
  85        {
  86                /* keep it for coldfire */
  87                .name = DRIVER_NAME,
  88                .driver_data = 0,
  89        }, {
  90                .name = "imx25-fec",
  91                .driver_data = FEC_QUIRK_USE_GASKET | FEC_QUIRK_HAS_RACC,
  92        }, {
  93                .name = "imx27-fec",
  94                .driver_data = FEC_QUIRK_HAS_RACC,
  95        }, {
  96                .name = "imx28-fec",
  97                .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
  98                                FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC,
  99        }, {
 100                .name = "imx6q-fec",
 101                .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 102                                FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 103                                FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
 104                                FEC_QUIRK_HAS_RACC,
 105        }, {
 106                .name = "mvf600-fec",
 107                .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
 108        }, {
 109                .name = "imx6sx-fec",
 110                .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 111                                FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 112                                FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
 113                                FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
 114                                FEC_QUIRK_HAS_RACC,
 115        }, {
 116                /* sentinel */
 117        }
 118};
 119MODULE_DEVICE_TABLE(platform, fec_devtype);
 120
 121enum imx_fec_type {
 122        IMX25_FEC = 1,  /* runs on i.mx25/50/53 */
 123        IMX27_FEC,      /* runs on i.mx27/35/51 */
 124        IMX28_FEC,
 125        IMX6Q_FEC,
 126        MVF600_FEC,
 127        IMX6SX_FEC,
 128};
 129
 130static const struct of_device_id fec_dt_ids[] = {
 131        { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
 132        { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
 133        { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
 134        { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
 135        { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
 136        { .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
 137        { /* sentinel */ }
 138};
 139MODULE_DEVICE_TABLE(of, fec_dt_ids);
 140
 141static unsigned char macaddr[ETH_ALEN];
 142module_param_array(macaddr, byte, NULL, 0);
 143MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
 144
 145#if defined(CONFIG_M5272)
 146/*
 147 * Some hardware gets it MAC address out of local flash memory.
 148 * if this is non-zero then assume it is the address to get MAC from.
 149 */
 150#if defined(CONFIG_NETtel)
 151#define FEC_FLASHMAC    0xf0006006
 152#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
 153#define FEC_FLASHMAC    0xf0006000
 154#elif defined(CONFIG_CANCam)
 155#define FEC_FLASHMAC    0xf0020000
 156#elif defined (CONFIG_M5272C3)
 157#define FEC_FLASHMAC    (0xffe04000 + 4)
 158#elif defined(CONFIG_MOD5272)
 159#define FEC_FLASHMAC    0xffc0406b
 160#else
 161#define FEC_FLASHMAC    0
 162#endif
 163#endif /* CONFIG_M5272 */
 164
 165/* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
 166 */
 167#define PKT_MAXBUF_SIZE         1522
 168#define PKT_MINBUF_SIZE         64
 169#define PKT_MAXBLR_SIZE         1536
 170
 171/* FEC receive acceleration */
 172#define FEC_RACC_IPDIS          (1 << 1)
 173#define FEC_RACC_PRODIS         (1 << 2)
 174#define FEC_RACC_OPTIONS        (FEC_RACC_IPDIS | FEC_RACC_PRODIS)
 175
 176/*
 177 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
 178 * size bits. Other FEC hardware does not, so we need to take that into
 179 * account when setting it.
 180 */
 181#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
 182    defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
 183#define OPT_FRAME_SIZE  (PKT_MAXBUF_SIZE << 16)
 184#else
 185#define OPT_FRAME_SIZE  0
 186#endif
 187
 188/* FEC MII MMFR bits definition */
 189#define FEC_MMFR_ST             (1 << 30)
 190#define FEC_MMFR_OP_READ        (2 << 28)
 191#define FEC_MMFR_OP_WRITE       (1 << 28)
 192#define FEC_MMFR_PA(v)          ((v & 0x1f) << 23)
 193#define FEC_MMFR_RA(v)          ((v & 0x1f) << 18)
 194#define FEC_MMFR_TA             (2 << 16)
 195#define FEC_MMFR_DATA(v)        (v & 0xffff)
 196/* FEC ECR bits definition */
 197#define FEC_ECR_MAGICEN         (1 << 2)
 198#define FEC_ECR_SLEEP           (1 << 3)
 199
 200#define FEC_MII_TIMEOUT         30000 /* us */
 201
 202/* Transmitter timeout */
 203#define TX_TIMEOUT (2 * HZ)
 204
 205#define FEC_PAUSE_FLAG_AUTONEG  0x1
 206#define FEC_PAUSE_FLAG_ENABLE   0x2
 207#define FEC_WOL_HAS_MAGIC_PACKET        (0x1 << 0)
 208#define FEC_WOL_FLAG_ENABLE             (0x1 << 1)
 209#define FEC_WOL_FLAG_SLEEP_ON           (0x1 << 2)
 210
 211#define COPYBREAK_DEFAULT       256
 212
 213#define TSO_HEADER_SIZE         128
 214/* Max number of allowed TCP segments for software TSO */
 215#define FEC_MAX_TSO_SEGS        100
 216#define FEC_MAX_SKB_DESCS       (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
 217
 218#define IS_TSO_HEADER(txq, addr) \
 219        ((addr >= txq->tso_hdrs_dma) && \
 220        (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
 221
 222static int mii_cnt;
 223
 224static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
 225                                             struct bufdesc_prop *bd)
 226{
 227        return (bdp >= bd->last) ? bd->base
 228                        : (struct bufdesc *)(((unsigned)bdp) + bd->dsize);
 229}
 230
 231static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
 232                                             struct bufdesc_prop *bd)
 233{
 234        return (bdp <= bd->base) ? bd->last
 235                        : (struct bufdesc *)(((unsigned)bdp) - bd->dsize);
 236}
 237
 238static int fec_enet_get_bd_index(struct bufdesc *bdp,
 239                                 struct bufdesc_prop *bd)
 240{
 241        return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
 242}
 243
 244static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
 245{
 246        int entries;
 247
 248        entries = (((const char *)txq->dirty_tx -
 249                        (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
 250
 251        return entries >= 0 ? entries : entries + txq->bd.ring_size;
 252}
 253
 254static void swap_buffer(void *bufaddr, int len)
 255{
 256        int i;
 257        unsigned int *buf = bufaddr;
 258
 259        for (i = 0; i < len; i += 4, buf++)
 260                swab32s(buf);
 261}
 262
 263static void swap_buffer2(void *dst_buf, void *src_buf, int len)
 264{
 265        int i;
 266        unsigned int *src = src_buf;
 267        unsigned int *dst = dst_buf;
 268
 269        for (i = 0; i < len; i += 4, src++, dst++)
 270                *dst = swab32p(src);
 271}
 272
 273static void fec_dump(struct net_device *ndev)
 274{
 275        struct fec_enet_private *fep = netdev_priv(ndev);
 276        struct bufdesc *bdp;
 277        struct fec_enet_priv_tx_q *txq;
 278        int index = 0;
 279
 280        netdev_info(ndev, "TX ring dump\n");
 281        pr_info("Nr     SC     addr       len  SKB\n");
 282
 283        txq = fep->tx_queue[0];
 284        bdp = txq->bd.base;
 285
 286        do {
 287                pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
 288                        index,
 289                        bdp == txq->bd.cur ? 'S' : ' ',
 290                        bdp == txq->dirty_tx ? 'H' : ' ',
 291                        fec16_to_cpu(bdp->cbd_sc),
 292                        fec32_to_cpu(bdp->cbd_bufaddr),
 293                        fec16_to_cpu(bdp->cbd_datlen),
 294                        txq->tx_skbuff[index]);
 295                bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 296                index++;
 297        } while (bdp != txq->bd.base);
 298}
 299
 300static inline bool is_ipv4_pkt(struct sk_buff *skb)
 301{
 302        return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
 303}
 304
 305static int
 306fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
 307{
 308        /* Only run for packets requiring a checksum. */
 309        if (skb->ip_summed != CHECKSUM_PARTIAL)
 310                return 0;
 311
 312        if (unlikely(skb_cow_head(skb, 0)))
 313                return -1;
 314
 315        if (is_ipv4_pkt(skb))
 316                ip_hdr(skb)->check = 0;
 317        *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
 318
 319        return 0;
 320}
 321
 322static struct bufdesc *
 323fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
 324                             struct sk_buff *skb,
 325                             struct net_device *ndev)
 326{
 327        struct fec_enet_private *fep = netdev_priv(ndev);
 328        struct bufdesc *bdp = txq->bd.cur;
 329        struct bufdesc_ex *ebdp;
 330        int nr_frags = skb_shinfo(skb)->nr_frags;
 331        int frag, frag_len;
 332        unsigned short status;
 333        unsigned int estatus = 0;
 334        skb_frag_t *this_frag;
 335        unsigned int index;
 336        void *bufaddr;
 337        dma_addr_t addr;
 338        int i;
 339
 340        for (frag = 0; frag < nr_frags; frag++) {
 341                this_frag = &skb_shinfo(skb)->frags[frag];
 342                bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 343                ebdp = (struct bufdesc_ex *)bdp;
 344
 345                status = fec16_to_cpu(bdp->cbd_sc);
 346                status &= ~BD_ENET_TX_STATS;
 347                status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
 348                frag_len = skb_shinfo(skb)->frags[frag].size;
 349
 350                /* Handle the last BD specially */
 351                if (frag == nr_frags - 1) {
 352                        status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
 353                        if (fep->bufdesc_ex) {
 354                                estatus |= BD_ENET_TX_INT;
 355                                if (unlikely(skb_shinfo(skb)->tx_flags &
 356                                        SKBTX_HW_TSTAMP && fep->hwts_tx_en))
 357                                        estatus |= BD_ENET_TX_TS;
 358                        }
 359                }
 360
 361                if (fep->bufdesc_ex) {
 362                        if (fep->quirks & FEC_QUIRK_HAS_AVB)
 363                                estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 364                        if (skb->ip_summed == CHECKSUM_PARTIAL)
 365                                estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 366                        ebdp->cbd_bdu = 0;
 367                        ebdp->cbd_esc = cpu_to_fec32(estatus);
 368                }
 369
 370                bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
 371
 372                index = fec_enet_get_bd_index(bdp, &txq->bd);
 373                if (((unsigned long) bufaddr) & fep->tx_align ||
 374                        fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 375                        memcpy(txq->tx_bounce[index], bufaddr, frag_len);
 376                        bufaddr = txq->tx_bounce[index];
 377
 378                        if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 379                                swap_buffer(bufaddr, frag_len);
 380                }
 381
 382                addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
 383                                      DMA_TO_DEVICE);
 384                if (dma_mapping_error(&fep->pdev->dev, addr)) {
 385                        if (net_ratelimit())
 386                                netdev_err(ndev, "Tx DMA memory map failed\n");
 387                        goto dma_mapping_error;
 388                }
 389
 390                bdp->cbd_bufaddr = cpu_to_fec32(addr);
 391                bdp->cbd_datlen = cpu_to_fec16(frag_len);
 392                /* Make sure the updates to rest of the descriptor are
 393                 * performed before transferring ownership.
 394                 */
 395                wmb();
 396                bdp->cbd_sc = cpu_to_fec16(status);
 397        }
 398
 399        return bdp;
 400dma_mapping_error:
 401        bdp = txq->bd.cur;
 402        for (i = 0; i < frag; i++) {
 403                bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 404                dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
 405                                 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
 406        }
 407        return ERR_PTR(-ENOMEM);
 408}
 409
 410static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
 411                                   struct sk_buff *skb, struct net_device *ndev)
 412{
 413        struct fec_enet_private *fep = netdev_priv(ndev);
 414        int nr_frags = skb_shinfo(skb)->nr_frags;
 415        struct bufdesc *bdp, *last_bdp;
 416        void *bufaddr;
 417        dma_addr_t addr;
 418        unsigned short status;
 419        unsigned short buflen;
 420        unsigned int estatus = 0;
 421        unsigned int index;
 422        int entries_free;
 423
 424        entries_free = fec_enet_get_free_txdesc_num(txq);
 425        if (entries_free < MAX_SKB_FRAGS + 1) {
 426                dev_kfree_skb_any(skb);
 427                if (net_ratelimit())
 428                        netdev_err(ndev, "NOT enough BD for SG!\n");
 429                return NETDEV_TX_OK;
 430        }
 431
 432        /* Protocol checksum off-load for TCP and UDP. */
 433        if (fec_enet_clear_csum(skb, ndev)) {
 434                dev_kfree_skb_any(skb);
 435                return NETDEV_TX_OK;
 436        }
 437
 438        /* Fill in a Tx ring entry */
 439        bdp = txq->bd.cur;
 440        last_bdp = bdp;
 441        status = fec16_to_cpu(bdp->cbd_sc);
 442        status &= ~BD_ENET_TX_STATS;
 443
 444        /* Set buffer length and buffer pointer */
 445        bufaddr = skb->data;
 446        buflen = skb_headlen(skb);
 447
 448        index = fec_enet_get_bd_index(bdp, &txq->bd);
 449        if (((unsigned long) bufaddr) & fep->tx_align ||
 450                fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 451                memcpy(txq->tx_bounce[index], skb->data, buflen);
 452                bufaddr = txq->tx_bounce[index];
 453
 454                if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 455                        swap_buffer(bufaddr, buflen);
 456        }
 457
 458        /* Push the data cache so the CPM does not get stale memory data. */
 459        addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
 460        if (dma_mapping_error(&fep->pdev->dev, addr)) {
 461                dev_kfree_skb_any(skb);
 462                if (net_ratelimit())
 463                        netdev_err(ndev, "Tx DMA memory map failed\n");
 464                return NETDEV_TX_OK;
 465        }
 466
 467        if (nr_frags) {
 468                last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
 469                if (IS_ERR(last_bdp)) {
 470                        dma_unmap_single(&fep->pdev->dev, addr,
 471                                         buflen, DMA_TO_DEVICE);
 472                        dev_kfree_skb_any(skb);
 473                        return NETDEV_TX_OK;
 474                }
 475        } else {
 476                status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
 477                if (fep->bufdesc_ex) {
 478                        estatus = BD_ENET_TX_INT;
 479                        if (unlikely(skb_shinfo(skb)->tx_flags &
 480                                SKBTX_HW_TSTAMP && fep->hwts_tx_en))
 481                                estatus |= BD_ENET_TX_TS;
 482                }
 483        }
 484        bdp->cbd_bufaddr = cpu_to_fec32(addr);
 485        bdp->cbd_datlen = cpu_to_fec16(buflen);
 486
 487        if (fep->bufdesc_ex) {
 488
 489                struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
 490
 491                if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
 492                        fep->hwts_tx_en))
 493                        skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
 494
 495                if (fep->quirks & FEC_QUIRK_HAS_AVB)
 496                        estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 497
 498                if (skb->ip_summed == CHECKSUM_PARTIAL)
 499                        estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 500
 501                ebdp->cbd_bdu = 0;
 502                ebdp->cbd_esc = cpu_to_fec32(estatus);
 503        }
 504
 505        index = fec_enet_get_bd_index(last_bdp, &txq->bd);
 506        /* Save skb pointer */
 507        txq->tx_skbuff[index] = skb;
 508
 509        /* Make sure the updates to rest of the descriptor are performed before
 510         * transferring ownership.
 511         */
 512        wmb();
 513
 514        /* Send it on its way.  Tell FEC it's ready, interrupt when done,
 515         * it's the last BD of the frame, and to put the CRC on the end.
 516         */
 517        status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
 518        bdp->cbd_sc = cpu_to_fec16(status);
 519
 520        /* If this was the last BD in the ring, start at the beginning again. */
 521        bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
 522
 523        skb_tx_timestamp(skb);
 524
 525        /* Make sure the update to bdp and tx_skbuff are performed before
 526         * txq->bd.cur.
 527         */
 528        wmb();
 529        txq->bd.cur = bdp;
 530
 531        /* Trigger transmission start */
 532        writel(0, txq->bd.reg_desc_active);
 533
 534        return 0;
 535}
 536
 537static int
 538fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
 539                          struct net_device *ndev,
 540                          struct bufdesc *bdp, int index, char *data,
 541                          int size, bool last_tcp, bool is_last)
 542{
 543        struct fec_enet_private *fep = netdev_priv(ndev);
 544        struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
 545        unsigned short status;
 546        unsigned int estatus = 0;
 547        dma_addr_t addr;
 548
 549        status = fec16_to_cpu(bdp->cbd_sc);
 550        status &= ~BD_ENET_TX_STATS;
 551
 552        status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
 553
 554        if (((unsigned long) data) & fep->tx_align ||
 555                fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 556                memcpy(txq->tx_bounce[index], data, size);
 557                data = txq->tx_bounce[index];
 558
 559                if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 560                        swap_buffer(data, size);
 561        }
 562
 563        addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
 564        if (dma_mapping_error(&fep->pdev->dev, addr)) {
 565                dev_kfree_skb_any(skb);
 566                if (net_ratelimit())
 567                        netdev_err(ndev, "Tx DMA memory map failed\n");
 568                return NETDEV_TX_BUSY;
 569        }
 570
 571        bdp->cbd_datlen = cpu_to_fec16(size);
 572        bdp->cbd_bufaddr = cpu_to_fec32(addr);
 573
 574        if (fep->bufdesc_ex) {
 575                if (fep->quirks & FEC_QUIRK_HAS_AVB)
 576                        estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 577                if (skb->ip_summed == CHECKSUM_PARTIAL)
 578                        estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 579                ebdp->cbd_bdu = 0;
 580                ebdp->cbd_esc = cpu_to_fec32(estatus);
 581        }
 582
 583        /* Handle the last BD specially */
 584        if (last_tcp)
 585                status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
 586        if (is_last) {
 587                status |= BD_ENET_TX_INTR;
 588                if (fep->bufdesc_ex)
 589                        ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
 590        }
 591
 592        bdp->cbd_sc = cpu_to_fec16(status);
 593
 594        return 0;
 595}
 596
 597static int
 598fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
 599                         struct sk_buff *skb, struct net_device *ndev,
 600                         struct bufdesc *bdp, int index)
 601{
 602        struct fec_enet_private *fep = netdev_priv(ndev);
 603        int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
 604        struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
 605        void *bufaddr;
 606        unsigned long dmabuf;
 607        unsigned short status;
 608        unsigned int estatus = 0;
 609
 610        status = fec16_to_cpu(bdp->cbd_sc);
 611        status &= ~BD_ENET_TX_STATS;
 612        status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
 613
 614        bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
 615        dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
 616        if (((unsigned long)bufaddr) & fep->tx_align ||
 617                fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 618                memcpy(txq->tx_bounce[index], skb->data, hdr_len);
 619                bufaddr = txq->tx_bounce[index];
 620
 621                if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 622                        swap_buffer(bufaddr, hdr_len);
 623
 624                dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
 625                                        hdr_len, DMA_TO_DEVICE);
 626                if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
 627                        dev_kfree_skb_any(skb);
 628                        if (net_ratelimit())
 629                                netdev_err(ndev, "Tx DMA memory map failed\n");
 630                        return NETDEV_TX_BUSY;
 631                }
 632        }
 633
 634        bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
 635        bdp->cbd_datlen = cpu_to_fec16(hdr_len);
 636
 637        if (fep->bufdesc_ex) {
 638                if (fep->quirks & FEC_QUIRK_HAS_AVB)
 639                        estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 640                if (skb->ip_summed == CHECKSUM_PARTIAL)
 641                        estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 642                ebdp->cbd_bdu = 0;
 643                ebdp->cbd_esc = cpu_to_fec32(estatus);
 644        }
 645
 646        bdp->cbd_sc = cpu_to_fec16(status);
 647
 648        return 0;
 649}
 650
 651static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
 652                                   struct sk_buff *skb,
 653                                   struct net_device *ndev)
 654{
 655        struct fec_enet_private *fep = netdev_priv(ndev);
 656        int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
 657        int total_len, data_left;
 658        struct bufdesc *bdp = txq->bd.cur;
 659        struct tso_t tso;
 660        unsigned int index = 0;
 661        int ret;
 662
 663        if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
 664                dev_kfree_skb_any(skb);
 665                if (net_ratelimit())
 666                        netdev_err(ndev, "NOT enough BD for TSO!\n");
 667                return NETDEV_TX_OK;
 668        }
 669
 670        /* Protocol checksum off-load for TCP and UDP. */
 671        if (fec_enet_clear_csum(skb, ndev)) {
 672                dev_kfree_skb_any(skb);
 673                return NETDEV_TX_OK;
 674        }
 675
 676        /* Initialize the TSO handler, and prepare the first payload */
 677        tso_start(skb, &tso);
 678
 679        total_len = skb->len - hdr_len;
 680        while (total_len > 0) {
 681                char *hdr;
 682
 683                index = fec_enet_get_bd_index(bdp, &txq->bd);
 684                data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
 685                total_len -= data_left;
 686
 687                /* prepare packet headers: MAC + IP + TCP */
 688                hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
 689                tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
 690                ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
 691                if (ret)
 692                        goto err_release;
 693
 694                while (data_left > 0) {
 695                        int size;
 696
 697                        size = min_t(int, tso.size, data_left);
 698                        bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 699                        index = fec_enet_get_bd_index(bdp, &txq->bd);
 700                        ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
 701                                                        bdp, index,
 702                                                        tso.data, size,
 703                                                        size == data_left,
 704                                                        total_len == 0);
 705                        if (ret)
 706                                goto err_release;
 707
 708                        data_left -= size;
 709                        tso_build_data(skb, &tso, size);
 710                }
 711
 712                bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 713        }
 714
 715        /* Save skb pointer */
 716        txq->tx_skbuff[index] = skb;
 717
 718        skb_tx_timestamp(skb);
 719        txq->bd.cur = bdp;
 720
 721        /* Trigger transmission start */
 722        if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
 723            !readl(txq->bd.reg_desc_active) ||
 724            !readl(txq->bd.reg_desc_active) ||
 725            !readl(txq->bd.reg_desc_active) ||
 726            !readl(txq->bd.reg_desc_active))
 727                writel(0, txq->bd.reg_desc_active);
 728
 729        return 0;
 730
 731err_release:
 732        /* TODO: Release all used data descriptors for TSO */
 733        return ret;
 734}
 735
 736static netdev_tx_t
 737fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
 738{
 739        struct fec_enet_private *fep = netdev_priv(ndev);
 740        int entries_free;
 741        unsigned short queue;
 742        struct fec_enet_priv_tx_q *txq;
 743        struct netdev_queue *nq;
 744        int ret;
 745
 746        queue = skb_get_queue_mapping(skb);
 747        txq = fep->tx_queue[queue];
 748        nq = netdev_get_tx_queue(ndev, queue);
 749
 750        if (skb_is_gso(skb))
 751                ret = fec_enet_txq_submit_tso(txq, skb, ndev);
 752        else
 753                ret = fec_enet_txq_submit_skb(txq, skb, ndev);
 754        if (ret)
 755                return ret;
 756
 757        entries_free = fec_enet_get_free_txdesc_num(txq);
 758        if (entries_free <= txq->tx_stop_threshold)
 759                netif_tx_stop_queue(nq);
 760
 761        return NETDEV_TX_OK;
 762}
 763
 764/* Init RX & TX buffer descriptors
 765 */
 766static void fec_enet_bd_init(struct net_device *dev)
 767{
 768        struct fec_enet_private *fep = netdev_priv(dev);
 769        struct fec_enet_priv_tx_q *txq;
 770        struct fec_enet_priv_rx_q *rxq;
 771        struct bufdesc *bdp;
 772        unsigned int i;
 773        unsigned int q;
 774
 775        for (q = 0; q < fep->num_rx_queues; q++) {
 776                /* Initialize the receive buffer descriptors. */
 777                rxq = fep->rx_queue[q];
 778                bdp = rxq->bd.base;
 779
 780                for (i = 0; i < rxq->bd.ring_size; i++) {
 781
 782                        /* Initialize the BD for every fragment in the page. */
 783                        if (bdp->cbd_bufaddr)
 784                                bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
 785                        else
 786                                bdp->cbd_sc = cpu_to_fec16(0);
 787                        bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
 788                }
 789
 790                /* Set the last buffer to wrap */
 791                bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
 792                bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
 793
 794                rxq->bd.cur = rxq->bd.base;
 795        }
 796
 797        for (q = 0; q < fep->num_tx_queues; q++) {
 798                /* ...and the same for transmit */
 799                txq = fep->tx_queue[q];
 800                bdp = txq->bd.base;
 801                txq->bd.cur = bdp;
 802
 803                for (i = 0; i < txq->bd.ring_size; i++) {
 804                        /* Initialize the BD for every fragment in the page. */
 805                        bdp->cbd_sc = cpu_to_fec16(0);
 806                        if (txq->tx_skbuff[i]) {
 807                                dev_kfree_skb_any(txq->tx_skbuff[i]);
 808                                txq->tx_skbuff[i] = NULL;
 809                        }
 810                        bdp->cbd_bufaddr = cpu_to_fec32(0);
 811                        bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 812                }
 813
 814                /* Set the last buffer to wrap */
 815                bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
 816                bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
 817                txq->dirty_tx = bdp;
 818        }
 819}
 820
 821static void fec_enet_active_rxring(struct net_device *ndev)
 822{
 823        struct fec_enet_private *fep = netdev_priv(ndev);
 824        int i;
 825
 826        for (i = 0; i < fep->num_rx_queues; i++)
 827                writel(0, fep->rx_queue[i]->bd.reg_desc_active);
 828}
 829
 830static void fec_enet_enable_ring(struct net_device *ndev)
 831{
 832        struct fec_enet_private *fep = netdev_priv(ndev);
 833        struct fec_enet_priv_tx_q *txq;
 834        struct fec_enet_priv_rx_q *rxq;
 835        int i;
 836
 837        for (i = 0; i < fep->num_rx_queues; i++) {
 838                rxq = fep->rx_queue[i];
 839                writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
 840                writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
 841
 842                /* enable DMA1/2 */
 843                if (i)
 844                        writel(RCMR_MATCHEN | RCMR_CMP(i),
 845                               fep->hwp + FEC_RCMR(i));
 846        }
 847
 848        for (i = 0; i < fep->num_tx_queues; i++) {
 849                txq = fep->tx_queue[i];
 850                writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
 851
 852                /* enable DMA1/2 */
 853                if (i)
 854                        writel(DMA_CLASS_EN | IDLE_SLOPE(i),
 855                               fep->hwp + FEC_DMA_CFG(i));
 856        }
 857}
 858
 859static void fec_enet_reset_skb(struct net_device *ndev)
 860{
 861        struct fec_enet_private *fep = netdev_priv(ndev);
 862        struct fec_enet_priv_tx_q *txq;
 863        int i, j;
 864
 865        for (i = 0; i < fep->num_tx_queues; i++) {
 866                txq = fep->tx_queue[i];
 867
 868                for (j = 0; j < txq->bd.ring_size; j++) {
 869                        if (txq->tx_skbuff[j]) {
 870                                dev_kfree_skb_any(txq->tx_skbuff[j]);
 871                                txq->tx_skbuff[j] = NULL;
 872                        }
 873                }
 874        }
 875}
 876
 877/*
 878 * This function is called to start or restart the FEC during a link
 879 * change, transmit timeout, or to reconfigure the FEC.  The network
 880 * packet processing for this device must be stopped before this call.
 881 */
 882static void
 883fec_restart(struct net_device *ndev)
 884{
 885        struct fec_enet_private *fep = netdev_priv(ndev);
 886        u32 val;
 887        u32 temp_mac[2];
 888        u32 rcntl = OPT_FRAME_SIZE | 0x04;
 889        u32 ecntl = 0x2; /* ETHEREN */
 890
 891        /* Whack a reset.  We should wait for this.
 892         * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
 893         * instead of reset MAC itself.
 894         */
 895        if (fep->quirks & FEC_QUIRK_HAS_AVB) {
 896                writel(0, fep->hwp + FEC_ECNTRL);
 897        } else {
 898                writel(1, fep->hwp + FEC_ECNTRL);
 899                udelay(10);
 900        }
 901
 902        /*
 903         * enet-mac reset will reset mac address registers too,
 904         * so need to reconfigure it.
 905         */
 906        if (fep->quirks & FEC_QUIRK_ENET_MAC) {
 907                memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
 908                writel((__force u32)cpu_to_be32(temp_mac[0]),
 909                       fep->hwp + FEC_ADDR_LOW);
 910                writel((__force u32)cpu_to_be32(temp_mac[1]),
 911                       fep->hwp + FEC_ADDR_HIGH);
 912        }
 913
 914        /* Clear any outstanding interrupt. */
 915        writel(0xffffffff, fep->hwp + FEC_IEVENT);
 916
 917        fec_enet_bd_init(ndev);
 918
 919        fec_enet_enable_ring(ndev);
 920
 921        /* Reset tx SKB buffers. */
 922        fec_enet_reset_skb(ndev);
 923
 924        /* Enable MII mode */
 925        if (fep->full_duplex == DUPLEX_FULL) {
 926                /* FD enable */
 927                writel(0x04, fep->hwp + FEC_X_CNTRL);
 928        } else {
 929                /* No Rcv on Xmit */
 930                rcntl |= 0x02;
 931                writel(0x0, fep->hwp + FEC_X_CNTRL);
 932        }
 933
 934        /* Set MII speed */
 935        writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
 936
 937#if !defined(CONFIG_M5272)
 938        if (fep->quirks & FEC_QUIRK_HAS_RACC) {
 939                /* set RX checksum */
 940                val = readl(fep->hwp + FEC_RACC);
 941                if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
 942                        val |= FEC_RACC_OPTIONS;
 943                else
 944                        val &= ~FEC_RACC_OPTIONS;
 945                writel(val, fep->hwp + FEC_RACC);
 946                writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
 947        }
 948#endif
 949
 950        /*
 951         * The phy interface and speed need to get configured
 952         * differently on enet-mac.
 953         */
 954        if (fep->quirks & FEC_QUIRK_ENET_MAC) {
 955                /* Enable flow control and length check */
 956                rcntl |= 0x40000000 | 0x00000020;
 957
 958                /* RGMII, RMII or MII */
 959                if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
 960                    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
 961                    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
 962                    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
 963                        rcntl |= (1 << 6);
 964                else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
 965                        rcntl |= (1 << 8);
 966                else
 967                        rcntl &= ~(1 << 8);
 968
 969                /* 1G, 100M or 10M */
 970                if (fep->phy_dev) {
 971                        if (fep->phy_dev->speed == SPEED_1000)
 972                                ecntl |= (1 << 5);
 973                        else if (fep->phy_dev->speed == SPEED_100)
 974                                rcntl &= ~(1 << 9);
 975                        else
 976                                rcntl |= (1 << 9);
 977                }
 978        } else {
 979#ifdef FEC_MIIGSK_ENR
 980                if (fep->quirks & FEC_QUIRK_USE_GASKET) {
 981                        u32 cfgr;
 982                        /* disable the gasket and wait */
 983                        writel(0, fep->hwp + FEC_MIIGSK_ENR);
 984                        while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
 985                                udelay(1);
 986
 987                        /*
 988                         * configure the gasket:
 989                         *   RMII, 50 MHz, no loopback, no echo
 990                         *   MII, 25 MHz, no loopback, no echo
 991                         */
 992                        cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
 993                                ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
 994                        if (fep->phy_dev && fep->phy_dev->speed == SPEED_10)
 995                                cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
 996                        writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
 997
 998                        /* re-enable the gasket */
 999                        writel(2, fep->hwp + FEC_MIIGSK_ENR);
1000                }
1001#endif
1002        }
1003
1004#if !defined(CONFIG_M5272)
1005        /* enable pause frame*/
1006        if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1007            ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1008             fep->phy_dev && fep->phy_dev->pause)) {
1009                rcntl |= FEC_ENET_FCE;
1010
1011                /* set FIFO threshold parameter to reduce overrun */
1012                writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1013                writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1014                writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1015                writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1016
1017                /* OPD */
1018                writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1019        } else {
1020                rcntl &= ~FEC_ENET_FCE;
1021        }
1022#endif /* !defined(CONFIG_M5272) */
1023
1024        writel(rcntl, fep->hwp + FEC_R_CNTRL);
1025
1026        /* Setup multicast filter. */
1027        set_multicast_list(ndev);
1028#ifndef CONFIG_M5272
1029        writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1030        writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1031#endif
1032
1033        if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1034                /* enable ENET endian swap */
1035                ecntl |= (1 << 8);
1036                /* enable ENET store and forward mode */
1037                writel(1 << 8, fep->hwp + FEC_X_WMRK);
1038        }
1039
1040        if (fep->bufdesc_ex)
1041                ecntl |= (1 << 4);
1042
1043#ifndef CONFIG_M5272
1044        /* Enable the MIB statistic event counters */
1045        writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1046#endif
1047
1048        /* And last, enable the transmit and receive processing */
1049        writel(ecntl, fep->hwp + FEC_ECNTRL);
1050        fec_enet_active_rxring(ndev);
1051
1052        if (fep->bufdesc_ex)
1053                fec_ptp_start_cyclecounter(ndev);
1054
1055        /* Enable interrupts we wish to service */
1056        if (fep->link)
1057                writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1058        else
1059                writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1060
1061        /* Init the interrupt coalescing */
1062        fec_enet_itr_coal_init(ndev);
1063
1064}
1065
1066static void
1067fec_stop(struct net_device *ndev)
1068{
1069        struct fec_enet_private *fep = netdev_priv(ndev);
1070        struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1071        u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1072        u32 val;
1073
1074        /* We cannot expect a graceful transmit stop without link !!! */
1075        if (fep->link) {
1076                writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1077                udelay(10);
1078                if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1079                        netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1080        }
1081
1082        /* Whack a reset.  We should wait for this.
1083         * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1084         * instead of reset MAC itself.
1085         */
1086        if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1087                if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1088                        writel(0, fep->hwp + FEC_ECNTRL);
1089                } else {
1090                        writel(1, fep->hwp + FEC_ECNTRL);
1091                        udelay(10);
1092                }
1093                writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1094        } else {
1095                writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1096                val = readl(fep->hwp + FEC_ECNTRL);
1097                val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1098                writel(val, fep->hwp + FEC_ECNTRL);
1099
1100                if (pdata && pdata->sleep_mode_enable)
1101                        pdata->sleep_mode_enable(true);
1102        }
1103        writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1104
1105        /* We have to keep ENET enabled to have MII interrupt stay working */
1106        if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1107                !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1108                writel(2, fep->hwp + FEC_ECNTRL);
1109                writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1110        }
1111}
1112
1113
1114static void
1115fec_timeout(struct net_device *ndev)
1116{
1117        struct fec_enet_private *fep = netdev_priv(ndev);
1118
1119        fec_dump(ndev);
1120
1121        ndev->stats.tx_errors++;
1122
1123        schedule_work(&fep->tx_timeout_work);
1124}
1125
1126static void fec_enet_timeout_work(struct work_struct *work)
1127{
1128        struct fec_enet_private *fep =
1129                container_of(work, struct fec_enet_private, tx_timeout_work);
1130        struct net_device *ndev = fep->netdev;
1131
1132        rtnl_lock();
1133        if (netif_device_present(ndev) || netif_running(ndev)) {
1134                napi_disable(&fep->napi);
1135                netif_tx_lock_bh(ndev);
1136                fec_restart(ndev);
1137                netif_wake_queue(ndev);
1138                netif_tx_unlock_bh(ndev);
1139                napi_enable(&fep->napi);
1140        }
1141        rtnl_unlock();
1142}
1143
1144static void
1145fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1146        struct skb_shared_hwtstamps *hwtstamps)
1147{
1148        unsigned long flags;
1149        u64 ns;
1150
1151        spin_lock_irqsave(&fep->tmreg_lock, flags);
1152        ns = timecounter_cyc2time(&fep->tc, ts);
1153        spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1154
1155        memset(hwtstamps, 0, sizeof(*hwtstamps));
1156        hwtstamps->hwtstamp = ns_to_ktime(ns);
1157}
1158
1159static void
1160fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1161{
1162        struct  fec_enet_private *fep;
1163        struct bufdesc *bdp;
1164        unsigned short status;
1165        struct  sk_buff *skb;
1166        struct fec_enet_priv_tx_q *txq;
1167        struct netdev_queue *nq;
1168        int     index = 0;
1169        int     entries_free;
1170
1171        fep = netdev_priv(ndev);
1172
1173        queue_id = FEC_ENET_GET_QUQUE(queue_id);
1174
1175        txq = fep->tx_queue[queue_id];
1176        /* get next bdp of dirty_tx */
1177        nq = netdev_get_tx_queue(ndev, queue_id);
1178        bdp = txq->dirty_tx;
1179
1180        /* get next bdp of dirty_tx */
1181        bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1182
1183        while (bdp != READ_ONCE(txq->bd.cur)) {
1184                /* Order the load of bd.cur and cbd_sc */
1185                rmb();
1186                status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1187                if (status & BD_ENET_TX_READY)
1188                        break;
1189
1190                index = fec_enet_get_bd_index(bdp, &txq->bd);
1191
1192                skb = txq->tx_skbuff[index];
1193                txq->tx_skbuff[index] = NULL;
1194                if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1195                        dma_unmap_single(&fep->pdev->dev,
1196                                         fec32_to_cpu(bdp->cbd_bufaddr),
1197                                         fec16_to_cpu(bdp->cbd_datlen),
1198                                         DMA_TO_DEVICE);
1199                bdp->cbd_bufaddr = cpu_to_fec32(0);
1200                if (!skb) {
1201                        bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1202                        continue;
1203                }
1204
1205                /* Check for errors. */
1206                if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1207                                   BD_ENET_TX_RL | BD_ENET_TX_UN |
1208                                   BD_ENET_TX_CSL)) {
1209                        ndev->stats.tx_errors++;
1210                        if (status & BD_ENET_TX_HB)  /* No heartbeat */
1211                                ndev->stats.tx_heartbeat_errors++;
1212                        if (status & BD_ENET_TX_LC)  /* Late collision */
1213                                ndev->stats.tx_window_errors++;
1214                        if (status & BD_ENET_TX_RL)  /* Retrans limit */
1215                                ndev->stats.tx_aborted_errors++;
1216                        if (status & BD_ENET_TX_UN)  /* Underrun */
1217                                ndev->stats.tx_fifo_errors++;
1218                        if (status & BD_ENET_TX_CSL) /* Carrier lost */
1219                                ndev->stats.tx_carrier_errors++;
1220                } else {
1221                        ndev->stats.tx_packets++;
1222                        ndev->stats.tx_bytes += skb->len;
1223                }
1224
1225                if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1226                        fep->bufdesc_ex) {
1227                        struct skb_shared_hwtstamps shhwtstamps;
1228                        struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1229
1230                        fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1231                        skb_tstamp_tx(skb, &shhwtstamps);
1232                }
1233
1234                /* Deferred means some collisions occurred during transmit,
1235                 * but we eventually sent the packet OK.
1236                 */
1237                if (status & BD_ENET_TX_DEF)
1238                        ndev->stats.collisions++;
1239
1240                /* Free the sk buffer associated with this last transmit */
1241                dev_kfree_skb_any(skb);
1242
1243                /* Make sure the update to bdp and tx_skbuff are performed
1244                 * before dirty_tx
1245                 */
1246                wmb();
1247                txq->dirty_tx = bdp;
1248
1249                /* Update pointer to next buffer descriptor to be transmitted */
1250                bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1251
1252                /* Since we have freed up a buffer, the ring is no longer full
1253                 */
1254                if (netif_queue_stopped(ndev)) {
1255                        entries_free = fec_enet_get_free_txdesc_num(txq);
1256                        if (entries_free >= txq->tx_wake_threshold)
1257                                netif_tx_wake_queue(nq);
1258                }
1259        }
1260
1261        /* ERR006538: Keep the transmitter going */
1262        if (bdp != txq->bd.cur &&
1263            readl(txq->bd.reg_desc_active) == 0)
1264                writel(0, txq->bd.reg_desc_active);
1265}
1266
1267static void
1268fec_enet_tx(struct net_device *ndev)
1269{
1270        struct fec_enet_private *fep = netdev_priv(ndev);
1271        u16 queue_id;
1272        /* First process class A queue, then Class B and Best Effort queue */
1273        for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
1274                clear_bit(queue_id, &fep->work_tx);
1275                fec_enet_tx_queue(ndev, queue_id);
1276        }
1277        return;
1278}
1279
1280static int
1281fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1282{
1283        struct  fec_enet_private *fep = netdev_priv(ndev);
1284        int off;
1285
1286        off = ((unsigned long)skb->data) & fep->rx_align;
1287        if (off)
1288                skb_reserve(skb, fep->rx_align + 1 - off);
1289
1290        bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1291        if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1292                if (net_ratelimit())
1293                        netdev_err(ndev, "Rx DMA memory map failed\n");
1294                return -ENOMEM;
1295        }
1296
1297        return 0;
1298}
1299
1300static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1301                               struct bufdesc *bdp, u32 length, bool swap)
1302{
1303        struct  fec_enet_private *fep = netdev_priv(ndev);
1304        struct sk_buff *new_skb;
1305
1306        if (length > fep->rx_copybreak)
1307                return false;
1308
1309        new_skb = netdev_alloc_skb(ndev, length);
1310        if (!new_skb)
1311                return false;
1312
1313        dma_sync_single_for_cpu(&fep->pdev->dev,
1314                                fec32_to_cpu(bdp->cbd_bufaddr),
1315                                FEC_ENET_RX_FRSIZE - fep->rx_align,
1316                                DMA_FROM_DEVICE);
1317        if (!swap)
1318                memcpy(new_skb->data, (*skb)->data, length);
1319        else
1320                swap_buffer2(new_skb->data, (*skb)->data, length);
1321        *skb = new_skb;
1322
1323        return true;
1324}
1325
1326/* During a receive, the bd_rx.cur points to the current incoming buffer.
1327 * When we update through the ring, if the next incoming buffer has
1328 * not been given to the system, we just set the empty indicator,
1329 * effectively tossing the packet.
1330 */
1331static int
1332fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1333{
1334        struct fec_enet_private *fep = netdev_priv(ndev);
1335        struct fec_enet_priv_rx_q *rxq;
1336        struct bufdesc *bdp;
1337        unsigned short status;
1338        struct  sk_buff *skb_new = NULL;
1339        struct  sk_buff *skb;
1340        ushort  pkt_len;
1341        __u8 *data;
1342        int     pkt_received = 0;
1343        struct  bufdesc_ex *ebdp = NULL;
1344        bool    vlan_packet_rcvd = false;
1345        u16     vlan_tag;
1346        int     index = 0;
1347        bool    is_copybreak;
1348        bool    need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1349
1350#ifdef CONFIG_M532x
1351        flush_cache_all();
1352#endif
1353        queue_id = FEC_ENET_GET_QUQUE(queue_id);
1354        rxq = fep->rx_queue[queue_id];
1355
1356        /* First, grab all of the stats for the incoming packet.
1357         * These get messed up if we get called due to a busy condition.
1358         */
1359        bdp = rxq->bd.cur;
1360
1361        while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1362
1363                if (pkt_received >= budget)
1364                        break;
1365                pkt_received++;
1366
1367                writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
1368
1369                /* Check for errors. */
1370                status ^= BD_ENET_RX_LAST;
1371                if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1372                           BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1373                           BD_ENET_RX_CL)) {
1374                        ndev->stats.rx_errors++;
1375                        if (status & BD_ENET_RX_OV) {
1376                                /* FIFO overrun */
1377                                ndev->stats.rx_fifo_errors++;
1378                                goto rx_processing_done;
1379                        }
1380                        if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1381                                                | BD_ENET_RX_LAST)) {
1382                                /* Frame too long or too short. */
1383                                ndev->stats.rx_length_errors++;
1384                                if (status & BD_ENET_RX_LAST)
1385                                        netdev_err(ndev, "rcv is not +last\n");
1386                        }
1387                        if (status & BD_ENET_RX_CR)     /* CRC Error */
1388                                ndev->stats.rx_crc_errors++;
1389                        /* Report late collisions as a frame error. */
1390                        if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1391                                ndev->stats.rx_frame_errors++;
1392                        goto rx_processing_done;
1393                }
1394
1395                /* Process the incoming frame. */
1396                ndev->stats.rx_packets++;
1397                pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1398                ndev->stats.rx_bytes += pkt_len;
1399
1400                index = fec_enet_get_bd_index(bdp, &rxq->bd);
1401                skb = rxq->rx_skbuff[index];
1402
1403                /* The packet length includes FCS, but we don't want to
1404                 * include that when passing upstream as it messes up
1405                 * bridging applications.
1406                 */
1407                is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1408                                                  need_swap);
1409                if (!is_copybreak) {
1410                        skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1411                        if (unlikely(!skb_new)) {
1412                                ndev->stats.rx_dropped++;
1413                                goto rx_processing_done;
1414                        }
1415                        dma_unmap_single(&fep->pdev->dev,
1416                                         fec32_to_cpu(bdp->cbd_bufaddr),
1417                                         FEC_ENET_RX_FRSIZE - fep->rx_align,
1418                                         DMA_FROM_DEVICE);
1419                }
1420
1421                prefetch(skb->data - NET_IP_ALIGN);
1422                skb_put(skb, pkt_len - 4);
1423                data = skb->data;
1424                if (!is_copybreak && need_swap)
1425                        swap_buffer(data, pkt_len);
1426
1427                /* Extract the enhanced buffer descriptor */
1428                ebdp = NULL;
1429                if (fep->bufdesc_ex)
1430                        ebdp = (struct bufdesc_ex *)bdp;
1431
1432                /* If this is a VLAN packet remove the VLAN Tag */
1433                vlan_packet_rcvd = false;
1434                if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1435                    fep->bufdesc_ex &&
1436                    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1437                        /* Push and remove the vlan tag */
1438                        struct vlan_hdr *vlan_header =
1439                                        (struct vlan_hdr *) (data + ETH_HLEN);
1440                        vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1441
1442                        vlan_packet_rcvd = true;
1443
1444                        memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1445                        skb_pull(skb, VLAN_HLEN);
1446                }
1447
1448                skb->protocol = eth_type_trans(skb, ndev);
1449
1450                /* Get receive timestamp from the skb */
1451                if (fep->hwts_rx_en && fep->bufdesc_ex)
1452                        fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1453                                          skb_hwtstamps(skb));
1454
1455                if (fep->bufdesc_ex &&
1456                    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1457                        if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1458                                /* don't check it */
1459                                skb->ip_summed = CHECKSUM_UNNECESSARY;
1460                        } else {
1461                                skb_checksum_none_assert(skb);
1462                        }
1463                }
1464
1465                /* Handle received VLAN packets */
1466                if (vlan_packet_rcvd)
1467                        __vlan_hwaccel_put_tag(skb,
1468                                               htons(ETH_P_8021Q),
1469                                               vlan_tag);
1470
1471                napi_gro_receive(&fep->napi, skb);
1472
1473                if (is_copybreak) {
1474                        dma_sync_single_for_device(&fep->pdev->dev,
1475                                                   fec32_to_cpu(bdp->cbd_bufaddr),
1476                                                   FEC_ENET_RX_FRSIZE - fep->rx_align,
1477                                                   DMA_FROM_DEVICE);
1478                } else {
1479                        rxq->rx_skbuff[index] = skb_new;
1480                        fec_enet_new_rxbdp(ndev, bdp, skb_new);
1481                }
1482
1483rx_processing_done:
1484                /* Clear the status flags for this buffer */
1485                status &= ~BD_ENET_RX_STATS;
1486
1487                /* Mark the buffer empty */
1488                status |= BD_ENET_RX_EMPTY;
1489
1490                if (fep->bufdesc_ex) {
1491                        struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1492
1493                        ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1494                        ebdp->cbd_prot = 0;
1495                        ebdp->cbd_bdu = 0;
1496                }
1497                /* Make sure the updates to rest of the descriptor are
1498                 * performed before transferring ownership.
1499                 */
1500                wmb();
1501                bdp->cbd_sc = cpu_to_fec16(status);
1502
1503                /* Update BD pointer to next entry */
1504                bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1505
1506                /* Doing this here will keep the FEC running while we process
1507                 * incoming frames.  On a heavily loaded network, we should be
1508                 * able to keep up at the expense of system resources.
1509                 */
1510                writel(0, rxq->bd.reg_desc_active);
1511        }
1512        rxq->bd.cur = bdp;
1513        return pkt_received;
1514}
1515
1516static int
1517fec_enet_rx(struct net_device *ndev, int budget)
1518{
1519        int     pkt_received = 0;
1520        u16     queue_id;
1521        struct fec_enet_private *fep = netdev_priv(ndev);
1522
1523        for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
1524                int ret;
1525
1526                ret = fec_enet_rx_queue(ndev,
1527                                        budget - pkt_received, queue_id);
1528
1529                if (ret < budget - pkt_received)
1530                        clear_bit(queue_id, &fep->work_rx);
1531
1532                pkt_received += ret;
1533        }
1534        return pkt_received;
1535}
1536
1537static bool
1538fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
1539{
1540        if (int_events == 0)
1541                return false;
1542
1543        if (int_events & FEC_ENET_RXF)
1544                fep->work_rx |= (1 << 2);
1545        if (int_events & FEC_ENET_RXF_1)
1546                fep->work_rx |= (1 << 0);
1547        if (int_events & FEC_ENET_RXF_2)
1548                fep->work_rx |= (1 << 1);
1549
1550        if (int_events & FEC_ENET_TXF)
1551                fep->work_tx |= (1 << 2);
1552        if (int_events & FEC_ENET_TXF_1)
1553                fep->work_tx |= (1 << 0);
1554        if (int_events & FEC_ENET_TXF_2)
1555                fep->work_tx |= (1 << 1);
1556
1557        return true;
1558}
1559
1560static irqreturn_t
1561fec_enet_interrupt(int irq, void *dev_id)
1562{
1563        struct net_device *ndev = dev_id;
1564        struct fec_enet_private *fep = netdev_priv(ndev);
1565        uint int_events;
1566        irqreturn_t ret = IRQ_NONE;
1567
1568        int_events = readl(fep->hwp + FEC_IEVENT);
1569        writel(int_events, fep->hwp + FEC_IEVENT);
1570        fec_enet_collect_events(fep, int_events);
1571
1572        if ((fep->work_tx || fep->work_rx) && fep->link) {
1573                ret = IRQ_HANDLED;
1574
1575                if (napi_schedule_prep(&fep->napi)) {
1576                        /* Disable the NAPI interrupts */
1577                        writel(FEC_NAPI_IMASK, fep->hwp + FEC_IMASK);
1578                        __napi_schedule(&fep->napi);
1579                }
1580        }
1581
1582        if (int_events & FEC_ENET_MII) {
1583                ret = IRQ_HANDLED;
1584                complete(&fep->mdio_done);
1585        }
1586
1587        if (fep->ptp_clock)
1588                fec_ptp_check_pps_event(fep);
1589
1590        return ret;
1591}
1592
1593static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1594{
1595        struct net_device *ndev = napi->dev;
1596        struct fec_enet_private *fep = netdev_priv(ndev);
1597        int pkts;
1598
1599        pkts = fec_enet_rx(ndev, budget);
1600
1601        fec_enet_tx(ndev);
1602
1603        if (pkts < budget) {
1604                napi_complete(napi);
1605                writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1606        }
1607        return pkts;
1608}
1609
1610/* ------------------------------------------------------------------------- */
1611static void fec_get_mac(struct net_device *ndev)
1612{
1613        struct fec_enet_private *fep = netdev_priv(ndev);
1614        struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1615        unsigned char *iap, tmpaddr[ETH_ALEN];
1616
1617        /*
1618         * try to get mac address in following order:
1619         *
1620         * 1) module parameter via kernel command line in form
1621         *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1622         */
1623        iap = macaddr;
1624
1625        /*
1626         * 2) from device tree data
1627         */
1628        if (!is_valid_ether_addr(iap)) {
1629                struct device_node *np = fep->pdev->dev.of_node;
1630                if (np) {
1631                        const char *mac = of_get_mac_address(np);
1632                        if (mac)
1633                                iap = (unsigned char *) mac;
1634                }
1635        }
1636
1637        /*
1638         * 3) from flash or fuse (via platform data)
1639         */
1640        if (!is_valid_ether_addr(iap)) {
1641#ifdef CONFIG_M5272
1642                if (FEC_FLASHMAC)
1643                        iap = (unsigned char *)FEC_FLASHMAC;
1644#else
1645                if (pdata)
1646                        iap = (unsigned char *)&pdata->mac;
1647#endif
1648        }
1649
1650        /*
1651         * 4) FEC mac registers set by bootloader
1652         */
1653        if (!is_valid_ether_addr(iap)) {
1654                *((__be32 *) &tmpaddr[0]) =
1655                        cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1656                *((__be16 *) &tmpaddr[4]) =
1657                        cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1658                iap = &tmpaddr[0];
1659        }
1660
1661        /*
1662         * 5) random mac address
1663         */
1664        if (!is_valid_ether_addr(iap)) {
1665                /* Report it and use a random ethernet address instead */
1666                netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1667                eth_hw_addr_random(ndev);
1668                netdev_info(ndev, "Using random MAC address: %pM\n",
1669                            ndev->dev_addr);
1670                return;
1671        }
1672
1673        memcpy(ndev->dev_addr, iap, ETH_ALEN);
1674
1675        /* Adjust MAC if using macaddr */
1676        if (iap == macaddr)
1677                 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1678}
1679
1680/* ------------------------------------------------------------------------- */
1681
1682/*
1683 * Phy section
1684 */
1685static void fec_enet_adjust_link(struct net_device *ndev)
1686{
1687        struct fec_enet_private *fep = netdev_priv(ndev);
1688        struct phy_device *phy_dev = fep->phy_dev;
1689        int status_change = 0;
1690
1691        /* Prevent a state halted on mii error */
1692        if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1693                phy_dev->state = PHY_RESUMING;
1694                return;
1695        }
1696
1697        /*
1698         * If the netdev is down, or is going down, we're not interested
1699         * in link state events, so just mark our idea of the link as down
1700         * and ignore the event.
1701         */
1702        if (!netif_running(ndev) || !netif_device_present(ndev)) {
1703                fep->link = 0;
1704        } else if (phy_dev->link) {
1705                if (!fep->link) {
1706                        fep->link = phy_dev->link;
1707                        status_change = 1;
1708                }
1709
1710                if (fep->full_duplex != phy_dev->duplex) {
1711                        fep->full_duplex = phy_dev->duplex;
1712                        status_change = 1;
1713                }
1714
1715                if (phy_dev->speed != fep->speed) {
1716                        fep->speed = phy_dev->speed;
1717                        status_change = 1;
1718                }
1719
1720                /* if any of the above changed restart the FEC */
1721                if (status_change) {
1722                        napi_disable(&fep->napi);
1723                        netif_tx_lock_bh(ndev);
1724                        fec_restart(ndev);
1725                        netif_wake_queue(ndev);
1726                        netif_tx_unlock_bh(ndev);
1727                        napi_enable(&fep->napi);
1728                }
1729        } else {
1730                if (fep->link) {
1731                        napi_disable(&fep->napi);
1732                        netif_tx_lock_bh(ndev);
1733                        fec_stop(ndev);
1734                        netif_tx_unlock_bh(ndev);
1735                        napi_enable(&fep->napi);
1736                        fep->link = phy_dev->link;
1737                        status_change = 1;
1738                }
1739        }
1740
1741        if (status_change)
1742                phy_print_status(phy_dev);
1743}
1744
1745static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1746{
1747        struct fec_enet_private *fep = bus->priv;
1748        struct device *dev = &fep->pdev->dev;
1749        unsigned long time_left;
1750        int ret = 0;
1751
1752        ret = pm_runtime_get_sync(dev);
1753        if (ret < 0)
1754                return ret;
1755
1756        fep->mii_timeout = 0;
1757        reinit_completion(&fep->mdio_done);
1758
1759        /* start a read op */
1760        writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1761                FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1762                FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1763
1764        /* wait for end of transfer */
1765        time_left = wait_for_completion_timeout(&fep->mdio_done,
1766                        usecs_to_jiffies(FEC_MII_TIMEOUT));
1767        if (time_left == 0) {
1768                fep->mii_timeout = 1;
1769                netdev_err(fep->netdev, "MDIO read timeout\n");
1770                ret = -ETIMEDOUT;
1771                goto out;
1772        }
1773
1774        ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1775
1776out:
1777        pm_runtime_mark_last_busy(dev);
1778        pm_runtime_put_autosuspend(dev);
1779
1780        return ret;
1781}
1782
1783static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1784                           u16 value)
1785{
1786        struct fec_enet_private *fep = bus->priv;
1787        struct device *dev = &fep->pdev->dev;
1788        unsigned long time_left;
1789        int ret;
1790
1791        ret = pm_runtime_get_sync(dev);
1792        if (ret < 0)
1793                return ret;
1794        else
1795                ret = 0;
1796
1797        fep->mii_timeout = 0;
1798        reinit_completion(&fep->mdio_done);
1799
1800        /* start a write op */
1801        writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1802                FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1803                FEC_MMFR_TA | FEC_MMFR_DATA(value),
1804                fep->hwp + FEC_MII_DATA);
1805
1806        /* wait for end of transfer */
1807        time_left = wait_for_completion_timeout(&fep->mdio_done,
1808                        usecs_to_jiffies(FEC_MII_TIMEOUT));
1809        if (time_left == 0) {
1810                fep->mii_timeout = 1;
1811                netdev_err(fep->netdev, "MDIO write timeout\n");
1812                ret  = -ETIMEDOUT;
1813        }
1814
1815        pm_runtime_mark_last_busy(dev);
1816        pm_runtime_put_autosuspend(dev);
1817
1818        return ret;
1819}
1820
1821static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1822{
1823        struct fec_enet_private *fep = netdev_priv(ndev);
1824        int ret;
1825
1826        if (enable) {
1827                ret = clk_prepare_enable(fep->clk_ahb);
1828                if (ret)
1829                        return ret;
1830                if (fep->clk_enet_out) {
1831                        ret = clk_prepare_enable(fep->clk_enet_out);
1832                        if (ret)
1833                                goto failed_clk_enet_out;
1834                }
1835                if (fep->clk_ptp) {
1836                        mutex_lock(&fep->ptp_clk_mutex);
1837                        ret = clk_prepare_enable(fep->clk_ptp);
1838                        if (ret) {
1839                                mutex_unlock(&fep->ptp_clk_mutex);
1840                                goto failed_clk_ptp;
1841                        } else {
1842                                fep->ptp_clk_on = true;
1843                        }
1844                        mutex_unlock(&fep->ptp_clk_mutex);
1845                }
1846                if (fep->clk_ref) {
1847                        ret = clk_prepare_enable(fep->clk_ref);
1848                        if (ret)
1849                                goto failed_clk_ref;
1850                }
1851        } else {
1852                clk_disable_unprepare(fep->clk_ahb);
1853                if (fep->clk_enet_out)
1854                        clk_disable_unprepare(fep->clk_enet_out);
1855                if (fep->clk_ptp) {
1856                        mutex_lock(&fep->ptp_clk_mutex);
1857                        clk_disable_unprepare(fep->clk_ptp);
1858                        fep->ptp_clk_on = false;
1859                        mutex_unlock(&fep->ptp_clk_mutex);
1860                }
1861                if (fep->clk_ref)
1862                        clk_disable_unprepare(fep->clk_ref);
1863        }
1864
1865        return 0;
1866
1867failed_clk_ref:
1868        if (fep->clk_ref)
1869                clk_disable_unprepare(fep->clk_ref);
1870failed_clk_ptp:
1871        if (fep->clk_enet_out)
1872                clk_disable_unprepare(fep->clk_enet_out);
1873failed_clk_enet_out:
1874                clk_disable_unprepare(fep->clk_ahb);
1875
1876        return ret;
1877}
1878
1879static int fec_enet_mii_probe(struct net_device *ndev)
1880{
1881        struct fec_enet_private *fep = netdev_priv(ndev);
1882        struct phy_device *phy_dev = NULL;
1883        char mdio_bus_id[MII_BUS_ID_SIZE];
1884        char phy_name[MII_BUS_ID_SIZE + 3];
1885        int phy_id;
1886        int dev_id = fep->dev_id;
1887
1888        fep->phy_dev = NULL;
1889
1890        if (fep->phy_node) {
1891                phy_dev = of_phy_connect(ndev, fep->phy_node,
1892                                         &fec_enet_adjust_link, 0,
1893                                         fep->phy_interface);
1894                if (!phy_dev)
1895                        return -ENODEV;
1896        } else {
1897                /* check for attached phy */
1898                for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1899                        if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
1900                                continue;
1901                        if (dev_id--)
1902                                continue;
1903                        strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1904                        break;
1905                }
1906
1907                if (phy_id >= PHY_MAX_ADDR) {
1908                        netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1909                        strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1910                        phy_id = 0;
1911                }
1912
1913                snprintf(phy_name, sizeof(phy_name),
1914                         PHY_ID_FMT, mdio_bus_id, phy_id);
1915                phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1916                                      fep->phy_interface);
1917        }
1918
1919        if (IS_ERR(phy_dev)) {
1920                netdev_err(ndev, "could not attach to PHY\n");
1921                return PTR_ERR(phy_dev);
1922        }
1923
1924        /* mask with MAC supported features */
1925        if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
1926                phy_dev->supported &= PHY_GBIT_FEATURES;
1927                phy_dev->supported &= ~SUPPORTED_1000baseT_Half;
1928#if !defined(CONFIG_M5272)
1929                phy_dev->supported |= SUPPORTED_Pause;
1930#endif
1931        }
1932        else
1933                phy_dev->supported &= PHY_BASIC_FEATURES;
1934
1935        phy_dev->advertising = phy_dev->supported;
1936
1937        fep->phy_dev = phy_dev;
1938        fep->link = 0;
1939        fep->full_duplex = 0;
1940
1941        phy_attached_info(phy_dev);
1942
1943        return 0;
1944}
1945
1946static int fec_enet_mii_init(struct platform_device *pdev)
1947{
1948        static struct mii_bus *fec0_mii_bus;
1949        struct net_device *ndev = platform_get_drvdata(pdev);
1950        struct fec_enet_private *fep = netdev_priv(ndev);
1951        struct device_node *node;
1952        int err = -ENXIO;
1953        u32 mii_speed, holdtime;
1954
1955        /*
1956         * The i.MX28 dual fec interfaces are not equal.
1957         * Here are the differences:
1958         *
1959         *  - fec0 supports MII & RMII modes while fec1 only supports RMII
1960         *  - fec0 acts as the 1588 time master while fec1 is slave
1961         *  - external phys can only be configured by fec0
1962         *
1963         * That is to say fec1 can not work independently. It only works
1964         * when fec0 is working. The reason behind this design is that the
1965         * second interface is added primarily for Switch mode.
1966         *
1967         * Because of the last point above, both phys are attached on fec0
1968         * mdio interface in board design, and need to be configured by
1969         * fec0 mii_bus.
1970         */
1971        if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
1972                /* fec1 uses fec0 mii_bus */
1973                if (mii_cnt && fec0_mii_bus) {
1974                        fep->mii_bus = fec0_mii_bus;
1975                        mii_cnt++;
1976                        return 0;
1977                }
1978                return -ENOENT;
1979        }
1980
1981        fep->mii_timeout = 0;
1982
1983        /*
1984         * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1985         *
1986         * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1987         * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
1988         * Reference Manual has an error on this, and gets fixed on i.MX6Q
1989         * document.
1990         */
1991        mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
1992        if (fep->quirks & FEC_QUIRK_ENET_MAC)
1993                mii_speed--;
1994        if (mii_speed > 63) {
1995                dev_err(&pdev->dev,
1996                        "fec clock (%lu) to fast to get right mii speed\n",
1997                        clk_get_rate(fep->clk_ipg));
1998                err = -EINVAL;
1999                goto err_out;
2000        }
2001
2002        /*
2003         * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2004         * MII_SPEED) register that defines the MDIO output hold time. Earlier
2005         * versions are RAZ there, so just ignore the difference and write the
2006         * register always.
2007         * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2008         * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2009         * output.
2010         * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2011         * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2012         * holdtime cannot result in a value greater than 3.
2013         */
2014        holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2015
2016        fep->phy_speed = mii_speed << 1 | holdtime << 8;
2017
2018        writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2019
2020        fep->mii_bus = mdiobus_alloc();
2021        if (fep->mii_bus == NULL) {
2022                err = -ENOMEM;
2023                goto err_out;
2024        }
2025
2026        fep->mii_bus->name = "fec_enet_mii_bus";
2027        fep->mii_bus->read = fec_enet_mdio_read;
2028        fep->mii_bus->write = fec_enet_mdio_write;
2029        snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2030                pdev->name, fep->dev_id + 1);
2031        fep->mii_bus->priv = fep;
2032        fep->mii_bus->parent = &pdev->dev;
2033
2034        node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2035        if (node) {
2036                err = of_mdiobus_register(fep->mii_bus, node);
2037                of_node_put(node);
2038        } else {
2039                err = mdiobus_register(fep->mii_bus);
2040        }
2041
2042        if (err)
2043                goto err_out_free_mdiobus;
2044
2045        mii_cnt++;
2046
2047        /* save fec0 mii_bus */
2048        if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2049                fec0_mii_bus = fep->mii_bus;
2050
2051        return 0;
2052
2053err_out_free_mdiobus:
2054        mdiobus_free(fep->mii_bus);
2055err_out:
2056        return err;
2057}
2058
2059static void fec_enet_mii_remove(struct fec_enet_private *fep)
2060{
2061        if (--mii_cnt == 0) {
2062                mdiobus_unregister(fep->mii_bus);
2063                mdiobus_free(fep->mii_bus);
2064        }
2065}
2066
2067static int fec_enet_get_settings(struct net_device *ndev,
2068                                  struct ethtool_cmd *cmd)
2069{
2070        struct fec_enet_private *fep = netdev_priv(ndev);
2071        struct phy_device *phydev = fep->phy_dev;
2072
2073        if (!phydev)
2074                return -ENODEV;
2075
2076        return phy_ethtool_gset(phydev, cmd);
2077}
2078
2079static int fec_enet_set_settings(struct net_device *ndev,
2080                                 struct ethtool_cmd *cmd)
2081{
2082        struct fec_enet_private *fep = netdev_priv(ndev);
2083        struct phy_device *phydev = fep->phy_dev;
2084
2085        if (!phydev)
2086                return -ENODEV;
2087
2088        return phy_ethtool_sset(phydev, cmd);
2089}
2090
2091static void fec_enet_get_drvinfo(struct net_device *ndev,
2092                                 struct ethtool_drvinfo *info)
2093{
2094        struct fec_enet_private *fep = netdev_priv(ndev);
2095
2096        strlcpy(info->driver, fep->pdev->dev.driver->name,
2097                sizeof(info->driver));
2098        strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
2099        strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2100}
2101
2102static int fec_enet_get_regs_len(struct net_device *ndev)
2103{
2104        struct fec_enet_private *fep = netdev_priv(ndev);
2105        struct resource *r;
2106        int s = 0;
2107
2108        r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2109        if (r)
2110                s = resource_size(r);
2111
2112        return s;
2113}
2114
2115/* List of registers that can be safety be read to dump them with ethtool */
2116#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2117        defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
2118static u32 fec_enet_register_offset[] = {
2119        FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2120        FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2121        FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2122        FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2123        FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2124        FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2125        FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2126        FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2127        FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2128        FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2129        FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2130        FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2131        RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2132        RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2133        RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2134        RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2135        RMON_T_P_GTE2048, RMON_T_OCTETS,
2136        IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2137        IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2138        IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2139        RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2140        RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2141        RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2142        RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2143        RMON_R_P_GTE2048, RMON_R_OCTETS,
2144        IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2145        IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2146};
2147#else
2148static u32 fec_enet_register_offset[] = {
2149        FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2150        FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2151        FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2152        FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2153        FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2154        FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2155        FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2156        FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2157        FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2158};
2159#endif
2160
2161static void fec_enet_get_regs(struct net_device *ndev,
2162                              struct ethtool_regs *regs, void *regbuf)
2163{
2164        struct fec_enet_private *fep = netdev_priv(ndev);
2165        u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2166        u32 *buf = (u32 *)regbuf;
2167        u32 i, off;
2168
2169        memset(buf, 0, regs->len);
2170
2171        for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2172                off = fec_enet_register_offset[i] / 4;
2173                buf[off] = readl(&theregs[off]);
2174        }
2175}
2176
2177static int fec_enet_get_ts_info(struct net_device *ndev,
2178                                struct ethtool_ts_info *info)
2179{
2180        struct fec_enet_private *fep = netdev_priv(ndev);
2181
2182        if (fep->bufdesc_ex) {
2183
2184                info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2185                                        SOF_TIMESTAMPING_RX_SOFTWARE |
2186                                        SOF_TIMESTAMPING_SOFTWARE |
2187                                        SOF_TIMESTAMPING_TX_HARDWARE |
2188                                        SOF_TIMESTAMPING_RX_HARDWARE |
2189                                        SOF_TIMESTAMPING_RAW_HARDWARE;
2190                if (fep->ptp_clock)
2191                        info->phc_index = ptp_clock_index(fep->ptp_clock);
2192                else
2193                        info->phc_index = -1;
2194
2195                info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2196                                 (1 << HWTSTAMP_TX_ON);
2197
2198                info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2199                                   (1 << HWTSTAMP_FILTER_ALL);
2200                return 0;
2201        } else {
2202                return ethtool_op_get_ts_info(ndev, info);
2203        }
2204}
2205
2206#if !defined(CONFIG_M5272)
2207
2208static void fec_enet_get_pauseparam(struct net_device *ndev,
2209                                    struct ethtool_pauseparam *pause)
2210{
2211        struct fec_enet_private *fep = netdev_priv(ndev);
2212
2213        pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2214        pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2215        pause->rx_pause = pause->tx_pause;
2216}
2217
2218static int fec_enet_set_pauseparam(struct net_device *ndev,
2219                                   struct ethtool_pauseparam *pause)
2220{
2221        struct fec_enet_private *fep = netdev_priv(ndev);
2222
2223        if (!fep->phy_dev)
2224                return -ENODEV;
2225
2226        if (pause->tx_pause != pause->rx_pause) {
2227                netdev_info(ndev,
2228                        "hardware only support enable/disable both tx and rx");
2229                return -EINVAL;
2230        }
2231
2232        fep->pause_flag = 0;
2233
2234        /* tx pause must be same as rx pause */
2235        fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2236        fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2237
2238        if (pause->rx_pause || pause->autoneg) {
2239                fep->phy_dev->supported |= ADVERTISED_Pause;
2240                fep->phy_dev->advertising |= ADVERTISED_Pause;
2241        } else {
2242                fep->phy_dev->supported &= ~ADVERTISED_Pause;
2243                fep->phy_dev->advertising &= ~ADVERTISED_Pause;
2244        }
2245
2246        if (pause->autoneg) {
2247                if (netif_running(ndev))
2248                        fec_stop(ndev);
2249                phy_start_aneg(fep->phy_dev);
2250        }
2251        if (netif_running(ndev)) {
2252                napi_disable(&fep->napi);
2253                netif_tx_lock_bh(ndev);
2254                fec_restart(ndev);
2255                netif_wake_queue(ndev);
2256                netif_tx_unlock_bh(ndev);
2257                napi_enable(&fep->napi);
2258        }
2259
2260        return 0;
2261}
2262
2263static const struct fec_stat {
2264        char name[ETH_GSTRING_LEN];
2265        u16 offset;
2266} fec_stats[] = {
2267        /* RMON TX */
2268        { "tx_dropped", RMON_T_DROP },
2269        { "tx_packets", RMON_T_PACKETS },
2270        { "tx_broadcast", RMON_T_BC_PKT },
2271        { "tx_multicast", RMON_T_MC_PKT },
2272        { "tx_crc_errors", RMON_T_CRC_ALIGN },
2273        { "tx_undersize", RMON_T_UNDERSIZE },
2274        { "tx_oversize", RMON_T_OVERSIZE },
2275        { "tx_fragment", RMON_T_FRAG },
2276        { "tx_jabber", RMON_T_JAB },
2277        { "tx_collision", RMON_T_COL },
2278        { "tx_64byte", RMON_T_P64 },
2279        { "tx_65to127byte", RMON_T_P65TO127 },
2280        { "tx_128to255byte", RMON_T_P128TO255 },
2281        { "tx_256to511byte", RMON_T_P256TO511 },
2282        { "tx_512to1023byte", RMON_T_P512TO1023 },
2283        { "tx_1024to2047byte", RMON_T_P1024TO2047 },
2284        { "tx_GTE2048byte", RMON_T_P_GTE2048 },
2285        { "tx_octets", RMON_T_OCTETS },
2286
2287        /* IEEE TX */
2288        { "IEEE_tx_drop", IEEE_T_DROP },
2289        { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2290        { "IEEE_tx_1col", IEEE_T_1COL },
2291        { "IEEE_tx_mcol", IEEE_T_MCOL },
2292        { "IEEE_tx_def", IEEE_T_DEF },
2293        { "IEEE_tx_lcol", IEEE_T_LCOL },
2294        { "IEEE_tx_excol", IEEE_T_EXCOL },
2295        { "IEEE_tx_macerr", IEEE_T_MACERR },
2296        { "IEEE_tx_cserr", IEEE_T_CSERR },
2297        { "IEEE_tx_sqe", IEEE_T_SQE },
2298        { "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2299        { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2300
2301        /* RMON RX */
2302        { "rx_packets", RMON_R_PACKETS },
2303        { "rx_broadcast", RMON_R_BC_PKT },
2304        { "rx_multicast", RMON_R_MC_PKT },
2305        { "rx_crc_errors", RMON_R_CRC_ALIGN },
2306        { "rx_undersize", RMON_R_UNDERSIZE },
2307        { "rx_oversize", RMON_R_OVERSIZE },
2308        { "rx_fragment", RMON_R_FRAG },
2309        { "rx_jabber", RMON_R_JAB },
2310        { "rx_64byte", RMON_R_P64 },
2311        { "rx_65to127byte", RMON_R_P65TO127 },
2312        { "rx_128to255byte", RMON_R_P128TO255 },
2313        { "rx_256to511byte", RMON_R_P256TO511 },
2314        { "rx_512to1023byte", RMON_R_P512TO1023 },
2315        { "rx_1024to2047byte", RMON_R_P1024TO2047 },
2316        { "rx_GTE2048byte", RMON_R_P_GTE2048 },
2317        { "rx_octets", RMON_R_OCTETS },
2318
2319        /* IEEE RX */
2320        { "IEEE_rx_drop", IEEE_R_DROP },
2321        { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2322        { "IEEE_rx_crc", IEEE_R_CRC },
2323        { "IEEE_rx_align", IEEE_R_ALIGN },
2324        { "IEEE_rx_macerr", IEEE_R_MACERR },
2325        { "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2326        { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2327};
2328
2329static void fec_enet_get_ethtool_stats(struct net_device *dev,
2330        struct ethtool_stats *stats, u64 *data)
2331{
2332        struct fec_enet_private *fep = netdev_priv(dev);
2333        int i;
2334
2335        for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2336                data[i] = readl(fep->hwp + fec_stats[i].offset);
2337}
2338
2339static void fec_enet_get_strings(struct net_device *netdev,
2340        u32 stringset, u8 *data)
2341{
2342        int i;
2343        switch (stringset) {
2344        case ETH_SS_STATS:
2345                for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2346                        memcpy(data + i * ETH_GSTRING_LEN,
2347                                fec_stats[i].name, ETH_GSTRING_LEN);
2348                break;
2349        }
2350}
2351
2352static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2353{
2354        switch (sset) {
2355        case ETH_SS_STATS:
2356                return ARRAY_SIZE(fec_stats);
2357        default:
2358                return -EOPNOTSUPP;
2359        }
2360}
2361#endif /* !defined(CONFIG_M5272) */
2362
2363static int fec_enet_nway_reset(struct net_device *dev)
2364{
2365        struct fec_enet_private *fep = netdev_priv(dev);
2366        struct phy_device *phydev = fep->phy_dev;
2367
2368        if (!phydev)
2369                return -ENODEV;
2370
2371        return genphy_restart_aneg(phydev);
2372}
2373
2374/* ITR clock source is enet system clock (clk_ahb).
2375 * TCTT unit is cycle_ns * 64 cycle
2376 * So, the ICTT value = X us / (cycle_ns * 64)
2377 */
2378static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2379{
2380        struct fec_enet_private *fep = netdev_priv(ndev);
2381
2382        return us * (fep->itr_clk_rate / 64000) / 1000;
2383}
2384
2385/* Set threshold for interrupt coalescing */
2386static void fec_enet_itr_coal_set(struct net_device *ndev)
2387{
2388        struct fec_enet_private *fep = netdev_priv(ndev);
2389        int rx_itr, tx_itr;
2390
2391        if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2392                return;
2393
2394        /* Must be greater than zero to avoid unpredictable behavior */
2395        if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2396            !fep->tx_time_itr || !fep->tx_pkts_itr)
2397                return;
2398
2399        /* Select enet system clock as Interrupt Coalescing
2400         * timer Clock Source
2401         */
2402        rx_itr = FEC_ITR_CLK_SEL;
2403        tx_itr = FEC_ITR_CLK_SEL;
2404
2405        /* set ICFT and ICTT */
2406        rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2407        rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2408        tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2409        tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2410
2411        rx_itr |= FEC_ITR_EN;
2412        tx_itr |= FEC_ITR_EN;
2413
2414        writel(tx_itr, fep->hwp + FEC_TXIC0);
2415        writel(rx_itr, fep->hwp + FEC_RXIC0);
2416        writel(tx_itr, fep->hwp + FEC_TXIC1);
2417        writel(rx_itr, fep->hwp + FEC_RXIC1);
2418        writel(tx_itr, fep->hwp + FEC_TXIC2);
2419        writel(rx_itr, fep->hwp + FEC_RXIC2);
2420}
2421
2422static int
2423fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2424{
2425        struct fec_enet_private *fep = netdev_priv(ndev);
2426
2427        if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2428                return -EOPNOTSUPP;
2429
2430        ec->rx_coalesce_usecs = fep->rx_time_itr;
2431        ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2432
2433        ec->tx_coalesce_usecs = fep->tx_time_itr;
2434        ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2435
2436        return 0;
2437}
2438
2439static int
2440fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2441{
2442        struct fec_enet_private *fep = netdev_priv(ndev);
2443        unsigned int cycle;
2444
2445        if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2446                return -EOPNOTSUPP;
2447
2448        if (ec->rx_max_coalesced_frames > 255) {
2449                pr_err("Rx coalesced frames exceed hardware limiation");
2450                return -EINVAL;
2451        }
2452
2453        if (ec->tx_max_coalesced_frames > 255) {
2454                pr_err("Tx coalesced frame exceed hardware limiation");
2455                return -EINVAL;
2456        }
2457
2458        cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
2459        if (cycle > 0xFFFF) {
2460                pr_err("Rx coalesed usec exceeed hardware limiation");
2461                return -EINVAL;
2462        }
2463
2464        cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
2465        if (cycle > 0xFFFF) {
2466                pr_err("Rx coalesed usec exceeed hardware limiation");
2467                return -EINVAL;
2468        }
2469
2470        fep->rx_time_itr = ec->rx_coalesce_usecs;
2471        fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2472
2473        fep->tx_time_itr = ec->tx_coalesce_usecs;
2474        fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2475
2476        fec_enet_itr_coal_set(ndev);
2477
2478        return 0;
2479}
2480
2481static void fec_enet_itr_coal_init(struct net_device *ndev)
2482{
2483        struct ethtool_coalesce ec;
2484
2485        ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2486        ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2487
2488        ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2489        ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2490
2491        fec_enet_set_coalesce(ndev, &ec);
2492}
2493
2494static int fec_enet_get_tunable(struct net_device *netdev,
2495                                const struct ethtool_tunable *tuna,
2496                                void *data)
2497{
2498        struct fec_enet_private *fep = netdev_priv(netdev);
2499        int ret = 0;
2500
2501        switch (tuna->id) {
2502        case ETHTOOL_RX_COPYBREAK:
2503                *(u32 *)data = fep->rx_copybreak;
2504                break;
2505        default:
2506                ret = -EINVAL;
2507                break;
2508        }
2509
2510        return ret;
2511}
2512
2513static int fec_enet_set_tunable(struct net_device *netdev,
2514                                const struct ethtool_tunable *tuna,
2515                                const void *data)
2516{
2517        struct fec_enet_private *fep = netdev_priv(netdev);
2518        int ret = 0;
2519
2520        switch (tuna->id) {
2521        case ETHTOOL_RX_COPYBREAK:
2522                fep->rx_copybreak = *(u32 *)data;
2523                break;
2524        default:
2525                ret = -EINVAL;
2526                break;
2527        }
2528
2529        return ret;
2530}
2531
2532static void
2533fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2534{
2535        struct fec_enet_private *fep = netdev_priv(ndev);
2536
2537        if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2538                wol->supported = WAKE_MAGIC;
2539                wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2540        } else {
2541                wol->supported = wol->wolopts = 0;
2542        }
2543}
2544
2545static int
2546fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2547{
2548        struct fec_enet_private *fep = netdev_priv(ndev);
2549
2550        if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2551                return -EINVAL;
2552
2553        if (wol->wolopts & ~WAKE_MAGIC)
2554                return -EINVAL;
2555
2556        device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2557        if (device_may_wakeup(&ndev->dev)) {
2558                fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2559                if (fep->irq[0] > 0)
2560                        enable_irq_wake(fep->irq[0]);
2561        } else {
2562                fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2563                if (fep->irq[0] > 0)
2564                        disable_irq_wake(fep->irq[0]);
2565        }
2566
2567        return 0;
2568}
2569
2570static const struct ethtool_ops fec_enet_ethtool_ops = {
2571        .get_settings           = fec_enet_get_settings,
2572        .set_settings           = fec_enet_set_settings,
2573        .get_drvinfo            = fec_enet_get_drvinfo,
2574        .get_regs_len           = fec_enet_get_regs_len,
2575        .get_regs               = fec_enet_get_regs,
2576        .nway_reset             = fec_enet_nway_reset,
2577        .get_link               = ethtool_op_get_link,
2578        .get_coalesce           = fec_enet_get_coalesce,
2579        .set_coalesce           = fec_enet_set_coalesce,
2580#ifndef CONFIG_M5272
2581        .get_pauseparam         = fec_enet_get_pauseparam,
2582        .set_pauseparam         = fec_enet_set_pauseparam,
2583        .get_strings            = fec_enet_get_strings,
2584        .get_ethtool_stats      = fec_enet_get_ethtool_stats,
2585        .get_sset_count         = fec_enet_get_sset_count,
2586#endif
2587        .get_ts_info            = fec_enet_get_ts_info,
2588        .get_tunable            = fec_enet_get_tunable,
2589        .set_tunable            = fec_enet_set_tunable,
2590        .get_wol                = fec_enet_get_wol,
2591        .set_wol                = fec_enet_set_wol,
2592};
2593
2594static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2595{
2596        struct fec_enet_private *fep = netdev_priv(ndev);
2597        struct phy_device *phydev = fep->phy_dev;
2598
2599        if (!netif_running(ndev))
2600                return -EINVAL;
2601
2602        if (!phydev)
2603                return -ENODEV;
2604
2605        if (fep->bufdesc_ex) {
2606                if (cmd == SIOCSHWTSTAMP)
2607                        return fec_ptp_set(ndev, rq);
2608                if (cmd == SIOCGHWTSTAMP)
2609                        return fec_ptp_get(ndev, rq);
2610        }
2611
2612        return phy_mii_ioctl(phydev, rq, cmd);
2613}
2614
2615static void fec_enet_free_buffers(struct net_device *ndev)
2616{
2617        struct fec_enet_private *fep = netdev_priv(ndev);
2618        unsigned int i;
2619        struct sk_buff *skb;
2620        struct bufdesc  *bdp;
2621        struct fec_enet_priv_tx_q *txq;
2622        struct fec_enet_priv_rx_q *rxq;
2623        unsigned int q;
2624
2625        for (q = 0; q < fep->num_rx_queues; q++) {
2626                rxq = fep->rx_queue[q];
2627                bdp = rxq->bd.base;
2628                for (i = 0; i < rxq->bd.ring_size; i++) {
2629                        skb = rxq->rx_skbuff[i];
2630                        rxq->rx_skbuff[i] = NULL;
2631                        if (skb) {
2632                                dma_unmap_single(&fep->pdev->dev,
2633                                                 fec32_to_cpu(bdp->cbd_bufaddr),
2634                                                 FEC_ENET_RX_FRSIZE - fep->rx_align,
2635                                                 DMA_FROM_DEVICE);
2636                                dev_kfree_skb(skb);
2637                        }
2638                        bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2639                }
2640        }
2641
2642        for (q = 0; q < fep->num_tx_queues; q++) {
2643                txq = fep->tx_queue[q];
2644                bdp = txq->bd.base;
2645                for (i = 0; i < txq->bd.ring_size; i++) {
2646                        kfree(txq->tx_bounce[i]);
2647                        txq->tx_bounce[i] = NULL;
2648                        skb = txq->tx_skbuff[i];
2649                        txq->tx_skbuff[i] = NULL;
2650                        dev_kfree_skb(skb);
2651                }
2652        }
2653}
2654
2655static void fec_enet_free_queue(struct net_device *ndev)
2656{
2657        struct fec_enet_private *fep = netdev_priv(ndev);
2658        int i;
2659        struct fec_enet_priv_tx_q *txq;
2660
2661        for (i = 0; i < fep->num_tx_queues; i++)
2662                if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2663                        txq = fep->tx_queue[i];
2664                        dma_free_coherent(NULL,
2665                                          txq->bd.ring_size * TSO_HEADER_SIZE,
2666                                          txq->tso_hdrs,
2667                                          txq->tso_hdrs_dma);
2668                }
2669
2670        for (i = 0; i < fep->num_rx_queues; i++)
2671                kfree(fep->rx_queue[i]);
2672        for (i = 0; i < fep->num_tx_queues; i++)
2673                kfree(fep->tx_queue[i]);
2674}
2675
2676static int fec_enet_alloc_queue(struct net_device *ndev)
2677{
2678        struct fec_enet_private *fep = netdev_priv(ndev);
2679        int i;
2680        int ret = 0;
2681        struct fec_enet_priv_tx_q *txq;
2682
2683        for (i = 0; i < fep->num_tx_queues; i++) {
2684                txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2685                if (!txq) {
2686                        ret = -ENOMEM;
2687                        goto alloc_failed;
2688                }
2689
2690                fep->tx_queue[i] = txq;
2691                txq->bd.ring_size = TX_RING_SIZE;
2692                fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
2693
2694                txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2695                txq->tx_wake_threshold =
2696                        (txq->bd.ring_size - txq->tx_stop_threshold) / 2;
2697
2698                txq->tso_hdrs = dma_alloc_coherent(NULL,
2699                                        txq->bd.ring_size * TSO_HEADER_SIZE,
2700                                        &txq->tso_hdrs_dma,
2701                                        GFP_KERNEL);
2702                if (!txq->tso_hdrs) {
2703                        ret = -ENOMEM;
2704                        goto alloc_failed;
2705                }
2706        }
2707
2708        for (i = 0; i < fep->num_rx_queues; i++) {
2709                fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2710                                           GFP_KERNEL);
2711                if (!fep->rx_queue[i]) {
2712                        ret = -ENOMEM;
2713                        goto alloc_failed;
2714                }
2715
2716                fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
2717                fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
2718        }
2719        return ret;
2720
2721alloc_failed:
2722        fec_enet_free_queue(ndev);
2723        return ret;
2724}
2725
2726static int
2727fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2728{
2729        struct fec_enet_private *fep = netdev_priv(ndev);
2730        unsigned int i;
2731        struct sk_buff *skb;
2732        struct bufdesc  *bdp;
2733        struct fec_enet_priv_rx_q *rxq;
2734
2735        rxq = fep->rx_queue[queue];
2736        bdp = rxq->bd.base;
2737        for (i = 0; i < rxq->bd.ring_size; i++) {
2738                skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2739                if (!skb)
2740                        goto err_alloc;
2741
2742                if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2743                        dev_kfree_skb(skb);
2744                        goto err_alloc;
2745                }
2746
2747                rxq->rx_skbuff[i] = skb;
2748                bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
2749
2750                if (fep->bufdesc_ex) {
2751                        struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2752                        ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
2753                }
2754
2755                bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2756        }
2757
2758        /* Set the last buffer to wrap. */
2759        bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
2760        bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2761        return 0;
2762
2763 err_alloc:
2764        fec_enet_free_buffers(ndev);
2765        return -ENOMEM;
2766}
2767
2768static int
2769fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2770{
2771        struct fec_enet_private *fep = netdev_priv(ndev);
2772        unsigned int i;
2773        struct bufdesc  *bdp;
2774        struct fec_enet_priv_tx_q *txq;
2775
2776        txq = fep->tx_queue[queue];
2777        bdp = txq->bd.base;
2778        for (i = 0; i < txq->bd.ring_size; i++) {
2779                txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2780                if (!txq->tx_bounce[i])
2781                        goto err_alloc;
2782
2783                bdp->cbd_sc = cpu_to_fec16(0);
2784                bdp->cbd_bufaddr = cpu_to_fec32(0);
2785
2786                if (fep->bufdesc_ex) {
2787                        struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2788                        ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
2789                }
2790
2791                bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
2792        }
2793
2794        /* Set the last buffer to wrap. */
2795        bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
2796        bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2797
2798        return 0;
2799
2800 err_alloc:
2801        fec_enet_free_buffers(ndev);
2802        return -ENOMEM;
2803}
2804
2805static int fec_enet_alloc_buffers(struct net_device *ndev)
2806{
2807        struct fec_enet_private *fep = netdev_priv(ndev);
2808        unsigned int i;
2809
2810        for (i = 0; i < fep->num_rx_queues; i++)
2811                if (fec_enet_alloc_rxq_buffers(ndev, i))
2812                        return -ENOMEM;
2813
2814        for (i = 0; i < fep->num_tx_queues; i++)
2815                if (fec_enet_alloc_txq_buffers(ndev, i))
2816                        return -ENOMEM;
2817        return 0;
2818}
2819
2820static int
2821fec_enet_open(struct net_device *ndev)
2822{
2823        struct fec_enet_private *fep = netdev_priv(ndev);
2824        int ret;
2825
2826        ret = pm_runtime_get_sync(&fep->pdev->dev);
2827        if (ret < 0)
2828                return ret;
2829
2830        pinctrl_pm_select_default_state(&fep->pdev->dev);
2831        ret = fec_enet_clk_enable(ndev, true);
2832        if (ret)
2833                goto clk_enable;
2834
2835        /* I should reset the ring buffers here, but I don't yet know
2836         * a simple way to do that.
2837         */
2838
2839        ret = fec_enet_alloc_buffers(ndev);
2840        if (ret)
2841                goto err_enet_alloc;
2842
2843        /* Init MAC prior to mii bus probe */
2844        fec_restart(ndev);
2845
2846        /* Probe and connect to PHY when open the interface */
2847        ret = fec_enet_mii_probe(ndev);
2848        if (ret)
2849                goto err_enet_mii_probe;
2850
2851        napi_enable(&fep->napi);
2852        phy_start(fep->phy_dev);
2853        netif_tx_start_all_queues(ndev);
2854
2855        device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
2856                                 FEC_WOL_FLAG_ENABLE);
2857
2858        return 0;
2859
2860err_enet_mii_probe:
2861        fec_enet_free_buffers(ndev);
2862err_enet_alloc:
2863        fec_enet_clk_enable(ndev, false);
2864clk_enable:
2865        pm_runtime_mark_last_busy(&fep->pdev->dev);
2866        pm_runtime_put_autosuspend(&fep->pdev->dev);
2867        pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2868        return ret;
2869}
2870
2871static int
2872fec_enet_close(struct net_device *ndev)
2873{
2874        struct fec_enet_private *fep = netdev_priv(ndev);
2875
2876        phy_stop(fep->phy_dev);
2877
2878        if (netif_device_present(ndev)) {
2879                napi_disable(&fep->napi);
2880                netif_tx_disable(ndev);
2881                fec_stop(ndev);
2882        }
2883
2884        phy_disconnect(fep->phy_dev);
2885        fep->phy_dev = NULL;
2886
2887        fec_enet_clk_enable(ndev, false);
2888        pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2889        pm_runtime_mark_last_busy(&fep->pdev->dev);
2890        pm_runtime_put_autosuspend(&fep->pdev->dev);
2891
2892        fec_enet_free_buffers(ndev);
2893
2894        return 0;
2895}
2896
2897/* Set or clear the multicast filter for this adaptor.
2898 * Skeleton taken from sunlance driver.
2899 * The CPM Ethernet implementation allows Multicast as well as individual
2900 * MAC address filtering.  Some of the drivers check to make sure it is
2901 * a group multicast address, and discard those that are not.  I guess I
2902 * will do the same for now, but just remove the test if you want
2903 * individual filtering as well (do the upper net layers want or support
2904 * this kind of feature?).
2905 */
2906
2907#define HASH_BITS       6               /* #bits in hash */
2908#define CRC32_POLY      0xEDB88320
2909
2910static void set_multicast_list(struct net_device *ndev)
2911{
2912        struct fec_enet_private *fep = netdev_priv(ndev);
2913        struct netdev_hw_addr *ha;
2914        unsigned int i, bit, data, crc, tmp;
2915        unsigned char hash;
2916
2917        if (ndev->flags & IFF_PROMISC) {
2918                tmp = readl(fep->hwp + FEC_R_CNTRL);
2919                tmp |= 0x8;
2920                writel(tmp, fep->hwp + FEC_R_CNTRL);
2921                return;
2922        }
2923
2924        tmp = readl(fep->hwp + FEC_R_CNTRL);
2925        tmp &= ~0x8;
2926        writel(tmp, fep->hwp + FEC_R_CNTRL);
2927
2928        if (ndev->flags & IFF_ALLMULTI) {
2929                /* Catch all multicast addresses, so set the
2930                 * filter to all 1's
2931                 */
2932                writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2933                writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2934
2935                return;
2936        }
2937
2938        /* Clear filter and add the addresses in hash register
2939         */
2940        writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2941        writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2942
2943        netdev_for_each_mc_addr(ha, ndev) {
2944                /* calculate crc32 value of mac address */
2945                crc = 0xffffffff;
2946
2947                for (i = 0; i < ndev->addr_len; i++) {
2948                        data = ha->addr[i];
2949                        for (bit = 0; bit < 8; bit++, data >>= 1) {
2950                                crc = (crc >> 1) ^
2951                                (((crc ^ data) & 1) ? CRC32_POLY : 0);
2952                        }
2953                }
2954
2955                /* only upper 6 bits (HASH_BITS) are used
2956                 * which point to specific bit in he hash registers
2957                 */
2958                hash = (crc >> (32 - HASH_BITS)) & 0x3f;
2959
2960                if (hash > 31) {
2961                        tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2962                        tmp |= 1 << (hash - 32);
2963                        writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2964                } else {
2965                        tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2966                        tmp |= 1 << hash;
2967                        writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2968                }
2969        }
2970}
2971
2972/* Set a MAC change in hardware. */
2973static int
2974fec_set_mac_address(struct net_device *ndev, void *p)
2975{
2976        struct fec_enet_private *fep = netdev_priv(ndev);
2977        struct sockaddr *addr = p;
2978
2979        if (addr) {
2980                if (!is_valid_ether_addr(addr->sa_data))
2981                        return -EADDRNOTAVAIL;
2982                memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
2983        }
2984
2985        /* Add netif status check here to avoid system hang in below case:
2986         * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
2987         * After ethx down, fec all clocks are gated off and then register
2988         * access causes system hang.
2989         */
2990        if (!netif_running(ndev))
2991                return 0;
2992
2993        writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
2994                (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
2995                fep->hwp + FEC_ADDR_LOW);
2996        writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
2997                fep->hwp + FEC_ADDR_HIGH);
2998        return 0;
2999}
3000
3001#ifdef CONFIG_NET_POLL_CONTROLLER
3002/**
3003 * fec_poll_controller - FEC Poll controller function
3004 * @dev: The FEC network adapter
3005 *
3006 * Polled functionality used by netconsole and others in non interrupt mode
3007 *
3008 */
3009static void fec_poll_controller(struct net_device *dev)
3010{
3011        int i;
3012        struct fec_enet_private *fep = netdev_priv(dev);
3013
3014        for (i = 0; i < FEC_IRQ_NUM; i++) {
3015                if (fep->irq[i] > 0) {
3016                        disable_irq(fep->irq[i]);
3017                        fec_enet_interrupt(fep->irq[i], dev);
3018                        enable_irq(fep->irq[i]);
3019                }
3020        }
3021}
3022#endif
3023
3024static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3025        netdev_features_t features)
3026{
3027        struct fec_enet_private *fep = netdev_priv(netdev);
3028        netdev_features_t changed = features ^ netdev->features;
3029
3030        netdev->features = features;
3031
3032        /* Receive checksum has been changed */
3033        if (changed & NETIF_F_RXCSUM) {
3034                if (features & NETIF_F_RXCSUM)
3035                        fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3036                else
3037                        fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3038        }
3039}
3040
3041static int fec_set_features(struct net_device *netdev,
3042        netdev_features_t features)
3043{
3044        struct fec_enet_private *fep = netdev_priv(netdev);
3045        netdev_features_t changed = features ^ netdev->features;
3046
3047        if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3048                napi_disable(&fep->napi);
3049                netif_tx_lock_bh(netdev);
3050                fec_stop(netdev);
3051                fec_enet_set_netdev_features(netdev, features);
3052                fec_restart(netdev);
3053                netif_tx_wake_all_queues(netdev);
3054                netif_tx_unlock_bh(netdev);
3055                napi_enable(&fep->napi);
3056        } else {
3057                fec_enet_set_netdev_features(netdev, features);
3058        }
3059
3060        return 0;
3061}
3062
3063static const struct net_device_ops fec_netdev_ops = {
3064        .ndo_open               = fec_enet_open,
3065        .ndo_stop               = fec_enet_close,
3066        .ndo_start_xmit         = fec_enet_start_xmit,
3067        .ndo_set_rx_mode        = set_multicast_list,
3068        .ndo_change_mtu         = eth_change_mtu,
3069        .ndo_validate_addr      = eth_validate_addr,
3070        .ndo_tx_timeout         = fec_timeout,
3071        .ndo_set_mac_address    = fec_set_mac_address,
3072        .ndo_do_ioctl           = fec_enet_ioctl,
3073#ifdef CONFIG_NET_POLL_CONTROLLER
3074        .ndo_poll_controller    = fec_poll_controller,
3075#endif
3076        .ndo_set_features       = fec_set_features,
3077};
3078
3079static const unsigned short offset_des_active_rxq[] = {
3080        FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3081};
3082
3083static const unsigned short offset_des_active_txq[] = {
3084        FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3085};
3086
3087 /*
3088  * XXX:  We need to clean up on failure exits here.
3089  *
3090  */
3091static int fec_enet_init(struct net_device *ndev)
3092{
3093        struct fec_enet_private *fep = netdev_priv(ndev);
3094        struct bufdesc *cbd_base;
3095        dma_addr_t bd_dma;
3096        int bd_size;
3097        unsigned int i;
3098        unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3099                        sizeof(struct bufdesc);
3100        unsigned dsize_log2 = __fls(dsize);
3101
3102        WARN_ON(dsize != (1 << dsize_log2));
3103#if defined(CONFIG_ARM)
3104        fep->rx_align = 0xf;
3105        fep->tx_align = 0xf;
3106#else
3107        fep->rx_align = 0x3;
3108        fep->tx_align = 0x3;
3109#endif
3110
3111        fec_enet_alloc_queue(ndev);
3112
3113        bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3114
3115        /* Allocate memory for buffer descriptors. */
3116        cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3117                                       GFP_KERNEL);
3118        if (!cbd_base) {
3119                return -ENOMEM;
3120        }
3121
3122        memset(cbd_base, 0, bd_size);
3123
3124        /* Get the Ethernet address */
3125        fec_get_mac(ndev);
3126        /* make sure MAC we just acquired is programmed into the hw */
3127        fec_set_mac_address(ndev, NULL);
3128
3129        /* Set receive and transmit descriptor base. */
3130        for (i = 0; i < fep->num_rx_queues; i++) {
3131                struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3132                unsigned size = dsize * rxq->bd.ring_size;
3133
3134                rxq->bd.qid = i;
3135                rxq->bd.base = cbd_base;
3136                rxq->bd.cur = cbd_base;
3137                rxq->bd.dma = bd_dma;
3138                rxq->bd.dsize = dsize;
3139                rxq->bd.dsize_log2 = dsize_log2;
3140                rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3141                bd_dma += size;
3142                cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3143                rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3144        }
3145
3146        for (i = 0; i < fep->num_tx_queues; i++) {
3147                struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3148                unsigned size = dsize * txq->bd.ring_size;
3149
3150                txq->bd.qid = i;
3151                txq->bd.base = cbd_base;
3152                txq->bd.cur = cbd_base;
3153                txq->bd.dma = bd_dma;
3154                txq->bd.dsize = dsize;
3155                txq->bd.dsize_log2 = dsize_log2;
3156                txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3157                bd_dma += size;
3158                cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3159                txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3160        }
3161
3162
3163        /* The FEC Ethernet specific entries in the device structure */
3164        ndev->watchdog_timeo = TX_TIMEOUT;
3165        ndev->netdev_ops = &fec_netdev_ops;
3166        ndev->ethtool_ops = &fec_enet_ethtool_ops;
3167
3168        writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3169        netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3170
3171        if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3172                /* enable hw VLAN support */
3173                ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3174
3175        if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3176                ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3177
3178                /* enable hw accelerator */
3179                ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3180                                | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3181                fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3182        }
3183
3184        if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3185                fep->tx_align = 0;
3186                fep->rx_align = 0x3f;
3187        }
3188
3189        ndev->hw_features = ndev->features;
3190
3191        fec_restart(ndev);
3192
3193        return 0;
3194}
3195
3196#ifdef CONFIG_OF
3197static void fec_reset_phy(struct platform_device *pdev)
3198{
3199        int err, phy_reset;
3200        bool active_high = false;
3201        int msec = 1;
3202        struct device_node *np = pdev->dev.of_node;
3203
3204        if (!np)
3205                return;
3206
3207        of_property_read_u32(np, "phy-reset-duration", &msec);
3208        /* A sane reset duration should not be longer than 1s */
3209        if (msec > 1000)
3210                msec = 1;
3211
3212        phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3213        if (!gpio_is_valid(phy_reset))
3214                return;
3215
3216        active_high = of_property_read_bool(np, "phy-reset-active-high");
3217
3218        err = devm_gpio_request_one(&pdev->dev, phy_reset,
3219                        active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3220                        "phy-reset");
3221        if (err) {
3222                dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3223                return;
3224        }
3225        msleep(msec);
3226        gpio_set_value_cansleep(phy_reset, !active_high);
3227}
3228#else /* CONFIG_OF */
3229static void fec_reset_phy(struct platform_device *pdev)
3230{
3231        /*
3232         * In case of platform probe, the reset has been done
3233         * by machine code.
3234         */
3235}
3236#endif /* CONFIG_OF */
3237
3238static void
3239fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3240{
3241        struct device_node *np = pdev->dev.of_node;
3242
3243        *num_tx = *num_rx = 1;
3244
3245        if (!np || !of_device_is_available(np))
3246                return;
3247
3248        /* parse the num of tx and rx queues */
3249        of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3250
3251        of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3252
3253        if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3254                dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3255                         *num_tx);
3256                *num_tx = 1;
3257                return;
3258        }
3259
3260        if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3261                dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3262                         *num_rx);
3263                *num_rx = 1;
3264                return;
3265        }
3266
3267}
3268
3269static int
3270fec_probe(struct platform_device *pdev)
3271{
3272        struct fec_enet_private *fep;
3273        struct fec_platform_data *pdata;
3274        struct net_device *ndev;
3275        int i, irq, ret = 0;
3276        struct resource *r;
3277        const struct of_device_id *of_id;
3278        static int dev_id;
3279        struct device_node *np = pdev->dev.of_node, *phy_node;
3280        int num_tx_qs;
3281        int num_rx_qs;
3282
3283        fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3284
3285        /* Init network device */
3286        ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private),
3287                                  num_tx_qs, num_rx_qs);
3288        if (!ndev)
3289                return -ENOMEM;
3290
3291        SET_NETDEV_DEV(ndev, &pdev->dev);
3292
3293        /* setup board info structure */
3294        fep = netdev_priv(ndev);
3295
3296        of_id = of_match_device(fec_dt_ids, &pdev->dev);
3297        if (of_id)
3298                pdev->id_entry = of_id->data;
3299        fep->quirks = pdev->id_entry->driver_data;
3300
3301        fep->netdev = ndev;
3302        fep->num_rx_queues = num_rx_qs;
3303        fep->num_tx_queues = num_tx_qs;
3304
3305#if !defined(CONFIG_M5272)
3306        /* default enable pause frame auto negotiation */
3307        if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3308                fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3309#endif
3310
3311        /* Select default pin state */
3312        pinctrl_pm_select_default_state(&pdev->dev);
3313
3314        r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3315        fep->hwp = devm_ioremap_resource(&pdev->dev, r);
3316        if (IS_ERR(fep->hwp)) {
3317                ret = PTR_ERR(fep->hwp);
3318                goto failed_ioremap;
3319        }
3320
3321        fep->pdev = pdev;
3322        fep->dev_id = dev_id++;
3323
3324        platform_set_drvdata(pdev, ndev);
3325
3326        if (of_get_property(np, "fsl,magic-packet", NULL))
3327                fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3328
3329        phy_node = of_parse_phandle(np, "phy-handle", 0);
3330        if (!phy_node && of_phy_is_fixed_link(np)) {
3331                ret = of_phy_register_fixed_link(np);
3332                if (ret < 0) {
3333                        dev_err(&pdev->dev,
3334                                "broken fixed-link specification\n");
3335                        goto failed_phy;
3336                }
3337                phy_node = of_node_get(np);
3338        }
3339        fep->phy_node = phy_node;
3340
3341        ret = of_get_phy_mode(pdev->dev.of_node);
3342        if (ret < 0) {
3343                pdata = dev_get_platdata(&pdev->dev);
3344                if (pdata)
3345                        fep->phy_interface = pdata->phy;
3346                else
3347                        fep->phy_interface = PHY_INTERFACE_MODE_MII;
3348        } else {
3349                fep->phy_interface = ret;
3350        }
3351
3352        fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3353        if (IS_ERR(fep->clk_ipg)) {
3354                ret = PTR_ERR(fep->clk_ipg);
3355                goto failed_clk;
3356        }
3357
3358        fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3359        if (IS_ERR(fep->clk_ahb)) {
3360                ret = PTR_ERR(fep->clk_ahb);
3361                goto failed_clk;
3362        }
3363
3364        fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3365
3366        /* enet_out is optional, depends on board */
3367        fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3368        if (IS_ERR(fep->clk_enet_out))
3369                fep->clk_enet_out = NULL;
3370
3371        fep->ptp_clk_on = false;
3372        mutex_init(&fep->ptp_clk_mutex);
3373
3374        /* clk_ref is optional, depends on board */
3375        fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3376        if (IS_ERR(fep->clk_ref))
3377                fep->clk_ref = NULL;
3378
3379        fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3380        fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3381        if (IS_ERR(fep->clk_ptp)) {
3382                fep->clk_ptp = NULL;
3383                fep->bufdesc_ex = false;
3384        }
3385
3386        ret = fec_enet_clk_enable(ndev, true);
3387        if (ret)
3388                goto failed_clk;
3389
3390        ret = clk_prepare_enable(fep->clk_ipg);
3391        if (ret)
3392                goto failed_clk_ipg;
3393
3394        fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
3395        if (!IS_ERR(fep->reg_phy)) {
3396                ret = regulator_enable(fep->reg_phy);
3397                if (ret) {
3398                        dev_err(&pdev->dev,
3399                                "Failed to enable phy regulator: %d\n", ret);
3400                        goto failed_regulator;
3401                }
3402        } else {
3403                fep->reg_phy = NULL;
3404        }
3405
3406        pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3407        pm_runtime_use_autosuspend(&pdev->dev);
3408        pm_runtime_get_noresume(&pdev->dev);
3409        pm_runtime_set_active(&pdev->dev);
3410        pm_runtime_enable(&pdev->dev);
3411
3412        fec_reset_phy(pdev);
3413
3414        if (fep->bufdesc_ex)
3415                fec_ptp_init(pdev);
3416
3417        ret = fec_enet_init(ndev);
3418        if (ret)
3419                goto failed_init;
3420
3421        for (i = 0; i < FEC_IRQ_NUM; i++) {
3422                irq = platform_get_irq(pdev, i);
3423                if (irq < 0) {
3424                        if (i)
3425                                break;
3426                        ret = irq;
3427                        goto failed_irq;
3428                }
3429                ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3430                                       0, pdev->name, ndev);
3431                if (ret)
3432                        goto failed_irq;
3433
3434                fep->irq[i] = irq;
3435        }
3436
3437        init_completion(&fep->mdio_done);
3438        ret = fec_enet_mii_init(pdev);
3439        if (ret)
3440                goto failed_mii_init;
3441
3442        /* Carrier starts down, phylib will bring it up */
3443        netif_carrier_off(ndev);
3444        fec_enet_clk_enable(ndev, false);
3445        pinctrl_pm_select_sleep_state(&pdev->dev);
3446
3447        ret = register_netdev(ndev);
3448        if (ret)
3449                goto failed_register;
3450
3451        device_init_wakeup(&ndev->dev, fep->wol_flag &
3452                           FEC_WOL_HAS_MAGIC_PACKET);
3453
3454        if (fep->bufdesc_ex && fep->ptp_clock)
3455                netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3456
3457        fep->rx_copybreak = COPYBREAK_DEFAULT;
3458        INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3459
3460        pm_runtime_mark_last_busy(&pdev->dev);
3461        pm_runtime_put_autosuspend(&pdev->dev);
3462
3463        return 0;
3464
3465failed_register:
3466        fec_enet_mii_remove(fep);
3467failed_mii_init:
3468failed_irq:
3469failed_init:
3470        fec_ptp_stop(pdev);
3471        if (fep->reg_phy)
3472                regulator_disable(fep->reg_phy);
3473failed_regulator:
3474        clk_disable_unprepare(fep->clk_ipg);
3475failed_clk_ipg:
3476        fec_enet_clk_enable(ndev, false);
3477failed_clk:
3478failed_phy:
3479        of_node_put(phy_node);
3480failed_ioremap:
3481        free_netdev(ndev);
3482
3483        return ret;
3484}
3485
3486static int
3487fec_drv_remove(struct platform_device *pdev)
3488{
3489        struct net_device *ndev = platform_get_drvdata(pdev);
3490        struct fec_enet_private *fep = netdev_priv(ndev);
3491
3492        cancel_work_sync(&fep->tx_timeout_work);
3493        fec_ptp_stop(pdev);
3494        unregister_netdev(ndev);
3495        fec_enet_mii_remove(fep);
3496        if (fep->reg_phy)
3497                regulator_disable(fep->reg_phy);
3498        of_node_put(fep->phy_node);
3499        free_netdev(ndev);
3500
3501        return 0;
3502}
3503
3504static int __maybe_unused fec_suspend(struct device *dev)
3505{
3506        struct net_device *ndev = dev_get_drvdata(dev);
3507        struct fec_enet_private *fep = netdev_priv(ndev);
3508
3509        rtnl_lock();
3510        if (netif_running(ndev)) {
3511                if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3512                        fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3513                phy_stop(fep->phy_dev);
3514                napi_disable(&fep->napi);
3515                netif_tx_lock_bh(ndev);
3516                netif_device_detach(ndev);
3517                netif_tx_unlock_bh(ndev);
3518                fec_stop(ndev);
3519                fec_enet_clk_enable(ndev, false);
3520                if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3521                        pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3522        }
3523        rtnl_unlock();
3524
3525        if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3526                regulator_disable(fep->reg_phy);
3527
3528        /* SOC supply clock to phy, when clock is disabled, phy link down
3529         * SOC control phy regulator, when regulator is disabled, phy link down
3530         */
3531        if (fep->clk_enet_out || fep->reg_phy)
3532                fep->link = 0;
3533
3534        return 0;
3535}
3536
3537static int __maybe_unused fec_resume(struct device *dev)
3538{
3539        struct net_device *ndev = dev_get_drvdata(dev);
3540        struct fec_enet_private *fep = netdev_priv(ndev);
3541        struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
3542        int ret;
3543        int val;
3544
3545        if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3546                ret = regulator_enable(fep->reg_phy);
3547                if (ret)
3548                        return ret;
3549        }
3550
3551        rtnl_lock();
3552        if (netif_running(ndev)) {
3553                ret = fec_enet_clk_enable(ndev, true);
3554                if (ret) {
3555                        rtnl_unlock();
3556                        goto failed_clk;
3557                }
3558                if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3559                        if (pdata && pdata->sleep_mode_enable)
3560                                pdata->sleep_mode_enable(false);
3561                        val = readl(fep->hwp + FEC_ECNTRL);
3562                        val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3563                        writel(val, fep->hwp + FEC_ECNTRL);
3564                        fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3565                } else {
3566                        pinctrl_pm_select_default_state(&fep->pdev->dev);
3567                }
3568                fec_restart(ndev);
3569                netif_tx_lock_bh(ndev);
3570                netif_device_attach(ndev);
3571                netif_tx_unlock_bh(ndev);
3572                napi_enable(&fep->napi);
3573                phy_start(fep->phy_dev);
3574        }
3575        rtnl_unlock();
3576
3577        return 0;
3578
3579failed_clk:
3580        if (fep->reg_phy)
3581                regulator_disable(fep->reg_phy);
3582        return ret;
3583}
3584
3585static int __maybe_unused fec_runtime_suspend(struct device *dev)
3586{
3587        struct net_device *ndev = dev_get_drvdata(dev);
3588        struct fec_enet_private *fep = netdev_priv(ndev);
3589
3590        clk_disable_unprepare(fep->clk_ipg);
3591
3592        return 0;
3593}
3594
3595static int __maybe_unused fec_runtime_resume(struct device *dev)
3596{
3597        struct net_device *ndev = dev_get_drvdata(dev);
3598        struct fec_enet_private *fep = netdev_priv(ndev);
3599
3600        return clk_prepare_enable(fep->clk_ipg);
3601}
3602
3603static const struct dev_pm_ops fec_pm_ops = {
3604        SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
3605        SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
3606};
3607
3608static struct platform_driver fec_driver = {
3609        .driver = {
3610                .name   = DRIVER_NAME,
3611                .pm     = &fec_pm_ops,
3612                .of_match_table = fec_dt_ids,
3613        },
3614        .id_table = fec_devtype,
3615        .probe  = fec_probe,
3616        .remove = fec_drv_remove,
3617};
3618
3619module_platform_driver(fec_driver);
3620
3621MODULE_ALIAS("platform:"DRIVER_NAME);
3622MODULE_LICENSE("GPL");
3623