linux/drivers/net/ethernet/intel/e1000/e1000_main.c
<<
>>
Prefs
   1/*******************************************************************************
   2
   3  Intel PRO/1000 Linux driver
   4  Copyright(c) 1999 - 2006 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  Linux NICS <linux.nics@intel.com>
  24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  26
  27*******************************************************************************/
  28
  29#include "e1000.h"
  30#include <net/ip6_checksum.h>
  31#include <linux/io.h>
  32#include <linux/prefetch.h>
  33#include <linux/bitops.h>
  34#include <linux/if_vlan.h>
  35
  36char e1000_driver_name[] = "e1000";
  37static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
  38#define DRV_VERSION "7.3.21-k8-NAPI"
  39const char e1000_driver_version[] = DRV_VERSION;
  40static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
  41
  42/* e1000_pci_tbl - PCI Device ID Table
  43 *
  44 * Last entry must be all 0s
  45 *
  46 * Macro expands to...
  47 *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
  48 */
  49static const struct pci_device_id e1000_pci_tbl[] = {
  50        INTEL_E1000_ETHERNET_DEVICE(0x1000),
  51        INTEL_E1000_ETHERNET_DEVICE(0x1001),
  52        INTEL_E1000_ETHERNET_DEVICE(0x1004),
  53        INTEL_E1000_ETHERNET_DEVICE(0x1008),
  54        INTEL_E1000_ETHERNET_DEVICE(0x1009),
  55        INTEL_E1000_ETHERNET_DEVICE(0x100C),
  56        INTEL_E1000_ETHERNET_DEVICE(0x100D),
  57        INTEL_E1000_ETHERNET_DEVICE(0x100E),
  58        INTEL_E1000_ETHERNET_DEVICE(0x100F),
  59        INTEL_E1000_ETHERNET_DEVICE(0x1010),
  60        INTEL_E1000_ETHERNET_DEVICE(0x1011),
  61        INTEL_E1000_ETHERNET_DEVICE(0x1012),
  62        INTEL_E1000_ETHERNET_DEVICE(0x1013),
  63        INTEL_E1000_ETHERNET_DEVICE(0x1014),
  64        INTEL_E1000_ETHERNET_DEVICE(0x1015),
  65        INTEL_E1000_ETHERNET_DEVICE(0x1016),
  66        INTEL_E1000_ETHERNET_DEVICE(0x1017),
  67        INTEL_E1000_ETHERNET_DEVICE(0x1018),
  68        INTEL_E1000_ETHERNET_DEVICE(0x1019),
  69        INTEL_E1000_ETHERNET_DEVICE(0x101A),
  70        INTEL_E1000_ETHERNET_DEVICE(0x101D),
  71        INTEL_E1000_ETHERNET_DEVICE(0x101E),
  72        INTEL_E1000_ETHERNET_DEVICE(0x1026),
  73        INTEL_E1000_ETHERNET_DEVICE(0x1027),
  74        INTEL_E1000_ETHERNET_DEVICE(0x1028),
  75        INTEL_E1000_ETHERNET_DEVICE(0x1075),
  76        INTEL_E1000_ETHERNET_DEVICE(0x1076),
  77        INTEL_E1000_ETHERNET_DEVICE(0x1077),
  78        INTEL_E1000_ETHERNET_DEVICE(0x1078),
  79        INTEL_E1000_ETHERNET_DEVICE(0x1079),
  80        INTEL_E1000_ETHERNET_DEVICE(0x107A),
  81        INTEL_E1000_ETHERNET_DEVICE(0x107B),
  82        INTEL_E1000_ETHERNET_DEVICE(0x107C),
  83        INTEL_E1000_ETHERNET_DEVICE(0x108A),
  84        INTEL_E1000_ETHERNET_DEVICE(0x1099),
  85        INTEL_E1000_ETHERNET_DEVICE(0x10B5),
  86        INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
  87        /* required last entry */
  88        {0,}
  89};
  90
  91MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
  92
  93int e1000_up(struct e1000_adapter *adapter);
  94void e1000_down(struct e1000_adapter *adapter);
  95void e1000_reinit_locked(struct e1000_adapter *adapter);
  96void e1000_reset(struct e1000_adapter *adapter);
  97int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
  98int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
  99void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
 100void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
 101static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
 102                                    struct e1000_tx_ring *txdr);
 103static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
 104                                    struct e1000_rx_ring *rxdr);
 105static void e1000_free_tx_resources(struct e1000_adapter *adapter,
 106                                    struct e1000_tx_ring *tx_ring);
 107static void e1000_free_rx_resources(struct e1000_adapter *adapter,
 108                                    struct e1000_rx_ring *rx_ring);
 109void e1000_update_stats(struct e1000_adapter *adapter);
 110
 111static int e1000_init_module(void);
 112static void e1000_exit_module(void);
 113static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
 114static void e1000_remove(struct pci_dev *pdev);
 115static int e1000_alloc_queues(struct e1000_adapter *adapter);
 116static int e1000_sw_init(struct e1000_adapter *adapter);
 117static int e1000_open(struct net_device *netdev);
 118static int e1000_close(struct net_device *netdev);
 119static void e1000_configure_tx(struct e1000_adapter *adapter);
 120static void e1000_configure_rx(struct e1000_adapter *adapter);
 121static void e1000_setup_rctl(struct e1000_adapter *adapter);
 122static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
 123static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
 124static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
 125                                struct e1000_tx_ring *tx_ring);
 126static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
 127                                struct e1000_rx_ring *rx_ring);
 128static void e1000_set_rx_mode(struct net_device *netdev);
 129static void e1000_update_phy_info_task(struct work_struct *work);
 130static void e1000_watchdog(struct work_struct *work);
 131static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
 132static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
 133                                    struct net_device *netdev);
 134static struct net_device_stats *e1000_get_stats(struct net_device *netdev);
 135static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
 136static int e1000_set_mac(struct net_device *netdev, void *p);
 137static irqreturn_t e1000_intr(int irq, void *data);
 138static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
 139                               struct e1000_tx_ring *tx_ring);
 140static int e1000_clean(struct napi_struct *napi, int budget);
 141static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
 142                               struct e1000_rx_ring *rx_ring,
 143                               int *work_done, int work_to_do);
 144static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
 145                                     struct e1000_rx_ring *rx_ring,
 146                                     int *work_done, int work_to_do);
 147static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
 148                                         struct e1000_rx_ring *rx_ring,
 149                                         int cleaned_count)
 150{
 151}
 152static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
 153                                   struct e1000_rx_ring *rx_ring,
 154                                   int cleaned_count);
 155static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
 156                                         struct e1000_rx_ring *rx_ring,
 157                                         int cleaned_count);
 158static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
 159static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
 160                           int cmd);
 161static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
 162static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
 163static void e1000_tx_timeout(struct net_device *dev);
 164static void e1000_reset_task(struct work_struct *work);
 165static void e1000_smartspeed(struct e1000_adapter *adapter);
 166static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
 167                                       struct sk_buff *skb);
 168
 169static bool e1000_vlan_used(struct e1000_adapter *adapter);
 170static void e1000_vlan_mode(struct net_device *netdev,
 171                            netdev_features_t features);
 172static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
 173                                     bool filter_on);
 174static int e1000_vlan_rx_add_vid(struct net_device *netdev,
 175                                 __be16 proto, u16 vid);
 176static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
 177                                  __be16 proto, u16 vid);
 178static void e1000_restore_vlan(struct e1000_adapter *adapter);
 179
 180#ifdef CONFIG_PM
 181static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
 182static int e1000_resume(struct pci_dev *pdev);
 183#endif
 184static void e1000_shutdown(struct pci_dev *pdev);
 185
 186#ifdef CONFIG_NET_POLL_CONTROLLER
 187/* for netdump / net console */
 188static void e1000_netpoll (struct net_device *netdev);
 189#endif
 190
 191#define COPYBREAK_DEFAULT 256
 192static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
 193module_param(copybreak, uint, 0644);
 194MODULE_PARM_DESC(copybreak,
 195        "Maximum size of packet that is copied to a new buffer on receive");
 196
 197static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
 198                                                pci_channel_state_t state);
 199static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
 200static void e1000_io_resume(struct pci_dev *pdev);
 201
 202static const struct pci_error_handlers e1000_err_handler = {
 203        .error_detected = e1000_io_error_detected,
 204        .slot_reset = e1000_io_slot_reset,
 205        .resume = e1000_io_resume,
 206};
 207
 208static struct pci_driver e1000_driver = {
 209        .name     = e1000_driver_name,
 210        .id_table = e1000_pci_tbl,
 211        .probe    = e1000_probe,
 212        .remove   = e1000_remove,
 213#ifdef CONFIG_PM
 214        /* Power Management Hooks */
 215        .suspend  = e1000_suspend,
 216        .resume   = e1000_resume,
 217#endif
 218        .shutdown = e1000_shutdown,
 219        .err_handler = &e1000_err_handler
 220};
 221
 222MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
 223MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
 224MODULE_LICENSE("GPL");
 225MODULE_VERSION(DRV_VERSION);
 226
 227#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
 228static int debug = -1;
 229module_param(debug, int, 0);
 230MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
 231
 232/**
 233 * e1000_get_hw_dev - return device
 234 * used by hardware layer to print debugging information
 235 *
 236 **/
 237struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
 238{
 239        struct e1000_adapter *adapter = hw->back;
 240        return adapter->netdev;
 241}
 242
 243/**
 244 * e1000_init_module - Driver Registration Routine
 245 *
 246 * e1000_init_module is the first routine called when the driver is
 247 * loaded. All it does is register with the PCI subsystem.
 248 **/
 249static int __init e1000_init_module(void)
 250{
 251        int ret;
 252        pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
 253
 254        pr_info("%s\n", e1000_copyright);
 255
 256        ret = pci_register_driver(&e1000_driver);
 257        if (copybreak != COPYBREAK_DEFAULT) {
 258                if (copybreak == 0)
 259                        pr_info("copybreak disabled\n");
 260                else
 261                        pr_info("copybreak enabled for "
 262                                   "packets <= %u bytes\n", copybreak);
 263        }
 264        return ret;
 265}
 266
 267module_init(e1000_init_module);
 268
 269/**
 270 * e1000_exit_module - Driver Exit Cleanup Routine
 271 *
 272 * e1000_exit_module is called just before the driver is removed
 273 * from memory.
 274 **/
 275static void __exit e1000_exit_module(void)
 276{
 277        pci_unregister_driver(&e1000_driver);
 278}
 279
 280module_exit(e1000_exit_module);
 281
 282static int e1000_request_irq(struct e1000_adapter *adapter)
 283{
 284        struct net_device *netdev = adapter->netdev;
 285        irq_handler_t handler = e1000_intr;
 286        int irq_flags = IRQF_SHARED;
 287        int err;
 288
 289        err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
 290                          netdev);
 291        if (err) {
 292                e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
 293        }
 294
 295        return err;
 296}
 297
 298static void e1000_free_irq(struct e1000_adapter *adapter)
 299{
 300        struct net_device *netdev = adapter->netdev;
 301
 302        free_irq(adapter->pdev->irq, netdev);
 303}
 304
 305/**
 306 * e1000_irq_disable - Mask off interrupt generation on the NIC
 307 * @adapter: board private structure
 308 **/
 309static void e1000_irq_disable(struct e1000_adapter *adapter)
 310{
 311        struct e1000_hw *hw = &adapter->hw;
 312
 313        ew32(IMC, ~0);
 314        E1000_WRITE_FLUSH();
 315        synchronize_irq(adapter->pdev->irq);
 316}
 317
 318/**
 319 * e1000_irq_enable - Enable default interrupt generation settings
 320 * @adapter: board private structure
 321 **/
 322static void e1000_irq_enable(struct e1000_adapter *adapter)
 323{
 324        struct e1000_hw *hw = &adapter->hw;
 325
 326        ew32(IMS, IMS_ENABLE_MASK);
 327        E1000_WRITE_FLUSH();
 328}
 329
 330static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
 331{
 332        struct e1000_hw *hw = &adapter->hw;
 333        struct net_device *netdev = adapter->netdev;
 334        u16 vid = hw->mng_cookie.vlan_id;
 335        u16 old_vid = adapter->mng_vlan_id;
 336
 337        if (!e1000_vlan_used(adapter))
 338                return;
 339
 340        if (!test_bit(vid, adapter->active_vlans)) {
 341                if (hw->mng_cookie.status &
 342                    E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
 343                        e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
 344                        adapter->mng_vlan_id = vid;
 345                } else {
 346                        adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
 347                }
 348                if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
 349                    (vid != old_vid) &&
 350                    !test_bit(old_vid, adapter->active_vlans))
 351                        e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
 352                                               old_vid);
 353        } else {
 354                adapter->mng_vlan_id = vid;
 355        }
 356}
 357
 358static void e1000_init_manageability(struct e1000_adapter *adapter)
 359{
 360        struct e1000_hw *hw = &adapter->hw;
 361
 362        if (adapter->en_mng_pt) {
 363                u32 manc = er32(MANC);
 364
 365                /* disable hardware interception of ARP */
 366                manc &= ~(E1000_MANC_ARP_EN);
 367
 368                ew32(MANC, manc);
 369        }
 370}
 371
 372static void e1000_release_manageability(struct e1000_adapter *adapter)
 373{
 374        struct e1000_hw *hw = &adapter->hw;
 375
 376        if (adapter->en_mng_pt) {
 377                u32 manc = er32(MANC);
 378
 379                /* re-enable hardware interception of ARP */
 380                manc |= E1000_MANC_ARP_EN;
 381
 382                ew32(MANC, manc);
 383        }
 384}
 385
 386/**
 387 * e1000_configure - configure the hardware for RX and TX
 388 * @adapter = private board structure
 389 **/
 390static void e1000_configure(struct e1000_adapter *adapter)
 391{
 392        struct net_device *netdev = adapter->netdev;
 393        int i;
 394
 395        e1000_set_rx_mode(netdev);
 396
 397        e1000_restore_vlan(adapter);
 398        e1000_init_manageability(adapter);
 399
 400        e1000_configure_tx(adapter);
 401        e1000_setup_rctl(adapter);
 402        e1000_configure_rx(adapter);
 403        /* call E1000_DESC_UNUSED which always leaves
 404         * at least 1 descriptor unused to make sure
 405         * next_to_use != next_to_clean
 406         */
 407        for (i = 0; i < adapter->num_rx_queues; i++) {
 408                struct e1000_rx_ring *ring = &adapter->rx_ring[i];
 409                adapter->alloc_rx_buf(adapter, ring,
 410                                      E1000_DESC_UNUSED(ring));
 411        }
 412}
 413
 414int e1000_up(struct e1000_adapter *adapter)
 415{
 416        struct e1000_hw *hw = &adapter->hw;
 417
 418        /* hardware has been reset, we need to reload some things */
 419        e1000_configure(adapter);
 420
 421        clear_bit(__E1000_DOWN, &adapter->flags);
 422
 423        napi_enable(&adapter->napi);
 424
 425        e1000_irq_enable(adapter);
 426
 427        netif_wake_queue(adapter->netdev);
 428
 429        /* fire a link change interrupt to start the watchdog */
 430        ew32(ICS, E1000_ICS_LSC);
 431        return 0;
 432}
 433
 434/**
 435 * e1000_power_up_phy - restore link in case the phy was powered down
 436 * @adapter: address of board private structure
 437 *
 438 * The phy may be powered down to save power and turn off link when the
 439 * driver is unloaded and wake on lan is not enabled (among others)
 440 * *** this routine MUST be followed by a call to e1000_reset ***
 441 **/
 442void e1000_power_up_phy(struct e1000_adapter *adapter)
 443{
 444        struct e1000_hw *hw = &adapter->hw;
 445        u16 mii_reg = 0;
 446
 447        /* Just clear the power down bit to wake the phy back up */
 448        if (hw->media_type == e1000_media_type_copper) {
 449                /* according to the manual, the phy will retain its
 450                 * settings across a power-down/up cycle
 451                 */
 452                e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
 453                mii_reg &= ~MII_CR_POWER_DOWN;
 454                e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
 455        }
 456}
 457
 458static void e1000_power_down_phy(struct e1000_adapter *adapter)
 459{
 460        struct e1000_hw *hw = &adapter->hw;
 461
 462        /* Power down the PHY so no link is implied when interface is down *
 463         * The PHY cannot be powered down if any of the following is true *
 464         * (a) WoL is enabled
 465         * (b) AMT is active
 466         * (c) SoL/IDER session is active
 467         */
 468        if (!adapter->wol && hw->mac_type >= e1000_82540 &&
 469           hw->media_type == e1000_media_type_copper) {
 470                u16 mii_reg = 0;
 471
 472                switch (hw->mac_type) {
 473                case e1000_82540:
 474                case e1000_82545:
 475                case e1000_82545_rev_3:
 476                case e1000_82546:
 477                case e1000_ce4100:
 478                case e1000_82546_rev_3:
 479                case e1000_82541:
 480                case e1000_82541_rev_2:
 481                case e1000_82547:
 482                case e1000_82547_rev_2:
 483                        if (er32(MANC) & E1000_MANC_SMBUS_EN)
 484                                goto out;
 485                        break;
 486                default:
 487                        goto out;
 488                }
 489                e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
 490                mii_reg |= MII_CR_POWER_DOWN;
 491                e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
 492                msleep(1);
 493        }
 494out:
 495        return;
 496}
 497
 498static void e1000_down_and_stop(struct e1000_adapter *adapter)
 499{
 500        set_bit(__E1000_DOWN, &adapter->flags);
 501
 502        cancel_delayed_work_sync(&adapter->watchdog_task);
 503
 504        /*
 505         * Since the watchdog task can reschedule other tasks, we should cancel
 506         * it first, otherwise we can run into the situation when a work is
 507         * still running after the adapter has been turned down.
 508         */
 509
 510        cancel_delayed_work_sync(&adapter->phy_info_task);
 511        cancel_delayed_work_sync(&adapter->fifo_stall_task);
 512
 513        /* Only kill reset task if adapter is not resetting */
 514        if (!test_bit(__E1000_RESETTING, &adapter->flags))
 515                cancel_work_sync(&adapter->reset_task);
 516}
 517
 518void e1000_down(struct e1000_adapter *adapter)
 519{
 520        struct e1000_hw *hw = &adapter->hw;
 521        struct net_device *netdev = adapter->netdev;
 522        u32 rctl, tctl;
 523
 524        netif_carrier_off(netdev);
 525
 526        /* disable receives in the hardware */
 527        rctl = er32(RCTL);
 528        ew32(RCTL, rctl & ~E1000_RCTL_EN);
 529        /* flush and sleep below */
 530
 531        netif_tx_disable(netdev);
 532
 533        /* disable transmits in the hardware */
 534        tctl = er32(TCTL);
 535        tctl &= ~E1000_TCTL_EN;
 536        ew32(TCTL, tctl);
 537        /* flush both disables and wait for them to finish */
 538        E1000_WRITE_FLUSH();
 539        msleep(10);
 540
 541        napi_disable(&adapter->napi);
 542
 543        e1000_irq_disable(adapter);
 544
 545        /* Setting DOWN must be after irq_disable to prevent
 546         * a screaming interrupt.  Setting DOWN also prevents
 547         * tasks from rescheduling.
 548         */
 549        e1000_down_and_stop(adapter);
 550
 551        adapter->link_speed = 0;
 552        adapter->link_duplex = 0;
 553
 554        e1000_reset(adapter);
 555        e1000_clean_all_tx_rings(adapter);
 556        e1000_clean_all_rx_rings(adapter);
 557}
 558
 559void e1000_reinit_locked(struct e1000_adapter *adapter)
 560{
 561        WARN_ON(in_interrupt());
 562        while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
 563                msleep(1);
 564        e1000_down(adapter);
 565        e1000_up(adapter);
 566        clear_bit(__E1000_RESETTING, &adapter->flags);
 567}
 568
 569void e1000_reset(struct e1000_adapter *adapter)
 570{
 571        struct e1000_hw *hw = &adapter->hw;
 572        u32 pba = 0, tx_space, min_tx_space, min_rx_space;
 573        bool legacy_pba_adjust = false;
 574        u16 hwm;
 575
 576        /* Repartition Pba for greater than 9k mtu
 577         * To take effect CTRL.RST is required.
 578         */
 579
 580        switch (hw->mac_type) {
 581        case e1000_82542_rev2_0:
 582        case e1000_82542_rev2_1:
 583        case e1000_82543:
 584        case e1000_82544:
 585        case e1000_82540:
 586        case e1000_82541:
 587        case e1000_82541_rev_2:
 588                legacy_pba_adjust = true;
 589                pba = E1000_PBA_48K;
 590                break;
 591        case e1000_82545:
 592        case e1000_82545_rev_3:
 593        case e1000_82546:
 594        case e1000_ce4100:
 595        case e1000_82546_rev_3:
 596                pba = E1000_PBA_48K;
 597                break;
 598        case e1000_82547:
 599        case e1000_82547_rev_2:
 600                legacy_pba_adjust = true;
 601                pba = E1000_PBA_30K;
 602                break;
 603        case e1000_undefined:
 604        case e1000_num_macs:
 605                break;
 606        }
 607
 608        if (legacy_pba_adjust) {
 609                if (hw->max_frame_size > E1000_RXBUFFER_8192)
 610                        pba -= 8; /* allocate more FIFO for Tx */
 611
 612                if (hw->mac_type == e1000_82547) {
 613                        adapter->tx_fifo_head = 0;
 614                        adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
 615                        adapter->tx_fifo_size =
 616                                (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
 617                        atomic_set(&adapter->tx_fifo_stall, 0);
 618                }
 619        } else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
 620                /* adjust PBA for jumbo frames */
 621                ew32(PBA, pba);
 622
 623                /* To maintain wire speed transmits, the Tx FIFO should be
 624                 * large enough to accommodate two full transmit packets,
 625                 * rounded up to the next 1KB and expressed in KB.  Likewise,
 626                 * the Rx FIFO should be large enough to accommodate at least
 627                 * one full receive packet and is similarly rounded up and
 628                 * expressed in KB.
 629                 */
 630                pba = er32(PBA);
 631                /* upper 16 bits has Tx packet buffer allocation size in KB */
 632                tx_space = pba >> 16;
 633                /* lower 16 bits has Rx packet buffer allocation size in KB */
 634                pba &= 0xffff;
 635                /* the Tx fifo also stores 16 bytes of information about the Tx
 636                 * but don't include ethernet FCS because hardware appends it
 637                 */
 638                min_tx_space = (hw->max_frame_size +
 639                                sizeof(struct e1000_tx_desc) -
 640                                ETH_FCS_LEN) * 2;
 641                min_tx_space = ALIGN(min_tx_space, 1024);
 642                min_tx_space >>= 10;
 643                /* software strips receive CRC, so leave room for it */
 644                min_rx_space = hw->max_frame_size;
 645                min_rx_space = ALIGN(min_rx_space, 1024);
 646                min_rx_space >>= 10;
 647
 648                /* If current Tx allocation is less than the min Tx FIFO size,
 649                 * and the min Tx FIFO size is less than the current Rx FIFO
 650                 * allocation, take space away from current Rx allocation
 651                 */
 652                if (tx_space < min_tx_space &&
 653                    ((min_tx_space - tx_space) < pba)) {
 654                        pba = pba - (min_tx_space - tx_space);
 655
 656                        /* PCI/PCIx hardware has PBA alignment constraints */
 657                        switch (hw->mac_type) {
 658                        case e1000_82545 ... e1000_82546_rev_3:
 659                                pba &= ~(E1000_PBA_8K - 1);
 660                                break;
 661                        default:
 662                                break;
 663                        }
 664
 665                        /* if short on Rx space, Rx wins and must trump Tx
 666                         * adjustment or use Early Receive if available
 667                         */
 668                        if (pba < min_rx_space)
 669                                pba = min_rx_space;
 670                }
 671        }
 672
 673        ew32(PBA, pba);
 674
 675        /* flow control settings:
 676         * The high water mark must be low enough to fit one full frame
 677         * (or the size used for early receive) above it in the Rx FIFO.
 678         * Set it to the lower of:
 679         * - 90% of the Rx FIFO size, and
 680         * - the full Rx FIFO size minus the early receive size (for parts
 681         *   with ERT support assuming ERT set to E1000_ERT_2048), or
 682         * - the full Rx FIFO size minus one full frame
 683         */
 684        hwm = min(((pba << 10) * 9 / 10),
 685                  ((pba << 10) - hw->max_frame_size));
 686
 687        hw->fc_high_water = hwm & 0xFFF8;       /* 8-byte granularity */
 688        hw->fc_low_water = hw->fc_high_water - 8;
 689        hw->fc_pause_time = E1000_FC_PAUSE_TIME;
 690        hw->fc_send_xon = 1;
 691        hw->fc = hw->original_fc;
 692
 693        /* Allow time for pending master requests to run */
 694        e1000_reset_hw(hw);
 695        if (hw->mac_type >= e1000_82544)
 696                ew32(WUC, 0);
 697
 698        if (e1000_init_hw(hw))
 699                e_dev_err("Hardware Error\n");
 700        e1000_update_mng_vlan(adapter);
 701
 702        /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
 703        if (hw->mac_type >= e1000_82544 &&
 704            hw->autoneg == 1 &&
 705            hw->autoneg_advertised == ADVERTISE_1000_FULL) {
 706                u32 ctrl = er32(CTRL);
 707                /* clear phy power management bit if we are in gig only mode,
 708                 * which if enabled will attempt negotiation to 100Mb, which
 709                 * can cause a loss of link at power off or driver unload
 710                 */
 711                ctrl &= ~E1000_CTRL_SWDPIN3;
 712                ew32(CTRL, ctrl);
 713        }
 714
 715        /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
 716        ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
 717
 718        e1000_reset_adaptive(hw);
 719        e1000_phy_get_info(hw, &adapter->phy_info);
 720
 721        e1000_release_manageability(adapter);
 722}
 723
 724/* Dump the eeprom for users having checksum issues */
 725static void e1000_dump_eeprom(struct e1000_adapter *adapter)
 726{
 727        struct net_device *netdev = adapter->netdev;
 728        struct ethtool_eeprom eeprom;
 729        const struct ethtool_ops *ops = netdev->ethtool_ops;
 730        u8 *data;
 731        int i;
 732        u16 csum_old, csum_new = 0;
 733
 734        eeprom.len = ops->get_eeprom_len(netdev);
 735        eeprom.offset = 0;
 736
 737        data = kmalloc(eeprom.len, GFP_KERNEL);
 738        if (!data)
 739                return;
 740
 741        ops->get_eeprom(netdev, &eeprom, data);
 742
 743        csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
 744                   (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
 745        for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
 746                csum_new += data[i] + (data[i + 1] << 8);
 747        csum_new = EEPROM_SUM - csum_new;
 748
 749        pr_err("/*********************/\n");
 750        pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
 751        pr_err("Calculated              : 0x%04x\n", csum_new);
 752
 753        pr_err("Offset    Values\n");
 754        pr_err("========  ======\n");
 755        print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
 756
 757        pr_err("Include this output when contacting your support provider.\n");
 758        pr_err("This is not a software error! Something bad happened to\n");
 759        pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
 760        pr_err("result in further problems, possibly loss of data,\n");
 761        pr_err("corruption or system hangs!\n");
 762        pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
 763        pr_err("which is invalid and requires you to set the proper MAC\n");
 764        pr_err("address manually before continuing to enable this network\n");
 765        pr_err("device. Please inspect the EEPROM dump and report the\n");
 766        pr_err("issue to your hardware vendor or Intel Customer Support.\n");
 767        pr_err("/*********************/\n");
 768
 769        kfree(data);
 770}
 771
 772/**
 773 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
 774 * @pdev: PCI device information struct
 775 *
 776 * Return true if an adapter needs ioport resources
 777 **/
 778static int e1000_is_need_ioport(struct pci_dev *pdev)
 779{
 780        switch (pdev->device) {
 781        case E1000_DEV_ID_82540EM:
 782        case E1000_DEV_ID_82540EM_LOM:
 783        case E1000_DEV_ID_82540EP:
 784        case E1000_DEV_ID_82540EP_LOM:
 785        case E1000_DEV_ID_82540EP_LP:
 786        case E1000_DEV_ID_82541EI:
 787        case E1000_DEV_ID_82541EI_MOBILE:
 788        case E1000_DEV_ID_82541ER:
 789        case E1000_DEV_ID_82541ER_LOM:
 790        case E1000_DEV_ID_82541GI:
 791        case E1000_DEV_ID_82541GI_LF:
 792        case E1000_DEV_ID_82541GI_MOBILE:
 793        case E1000_DEV_ID_82544EI_COPPER:
 794        case E1000_DEV_ID_82544EI_FIBER:
 795        case E1000_DEV_ID_82544GC_COPPER:
 796        case E1000_DEV_ID_82544GC_LOM:
 797        case E1000_DEV_ID_82545EM_COPPER:
 798        case E1000_DEV_ID_82545EM_FIBER:
 799        case E1000_DEV_ID_82546EB_COPPER:
 800        case E1000_DEV_ID_82546EB_FIBER:
 801        case E1000_DEV_ID_82546EB_QUAD_COPPER:
 802                return true;
 803        default:
 804                return false;
 805        }
 806}
 807
 808static netdev_features_t e1000_fix_features(struct net_device *netdev,
 809        netdev_features_t features)
 810{
 811        /* Since there is no support for separate Rx/Tx vlan accel
 812         * enable/disable make sure Tx flag is always in same state as Rx.
 813         */
 814        if (features & NETIF_F_HW_VLAN_CTAG_RX)
 815                features |= NETIF_F_HW_VLAN_CTAG_TX;
 816        else
 817                features &= ~NETIF_F_HW_VLAN_CTAG_TX;
 818
 819        return features;
 820}
 821
 822static int e1000_set_features(struct net_device *netdev,
 823        netdev_features_t features)
 824{
 825        struct e1000_adapter *adapter = netdev_priv(netdev);
 826        netdev_features_t changed = features ^ netdev->features;
 827
 828        if (changed & NETIF_F_HW_VLAN_CTAG_RX)
 829                e1000_vlan_mode(netdev, features);
 830
 831        if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
 832                return 0;
 833
 834        netdev->features = features;
 835        adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
 836
 837        if (netif_running(netdev))
 838                e1000_reinit_locked(adapter);
 839        else
 840                e1000_reset(adapter);
 841
 842        return 0;
 843}
 844
 845static const struct net_device_ops e1000_netdev_ops = {
 846        .ndo_open               = e1000_open,
 847        .ndo_stop               = e1000_close,
 848        .ndo_start_xmit         = e1000_xmit_frame,
 849        .ndo_get_stats          = e1000_get_stats,
 850        .ndo_set_rx_mode        = e1000_set_rx_mode,
 851        .ndo_set_mac_address    = e1000_set_mac,
 852        .ndo_tx_timeout         = e1000_tx_timeout,
 853        .ndo_change_mtu         = e1000_change_mtu,
 854        .ndo_do_ioctl           = e1000_ioctl,
 855        .ndo_validate_addr      = eth_validate_addr,
 856        .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
 857        .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
 858#ifdef CONFIG_NET_POLL_CONTROLLER
 859        .ndo_poll_controller    = e1000_netpoll,
 860#endif
 861        .ndo_fix_features       = e1000_fix_features,
 862        .ndo_set_features       = e1000_set_features,
 863};
 864
 865/**
 866 * e1000_init_hw_struct - initialize members of hw struct
 867 * @adapter: board private struct
 868 * @hw: structure used by e1000_hw.c
 869 *
 870 * Factors out initialization of the e1000_hw struct to its own function
 871 * that can be called very early at init (just after struct allocation).
 872 * Fields are initialized based on PCI device information and
 873 * OS network device settings (MTU size).
 874 * Returns negative error codes if MAC type setup fails.
 875 */
 876static int e1000_init_hw_struct(struct e1000_adapter *adapter,
 877                                struct e1000_hw *hw)
 878{
 879        struct pci_dev *pdev = adapter->pdev;
 880
 881        /* PCI config space info */
 882        hw->vendor_id = pdev->vendor;
 883        hw->device_id = pdev->device;
 884        hw->subsystem_vendor_id = pdev->subsystem_vendor;
 885        hw->subsystem_id = pdev->subsystem_device;
 886        hw->revision_id = pdev->revision;
 887
 888        pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
 889
 890        hw->max_frame_size = adapter->netdev->mtu +
 891                             ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
 892        hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
 893
 894        /* identify the MAC */
 895        if (e1000_set_mac_type(hw)) {
 896                e_err(probe, "Unknown MAC Type\n");
 897                return -EIO;
 898        }
 899
 900        switch (hw->mac_type) {
 901        default:
 902                break;
 903        case e1000_82541:
 904        case e1000_82547:
 905        case e1000_82541_rev_2:
 906        case e1000_82547_rev_2:
 907                hw->phy_init_script = 1;
 908                break;
 909        }
 910
 911        e1000_set_media_type(hw);
 912        e1000_get_bus_info(hw);
 913
 914        hw->wait_autoneg_complete = false;
 915        hw->tbi_compatibility_en = true;
 916        hw->adaptive_ifs = true;
 917
 918        /* Copper options */
 919
 920        if (hw->media_type == e1000_media_type_copper) {
 921                hw->mdix = AUTO_ALL_MODES;
 922                hw->disable_polarity_correction = false;
 923                hw->master_slave = E1000_MASTER_SLAVE;
 924        }
 925
 926        return 0;
 927}
 928
 929/**
 930 * e1000_probe - Device Initialization Routine
 931 * @pdev: PCI device information struct
 932 * @ent: entry in e1000_pci_tbl
 933 *
 934 * Returns 0 on success, negative on failure
 935 *
 936 * e1000_probe initializes an adapter identified by a pci_dev structure.
 937 * The OS initialization, configuring of the adapter private structure,
 938 * and a hardware reset occur.
 939 **/
 940static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
 941{
 942        struct net_device *netdev;
 943        struct e1000_adapter *adapter;
 944        struct e1000_hw *hw;
 945
 946        static int cards_found;
 947        static int global_quad_port_a; /* global ksp3 port a indication */
 948        int i, err, pci_using_dac;
 949        u16 eeprom_data = 0;
 950        u16 tmp = 0;
 951        u16 eeprom_apme_mask = E1000_EEPROM_APME;
 952        int bars, need_ioport;
 953
 954        /* do not allocate ioport bars when not needed */
 955        need_ioport = e1000_is_need_ioport(pdev);
 956        if (need_ioport) {
 957                bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
 958                err = pci_enable_device(pdev);
 959        } else {
 960                bars = pci_select_bars(pdev, IORESOURCE_MEM);
 961                err = pci_enable_device_mem(pdev);
 962        }
 963        if (err)
 964                return err;
 965
 966        err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
 967        if (err)
 968                goto err_pci_reg;
 969
 970        pci_set_master(pdev);
 971        err = pci_save_state(pdev);
 972        if (err)
 973                goto err_alloc_etherdev;
 974
 975        err = -ENOMEM;
 976        netdev = alloc_etherdev(sizeof(struct e1000_adapter));
 977        if (!netdev)
 978                goto err_alloc_etherdev;
 979
 980        SET_NETDEV_DEV(netdev, &pdev->dev);
 981
 982        pci_set_drvdata(pdev, netdev);
 983        adapter = netdev_priv(netdev);
 984        adapter->netdev = netdev;
 985        adapter->pdev = pdev;
 986        adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
 987        adapter->bars = bars;
 988        adapter->need_ioport = need_ioport;
 989
 990        hw = &adapter->hw;
 991        hw->back = adapter;
 992
 993        err = -EIO;
 994        hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
 995        if (!hw->hw_addr)
 996                goto err_ioremap;
 997
 998        if (adapter->need_ioport) {
 999                for (i = BAR_1; i <= BAR_5; i++) {
1000                        if (pci_resource_len(pdev, i) == 0)
1001                                continue;
1002                        if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1003                                hw->io_base = pci_resource_start(pdev, i);
1004                                break;
1005                        }
1006                }
1007        }
1008
1009        /* make ready for any if (hw->...) below */
1010        err = e1000_init_hw_struct(adapter, hw);
1011        if (err)
1012                goto err_sw_init;
1013
1014        /* there is a workaround being applied below that limits
1015         * 64-bit DMA addresses to 64-bit hardware.  There are some
1016         * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1017         */
1018        pci_using_dac = 0;
1019        if ((hw->bus_type == e1000_bus_type_pcix) &&
1020            !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1021                pci_using_dac = 1;
1022        } else {
1023                err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1024                if (err) {
1025                        pr_err("No usable DMA config, aborting\n");
1026                        goto err_dma;
1027                }
1028        }
1029
1030        netdev->netdev_ops = &e1000_netdev_ops;
1031        e1000_set_ethtool_ops(netdev);
1032        netdev->watchdog_timeo = 5 * HZ;
1033        netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1034
1035        strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1036
1037        adapter->bd_number = cards_found;
1038
1039        /* setup the private structure */
1040
1041        err = e1000_sw_init(adapter);
1042        if (err)
1043                goto err_sw_init;
1044
1045        err = -EIO;
1046        if (hw->mac_type == e1000_ce4100) {
1047                hw->ce4100_gbe_mdio_base_virt =
1048                                        ioremap(pci_resource_start(pdev, BAR_1),
1049                                                pci_resource_len(pdev, BAR_1));
1050
1051                if (!hw->ce4100_gbe_mdio_base_virt)
1052                        goto err_mdio_ioremap;
1053        }
1054
1055        if (hw->mac_type >= e1000_82543) {
1056                netdev->hw_features = NETIF_F_SG |
1057                                   NETIF_F_HW_CSUM |
1058                                   NETIF_F_HW_VLAN_CTAG_RX;
1059                netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1060                                   NETIF_F_HW_VLAN_CTAG_FILTER;
1061        }
1062
1063        if ((hw->mac_type >= e1000_82544) &&
1064           (hw->mac_type != e1000_82547))
1065                netdev->hw_features |= NETIF_F_TSO;
1066
1067        netdev->priv_flags |= IFF_SUPP_NOFCS;
1068
1069        netdev->features |= netdev->hw_features;
1070        netdev->hw_features |= (NETIF_F_RXCSUM |
1071                                NETIF_F_RXALL |
1072                                NETIF_F_RXFCS);
1073
1074        if (pci_using_dac) {
1075                netdev->features |= NETIF_F_HIGHDMA;
1076                netdev->vlan_features |= NETIF_F_HIGHDMA;
1077        }
1078
1079        netdev->vlan_features |= (NETIF_F_TSO |
1080                                  NETIF_F_HW_CSUM |
1081                                  NETIF_F_SG);
1082
1083        /* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1084        if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1085            hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1086                netdev->priv_flags |= IFF_UNICAST_FLT;
1087
1088        adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1089
1090        /* initialize eeprom parameters */
1091        if (e1000_init_eeprom_params(hw)) {
1092                e_err(probe, "EEPROM initialization failed\n");
1093                goto err_eeprom;
1094        }
1095
1096        /* before reading the EEPROM, reset the controller to
1097         * put the device in a known good starting state
1098         */
1099
1100        e1000_reset_hw(hw);
1101
1102        /* make sure the EEPROM is good */
1103        if (e1000_validate_eeprom_checksum(hw) < 0) {
1104                e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1105                e1000_dump_eeprom(adapter);
1106                /* set MAC address to all zeroes to invalidate and temporary
1107                 * disable this device for the user. This blocks regular
1108                 * traffic while still permitting ethtool ioctls from reaching
1109                 * the hardware as well as allowing the user to run the
1110                 * interface after manually setting a hw addr using
1111                 * `ip set address`
1112                 */
1113                memset(hw->mac_addr, 0, netdev->addr_len);
1114        } else {
1115                /* copy the MAC address out of the EEPROM */
1116                if (e1000_read_mac_addr(hw))
1117                        e_err(probe, "EEPROM Read Error\n");
1118        }
1119        /* don't block initialization here due to bad MAC address */
1120        memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1121
1122        if (!is_valid_ether_addr(netdev->dev_addr))
1123                e_err(probe, "Invalid MAC Address\n");
1124
1125
1126        INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1127        INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1128                          e1000_82547_tx_fifo_stall_task);
1129        INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1130        INIT_WORK(&adapter->reset_task, e1000_reset_task);
1131
1132        e1000_check_options(adapter);
1133
1134        /* Initial Wake on LAN setting
1135         * If APM wake is enabled in the EEPROM,
1136         * enable the ACPI Magic Packet filter
1137         */
1138
1139        switch (hw->mac_type) {
1140        case e1000_82542_rev2_0:
1141        case e1000_82542_rev2_1:
1142        case e1000_82543:
1143                break;
1144        case e1000_82544:
1145                e1000_read_eeprom(hw,
1146                        EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1147                eeprom_apme_mask = E1000_EEPROM_82544_APM;
1148                break;
1149        case e1000_82546:
1150        case e1000_82546_rev_3:
1151                if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1152                        e1000_read_eeprom(hw,
1153                                EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1154                        break;
1155                }
1156                /* Fall Through */
1157        default:
1158                e1000_read_eeprom(hw,
1159                        EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1160                break;
1161        }
1162        if (eeprom_data & eeprom_apme_mask)
1163                adapter->eeprom_wol |= E1000_WUFC_MAG;
1164
1165        /* now that we have the eeprom settings, apply the special cases
1166         * where the eeprom may be wrong or the board simply won't support
1167         * wake on lan on a particular port
1168         */
1169        switch (pdev->device) {
1170        case E1000_DEV_ID_82546GB_PCIE:
1171                adapter->eeprom_wol = 0;
1172                break;
1173        case E1000_DEV_ID_82546EB_FIBER:
1174        case E1000_DEV_ID_82546GB_FIBER:
1175                /* Wake events only supported on port A for dual fiber
1176                 * regardless of eeprom setting
1177                 */
1178                if (er32(STATUS) & E1000_STATUS_FUNC_1)
1179                        adapter->eeprom_wol = 0;
1180                break;
1181        case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1182                /* if quad port adapter, disable WoL on all but port A */
1183                if (global_quad_port_a != 0)
1184                        adapter->eeprom_wol = 0;
1185                else
1186                        adapter->quad_port_a = true;
1187                /* Reset for multiple quad port adapters */
1188                if (++global_quad_port_a == 4)
1189                        global_quad_port_a = 0;
1190                break;
1191        }
1192
1193        /* initialize the wol settings based on the eeprom settings */
1194        adapter->wol = adapter->eeprom_wol;
1195        device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1196
1197        /* Auto detect PHY address */
1198        if (hw->mac_type == e1000_ce4100) {
1199                for (i = 0; i < 32; i++) {
1200                        hw->phy_addr = i;
1201                        e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1202
1203                        if (tmp != 0 && tmp != 0xFF)
1204                                break;
1205                }
1206
1207                if (i >= 32)
1208                        goto err_eeprom;
1209        }
1210
1211        /* reset the hardware with the new settings */
1212        e1000_reset(adapter);
1213
1214        strcpy(netdev->name, "eth%d");
1215        err = register_netdev(netdev);
1216        if (err)
1217                goto err_register;
1218
1219        e1000_vlan_filter_on_off(adapter, false);
1220
1221        /* print bus type/speed/width info */
1222        e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1223               ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1224               ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1225                (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1226                (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1227                (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1228               ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1229               netdev->dev_addr);
1230
1231        /* carrier off reporting is important to ethtool even BEFORE open */
1232        netif_carrier_off(netdev);
1233
1234        e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1235
1236        cards_found++;
1237        return 0;
1238
1239err_register:
1240err_eeprom:
1241        e1000_phy_hw_reset(hw);
1242
1243        if (hw->flash_address)
1244                iounmap(hw->flash_address);
1245        kfree(adapter->tx_ring);
1246        kfree(adapter->rx_ring);
1247err_dma:
1248err_sw_init:
1249err_mdio_ioremap:
1250        iounmap(hw->ce4100_gbe_mdio_base_virt);
1251        iounmap(hw->hw_addr);
1252err_ioremap:
1253        free_netdev(netdev);
1254err_alloc_etherdev:
1255        pci_release_selected_regions(pdev, bars);
1256err_pci_reg:
1257        pci_disable_device(pdev);
1258        return err;
1259}
1260
1261/**
1262 * e1000_remove - Device Removal Routine
1263 * @pdev: PCI device information struct
1264 *
1265 * e1000_remove is called by the PCI subsystem to alert the driver
1266 * that it should release a PCI device. That could be caused by a
1267 * Hot-Plug event, or because the driver is going to be removed from
1268 * memory.
1269 **/
1270static void e1000_remove(struct pci_dev *pdev)
1271{
1272        struct net_device *netdev = pci_get_drvdata(pdev);
1273        struct e1000_adapter *adapter = netdev_priv(netdev);
1274        struct e1000_hw *hw = &adapter->hw;
1275
1276        e1000_down_and_stop(adapter);
1277        e1000_release_manageability(adapter);
1278
1279        unregister_netdev(netdev);
1280
1281        e1000_phy_hw_reset(hw);
1282
1283        kfree(adapter->tx_ring);
1284        kfree(adapter->rx_ring);
1285
1286        if (hw->mac_type == e1000_ce4100)
1287                iounmap(hw->ce4100_gbe_mdio_base_virt);
1288        iounmap(hw->hw_addr);
1289        if (hw->flash_address)
1290                iounmap(hw->flash_address);
1291        pci_release_selected_regions(pdev, adapter->bars);
1292
1293        free_netdev(netdev);
1294
1295        pci_disable_device(pdev);
1296}
1297
1298/**
1299 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1300 * @adapter: board private structure to initialize
1301 *
1302 * e1000_sw_init initializes the Adapter private data structure.
1303 * e1000_init_hw_struct MUST be called before this function
1304 **/
1305static int e1000_sw_init(struct e1000_adapter *adapter)
1306{
1307        adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1308
1309        adapter->num_tx_queues = 1;
1310        adapter->num_rx_queues = 1;
1311
1312        if (e1000_alloc_queues(adapter)) {
1313                e_err(probe, "Unable to allocate memory for queues\n");
1314                return -ENOMEM;
1315        }
1316
1317        /* Explicitly disable IRQ since the NIC can be in any state. */
1318        e1000_irq_disable(adapter);
1319
1320        spin_lock_init(&adapter->stats_lock);
1321
1322        set_bit(__E1000_DOWN, &adapter->flags);
1323
1324        return 0;
1325}
1326
1327/**
1328 * e1000_alloc_queues - Allocate memory for all rings
1329 * @adapter: board private structure to initialize
1330 *
1331 * We allocate one ring per queue at run-time since we don't know the
1332 * number of queues at compile-time.
1333 **/
1334static int e1000_alloc_queues(struct e1000_adapter *adapter)
1335{
1336        adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1337                                   sizeof(struct e1000_tx_ring), GFP_KERNEL);
1338        if (!adapter->tx_ring)
1339                return -ENOMEM;
1340
1341        adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1342                                   sizeof(struct e1000_rx_ring), GFP_KERNEL);
1343        if (!adapter->rx_ring) {
1344                kfree(adapter->tx_ring);
1345                return -ENOMEM;
1346        }
1347
1348        return E1000_SUCCESS;
1349}
1350
1351/**
1352 * e1000_open - Called when a network interface is made active
1353 * @netdev: network interface device structure
1354 *
1355 * Returns 0 on success, negative value on failure
1356 *
1357 * The open entry point is called when a network interface is made
1358 * active by the system (IFF_UP).  At this point all resources needed
1359 * for transmit and receive operations are allocated, the interrupt
1360 * handler is registered with the OS, the watchdog task is started,
1361 * and the stack is notified that the interface is ready.
1362 **/
1363static int e1000_open(struct net_device *netdev)
1364{
1365        struct e1000_adapter *adapter = netdev_priv(netdev);
1366        struct e1000_hw *hw = &adapter->hw;
1367        int err;
1368
1369        /* disallow open during test */
1370        if (test_bit(__E1000_TESTING, &adapter->flags))
1371                return -EBUSY;
1372
1373        netif_carrier_off(netdev);
1374
1375        /* allocate transmit descriptors */
1376        err = e1000_setup_all_tx_resources(adapter);
1377        if (err)
1378                goto err_setup_tx;
1379
1380        /* allocate receive descriptors */
1381        err = e1000_setup_all_rx_resources(adapter);
1382        if (err)
1383                goto err_setup_rx;
1384
1385        e1000_power_up_phy(adapter);
1386
1387        adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1388        if ((hw->mng_cookie.status &
1389                          E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1390                e1000_update_mng_vlan(adapter);
1391        }
1392
1393        /* before we allocate an interrupt, we must be ready to handle it.
1394         * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1395         * as soon as we call pci_request_irq, so we have to setup our
1396         * clean_rx handler before we do so.
1397         */
1398        e1000_configure(adapter);
1399
1400        err = e1000_request_irq(adapter);
1401        if (err)
1402                goto err_req_irq;
1403
1404        /* From here on the code is the same as e1000_up() */
1405        clear_bit(__E1000_DOWN, &adapter->flags);
1406
1407        napi_enable(&adapter->napi);
1408
1409        e1000_irq_enable(adapter);
1410
1411        netif_start_queue(netdev);
1412
1413        /* fire a link status change interrupt to start the watchdog */
1414        ew32(ICS, E1000_ICS_LSC);
1415
1416        return E1000_SUCCESS;
1417
1418err_req_irq:
1419        e1000_power_down_phy(adapter);
1420        e1000_free_all_rx_resources(adapter);
1421err_setup_rx:
1422        e1000_free_all_tx_resources(adapter);
1423err_setup_tx:
1424        e1000_reset(adapter);
1425
1426        return err;
1427}
1428
1429/**
1430 * e1000_close - Disables a network interface
1431 * @netdev: network interface device structure
1432 *
1433 * Returns 0, this is not allowed to fail
1434 *
1435 * The close entry point is called when an interface is de-activated
1436 * by the OS.  The hardware is still under the drivers control, but
1437 * needs to be disabled.  A global MAC reset is issued to stop the
1438 * hardware, and all transmit and receive resources are freed.
1439 **/
1440static int e1000_close(struct net_device *netdev)
1441{
1442        struct e1000_adapter *adapter = netdev_priv(netdev);
1443        struct e1000_hw *hw = &adapter->hw;
1444        int count = E1000_CHECK_RESET_COUNT;
1445
1446        while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
1447                usleep_range(10000, 20000);
1448
1449        WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1450        e1000_down(adapter);
1451        e1000_power_down_phy(adapter);
1452        e1000_free_irq(adapter);
1453
1454        e1000_free_all_tx_resources(adapter);
1455        e1000_free_all_rx_resources(adapter);
1456
1457        /* kill manageability vlan ID if supported, but not if a vlan with
1458         * the same ID is registered on the host OS (let 8021q kill it)
1459         */
1460        if ((hw->mng_cookie.status &
1461             E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1462            !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1463                e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1464                                       adapter->mng_vlan_id);
1465        }
1466
1467        return 0;
1468}
1469
1470/**
1471 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1472 * @adapter: address of board private structure
1473 * @start: address of beginning of memory
1474 * @len: length of memory
1475 **/
1476static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1477                                  unsigned long len)
1478{
1479        struct e1000_hw *hw = &adapter->hw;
1480        unsigned long begin = (unsigned long)start;
1481        unsigned long end = begin + len;
1482
1483        /* First rev 82545 and 82546 need to not allow any memory
1484         * write location to cross 64k boundary due to errata 23
1485         */
1486        if (hw->mac_type == e1000_82545 ||
1487            hw->mac_type == e1000_ce4100 ||
1488            hw->mac_type == e1000_82546) {
1489                return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1490        }
1491
1492        return true;
1493}
1494
1495/**
1496 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1497 * @adapter: board private structure
1498 * @txdr:    tx descriptor ring (for a specific queue) to setup
1499 *
1500 * Return 0 on success, negative on failure
1501 **/
1502static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1503                                    struct e1000_tx_ring *txdr)
1504{
1505        struct pci_dev *pdev = adapter->pdev;
1506        int size;
1507
1508        size = sizeof(struct e1000_tx_buffer) * txdr->count;
1509        txdr->buffer_info = vzalloc(size);
1510        if (!txdr->buffer_info)
1511                return -ENOMEM;
1512
1513        /* round up to nearest 4K */
1514
1515        txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1516        txdr->size = ALIGN(txdr->size, 4096);
1517
1518        txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1519                                        GFP_KERNEL);
1520        if (!txdr->desc) {
1521setup_tx_desc_die:
1522                vfree(txdr->buffer_info);
1523                return -ENOMEM;
1524        }
1525
1526        /* Fix for errata 23, can't cross 64kB boundary */
1527        if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1528                void *olddesc = txdr->desc;
1529                dma_addr_t olddma = txdr->dma;
1530                e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1531                      txdr->size, txdr->desc);
1532                /* Try again, without freeing the previous */
1533                txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1534                                                &txdr->dma, GFP_KERNEL);
1535                /* Failed allocation, critical failure */
1536                if (!txdr->desc) {
1537                        dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1538                                          olddma);
1539                        goto setup_tx_desc_die;
1540                }
1541
1542                if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1543                        /* give up */
1544                        dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1545                                          txdr->dma);
1546                        dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1547                                          olddma);
1548                        e_err(probe, "Unable to allocate aligned memory "
1549                              "for the transmit descriptor ring\n");
1550                        vfree(txdr->buffer_info);
1551                        return -ENOMEM;
1552                } else {
1553                        /* Free old allocation, new allocation was successful */
1554                        dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1555                                          olddma);
1556                }
1557        }
1558        memset(txdr->desc, 0, txdr->size);
1559
1560        txdr->next_to_use = 0;
1561        txdr->next_to_clean = 0;
1562
1563        return 0;
1564}
1565
1566/**
1567 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1568 *                                (Descriptors) for all queues
1569 * @adapter: board private structure
1570 *
1571 * Return 0 on success, negative on failure
1572 **/
1573int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1574{
1575        int i, err = 0;
1576
1577        for (i = 0; i < adapter->num_tx_queues; i++) {
1578                err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1579                if (err) {
1580                        e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1581                        for (i-- ; i >= 0; i--)
1582                                e1000_free_tx_resources(adapter,
1583                                                        &adapter->tx_ring[i]);
1584                        break;
1585                }
1586        }
1587
1588        return err;
1589}
1590
1591/**
1592 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1593 * @adapter: board private structure
1594 *
1595 * Configure the Tx unit of the MAC after a reset.
1596 **/
1597static void e1000_configure_tx(struct e1000_adapter *adapter)
1598{
1599        u64 tdba;
1600        struct e1000_hw *hw = &adapter->hw;
1601        u32 tdlen, tctl, tipg;
1602        u32 ipgr1, ipgr2;
1603
1604        /* Setup the HW Tx Head and Tail descriptor pointers */
1605
1606        switch (adapter->num_tx_queues) {
1607        case 1:
1608        default:
1609                tdba = adapter->tx_ring[0].dma;
1610                tdlen = adapter->tx_ring[0].count *
1611                        sizeof(struct e1000_tx_desc);
1612                ew32(TDLEN, tdlen);
1613                ew32(TDBAH, (tdba >> 32));
1614                ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1615                ew32(TDT, 0);
1616                ew32(TDH, 0);
1617                adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1618                                           E1000_TDH : E1000_82542_TDH);
1619                adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1620                                           E1000_TDT : E1000_82542_TDT);
1621                break;
1622        }
1623
1624        /* Set the default values for the Tx Inter Packet Gap timer */
1625        if ((hw->media_type == e1000_media_type_fiber ||
1626             hw->media_type == e1000_media_type_internal_serdes))
1627                tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1628        else
1629                tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1630
1631        switch (hw->mac_type) {
1632        case e1000_82542_rev2_0:
1633        case e1000_82542_rev2_1:
1634                tipg = DEFAULT_82542_TIPG_IPGT;
1635                ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1636                ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1637                break;
1638        default:
1639                ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1640                ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1641                break;
1642        }
1643        tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1644        tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1645        ew32(TIPG, tipg);
1646
1647        /* Set the Tx Interrupt Delay register */
1648
1649        ew32(TIDV, adapter->tx_int_delay);
1650        if (hw->mac_type >= e1000_82540)
1651                ew32(TADV, adapter->tx_abs_int_delay);
1652
1653        /* Program the Transmit Control Register */
1654
1655        tctl = er32(TCTL);
1656        tctl &= ~E1000_TCTL_CT;
1657        tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1658                (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1659
1660        e1000_config_collision_dist(hw);
1661
1662        /* Setup Transmit Descriptor Settings for eop descriptor */
1663        adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1664
1665        /* only set IDE if we are delaying interrupts using the timers */
1666        if (adapter->tx_int_delay)
1667                adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1668
1669        if (hw->mac_type < e1000_82543)
1670                adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1671        else
1672                adapter->txd_cmd |= E1000_TXD_CMD_RS;
1673
1674        /* Cache if we're 82544 running in PCI-X because we'll
1675         * need this to apply a workaround later in the send path.
1676         */
1677        if (hw->mac_type == e1000_82544 &&
1678            hw->bus_type == e1000_bus_type_pcix)
1679                adapter->pcix_82544 = true;
1680
1681        ew32(TCTL, tctl);
1682
1683}
1684
1685/**
1686 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1687 * @adapter: board private structure
1688 * @rxdr:    rx descriptor ring (for a specific queue) to setup
1689 *
1690 * Returns 0 on success, negative on failure
1691 **/
1692static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1693                                    struct e1000_rx_ring *rxdr)
1694{
1695        struct pci_dev *pdev = adapter->pdev;
1696        int size, desc_len;
1697
1698        size = sizeof(struct e1000_rx_buffer) * rxdr->count;
1699        rxdr->buffer_info = vzalloc(size);
1700        if (!rxdr->buffer_info)
1701                return -ENOMEM;
1702
1703        desc_len = sizeof(struct e1000_rx_desc);
1704
1705        /* Round up to nearest 4K */
1706
1707        rxdr->size = rxdr->count * desc_len;
1708        rxdr->size = ALIGN(rxdr->size, 4096);
1709
1710        rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1711                                        GFP_KERNEL);
1712        if (!rxdr->desc) {
1713setup_rx_desc_die:
1714                vfree(rxdr->buffer_info);
1715                return -ENOMEM;
1716        }
1717
1718        /* Fix for errata 23, can't cross 64kB boundary */
1719        if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1720                void *olddesc = rxdr->desc;
1721                dma_addr_t olddma = rxdr->dma;
1722                e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1723                      rxdr->size, rxdr->desc);
1724                /* Try again, without freeing the previous */
1725                rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1726                                                &rxdr->dma, GFP_KERNEL);
1727                /* Failed allocation, critical failure */
1728                if (!rxdr->desc) {
1729                        dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1730                                          olddma);
1731                        goto setup_rx_desc_die;
1732                }
1733
1734                if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1735                        /* give up */
1736                        dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1737                                          rxdr->dma);
1738                        dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1739                                          olddma);
1740                        e_err(probe, "Unable to allocate aligned memory for "
1741                              "the Rx descriptor ring\n");
1742                        goto setup_rx_desc_die;
1743                } else {
1744                        /* Free old allocation, new allocation was successful */
1745                        dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1746                                          olddma);
1747                }
1748        }
1749        memset(rxdr->desc, 0, rxdr->size);
1750
1751        rxdr->next_to_clean = 0;
1752        rxdr->next_to_use = 0;
1753        rxdr->rx_skb_top = NULL;
1754
1755        return 0;
1756}
1757
1758/**
1759 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1760 *                                (Descriptors) for all queues
1761 * @adapter: board private structure
1762 *
1763 * Return 0 on success, negative on failure
1764 **/
1765int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1766{
1767        int i, err = 0;
1768
1769        for (i = 0; i < adapter->num_rx_queues; i++) {
1770                err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1771                if (err) {
1772                        e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1773                        for (i-- ; i >= 0; i--)
1774                                e1000_free_rx_resources(adapter,
1775                                                        &adapter->rx_ring[i]);
1776                        break;
1777                }
1778        }
1779
1780        return err;
1781}
1782
1783/**
1784 * e1000_setup_rctl - configure the receive control registers
1785 * @adapter: Board private structure
1786 **/
1787static void e1000_setup_rctl(struct e1000_adapter *adapter)
1788{
1789        struct e1000_hw *hw = &adapter->hw;
1790        u32 rctl;
1791
1792        rctl = er32(RCTL);
1793
1794        rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1795
1796        rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1797                E1000_RCTL_RDMTS_HALF |
1798                (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1799
1800        if (hw->tbi_compatibility_on == 1)
1801                rctl |= E1000_RCTL_SBP;
1802        else
1803                rctl &= ~E1000_RCTL_SBP;
1804
1805        if (adapter->netdev->mtu <= ETH_DATA_LEN)
1806                rctl &= ~E1000_RCTL_LPE;
1807        else
1808                rctl |= E1000_RCTL_LPE;
1809
1810        /* Setup buffer sizes */
1811        rctl &= ~E1000_RCTL_SZ_4096;
1812        rctl |= E1000_RCTL_BSEX;
1813        switch (adapter->rx_buffer_len) {
1814        case E1000_RXBUFFER_2048:
1815        default:
1816                rctl |= E1000_RCTL_SZ_2048;
1817                rctl &= ~E1000_RCTL_BSEX;
1818                break;
1819        case E1000_RXBUFFER_4096:
1820                rctl |= E1000_RCTL_SZ_4096;
1821                break;
1822        case E1000_RXBUFFER_8192:
1823                rctl |= E1000_RCTL_SZ_8192;
1824                break;
1825        case E1000_RXBUFFER_16384:
1826                rctl |= E1000_RCTL_SZ_16384;
1827                break;
1828        }
1829
1830        /* This is useful for sniffing bad packets. */
1831        if (adapter->netdev->features & NETIF_F_RXALL) {
1832                /* UPE and MPE will be handled by normal PROMISC logic
1833                 * in e1000e_set_rx_mode
1834                 */
1835                rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1836                         E1000_RCTL_BAM | /* RX All Bcast Pkts */
1837                         E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1838
1839                rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1840                          E1000_RCTL_DPF | /* Allow filtered pause */
1841                          E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1842                /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1843                 * and that breaks VLANs.
1844                 */
1845        }
1846
1847        ew32(RCTL, rctl);
1848}
1849
1850/**
1851 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1852 * @adapter: board private structure
1853 *
1854 * Configure the Rx unit of the MAC after a reset.
1855 **/
1856static void e1000_configure_rx(struct e1000_adapter *adapter)
1857{
1858        u64 rdba;
1859        struct e1000_hw *hw = &adapter->hw;
1860        u32 rdlen, rctl, rxcsum;
1861
1862        if (adapter->netdev->mtu > ETH_DATA_LEN) {
1863                rdlen = adapter->rx_ring[0].count *
1864                        sizeof(struct e1000_rx_desc);
1865                adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1866                adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1867        } else {
1868                rdlen = adapter->rx_ring[0].count *
1869                        sizeof(struct e1000_rx_desc);
1870                adapter->clean_rx = e1000_clean_rx_irq;
1871                adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1872        }
1873
1874        /* disable receives while setting up the descriptors */
1875        rctl = er32(RCTL);
1876        ew32(RCTL, rctl & ~E1000_RCTL_EN);
1877
1878        /* set the Receive Delay Timer Register */
1879        ew32(RDTR, adapter->rx_int_delay);
1880
1881        if (hw->mac_type >= e1000_82540) {
1882                ew32(RADV, adapter->rx_abs_int_delay);
1883                if (adapter->itr_setting != 0)
1884                        ew32(ITR, 1000000000 / (adapter->itr * 256));
1885        }
1886
1887        /* Setup the HW Rx Head and Tail Descriptor Pointers and
1888         * the Base and Length of the Rx Descriptor Ring
1889         */
1890        switch (adapter->num_rx_queues) {
1891        case 1:
1892        default:
1893                rdba = adapter->rx_ring[0].dma;
1894                ew32(RDLEN, rdlen);
1895                ew32(RDBAH, (rdba >> 32));
1896                ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1897                ew32(RDT, 0);
1898                ew32(RDH, 0);
1899                adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1900                                           E1000_RDH : E1000_82542_RDH);
1901                adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1902                                           E1000_RDT : E1000_82542_RDT);
1903                break;
1904        }
1905
1906        /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1907        if (hw->mac_type >= e1000_82543) {
1908                rxcsum = er32(RXCSUM);
1909                if (adapter->rx_csum)
1910                        rxcsum |= E1000_RXCSUM_TUOFL;
1911                else
1912                        /* don't need to clear IPPCSE as it defaults to 0 */
1913                        rxcsum &= ~E1000_RXCSUM_TUOFL;
1914                ew32(RXCSUM, rxcsum);
1915        }
1916
1917        /* Enable Receives */
1918        ew32(RCTL, rctl | E1000_RCTL_EN);
1919}
1920
1921/**
1922 * e1000_free_tx_resources - Free Tx Resources per Queue
1923 * @adapter: board private structure
1924 * @tx_ring: Tx descriptor ring for a specific queue
1925 *
1926 * Free all transmit software resources
1927 **/
1928static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1929                                    struct e1000_tx_ring *tx_ring)
1930{
1931        struct pci_dev *pdev = adapter->pdev;
1932
1933        e1000_clean_tx_ring(adapter, tx_ring);
1934
1935        vfree(tx_ring->buffer_info);
1936        tx_ring->buffer_info = NULL;
1937
1938        dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1939                          tx_ring->dma);
1940
1941        tx_ring->desc = NULL;
1942}
1943
1944/**
1945 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1946 * @adapter: board private structure
1947 *
1948 * Free all transmit software resources
1949 **/
1950void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1951{
1952        int i;
1953
1954        for (i = 0; i < adapter->num_tx_queues; i++)
1955                e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1956}
1957
1958static void
1959e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1960                                 struct e1000_tx_buffer *buffer_info)
1961{
1962        if (buffer_info->dma) {
1963                if (buffer_info->mapped_as_page)
1964                        dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1965                                       buffer_info->length, DMA_TO_DEVICE);
1966                else
1967                        dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1968                                         buffer_info->length,
1969                                         DMA_TO_DEVICE);
1970                buffer_info->dma = 0;
1971        }
1972        if (buffer_info->skb) {
1973                dev_kfree_skb_any(buffer_info->skb);
1974                buffer_info->skb = NULL;
1975        }
1976        buffer_info->time_stamp = 0;
1977        /* buffer_info must be completely set up in the transmit path */
1978}
1979
1980/**
1981 * e1000_clean_tx_ring - Free Tx Buffers
1982 * @adapter: board private structure
1983 * @tx_ring: ring to be cleaned
1984 **/
1985static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1986                                struct e1000_tx_ring *tx_ring)
1987{
1988        struct e1000_hw *hw = &adapter->hw;
1989        struct e1000_tx_buffer *buffer_info;
1990        unsigned long size;
1991        unsigned int i;
1992
1993        /* Free all the Tx ring sk_buffs */
1994
1995        for (i = 0; i < tx_ring->count; i++) {
1996                buffer_info = &tx_ring->buffer_info[i];
1997                e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1998        }
1999
2000        netdev_reset_queue(adapter->netdev);
2001        size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
2002        memset(tx_ring->buffer_info, 0, size);
2003
2004        /* Zero out the descriptor ring */
2005
2006        memset(tx_ring->desc, 0, tx_ring->size);
2007
2008        tx_ring->next_to_use = 0;
2009        tx_ring->next_to_clean = 0;
2010        tx_ring->last_tx_tso = false;
2011
2012        writel(0, hw->hw_addr + tx_ring->tdh);
2013        writel(0, hw->hw_addr + tx_ring->tdt);
2014}
2015
2016/**
2017 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2018 * @adapter: board private structure
2019 **/
2020static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2021{
2022        int i;
2023
2024        for (i = 0; i < adapter->num_tx_queues; i++)
2025                e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2026}
2027
2028/**
2029 * e1000_free_rx_resources - Free Rx Resources
2030 * @adapter: board private structure
2031 * @rx_ring: ring to clean the resources from
2032 *
2033 * Free all receive software resources
2034 **/
2035static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2036                                    struct e1000_rx_ring *rx_ring)
2037{
2038        struct pci_dev *pdev = adapter->pdev;
2039
2040        e1000_clean_rx_ring(adapter, rx_ring);
2041
2042        vfree(rx_ring->buffer_info);
2043        rx_ring->buffer_info = NULL;
2044
2045        dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2046                          rx_ring->dma);
2047
2048        rx_ring->desc = NULL;
2049}
2050
2051/**
2052 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2053 * @adapter: board private structure
2054 *
2055 * Free all receive software resources
2056 **/
2057void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2058{
2059        int i;
2060
2061        for (i = 0; i < adapter->num_rx_queues; i++)
2062                e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2063}
2064
2065#define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2066static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2067{
2068        return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2069                SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2070}
2071
2072static void *e1000_alloc_frag(const struct e1000_adapter *a)
2073{
2074        unsigned int len = e1000_frag_len(a);
2075        u8 *data = netdev_alloc_frag(len);
2076
2077        if (likely(data))
2078                data += E1000_HEADROOM;
2079        return data;
2080}
2081
2082/**
2083 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2084 * @adapter: board private structure
2085 * @rx_ring: ring to free buffers from
2086 **/
2087static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2088                                struct e1000_rx_ring *rx_ring)
2089{
2090        struct e1000_hw *hw = &adapter->hw;
2091        struct e1000_rx_buffer *buffer_info;
2092        struct pci_dev *pdev = adapter->pdev;
2093        unsigned long size;
2094        unsigned int i;
2095
2096        /* Free all the Rx netfrags */
2097        for (i = 0; i < rx_ring->count; i++) {
2098                buffer_info = &rx_ring->buffer_info[i];
2099                if (adapter->clean_rx == e1000_clean_rx_irq) {
2100                        if (buffer_info->dma)
2101                                dma_unmap_single(&pdev->dev, buffer_info->dma,
2102                                                 adapter->rx_buffer_len,
2103                                                 DMA_FROM_DEVICE);
2104                        if (buffer_info->rxbuf.data) {
2105                                skb_free_frag(buffer_info->rxbuf.data);
2106                                buffer_info->rxbuf.data = NULL;
2107                        }
2108                } else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2109                        if (buffer_info->dma)
2110                                dma_unmap_page(&pdev->dev, buffer_info->dma,
2111                                               adapter->rx_buffer_len,
2112                                               DMA_FROM_DEVICE);
2113                        if (buffer_info->rxbuf.page) {
2114                                put_page(buffer_info->rxbuf.page);
2115                                buffer_info->rxbuf.page = NULL;
2116                        }
2117                }
2118
2119                buffer_info->dma = 0;
2120        }
2121
2122        /* there also may be some cached data from a chained receive */
2123        napi_free_frags(&adapter->napi);
2124        rx_ring->rx_skb_top = NULL;
2125
2126        size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
2127        memset(rx_ring->buffer_info, 0, size);
2128
2129        /* Zero out the descriptor ring */
2130        memset(rx_ring->desc, 0, rx_ring->size);
2131
2132        rx_ring->next_to_clean = 0;
2133        rx_ring->next_to_use = 0;
2134
2135        writel(0, hw->hw_addr + rx_ring->rdh);
2136        writel(0, hw->hw_addr + rx_ring->rdt);
2137}
2138
2139/**
2140 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2141 * @adapter: board private structure
2142 **/
2143static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2144{
2145        int i;
2146
2147        for (i = 0; i < adapter->num_rx_queues; i++)
2148                e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2149}
2150
2151/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2152 * and memory write and invalidate disabled for certain operations
2153 */
2154static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2155{
2156        struct e1000_hw *hw = &adapter->hw;
2157        struct net_device *netdev = adapter->netdev;
2158        u32 rctl;
2159
2160        e1000_pci_clear_mwi(hw);
2161
2162        rctl = er32(RCTL);
2163        rctl |= E1000_RCTL_RST;
2164        ew32(RCTL, rctl);
2165        E1000_WRITE_FLUSH();
2166        mdelay(5);
2167
2168        if (netif_running(netdev))
2169                e1000_clean_all_rx_rings(adapter);
2170}
2171
2172static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2173{
2174        struct e1000_hw *hw = &adapter->hw;
2175        struct net_device *netdev = adapter->netdev;
2176        u32 rctl;
2177
2178        rctl = er32(RCTL);
2179        rctl &= ~E1000_RCTL_RST;
2180        ew32(RCTL, rctl);
2181        E1000_WRITE_FLUSH();
2182        mdelay(5);
2183
2184        if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2185                e1000_pci_set_mwi(hw);
2186
2187        if (netif_running(netdev)) {
2188                /* No need to loop, because 82542 supports only 1 queue */
2189                struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2190                e1000_configure_rx(adapter);
2191                adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2192        }
2193}
2194
2195/**
2196 * e1000_set_mac - Change the Ethernet Address of the NIC
2197 * @netdev: network interface device structure
2198 * @p: pointer to an address structure
2199 *
2200 * Returns 0 on success, negative on failure
2201 **/
2202static int e1000_set_mac(struct net_device *netdev, void *p)
2203{
2204        struct e1000_adapter *adapter = netdev_priv(netdev);
2205        struct e1000_hw *hw = &adapter->hw;
2206        struct sockaddr *addr = p;
2207
2208        if (!is_valid_ether_addr(addr->sa_data))
2209                return -EADDRNOTAVAIL;
2210
2211        /* 82542 2.0 needs to be in reset to write receive address registers */
2212
2213        if (hw->mac_type == e1000_82542_rev2_0)
2214                e1000_enter_82542_rst(adapter);
2215
2216        memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2217        memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2218
2219        e1000_rar_set(hw, hw->mac_addr, 0);
2220
2221        if (hw->mac_type == e1000_82542_rev2_0)
2222                e1000_leave_82542_rst(adapter);
2223
2224        return 0;
2225}
2226
2227/**
2228 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2229 * @netdev: network interface device structure
2230 *
2231 * The set_rx_mode entry point is called whenever the unicast or multicast
2232 * address lists or the network interface flags are updated. This routine is
2233 * responsible for configuring the hardware for proper unicast, multicast,
2234 * promiscuous mode, and all-multi behavior.
2235 **/
2236static void e1000_set_rx_mode(struct net_device *netdev)
2237{
2238        struct e1000_adapter *adapter = netdev_priv(netdev);
2239        struct e1000_hw *hw = &adapter->hw;
2240        struct netdev_hw_addr *ha;
2241        bool use_uc = false;
2242        u32 rctl;
2243        u32 hash_value;
2244        int i, rar_entries = E1000_RAR_ENTRIES;
2245        int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2246        u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2247
2248        if (!mcarray)
2249                return;
2250
2251        /* Check for Promiscuous and All Multicast modes */
2252
2253        rctl = er32(RCTL);
2254
2255        if (netdev->flags & IFF_PROMISC) {
2256                rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2257                rctl &= ~E1000_RCTL_VFE;
2258        } else {
2259                if (netdev->flags & IFF_ALLMULTI)
2260                        rctl |= E1000_RCTL_MPE;
2261                else
2262                        rctl &= ~E1000_RCTL_MPE;
2263                /* Enable VLAN filter if there is a VLAN */
2264                if (e1000_vlan_used(adapter))
2265                        rctl |= E1000_RCTL_VFE;
2266        }
2267
2268        if (netdev_uc_count(netdev) > rar_entries - 1) {
2269                rctl |= E1000_RCTL_UPE;
2270        } else if (!(netdev->flags & IFF_PROMISC)) {
2271                rctl &= ~E1000_RCTL_UPE;
2272                use_uc = true;
2273        }
2274
2275        ew32(RCTL, rctl);
2276
2277        /* 82542 2.0 needs to be in reset to write receive address registers */
2278
2279        if (hw->mac_type == e1000_82542_rev2_0)
2280                e1000_enter_82542_rst(adapter);
2281
2282        /* load the first 14 addresses into the exact filters 1-14. Unicast
2283         * addresses take precedence to avoid disabling unicast filtering
2284         * when possible.
2285         *
2286         * RAR 0 is used for the station MAC address
2287         * if there are not 14 addresses, go ahead and clear the filters
2288         */
2289        i = 1;
2290        if (use_uc)
2291                netdev_for_each_uc_addr(ha, netdev) {
2292                        if (i == rar_entries)
2293                                break;
2294                        e1000_rar_set(hw, ha->addr, i++);
2295                }
2296
2297        netdev_for_each_mc_addr(ha, netdev) {
2298                if (i == rar_entries) {
2299                        /* load any remaining addresses into the hash table */
2300                        u32 hash_reg, hash_bit, mta;
2301                        hash_value = e1000_hash_mc_addr(hw, ha->addr);
2302                        hash_reg = (hash_value >> 5) & 0x7F;
2303                        hash_bit = hash_value & 0x1F;
2304                        mta = (1 << hash_bit);
2305                        mcarray[hash_reg] |= mta;
2306                } else {
2307                        e1000_rar_set(hw, ha->addr, i++);
2308                }
2309        }
2310
2311        for (; i < rar_entries; i++) {
2312                E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2313                E1000_WRITE_FLUSH();
2314                E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2315                E1000_WRITE_FLUSH();
2316        }
2317
2318        /* write the hash table completely, write from bottom to avoid
2319         * both stupid write combining chipsets, and flushing each write
2320         */
2321        for (i = mta_reg_count - 1; i >= 0 ; i--) {
2322                /* If we are on an 82544 has an errata where writing odd
2323                 * offsets overwrites the previous even offset, but writing
2324                 * backwards over the range solves the issue by always
2325                 * writing the odd offset first
2326                 */
2327                E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2328        }
2329        E1000_WRITE_FLUSH();
2330
2331        if (hw->mac_type == e1000_82542_rev2_0)
2332                e1000_leave_82542_rst(adapter);
2333
2334        kfree(mcarray);
2335}
2336
2337/**
2338 * e1000_update_phy_info_task - get phy info
2339 * @work: work struct contained inside adapter struct
2340 *
2341 * Need to wait a few seconds after link up to get diagnostic information from
2342 * the phy
2343 */
2344static void e1000_update_phy_info_task(struct work_struct *work)
2345{
2346        struct e1000_adapter *adapter = container_of(work,
2347                                                     struct e1000_adapter,
2348                                                     phy_info_task.work);
2349
2350        e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2351}
2352
2353/**
2354 * e1000_82547_tx_fifo_stall_task - task to complete work
2355 * @work: work struct contained inside adapter struct
2356 **/
2357static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2358{
2359        struct e1000_adapter *adapter = container_of(work,
2360                                                     struct e1000_adapter,
2361                                                     fifo_stall_task.work);
2362        struct e1000_hw *hw = &adapter->hw;
2363        struct net_device *netdev = adapter->netdev;
2364        u32 tctl;
2365
2366        if (atomic_read(&adapter->tx_fifo_stall)) {
2367                if ((er32(TDT) == er32(TDH)) &&
2368                   (er32(TDFT) == er32(TDFH)) &&
2369                   (er32(TDFTS) == er32(TDFHS))) {
2370                        tctl = er32(TCTL);
2371                        ew32(TCTL, tctl & ~E1000_TCTL_EN);
2372                        ew32(TDFT, adapter->tx_head_addr);
2373                        ew32(TDFH, adapter->tx_head_addr);
2374                        ew32(TDFTS, adapter->tx_head_addr);
2375                        ew32(TDFHS, adapter->tx_head_addr);
2376                        ew32(TCTL, tctl);
2377                        E1000_WRITE_FLUSH();
2378
2379                        adapter->tx_fifo_head = 0;
2380                        atomic_set(&adapter->tx_fifo_stall, 0);
2381                        netif_wake_queue(netdev);
2382                } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2383                        schedule_delayed_work(&adapter->fifo_stall_task, 1);
2384                }
2385        }
2386}
2387
2388bool e1000_has_link(struct e1000_adapter *adapter)
2389{
2390        struct e1000_hw *hw = &adapter->hw;
2391        bool link_active = false;
2392
2393        /* get_link_status is set on LSC (link status) interrupt or rx
2394         * sequence error interrupt (except on intel ce4100).
2395         * get_link_status will stay false until the
2396         * e1000_check_for_link establishes link for copper adapters
2397         * ONLY
2398         */
2399        switch (hw->media_type) {
2400        case e1000_media_type_copper:
2401                if (hw->mac_type == e1000_ce4100)
2402                        hw->get_link_status = 1;
2403                if (hw->get_link_status) {
2404                        e1000_check_for_link(hw);
2405                        link_active = !hw->get_link_status;
2406                } else {
2407                        link_active = true;
2408                }
2409                break;
2410        case e1000_media_type_fiber:
2411                e1000_check_for_link(hw);
2412                link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2413                break;
2414        case e1000_media_type_internal_serdes:
2415                e1000_check_for_link(hw);
2416                link_active = hw->serdes_has_link;
2417                break;
2418        default:
2419                break;
2420        }
2421
2422        return link_active;
2423}
2424
2425/**
2426 * e1000_watchdog - work function
2427 * @work: work struct contained inside adapter struct
2428 **/
2429static void e1000_watchdog(struct work_struct *work)
2430{
2431        struct e1000_adapter *adapter = container_of(work,
2432                                                     struct e1000_adapter,
2433                                                     watchdog_task.work);
2434        struct e1000_hw *hw = &adapter->hw;
2435        struct net_device *netdev = adapter->netdev;
2436        struct e1000_tx_ring *txdr = adapter->tx_ring;
2437        u32 link, tctl;
2438
2439        link = e1000_has_link(adapter);
2440        if ((netif_carrier_ok(netdev)) && link)
2441                goto link_up;
2442
2443        if (link) {
2444                if (!netif_carrier_ok(netdev)) {
2445                        u32 ctrl;
2446                        bool txb2b = true;
2447                        /* update snapshot of PHY registers on LSC */
2448                        e1000_get_speed_and_duplex(hw,
2449                                                   &adapter->link_speed,
2450                                                   &adapter->link_duplex);
2451
2452                        ctrl = er32(CTRL);
2453                        pr_info("%s NIC Link is Up %d Mbps %s, "
2454                                "Flow Control: %s\n",
2455                                netdev->name,
2456                                adapter->link_speed,
2457                                adapter->link_duplex == FULL_DUPLEX ?
2458                                "Full Duplex" : "Half Duplex",
2459                                ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2460                                E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2461                                E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2462                                E1000_CTRL_TFCE) ? "TX" : "None")));
2463
2464                        /* adjust timeout factor according to speed/duplex */
2465                        adapter->tx_timeout_factor = 1;
2466                        switch (adapter->link_speed) {
2467                        case SPEED_10:
2468                                txb2b = false;
2469                                adapter->tx_timeout_factor = 16;
2470                                break;
2471                        case SPEED_100:
2472                                txb2b = false;
2473                                /* maybe add some timeout factor ? */
2474                                break;
2475                        }
2476
2477                        /* enable transmits in the hardware */
2478                        tctl = er32(TCTL);
2479                        tctl |= E1000_TCTL_EN;
2480                        ew32(TCTL, tctl);
2481
2482                        netif_carrier_on(netdev);
2483                        if (!test_bit(__E1000_DOWN, &adapter->flags))
2484                                schedule_delayed_work(&adapter->phy_info_task,
2485                                                      2 * HZ);
2486                        adapter->smartspeed = 0;
2487                }
2488        } else {
2489                if (netif_carrier_ok(netdev)) {
2490                        adapter->link_speed = 0;
2491                        adapter->link_duplex = 0;
2492                        pr_info("%s NIC Link is Down\n",
2493                                netdev->name);
2494                        netif_carrier_off(netdev);
2495
2496                        if (!test_bit(__E1000_DOWN, &adapter->flags))
2497                                schedule_delayed_work(&adapter->phy_info_task,
2498                                                      2 * HZ);
2499                }
2500
2501                e1000_smartspeed(adapter);
2502        }
2503
2504link_up:
2505        e1000_update_stats(adapter);
2506
2507        hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2508        adapter->tpt_old = adapter->stats.tpt;
2509        hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2510        adapter->colc_old = adapter->stats.colc;
2511
2512        adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2513        adapter->gorcl_old = adapter->stats.gorcl;
2514        adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2515        adapter->gotcl_old = adapter->stats.gotcl;
2516
2517        e1000_update_adaptive(hw);
2518
2519        if (!netif_carrier_ok(netdev)) {
2520                if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2521                        /* We've lost link, so the controller stops DMA,
2522                         * but we've got queued Tx work that's never going
2523                         * to get done, so reset controller to flush Tx.
2524                         * (Do the reset outside of interrupt context).
2525                         */
2526                        adapter->tx_timeout_count++;
2527                        schedule_work(&adapter->reset_task);
2528                        /* exit immediately since reset is imminent */
2529                        return;
2530                }
2531        }
2532
2533        /* Simple mode for Interrupt Throttle Rate (ITR) */
2534        if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2535                /* Symmetric Tx/Rx gets a reduced ITR=2000;
2536                 * Total asymmetrical Tx or Rx gets ITR=8000;
2537                 * everyone else is between 2000-8000.
2538                 */
2539                u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2540                u32 dif = (adapter->gotcl > adapter->gorcl ?
2541                            adapter->gotcl - adapter->gorcl :
2542                            adapter->gorcl - adapter->gotcl) / 10000;
2543                u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2544
2545                ew32(ITR, 1000000000 / (itr * 256));
2546        }
2547
2548        /* Cause software interrupt to ensure rx ring is cleaned */
2549        ew32(ICS, E1000_ICS_RXDMT0);
2550
2551        /* Force detection of hung controller every watchdog period */
2552        adapter->detect_tx_hung = true;
2553
2554        /* Reschedule the task */
2555        if (!test_bit(__E1000_DOWN, &adapter->flags))
2556                schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2557}
2558
2559enum latency_range {
2560        lowest_latency = 0,
2561        low_latency = 1,
2562        bulk_latency = 2,
2563        latency_invalid = 255
2564};
2565
2566/**
2567 * e1000_update_itr - update the dynamic ITR value based on statistics
2568 * @adapter: pointer to adapter
2569 * @itr_setting: current adapter->itr
2570 * @packets: the number of packets during this measurement interval
2571 * @bytes: the number of bytes during this measurement interval
2572 *
2573 *      Stores a new ITR value based on packets and byte
2574 *      counts during the last interrupt.  The advantage of per interrupt
2575 *      computation is faster updates and more accurate ITR for the current
2576 *      traffic pattern.  Constants in this function were computed
2577 *      based on theoretical maximum wire speed and thresholds were set based
2578 *      on testing data as well as attempting to minimize response time
2579 *      while increasing bulk throughput.
2580 *      this functionality is controlled by the InterruptThrottleRate module
2581 *      parameter (see e1000_param.c)
2582 **/
2583static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2584                                     u16 itr_setting, int packets, int bytes)
2585{
2586        unsigned int retval = itr_setting;
2587        struct e1000_hw *hw = &adapter->hw;
2588
2589        if (unlikely(hw->mac_type < e1000_82540))
2590                goto update_itr_done;
2591
2592        if (packets == 0)
2593                goto update_itr_done;
2594
2595        switch (itr_setting) {
2596        case lowest_latency:
2597                /* jumbo frames get bulk treatment*/
2598                if (bytes/packets > 8000)
2599                        retval = bulk_latency;
2600                else if ((packets < 5) && (bytes > 512))
2601                        retval = low_latency;
2602                break;
2603        case low_latency:  /* 50 usec aka 20000 ints/s */
2604                if (bytes > 10000) {
2605                        /* jumbo frames need bulk latency setting */
2606                        if (bytes/packets > 8000)
2607                                retval = bulk_latency;
2608                        else if ((packets < 10) || ((bytes/packets) > 1200))
2609                                retval = bulk_latency;
2610                        else if ((packets > 35))
2611                                retval = lowest_latency;
2612                } else if (bytes/packets > 2000)
2613                        retval = bulk_latency;
2614                else if (packets <= 2 && bytes < 512)
2615                        retval = lowest_latency;
2616                break;
2617        case bulk_latency: /* 250 usec aka 4000 ints/s */
2618                if (bytes > 25000) {
2619                        if (packets > 35)
2620                                retval = low_latency;
2621                } else if (bytes < 6000) {
2622                        retval = low_latency;
2623                }
2624                break;
2625        }
2626
2627update_itr_done:
2628        return retval;
2629}
2630
2631static void e1000_set_itr(struct e1000_adapter *adapter)
2632{
2633        struct e1000_hw *hw = &adapter->hw;
2634        u16 current_itr;
2635        u32 new_itr = adapter->itr;
2636
2637        if (unlikely(hw->mac_type < e1000_82540))
2638                return;
2639
2640        /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2641        if (unlikely(adapter->link_speed != SPEED_1000)) {
2642                current_itr = 0;
2643                new_itr = 4000;
2644                goto set_itr_now;
2645        }
2646
2647        adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2648                                           adapter->total_tx_packets,
2649                                           adapter->total_tx_bytes);
2650        /* conservative mode (itr 3) eliminates the lowest_latency setting */
2651        if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2652                adapter->tx_itr = low_latency;
2653
2654        adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2655                                           adapter->total_rx_packets,
2656                                           adapter->total_rx_bytes);
2657        /* conservative mode (itr 3) eliminates the lowest_latency setting */
2658        if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2659                adapter->rx_itr = low_latency;
2660
2661        current_itr = max(adapter->rx_itr, adapter->tx_itr);
2662
2663        switch (current_itr) {
2664        /* counts and packets in update_itr are dependent on these numbers */
2665        case lowest_latency:
2666                new_itr = 70000;
2667                break;
2668        case low_latency:
2669                new_itr = 20000; /* aka hwitr = ~200 */
2670                break;
2671        case bulk_latency:
2672                new_itr = 4000;
2673                break;
2674        default:
2675                break;
2676        }
2677
2678set_itr_now:
2679        if (new_itr != adapter->itr) {
2680                /* this attempts to bias the interrupt rate towards Bulk
2681                 * by adding intermediate steps when interrupt rate is
2682                 * increasing
2683                 */
2684                new_itr = new_itr > adapter->itr ?
2685                          min(adapter->itr + (new_itr >> 2), new_itr) :
2686                          new_itr;
2687                adapter->itr = new_itr;
2688                ew32(ITR, 1000000000 / (new_itr * 256));
2689        }
2690}
2691
2692#define E1000_TX_FLAGS_CSUM             0x00000001
2693#define E1000_TX_FLAGS_VLAN             0x00000002
2694#define E1000_TX_FLAGS_TSO              0x00000004
2695#define E1000_TX_FLAGS_IPV4             0x00000008
2696#define E1000_TX_FLAGS_NO_FCS           0x00000010
2697#define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2698#define E1000_TX_FLAGS_VLAN_SHIFT       16
2699
2700static int e1000_tso(struct e1000_adapter *adapter,
2701                     struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2702                     __be16 protocol)
2703{
2704        struct e1000_context_desc *context_desc;
2705        struct e1000_tx_buffer *buffer_info;
2706        unsigned int i;
2707        u32 cmd_length = 0;
2708        u16 ipcse = 0, tucse, mss;
2709        u8 ipcss, ipcso, tucss, tucso, hdr_len;
2710
2711        if (skb_is_gso(skb)) {
2712                int err;
2713
2714                err = skb_cow_head(skb, 0);
2715                if (err < 0)
2716                        return err;
2717
2718                hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2719                mss = skb_shinfo(skb)->gso_size;
2720                if (protocol == htons(ETH_P_IP)) {
2721                        struct iphdr *iph = ip_hdr(skb);
2722                        iph->tot_len = 0;
2723                        iph->check = 0;
2724                        tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2725                                                                 iph->daddr, 0,
2726                                                                 IPPROTO_TCP,
2727                                                                 0);
2728                        cmd_length = E1000_TXD_CMD_IP;
2729                        ipcse = skb_transport_offset(skb) - 1;
2730                } else if (skb_is_gso_v6(skb)) {
2731                        ipv6_hdr(skb)->payload_len = 0;
2732                        tcp_hdr(skb)->check =
2733                                ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2734                                                 &ipv6_hdr(skb)->daddr,
2735                                                 0, IPPROTO_TCP, 0);
2736                        ipcse = 0;
2737                }
2738                ipcss = skb_network_offset(skb);
2739                ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2740                tucss = skb_transport_offset(skb);
2741                tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2742                tucse = 0;
2743
2744                cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2745                               E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2746
2747                i = tx_ring->next_to_use;
2748                context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2749                buffer_info = &tx_ring->buffer_info[i];
2750
2751                context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2752                context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2753                context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2754                context_desc->upper_setup.tcp_fields.tucss = tucss;
2755                context_desc->upper_setup.tcp_fields.tucso = tucso;
2756                context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2757                context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2758                context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2759                context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2760
2761                buffer_info->time_stamp = jiffies;
2762                buffer_info->next_to_watch = i;
2763
2764                if (++i == tx_ring->count)
2765                        i = 0;
2766
2767                tx_ring->next_to_use = i;
2768
2769                return true;
2770        }
2771        return false;
2772}
2773
2774static bool e1000_tx_csum(struct e1000_adapter *adapter,
2775                          struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2776                          __be16 protocol)
2777{
2778        struct e1000_context_desc *context_desc;
2779        struct e1000_tx_buffer *buffer_info;
2780        unsigned int i;
2781        u8 css;
2782        u32 cmd_len = E1000_TXD_CMD_DEXT;
2783
2784        if (skb->ip_summed != CHECKSUM_PARTIAL)
2785                return false;
2786
2787        switch (protocol) {
2788        case cpu_to_be16(ETH_P_IP):
2789                if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2790                        cmd_len |= E1000_TXD_CMD_TCP;
2791                break;
2792        case cpu_to_be16(ETH_P_IPV6):
2793                /* XXX not handling all IPV6 headers */
2794                if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2795                        cmd_len |= E1000_TXD_CMD_TCP;
2796                break;
2797        default:
2798                if (unlikely(net_ratelimit()))
2799                        e_warn(drv, "checksum_partial proto=%x!\n",
2800                               skb->protocol);
2801                break;
2802        }
2803
2804        css = skb_checksum_start_offset(skb);
2805
2806        i = tx_ring->next_to_use;
2807        buffer_info = &tx_ring->buffer_info[i];
2808        context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2809
2810        context_desc->lower_setup.ip_config = 0;
2811        context_desc->upper_setup.tcp_fields.tucss = css;
2812        context_desc->upper_setup.tcp_fields.tucso =
2813                css + skb->csum_offset;
2814        context_desc->upper_setup.tcp_fields.tucse = 0;
2815        context_desc->tcp_seg_setup.data = 0;
2816        context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2817
2818        buffer_info->time_stamp = jiffies;
2819        buffer_info->next_to_watch = i;
2820
2821        if (unlikely(++i == tx_ring->count))
2822                i = 0;
2823
2824        tx_ring->next_to_use = i;
2825
2826        return true;
2827}
2828
2829#define E1000_MAX_TXD_PWR       12
2830#define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2831
2832static int e1000_tx_map(struct e1000_adapter *adapter,
2833                        struct e1000_tx_ring *tx_ring,
2834                        struct sk_buff *skb, unsigned int first,
2835                        unsigned int max_per_txd, unsigned int nr_frags,
2836                        unsigned int mss)
2837{
2838        struct e1000_hw *hw = &adapter->hw;
2839        struct pci_dev *pdev = adapter->pdev;
2840        struct e1000_tx_buffer *buffer_info;
2841        unsigned int len = skb_headlen(skb);
2842        unsigned int offset = 0, size, count = 0, i;
2843        unsigned int f, bytecount, segs;
2844
2845        i = tx_ring->next_to_use;
2846
2847        while (len) {
2848                buffer_info = &tx_ring->buffer_info[i];
2849                size = min(len, max_per_txd);
2850                /* Workaround for Controller erratum --
2851                 * descriptor for non-tso packet in a linear SKB that follows a
2852                 * tso gets written back prematurely before the data is fully
2853                 * DMA'd to the controller
2854                 */
2855                if (!skb->data_len && tx_ring->last_tx_tso &&
2856                    !skb_is_gso(skb)) {
2857                        tx_ring->last_tx_tso = false;
2858                        size -= 4;
2859                }
2860
2861                /* Workaround for premature desc write-backs
2862                 * in TSO mode.  Append 4-byte sentinel desc
2863                 */
2864                if (unlikely(mss && !nr_frags && size == len && size > 8))
2865                        size -= 4;
2866                /* work-around for errata 10 and it applies
2867                 * to all controllers in PCI-X mode
2868                 * The fix is to make sure that the first descriptor of a
2869                 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2870                 */
2871                if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2872                             (size > 2015) && count == 0))
2873                        size = 2015;
2874
2875                /* Workaround for potential 82544 hang in PCI-X.  Avoid
2876                 * terminating buffers within evenly-aligned dwords.
2877                 */
2878                if (unlikely(adapter->pcix_82544 &&
2879                   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2880                   size > 4))
2881                        size -= 4;
2882
2883                buffer_info->length = size;
2884                /* set time_stamp *before* dma to help avoid a possible race */
2885                buffer_info->time_stamp = jiffies;
2886                buffer_info->mapped_as_page = false;
2887                buffer_info->dma = dma_map_single(&pdev->dev,
2888                                                  skb->data + offset,
2889                                                  size, DMA_TO_DEVICE);
2890                if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2891                        goto dma_error;
2892                buffer_info->next_to_watch = i;
2893
2894                len -= size;
2895                offset += size;
2896                count++;
2897                if (len) {
2898                        i++;
2899                        if (unlikely(i == tx_ring->count))
2900                                i = 0;
2901                }
2902        }
2903
2904        for (f = 0; f < nr_frags; f++) {
2905                const struct skb_frag_struct *frag;
2906
2907                frag = &skb_shinfo(skb)->frags[f];
2908                len = skb_frag_size(frag);
2909                offset = 0;
2910
2911                while (len) {
2912                        unsigned long bufend;
2913                        i++;
2914                        if (unlikely(i == tx_ring->count))
2915                                i = 0;
2916
2917                        buffer_info = &tx_ring->buffer_info[i];
2918                        size = min(len, max_per_txd);
2919                        /* Workaround for premature desc write-backs
2920                         * in TSO mode.  Append 4-byte sentinel desc
2921                         */
2922                        if (unlikely(mss && f == (nr_frags-1) &&
2923                            size == len && size > 8))
2924                                size -= 4;
2925                        /* Workaround for potential 82544 hang in PCI-X.
2926                         * Avoid terminating buffers within evenly-aligned
2927                         * dwords.
2928                         */
2929                        bufend = (unsigned long)
2930                                page_to_phys(skb_frag_page(frag));
2931                        bufend += offset + size - 1;
2932                        if (unlikely(adapter->pcix_82544 &&
2933                                     !(bufend & 4) &&
2934                                     size > 4))
2935                                size -= 4;
2936
2937                        buffer_info->length = size;
2938                        buffer_info->time_stamp = jiffies;
2939                        buffer_info->mapped_as_page = true;
2940                        buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2941                                                offset, size, DMA_TO_DEVICE);
2942                        if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2943                                goto dma_error;
2944                        buffer_info->next_to_watch = i;
2945
2946                        len -= size;
2947                        offset += size;
2948                        count++;
2949                }
2950        }
2951
2952        segs = skb_shinfo(skb)->gso_segs ?: 1;
2953        /* multiply data chunks by size of headers */
2954        bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2955
2956        tx_ring->buffer_info[i].skb = skb;
2957        tx_ring->buffer_info[i].segs = segs;
2958        tx_ring->buffer_info[i].bytecount = bytecount;
2959        tx_ring->buffer_info[first].next_to_watch = i;
2960
2961        return count;
2962
2963dma_error:
2964        dev_err(&pdev->dev, "TX DMA map failed\n");
2965        buffer_info->dma = 0;
2966        if (count)
2967                count--;
2968
2969        while (count--) {
2970                if (i == 0)
2971                        i += tx_ring->count;
2972                i--;
2973                buffer_info = &tx_ring->buffer_info[i];
2974                e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2975        }
2976
2977        return 0;
2978}
2979
2980static void e1000_tx_queue(struct e1000_adapter *adapter,
2981                           struct e1000_tx_ring *tx_ring, int tx_flags,
2982                           int count)
2983{
2984        struct e1000_tx_desc *tx_desc = NULL;
2985        struct e1000_tx_buffer *buffer_info;
2986        u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2987        unsigned int i;
2988
2989        if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2990                txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2991                             E1000_TXD_CMD_TSE;
2992                txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2993
2994                if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2995                        txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2996        }
2997
2998        if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2999                txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3000                txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3001        }
3002
3003        if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3004                txd_lower |= E1000_TXD_CMD_VLE;
3005                txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3006        }
3007
3008        if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3009                txd_lower &= ~(E1000_TXD_CMD_IFCS);
3010
3011        i = tx_ring->next_to_use;
3012
3013        while (count--) {
3014                buffer_info = &tx_ring->buffer_info[i];
3015                tx_desc = E1000_TX_DESC(*tx_ring, i);
3016                tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3017                tx_desc->lower.data =
3018                        cpu_to_le32(txd_lower | buffer_info->length);
3019                tx_desc->upper.data = cpu_to_le32(txd_upper);
3020                if (unlikely(++i == tx_ring->count))
3021                        i = 0;
3022        }
3023
3024        tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3025
3026        /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3027        if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3028                tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3029
3030        /* Force memory writes to complete before letting h/w
3031         * know there are new descriptors to fetch.  (Only
3032         * applicable for weak-ordered memory model archs,
3033         * such as IA-64).
3034         */
3035        wmb();
3036
3037        tx_ring->next_to_use = i;
3038}
3039
3040/* 82547 workaround to avoid controller hang in half-duplex environment.
3041 * The workaround is to avoid queuing a large packet that would span
3042 * the internal Tx FIFO ring boundary by notifying the stack to resend
3043 * the packet at a later time.  This gives the Tx FIFO an opportunity to
3044 * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3045 * to the beginning of the Tx FIFO.
3046 */
3047
3048#define E1000_FIFO_HDR                  0x10
3049#define E1000_82547_PAD_LEN             0x3E0
3050
3051static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3052                                       struct sk_buff *skb)
3053{
3054        u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3055        u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3056
3057        skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3058
3059        if (adapter->link_duplex != HALF_DUPLEX)
3060                goto no_fifo_stall_required;
3061
3062        if (atomic_read(&adapter->tx_fifo_stall))
3063                return 1;
3064
3065        if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3066                atomic_set(&adapter->tx_fifo_stall, 1);
3067                return 1;
3068        }
3069
3070no_fifo_stall_required:
3071        adapter->tx_fifo_head += skb_fifo_len;
3072        if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3073                adapter->tx_fifo_head -= adapter->tx_fifo_size;
3074        return 0;
3075}
3076
3077static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3078{
3079        struct e1000_adapter *adapter = netdev_priv(netdev);
3080        struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3081
3082        netif_stop_queue(netdev);
3083        /* Herbert's original patch had:
3084         *  smp_mb__after_netif_stop_queue();
3085         * but since that doesn't exist yet, just open code it.
3086         */
3087        smp_mb();
3088
3089        /* We need to check again in a case another CPU has just
3090         * made room available.
3091         */
3092        if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3093                return -EBUSY;
3094
3095        /* A reprieve! */
3096        netif_start_queue(netdev);
3097        ++adapter->restart_queue;
3098        return 0;
3099}
3100
3101static int e1000_maybe_stop_tx(struct net_device *netdev,
3102                               struct e1000_tx_ring *tx_ring, int size)
3103{
3104        if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3105                return 0;
3106        return __e1000_maybe_stop_tx(netdev, size);
3107}
3108
3109#define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X))
3110static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3111                                    struct net_device *netdev)
3112{
3113        struct e1000_adapter *adapter = netdev_priv(netdev);
3114        struct e1000_hw *hw = &adapter->hw;
3115        struct e1000_tx_ring *tx_ring;
3116        unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3117        unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3118        unsigned int tx_flags = 0;
3119        unsigned int len = skb_headlen(skb);
3120        unsigned int nr_frags;
3121        unsigned int mss;
3122        int count = 0;
3123        int tso;
3124        unsigned int f;
3125        __be16 protocol = vlan_get_protocol(skb);
3126
3127        /* This goes back to the question of how to logically map a Tx queue
3128         * to a flow.  Right now, performance is impacted slightly negatively
3129         * if using multiple Tx queues.  If the stack breaks away from a
3130         * single qdisc implementation, we can look at this again.
3131         */
3132        tx_ring = adapter->tx_ring;
3133
3134        /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3135         * packets may get corrupted during padding by HW.
3136         * To WA this issue, pad all small packets manually.
3137         */
3138        if (eth_skb_pad(skb))
3139                return NETDEV_TX_OK;
3140
3141        mss = skb_shinfo(skb)->gso_size;
3142        /* The controller does a simple calculation to
3143         * make sure there is enough room in the FIFO before
3144         * initiating the DMA for each buffer.  The calc is:
3145         * 4 = ceil(buffer len/mss).  To make sure we don't
3146         * overrun the FIFO, adjust the max buffer len if mss
3147         * drops.
3148         */
3149        if (mss) {
3150                u8 hdr_len;
3151                max_per_txd = min(mss << 2, max_per_txd);
3152                max_txd_pwr = fls(max_per_txd) - 1;
3153
3154                hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3155                if (skb->data_len && hdr_len == len) {
3156                        switch (hw->mac_type) {
3157                                unsigned int pull_size;
3158                        case e1000_82544:
3159                                /* Make sure we have room to chop off 4 bytes,
3160                                 * and that the end alignment will work out to
3161                                 * this hardware's requirements
3162                                 * NOTE: this is a TSO only workaround
3163                                 * if end byte alignment not correct move us
3164                                 * into the next dword
3165                                 */
3166                                if ((unsigned long)(skb_tail_pointer(skb) - 1)
3167                                    & 4)
3168                                        break;
3169                                /* fall through */
3170                                pull_size = min((unsigned int)4, skb->data_len);
3171                                if (!__pskb_pull_tail(skb, pull_size)) {
3172                                        e_err(drv, "__pskb_pull_tail "
3173                                              "failed.\n");
3174                                        dev_kfree_skb_any(skb);
3175                                        return NETDEV_TX_OK;
3176                                }
3177                                len = skb_headlen(skb);
3178                                break;
3179                        default:
3180                                /* do nothing */
3181                                break;
3182                        }
3183                }
3184        }
3185
3186        /* reserve a descriptor for the offload context */
3187        if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3188                count++;
3189        count++;
3190
3191        /* Controller Erratum workaround */
3192        if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3193                count++;
3194
3195        count += TXD_USE_COUNT(len, max_txd_pwr);
3196
3197        if (adapter->pcix_82544)
3198                count++;
3199
3200        /* work-around for errata 10 and it applies to all controllers
3201         * in PCI-X mode, so add one more descriptor to the count
3202         */
3203        if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3204                        (len > 2015)))
3205                count++;
3206
3207        nr_frags = skb_shinfo(skb)->nr_frags;
3208        for (f = 0; f < nr_frags; f++)
3209                count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3210                                       max_txd_pwr);
3211        if (adapter->pcix_82544)
3212                count += nr_frags;
3213
3214        /* need: count + 2 desc gap to keep tail from touching
3215         * head, otherwise try next time
3216         */
3217        if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3218                return NETDEV_TX_BUSY;
3219
3220        if (unlikely((hw->mac_type == e1000_82547) &&
3221                     (e1000_82547_fifo_workaround(adapter, skb)))) {
3222                netif_stop_queue(netdev);
3223                if (!test_bit(__E1000_DOWN, &adapter->flags))
3224                        schedule_delayed_work(&adapter->fifo_stall_task, 1);
3225                return NETDEV_TX_BUSY;
3226        }
3227
3228        if (skb_vlan_tag_present(skb)) {
3229                tx_flags |= E1000_TX_FLAGS_VLAN;
3230                tx_flags |= (skb_vlan_tag_get(skb) <<
3231                             E1000_TX_FLAGS_VLAN_SHIFT);
3232        }
3233
3234        first = tx_ring->next_to_use;
3235
3236        tso = e1000_tso(adapter, tx_ring, skb, protocol);
3237        if (tso < 0) {
3238                dev_kfree_skb_any(skb);
3239                return NETDEV_TX_OK;
3240        }
3241
3242        if (likely(tso)) {
3243                if (likely(hw->mac_type != e1000_82544))
3244                        tx_ring->last_tx_tso = true;
3245                tx_flags |= E1000_TX_FLAGS_TSO;
3246        } else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3247                tx_flags |= E1000_TX_FLAGS_CSUM;
3248
3249        if (protocol == htons(ETH_P_IP))
3250                tx_flags |= E1000_TX_FLAGS_IPV4;
3251
3252        if (unlikely(skb->no_fcs))
3253                tx_flags |= E1000_TX_FLAGS_NO_FCS;
3254
3255        count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3256                             nr_frags, mss);
3257
3258        if (count) {
3259                /* The descriptors needed is higher than other Intel drivers
3260                 * due to a number of workarounds.  The breakdown is below:
3261                 * Data descriptors: MAX_SKB_FRAGS + 1
3262                 * Context Descriptor: 1
3263                 * Keep head from touching tail: 2
3264                 * Workarounds: 3
3265                 */
3266                int desc_needed = MAX_SKB_FRAGS + 7;
3267
3268                netdev_sent_queue(netdev, skb->len);
3269                skb_tx_timestamp(skb);
3270
3271                e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3272
3273                /* 82544 potentially requires twice as many data descriptors
3274                 * in order to guarantee buffers don't end on evenly-aligned
3275                 * dwords
3276                 */
3277                if (adapter->pcix_82544)
3278                        desc_needed += MAX_SKB_FRAGS + 1;
3279
3280                /* Make sure there is space in the ring for the next send. */
3281                e1000_maybe_stop_tx(netdev, tx_ring, desc_needed);
3282
3283                if (!skb->xmit_more ||
3284                    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
3285                        writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
3286                        /* we need this if more than one processor can write to
3287                         * our tail at a time, it synchronizes IO on IA64/Altix
3288                         * systems
3289                         */
3290                        mmiowb();
3291                }
3292        } else {
3293                dev_kfree_skb_any(skb);
3294                tx_ring->buffer_info[first].time_stamp = 0;
3295                tx_ring->next_to_use = first;
3296        }
3297
3298        return NETDEV_TX_OK;
3299}
3300
3301#define NUM_REGS 38 /* 1 based count */
3302static void e1000_regdump(struct e1000_adapter *adapter)
3303{
3304        struct e1000_hw *hw = &adapter->hw;
3305        u32 regs[NUM_REGS];
3306        u32 *regs_buff = regs;
3307        int i = 0;
3308
3309        static const char * const reg_name[] = {
3310                "CTRL",  "STATUS",
3311                "RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3312                "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3313                "TIDV", "TXDCTL", "TADV", "TARC0",
3314                "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3315                "TXDCTL1", "TARC1",
3316                "CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3317                "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3318                "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3319        };
3320
3321        regs_buff[0]  = er32(CTRL);
3322        regs_buff[1]  = er32(STATUS);
3323
3324        regs_buff[2]  = er32(RCTL);
3325        regs_buff[3]  = er32(RDLEN);
3326        regs_buff[4]  = er32(RDH);
3327        regs_buff[5]  = er32(RDT);
3328        regs_buff[6]  = er32(RDTR);
3329
3330        regs_buff[7]  = er32(TCTL);
3331        regs_buff[8]  = er32(TDBAL);
3332        regs_buff[9]  = er32(TDBAH);
3333        regs_buff[10] = er32(TDLEN);
3334        regs_buff[11] = er32(TDH);
3335        regs_buff[12] = er32(TDT);
3336        regs_buff[13] = er32(TIDV);
3337        regs_buff[14] = er32(TXDCTL);
3338        regs_buff[15] = er32(TADV);
3339        regs_buff[16] = er32(TARC0);
3340
3341        regs_buff[17] = er32(TDBAL1);
3342        regs_buff[18] = er32(TDBAH1);
3343        regs_buff[19] = er32(TDLEN1);
3344        regs_buff[20] = er32(TDH1);
3345        regs_buff[21] = er32(TDT1);
3346        regs_buff[22] = er32(TXDCTL1);
3347        regs_buff[23] = er32(TARC1);
3348        regs_buff[24] = er32(CTRL_EXT);
3349        regs_buff[25] = er32(ERT);
3350        regs_buff[26] = er32(RDBAL0);
3351        regs_buff[27] = er32(RDBAH0);
3352        regs_buff[28] = er32(TDFH);
3353        regs_buff[29] = er32(TDFT);
3354        regs_buff[30] = er32(TDFHS);
3355        regs_buff[31] = er32(TDFTS);
3356        regs_buff[32] = er32(TDFPC);
3357        regs_buff[33] = er32(RDFH);
3358        regs_buff[34] = er32(RDFT);
3359        regs_buff[35] = er32(RDFHS);
3360        regs_buff[36] = er32(RDFTS);
3361        regs_buff[37] = er32(RDFPC);
3362
3363        pr_info("Register dump\n");
3364        for (i = 0; i < NUM_REGS; i++)
3365                pr_info("%-15s  %08x\n", reg_name[i], regs_buff[i]);
3366}
3367
3368/*
3369 * e1000_dump: Print registers, tx ring and rx ring
3370 */
3371static void e1000_dump(struct e1000_adapter *adapter)
3372{
3373        /* this code doesn't handle multiple rings */
3374        struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3375        struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3376        int i;
3377
3378        if (!netif_msg_hw(adapter))
3379                return;
3380
3381        /* Print Registers */
3382        e1000_regdump(adapter);
3383
3384        /* transmit dump */
3385        pr_info("TX Desc ring0 dump\n");
3386
3387        /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3388         *
3389         * Legacy Transmit Descriptor
3390         *   +--------------------------------------------------------------+
3391         * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
3392         *   +--------------------------------------------------------------+
3393         * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
3394         *   +--------------------------------------------------------------+
3395         *   63       48 47        36 35    32 31     24 23    16 15        0
3396         *
3397         * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3398         *   63      48 47    40 39       32 31             16 15    8 7      0
3399         *   +----------------------------------------------------------------+
3400         * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
3401         *   +----------------------------------------------------------------+
3402         * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
3403         *   +----------------------------------------------------------------+
3404         *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
3405         *
3406         * Extended Data Descriptor (DTYP=0x1)
3407         *   +----------------------------------------------------------------+
3408         * 0 |                     Buffer Address [63:0]                      |
3409         *   +----------------------------------------------------------------+
3410         * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
3411         *   +----------------------------------------------------------------+
3412         *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
3413         */
3414        pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3415        pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3416
3417        if (!netif_msg_tx_done(adapter))
3418                goto rx_ring_summary;
3419
3420        for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3421                struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3422                struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
3423                struct my_u { __le64 a; __le64 b; };
3424                struct my_u *u = (struct my_u *)tx_desc;
3425                const char *type;
3426
3427                if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3428                        type = "NTC/U";
3429                else if (i == tx_ring->next_to_use)
3430                        type = "NTU";
3431                else if (i == tx_ring->next_to_clean)
3432                        type = "NTC";
3433                else
3434                        type = "";
3435
3436                pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p %s\n",
3437                        ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3438                        le64_to_cpu(u->a), le64_to_cpu(u->b),
3439                        (u64)buffer_info->dma, buffer_info->length,
3440                        buffer_info->next_to_watch,
3441                        (u64)buffer_info->time_stamp, buffer_info->skb, type);
3442        }
3443
3444rx_ring_summary:
3445        /* receive dump */
3446        pr_info("\nRX Desc ring dump\n");
3447
3448        /* Legacy Receive Descriptor Format
3449         *
3450         * +-----------------------------------------------------+
3451         * |                Buffer Address [63:0]                |
3452         * +-----------------------------------------------------+
3453         * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3454         * +-----------------------------------------------------+
3455         * 63       48 47    40 39      32 31         16 15      0
3456         */
3457        pr_info("R[desc]      [address 63:0  ] [vl er S cks ln] [bi->dma       ] [bi->skb]\n");
3458
3459        if (!netif_msg_rx_status(adapter))
3460                goto exit;
3461
3462        for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3463                struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3464                struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
3465                struct my_u { __le64 a; __le64 b; };
3466                struct my_u *u = (struct my_u *)rx_desc;
3467                const char *type;
3468
3469                if (i == rx_ring->next_to_use)
3470                        type = "NTU";
3471                else if (i == rx_ring->next_to_clean)
3472                        type = "NTC";
3473                else
3474                        type = "";
3475
3476                pr_info("R[0x%03X]     %016llX %016llX %016llX %p %s\n",
3477                        i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3478                        (u64)buffer_info->dma, buffer_info->rxbuf.data, type);
3479        } /* for */
3480
3481        /* dump the descriptor caches */
3482        /* rx */
3483        pr_info("Rx descriptor cache in 64bit format\n");
3484        for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3485                pr_info("R%04X: %08X|%08X %08X|%08X\n",
3486                        i,
3487                        readl(adapter->hw.hw_addr + i+4),
3488                        readl(adapter->hw.hw_addr + i),
3489                        readl(adapter->hw.hw_addr + i+12),
3490                        readl(adapter->hw.hw_addr + i+8));
3491        }
3492        /* tx */
3493        pr_info("Tx descriptor cache in 64bit format\n");
3494        for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3495                pr_info("T%04X: %08X|%08X %08X|%08X\n",
3496                        i,
3497                        readl(adapter->hw.hw_addr + i+4),
3498                        readl(adapter->hw.hw_addr + i),
3499                        readl(adapter->hw.hw_addr + i+12),
3500                        readl(adapter->hw.hw_addr + i+8));
3501        }
3502exit:
3503        return;
3504}
3505
3506/**
3507 * e1000_tx_timeout - Respond to a Tx Hang
3508 * @netdev: network interface device structure
3509 **/
3510static void e1000_tx_timeout(struct net_device *netdev)
3511{
3512        struct e1000_adapter *adapter = netdev_priv(netdev);
3513
3514        /* Do the reset outside of interrupt context */
3515        adapter->tx_timeout_count++;
3516        schedule_work(&adapter->reset_task);
3517}
3518
3519static void e1000_reset_task(struct work_struct *work)
3520{
3521        struct e1000_adapter *adapter =
3522                container_of(work, struct e1000_adapter, reset_task);
3523
3524        e_err(drv, "Reset adapter\n");
3525        e1000_reinit_locked(adapter);
3526}
3527
3528/**
3529 * e1000_get_stats - Get System Network Statistics
3530 * @netdev: network interface device structure
3531 *
3532 * Returns the address of the device statistics structure.
3533 * The statistics are actually updated from the watchdog.
3534 **/
3535static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3536{
3537        /* only return the current stats */
3538        return &netdev->stats;
3539}
3540
3541/**
3542 * e1000_change_mtu - Change the Maximum Transfer Unit
3543 * @netdev: network interface device structure
3544 * @new_mtu: new value for maximum frame size
3545 *
3546 * Returns 0 on success, negative on failure
3547 **/
3548static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3549{
3550        struct e1000_adapter *adapter = netdev_priv(netdev);
3551        struct e1000_hw *hw = &adapter->hw;
3552        int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3553
3554        if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3555            (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3556                e_err(probe, "Invalid MTU setting\n");
3557                return -EINVAL;
3558        }
3559
3560        /* Adapter-specific max frame size limits. */
3561        switch (hw->mac_type) {
3562        case e1000_undefined ... e1000_82542_rev2_1:
3563                if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3564                        e_err(probe, "Jumbo Frames not supported.\n");
3565                        return -EINVAL;
3566                }
3567                break;
3568        default:
3569                /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3570                break;
3571        }
3572
3573        while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3574                msleep(1);
3575        /* e1000_down has a dependency on max_frame_size */
3576        hw->max_frame_size = max_frame;
3577        if (netif_running(netdev)) {
3578                /* prevent buffers from being reallocated */
3579                adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
3580                e1000_down(adapter);
3581        }
3582
3583        /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3584         * means we reserve 2 more, this pushes us to allocate from the next
3585         * larger slab size.
3586         * i.e. RXBUFFER_2048 --> size-4096 slab
3587         * however with the new *_jumbo_rx* routines, jumbo receives will use
3588         * fragmented skbs
3589         */
3590
3591        if (max_frame <= E1000_RXBUFFER_2048)
3592                adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3593        else
3594#if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3595                adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3596#elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3597                adapter->rx_buffer_len = PAGE_SIZE;
3598#endif
3599
3600        /* adjust allocation if LPE protects us, and we aren't using SBP */
3601        if (!hw->tbi_compatibility_on &&
3602            ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3603             (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3604                adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3605
3606        pr_info("%s changing MTU from %d to %d\n",
3607                netdev->name, netdev->mtu, new_mtu);
3608        netdev->mtu = new_mtu;
3609
3610        if (netif_running(netdev))
3611                e1000_up(adapter);
3612        else
3613                e1000_reset(adapter);
3614
3615        clear_bit(__E1000_RESETTING, &adapter->flags);
3616
3617        return 0;
3618}
3619
3620/**
3621 * e1000_update_stats - Update the board statistics counters
3622 * @adapter: board private structure
3623 **/
3624void e1000_update_stats(struct e1000_adapter *adapter)
3625{
3626        struct net_device *netdev = adapter->netdev;
3627        struct e1000_hw *hw = &adapter->hw;
3628        struct pci_dev *pdev = adapter->pdev;
3629        unsigned long flags;
3630        u16 phy_tmp;
3631
3632#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3633
3634        /* Prevent stats update while adapter is being reset, or if the pci
3635         * connection is down.
3636         */
3637        if (adapter->link_speed == 0)
3638                return;
3639        if (pci_channel_offline(pdev))
3640                return;
3641
3642        spin_lock_irqsave(&adapter->stats_lock, flags);
3643
3644        /* these counters are modified from e1000_tbi_adjust_stats,
3645         * called from the interrupt context, so they must only
3646         * be written while holding adapter->stats_lock
3647         */
3648
3649        adapter->stats.crcerrs += er32(CRCERRS);
3650        adapter->stats.gprc += er32(GPRC);
3651        adapter->stats.gorcl += er32(GORCL);
3652        adapter->stats.gorch += er32(GORCH);
3653        adapter->stats.bprc += er32(BPRC);
3654        adapter->stats.mprc += er32(MPRC);
3655        adapter->stats.roc += er32(ROC);
3656
3657        adapter->stats.prc64 += er32(PRC64);
3658        adapter->stats.prc127 += er32(PRC127);
3659        adapter->stats.prc255 += er32(PRC255);
3660        adapter->stats.prc511 += er32(PRC511);
3661        adapter->stats.prc1023 += er32(PRC1023);
3662        adapter->stats.prc1522 += er32(PRC1522);
3663
3664        adapter->stats.symerrs += er32(SYMERRS);
3665        adapter->stats.mpc += er32(MPC);
3666        adapter->stats.scc += er32(SCC);
3667        adapter->stats.ecol += er32(ECOL);
3668        adapter->stats.mcc += er32(MCC);
3669        adapter->stats.latecol += er32(LATECOL);
3670        adapter->stats.dc += er32(DC);
3671        adapter->stats.sec += er32(SEC);
3672        adapter->stats.rlec += er32(RLEC);
3673        adapter->stats.xonrxc += er32(XONRXC);
3674        adapter->stats.xontxc += er32(XONTXC);
3675        adapter->stats.xoffrxc += er32(XOFFRXC);
3676        adapter->stats.xofftxc += er32(XOFFTXC);
3677        adapter->stats.fcruc += er32(FCRUC);
3678        adapter->stats.gptc += er32(GPTC);
3679        adapter->stats.gotcl += er32(GOTCL);
3680        adapter->stats.gotch += er32(GOTCH);
3681        adapter->stats.rnbc += er32(RNBC);
3682        adapter->stats.ruc += er32(RUC);
3683        adapter->stats.rfc += er32(RFC);
3684        adapter->stats.rjc += er32(RJC);
3685        adapter->stats.torl += er32(TORL);
3686        adapter->stats.torh += er32(TORH);
3687        adapter->stats.totl += er32(TOTL);
3688        adapter->stats.toth += er32(TOTH);
3689        adapter->stats.tpr += er32(TPR);
3690
3691        adapter->stats.ptc64 += er32(PTC64);
3692        adapter->stats.ptc127 += er32(PTC127);
3693        adapter->stats.ptc255 += er32(PTC255);
3694        adapter->stats.ptc511 += er32(PTC511);
3695        adapter->stats.ptc1023 += er32(PTC1023);
3696        adapter->stats.ptc1522 += er32(PTC1522);
3697
3698        adapter->stats.mptc += er32(MPTC);
3699        adapter->stats.bptc += er32(BPTC);
3700
3701        /* used for adaptive IFS */
3702
3703        hw->tx_packet_delta = er32(TPT);
3704        adapter->stats.tpt += hw->tx_packet_delta;
3705        hw->collision_delta = er32(COLC);
3706        adapter->stats.colc += hw->collision_delta;
3707
3708        if (hw->mac_type >= e1000_82543) {
3709                adapter->stats.algnerrc += er32(ALGNERRC);
3710                adapter->stats.rxerrc += er32(RXERRC);
3711                adapter->stats.tncrs += er32(TNCRS);
3712                adapter->stats.cexterr += er32(CEXTERR);
3713                adapter->stats.tsctc += er32(TSCTC);
3714                adapter->stats.tsctfc += er32(TSCTFC);
3715        }
3716
3717        /* Fill out the OS statistics structure */
3718        netdev->stats.multicast = adapter->stats.mprc;
3719        netdev->stats.collisions = adapter->stats.colc;
3720
3721        /* Rx Errors */
3722
3723        /* RLEC on some newer hardware can be incorrect so build
3724         * our own version based on RUC and ROC
3725         */
3726        netdev->stats.rx_errors = adapter->stats.rxerrc +
3727                adapter->stats.crcerrs + adapter->stats.algnerrc +
3728                adapter->stats.ruc + adapter->stats.roc +
3729                adapter->stats.cexterr;
3730        adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3731        netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3732        netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3733        netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3734        netdev->stats.rx_missed_errors = adapter->stats.mpc;
3735
3736        /* Tx Errors */
3737        adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3738        netdev->stats.tx_errors = adapter->stats.txerrc;
3739        netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3740        netdev->stats.tx_window_errors = adapter->stats.latecol;
3741        netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3742        if (hw->bad_tx_carr_stats_fd &&
3743            adapter->link_duplex == FULL_DUPLEX) {
3744                netdev->stats.tx_carrier_errors = 0;
3745                adapter->stats.tncrs = 0;
3746        }
3747
3748        /* Tx Dropped needs to be maintained elsewhere */
3749
3750        /* Phy Stats */
3751        if (hw->media_type == e1000_media_type_copper) {
3752                if ((adapter->link_speed == SPEED_1000) &&
3753                   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3754                        phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3755                        adapter->phy_stats.idle_errors += phy_tmp;
3756                }
3757
3758                if ((hw->mac_type <= e1000_82546) &&
3759                   (hw->phy_type == e1000_phy_m88) &&
3760                   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3761                        adapter->phy_stats.receive_errors += phy_tmp;
3762        }
3763
3764        /* Management Stats */
3765        if (hw->has_smbus) {
3766                adapter->stats.mgptc += er32(MGTPTC);
3767                adapter->stats.mgprc += er32(MGTPRC);
3768                adapter->stats.mgpdc += er32(MGTPDC);
3769        }
3770
3771        spin_unlock_irqrestore(&adapter->stats_lock, flags);
3772}
3773
3774/**
3775 * e1000_intr - Interrupt Handler
3776 * @irq: interrupt number
3777 * @data: pointer to a network interface device structure
3778 **/
3779static irqreturn_t e1000_intr(int irq, void *data)
3780{
3781        struct net_device *netdev = data;
3782        struct e1000_adapter *adapter = netdev_priv(netdev);
3783        struct e1000_hw *hw = &adapter->hw;
3784        u32 icr = er32(ICR);
3785
3786        if (unlikely((!icr)))
3787                return IRQ_NONE;  /* Not our interrupt */
3788
3789        /* we might have caused the interrupt, but the above
3790         * read cleared it, and just in case the driver is
3791         * down there is nothing to do so return handled
3792         */
3793        if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3794                return IRQ_HANDLED;
3795
3796        if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3797                hw->get_link_status = 1;
3798                /* guard against interrupt when we're going down */
3799                if (!test_bit(__E1000_DOWN, &adapter->flags))
3800                        schedule_delayed_work(&adapter->watchdog_task, 1);
3801        }
3802
3803        /* disable interrupts, without the synchronize_irq bit */
3804        ew32(IMC, ~0);
3805        E1000_WRITE_FLUSH();
3806
3807        if (likely(napi_schedule_prep(&adapter->napi))) {
3808                adapter->total_tx_bytes = 0;
3809                adapter->total_tx_packets = 0;
3810                adapter->total_rx_bytes = 0;
3811                adapter->total_rx_packets = 0;
3812                __napi_schedule(&adapter->napi);
3813        } else {
3814                /* this really should not happen! if it does it is basically a
3815                 * bug, but not a hard error, so enable ints and continue
3816                 */
3817                if (!test_bit(__E1000_DOWN, &adapter->flags))
3818                        e1000_irq_enable(adapter);
3819        }
3820
3821        return IRQ_HANDLED;
3822}
3823
3824/**
3825 * e1000_clean - NAPI Rx polling callback
3826 * @adapter: board private structure
3827 **/
3828static int e1000_clean(struct napi_struct *napi, int budget)
3829{
3830        struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3831                                                     napi);
3832        int tx_clean_complete = 0, work_done = 0;
3833
3834        tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3835
3836        adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3837
3838        if (!tx_clean_complete)
3839                work_done = budget;
3840
3841        /* If budget not fully consumed, exit the polling mode */
3842        if (work_done < budget) {
3843                if (likely(adapter->itr_setting & 3))
3844                        e1000_set_itr(adapter);
3845                napi_complete_done(napi, work_done);
3846                if (!test_bit(__E1000_DOWN, &adapter->flags))
3847                        e1000_irq_enable(adapter);
3848        }
3849
3850        return work_done;
3851}
3852
3853/**
3854 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3855 * @adapter: board private structure
3856 **/
3857static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3858                               struct e1000_tx_ring *tx_ring)
3859{
3860        struct e1000_hw *hw = &adapter->hw;
3861        struct net_device *netdev = adapter->netdev;
3862        struct e1000_tx_desc *tx_desc, *eop_desc;
3863        struct e1000_tx_buffer *buffer_info;
3864        unsigned int i, eop;
3865        unsigned int count = 0;
3866        unsigned int total_tx_bytes = 0, total_tx_packets = 0;
3867        unsigned int bytes_compl = 0, pkts_compl = 0;
3868
3869        i = tx_ring->next_to_clean;
3870        eop = tx_ring->buffer_info[i].next_to_watch;
3871        eop_desc = E1000_TX_DESC(*tx_ring, eop);
3872
3873        while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3874               (count < tx_ring->count)) {
3875                bool cleaned = false;
3876                dma_rmb();      /* read buffer_info after eop_desc */
3877                for ( ; !cleaned; count++) {
3878                        tx_desc = E1000_TX_DESC(*tx_ring, i);
3879                        buffer_info = &tx_ring->buffer_info[i];
3880                        cleaned = (i == eop);
3881
3882                        if (cleaned) {
3883                                total_tx_packets += buffer_info->segs;
3884                                total_tx_bytes += buffer_info->bytecount;
3885                                if (buffer_info->skb) {
3886                                        bytes_compl += buffer_info->skb->len;
3887                                        pkts_compl++;
3888                                }
3889
3890                        }
3891                        e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3892                        tx_desc->upper.data = 0;
3893
3894                        if (unlikely(++i == tx_ring->count))
3895                                i = 0;
3896                }
3897
3898                eop = tx_ring->buffer_info[i].next_to_watch;
3899                eop_desc = E1000_TX_DESC(*tx_ring, eop);
3900        }
3901
3902        /* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame,
3903         * which will reuse the cleaned buffers.
3904         */
3905        smp_store_release(&tx_ring->next_to_clean, i);
3906
3907        netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3908
3909#define TX_WAKE_THRESHOLD 32
3910        if (unlikely(count && netif_carrier_ok(netdev) &&
3911                     E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3912                /* Make sure that anybody stopping the queue after this
3913                 * sees the new next_to_clean.
3914                 */
3915                smp_mb();
3916
3917                if (netif_queue_stopped(netdev) &&
3918                    !(test_bit(__E1000_DOWN, &adapter->flags))) {
3919                        netif_wake_queue(netdev);
3920                        ++adapter->restart_queue;
3921                }
3922        }
3923
3924        if (adapter->detect_tx_hung) {
3925                /* Detect a transmit hang in hardware, this serializes the
3926                 * check with the clearing of time_stamp and movement of i
3927                 */
3928                adapter->detect_tx_hung = false;
3929                if (tx_ring->buffer_info[eop].time_stamp &&
3930                    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3931                               (adapter->tx_timeout_factor * HZ)) &&
3932                    !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3933
3934                        /* detected Tx unit hang */
3935                        e_err(drv, "Detected Tx Unit Hang\n"
3936                              "  Tx Queue             <%lu>\n"
3937                              "  TDH                  <%x>\n"
3938                              "  TDT                  <%x>\n"
3939                              "  next_to_use          <%x>\n"
3940                              "  next_to_clean        <%x>\n"
3941                              "buffer_info[next_to_clean]\n"
3942                              "  time_stamp           <%lx>\n"
3943                              "  next_to_watch        <%x>\n"
3944                              "  jiffies              <%lx>\n"
3945                              "  next_to_watch.status <%x>\n",
3946                                (unsigned long)(tx_ring - adapter->tx_ring),
3947                                readl(hw->hw_addr + tx_ring->tdh),
3948                                readl(hw->hw_addr + tx_ring->tdt),
3949                                tx_ring->next_to_use,
3950                                tx_ring->next_to_clean,
3951                                tx_ring->buffer_info[eop].time_stamp,
3952                                eop,
3953                                jiffies,
3954                                eop_desc->upper.fields.status);
3955                        e1000_dump(adapter);
3956                        netif_stop_queue(netdev);
3957                }
3958        }
3959        adapter->total_tx_bytes += total_tx_bytes;
3960        adapter->total_tx_packets += total_tx_packets;
3961        netdev->stats.tx_bytes += total_tx_bytes;
3962        netdev->stats.tx_packets += total_tx_packets;
3963        return count < tx_ring->count;
3964}
3965
3966/**
3967 * e1000_rx_checksum - Receive Checksum Offload for 82543
3968 * @adapter:     board private structure
3969 * @status_err:  receive descriptor status and error fields
3970 * @csum:        receive descriptor csum field
3971 * @sk_buff:     socket buffer with received data
3972 **/
3973static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3974                              u32 csum, struct sk_buff *skb)
3975{
3976        struct e1000_hw *hw = &adapter->hw;
3977        u16 status = (u16)status_err;
3978        u8 errors = (u8)(status_err >> 24);
3979
3980        skb_checksum_none_assert(skb);
3981
3982        /* 82543 or newer only */
3983        if (unlikely(hw->mac_type < e1000_82543))
3984                return;
3985        /* Ignore Checksum bit is set */
3986        if (unlikely(status & E1000_RXD_STAT_IXSM))
3987                return;
3988        /* TCP/UDP checksum error bit is set */
3989        if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3990                /* let the stack verify checksum errors */
3991                adapter->hw_csum_err++;
3992                return;
3993        }
3994        /* TCP/UDP Checksum has not been calculated */
3995        if (!(status & E1000_RXD_STAT_TCPCS))
3996                return;
3997
3998        /* It must be a TCP or UDP packet with a valid checksum */
3999        if (likely(status & E1000_RXD_STAT_TCPCS)) {
4000                /* TCP checksum is good */
4001                skb->ip_summed = CHECKSUM_UNNECESSARY;
4002        }
4003        adapter->hw_csum_good++;
4004}
4005
4006/**
4007 * e1000_consume_page - helper function for jumbo Rx path
4008 **/
4009static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
4010                               u16 length)
4011{
4012        bi->rxbuf.page = NULL;
4013        skb->len += length;
4014        skb->data_len += length;
4015        skb->truesize += PAGE_SIZE;
4016}
4017
4018/**
4019 * e1000_receive_skb - helper function to handle rx indications
4020 * @adapter: board private structure
4021 * @status: descriptor status field as written by hardware
4022 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
4023 * @skb: pointer to sk_buff to be indicated to stack
4024 */
4025static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
4026                              __le16 vlan, struct sk_buff *skb)
4027{
4028        skb->protocol = eth_type_trans(skb, adapter->netdev);
4029
4030        if (status & E1000_RXD_STAT_VP) {
4031                u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4032
4033                __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4034        }
4035        napi_gro_receive(&adapter->napi, skb);
4036}
4037
4038/**
4039 * e1000_tbi_adjust_stats
4040 * @hw: Struct containing variables accessed by shared code
4041 * @frame_len: The length of the frame in question
4042 * @mac_addr: The Ethernet destination address of the frame in question
4043 *
4044 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4045 */
4046static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4047                                   struct e1000_hw_stats *stats,
4048                                   u32 frame_len, const u8 *mac_addr)
4049{
4050        u64 carry_bit;
4051
4052        /* First adjust the frame length. */
4053        frame_len--;
4054        /* We need to adjust the statistics counters, since the hardware
4055         * counters overcount this packet as a CRC error and undercount
4056         * the packet as a good packet
4057         */
4058        /* This packet should not be counted as a CRC error. */
4059        stats->crcerrs--;
4060        /* This packet does count as a Good Packet Received. */
4061        stats->gprc++;
4062
4063        /* Adjust the Good Octets received counters */
4064        carry_bit = 0x80000000 & stats->gorcl;
4065        stats->gorcl += frame_len;
4066        /* If the high bit of Gorcl (the low 32 bits of the Good Octets
4067         * Received Count) was one before the addition,
4068         * AND it is zero after, then we lost the carry out,
4069         * need to add one to Gorch (Good Octets Received Count High).
4070         * This could be simplified if all environments supported
4071         * 64-bit integers.
4072         */
4073        if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4074                stats->gorch++;
4075        /* Is this a broadcast or multicast?  Check broadcast first,
4076         * since the test for a multicast frame will test positive on
4077         * a broadcast frame.
4078         */
4079        if (is_broadcast_ether_addr(mac_addr))
4080                stats->bprc++;
4081        else if (is_multicast_ether_addr(mac_addr))
4082                stats->mprc++;
4083
4084        if (frame_len == hw->max_frame_size) {
4085                /* In this case, the hardware has overcounted the number of
4086                 * oversize frames.
4087                 */
4088                if (stats->roc > 0)
4089                        stats->roc--;
4090        }
4091
4092        /* Adjust the bin counters when the extra byte put the frame in the
4093         * wrong bin. Remember that the frame_len was adjusted above.
4094         */
4095        if (frame_len == 64) {
4096                stats->prc64++;
4097                stats->prc127--;
4098        } else if (frame_len == 127) {
4099                stats->prc127++;
4100                stats->prc255--;
4101        } else if (frame_len == 255) {
4102                stats->prc255++;
4103                stats->prc511--;
4104        } else if (frame_len == 511) {
4105                stats->prc511++;
4106                stats->prc1023--;
4107        } else if (frame_len == 1023) {
4108                stats->prc1023++;
4109                stats->prc1522--;
4110        } else if (frame_len == 1522) {
4111                stats->prc1522++;
4112        }
4113}
4114
4115static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4116                                    u8 status, u8 errors,
4117                                    u32 length, const u8 *data)
4118{
4119        struct e1000_hw *hw = &adapter->hw;
4120        u8 last_byte = *(data + length - 1);
4121
4122        if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4123                unsigned long irq_flags;
4124
4125                spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4126                e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4127                spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4128
4129                return true;
4130        }
4131
4132        return false;
4133}
4134
4135static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4136                                          unsigned int bufsz)
4137{
4138        struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
4139
4140        if (unlikely(!skb))
4141                adapter->alloc_rx_buff_failed++;
4142        return skb;
4143}
4144
4145/**
4146 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4147 * @adapter: board private structure
4148 * @rx_ring: ring to clean
4149 * @work_done: amount of napi work completed this call
4150 * @work_to_do: max amount of work allowed for this call to do
4151 *
4152 * the return value indicates whether actual cleaning was done, there
4153 * is no guarantee that everything was cleaned
4154 */
4155static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4156                                     struct e1000_rx_ring *rx_ring,
4157                                     int *work_done, int work_to_do)
4158{
4159        struct net_device *netdev = adapter->netdev;
4160        struct pci_dev *pdev = adapter->pdev;
4161        struct e1000_rx_desc *rx_desc, *next_rxd;
4162        struct e1000_rx_buffer *buffer_info, *next_buffer;
4163        u32 length;
4164        unsigned int i;
4165        int cleaned_count = 0;
4166        bool cleaned = false;
4167        unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4168
4169        i = rx_ring->next_to_clean;
4170        rx_desc = E1000_RX_DESC(*rx_ring, i);
4171        buffer_info = &rx_ring->buffer_info[i];
4172
4173        while (rx_desc->status & E1000_RXD_STAT_DD) {
4174                struct sk_buff *skb;
4175                u8 status;
4176
4177                if (*work_done >= work_to_do)
4178                        break;
4179                (*work_done)++;
4180                dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4181
4182                status = rx_desc->status;
4183
4184                if (++i == rx_ring->count)
4185                        i = 0;
4186
4187                next_rxd = E1000_RX_DESC(*rx_ring, i);
4188                prefetch(next_rxd);
4189
4190                next_buffer = &rx_ring->buffer_info[i];
4191
4192                cleaned = true;
4193                cleaned_count++;
4194                dma_unmap_page(&pdev->dev, buffer_info->dma,
4195                               adapter->rx_buffer_len, DMA_FROM_DEVICE);
4196                buffer_info->dma = 0;
4197
4198                length = le16_to_cpu(rx_desc->length);
4199
4200                /* errors is only valid for DD + EOP descriptors */
4201                if (unlikely((status & E1000_RXD_STAT_EOP) &&
4202                    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4203                        u8 *mapped = page_address(buffer_info->rxbuf.page);
4204
4205                        if (e1000_tbi_should_accept(adapter, status,
4206                                                    rx_desc->errors,
4207                                                    length, mapped)) {
4208                                length--;
4209                        } else if (netdev->features & NETIF_F_RXALL) {
4210                                goto process_skb;
4211                        } else {
4212                                /* an error means any chain goes out the window
4213                                 * too
4214                                 */
4215                                if (rx_ring->rx_skb_top)
4216                                        dev_kfree_skb(rx_ring->rx_skb_top);
4217                                rx_ring->rx_skb_top = NULL;
4218                                goto next_desc;
4219                        }
4220                }
4221
4222#define rxtop rx_ring->rx_skb_top
4223process_skb:
4224                if (!(status & E1000_RXD_STAT_EOP)) {
4225                        /* this descriptor is only the beginning (or middle) */
4226                        if (!rxtop) {
4227                                /* this is the beginning of a chain */
4228                                rxtop = napi_get_frags(&adapter->napi);
4229                                if (!rxtop)
4230                                        break;
4231
4232                                skb_fill_page_desc(rxtop, 0,
4233                                                   buffer_info->rxbuf.page,
4234                                                   0, length);
4235                        } else {
4236                                /* this is the middle of a chain */
4237                                skb_fill_page_desc(rxtop,
4238                                    skb_shinfo(rxtop)->nr_frags,
4239                                    buffer_info->rxbuf.page, 0, length);
4240                        }
4241                        e1000_consume_page(buffer_info, rxtop, length);
4242                        goto next_desc;
4243                } else {
4244                        if (rxtop) {
4245                                /* end of the chain */
4246                                skb_fill_page_desc(rxtop,
4247                                    skb_shinfo(rxtop)->nr_frags,
4248                                    buffer_info->rxbuf.page, 0, length);
4249                                skb = rxtop;
4250                                rxtop = NULL;
4251                                e1000_consume_page(buffer_info, skb, length);
4252                        } else {
4253                                struct page *p;
4254                                /* no chain, got EOP, this buf is the packet
4255                                 * copybreak to save the put_page/alloc_page
4256                                 */
4257                                p = buffer_info->rxbuf.page;
4258                                if (length <= copybreak) {
4259                                        u8 *vaddr;
4260
4261                                        if (likely(!(netdev->features & NETIF_F_RXFCS)))
4262                                                length -= 4;
4263                                        skb = e1000_alloc_rx_skb(adapter,
4264                                                                 length);
4265                                        if (!skb)
4266                                                break;
4267
4268                                        vaddr = kmap_atomic(p);
4269                                        memcpy(skb_tail_pointer(skb), vaddr,
4270                                               length);
4271                                        kunmap_atomic(vaddr);
4272                                        /* re-use the page, so don't erase
4273                                         * buffer_info->rxbuf.page
4274                                         */
4275                                        skb_put(skb, length);
4276                                        e1000_rx_checksum(adapter,
4277                                                          status | rx_desc->errors << 24,
4278                                                          le16_to_cpu(rx_desc->csum), skb);
4279
4280                                        total_rx_bytes += skb->len;
4281                                        total_rx_packets++;
4282
4283                                        e1000_receive_skb(adapter, status,
4284                                                          rx_desc->special, skb);
4285                                        goto next_desc;
4286                                } else {
4287                                        skb = napi_get_frags(&adapter->napi);
4288                                        if (!skb) {
4289                                                adapter->alloc_rx_buff_failed++;
4290                                                break;
4291                                        }
4292                                        skb_fill_page_desc(skb, 0, p, 0,
4293                                                           length);
4294                                        e1000_consume_page(buffer_info, skb,
4295                                                           length);
4296                                }
4297                        }
4298                }
4299
4300                /* Receive Checksum Offload XXX recompute due to CRC strip? */
4301                e1000_rx_checksum(adapter,
4302                                  (u32)(status) |
4303                                  ((u32)(rx_desc->errors) << 24),
4304                                  le16_to_cpu(rx_desc->csum), skb);
4305
4306                total_rx_bytes += (skb->len - 4); /* don't count FCS */
4307                if (likely(!(netdev->features & NETIF_F_RXFCS)))
4308                        pskb_trim(skb, skb->len - 4);
4309                total_rx_packets++;
4310
4311                if (status & E1000_RXD_STAT_VP) {
4312                        __le16 vlan = rx_desc->special;
4313                        u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4314
4315                        __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4316                }
4317
4318                napi_gro_frags(&adapter->napi);
4319
4320next_desc:
4321                rx_desc->status = 0;
4322
4323                /* return some buffers to hardware, one at a time is too slow */
4324                if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4325                        adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4326                        cleaned_count = 0;
4327                }
4328
4329                /* use prefetched values */
4330                rx_desc = next_rxd;
4331                buffer_info = next_buffer;
4332        }
4333        rx_ring->next_to_clean = i;
4334
4335        cleaned_count = E1000_DESC_UNUSED(rx_ring);
4336        if (cleaned_count)
4337                adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4338
4339        adapter->total_rx_packets += total_rx_packets;
4340        adapter->total_rx_bytes += total_rx_bytes;
4341        netdev->stats.rx_bytes += total_rx_bytes;
4342        netdev->stats.rx_packets += total_rx_packets;
4343        return cleaned;
4344}
4345
4346/* this should improve performance for small packets with large amounts
4347 * of reassembly being done in the stack
4348 */
4349static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
4350                                       struct e1000_rx_buffer *buffer_info,
4351                                       u32 length, const void *data)
4352{
4353        struct sk_buff *skb;
4354
4355        if (length > copybreak)
4356                return NULL;
4357
4358        skb = e1000_alloc_rx_skb(adapter, length);
4359        if (!skb)
4360                return NULL;
4361
4362        dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4363                                length, DMA_FROM_DEVICE);
4364
4365        memcpy(skb_put(skb, length), data, length);
4366
4367        return skb;
4368}
4369
4370/**
4371 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4372 * @adapter: board private structure
4373 * @rx_ring: ring to clean
4374 * @work_done: amount of napi work completed this call
4375 * @work_to_do: max amount of work allowed for this call to do
4376 */
4377static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4378                               struct e1000_rx_ring *rx_ring,
4379                               int *work_done, int work_to_do)
4380{
4381        struct net_device *netdev = adapter->netdev;
4382        struct pci_dev *pdev = adapter->pdev;
4383        struct e1000_rx_desc *rx_desc, *next_rxd;
4384        struct e1000_rx_buffer *buffer_info, *next_buffer;
4385        u32 length;
4386        unsigned int i;
4387        int cleaned_count = 0;
4388        bool cleaned = false;
4389        unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4390
4391        i = rx_ring->next_to_clean;
4392        rx_desc = E1000_RX_DESC(*rx_ring, i);
4393        buffer_info = &rx_ring->buffer_info[i];
4394
4395        while (rx_desc->status & E1000_RXD_STAT_DD) {
4396                struct sk_buff *skb;
4397                u8 *data;
4398                u8 status;
4399
4400                if (*work_done >= work_to_do)
4401                        break;
4402                (*work_done)++;
4403                dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4404
4405                status = rx_desc->status;
4406                length = le16_to_cpu(rx_desc->length);
4407
4408                data = buffer_info->rxbuf.data;
4409                prefetch(data);
4410                skb = e1000_copybreak(adapter, buffer_info, length, data);
4411                if (!skb) {
4412                        unsigned int frag_len = e1000_frag_len(adapter);
4413
4414                        skb = build_skb(data - E1000_HEADROOM, frag_len);
4415                        if (!skb) {
4416                                adapter->alloc_rx_buff_failed++;
4417                                break;
4418                        }
4419
4420                        skb_reserve(skb, E1000_HEADROOM);
4421                        dma_unmap_single(&pdev->dev, buffer_info->dma,
4422                                         adapter->rx_buffer_len,
4423                                         DMA_FROM_DEVICE);
4424                        buffer_info->dma = 0;
4425                        buffer_info->rxbuf.data = NULL;
4426                }
4427
4428                if (++i == rx_ring->count)
4429                        i = 0;
4430
4431                next_rxd = E1000_RX_DESC(*rx_ring, i);
4432                prefetch(next_rxd);
4433
4434                next_buffer = &rx_ring->buffer_info[i];
4435
4436                cleaned = true;
4437                cleaned_count++;
4438
4439                /* !EOP means multiple descriptors were used to store a single
4440                 * packet, if thats the case we need to toss it.  In fact, we
4441                 * to toss every packet with the EOP bit clear and the next
4442                 * frame that _does_ have the EOP bit set, as it is by
4443                 * definition only a frame fragment
4444                 */
4445                if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4446                        adapter->discarding = true;
4447
4448                if (adapter->discarding) {
4449                        /* All receives must fit into a single buffer */
4450                        netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4451                        dev_kfree_skb(skb);
4452                        if (status & E1000_RXD_STAT_EOP)
4453                                adapter->discarding = false;
4454                        goto next_desc;
4455                }
4456
4457                if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4458                        if (e1000_tbi_should_accept(adapter, status,
4459                                                    rx_desc->errors,
4460                                                    length, data)) {
4461                                length--;
4462                        } else if (netdev->features & NETIF_F_RXALL) {
4463                                goto process_skb;
4464                        } else {
4465                                dev_kfree_skb(skb);
4466                                goto next_desc;
4467                        }
4468                }
4469
4470process_skb:
4471                total_rx_bytes += (length - 4); /* don't count FCS */
4472                total_rx_packets++;
4473
4474                if (likely(!(netdev->features & NETIF_F_RXFCS)))
4475                        /* adjust length to remove Ethernet CRC, this must be
4476                         * done after the TBI_ACCEPT workaround above
4477                         */
4478                        length -= 4;
4479
4480                if (buffer_info->rxbuf.data == NULL)
4481                        skb_put(skb, length);
4482                else /* copybreak skb */
4483                        skb_trim(skb, length);
4484
4485                /* Receive Checksum Offload */
4486                e1000_rx_checksum(adapter,
4487                                  (u32)(status) |
4488                                  ((u32)(rx_desc->errors) << 24),
4489                                  le16_to_cpu(rx_desc->csum), skb);
4490
4491                e1000_receive_skb(adapter, status, rx_desc->special, skb);
4492
4493next_desc:
4494                rx_desc->status = 0;
4495
4496                /* return some buffers to hardware, one at a time is too slow */
4497                if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4498                        adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4499                        cleaned_count = 0;
4500                }
4501
4502                /* use prefetched values */
4503                rx_desc = next_rxd;
4504                buffer_info = next_buffer;
4505        }
4506        rx_ring->next_to_clean = i;
4507
4508        cleaned_count = E1000_DESC_UNUSED(rx_ring);
4509        if (cleaned_count)
4510                adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4511
4512        adapter->total_rx_packets += total_rx_packets;
4513        adapter->total_rx_bytes += total_rx_bytes;
4514        netdev->stats.rx_bytes += total_rx_bytes;
4515        netdev->stats.rx_packets += total_rx_packets;
4516        return cleaned;
4517}
4518
4519/**
4520 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4521 * @adapter: address of board private structure
4522 * @rx_ring: pointer to receive ring structure
4523 * @cleaned_count: number of buffers to allocate this pass
4524 **/
4525static void
4526e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4527                             struct e1000_rx_ring *rx_ring, int cleaned_count)
4528{
4529        struct pci_dev *pdev = adapter->pdev;
4530        struct e1000_rx_desc *rx_desc;
4531        struct e1000_rx_buffer *buffer_info;
4532        unsigned int i;
4533
4534        i = rx_ring->next_to_use;
4535        buffer_info = &rx_ring->buffer_info[i];
4536
4537        while (cleaned_count--) {
4538                /* allocate a new page if necessary */
4539                if (!buffer_info->rxbuf.page) {
4540                        buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4541                        if (unlikely(!buffer_info->rxbuf.page)) {
4542                                adapter->alloc_rx_buff_failed++;
4543                                break;
4544                        }
4545                }
4546
4547                if (!buffer_info->dma) {
4548                        buffer_info->dma = dma_map_page(&pdev->dev,
4549                                                        buffer_info->rxbuf.page, 0,
4550                                                        adapter->rx_buffer_len,
4551                                                        DMA_FROM_DEVICE);
4552                        if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4553                                put_page(buffer_info->rxbuf.page);
4554                                buffer_info->rxbuf.page = NULL;
4555                                buffer_info->dma = 0;
4556                                adapter->alloc_rx_buff_failed++;
4557                                break;
4558                        }
4559                }
4560
4561                rx_desc = E1000_RX_DESC(*rx_ring, i);
4562                rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4563
4564                if (unlikely(++i == rx_ring->count))
4565                        i = 0;
4566                buffer_info = &rx_ring->buffer_info[i];
4567        }
4568
4569        if (likely(rx_ring->next_to_use != i)) {
4570                rx_ring->next_to_use = i;
4571                if (unlikely(i-- == 0))
4572                        i = (rx_ring->count - 1);
4573
4574                /* Force memory writes to complete before letting h/w
4575                 * know there are new descriptors to fetch.  (Only
4576                 * applicable for weak-ordered memory model archs,
4577                 * such as IA-64).
4578                 */
4579                wmb();
4580                writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4581        }
4582}
4583
4584/**
4585 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4586 * @adapter: address of board private structure
4587 **/
4588static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4589                                   struct e1000_rx_ring *rx_ring,
4590                                   int cleaned_count)
4591{
4592        struct e1000_hw *hw = &adapter->hw;
4593        struct pci_dev *pdev = adapter->pdev;
4594        struct e1000_rx_desc *rx_desc;
4595        struct e1000_rx_buffer *buffer_info;
4596        unsigned int i;
4597        unsigned int bufsz = adapter->rx_buffer_len;
4598
4599        i = rx_ring->next_to_use;
4600        buffer_info = &rx_ring->buffer_info[i];
4601
4602        while (cleaned_count--) {
4603                void *data;
4604
4605                if (buffer_info->rxbuf.data)
4606                        goto skip;
4607
4608                data = e1000_alloc_frag(adapter);
4609                if (!data) {
4610                        /* Better luck next round */
4611                        adapter->alloc_rx_buff_failed++;
4612                        break;
4613                }
4614
4615                /* Fix for errata 23, can't cross 64kB boundary */
4616                if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4617                        void *olddata = data;
4618                        e_err(rx_err, "skb align check failed: %u bytes at "
4619                              "%p\n", bufsz, data);
4620                        /* Try again, without freeing the previous */
4621                        data = e1000_alloc_frag(adapter);
4622                        /* Failed allocation, critical failure */
4623                        if (!data) {
4624                                skb_free_frag(olddata);
4625                                adapter->alloc_rx_buff_failed++;
4626                                break;
4627                        }
4628
4629                        if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4630                                /* give up */
4631                                skb_free_frag(data);
4632                                skb_free_frag(olddata);
4633                                adapter->alloc_rx_buff_failed++;
4634                                break;
4635                        }
4636
4637                        /* Use new allocation */
4638                        skb_free_frag(olddata);
4639                }
4640                buffer_info->dma = dma_map_single(&pdev->dev,
4641                                                  data,
4642                                                  adapter->rx_buffer_len,
4643                                                  DMA_FROM_DEVICE);
4644                if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4645                        skb_free_frag(data);
4646                        buffer_info->dma = 0;
4647                        adapter->alloc_rx_buff_failed++;
4648                        break;
4649                }
4650
4651                /* XXX if it was allocated cleanly it will never map to a
4652                 * boundary crossing
4653                 */
4654
4655                /* Fix for errata 23, can't cross 64kB boundary */
4656                if (!e1000_check_64k_bound(adapter,
4657                                        (void *)(unsigned long)buffer_info->dma,
4658                                        adapter->rx_buffer_len)) {
4659                        e_err(rx_err, "dma align check failed: %u bytes at "
4660                              "%p\n", adapter->rx_buffer_len,
4661                              (void *)(unsigned long)buffer_info->dma);
4662
4663                        dma_unmap_single(&pdev->dev, buffer_info->dma,
4664                                         adapter->rx_buffer_len,
4665                                         DMA_FROM_DEVICE);
4666
4667                        skb_free_frag(data);
4668                        buffer_info->rxbuf.data = NULL;
4669                        buffer_info->dma = 0;
4670
4671                        adapter->alloc_rx_buff_failed++;
4672                        break;
4673                }
4674                buffer_info->rxbuf.data = data;
4675 skip:
4676                rx_desc = E1000_RX_DESC(*rx_ring, i);
4677                rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4678
4679                if (unlikely(++i == rx_ring->count))
4680                        i = 0;
4681                buffer_info = &rx_ring->buffer_info[i];
4682        }
4683
4684        if (likely(rx_ring->next_to_use != i)) {
4685                rx_ring->next_to_use = i;
4686                if (unlikely(i-- == 0))
4687                        i = (rx_ring->count - 1);
4688
4689                /* Force memory writes to complete before letting h/w
4690                 * know there are new descriptors to fetch.  (Only
4691                 * applicable for weak-ordered memory model archs,
4692                 * such as IA-64).
4693                 */
4694                wmb();
4695                writel(i, hw->hw_addr + rx_ring->rdt);
4696        }
4697}
4698
4699/**
4700 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4701 * @adapter:
4702 **/
4703static void e1000_smartspeed(struct e1000_adapter *adapter)
4704{
4705        struct e1000_hw *hw = &adapter->hw;
4706        u16 phy_status;
4707        u16 phy_ctrl;
4708
4709        if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4710           !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4711                return;
4712
4713        if (adapter->smartspeed == 0) {
4714                /* If Master/Slave config fault is asserted twice,
4715                 * we assume back-to-back
4716                 */
4717                e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4718                if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4719                        return;
4720                e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4721                if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4722                        return;
4723                e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4724                if (phy_ctrl & CR_1000T_MS_ENABLE) {
4725                        phy_ctrl &= ~CR_1000T_MS_ENABLE;
4726                        e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4727                                            phy_ctrl);
4728                        adapter->smartspeed++;
4729                        if (!e1000_phy_setup_autoneg(hw) &&
4730                           !e1000_read_phy_reg(hw, PHY_CTRL,
4731                                               &phy_ctrl)) {
4732                                phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4733                                             MII_CR_RESTART_AUTO_NEG);
4734                                e1000_write_phy_reg(hw, PHY_CTRL,
4735                                                    phy_ctrl);
4736                        }
4737                }
4738                return;
4739        } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4740                /* If still no link, perhaps using 2/3 pair cable */
4741                e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4742                phy_ctrl |= CR_1000T_MS_ENABLE;
4743                e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4744                if (!e1000_phy_setup_autoneg(hw) &&
4745                   !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4746                        phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4747                                     MII_CR_RESTART_AUTO_NEG);
4748                        e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4749                }
4750        }
4751        /* Restart process after E1000_SMARTSPEED_MAX iterations */
4752        if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4753                adapter->smartspeed = 0;
4754}
4755
4756/**
4757 * e1000_ioctl -
4758 * @netdev:
4759 * @ifreq:
4760 * @cmd:
4761 **/
4762static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4763{
4764        switch (cmd) {
4765        case SIOCGMIIPHY:
4766        case SIOCGMIIREG:
4767        case SIOCSMIIREG:
4768                return e1000_mii_ioctl(netdev, ifr, cmd);
4769        default:
4770                return -EOPNOTSUPP;
4771        }
4772}
4773
4774/**
4775 * e1000_mii_ioctl -
4776 * @netdev:
4777 * @ifreq:
4778 * @cmd:
4779 **/
4780static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4781                           int cmd)
4782{
4783        struct e1000_adapter *adapter = netdev_priv(netdev);
4784        struct e1000_hw *hw = &adapter->hw;
4785        struct mii_ioctl_data *data = if_mii(ifr);
4786        int retval;
4787        u16 mii_reg;
4788        unsigned long flags;
4789
4790        if (hw->media_type != e1000_media_type_copper)
4791                return -EOPNOTSUPP;
4792
4793        switch (cmd) {
4794        case SIOCGMIIPHY:
4795                data->phy_id = hw->phy_addr;
4796                break;
4797        case SIOCGMIIREG:
4798                spin_lock_irqsave(&adapter->stats_lock, flags);
4799                if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4800                                   &data->val_out)) {
4801                        spin_unlock_irqrestore(&adapter->stats_lock, flags);
4802                        return -EIO;
4803                }
4804                spin_unlock_irqrestore(&adapter->stats_lock, flags);
4805                break;
4806        case SIOCSMIIREG:
4807                if (data->reg_num & ~(0x1F))
4808                        return -EFAULT;
4809                mii_reg = data->val_in;
4810                spin_lock_irqsave(&adapter->stats_lock, flags);
4811                if (e1000_write_phy_reg(hw, data->reg_num,
4812                                        mii_reg)) {
4813                        spin_unlock_irqrestore(&adapter->stats_lock, flags);
4814                        return -EIO;
4815                }
4816                spin_unlock_irqrestore(&adapter->stats_lock, flags);
4817                if (hw->media_type == e1000_media_type_copper) {
4818                        switch (data->reg_num) {
4819                        case PHY_CTRL:
4820                                if (mii_reg & MII_CR_POWER_DOWN)
4821                                        break;
4822                                if (mii_reg & MII_CR_AUTO_NEG_EN) {
4823                                        hw->autoneg = 1;
4824                                        hw->autoneg_advertised = 0x2F;
4825                                } else {
4826                                        u32 speed;
4827                                        if (mii_reg & 0x40)
4828                                                speed = SPEED_1000;
4829                                        else if (mii_reg & 0x2000)
4830                                                speed = SPEED_100;
4831                                        else
4832                                                speed = SPEED_10;
4833                                        retval = e1000_set_spd_dplx(
4834                                                adapter, speed,
4835                                                ((mii_reg & 0x100)
4836                                                 ? DUPLEX_FULL :
4837                                                 DUPLEX_HALF));
4838                                        if (retval)
4839                                                return retval;
4840                                }
4841                                if (netif_running(adapter->netdev))
4842                                        e1000_reinit_locked(adapter);
4843                                else
4844                                        e1000_reset(adapter);
4845                                break;
4846                        case M88E1000_PHY_SPEC_CTRL:
4847                        case M88E1000_EXT_PHY_SPEC_CTRL:
4848                                if (e1000_phy_reset(hw))
4849                                        return -EIO;
4850                                break;
4851                        }
4852                } else {
4853                        switch (data->reg_num) {
4854                        case PHY_CTRL:
4855                                if (mii_reg & MII_CR_POWER_DOWN)
4856                                        break;
4857                                if (netif_running(adapter->netdev))
4858                                        e1000_reinit_locked(adapter);
4859                                else
4860                                        e1000_reset(adapter);
4861                                break;
4862                        }
4863                }
4864                break;
4865        default:
4866                return -EOPNOTSUPP;
4867        }
4868        return E1000_SUCCESS;
4869}
4870
4871void e1000_pci_set_mwi(struct e1000_hw *hw)
4872{
4873        struct e1000_adapter *adapter = hw->back;
4874        int ret_val = pci_set_mwi(adapter->pdev);
4875
4876        if (ret_val)
4877                e_err(probe, "Error in setting MWI\n");
4878}
4879
4880void e1000_pci_clear_mwi(struct e1000_hw *hw)
4881{
4882        struct e1000_adapter *adapter = hw->back;
4883
4884        pci_clear_mwi(adapter->pdev);
4885}
4886
4887int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4888{
4889        struct e1000_adapter *adapter = hw->back;
4890        return pcix_get_mmrbc(adapter->pdev);
4891}
4892
4893void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4894{
4895        struct e1000_adapter *adapter = hw->back;
4896        pcix_set_mmrbc(adapter->pdev, mmrbc);
4897}
4898
4899void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4900{
4901        outl(value, port);
4902}
4903
4904static bool e1000_vlan_used(struct e1000_adapter *adapter)
4905{
4906        u16 vid;
4907
4908        for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4909                return true;
4910        return false;
4911}
4912
4913static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4914                              netdev_features_t features)
4915{
4916        struct e1000_hw *hw = &adapter->hw;
4917        u32 ctrl;
4918
4919        ctrl = er32(CTRL);
4920        if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4921                /* enable VLAN tag insert/strip */
4922                ctrl |= E1000_CTRL_VME;
4923        } else {
4924                /* disable VLAN tag insert/strip */
4925                ctrl &= ~E1000_CTRL_VME;
4926        }
4927        ew32(CTRL, ctrl);
4928}
4929static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4930                                     bool filter_on)
4931{
4932        struct e1000_hw *hw = &adapter->hw;
4933        u32 rctl;
4934
4935        if (!test_bit(__E1000_DOWN, &adapter->flags))
4936                e1000_irq_disable(adapter);
4937
4938        __e1000_vlan_mode(adapter, adapter->netdev->features);
4939        if (filter_on) {
4940                /* enable VLAN receive filtering */
4941                rctl = er32(RCTL);
4942                rctl &= ~E1000_RCTL_CFIEN;
4943                if (!(adapter->netdev->flags & IFF_PROMISC))
4944                        rctl |= E1000_RCTL_VFE;
4945                ew32(RCTL, rctl);
4946                e1000_update_mng_vlan(adapter);
4947        } else {
4948                /* disable VLAN receive filtering */
4949                rctl = er32(RCTL);
4950                rctl &= ~E1000_RCTL_VFE;
4951                ew32(RCTL, rctl);
4952        }
4953
4954        if (!test_bit(__E1000_DOWN, &adapter->flags))
4955                e1000_irq_enable(adapter);
4956}
4957
4958static void e1000_vlan_mode(struct net_device *netdev,
4959                            netdev_features_t features)
4960{
4961        struct e1000_adapter *adapter = netdev_priv(netdev);
4962
4963        if (!test_bit(__E1000_DOWN, &adapter->flags))
4964                e1000_irq_disable(adapter);
4965
4966        __e1000_vlan_mode(adapter, features);
4967
4968        if (!test_bit(__E1000_DOWN, &adapter->flags))
4969                e1000_irq_enable(adapter);
4970}
4971
4972static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4973                                 __be16 proto, u16 vid)
4974{
4975        struct e1000_adapter *adapter = netdev_priv(netdev);
4976        struct e1000_hw *hw = &adapter->hw;
4977        u32 vfta, index;
4978
4979        if ((hw->mng_cookie.status &
4980             E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4981            (vid == adapter->mng_vlan_id))
4982                return 0;
4983
4984        if (!e1000_vlan_used(adapter))
4985                e1000_vlan_filter_on_off(adapter, true);
4986
4987        /* add VID to filter table */
4988        index = (vid >> 5) & 0x7F;
4989        vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4990        vfta |= (1 << (vid & 0x1F));
4991        e1000_write_vfta(hw, index, vfta);
4992
4993        set_bit(vid, adapter->active_vlans);
4994
4995        return 0;
4996}
4997
4998static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4999                                  __be16 proto, u16 vid)
5000{
5001        struct e1000_adapter *adapter = netdev_priv(netdev);
5002        struct e1000_hw *hw = &adapter->hw;
5003        u32 vfta, index;
5004
5005        if (!test_bit(__E1000_DOWN, &adapter->flags))
5006                e1000_irq_disable(adapter);
5007        if (!test_bit(__E1000_DOWN, &adapter->flags))
5008                e1000_irq_enable(adapter);
5009
5010        /* remove VID from filter table */
5011        index = (vid >> 5) & 0x7F;
5012        vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
5013        vfta &= ~(1 << (vid & 0x1F));
5014        e1000_write_vfta(hw, index, vfta);
5015
5016        clear_bit(vid, adapter->active_vlans);
5017
5018        if (!e1000_vlan_used(adapter))
5019                e1000_vlan_filter_on_off(adapter, false);
5020
5021        return 0;
5022}
5023
5024static void e1000_restore_vlan(struct e1000_adapter *adapter)
5025{
5026        u16 vid;
5027
5028        if (!e1000_vlan_used(adapter))
5029                return;
5030
5031        e1000_vlan_filter_on_off(adapter, true);
5032        for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
5033                e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
5034}
5035
5036int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
5037{
5038        struct e1000_hw *hw = &adapter->hw;
5039
5040        hw->autoneg = 0;
5041
5042        /* Make sure dplx is at most 1 bit and lsb of speed is not set
5043         * for the switch() below to work
5044         */
5045        if ((spd & 1) || (dplx & ~1))
5046                goto err_inval;
5047
5048        /* Fiber NICs only allow 1000 gbps Full duplex */
5049        if ((hw->media_type == e1000_media_type_fiber) &&
5050            spd != SPEED_1000 &&
5051            dplx != DUPLEX_FULL)
5052                goto err_inval;
5053
5054        switch (spd + dplx) {
5055        case SPEED_10 + DUPLEX_HALF:
5056                hw->forced_speed_duplex = e1000_10_half;
5057                break;
5058        case SPEED_10 + DUPLEX_FULL:
5059                hw->forced_speed_duplex = e1000_10_full;
5060                break;
5061        case SPEED_100 + DUPLEX_HALF:
5062                hw->forced_speed_duplex = e1000_100_half;
5063                break;
5064        case SPEED_100 + DUPLEX_FULL:
5065                hw->forced_speed_duplex = e1000_100_full;
5066                break;
5067        case SPEED_1000 + DUPLEX_FULL:
5068                hw->autoneg = 1;
5069                hw->autoneg_advertised = ADVERTISE_1000_FULL;
5070                break;
5071        case SPEED_1000 + DUPLEX_HALF: /* not supported */
5072        default:
5073                goto err_inval;
5074        }
5075
5076        /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5077        hw->mdix = AUTO_ALL_MODES;
5078
5079        return 0;
5080
5081err_inval:
5082        e_err(probe, "Unsupported Speed/Duplex configuration\n");
5083        return -EINVAL;
5084}
5085
5086static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5087{
5088        struct net_device *netdev = pci_get_drvdata(pdev);
5089        struct e1000_adapter *adapter = netdev_priv(netdev);
5090        struct e1000_hw *hw = &adapter->hw;
5091        u32 ctrl, ctrl_ext, rctl, status;
5092        u32 wufc = adapter->wol;
5093#ifdef CONFIG_PM
5094        int retval = 0;
5095#endif
5096
5097        netif_device_detach(netdev);
5098
5099        if (netif_running(netdev)) {
5100                int count = E1000_CHECK_RESET_COUNT;
5101
5102                while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5103                        usleep_range(10000, 20000);
5104
5105                WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5106                e1000_down(adapter);
5107        }
5108
5109#ifdef CONFIG_PM
5110        retval = pci_save_state(pdev);
5111        if (retval)
5112                return retval;
5113#endif
5114
5115        status = er32(STATUS);
5116        if (status & E1000_STATUS_LU)
5117                wufc &= ~E1000_WUFC_LNKC;
5118
5119        if (wufc) {
5120                e1000_setup_rctl(adapter);
5121                e1000_set_rx_mode(netdev);
5122
5123                rctl = er32(RCTL);
5124
5125                /* turn on all-multi mode if wake on multicast is enabled */
5126                if (wufc & E1000_WUFC_MC)
5127                        rctl |= E1000_RCTL_MPE;
5128
5129                /* enable receives in the hardware */
5130                ew32(RCTL, rctl | E1000_RCTL_EN);
5131
5132                if (hw->mac_type >= e1000_82540) {
5133                        ctrl = er32(CTRL);
5134                        /* advertise wake from D3Cold */
5135                        #define E1000_CTRL_ADVD3WUC 0x00100000
5136                        /* phy power management enable */
5137                        #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5138                        ctrl |= E1000_CTRL_ADVD3WUC |
5139                                E1000_CTRL_EN_PHY_PWR_MGMT;
5140                        ew32(CTRL, ctrl);
5141                }
5142
5143                if (hw->media_type == e1000_media_type_fiber ||
5144                    hw->media_type == e1000_media_type_internal_serdes) {
5145                        /* keep the laser running in D3 */
5146                        ctrl_ext = er32(CTRL_EXT);
5147                        ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5148                        ew32(CTRL_EXT, ctrl_ext);
5149                }
5150
5151                ew32(WUC, E1000_WUC_PME_EN);
5152                ew32(WUFC, wufc);
5153        } else {
5154                ew32(WUC, 0);
5155                ew32(WUFC, 0);
5156        }
5157
5158        e1000_release_manageability(adapter);
5159
5160        *enable_wake = !!wufc;
5161
5162        /* make sure adapter isn't asleep if manageability is enabled */
5163        if (adapter->en_mng_pt)
5164                *enable_wake = true;
5165
5166        if (netif_running(netdev))
5167                e1000_free_irq(adapter);
5168
5169        pci_disable_device(pdev);
5170
5171        return 0;
5172}
5173
5174#ifdef CONFIG_PM
5175static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5176{
5177        int retval;
5178        bool wake;
5179
5180        retval = __e1000_shutdown(pdev, &wake);
5181        if (retval)
5182                return retval;
5183
5184        if (wake) {
5185                pci_prepare_to_sleep(pdev);
5186        } else {
5187                pci_wake_from_d3(pdev, false);
5188                pci_set_power_state(pdev, PCI_D3hot);
5189        }
5190
5191        return 0;
5192}
5193
5194static int e1000_resume(struct pci_dev *pdev)
5195{
5196        struct net_device *netdev = pci_get_drvdata(pdev);
5197        struct e1000_adapter *adapter = netdev_priv(netdev);
5198        struct e1000_hw *hw = &adapter->hw;
5199        u32 err;
5200
5201        pci_set_power_state(pdev, PCI_D0);
5202        pci_restore_state(pdev);
5203        pci_save_state(pdev);
5204
5205        if (adapter->need_ioport)
5206                err = pci_enable_device(pdev);
5207        else
5208                err = pci_enable_device_mem(pdev);
5209        if (err) {
5210                pr_err("Cannot enable PCI device from suspend\n");
5211                return err;
5212        }
5213        pci_set_master(pdev);
5214
5215        pci_enable_wake(pdev, PCI_D3hot, 0);
5216        pci_enable_wake(pdev, PCI_D3cold, 0);
5217
5218        if (netif_running(netdev)) {
5219                err = e1000_request_irq(adapter);
5220                if (err)
5221                        return err;
5222        }
5223
5224        e1000_power_up_phy(adapter);
5225        e1000_reset(adapter);
5226        ew32(WUS, ~0);
5227
5228        e1000_init_manageability(adapter);
5229
5230        if (netif_running(netdev))
5231                e1000_up(adapter);
5232
5233        netif_device_attach(netdev);
5234
5235        return 0;
5236}
5237#endif
5238
5239static void e1000_shutdown(struct pci_dev *pdev)
5240{
5241        bool wake;
5242
5243        __e1000_shutdown(pdev, &wake);
5244
5245        if (system_state == SYSTEM_POWER_OFF) {
5246                pci_wake_from_d3(pdev, wake);
5247                pci_set_power_state(pdev, PCI_D3hot);
5248        }
5249}
5250
5251#ifdef CONFIG_NET_POLL_CONTROLLER
5252/* Polling 'interrupt' - used by things like netconsole to send skbs
5253 * without having to re-enable interrupts. It's not called while
5254 * the interrupt routine is executing.
5255 */
5256static void e1000_netpoll(struct net_device *netdev)
5257{
5258        struct e1000_adapter *adapter = netdev_priv(netdev);
5259
5260        disable_irq(adapter->pdev->irq);
5261        e1000_intr(adapter->pdev->irq, netdev);
5262        enable_irq(adapter->pdev->irq);
5263}
5264#endif
5265
5266/**
5267 * e1000_io_error_detected - called when PCI error is detected
5268 * @pdev: Pointer to PCI device
5269 * @state: The current pci connection state
5270 *
5271 * This function is called after a PCI bus error affecting
5272 * this device has been detected.
5273 */
5274static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5275                                                pci_channel_state_t state)
5276{
5277        struct net_device *netdev = pci_get_drvdata(pdev);
5278        struct e1000_adapter *adapter = netdev_priv(netdev);
5279
5280        netif_device_detach(netdev);
5281
5282        if (state == pci_channel_io_perm_failure)
5283                return PCI_ERS_RESULT_DISCONNECT;
5284
5285        if (netif_running(netdev))
5286                e1000_down(adapter);
5287        pci_disable_device(pdev);
5288
5289        /* Request a slot slot reset. */
5290        return PCI_ERS_RESULT_NEED_RESET;
5291}
5292
5293/**
5294 * e1000_io_slot_reset - called after the pci bus has been reset.
5295 * @pdev: Pointer to PCI device
5296 *
5297 * Restart the card from scratch, as if from a cold-boot. Implementation
5298 * resembles the first-half of the e1000_resume routine.
5299 */
5300static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5301{
5302        struct net_device *netdev = pci_get_drvdata(pdev);
5303        struct e1000_adapter *adapter = netdev_priv(netdev);
5304        struct e1000_hw *hw = &adapter->hw;
5305        int err;
5306
5307        if (adapter->need_ioport)
5308                err = pci_enable_device(pdev);
5309        else
5310                err = pci_enable_device_mem(pdev);
5311        if (err) {
5312                pr_err("Cannot re-enable PCI device after reset.\n");
5313                return PCI_ERS_RESULT_DISCONNECT;
5314        }
5315        pci_set_master(pdev);
5316
5317        pci_enable_wake(pdev, PCI_D3hot, 0);
5318        pci_enable_wake(pdev, PCI_D3cold, 0);
5319
5320        e1000_reset(adapter);
5321        ew32(WUS, ~0);
5322
5323        return PCI_ERS_RESULT_RECOVERED;
5324}
5325
5326/**
5327 * e1000_io_resume - called when traffic can start flowing again.
5328 * @pdev: Pointer to PCI device
5329 *
5330 * This callback is called when the error recovery driver tells us that
5331 * its OK to resume normal operation. Implementation resembles the
5332 * second-half of the e1000_resume routine.
5333 */
5334static void e1000_io_resume(struct pci_dev *pdev)
5335{
5336        struct net_device *netdev = pci_get_drvdata(pdev);
5337        struct e1000_adapter *adapter = netdev_priv(netdev);
5338
5339        e1000_init_manageability(adapter);
5340
5341        if (netif_running(netdev)) {
5342                if (e1000_up(adapter)) {
5343                        pr_info("can't bring device back up after reset\n");
5344                        return;
5345                }
5346        }
5347
5348        netif_device_attach(netdev);
5349}
5350
5351/* e1000_main.c */
5352