linux/drivers/net/ethernet/intel/e1000e/80003es2lan.c
<<
>>
Prefs
   1/* Intel PRO/1000 Linux driver
   2 * Copyright(c) 1999 - 2015 Intel Corporation.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms and conditions of the GNU General Public License,
   6 * version 2, as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 * The full GNU General Public License is included in this distribution in
  14 * the file called "COPYING".
  15 *
  16 * Contact Information:
  17 * Linux NICS <linux.nics@intel.com>
  18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  20 */
  21
  22/* 80003ES2LAN Gigabit Ethernet Controller (Copper)
  23 * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
  24 */
  25
  26#include "e1000.h"
  27
  28/* A table for the GG82563 cable length where the range is defined
  29 * with a lower bound at "index" and the upper bound at
  30 * "index + 5".
  31 */
  32static const u16 e1000_gg82563_cable_length_table[] = {
  33        0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF
  34};
  35
  36#define GG82563_CABLE_LENGTH_TABLE_SIZE \
  37                ARRAY_SIZE(e1000_gg82563_cable_length_table)
  38
  39static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
  40static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
  41static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
  42static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
  43static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
  44static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
  45static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
  46static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
  47                                           u16 *data);
  48static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
  49                                            u16 data);
  50static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw);
  51
  52/**
  53 *  e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
  54 *  @hw: pointer to the HW structure
  55 **/
  56static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
  57{
  58        struct e1000_phy_info *phy = &hw->phy;
  59        s32 ret_val;
  60
  61        if (hw->phy.media_type != e1000_media_type_copper) {
  62                phy->type = e1000_phy_none;
  63                return 0;
  64        } else {
  65                phy->ops.power_up = e1000_power_up_phy_copper;
  66                phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan;
  67        }
  68
  69        phy->addr = 1;
  70        phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
  71        phy->reset_delay_us = 100;
  72        phy->type = e1000_phy_gg82563;
  73
  74        /* This can only be done after all function pointers are setup. */
  75        ret_val = e1000e_get_phy_id(hw);
  76
  77        /* Verify phy id */
  78        if (phy->id != GG82563_E_PHY_ID)
  79                return -E1000_ERR_PHY;
  80
  81        return ret_val;
  82}
  83
  84/**
  85 *  e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
  86 *  @hw: pointer to the HW structure
  87 **/
  88static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
  89{
  90        struct e1000_nvm_info *nvm = &hw->nvm;
  91        u32 eecd = er32(EECD);
  92        u16 size;
  93
  94        nvm->opcode_bits = 8;
  95        nvm->delay_usec = 1;
  96        switch (nvm->override) {
  97        case e1000_nvm_override_spi_large:
  98                nvm->page_size = 32;
  99                nvm->address_bits = 16;
 100                break;
 101        case e1000_nvm_override_spi_small:
 102                nvm->page_size = 8;
 103                nvm->address_bits = 8;
 104                break;
 105        default:
 106                nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
 107                nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
 108                break;
 109        }
 110
 111        nvm->type = e1000_nvm_eeprom_spi;
 112
 113        size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
 114                     E1000_EECD_SIZE_EX_SHIFT);
 115
 116        /* Added to a constant, "size" becomes the left-shift value
 117         * for setting word_size.
 118         */
 119        size += NVM_WORD_SIZE_BASE_SHIFT;
 120
 121        /* EEPROM access above 16k is unsupported */
 122        if (size > 14)
 123                size = 14;
 124        nvm->word_size = 1 << size;
 125
 126        return 0;
 127}
 128
 129/**
 130 *  e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
 131 *  @hw: pointer to the HW structure
 132 **/
 133static s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw)
 134{
 135        struct e1000_mac_info *mac = &hw->mac;
 136
 137        /* Set media type and media-dependent function pointers */
 138        switch (hw->adapter->pdev->device) {
 139        case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
 140                hw->phy.media_type = e1000_media_type_internal_serdes;
 141                mac->ops.check_for_link = e1000e_check_for_serdes_link;
 142                mac->ops.setup_physical_interface =
 143                    e1000e_setup_fiber_serdes_link;
 144                break;
 145        default:
 146                hw->phy.media_type = e1000_media_type_copper;
 147                mac->ops.check_for_link = e1000e_check_for_copper_link;
 148                mac->ops.setup_physical_interface =
 149                    e1000_setup_copper_link_80003es2lan;
 150                break;
 151        }
 152
 153        /* Set mta register count */
 154        mac->mta_reg_count = 128;
 155        /* Set rar entry count */
 156        mac->rar_entry_count = E1000_RAR_ENTRIES;
 157        /* FWSM register */
 158        mac->has_fwsm = true;
 159        /* ARC supported; valid only if manageability features are enabled. */
 160        mac->arc_subsystem_valid = !!(er32(FWSM) & E1000_FWSM_MODE_MASK);
 161        /* Adaptive IFS not supported */
 162        mac->adaptive_ifs = false;
 163
 164        /* set lan id for port to determine which phy lock to use */
 165        hw->mac.ops.set_lan_id(hw);
 166
 167        return 0;
 168}
 169
 170static s32 e1000_get_variants_80003es2lan(struct e1000_adapter *adapter)
 171{
 172        struct e1000_hw *hw = &adapter->hw;
 173        s32 rc;
 174
 175        rc = e1000_init_mac_params_80003es2lan(hw);
 176        if (rc)
 177                return rc;
 178
 179        rc = e1000_init_nvm_params_80003es2lan(hw);
 180        if (rc)
 181                return rc;
 182
 183        rc = e1000_init_phy_params_80003es2lan(hw);
 184        if (rc)
 185                return rc;
 186
 187        return 0;
 188}
 189
 190/**
 191 *  e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
 192 *  @hw: pointer to the HW structure
 193 *
 194 *  A wrapper to acquire access rights to the correct PHY.
 195 **/
 196static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
 197{
 198        u16 mask;
 199
 200        mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
 201        return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
 202}
 203
 204/**
 205 *  e1000_release_phy_80003es2lan - Release rights to access PHY
 206 *  @hw: pointer to the HW structure
 207 *
 208 *  A wrapper to release access rights to the correct PHY.
 209 **/
 210static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
 211{
 212        u16 mask;
 213
 214        mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
 215        e1000_release_swfw_sync_80003es2lan(hw, mask);
 216}
 217
 218/**
 219 *  e1000_acquire_mac_csr_80003es2lan - Acquire right to access Kumeran register
 220 *  @hw: pointer to the HW structure
 221 *
 222 *  Acquire the semaphore to access the Kumeran interface.
 223 *
 224 **/
 225static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw)
 226{
 227        u16 mask;
 228
 229        mask = E1000_SWFW_CSR_SM;
 230
 231        return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
 232}
 233
 234/**
 235 *  e1000_release_mac_csr_80003es2lan - Release right to access Kumeran Register
 236 *  @hw: pointer to the HW structure
 237 *
 238 *  Release the semaphore used to access the Kumeran interface
 239 **/
 240static void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw)
 241{
 242        u16 mask;
 243
 244        mask = E1000_SWFW_CSR_SM;
 245
 246        e1000_release_swfw_sync_80003es2lan(hw, mask);
 247}
 248
 249/**
 250 *  e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
 251 *  @hw: pointer to the HW structure
 252 *
 253 *  Acquire the semaphore to access the EEPROM.
 254 **/
 255static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
 256{
 257        s32 ret_val;
 258
 259        ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
 260        if (ret_val)
 261                return ret_val;
 262
 263        ret_val = e1000e_acquire_nvm(hw);
 264
 265        if (ret_val)
 266                e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
 267
 268        return ret_val;
 269}
 270
 271/**
 272 *  e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
 273 *  @hw: pointer to the HW structure
 274 *
 275 *  Release the semaphore used to access the EEPROM.
 276 **/
 277static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
 278{
 279        e1000e_release_nvm(hw);
 280        e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
 281}
 282
 283/**
 284 *  e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
 285 *  @hw: pointer to the HW structure
 286 *  @mask: specifies which semaphore to acquire
 287 *
 288 *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
 289 *  will also specify which port we're acquiring the lock for.
 290 **/
 291static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
 292{
 293        u32 swfw_sync;
 294        u32 swmask = mask;
 295        u32 fwmask = mask << 16;
 296        s32 i = 0;
 297        s32 timeout = 50;
 298
 299        while (i < timeout) {
 300                if (e1000e_get_hw_semaphore(hw))
 301                        return -E1000_ERR_SWFW_SYNC;
 302
 303                swfw_sync = er32(SW_FW_SYNC);
 304                if (!(swfw_sync & (fwmask | swmask)))
 305                        break;
 306
 307                /* Firmware currently using resource (fwmask)
 308                 * or other software thread using resource (swmask)
 309                 */
 310                e1000e_put_hw_semaphore(hw);
 311                mdelay(5);
 312                i++;
 313        }
 314
 315        if (i == timeout) {
 316                e_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
 317                return -E1000_ERR_SWFW_SYNC;
 318        }
 319
 320        swfw_sync |= swmask;
 321        ew32(SW_FW_SYNC, swfw_sync);
 322
 323        e1000e_put_hw_semaphore(hw);
 324
 325        return 0;
 326}
 327
 328/**
 329 *  e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
 330 *  @hw: pointer to the HW structure
 331 *  @mask: specifies which semaphore to acquire
 332 *
 333 *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
 334 *  will also specify which port we're releasing the lock for.
 335 **/
 336static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
 337{
 338        u32 swfw_sync;
 339
 340        while (e1000e_get_hw_semaphore(hw) != 0)
 341                ; /* Empty */
 342
 343        swfw_sync = er32(SW_FW_SYNC);
 344        swfw_sync &= ~mask;
 345        ew32(SW_FW_SYNC, swfw_sync);
 346
 347        e1000e_put_hw_semaphore(hw);
 348}
 349
 350/**
 351 *  e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
 352 *  @hw: pointer to the HW structure
 353 *  @offset: offset of the register to read
 354 *  @data: pointer to the data returned from the operation
 355 *
 356 *  Read the GG82563 PHY register.
 357 **/
 358static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
 359                                                  u32 offset, u16 *data)
 360{
 361        s32 ret_val;
 362        u32 page_select;
 363        u16 temp;
 364
 365        ret_val = e1000_acquire_phy_80003es2lan(hw);
 366        if (ret_val)
 367                return ret_val;
 368
 369        /* Select Configuration Page */
 370        if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
 371                page_select = GG82563_PHY_PAGE_SELECT;
 372        } else {
 373                /* Use Alternative Page Select register to access
 374                 * registers 30 and 31
 375                 */
 376                page_select = GG82563_PHY_PAGE_SELECT_ALT;
 377        }
 378
 379        temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
 380        ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
 381        if (ret_val) {
 382                e1000_release_phy_80003es2lan(hw);
 383                return ret_val;
 384        }
 385
 386        if (hw->dev_spec.e80003es2lan.mdic_wa_enable) {
 387                /* The "ready" bit in the MDIC register may be incorrectly set
 388                 * before the device has completed the "Page Select" MDI
 389                 * transaction.  So we wait 200us after each MDI command...
 390                 */
 391                usleep_range(200, 400);
 392
 393                /* ...and verify the command was successful. */
 394                ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
 395
 396                if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
 397                        e1000_release_phy_80003es2lan(hw);
 398                        return -E1000_ERR_PHY;
 399                }
 400
 401                usleep_range(200, 400);
 402
 403                ret_val = e1000e_read_phy_reg_mdic(hw,
 404                                                   MAX_PHY_REG_ADDRESS & offset,
 405                                                   data);
 406
 407                usleep_range(200, 400);
 408        } else {
 409                ret_val = e1000e_read_phy_reg_mdic(hw,
 410                                                   MAX_PHY_REG_ADDRESS & offset,
 411                                                   data);
 412        }
 413
 414        e1000_release_phy_80003es2lan(hw);
 415
 416        return ret_val;
 417}
 418
 419/**
 420 *  e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
 421 *  @hw: pointer to the HW structure
 422 *  @offset: offset of the register to read
 423 *  @data: value to write to the register
 424 *
 425 *  Write to the GG82563 PHY register.
 426 **/
 427static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
 428                                                   u32 offset, u16 data)
 429{
 430        s32 ret_val;
 431        u32 page_select;
 432        u16 temp;
 433
 434        ret_val = e1000_acquire_phy_80003es2lan(hw);
 435        if (ret_val)
 436                return ret_val;
 437
 438        /* Select Configuration Page */
 439        if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
 440                page_select = GG82563_PHY_PAGE_SELECT;
 441        } else {
 442                /* Use Alternative Page Select register to access
 443                 * registers 30 and 31
 444                 */
 445                page_select = GG82563_PHY_PAGE_SELECT_ALT;
 446        }
 447
 448        temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
 449        ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
 450        if (ret_val) {
 451                e1000_release_phy_80003es2lan(hw);
 452                return ret_val;
 453        }
 454
 455        if (hw->dev_spec.e80003es2lan.mdic_wa_enable) {
 456                /* The "ready" bit in the MDIC register may be incorrectly set
 457                 * before the device has completed the "Page Select" MDI
 458                 * transaction.  So we wait 200us after each MDI command...
 459                 */
 460                usleep_range(200, 400);
 461
 462                /* ...and verify the command was successful. */
 463                ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
 464
 465                if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
 466                        e1000_release_phy_80003es2lan(hw);
 467                        return -E1000_ERR_PHY;
 468                }
 469
 470                usleep_range(200, 400);
 471
 472                ret_val = e1000e_write_phy_reg_mdic(hw,
 473                                                    MAX_PHY_REG_ADDRESS &
 474                                                    offset, data);
 475
 476                usleep_range(200, 400);
 477        } else {
 478                ret_val = e1000e_write_phy_reg_mdic(hw,
 479                                                    MAX_PHY_REG_ADDRESS &
 480                                                    offset, data);
 481        }
 482
 483        e1000_release_phy_80003es2lan(hw);
 484
 485        return ret_val;
 486}
 487
 488/**
 489 *  e1000_write_nvm_80003es2lan - Write to ESB2 NVM
 490 *  @hw: pointer to the HW structure
 491 *  @offset: offset of the register to read
 492 *  @words: number of words to write
 493 *  @data: buffer of data to write to the NVM
 494 *
 495 *  Write "words" of data to the ESB2 NVM.
 496 **/
 497static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
 498                                       u16 words, u16 *data)
 499{
 500        return e1000e_write_nvm_spi(hw, offset, words, data);
 501}
 502
 503/**
 504 *  e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
 505 *  @hw: pointer to the HW structure
 506 *
 507 *  Wait a specific amount of time for manageability processes to complete.
 508 *  This is a function pointer entry point called by the phy module.
 509 **/
 510static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
 511{
 512        s32 timeout = PHY_CFG_TIMEOUT;
 513        u32 mask = E1000_NVM_CFG_DONE_PORT_0;
 514
 515        if (hw->bus.func == 1)
 516                mask = E1000_NVM_CFG_DONE_PORT_1;
 517
 518        while (timeout) {
 519                if (er32(EEMNGCTL) & mask)
 520                        break;
 521                usleep_range(1000, 2000);
 522                timeout--;
 523        }
 524        if (!timeout) {
 525                e_dbg("MNG configuration cycle has not completed.\n");
 526                return -E1000_ERR_RESET;
 527        }
 528
 529        return 0;
 530}
 531
 532/**
 533 *  e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
 534 *  @hw: pointer to the HW structure
 535 *
 536 *  Force the speed and duplex settings onto the PHY.  This is a
 537 *  function pointer entry point called by the phy module.
 538 **/
 539static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
 540{
 541        s32 ret_val;
 542        u16 phy_data;
 543        bool link;
 544
 545        /* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
 546         * forced whenever speed and duplex are forced.
 547         */
 548        ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 549        if (ret_val)
 550                return ret_val;
 551
 552        phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
 553        ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
 554        if (ret_val)
 555                return ret_val;
 556
 557        e_dbg("GG82563 PSCR: %X\n", phy_data);
 558
 559        ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
 560        if (ret_val)
 561                return ret_val;
 562
 563        e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
 564
 565        /* Reset the phy to commit changes. */
 566        phy_data |= BMCR_RESET;
 567
 568        ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
 569        if (ret_val)
 570                return ret_val;
 571
 572        udelay(1);
 573
 574        if (hw->phy.autoneg_wait_to_complete) {
 575                e_dbg("Waiting for forced speed/duplex link on GG82563 phy.\n");
 576
 577                ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
 578                                                      100000, &link);
 579                if (ret_val)
 580                        return ret_val;
 581
 582                if (!link) {
 583                        /* We didn't get link.
 584                         * Reset the DSP and cross our fingers.
 585                         */
 586                        ret_val = e1000e_phy_reset_dsp(hw);
 587                        if (ret_val)
 588                                return ret_val;
 589                }
 590
 591                /* Try once more */
 592                ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
 593                                                      100000, &link);
 594                if (ret_val)
 595                        return ret_val;
 596        }
 597
 598        ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
 599        if (ret_val)
 600                return ret_val;
 601
 602        /* Resetting the phy means we need to verify the TX_CLK corresponds
 603         * to the link speed.  10Mbps -> 2.5MHz, else 25MHz.
 604         */
 605        phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
 606        if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
 607                phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
 608        else
 609                phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
 610
 611        /* In addition, we must re-enable CRS on Tx for both half and full
 612         * duplex.
 613         */
 614        phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
 615        ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
 616
 617        return ret_val;
 618}
 619
 620/**
 621 *  e1000_get_cable_length_80003es2lan - Set approximate cable length
 622 *  @hw: pointer to the HW structure
 623 *
 624 *  Find the approximate cable length as measured by the GG82563 PHY.
 625 *  This is a function pointer entry point called by the phy module.
 626 **/
 627static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
 628{
 629        struct e1000_phy_info *phy = &hw->phy;
 630        s32 ret_val;
 631        u16 phy_data, index;
 632
 633        ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
 634        if (ret_val)
 635                return ret_val;
 636
 637        index = phy_data & GG82563_DSPD_CABLE_LENGTH;
 638
 639        if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5)
 640                return -E1000_ERR_PHY;
 641
 642        phy->min_cable_length = e1000_gg82563_cable_length_table[index];
 643        phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5];
 644
 645        phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
 646
 647        return 0;
 648}
 649
 650/**
 651 *  e1000_get_link_up_info_80003es2lan - Report speed and duplex
 652 *  @hw: pointer to the HW structure
 653 *  @speed: pointer to speed buffer
 654 *  @duplex: pointer to duplex buffer
 655 *
 656 *  Retrieve the current speed and duplex configuration.
 657 **/
 658static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
 659                                              u16 *duplex)
 660{
 661        s32 ret_val;
 662
 663        if (hw->phy.media_type == e1000_media_type_copper) {
 664                ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
 665                hw->phy.ops.cfg_on_link_up(hw);
 666        } else {
 667                ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw,
 668                                                                   speed,
 669                                                                   duplex);
 670        }
 671
 672        return ret_val;
 673}
 674
 675/**
 676 *  e1000_reset_hw_80003es2lan - Reset the ESB2 controller
 677 *  @hw: pointer to the HW structure
 678 *
 679 *  Perform a global reset to the ESB2 controller.
 680 **/
 681static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
 682{
 683        u32 ctrl;
 684        s32 ret_val;
 685        u16 kum_reg_data;
 686
 687        /* Prevent the PCI-E bus from sticking if there is no TLP connection
 688         * on the last TLP read/write transaction when MAC is reset.
 689         */
 690        ret_val = e1000e_disable_pcie_master(hw);
 691        if (ret_val)
 692                e_dbg("PCI-E Master disable polling has failed.\n");
 693
 694        e_dbg("Masking off all interrupts\n");
 695        ew32(IMC, 0xffffffff);
 696
 697        ew32(RCTL, 0);
 698        ew32(TCTL, E1000_TCTL_PSP);
 699        e1e_flush();
 700
 701        usleep_range(10000, 20000);
 702
 703        ctrl = er32(CTRL);
 704
 705        ret_val = e1000_acquire_phy_80003es2lan(hw);
 706        if (ret_val)
 707                return ret_val;
 708
 709        e_dbg("Issuing a global reset to MAC\n");
 710        ew32(CTRL, ctrl | E1000_CTRL_RST);
 711        e1000_release_phy_80003es2lan(hw);
 712
 713        /* Disable IBIST slave mode (far-end loopback) */
 714        ret_val =
 715            e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
 716                                            &kum_reg_data);
 717        if (ret_val)
 718                return ret_val;
 719        kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
 720        e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
 721                                         kum_reg_data);
 722
 723        ret_val = e1000e_get_auto_rd_done(hw);
 724        if (ret_val)
 725                /* We don't want to continue accessing MAC registers. */
 726                return ret_val;
 727
 728        /* Clear any pending interrupt events. */
 729        ew32(IMC, 0xffffffff);
 730        er32(ICR);
 731
 732        return e1000_check_alt_mac_addr_generic(hw);
 733}
 734
 735/**
 736 *  e1000_init_hw_80003es2lan - Initialize the ESB2 controller
 737 *  @hw: pointer to the HW structure
 738 *
 739 *  Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
 740 **/
 741static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
 742{
 743        struct e1000_mac_info *mac = &hw->mac;
 744        u32 reg_data;
 745        s32 ret_val;
 746        u16 kum_reg_data;
 747        u16 i;
 748
 749        e1000_initialize_hw_bits_80003es2lan(hw);
 750
 751        /* Initialize identification LED */
 752        ret_val = mac->ops.id_led_init(hw);
 753        /* An error is not fatal and we should not stop init due to this */
 754        if (ret_val)
 755                e_dbg("Error initializing identification LED\n");
 756
 757        /* Disabling VLAN filtering */
 758        e_dbg("Initializing the IEEE VLAN\n");
 759        mac->ops.clear_vfta(hw);
 760
 761        /* Setup the receive address. */
 762        e1000e_init_rx_addrs(hw, mac->rar_entry_count);
 763
 764        /* Zero out the Multicast HASH table */
 765        e_dbg("Zeroing the MTA\n");
 766        for (i = 0; i < mac->mta_reg_count; i++)
 767                E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
 768
 769        /* Setup link and flow control */
 770        ret_val = mac->ops.setup_link(hw);
 771        if (ret_val)
 772                return ret_val;
 773
 774        /* Disable IBIST slave mode (far-end loopback) */
 775        e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
 776                                        &kum_reg_data);
 777        kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
 778        e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
 779                                         kum_reg_data);
 780
 781        /* Set the transmit descriptor write-back policy */
 782        reg_data = er32(TXDCTL(0));
 783        reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
 784                    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
 785        ew32(TXDCTL(0), reg_data);
 786
 787        /* ...for both queues. */
 788        reg_data = er32(TXDCTL(1));
 789        reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
 790                    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
 791        ew32(TXDCTL(1), reg_data);
 792
 793        /* Enable retransmit on late collisions */
 794        reg_data = er32(TCTL);
 795        reg_data |= E1000_TCTL_RTLC;
 796        ew32(TCTL, reg_data);
 797
 798        /* Configure Gigabit Carry Extend Padding */
 799        reg_data = er32(TCTL_EXT);
 800        reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
 801        reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
 802        ew32(TCTL_EXT, reg_data);
 803
 804        /* Configure Transmit Inter-Packet Gap */
 805        reg_data = er32(TIPG);
 806        reg_data &= ~E1000_TIPG_IPGT_MASK;
 807        reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
 808        ew32(TIPG, reg_data);
 809
 810        reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
 811        reg_data &= ~0x00100000;
 812        E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
 813
 814        /* default to true to enable the MDIC W/A */
 815        hw->dev_spec.e80003es2lan.mdic_wa_enable = true;
 816
 817        ret_val =
 818            e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_OFFSET >>
 819                                            E1000_KMRNCTRLSTA_OFFSET_SHIFT, &i);
 820        if (!ret_val) {
 821                if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) ==
 822                    E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO)
 823                        hw->dev_spec.e80003es2lan.mdic_wa_enable = false;
 824        }
 825
 826        /* Clear all of the statistics registers (clear on read).  It is
 827         * important that we do this after we have tried to establish link
 828         * because the symbol error count will increment wildly if there
 829         * is no link.
 830         */
 831        e1000_clear_hw_cntrs_80003es2lan(hw);
 832
 833        return ret_val;
 834}
 835
 836/**
 837 *  e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
 838 *  @hw: pointer to the HW structure
 839 *
 840 *  Initializes required hardware-dependent bits needed for normal operation.
 841 **/
 842static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
 843{
 844        u32 reg;
 845
 846        /* Transmit Descriptor Control 0 */
 847        reg = er32(TXDCTL(0));
 848        reg |= (1 << 22);
 849        ew32(TXDCTL(0), reg);
 850
 851        /* Transmit Descriptor Control 1 */
 852        reg = er32(TXDCTL(1));
 853        reg |= (1 << 22);
 854        ew32(TXDCTL(1), reg);
 855
 856        /* Transmit Arbitration Control 0 */
 857        reg = er32(TARC(0));
 858        reg &= ~(0xF << 27);    /* 30:27 */
 859        if (hw->phy.media_type != e1000_media_type_copper)
 860                reg &= ~(1 << 20);
 861        ew32(TARC(0), reg);
 862
 863        /* Transmit Arbitration Control 1 */
 864        reg = er32(TARC(1));
 865        if (er32(TCTL) & E1000_TCTL_MULR)
 866                reg &= ~(1 << 28);
 867        else
 868                reg |= (1 << 28);
 869        ew32(TARC(1), reg);
 870
 871        /* Disable IPv6 extension header parsing because some malformed
 872         * IPv6 headers can hang the Rx.
 873         */
 874        reg = er32(RFCTL);
 875        reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
 876        ew32(RFCTL, reg);
 877}
 878
 879/**
 880 *  e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
 881 *  @hw: pointer to the HW structure
 882 *
 883 *  Setup some GG82563 PHY registers for obtaining link
 884 **/
 885static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
 886{
 887        struct e1000_phy_info *phy = &hw->phy;
 888        s32 ret_val;
 889        u32 reg;
 890        u16 data;
 891
 892        ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &data);
 893        if (ret_val)
 894                return ret_val;
 895
 896        data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
 897        /* Use 25MHz for both link down and 1000Base-T for Tx clock. */
 898        data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
 899
 900        ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, data);
 901        if (ret_val)
 902                return ret_val;
 903
 904        /* Options:
 905         *   MDI/MDI-X = 0 (default)
 906         *   0 - Auto for all speeds
 907         *   1 - MDI mode
 908         *   2 - MDI-X mode
 909         *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
 910         */
 911        ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
 912        if (ret_val)
 913                return ret_val;
 914
 915        data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
 916
 917        switch (phy->mdix) {
 918        case 1:
 919                data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
 920                break;
 921        case 2:
 922                data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
 923                break;
 924        case 0:
 925        default:
 926                data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
 927                break;
 928        }
 929
 930        /* Options:
 931         *   disable_polarity_correction = 0 (default)
 932         *       Automatic Correction for Reversed Cable Polarity
 933         *   0 - Disabled
 934         *   1 - Enabled
 935         */
 936        data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
 937        if (phy->disable_polarity_correction)
 938                data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
 939
 940        ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
 941        if (ret_val)
 942                return ret_val;
 943
 944        /* SW Reset the PHY so all changes take effect */
 945        ret_val = hw->phy.ops.commit(hw);
 946        if (ret_val) {
 947                e_dbg("Error Resetting the PHY\n");
 948                return ret_val;
 949        }
 950
 951        /* Bypass Rx and Tx FIFO's */
 952        reg = E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL;
 953        data = (E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
 954                E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
 955        ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
 956        if (ret_val)
 957                return ret_val;
 958
 959        reg = E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE;
 960        ret_val = e1000_read_kmrn_reg_80003es2lan(hw, reg, &data);
 961        if (ret_val)
 962                return ret_val;
 963        data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
 964        ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
 965        if (ret_val)
 966                return ret_val;
 967
 968        ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
 969        if (ret_val)
 970                return ret_val;
 971
 972        data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
 973        ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
 974        if (ret_val)
 975                return ret_val;
 976
 977        reg = er32(CTRL_EXT);
 978        reg &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
 979        ew32(CTRL_EXT, reg);
 980
 981        ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
 982        if (ret_val)
 983                return ret_val;
 984
 985        /* Do not init these registers when the HW is in IAMT mode, since the
 986         * firmware will have already initialized them.  We only initialize
 987         * them if the HW is not in IAMT mode.
 988         */
 989        if (!hw->mac.ops.check_mng_mode(hw)) {
 990                /* Enable Electrical Idle on the PHY */
 991                data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
 992                ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
 993                if (ret_val)
 994                        return ret_val;
 995
 996                ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data);
 997                if (ret_val)
 998                        return ret_val;
 999
1000                data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1001                ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
1002                if (ret_val)
1003                        return ret_val;
1004        }
1005
1006        /* Workaround: Disable padding in Kumeran interface in the MAC
1007         * and in the PHY to avoid CRC errors.
1008         */
1009        ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
1010        if (ret_val)
1011                return ret_val;
1012
1013        data |= GG82563_ICR_DIS_PADDING;
1014        ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
1015        if (ret_val)
1016                return ret_val;
1017
1018        return 0;
1019}
1020
1021/**
1022 *  e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
1023 *  @hw: pointer to the HW structure
1024 *
1025 *  Essentially a wrapper for setting up all things "copper" related.
1026 *  This is a function pointer entry point called by the mac module.
1027 **/
1028static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
1029{
1030        u32 ctrl;
1031        s32 ret_val;
1032        u16 reg_data;
1033
1034        ctrl = er32(CTRL);
1035        ctrl |= E1000_CTRL_SLU;
1036        ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1037        ew32(CTRL, ctrl);
1038
1039        /* Set the mac to wait the maximum time between each
1040         * iteration and increase the max iterations when
1041         * polling the phy; this fixes erroneous timeouts at 10Mbps.
1042         */
1043        ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4),
1044                                                   0xFFFF);
1045        if (ret_val)
1046                return ret_val;
1047        ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1048                                                  &reg_data);
1049        if (ret_val)
1050                return ret_val;
1051        reg_data |= 0x3F;
1052        ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1053                                                   reg_data);
1054        if (ret_val)
1055                return ret_val;
1056        ret_val =
1057            e1000_read_kmrn_reg_80003es2lan(hw,
1058                                            E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1059                                            &reg_data);
1060        if (ret_val)
1061                return ret_val;
1062        reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
1063        ret_val =
1064            e1000_write_kmrn_reg_80003es2lan(hw,
1065                                             E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1066                                             reg_data);
1067        if (ret_val)
1068                return ret_val;
1069
1070        ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
1071        if (ret_val)
1072                return ret_val;
1073
1074        return e1000e_setup_copper_link(hw);
1075}
1076
1077/**
1078 *  e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up
1079 *  @hw: pointer to the HW structure
1080 *  @duplex: current duplex setting
1081 *
1082 *  Configure the KMRN interface by applying last minute quirks for
1083 *  10/100 operation.
1084 **/
1085static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw)
1086{
1087        s32 ret_val = 0;
1088        u16 speed;
1089        u16 duplex;
1090
1091        if (hw->phy.media_type == e1000_media_type_copper) {
1092                ret_val = e1000e_get_speed_and_duplex_copper(hw, &speed,
1093                                                             &duplex);
1094                if (ret_val)
1095                        return ret_val;
1096
1097                if (speed == SPEED_1000)
1098                        ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
1099                else
1100                        ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex);
1101        }
1102
1103        return ret_val;
1104}
1105
1106/**
1107 *  e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
1108 *  @hw: pointer to the HW structure
1109 *  @duplex: current duplex setting
1110 *
1111 *  Configure the KMRN interface by applying last minute quirks for
1112 *  10/100 operation.
1113 **/
1114static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
1115{
1116        s32 ret_val;
1117        u32 tipg;
1118        u32 i = 0;
1119        u16 reg_data, reg_data2;
1120
1121        reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
1122        ret_val =
1123            e1000_write_kmrn_reg_80003es2lan(hw,
1124                                             E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1125                                             reg_data);
1126        if (ret_val)
1127                return ret_val;
1128
1129        /* Configure Transmit Inter-Packet Gap */
1130        tipg = er32(TIPG);
1131        tipg &= ~E1000_TIPG_IPGT_MASK;
1132        tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
1133        ew32(TIPG, tipg);
1134
1135        do {
1136                ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1137                if (ret_val)
1138                        return ret_val;
1139
1140                ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1141                if (ret_val)
1142                        return ret_val;
1143                i++;
1144        } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1145
1146        if (duplex == HALF_DUPLEX)
1147                reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
1148        else
1149                reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1150
1151        return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1152}
1153
1154/**
1155 *  e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
1156 *  @hw: pointer to the HW structure
1157 *
1158 *  Configure the KMRN interface by applying last minute quirks for
1159 *  gigabit operation.
1160 **/
1161static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
1162{
1163        s32 ret_val;
1164        u16 reg_data, reg_data2;
1165        u32 tipg;
1166        u32 i = 0;
1167
1168        reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
1169        ret_val =
1170            e1000_write_kmrn_reg_80003es2lan(hw,
1171                                             E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1172                                             reg_data);
1173        if (ret_val)
1174                return ret_val;
1175
1176        /* Configure Transmit Inter-Packet Gap */
1177        tipg = er32(TIPG);
1178        tipg &= ~E1000_TIPG_IPGT_MASK;
1179        tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
1180        ew32(TIPG, tipg);
1181
1182        do {
1183                ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1184                if (ret_val)
1185                        return ret_val;
1186
1187                ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1188                if (ret_val)
1189                        return ret_val;
1190                i++;
1191        } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1192
1193        reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1194
1195        return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1196}
1197
1198/**
1199 *  e1000_read_kmrn_reg_80003es2lan - Read kumeran register
1200 *  @hw: pointer to the HW structure
1201 *  @offset: register offset to be read
1202 *  @data: pointer to the read data
1203 *
1204 *  Acquire semaphore, then read the PHY register at offset
1205 *  using the kumeran interface.  The information retrieved is stored in data.
1206 *  Release the semaphore before exiting.
1207 **/
1208static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1209                                           u16 *data)
1210{
1211        u32 kmrnctrlsta;
1212        s32 ret_val;
1213
1214        ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1215        if (ret_val)
1216                return ret_val;
1217
1218        kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1219                       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
1220        ew32(KMRNCTRLSTA, kmrnctrlsta);
1221        e1e_flush();
1222
1223        udelay(2);
1224
1225        kmrnctrlsta = er32(KMRNCTRLSTA);
1226        *data = (u16)kmrnctrlsta;
1227
1228        e1000_release_mac_csr_80003es2lan(hw);
1229
1230        return ret_val;
1231}
1232
1233/**
1234 *  e1000_write_kmrn_reg_80003es2lan - Write kumeran register
1235 *  @hw: pointer to the HW structure
1236 *  @offset: register offset to write to
1237 *  @data: data to write at register offset
1238 *
1239 *  Acquire semaphore, then write the data to PHY register
1240 *  at the offset using the kumeran interface.  Release semaphore
1241 *  before exiting.
1242 **/
1243static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1244                                            u16 data)
1245{
1246        u32 kmrnctrlsta;
1247        s32 ret_val;
1248
1249        ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1250        if (ret_val)
1251                return ret_val;
1252
1253        kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1254                       E1000_KMRNCTRLSTA_OFFSET) | data;
1255        ew32(KMRNCTRLSTA, kmrnctrlsta);
1256        e1e_flush();
1257
1258        udelay(2);
1259
1260        e1000_release_mac_csr_80003es2lan(hw);
1261
1262        return ret_val;
1263}
1264
1265/**
1266 *  e1000_read_mac_addr_80003es2lan - Read device MAC address
1267 *  @hw: pointer to the HW structure
1268 **/
1269static s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw)
1270{
1271        s32 ret_val;
1272
1273        /* If there's an alternate MAC address place it in RAR0
1274         * so that it will override the Si installed default perm
1275         * address.
1276         */
1277        ret_val = e1000_check_alt_mac_addr_generic(hw);
1278        if (ret_val)
1279                return ret_val;
1280
1281        return e1000_read_mac_addr_generic(hw);
1282}
1283
1284/**
1285 * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down
1286 * @hw: pointer to the HW structure
1287 *
1288 * In the case of a PHY power down to save power, or to turn off link during a
1289 * driver unload, or wake on lan is not enabled, remove the link.
1290 **/
1291static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw)
1292{
1293        /* If the management interface is not enabled, then power down */
1294        if (!(hw->mac.ops.check_mng_mode(hw) ||
1295              hw->phy.ops.check_reset_block(hw)))
1296                e1000_power_down_phy_copper(hw);
1297}
1298
1299/**
1300 *  e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
1301 *  @hw: pointer to the HW structure
1302 *
1303 *  Clears the hardware counters by reading the counter registers.
1304 **/
1305static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
1306{
1307        e1000e_clear_hw_cntrs_base(hw);
1308
1309        er32(PRC64);
1310        er32(PRC127);
1311        er32(PRC255);
1312        er32(PRC511);
1313        er32(PRC1023);
1314        er32(PRC1522);
1315        er32(PTC64);
1316        er32(PTC127);
1317        er32(PTC255);
1318        er32(PTC511);
1319        er32(PTC1023);
1320        er32(PTC1522);
1321
1322        er32(ALGNERRC);
1323        er32(RXERRC);
1324        er32(TNCRS);
1325        er32(CEXTERR);
1326        er32(TSCTC);
1327        er32(TSCTFC);
1328
1329        er32(MGTPRC);
1330        er32(MGTPDC);
1331        er32(MGTPTC);
1332
1333        er32(IAC);
1334        er32(ICRXOC);
1335
1336        er32(ICRXPTC);
1337        er32(ICRXATC);
1338        er32(ICTXPTC);
1339        er32(ICTXATC);
1340        er32(ICTXQEC);
1341        er32(ICTXQMTC);
1342        er32(ICRXDMTC);
1343}
1344
1345static const struct e1000_mac_operations es2_mac_ops = {
1346        .read_mac_addr          = e1000_read_mac_addr_80003es2lan,
1347        .id_led_init            = e1000e_id_led_init_generic,
1348        .blink_led              = e1000e_blink_led_generic,
1349        .check_mng_mode         = e1000e_check_mng_mode_generic,
1350        /* check_for_link dependent on media type */
1351        .cleanup_led            = e1000e_cleanup_led_generic,
1352        .clear_hw_cntrs         = e1000_clear_hw_cntrs_80003es2lan,
1353        .get_bus_info           = e1000e_get_bus_info_pcie,
1354        .set_lan_id             = e1000_set_lan_id_multi_port_pcie,
1355        .get_link_up_info       = e1000_get_link_up_info_80003es2lan,
1356        .led_on                 = e1000e_led_on_generic,
1357        .led_off                = e1000e_led_off_generic,
1358        .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
1359        .write_vfta             = e1000_write_vfta_generic,
1360        .clear_vfta             = e1000_clear_vfta_generic,
1361        .reset_hw               = e1000_reset_hw_80003es2lan,
1362        .init_hw                = e1000_init_hw_80003es2lan,
1363        .setup_link             = e1000e_setup_link_generic,
1364        /* setup_physical_interface dependent on media type */
1365        .setup_led              = e1000e_setup_led_generic,
1366        .config_collision_dist  = e1000e_config_collision_dist_generic,
1367        .rar_set                = e1000e_rar_set_generic,
1368        .rar_get_count          = e1000e_rar_get_count_generic,
1369};
1370
1371static const struct e1000_phy_operations es2_phy_ops = {
1372        .acquire                = e1000_acquire_phy_80003es2lan,
1373        .check_polarity         = e1000_check_polarity_m88,
1374        .check_reset_block      = e1000e_check_reset_block_generic,
1375        .commit                 = e1000e_phy_sw_reset,
1376        .force_speed_duplex     = e1000_phy_force_speed_duplex_80003es2lan,
1377        .get_cfg_done           = e1000_get_cfg_done_80003es2lan,
1378        .get_cable_length       = e1000_get_cable_length_80003es2lan,
1379        .get_info               = e1000e_get_phy_info_m88,
1380        .read_reg               = e1000_read_phy_reg_gg82563_80003es2lan,
1381        .release                = e1000_release_phy_80003es2lan,
1382        .reset                  = e1000e_phy_hw_reset_generic,
1383        .set_d0_lplu_state      = NULL,
1384        .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1385        .write_reg              = e1000_write_phy_reg_gg82563_80003es2lan,
1386        .cfg_on_link_up         = e1000_cfg_on_link_up_80003es2lan,
1387};
1388
1389static const struct e1000_nvm_operations es2_nvm_ops = {
1390        .acquire                = e1000_acquire_nvm_80003es2lan,
1391        .read                   = e1000e_read_nvm_eerd,
1392        .release                = e1000_release_nvm_80003es2lan,
1393        .reload                 = e1000e_reload_nvm_generic,
1394        .update                 = e1000e_update_nvm_checksum_generic,
1395        .valid_led_default      = e1000e_valid_led_default,
1396        .validate               = e1000e_validate_nvm_checksum_generic,
1397        .write                  = e1000_write_nvm_80003es2lan,
1398};
1399
1400const struct e1000_info e1000_es2_info = {
1401        .mac                    = e1000_80003es2lan,
1402        .flags                  = FLAG_HAS_HW_VLAN_FILTER
1403                                  | FLAG_HAS_JUMBO_FRAMES
1404                                  | FLAG_HAS_WOL
1405                                  | FLAG_APME_IN_CTRL3
1406                                  | FLAG_HAS_CTRLEXT_ON_LOAD
1407                                  | FLAG_RX_NEEDS_RESTART /* errata */
1408                                  | FLAG_TARC_SET_BIT_ZERO /* errata */
1409                                  | FLAG_APME_CHECK_PORT_B
1410                                  | FLAG_DISABLE_FC_PAUSE_TIME, /* errata */
1411        .flags2                 = FLAG2_DMA_BURST,
1412        .pba                    = 38,
1413        .max_hw_frame_size      = DEFAULT_JUMBO,
1414        .get_variants           = e1000_get_variants_80003es2lan,
1415        .mac_ops                = &es2_mac_ops,
1416        .phy_ops                = &es2_phy_ops,
1417        .nvm_ops                = &es2_nvm_ops,
1418};
1419