linux/drivers/net/ethernet/intel/e1000e/82571.c
<<
>>
Prefs
   1/* Intel PRO/1000 Linux driver
   2 * Copyright(c) 1999 - 2015 Intel Corporation.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms and conditions of the GNU General Public License,
   6 * version 2, as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 * The full GNU General Public License is included in this distribution in
  14 * the file called "COPYING".
  15 *
  16 * Contact Information:
  17 * Linux NICS <linux.nics@intel.com>
  18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  20 */
  21
  22/* 82571EB Gigabit Ethernet Controller
  23 * 82571EB Gigabit Ethernet Controller (Copper)
  24 * 82571EB Gigabit Ethernet Controller (Fiber)
  25 * 82571EB Dual Port Gigabit Mezzanine Adapter
  26 * 82571EB Quad Port Gigabit Mezzanine Adapter
  27 * 82571PT Gigabit PT Quad Port Server ExpressModule
  28 * 82572EI Gigabit Ethernet Controller (Copper)
  29 * 82572EI Gigabit Ethernet Controller (Fiber)
  30 * 82572EI Gigabit Ethernet Controller
  31 * 82573V Gigabit Ethernet Controller (Copper)
  32 * 82573E Gigabit Ethernet Controller (Copper)
  33 * 82573L Gigabit Ethernet Controller
  34 * 82574L Gigabit Network Connection
  35 * 82583V Gigabit Network Connection
  36 */
  37
  38#include "e1000.h"
  39
  40static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
  41static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
  42static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
  43static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
  44static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
  45                                      u16 words, u16 *data);
  46static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
  47static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
  48static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
  49static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
  50static s32 e1000_led_on_82574(struct e1000_hw *hw);
  51static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
  52static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
  53static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw);
  54static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw);
  55static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw);
  56static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active);
  57static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active);
  58
  59/**
  60 *  e1000_init_phy_params_82571 - Init PHY func ptrs.
  61 *  @hw: pointer to the HW structure
  62 **/
  63static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
  64{
  65        struct e1000_phy_info *phy = &hw->phy;
  66        s32 ret_val;
  67
  68        if (hw->phy.media_type != e1000_media_type_copper) {
  69                phy->type = e1000_phy_none;
  70                return 0;
  71        }
  72
  73        phy->addr = 1;
  74        phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
  75        phy->reset_delay_us = 100;
  76
  77        phy->ops.power_up = e1000_power_up_phy_copper;
  78        phy->ops.power_down = e1000_power_down_phy_copper_82571;
  79
  80        switch (hw->mac.type) {
  81        case e1000_82571:
  82        case e1000_82572:
  83                phy->type = e1000_phy_igp_2;
  84                break;
  85        case e1000_82573:
  86                phy->type = e1000_phy_m88;
  87                break;
  88        case e1000_82574:
  89        case e1000_82583:
  90                phy->type = e1000_phy_bm;
  91                phy->ops.acquire = e1000_get_hw_semaphore_82574;
  92                phy->ops.release = e1000_put_hw_semaphore_82574;
  93                phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574;
  94                phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574;
  95                break;
  96        default:
  97                return -E1000_ERR_PHY;
  98        }
  99
 100        /* This can only be done after all function pointers are setup. */
 101        ret_val = e1000_get_phy_id_82571(hw);
 102        if (ret_val) {
 103                e_dbg("Error getting PHY ID\n");
 104                return ret_val;
 105        }
 106
 107        /* Verify phy id */
 108        switch (hw->mac.type) {
 109        case e1000_82571:
 110        case e1000_82572:
 111                if (phy->id != IGP01E1000_I_PHY_ID)
 112                        ret_val = -E1000_ERR_PHY;
 113                break;
 114        case e1000_82573:
 115                if (phy->id != M88E1111_I_PHY_ID)
 116                        ret_val = -E1000_ERR_PHY;
 117                break;
 118        case e1000_82574:
 119        case e1000_82583:
 120                if (phy->id != BME1000_E_PHY_ID_R2)
 121                        ret_val = -E1000_ERR_PHY;
 122                break;
 123        default:
 124                ret_val = -E1000_ERR_PHY;
 125                break;
 126        }
 127
 128        if (ret_val)
 129                e_dbg("PHY ID unknown: type = 0x%08x\n", phy->id);
 130
 131        return ret_val;
 132}
 133
 134/**
 135 *  e1000_init_nvm_params_82571 - Init NVM func ptrs.
 136 *  @hw: pointer to the HW structure
 137 **/
 138static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
 139{
 140        struct e1000_nvm_info *nvm = &hw->nvm;
 141        u32 eecd = er32(EECD);
 142        u16 size;
 143
 144        nvm->opcode_bits = 8;
 145        nvm->delay_usec = 1;
 146        switch (nvm->override) {
 147        case e1000_nvm_override_spi_large:
 148                nvm->page_size = 32;
 149                nvm->address_bits = 16;
 150                break;
 151        case e1000_nvm_override_spi_small:
 152                nvm->page_size = 8;
 153                nvm->address_bits = 8;
 154                break;
 155        default:
 156                nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
 157                nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
 158                break;
 159        }
 160
 161        switch (hw->mac.type) {
 162        case e1000_82573:
 163        case e1000_82574:
 164        case e1000_82583:
 165                if (((eecd >> 15) & 0x3) == 0x3) {
 166                        nvm->type = e1000_nvm_flash_hw;
 167                        nvm->word_size = 2048;
 168                        /* Autonomous Flash update bit must be cleared due
 169                         * to Flash update issue.
 170                         */
 171                        eecd &= ~E1000_EECD_AUPDEN;
 172                        ew32(EECD, eecd);
 173                        break;
 174                }
 175                /* Fall Through */
 176        default:
 177                nvm->type = e1000_nvm_eeprom_spi;
 178                size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
 179                             E1000_EECD_SIZE_EX_SHIFT);
 180                /* Added to a constant, "size" becomes the left-shift value
 181                 * for setting word_size.
 182                 */
 183                size += NVM_WORD_SIZE_BASE_SHIFT;
 184
 185                /* EEPROM access above 16k is unsupported */
 186                if (size > 14)
 187                        size = 14;
 188                nvm->word_size = 1 << size;
 189                break;
 190        }
 191
 192        /* Function Pointers */
 193        switch (hw->mac.type) {
 194        case e1000_82574:
 195        case e1000_82583:
 196                nvm->ops.acquire = e1000_get_hw_semaphore_82574;
 197                nvm->ops.release = e1000_put_hw_semaphore_82574;
 198                break;
 199        default:
 200                break;
 201        }
 202
 203        return 0;
 204}
 205
 206/**
 207 *  e1000_init_mac_params_82571 - Init MAC func ptrs.
 208 *  @hw: pointer to the HW structure
 209 **/
 210static s32 e1000_init_mac_params_82571(struct e1000_hw *hw)
 211{
 212        struct e1000_mac_info *mac = &hw->mac;
 213        u32 swsm = 0;
 214        u32 swsm2 = 0;
 215        bool force_clear_smbi = false;
 216
 217        /* Set media type and media-dependent function pointers */
 218        switch (hw->adapter->pdev->device) {
 219        case E1000_DEV_ID_82571EB_FIBER:
 220        case E1000_DEV_ID_82572EI_FIBER:
 221        case E1000_DEV_ID_82571EB_QUAD_FIBER:
 222                hw->phy.media_type = e1000_media_type_fiber;
 223                mac->ops.setup_physical_interface =
 224                    e1000_setup_fiber_serdes_link_82571;
 225                mac->ops.check_for_link = e1000e_check_for_fiber_link;
 226                mac->ops.get_link_up_info =
 227                    e1000e_get_speed_and_duplex_fiber_serdes;
 228                break;
 229        case E1000_DEV_ID_82571EB_SERDES:
 230        case E1000_DEV_ID_82571EB_SERDES_DUAL:
 231        case E1000_DEV_ID_82571EB_SERDES_QUAD:
 232        case E1000_DEV_ID_82572EI_SERDES:
 233                hw->phy.media_type = e1000_media_type_internal_serdes;
 234                mac->ops.setup_physical_interface =
 235                    e1000_setup_fiber_serdes_link_82571;
 236                mac->ops.check_for_link = e1000_check_for_serdes_link_82571;
 237                mac->ops.get_link_up_info =
 238                    e1000e_get_speed_and_duplex_fiber_serdes;
 239                break;
 240        default:
 241                hw->phy.media_type = e1000_media_type_copper;
 242                mac->ops.setup_physical_interface =
 243                    e1000_setup_copper_link_82571;
 244                mac->ops.check_for_link = e1000e_check_for_copper_link;
 245                mac->ops.get_link_up_info = e1000e_get_speed_and_duplex_copper;
 246                break;
 247        }
 248
 249        /* Set mta register count */
 250        mac->mta_reg_count = 128;
 251        /* Set rar entry count */
 252        mac->rar_entry_count = E1000_RAR_ENTRIES;
 253        /* Adaptive IFS supported */
 254        mac->adaptive_ifs = true;
 255
 256        /* MAC-specific function pointers */
 257        switch (hw->mac.type) {
 258        case e1000_82573:
 259                mac->ops.set_lan_id = e1000_set_lan_id_single_port;
 260                mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
 261                mac->ops.led_on = e1000e_led_on_generic;
 262                mac->ops.blink_led = e1000e_blink_led_generic;
 263
 264                /* FWSM register */
 265                mac->has_fwsm = true;
 266                /* ARC supported; valid only if manageability features are
 267                 * enabled.
 268                 */
 269                mac->arc_subsystem_valid = !!(er32(FWSM) &
 270                                              E1000_FWSM_MODE_MASK);
 271                break;
 272        case e1000_82574:
 273        case e1000_82583:
 274                mac->ops.set_lan_id = e1000_set_lan_id_single_port;
 275                mac->ops.check_mng_mode = e1000_check_mng_mode_82574;
 276                mac->ops.led_on = e1000_led_on_82574;
 277                break;
 278        default:
 279                mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
 280                mac->ops.led_on = e1000e_led_on_generic;
 281                mac->ops.blink_led = e1000e_blink_led_generic;
 282
 283                /* FWSM register */
 284                mac->has_fwsm = true;
 285                break;
 286        }
 287
 288        /* Ensure that the inter-port SWSM.SMBI lock bit is clear before
 289         * first NVM or PHY access. This should be done for single-port
 290         * devices, and for one port only on dual-port devices so that
 291         * for those devices we can still use the SMBI lock to synchronize
 292         * inter-port accesses to the PHY & NVM.
 293         */
 294        switch (hw->mac.type) {
 295        case e1000_82571:
 296        case e1000_82572:
 297                swsm2 = er32(SWSM2);
 298
 299                if (!(swsm2 & E1000_SWSM2_LOCK)) {
 300                        /* Only do this for the first interface on this card */
 301                        ew32(SWSM2, swsm2 | E1000_SWSM2_LOCK);
 302                        force_clear_smbi = true;
 303                } else {
 304                        force_clear_smbi = false;
 305                }
 306                break;
 307        default:
 308                force_clear_smbi = true;
 309                break;
 310        }
 311
 312        if (force_clear_smbi) {
 313                /* Make sure SWSM.SMBI is clear */
 314                swsm = er32(SWSM);
 315                if (swsm & E1000_SWSM_SMBI) {
 316                        /* This bit should not be set on a first interface, and
 317                         * indicates that the bootagent or EFI code has
 318                         * improperly left this bit enabled
 319                         */
 320                        e_dbg("Please update your 82571 Bootagent\n");
 321                }
 322                ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
 323        }
 324
 325        /* Initialize device specific counter of SMBI acquisition timeouts. */
 326        hw->dev_spec.e82571.smb_counter = 0;
 327
 328        return 0;
 329}
 330
 331static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
 332{
 333        struct e1000_hw *hw = &adapter->hw;
 334        static int global_quad_port_a;  /* global port a indication */
 335        struct pci_dev *pdev = adapter->pdev;
 336        int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
 337        s32 rc;
 338
 339        rc = e1000_init_mac_params_82571(hw);
 340        if (rc)
 341                return rc;
 342
 343        rc = e1000_init_nvm_params_82571(hw);
 344        if (rc)
 345                return rc;
 346
 347        rc = e1000_init_phy_params_82571(hw);
 348        if (rc)
 349                return rc;
 350
 351        /* tag quad port adapters first, it's used below */
 352        switch (pdev->device) {
 353        case E1000_DEV_ID_82571EB_QUAD_COPPER:
 354        case E1000_DEV_ID_82571EB_QUAD_FIBER:
 355        case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
 356        case E1000_DEV_ID_82571PT_QUAD_COPPER:
 357                adapter->flags |= FLAG_IS_QUAD_PORT;
 358                /* mark the first port */
 359                if (global_quad_port_a == 0)
 360                        adapter->flags |= FLAG_IS_QUAD_PORT_A;
 361                /* Reset for multiple quad port adapters */
 362                global_quad_port_a++;
 363                if (global_quad_port_a == 4)
 364                        global_quad_port_a = 0;
 365                break;
 366        default:
 367                break;
 368        }
 369
 370        switch (adapter->hw.mac.type) {
 371        case e1000_82571:
 372                /* these dual ports don't have WoL on port B at all */
 373                if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
 374                     (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
 375                     (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
 376                    (is_port_b))
 377                        adapter->flags &= ~FLAG_HAS_WOL;
 378                /* quad ports only support WoL on port A */
 379                if (adapter->flags & FLAG_IS_QUAD_PORT &&
 380                    (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
 381                        adapter->flags &= ~FLAG_HAS_WOL;
 382                /* Does not support WoL on any port */
 383                if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
 384                        adapter->flags &= ~FLAG_HAS_WOL;
 385                break;
 386        case e1000_82573:
 387                if (pdev->device == E1000_DEV_ID_82573L) {
 388                        adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
 389                        adapter->max_hw_frame_size = DEFAULT_JUMBO;
 390                }
 391                break;
 392        default:
 393                break;
 394        }
 395
 396        return 0;
 397}
 398
 399/**
 400 *  e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
 401 *  @hw: pointer to the HW structure
 402 *
 403 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
 404 *  revision in the hardware structure.
 405 **/
 406static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
 407{
 408        struct e1000_phy_info *phy = &hw->phy;
 409        s32 ret_val;
 410        u16 phy_id = 0;
 411
 412        switch (hw->mac.type) {
 413        case e1000_82571:
 414        case e1000_82572:
 415                /* The 82571 firmware may still be configuring the PHY.
 416                 * In this case, we cannot access the PHY until the
 417                 * configuration is done.  So we explicitly set the
 418                 * PHY ID.
 419                 */
 420                phy->id = IGP01E1000_I_PHY_ID;
 421                break;
 422        case e1000_82573:
 423                return e1000e_get_phy_id(hw);
 424        case e1000_82574:
 425        case e1000_82583:
 426                ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id);
 427                if (ret_val)
 428                        return ret_val;
 429
 430                phy->id = (u32)(phy_id << 16);
 431                usleep_range(20, 40);
 432                ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id);
 433                if (ret_val)
 434                        return ret_val;
 435
 436                phy->id |= (u32)(phy_id);
 437                phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
 438                break;
 439        default:
 440                return -E1000_ERR_PHY;
 441        }
 442
 443        return 0;
 444}
 445
 446/**
 447 *  e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
 448 *  @hw: pointer to the HW structure
 449 *
 450 *  Acquire the HW semaphore to access the PHY or NVM
 451 **/
 452static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
 453{
 454        u32 swsm;
 455        s32 sw_timeout = hw->nvm.word_size + 1;
 456        s32 fw_timeout = hw->nvm.word_size + 1;
 457        s32 i = 0;
 458
 459        /* If we have timedout 3 times on trying to acquire
 460         * the inter-port SMBI semaphore, there is old code
 461         * operating on the other port, and it is not
 462         * releasing SMBI. Modify the number of times that
 463         * we try for the semaphore to interwork with this
 464         * older code.
 465         */
 466        if (hw->dev_spec.e82571.smb_counter > 2)
 467                sw_timeout = 1;
 468
 469        /* Get the SW semaphore */
 470        while (i < sw_timeout) {
 471                swsm = er32(SWSM);
 472                if (!(swsm & E1000_SWSM_SMBI))
 473                        break;
 474
 475                usleep_range(50, 100);
 476                i++;
 477        }
 478
 479        if (i == sw_timeout) {
 480                e_dbg("Driver can't access device - SMBI bit is set.\n");
 481                hw->dev_spec.e82571.smb_counter++;
 482        }
 483        /* Get the FW semaphore. */
 484        for (i = 0; i < fw_timeout; i++) {
 485                swsm = er32(SWSM);
 486                ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
 487
 488                /* Semaphore acquired if bit latched */
 489                if (er32(SWSM) & E1000_SWSM_SWESMBI)
 490                        break;
 491
 492                usleep_range(50, 100);
 493        }
 494
 495        if (i == fw_timeout) {
 496                /* Release semaphores */
 497                e1000_put_hw_semaphore_82571(hw);
 498                e_dbg("Driver can't access the NVM\n");
 499                return -E1000_ERR_NVM;
 500        }
 501
 502        return 0;
 503}
 504
 505/**
 506 *  e1000_put_hw_semaphore_82571 - Release hardware semaphore
 507 *  @hw: pointer to the HW structure
 508 *
 509 *  Release hardware semaphore used to access the PHY or NVM
 510 **/
 511static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
 512{
 513        u32 swsm;
 514
 515        swsm = er32(SWSM);
 516        swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
 517        ew32(SWSM, swsm);
 518}
 519
 520/**
 521 *  e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
 522 *  @hw: pointer to the HW structure
 523 *
 524 *  Acquire the HW semaphore during reset.
 525 *
 526 **/
 527static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw)
 528{
 529        u32 extcnf_ctrl;
 530        s32 i = 0;
 531
 532        extcnf_ctrl = er32(EXTCNF_CTRL);
 533        do {
 534                extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
 535                ew32(EXTCNF_CTRL, extcnf_ctrl);
 536                extcnf_ctrl = er32(EXTCNF_CTRL);
 537
 538                if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
 539                        break;
 540
 541                usleep_range(2000, 4000);
 542                i++;
 543        } while (i < MDIO_OWNERSHIP_TIMEOUT);
 544
 545        if (i == MDIO_OWNERSHIP_TIMEOUT) {
 546                /* Release semaphores */
 547                e1000_put_hw_semaphore_82573(hw);
 548                e_dbg("Driver can't access the PHY\n");
 549                return -E1000_ERR_PHY;
 550        }
 551
 552        return 0;
 553}
 554
 555/**
 556 *  e1000_put_hw_semaphore_82573 - Release hardware semaphore
 557 *  @hw: pointer to the HW structure
 558 *
 559 *  Release hardware semaphore used during reset.
 560 *
 561 **/
 562static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw)
 563{
 564        u32 extcnf_ctrl;
 565
 566        extcnf_ctrl = er32(EXTCNF_CTRL);
 567        extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
 568        ew32(EXTCNF_CTRL, extcnf_ctrl);
 569}
 570
 571static DEFINE_MUTEX(swflag_mutex);
 572
 573/**
 574 *  e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
 575 *  @hw: pointer to the HW structure
 576 *
 577 *  Acquire the HW semaphore to access the PHY or NVM.
 578 *
 579 **/
 580static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw)
 581{
 582        s32 ret_val;
 583
 584        mutex_lock(&swflag_mutex);
 585        ret_val = e1000_get_hw_semaphore_82573(hw);
 586        if (ret_val)
 587                mutex_unlock(&swflag_mutex);
 588        return ret_val;
 589}
 590
 591/**
 592 *  e1000_put_hw_semaphore_82574 - Release hardware semaphore
 593 *  @hw: pointer to the HW structure
 594 *
 595 *  Release hardware semaphore used to access the PHY or NVM
 596 *
 597 **/
 598static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw)
 599{
 600        e1000_put_hw_semaphore_82573(hw);
 601        mutex_unlock(&swflag_mutex);
 602}
 603
 604/**
 605 *  e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state
 606 *  @hw: pointer to the HW structure
 607 *  @active: true to enable LPLU, false to disable
 608 *
 609 *  Sets the LPLU D0 state according to the active flag.
 610 *  LPLU will not be activated unless the
 611 *  device autonegotiation advertisement meets standards of
 612 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
 613 *  This is a function pointer entry point only called by
 614 *  PHY setup routines.
 615 **/
 616static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active)
 617{
 618        u32 data = er32(POEMB);
 619
 620        if (active)
 621                data |= E1000_PHY_CTRL_D0A_LPLU;
 622        else
 623                data &= ~E1000_PHY_CTRL_D0A_LPLU;
 624
 625        ew32(POEMB, data);
 626        return 0;
 627}
 628
 629/**
 630 *  e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3
 631 *  @hw: pointer to the HW structure
 632 *  @active: boolean used to enable/disable lplu
 633 *
 634 *  The low power link up (lplu) state is set to the power management level D3
 635 *  when active is true, else clear lplu for D3. LPLU
 636 *  is used during Dx states where the power conservation is most important.
 637 *  During driver activity, SmartSpeed should be enabled so performance is
 638 *  maintained.
 639 **/
 640static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active)
 641{
 642        u32 data = er32(POEMB);
 643
 644        if (!active) {
 645                data &= ~E1000_PHY_CTRL_NOND0A_LPLU;
 646        } else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
 647                   (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) ||
 648                   (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) {
 649                data |= E1000_PHY_CTRL_NOND0A_LPLU;
 650        }
 651
 652        ew32(POEMB, data);
 653        return 0;
 654}
 655
 656/**
 657 *  e1000_acquire_nvm_82571 - Request for access to the EEPROM
 658 *  @hw: pointer to the HW structure
 659 *
 660 *  To gain access to the EEPROM, first we must obtain a hardware semaphore.
 661 *  Then for non-82573 hardware, set the EEPROM access request bit and wait
 662 *  for EEPROM access grant bit.  If the access grant bit is not set, release
 663 *  hardware semaphore.
 664 **/
 665static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
 666{
 667        s32 ret_val;
 668
 669        ret_val = e1000_get_hw_semaphore_82571(hw);
 670        if (ret_val)
 671                return ret_val;
 672
 673        switch (hw->mac.type) {
 674        case e1000_82573:
 675                break;
 676        default:
 677                ret_val = e1000e_acquire_nvm(hw);
 678                break;
 679        }
 680
 681        if (ret_val)
 682                e1000_put_hw_semaphore_82571(hw);
 683
 684        return ret_val;
 685}
 686
 687/**
 688 *  e1000_release_nvm_82571 - Release exclusive access to EEPROM
 689 *  @hw: pointer to the HW structure
 690 *
 691 *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
 692 **/
 693static void e1000_release_nvm_82571(struct e1000_hw *hw)
 694{
 695        e1000e_release_nvm(hw);
 696        e1000_put_hw_semaphore_82571(hw);
 697}
 698
 699/**
 700 *  e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
 701 *  @hw: pointer to the HW structure
 702 *  @offset: offset within the EEPROM to be written to
 703 *  @words: number of words to write
 704 *  @data: 16 bit word(s) to be written to the EEPROM
 705 *
 706 *  For non-82573 silicon, write data to EEPROM at offset using SPI interface.
 707 *
 708 *  If e1000e_update_nvm_checksum is not called after this function, the
 709 *  EEPROM will most likely contain an invalid checksum.
 710 **/
 711static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
 712                                 u16 *data)
 713{
 714        s32 ret_val;
 715
 716        switch (hw->mac.type) {
 717        case e1000_82573:
 718        case e1000_82574:
 719        case e1000_82583:
 720                ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
 721                break;
 722        case e1000_82571:
 723        case e1000_82572:
 724                ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
 725                break;
 726        default:
 727                ret_val = -E1000_ERR_NVM;
 728                break;
 729        }
 730
 731        return ret_val;
 732}
 733
 734/**
 735 *  e1000_update_nvm_checksum_82571 - Update EEPROM checksum
 736 *  @hw: pointer to the HW structure
 737 *
 738 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
 739 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
 740 *  value to the EEPROM.
 741 **/
 742static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
 743{
 744        u32 eecd;
 745        s32 ret_val;
 746        u16 i;
 747
 748        ret_val = e1000e_update_nvm_checksum_generic(hw);
 749        if (ret_val)
 750                return ret_val;
 751
 752        /* If our nvm is an EEPROM, then we're done
 753         * otherwise, commit the checksum to the flash NVM.
 754         */
 755        if (hw->nvm.type != e1000_nvm_flash_hw)
 756                return 0;
 757
 758        /* Check for pending operations. */
 759        for (i = 0; i < E1000_FLASH_UPDATES; i++) {
 760                usleep_range(1000, 2000);
 761                if (!(er32(EECD) & E1000_EECD_FLUPD))
 762                        break;
 763        }
 764
 765        if (i == E1000_FLASH_UPDATES)
 766                return -E1000_ERR_NVM;
 767
 768        /* Reset the firmware if using STM opcode. */
 769        if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
 770                /* The enabling of and the actual reset must be done
 771                 * in two write cycles.
 772                 */
 773                ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
 774                e1e_flush();
 775                ew32(HICR, E1000_HICR_FW_RESET);
 776        }
 777
 778        /* Commit the write to flash */
 779        eecd = er32(EECD) | E1000_EECD_FLUPD;
 780        ew32(EECD, eecd);
 781
 782        for (i = 0; i < E1000_FLASH_UPDATES; i++) {
 783                usleep_range(1000, 2000);
 784                if (!(er32(EECD) & E1000_EECD_FLUPD))
 785                        break;
 786        }
 787
 788        if (i == E1000_FLASH_UPDATES)
 789                return -E1000_ERR_NVM;
 790
 791        return 0;
 792}
 793
 794/**
 795 *  e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
 796 *  @hw: pointer to the HW structure
 797 *
 798 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
 799 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
 800 **/
 801static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
 802{
 803        if (hw->nvm.type == e1000_nvm_flash_hw)
 804                e1000_fix_nvm_checksum_82571(hw);
 805
 806        return e1000e_validate_nvm_checksum_generic(hw);
 807}
 808
 809/**
 810 *  e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
 811 *  @hw: pointer to the HW structure
 812 *  @offset: offset within the EEPROM to be written to
 813 *  @words: number of words to write
 814 *  @data: 16 bit word(s) to be written to the EEPROM
 815 *
 816 *  After checking for invalid values, poll the EEPROM to ensure the previous
 817 *  command has completed before trying to write the next word.  After write
 818 *  poll for completion.
 819 *
 820 *  If e1000e_update_nvm_checksum is not called after this function, the
 821 *  EEPROM will most likely contain an invalid checksum.
 822 **/
 823static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
 824                                      u16 words, u16 *data)
 825{
 826        struct e1000_nvm_info *nvm = &hw->nvm;
 827        u32 i, eewr = 0;
 828        s32 ret_val = 0;
 829
 830        /* A check for invalid values:  offset too large, too many words,
 831         * and not enough words.
 832         */
 833        if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
 834            (words == 0)) {
 835                e_dbg("nvm parameter(s) out of bounds\n");
 836                return -E1000_ERR_NVM;
 837        }
 838
 839        for (i = 0; i < words; i++) {
 840                eewr = ((data[i] << E1000_NVM_RW_REG_DATA) |
 841                        ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) |
 842                        E1000_NVM_RW_REG_START);
 843
 844                ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
 845                if (ret_val)
 846                        break;
 847
 848                ew32(EEWR, eewr);
 849
 850                ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
 851                if (ret_val)
 852                        break;
 853        }
 854
 855        return ret_val;
 856}
 857
 858/**
 859 *  e1000_get_cfg_done_82571 - Poll for configuration done
 860 *  @hw: pointer to the HW structure
 861 *
 862 *  Reads the management control register for the config done bit to be set.
 863 **/
 864static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
 865{
 866        s32 timeout = PHY_CFG_TIMEOUT;
 867
 868        while (timeout) {
 869                if (er32(EEMNGCTL) & E1000_NVM_CFG_DONE_PORT_0)
 870                        break;
 871                usleep_range(1000, 2000);
 872                timeout--;
 873        }
 874        if (!timeout) {
 875                e_dbg("MNG configuration cycle has not completed.\n");
 876                return -E1000_ERR_RESET;
 877        }
 878
 879        return 0;
 880}
 881
 882/**
 883 *  e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
 884 *  @hw: pointer to the HW structure
 885 *  @active: true to enable LPLU, false to disable
 886 *
 887 *  Sets the LPLU D0 state according to the active flag.  When activating LPLU
 888 *  this function also disables smart speed and vice versa.  LPLU will not be
 889 *  activated unless the device autonegotiation advertisement meets standards
 890 *  of either 10 or 10/100 or 10/100/1000 at all duplexes.  This is a function
 891 *  pointer entry point only called by PHY setup routines.
 892 **/
 893static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
 894{
 895        struct e1000_phy_info *phy = &hw->phy;
 896        s32 ret_val;
 897        u16 data;
 898
 899        ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
 900        if (ret_val)
 901                return ret_val;
 902
 903        if (active) {
 904                data |= IGP02E1000_PM_D0_LPLU;
 905                ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
 906                if (ret_val)
 907                        return ret_val;
 908
 909                /* When LPLU is enabled, we should disable SmartSpeed */
 910                ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
 911                if (ret_val)
 912                        return ret_val;
 913                data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 914                ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
 915                if (ret_val)
 916                        return ret_val;
 917        } else {
 918                data &= ~IGP02E1000_PM_D0_LPLU;
 919                ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
 920                /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
 921                 * during Dx states where the power conservation is most
 922                 * important.  During driver activity we should enable
 923                 * SmartSpeed, so performance is maintained.
 924                 */
 925                if (phy->smart_speed == e1000_smart_speed_on) {
 926                        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
 927                                           &data);
 928                        if (ret_val)
 929                                return ret_val;
 930
 931                        data |= IGP01E1000_PSCFR_SMART_SPEED;
 932                        ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
 933                                           data);
 934                        if (ret_val)
 935                                return ret_val;
 936                } else if (phy->smart_speed == e1000_smart_speed_off) {
 937                        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
 938                                           &data);
 939                        if (ret_val)
 940                                return ret_val;
 941
 942                        data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 943                        ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
 944                                           data);
 945                        if (ret_val)
 946                                return ret_val;
 947                }
 948        }
 949
 950        return 0;
 951}
 952
 953/**
 954 *  e1000_reset_hw_82571 - Reset hardware
 955 *  @hw: pointer to the HW structure
 956 *
 957 *  This resets the hardware into a known state.
 958 **/
 959static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
 960{
 961        u32 ctrl, ctrl_ext, eecd, tctl;
 962        s32 ret_val;
 963
 964        /* Prevent the PCI-E bus from sticking if there is no TLP connection
 965         * on the last TLP read/write transaction when MAC is reset.
 966         */
 967        ret_val = e1000e_disable_pcie_master(hw);
 968        if (ret_val)
 969                e_dbg("PCI-E Master disable polling has failed.\n");
 970
 971        e_dbg("Masking off all interrupts\n");
 972        ew32(IMC, 0xffffffff);
 973
 974        ew32(RCTL, 0);
 975        tctl = er32(TCTL);
 976        tctl &= ~E1000_TCTL_EN;
 977        ew32(TCTL, tctl);
 978        e1e_flush();
 979
 980        usleep_range(10000, 20000);
 981
 982        /* Must acquire the MDIO ownership before MAC reset.
 983         * Ownership defaults to firmware after a reset.
 984         */
 985        switch (hw->mac.type) {
 986        case e1000_82573:
 987                ret_val = e1000_get_hw_semaphore_82573(hw);
 988                break;
 989        case e1000_82574:
 990        case e1000_82583:
 991                ret_val = e1000_get_hw_semaphore_82574(hw);
 992                break;
 993        default:
 994                break;
 995        }
 996
 997        ctrl = er32(CTRL);
 998
 999        e_dbg("Issuing a global reset to MAC\n");
1000        ew32(CTRL, ctrl | E1000_CTRL_RST);
1001
1002        /* Must release MDIO ownership and mutex after MAC reset. */
1003        switch (hw->mac.type) {
1004        case e1000_82573:
1005                /* Release mutex only if the hw semaphore is acquired */
1006                if (!ret_val)
1007                        e1000_put_hw_semaphore_82573(hw);
1008                break;
1009        case e1000_82574:
1010        case e1000_82583:
1011                /* Release mutex only if the hw semaphore is acquired */
1012                if (!ret_val)
1013                        e1000_put_hw_semaphore_82574(hw);
1014                break;
1015        default:
1016                break;
1017        }
1018
1019        if (hw->nvm.type == e1000_nvm_flash_hw) {
1020                usleep_range(10, 20);
1021                ctrl_ext = er32(CTRL_EXT);
1022                ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1023                ew32(CTRL_EXT, ctrl_ext);
1024                e1e_flush();
1025        }
1026
1027        ret_val = e1000e_get_auto_rd_done(hw);
1028        if (ret_val)
1029                /* We don't want to continue accessing MAC registers. */
1030                return ret_val;
1031
1032        /* Phy configuration from NVM just starts after EECD_AUTO_RD is set.
1033         * Need to wait for Phy configuration completion before accessing
1034         * NVM and Phy.
1035         */
1036
1037        switch (hw->mac.type) {
1038        case e1000_82571:
1039        case e1000_82572:
1040                /* REQ and GNT bits need to be cleared when using AUTO_RD
1041                 * to access the EEPROM.
1042                 */
1043                eecd = er32(EECD);
1044                eecd &= ~(E1000_EECD_REQ | E1000_EECD_GNT);
1045                ew32(EECD, eecd);
1046                break;
1047        case e1000_82573:
1048        case e1000_82574:
1049        case e1000_82583:
1050                msleep(25);
1051                break;
1052        default:
1053                break;
1054        }
1055
1056        /* Clear any pending interrupt events. */
1057        ew32(IMC, 0xffffffff);
1058        er32(ICR);
1059
1060        if (hw->mac.type == e1000_82571) {
1061                /* Install any alternate MAC address into RAR0 */
1062                ret_val = e1000_check_alt_mac_addr_generic(hw);
1063                if (ret_val)
1064                        return ret_val;
1065
1066                e1000e_set_laa_state_82571(hw, true);
1067        }
1068
1069        /* Reinitialize the 82571 serdes link state machine */
1070        if (hw->phy.media_type == e1000_media_type_internal_serdes)
1071                hw->mac.serdes_link_state = e1000_serdes_link_down;
1072
1073        return 0;
1074}
1075
1076/**
1077 *  e1000_init_hw_82571 - Initialize hardware
1078 *  @hw: pointer to the HW structure
1079 *
1080 *  This inits the hardware readying it for operation.
1081 **/
1082static s32 e1000_init_hw_82571(struct e1000_hw *hw)
1083{
1084        struct e1000_mac_info *mac = &hw->mac;
1085        u32 reg_data;
1086        s32 ret_val;
1087        u16 i, rar_count = mac->rar_entry_count;
1088
1089        e1000_initialize_hw_bits_82571(hw);
1090
1091        /* Initialize identification LED */
1092        ret_val = mac->ops.id_led_init(hw);
1093        /* An error is not fatal and we should not stop init due to this */
1094        if (ret_val)
1095                e_dbg("Error initializing identification LED\n");
1096
1097        /* Disabling VLAN filtering */
1098        e_dbg("Initializing the IEEE VLAN\n");
1099        mac->ops.clear_vfta(hw);
1100
1101        /* Setup the receive address.
1102         * If, however, a locally administered address was assigned to the
1103         * 82571, we must reserve a RAR for it to work around an issue where
1104         * resetting one port will reload the MAC on the other port.
1105         */
1106        if (e1000e_get_laa_state_82571(hw))
1107                rar_count--;
1108        e1000e_init_rx_addrs(hw, rar_count);
1109
1110        /* Zero out the Multicast HASH table */
1111        e_dbg("Zeroing the MTA\n");
1112        for (i = 0; i < mac->mta_reg_count; i++)
1113                E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
1114
1115        /* Setup link and flow control */
1116        ret_val = mac->ops.setup_link(hw);
1117
1118        /* Set the transmit descriptor write-back policy */
1119        reg_data = er32(TXDCTL(0));
1120        reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
1121                    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
1122        ew32(TXDCTL(0), reg_data);
1123
1124        /* ...for both queues. */
1125        switch (mac->type) {
1126        case e1000_82573:
1127                e1000e_enable_tx_pkt_filtering(hw);
1128                /* fall through */
1129        case e1000_82574:
1130        case e1000_82583:
1131                reg_data = er32(GCR);
1132                reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1133                ew32(GCR, reg_data);
1134                break;
1135        default:
1136                reg_data = er32(TXDCTL(1));
1137                reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
1138                            E1000_TXDCTL_FULL_TX_DESC_WB |
1139                            E1000_TXDCTL_COUNT_DESC);
1140                ew32(TXDCTL(1), reg_data);
1141                break;
1142        }
1143
1144        /* Clear all of the statistics registers (clear on read).  It is
1145         * important that we do this after we have tried to establish link
1146         * because the symbol error count will increment wildly if there
1147         * is no link.
1148         */
1149        e1000_clear_hw_cntrs_82571(hw);
1150
1151        return ret_val;
1152}
1153
1154/**
1155 *  e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1156 *  @hw: pointer to the HW structure
1157 *
1158 *  Initializes required hardware-dependent bits needed for normal operation.
1159 **/
1160static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
1161{
1162        u32 reg;
1163
1164        /* Transmit Descriptor Control 0 */
1165        reg = er32(TXDCTL(0));
1166        reg |= (1 << 22);
1167        ew32(TXDCTL(0), reg);
1168
1169        /* Transmit Descriptor Control 1 */
1170        reg = er32(TXDCTL(1));
1171        reg |= (1 << 22);
1172        ew32(TXDCTL(1), reg);
1173
1174        /* Transmit Arbitration Control 0 */
1175        reg = er32(TARC(0));
1176        reg &= ~(0xF << 27);    /* 30:27 */
1177        switch (hw->mac.type) {
1178        case e1000_82571:
1179        case e1000_82572:
1180                reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
1181                break;
1182        case e1000_82574:
1183        case e1000_82583:
1184                reg |= (1 << 26);
1185                break;
1186        default:
1187                break;
1188        }
1189        ew32(TARC(0), reg);
1190
1191        /* Transmit Arbitration Control 1 */
1192        reg = er32(TARC(1));
1193        switch (hw->mac.type) {
1194        case e1000_82571:
1195        case e1000_82572:
1196                reg &= ~((1 << 29) | (1 << 30));
1197                reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
1198                if (er32(TCTL) & E1000_TCTL_MULR)
1199                        reg &= ~(1 << 28);
1200                else
1201                        reg |= (1 << 28);
1202                ew32(TARC(1), reg);
1203                break;
1204        default:
1205                break;
1206        }
1207
1208        /* Device Control */
1209        switch (hw->mac.type) {
1210        case e1000_82573:
1211        case e1000_82574:
1212        case e1000_82583:
1213                reg = er32(CTRL);
1214                reg &= ~(1 << 29);
1215                ew32(CTRL, reg);
1216                break;
1217        default:
1218                break;
1219        }
1220
1221        /* Extended Device Control */
1222        switch (hw->mac.type) {
1223        case e1000_82573:
1224        case e1000_82574:
1225        case e1000_82583:
1226                reg = er32(CTRL_EXT);
1227                reg &= ~(1 << 23);
1228                reg |= (1 << 22);
1229                ew32(CTRL_EXT, reg);
1230                break;
1231        default:
1232                break;
1233        }
1234
1235        if (hw->mac.type == e1000_82571) {
1236                reg = er32(PBA_ECC);
1237                reg |= E1000_PBA_ECC_CORR_EN;
1238                ew32(PBA_ECC, reg);
1239        }
1240
1241        /* Workaround for hardware errata.
1242         * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1243         */
1244        if ((hw->mac.type == e1000_82571) || (hw->mac.type == e1000_82572)) {
1245                reg = er32(CTRL_EXT);
1246                reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
1247                ew32(CTRL_EXT, reg);
1248        }
1249
1250        /* Disable IPv6 extension header parsing because some malformed
1251         * IPv6 headers can hang the Rx.
1252         */
1253        if (hw->mac.type <= e1000_82573) {
1254                reg = er32(RFCTL);
1255                reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
1256                ew32(RFCTL, reg);
1257        }
1258
1259        /* PCI-Ex Control Registers */
1260        switch (hw->mac.type) {
1261        case e1000_82574:
1262        case e1000_82583:
1263                reg = er32(GCR);
1264                reg |= (1 << 22);
1265                ew32(GCR, reg);
1266
1267                /* Workaround for hardware errata.
1268                 * apply workaround for hardware errata documented in errata
1269                 * docs Fixes issue where some error prone or unreliable PCIe
1270                 * completions are occurring, particularly with ASPM enabled.
1271                 * Without fix, issue can cause Tx timeouts.
1272                 */
1273                reg = er32(GCR2);
1274                reg |= 1;
1275                ew32(GCR2, reg);
1276                break;
1277        default:
1278                break;
1279        }
1280}
1281
1282/**
1283 *  e1000_clear_vfta_82571 - Clear VLAN filter table
1284 *  @hw: pointer to the HW structure
1285 *
1286 *  Clears the register array which contains the VLAN filter table by
1287 *  setting all the values to 0.
1288 **/
1289static void e1000_clear_vfta_82571(struct e1000_hw *hw)
1290{
1291        u32 offset;
1292        u32 vfta_value = 0;
1293        u32 vfta_offset = 0;
1294        u32 vfta_bit_in_reg = 0;
1295
1296        switch (hw->mac.type) {
1297        case e1000_82573:
1298        case e1000_82574:
1299        case e1000_82583:
1300                if (hw->mng_cookie.vlan_id != 0) {
1301                        /* The VFTA is a 4096b bit-field, each identifying
1302                         * a single VLAN ID.  The following operations
1303                         * determine which 32b entry (i.e. offset) into the
1304                         * array we want to set the VLAN ID (i.e. bit) of
1305                         * the manageability unit.
1306                         */
1307                        vfta_offset = (hw->mng_cookie.vlan_id >>
1308                                       E1000_VFTA_ENTRY_SHIFT) &
1309                            E1000_VFTA_ENTRY_MASK;
1310                        vfta_bit_in_reg =
1311                            1 << (hw->mng_cookie.vlan_id &
1312                                  E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
1313                }
1314                break;
1315        default:
1316                break;
1317        }
1318        for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
1319                /* If the offset we want to clear is the same offset of the
1320                 * manageability VLAN ID, then clear all bits except that of
1321                 * the manageability unit.
1322                 */
1323                vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1324                E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1325                e1e_flush();
1326        }
1327}
1328
1329/**
1330 *  e1000_check_mng_mode_82574 - Check manageability is enabled
1331 *  @hw: pointer to the HW structure
1332 *
1333 *  Reads the NVM Initialization Control Word 2 and returns true
1334 *  (>0) if any manageability is enabled, else false (0).
1335 **/
1336static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1337{
1338        u16 data;
1339
1340        e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1341        return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1342}
1343
1344/**
1345 *  e1000_led_on_82574 - Turn LED on
1346 *  @hw: pointer to the HW structure
1347 *
1348 *  Turn LED on.
1349 **/
1350static s32 e1000_led_on_82574(struct e1000_hw *hw)
1351{
1352        u32 ctrl;
1353        u32 i;
1354
1355        ctrl = hw->mac.ledctl_mode2;
1356        if (!(E1000_STATUS_LU & er32(STATUS))) {
1357                /* If no link, then turn LED on by setting the invert bit
1358                 * for each LED that's "on" (0x0E) in ledctl_mode2.
1359                 */
1360                for (i = 0; i < 4; i++)
1361                        if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1362                            E1000_LEDCTL_MODE_LED_ON)
1363                                ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1364        }
1365        ew32(LEDCTL, ctrl);
1366
1367        return 0;
1368}
1369
1370/**
1371 *  e1000_check_phy_82574 - check 82574 phy hung state
1372 *  @hw: pointer to the HW structure
1373 *
1374 *  Returns whether phy is hung or not
1375 **/
1376bool e1000_check_phy_82574(struct e1000_hw *hw)
1377{
1378        u16 status_1kbt = 0;
1379        u16 receive_errors = 0;
1380        s32 ret_val;
1381
1382        /* Read PHY Receive Error counter first, if its is max - all F's then
1383         * read the Base1000T status register If both are max then PHY is hung.
1384         */
1385        ret_val = e1e_rphy(hw, E1000_RECEIVE_ERROR_COUNTER, &receive_errors);
1386        if (ret_val)
1387                return false;
1388        if (receive_errors == E1000_RECEIVE_ERROR_MAX) {
1389                ret_val = e1e_rphy(hw, E1000_BASE1000T_STATUS, &status_1kbt);
1390                if (ret_val)
1391                        return false;
1392                if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) ==
1393                    E1000_IDLE_ERROR_COUNT_MASK)
1394                        return true;
1395        }
1396
1397        return false;
1398}
1399
1400/**
1401 *  e1000_setup_link_82571 - Setup flow control and link settings
1402 *  @hw: pointer to the HW structure
1403 *
1404 *  Determines which flow control settings to use, then configures flow
1405 *  control.  Calls the appropriate media-specific link configuration
1406 *  function.  Assuming the adapter has a valid link partner, a valid link
1407 *  should be established.  Assumes the hardware has previously been reset
1408 *  and the transmitter and receiver are not enabled.
1409 **/
1410static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1411{
1412        /* 82573 does not have a word in the NVM to determine
1413         * the default flow control setting, so we explicitly
1414         * set it to full.
1415         */
1416        switch (hw->mac.type) {
1417        case e1000_82573:
1418        case e1000_82574:
1419        case e1000_82583:
1420                if (hw->fc.requested_mode == e1000_fc_default)
1421                        hw->fc.requested_mode = e1000_fc_full;
1422                break;
1423        default:
1424                break;
1425        }
1426
1427        return e1000e_setup_link_generic(hw);
1428}
1429
1430/**
1431 *  e1000_setup_copper_link_82571 - Configure copper link settings
1432 *  @hw: pointer to the HW structure
1433 *
1434 *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1435 *  for link, once link is established calls to configure collision distance
1436 *  and flow control are called.
1437 **/
1438static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1439{
1440        u32 ctrl;
1441        s32 ret_val;
1442
1443        ctrl = er32(CTRL);
1444        ctrl |= E1000_CTRL_SLU;
1445        ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1446        ew32(CTRL, ctrl);
1447
1448        switch (hw->phy.type) {
1449        case e1000_phy_m88:
1450        case e1000_phy_bm:
1451                ret_val = e1000e_copper_link_setup_m88(hw);
1452                break;
1453        case e1000_phy_igp_2:
1454                ret_val = e1000e_copper_link_setup_igp(hw);
1455                break;
1456        default:
1457                return -E1000_ERR_PHY;
1458        }
1459
1460        if (ret_val)
1461                return ret_val;
1462
1463        return e1000e_setup_copper_link(hw);
1464}
1465
1466/**
1467 *  e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1468 *  @hw: pointer to the HW structure
1469 *
1470 *  Configures collision distance and flow control for fiber and serdes links.
1471 *  Upon successful setup, poll for link.
1472 **/
1473static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1474{
1475        switch (hw->mac.type) {
1476        case e1000_82571:
1477        case e1000_82572:
1478                /* If SerDes loopback mode is entered, there is no form
1479                 * of reset to take the adapter out of that mode.  So we
1480                 * have to explicitly take the adapter out of loopback
1481                 * mode.  This prevents drivers from twiddling their thumbs
1482                 * if another tool failed to take it out of loopback mode.
1483                 */
1484                ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1485                break;
1486        default:
1487                break;
1488        }
1489
1490        return e1000e_setup_fiber_serdes_link(hw);
1491}
1492
1493/**
1494 *  e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1495 *  @hw: pointer to the HW structure
1496 *
1497 *  Reports the link state as up or down.
1498 *
1499 *  If autonegotiation is supported by the link partner, the link state is
1500 *  determined by the result of autonegotiation. This is the most likely case.
1501 *  If autonegotiation is not supported by the link partner, and the link
1502 *  has a valid signal, force the link up.
1503 *
1504 *  The link state is represented internally here by 4 states:
1505 *
1506 *  1) down
1507 *  2) autoneg_progress
1508 *  3) autoneg_complete (the link successfully autonegotiated)
1509 *  4) forced_up (the link has been forced up, it did not autonegotiate)
1510 *
1511 **/
1512static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
1513{
1514        struct e1000_mac_info *mac = &hw->mac;
1515        u32 rxcw;
1516        u32 ctrl;
1517        u32 status;
1518        u32 txcw;
1519        u32 i;
1520        s32 ret_val = 0;
1521
1522        ctrl = er32(CTRL);
1523        status = er32(STATUS);
1524        er32(RXCW);
1525        /* SYNCH bit and IV bit are sticky */
1526        usleep_range(10, 20);
1527        rxcw = er32(RXCW);
1528
1529        if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
1530                /* Receiver is synchronized with no invalid bits.  */
1531                switch (mac->serdes_link_state) {
1532                case e1000_serdes_link_autoneg_complete:
1533                        if (!(status & E1000_STATUS_LU)) {
1534                                /* We have lost link, retry autoneg before
1535                                 * reporting link failure
1536                                 */
1537                                mac->serdes_link_state =
1538                                    e1000_serdes_link_autoneg_progress;
1539                                mac->serdes_has_link = false;
1540                                e_dbg("AN_UP     -> AN_PROG\n");
1541                        } else {
1542                                mac->serdes_has_link = true;
1543                        }
1544                        break;
1545
1546                case e1000_serdes_link_forced_up:
1547                        /* If we are receiving /C/ ordered sets, re-enable
1548                         * auto-negotiation in the TXCW register and disable
1549                         * forced link in the Device Control register in an
1550                         * attempt to auto-negotiate with our link partner.
1551                         */
1552                        if (rxcw & E1000_RXCW_C) {
1553                                /* Enable autoneg, and unforce link up */
1554                                ew32(TXCW, mac->txcw);
1555                                ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1556                                mac->serdes_link_state =
1557                                    e1000_serdes_link_autoneg_progress;
1558                                mac->serdes_has_link = false;
1559                                e_dbg("FORCED_UP -> AN_PROG\n");
1560                        } else {
1561                                mac->serdes_has_link = true;
1562                        }
1563                        break;
1564
1565                case e1000_serdes_link_autoneg_progress:
1566                        if (rxcw & E1000_RXCW_C) {
1567                                /* We received /C/ ordered sets, meaning the
1568                                 * link partner has autonegotiated, and we can
1569                                 * trust the Link Up (LU) status bit.
1570                                 */
1571                                if (status & E1000_STATUS_LU) {
1572                                        mac->serdes_link_state =
1573                                            e1000_serdes_link_autoneg_complete;
1574                                        e_dbg("AN_PROG   -> AN_UP\n");
1575                                        mac->serdes_has_link = true;
1576                                } else {
1577                                        /* Autoneg completed, but failed. */
1578                                        mac->serdes_link_state =
1579                                            e1000_serdes_link_down;
1580                                        e_dbg("AN_PROG   -> DOWN\n");
1581                                }
1582                        } else {
1583                                /* The link partner did not autoneg.
1584                                 * Force link up and full duplex, and change
1585                                 * state to forced.
1586                                 */
1587                                ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
1588                                ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1589                                ew32(CTRL, ctrl);
1590
1591                                /* Configure Flow Control after link up. */
1592                                ret_val = e1000e_config_fc_after_link_up(hw);
1593                                if (ret_val) {
1594                                        e_dbg("Error config flow control\n");
1595                                        break;
1596                                }
1597                                mac->serdes_link_state =
1598                                    e1000_serdes_link_forced_up;
1599                                mac->serdes_has_link = true;
1600                                e_dbg("AN_PROG   -> FORCED_UP\n");
1601                        }
1602                        break;
1603
1604                case e1000_serdes_link_down:
1605                default:
1606                        /* The link was down but the receiver has now gained
1607                         * valid sync, so lets see if we can bring the link
1608                         * up.
1609                         */
1610                        ew32(TXCW, mac->txcw);
1611                        ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1612                        mac->serdes_link_state =
1613                            e1000_serdes_link_autoneg_progress;
1614                        mac->serdes_has_link = false;
1615                        e_dbg("DOWN      -> AN_PROG\n");
1616                        break;
1617                }
1618        } else {
1619                if (!(rxcw & E1000_RXCW_SYNCH)) {
1620                        mac->serdes_has_link = false;
1621                        mac->serdes_link_state = e1000_serdes_link_down;
1622                        e_dbg("ANYSTATE  -> DOWN\n");
1623                } else {
1624                        /* Check several times, if SYNCH bit and CONFIG
1625                         * bit both are consistently 1 then simply ignore
1626                         * the IV bit and restart Autoneg
1627                         */
1628                        for (i = 0; i < AN_RETRY_COUNT; i++) {
1629                                usleep_range(10, 20);
1630                                rxcw = er32(RXCW);
1631                                if ((rxcw & E1000_RXCW_SYNCH) &&
1632                                    (rxcw & E1000_RXCW_C))
1633                                        continue;
1634
1635                                if (rxcw & E1000_RXCW_IV) {
1636                                        mac->serdes_has_link = false;
1637                                        mac->serdes_link_state =
1638                                            e1000_serdes_link_down;
1639                                        e_dbg("ANYSTATE  -> DOWN\n");
1640                                        break;
1641                                }
1642                        }
1643
1644                        if (i == AN_RETRY_COUNT) {
1645                                txcw = er32(TXCW);
1646                                txcw |= E1000_TXCW_ANE;
1647                                ew32(TXCW, txcw);
1648                                mac->serdes_link_state =
1649                                    e1000_serdes_link_autoneg_progress;
1650                                mac->serdes_has_link = false;
1651                                e_dbg("ANYSTATE  -> AN_PROG\n");
1652                        }
1653                }
1654        }
1655
1656        return ret_val;
1657}
1658
1659/**
1660 *  e1000_valid_led_default_82571 - Verify a valid default LED config
1661 *  @hw: pointer to the HW structure
1662 *  @data: pointer to the NVM (EEPROM)
1663 *
1664 *  Read the EEPROM for the current default LED configuration.  If the
1665 *  LED configuration is not valid, set to a valid LED configuration.
1666 **/
1667static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1668{
1669        s32 ret_val;
1670
1671        ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1672        if (ret_val) {
1673                e_dbg("NVM Read Error\n");
1674                return ret_val;
1675        }
1676
1677        switch (hw->mac.type) {
1678        case e1000_82573:
1679        case e1000_82574:
1680        case e1000_82583:
1681                if (*data == ID_LED_RESERVED_F746)
1682                        *data = ID_LED_DEFAULT_82573;
1683                break;
1684        default:
1685                if (*data == ID_LED_RESERVED_0000 ||
1686                    *data == ID_LED_RESERVED_FFFF)
1687                        *data = ID_LED_DEFAULT;
1688                break;
1689        }
1690
1691        return 0;
1692}
1693
1694/**
1695 *  e1000e_get_laa_state_82571 - Get locally administered address state
1696 *  @hw: pointer to the HW structure
1697 *
1698 *  Retrieve and return the current locally administered address state.
1699 **/
1700bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1701{
1702        if (hw->mac.type != e1000_82571)
1703                return false;
1704
1705        return hw->dev_spec.e82571.laa_is_present;
1706}
1707
1708/**
1709 *  e1000e_set_laa_state_82571 - Set locally administered address state
1710 *  @hw: pointer to the HW structure
1711 *  @state: enable/disable locally administered address
1712 *
1713 *  Enable/Disable the current locally administered address state.
1714 **/
1715void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1716{
1717        if (hw->mac.type != e1000_82571)
1718                return;
1719
1720        hw->dev_spec.e82571.laa_is_present = state;
1721
1722        /* If workaround is activated... */
1723        if (state)
1724                /* Hold a copy of the LAA in RAR[14] This is done so that
1725                 * between the time RAR[0] gets clobbered and the time it
1726                 * gets fixed, the actual LAA is in one of the RARs and no
1727                 * incoming packets directed to this port are dropped.
1728                 * Eventually the LAA will be in RAR[0] and RAR[14].
1729                 */
1730                hw->mac.ops.rar_set(hw, hw->mac.addr,
1731                                    hw->mac.rar_entry_count - 1);
1732}
1733
1734/**
1735 *  e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1736 *  @hw: pointer to the HW structure
1737 *
1738 *  Verifies that the EEPROM has completed the update.  After updating the
1739 *  EEPROM, we need to check bit 15 in work 0x23 for the checksum fix.  If
1740 *  the checksum fix is not implemented, we need to set the bit and update
1741 *  the checksum.  Otherwise, if bit 15 is set and the checksum is incorrect,
1742 *  we need to return bad checksum.
1743 **/
1744static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1745{
1746        struct e1000_nvm_info *nvm = &hw->nvm;
1747        s32 ret_val;
1748        u16 data;
1749
1750        if (nvm->type != e1000_nvm_flash_hw)
1751                return 0;
1752
1753        /* Check bit 4 of word 10h.  If it is 0, firmware is done updating
1754         * 10h-12h.  Checksum may need to be fixed.
1755         */
1756        ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1757        if (ret_val)
1758                return ret_val;
1759
1760        if (!(data & 0x10)) {
1761                /* Read 0x23 and check bit 15.  This bit is a 1
1762                 * when the checksum has already been fixed.  If
1763                 * the checksum is still wrong and this bit is a
1764                 * 1, we need to return bad checksum.  Otherwise,
1765                 * we need to set this bit to a 1 and update the
1766                 * checksum.
1767                 */
1768                ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1769                if (ret_val)
1770                        return ret_val;
1771
1772                if (!(data & 0x8000)) {
1773                        data |= 0x8000;
1774                        ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1775                        if (ret_val)
1776                                return ret_val;
1777                        ret_val = e1000e_update_nvm_checksum(hw);
1778                        if (ret_val)
1779                                return ret_val;
1780                }
1781        }
1782
1783        return 0;
1784}
1785
1786/**
1787 *  e1000_read_mac_addr_82571 - Read device MAC address
1788 *  @hw: pointer to the HW structure
1789 **/
1790static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
1791{
1792        if (hw->mac.type == e1000_82571) {
1793                s32 ret_val;
1794
1795                /* If there's an alternate MAC address place it in RAR0
1796                 * so that it will override the Si installed default perm
1797                 * address.
1798                 */
1799                ret_val = e1000_check_alt_mac_addr_generic(hw);
1800                if (ret_val)
1801                        return ret_val;
1802        }
1803
1804        return e1000_read_mac_addr_generic(hw);
1805}
1806
1807/**
1808 * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
1809 * @hw: pointer to the HW structure
1810 *
1811 * In the case of a PHY power down to save power, or to turn off link during a
1812 * driver unload, or wake on lan is not enabled, remove the link.
1813 **/
1814static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
1815{
1816        struct e1000_phy_info *phy = &hw->phy;
1817        struct e1000_mac_info *mac = &hw->mac;
1818
1819        if (!phy->ops.check_reset_block)
1820                return;
1821
1822        /* If the management interface is not enabled, then power down */
1823        if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
1824                e1000_power_down_phy_copper(hw);
1825}
1826
1827/**
1828 *  e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1829 *  @hw: pointer to the HW structure
1830 *
1831 *  Clears the hardware counters by reading the counter registers.
1832 **/
1833static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1834{
1835        e1000e_clear_hw_cntrs_base(hw);
1836
1837        er32(PRC64);
1838        er32(PRC127);
1839        er32(PRC255);
1840        er32(PRC511);
1841        er32(PRC1023);
1842        er32(PRC1522);
1843        er32(PTC64);
1844        er32(PTC127);
1845        er32(PTC255);
1846        er32(PTC511);
1847        er32(PTC1023);
1848        er32(PTC1522);
1849
1850        er32(ALGNERRC);
1851        er32(RXERRC);
1852        er32(TNCRS);
1853        er32(CEXTERR);
1854        er32(TSCTC);
1855        er32(TSCTFC);
1856
1857        er32(MGTPRC);
1858        er32(MGTPDC);
1859        er32(MGTPTC);
1860
1861        er32(IAC);
1862        er32(ICRXOC);
1863
1864        er32(ICRXPTC);
1865        er32(ICRXATC);
1866        er32(ICTXPTC);
1867        er32(ICTXATC);
1868        er32(ICTXQEC);
1869        er32(ICTXQMTC);
1870        er32(ICRXDMTC);
1871}
1872
1873static const struct e1000_mac_operations e82571_mac_ops = {
1874        /* .check_mng_mode: mac type dependent */
1875        /* .check_for_link: media type dependent */
1876        .id_led_init            = e1000e_id_led_init_generic,
1877        .cleanup_led            = e1000e_cleanup_led_generic,
1878        .clear_hw_cntrs         = e1000_clear_hw_cntrs_82571,
1879        .get_bus_info           = e1000e_get_bus_info_pcie,
1880        .set_lan_id             = e1000_set_lan_id_multi_port_pcie,
1881        /* .get_link_up_info: media type dependent */
1882        /* .led_on: mac type dependent */
1883        .led_off                = e1000e_led_off_generic,
1884        .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
1885        .write_vfta             = e1000_write_vfta_generic,
1886        .clear_vfta             = e1000_clear_vfta_82571,
1887        .reset_hw               = e1000_reset_hw_82571,
1888        .init_hw                = e1000_init_hw_82571,
1889        .setup_link             = e1000_setup_link_82571,
1890        /* .setup_physical_interface: media type dependent */
1891        .setup_led              = e1000e_setup_led_generic,
1892        .config_collision_dist  = e1000e_config_collision_dist_generic,
1893        .read_mac_addr          = e1000_read_mac_addr_82571,
1894        .rar_set                = e1000e_rar_set_generic,
1895        .rar_get_count          = e1000e_rar_get_count_generic,
1896};
1897
1898static const struct e1000_phy_operations e82_phy_ops_igp = {
1899        .acquire                = e1000_get_hw_semaphore_82571,
1900        .check_polarity         = e1000_check_polarity_igp,
1901        .check_reset_block      = e1000e_check_reset_block_generic,
1902        .commit                 = NULL,
1903        .force_speed_duplex     = e1000e_phy_force_speed_duplex_igp,
1904        .get_cfg_done           = e1000_get_cfg_done_82571,
1905        .get_cable_length       = e1000e_get_cable_length_igp_2,
1906        .get_info               = e1000e_get_phy_info_igp,
1907        .read_reg               = e1000e_read_phy_reg_igp,
1908        .release                = e1000_put_hw_semaphore_82571,
1909        .reset                  = e1000e_phy_hw_reset_generic,
1910        .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1911        .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1912        .write_reg              = e1000e_write_phy_reg_igp,
1913        .cfg_on_link_up         = NULL,
1914};
1915
1916static const struct e1000_phy_operations e82_phy_ops_m88 = {
1917        .acquire                = e1000_get_hw_semaphore_82571,
1918        .check_polarity         = e1000_check_polarity_m88,
1919        .check_reset_block      = e1000e_check_reset_block_generic,
1920        .commit                 = e1000e_phy_sw_reset,
1921        .force_speed_duplex     = e1000e_phy_force_speed_duplex_m88,
1922        .get_cfg_done           = e1000e_get_cfg_done_generic,
1923        .get_cable_length       = e1000e_get_cable_length_m88,
1924        .get_info               = e1000e_get_phy_info_m88,
1925        .read_reg               = e1000e_read_phy_reg_m88,
1926        .release                = e1000_put_hw_semaphore_82571,
1927        .reset                  = e1000e_phy_hw_reset_generic,
1928        .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1929        .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1930        .write_reg              = e1000e_write_phy_reg_m88,
1931        .cfg_on_link_up         = NULL,
1932};
1933
1934static const struct e1000_phy_operations e82_phy_ops_bm = {
1935        .acquire                = e1000_get_hw_semaphore_82571,
1936        .check_polarity         = e1000_check_polarity_m88,
1937        .check_reset_block      = e1000e_check_reset_block_generic,
1938        .commit                 = e1000e_phy_sw_reset,
1939        .force_speed_duplex     = e1000e_phy_force_speed_duplex_m88,
1940        .get_cfg_done           = e1000e_get_cfg_done_generic,
1941        .get_cable_length       = e1000e_get_cable_length_m88,
1942        .get_info               = e1000e_get_phy_info_m88,
1943        .read_reg               = e1000e_read_phy_reg_bm2,
1944        .release                = e1000_put_hw_semaphore_82571,
1945        .reset                  = e1000e_phy_hw_reset_generic,
1946        .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1947        .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1948        .write_reg              = e1000e_write_phy_reg_bm2,
1949        .cfg_on_link_up         = NULL,
1950};
1951
1952static const struct e1000_nvm_operations e82571_nvm_ops = {
1953        .acquire                = e1000_acquire_nvm_82571,
1954        .read                   = e1000e_read_nvm_eerd,
1955        .release                = e1000_release_nvm_82571,
1956        .reload                 = e1000e_reload_nvm_generic,
1957        .update                 = e1000_update_nvm_checksum_82571,
1958        .valid_led_default      = e1000_valid_led_default_82571,
1959        .validate               = e1000_validate_nvm_checksum_82571,
1960        .write                  = e1000_write_nvm_82571,
1961};
1962
1963const struct e1000_info e1000_82571_info = {
1964        .mac                    = e1000_82571,
1965        .flags                  = FLAG_HAS_HW_VLAN_FILTER
1966                                  | FLAG_HAS_JUMBO_FRAMES
1967                                  | FLAG_HAS_WOL
1968                                  | FLAG_APME_IN_CTRL3
1969                                  | FLAG_HAS_CTRLEXT_ON_LOAD
1970                                  | FLAG_HAS_SMART_POWER_DOWN
1971                                  | FLAG_RESET_OVERWRITES_LAA /* errata */
1972                                  | FLAG_TARC_SPEED_MODE_BIT /* errata */
1973                                  | FLAG_APME_CHECK_PORT_B,
1974        .flags2                 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
1975                                  | FLAG2_DMA_BURST,
1976        .pba                    = 38,
1977        .max_hw_frame_size      = DEFAULT_JUMBO,
1978        .get_variants           = e1000_get_variants_82571,
1979        .mac_ops                = &e82571_mac_ops,
1980        .phy_ops                = &e82_phy_ops_igp,
1981        .nvm_ops                = &e82571_nvm_ops,
1982};
1983
1984const struct e1000_info e1000_82572_info = {
1985        .mac                    = e1000_82572,
1986        .flags                  = FLAG_HAS_HW_VLAN_FILTER
1987                                  | FLAG_HAS_JUMBO_FRAMES
1988                                  | FLAG_HAS_WOL
1989                                  | FLAG_APME_IN_CTRL3
1990                                  | FLAG_HAS_CTRLEXT_ON_LOAD
1991                                  | FLAG_TARC_SPEED_MODE_BIT, /* errata */
1992        .flags2                 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
1993                                  | FLAG2_DMA_BURST,
1994        .pba                    = 38,
1995        .max_hw_frame_size      = DEFAULT_JUMBO,
1996        .get_variants           = e1000_get_variants_82571,
1997        .mac_ops                = &e82571_mac_ops,
1998        .phy_ops                = &e82_phy_ops_igp,
1999        .nvm_ops                = &e82571_nvm_ops,
2000};
2001
2002const struct e1000_info e1000_82573_info = {
2003        .mac                    = e1000_82573,
2004        .flags                  = FLAG_HAS_HW_VLAN_FILTER
2005                                  | FLAG_HAS_WOL
2006                                  | FLAG_APME_IN_CTRL3
2007                                  | FLAG_HAS_SMART_POWER_DOWN
2008                                  | FLAG_HAS_AMT
2009                                  | FLAG_HAS_SWSM_ON_LOAD,
2010        .flags2                 = FLAG2_DISABLE_ASPM_L1
2011                                  | FLAG2_DISABLE_ASPM_L0S,
2012        .pba                    = 20,
2013        .max_hw_frame_size      = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
2014        .get_variants           = e1000_get_variants_82571,
2015        .mac_ops                = &e82571_mac_ops,
2016        .phy_ops                = &e82_phy_ops_m88,
2017        .nvm_ops                = &e82571_nvm_ops,
2018};
2019
2020const struct e1000_info e1000_82574_info = {
2021        .mac                    = e1000_82574,
2022        .flags                  = FLAG_HAS_HW_VLAN_FILTER
2023                                  | FLAG_HAS_MSIX
2024                                  | FLAG_HAS_JUMBO_FRAMES
2025                                  | FLAG_HAS_WOL
2026                                  | FLAG_HAS_HW_TIMESTAMP
2027                                  | FLAG_APME_IN_CTRL3
2028                                  | FLAG_HAS_SMART_POWER_DOWN
2029                                  | FLAG_HAS_AMT
2030                                  | FLAG_HAS_CTRLEXT_ON_LOAD,
2031        .flags2                  = FLAG2_CHECK_PHY_HANG
2032                                  | FLAG2_DISABLE_ASPM_L0S
2033                                  | FLAG2_DISABLE_ASPM_L1
2034                                  | FLAG2_NO_DISABLE_RX
2035                                  | FLAG2_DMA_BURST,
2036        .pba                    = 32,
2037        .max_hw_frame_size      = DEFAULT_JUMBO,
2038        .get_variants           = e1000_get_variants_82571,
2039        .mac_ops                = &e82571_mac_ops,
2040        .phy_ops                = &e82_phy_ops_bm,
2041        .nvm_ops                = &e82571_nvm_ops,
2042};
2043
2044const struct e1000_info e1000_82583_info = {
2045        .mac                    = e1000_82583,
2046        .flags                  = FLAG_HAS_HW_VLAN_FILTER
2047                                  | FLAG_HAS_WOL
2048                                  | FLAG_HAS_HW_TIMESTAMP
2049                                  | FLAG_APME_IN_CTRL3
2050                                  | FLAG_HAS_SMART_POWER_DOWN
2051                                  | FLAG_HAS_AMT
2052                                  | FLAG_HAS_JUMBO_FRAMES
2053                                  | FLAG_HAS_CTRLEXT_ON_LOAD,
2054        .flags2                 = FLAG2_DISABLE_ASPM_L0S
2055                                  | FLAG2_DISABLE_ASPM_L1
2056                                  | FLAG2_NO_DISABLE_RX,
2057        .pba                    = 32,
2058        .max_hw_frame_size      = DEFAULT_JUMBO,
2059        .get_variants           = e1000_get_variants_82571,
2060        .mac_ops                = &e82571_mac_ops,
2061        .phy_ops                = &e82_phy_ops_bm,
2062        .nvm_ops                = &e82571_nvm_ops,
2063};
2064