linux/drivers/net/ethernet/intel/fm10k/fm10k_main.c
<<
>>
Prefs
   1/* Intel Ethernet Switch Host Interface Driver
   2 * Copyright(c) 2013 - 2014 Intel Corporation.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms and conditions of the GNU General Public License,
   6 * version 2, as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 * The full GNU General Public License is included in this distribution in
  14 * the file called "COPYING".
  15 *
  16 * Contact Information:
  17 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  18 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  19 */
  20
  21#include <linux/types.h>
  22#include <linux/module.h>
  23#include <net/ipv6.h>
  24#include <net/ip.h>
  25#include <net/tcp.h>
  26#include <linux/if_macvlan.h>
  27#include <linux/prefetch.h>
  28
  29#include "fm10k.h"
  30
  31#define DRV_VERSION     "0.19.3-k"
  32const char fm10k_driver_version[] = DRV_VERSION;
  33char fm10k_driver_name[] = "fm10k";
  34static const char fm10k_driver_string[] =
  35        "Intel(R) Ethernet Switch Host Interface Driver";
  36static const char fm10k_copyright[] =
  37        "Copyright (c) 2013 Intel Corporation.";
  38
  39MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
  40MODULE_DESCRIPTION("Intel(R) Ethernet Switch Host Interface Driver");
  41MODULE_LICENSE("GPL");
  42MODULE_VERSION(DRV_VERSION);
  43
  44/* single workqueue for entire fm10k driver */
  45struct workqueue_struct *fm10k_workqueue;
  46
  47/**
  48 * fm10k_init_module - Driver Registration Routine
  49 *
  50 * fm10k_init_module is the first routine called when the driver is
  51 * loaded.  All it does is register with the PCI subsystem.
  52 **/
  53static int __init fm10k_init_module(void)
  54{
  55        pr_info("%s - version %s\n", fm10k_driver_string, fm10k_driver_version);
  56        pr_info("%s\n", fm10k_copyright);
  57
  58        /* create driver workqueue */
  59        fm10k_workqueue = create_workqueue("fm10k");
  60
  61        fm10k_dbg_init();
  62
  63        return fm10k_register_pci_driver();
  64}
  65module_init(fm10k_init_module);
  66
  67/**
  68 * fm10k_exit_module - Driver Exit Cleanup Routine
  69 *
  70 * fm10k_exit_module is called just before the driver is removed
  71 * from memory.
  72 **/
  73static void __exit fm10k_exit_module(void)
  74{
  75        fm10k_unregister_pci_driver();
  76
  77        fm10k_dbg_exit();
  78
  79        /* destroy driver workqueue */
  80        flush_workqueue(fm10k_workqueue);
  81        destroy_workqueue(fm10k_workqueue);
  82}
  83module_exit(fm10k_exit_module);
  84
  85static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring,
  86                                    struct fm10k_rx_buffer *bi)
  87{
  88        struct page *page = bi->page;
  89        dma_addr_t dma;
  90
  91        /* Only page will be NULL if buffer was consumed */
  92        if (likely(page))
  93                return true;
  94
  95        /* alloc new page for storage */
  96        page = dev_alloc_page();
  97        if (unlikely(!page)) {
  98                rx_ring->rx_stats.alloc_failed++;
  99                return false;
 100        }
 101
 102        /* map page for use */
 103        dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
 104
 105        /* if mapping failed free memory back to system since
 106         * there isn't much point in holding memory we can't use
 107         */
 108        if (dma_mapping_error(rx_ring->dev, dma)) {
 109                __free_page(page);
 110
 111                rx_ring->rx_stats.alloc_failed++;
 112                return false;
 113        }
 114
 115        bi->dma = dma;
 116        bi->page = page;
 117        bi->page_offset = 0;
 118
 119        return true;
 120}
 121
 122/**
 123 * fm10k_alloc_rx_buffers - Replace used receive buffers
 124 * @rx_ring: ring to place buffers on
 125 * @cleaned_count: number of buffers to replace
 126 **/
 127void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count)
 128{
 129        union fm10k_rx_desc *rx_desc;
 130        struct fm10k_rx_buffer *bi;
 131        u16 i = rx_ring->next_to_use;
 132
 133        /* nothing to do */
 134        if (!cleaned_count)
 135                return;
 136
 137        rx_desc = FM10K_RX_DESC(rx_ring, i);
 138        bi = &rx_ring->rx_buffer[i];
 139        i -= rx_ring->count;
 140
 141        do {
 142                if (!fm10k_alloc_mapped_page(rx_ring, bi))
 143                        break;
 144
 145                /* Refresh the desc even if buffer_addrs didn't change
 146                 * because each write-back erases this info.
 147                 */
 148                rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
 149
 150                rx_desc++;
 151                bi++;
 152                i++;
 153                if (unlikely(!i)) {
 154                        rx_desc = FM10K_RX_DESC(rx_ring, 0);
 155                        bi = rx_ring->rx_buffer;
 156                        i -= rx_ring->count;
 157                }
 158
 159                /* clear the status bits for the next_to_use descriptor */
 160                rx_desc->d.staterr = 0;
 161
 162                cleaned_count--;
 163        } while (cleaned_count);
 164
 165        i += rx_ring->count;
 166
 167        if (rx_ring->next_to_use != i) {
 168                /* record the next descriptor to use */
 169                rx_ring->next_to_use = i;
 170
 171                /* update next to alloc since we have filled the ring */
 172                rx_ring->next_to_alloc = i;
 173
 174                /* Force memory writes to complete before letting h/w
 175                 * know there are new descriptors to fetch.  (Only
 176                 * applicable for weak-ordered memory model archs,
 177                 * such as IA-64).
 178                 */
 179                wmb();
 180
 181                /* notify hardware of new descriptors */
 182                writel(i, rx_ring->tail);
 183        }
 184}
 185
 186/**
 187 * fm10k_reuse_rx_page - page flip buffer and store it back on the ring
 188 * @rx_ring: rx descriptor ring to store buffers on
 189 * @old_buff: donor buffer to have page reused
 190 *
 191 * Synchronizes page for reuse by the interface
 192 **/
 193static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring,
 194                                struct fm10k_rx_buffer *old_buff)
 195{
 196        struct fm10k_rx_buffer *new_buff;
 197        u16 nta = rx_ring->next_to_alloc;
 198
 199        new_buff = &rx_ring->rx_buffer[nta];
 200
 201        /* update, and store next to alloc */
 202        nta++;
 203        rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
 204
 205        /* transfer page from old buffer to new buffer */
 206        *new_buff = *old_buff;
 207
 208        /* sync the buffer for use by the device */
 209        dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
 210                                         old_buff->page_offset,
 211                                         FM10K_RX_BUFSZ,
 212                                         DMA_FROM_DEVICE);
 213}
 214
 215static inline bool fm10k_page_is_reserved(struct page *page)
 216{
 217        return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
 218}
 219
 220static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer,
 221                                    struct page *page,
 222                                    unsigned int __maybe_unused truesize)
 223{
 224        /* avoid re-using remote pages */
 225        if (unlikely(fm10k_page_is_reserved(page)))
 226                return false;
 227
 228#if (PAGE_SIZE < 8192)
 229        /* if we are only owner of page we can reuse it */
 230        if (unlikely(page_count(page) != 1))
 231                return false;
 232
 233        /* flip page offset to other buffer */
 234        rx_buffer->page_offset ^= FM10K_RX_BUFSZ;
 235#else
 236        /* move offset up to the next cache line */
 237        rx_buffer->page_offset += truesize;
 238
 239        if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ))
 240                return false;
 241#endif
 242
 243        /* Even if we own the page, we are not allowed to use atomic_set()
 244         * This would break get_page_unless_zero() users.
 245         */
 246        page_ref_inc(page);
 247
 248        return true;
 249}
 250
 251/**
 252 * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff
 253 * @rx_buffer: buffer containing page to add
 254 * @rx_desc: descriptor containing length of buffer written by hardware
 255 * @skb: sk_buff to place the data into
 256 *
 257 * This function will add the data contained in rx_buffer->page to the skb.
 258 * This is done either through a direct copy if the data in the buffer is
 259 * less than the skb header size, otherwise it will just attach the page as
 260 * a frag to the skb.
 261 *
 262 * The function will then update the page offset if necessary and return
 263 * true if the buffer can be reused by the interface.
 264 **/
 265static bool fm10k_add_rx_frag(struct fm10k_rx_buffer *rx_buffer,
 266                              union fm10k_rx_desc *rx_desc,
 267                              struct sk_buff *skb)
 268{
 269        struct page *page = rx_buffer->page;
 270        unsigned char *va = page_address(page) + rx_buffer->page_offset;
 271        unsigned int size = le16_to_cpu(rx_desc->w.length);
 272#if (PAGE_SIZE < 8192)
 273        unsigned int truesize = FM10K_RX_BUFSZ;
 274#else
 275        unsigned int truesize = SKB_DATA_ALIGN(size);
 276#endif
 277        unsigned int pull_len;
 278
 279        if (unlikely(skb_is_nonlinear(skb)))
 280                goto add_tail_frag;
 281
 282        if (likely(size <= FM10K_RX_HDR_LEN)) {
 283                memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
 284
 285                /* page is not reserved, we can reuse buffer as-is */
 286                if (likely(!fm10k_page_is_reserved(page)))
 287                        return true;
 288
 289                /* this page cannot be reused so discard it */
 290                __free_page(page);
 291                return false;
 292        }
 293
 294        /* we need the header to contain the greater of either ETH_HLEN or
 295         * 60 bytes if the skb->len is less than 60 for skb_pad.
 296         */
 297        pull_len = eth_get_headlen(va, FM10K_RX_HDR_LEN);
 298
 299        /* align pull length to size of long to optimize memcpy performance */
 300        memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
 301
 302        /* update all of the pointers */
 303        va += pull_len;
 304        size -= pull_len;
 305
 306add_tail_frag:
 307        skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
 308                        (unsigned long)va & ~PAGE_MASK, size, truesize);
 309
 310        return fm10k_can_reuse_rx_page(rx_buffer, page, truesize);
 311}
 312
 313static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring,
 314                                             union fm10k_rx_desc *rx_desc,
 315                                             struct sk_buff *skb)
 316{
 317        struct fm10k_rx_buffer *rx_buffer;
 318        struct page *page;
 319
 320        rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean];
 321        page = rx_buffer->page;
 322        prefetchw(page);
 323
 324        if (likely(!skb)) {
 325                void *page_addr = page_address(page) +
 326                                  rx_buffer->page_offset;
 327
 328                /* prefetch first cache line of first page */
 329                prefetch(page_addr);
 330#if L1_CACHE_BYTES < 128
 331                prefetch(page_addr + L1_CACHE_BYTES);
 332#endif
 333
 334                /* allocate a skb to store the frags */
 335                skb = napi_alloc_skb(&rx_ring->q_vector->napi,
 336                                     FM10K_RX_HDR_LEN);
 337                if (unlikely(!skb)) {
 338                        rx_ring->rx_stats.alloc_failed++;
 339                        return NULL;
 340                }
 341
 342                /* we will be copying header into skb->data in
 343                 * pskb_may_pull so it is in our interest to prefetch
 344                 * it now to avoid a possible cache miss
 345                 */
 346                prefetchw(skb->data);
 347        }
 348
 349        /* we are reusing so sync this buffer for CPU use */
 350        dma_sync_single_range_for_cpu(rx_ring->dev,
 351                                      rx_buffer->dma,
 352                                      rx_buffer->page_offset,
 353                                      FM10K_RX_BUFSZ,
 354                                      DMA_FROM_DEVICE);
 355
 356        /* pull page into skb */
 357        if (fm10k_add_rx_frag(rx_buffer, rx_desc, skb)) {
 358                /* hand second half of page back to the ring */
 359                fm10k_reuse_rx_page(rx_ring, rx_buffer);
 360        } else {
 361                /* we are not reusing the buffer so unmap it */
 362                dma_unmap_page(rx_ring->dev, rx_buffer->dma,
 363                               PAGE_SIZE, DMA_FROM_DEVICE);
 364        }
 365
 366        /* clear contents of rx_buffer */
 367        rx_buffer->page = NULL;
 368
 369        return skb;
 370}
 371
 372static inline void fm10k_rx_checksum(struct fm10k_ring *ring,
 373                                     union fm10k_rx_desc *rx_desc,
 374                                     struct sk_buff *skb)
 375{
 376        skb_checksum_none_assert(skb);
 377
 378        /* Rx checksum disabled via ethtool */
 379        if (!(ring->netdev->features & NETIF_F_RXCSUM))
 380                return;
 381
 382        /* TCP/UDP checksum error bit is set */
 383        if (fm10k_test_staterr(rx_desc,
 384                               FM10K_RXD_STATUS_L4E |
 385                               FM10K_RXD_STATUS_L4E2 |
 386                               FM10K_RXD_STATUS_IPE |
 387                               FM10K_RXD_STATUS_IPE2)) {
 388                ring->rx_stats.csum_err++;
 389                return;
 390        }
 391
 392        /* It must be a TCP or UDP packet with a valid checksum */
 393        if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2))
 394                skb->encapsulation = true;
 395        else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS))
 396                return;
 397
 398        skb->ip_summed = CHECKSUM_UNNECESSARY;
 399
 400        ring->rx_stats.csum_good++;
 401}
 402
 403#define FM10K_RSS_L4_TYPES_MASK \
 404        ((1ul << FM10K_RSSTYPE_IPV4_TCP) | \
 405         (1ul << FM10K_RSSTYPE_IPV4_UDP) | \
 406         (1ul << FM10K_RSSTYPE_IPV6_TCP) | \
 407         (1ul << FM10K_RSSTYPE_IPV6_UDP))
 408
 409static inline void fm10k_rx_hash(struct fm10k_ring *ring,
 410                                 union fm10k_rx_desc *rx_desc,
 411                                 struct sk_buff *skb)
 412{
 413        u16 rss_type;
 414
 415        if (!(ring->netdev->features & NETIF_F_RXHASH))
 416                return;
 417
 418        rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK;
 419        if (!rss_type)
 420                return;
 421
 422        skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss),
 423                     (FM10K_RSS_L4_TYPES_MASK & (1ul << rss_type)) ?
 424                     PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
 425}
 426
 427static void fm10k_rx_hwtstamp(struct fm10k_ring *rx_ring,
 428                              union fm10k_rx_desc *rx_desc,
 429                              struct sk_buff *skb)
 430{
 431        struct fm10k_intfc *interface = rx_ring->q_vector->interface;
 432
 433        FM10K_CB(skb)->tstamp = rx_desc->q.timestamp;
 434
 435        if (unlikely(interface->flags & FM10K_FLAG_RX_TS_ENABLED))
 436                fm10k_systime_to_hwtstamp(interface, skb_hwtstamps(skb),
 437                                          le64_to_cpu(rx_desc->q.timestamp));
 438}
 439
 440static void fm10k_type_trans(struct fm10k_ring *rx_ring,
 441                             union fm10k_rx_desc __maybe_unused *rx_desc,
 442                             struct sk_buff *skb)
 443{
 444        struct net_device *dev = rx_ring->netdev;
 445        struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel);
 446
 447        /* check to see if DGLORT belongs to a MACVLAN */
 448        if (l2_accel) {
 449                u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1;
 450
 451                idx -= l2_accel->dglort;
 452                if (idx < l2_accel->size && l2_accel->macvlan[idx])
 453                        dev = l2_accel->macvlan[idx];
 454                else
 455                        l2_accel = NULL;
 456        }
 457
 458        skb->protocol = eth_type_trans(skb, dev);
 459
 460        if (!l2_accel)
 461                return;
 462
 463        /* update MACVLAN statistics */
 464        macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, 1,
 465                         !!(rx_desc->w.hdr_info &
 466                            cpu_to_le16(FM10K_RXD_HDR_INFO_XC_MASK)));
 467}
 468
 469/**
 470 * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor
 471 * @rx_ring: rx descriptor ring packet is being transacted on
 472 * @rx_desc: pointer to the EOP Rx descriptor
 473 * @skb: pointer to current skb being populated
 474 *
 475 * This function checks the ring, descriptor, and packet information in
 476 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
 477 * other fields within the skb.
 478 **/
 479static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring,
 480                                             union fm10k_rx_desc *rx_desc,
 481                                             struct sk_buff *skb)
 482{
 483        unsigned int len = skb->len;
 484
 485        fm10k_rx_hash(rx_ring, rx_desc, skb);
 486
 487        fm10k_rx_checksum(rx_ring, rx_desc, skb);
 488
 489        fm10k_rx_hwtstamp(rx_ring, rx_desc, skb);
 490
 491        FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan;
 492
 493        skb_record_rx_queue(skb, rx_ring->queue_index);
 494
 495        FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort;
 496
 497        if (rx_desc->w.vlan) {
 498                u16 vid = le16_to_cpu(rx_desc->w.vlan);
 499
 500                if ((vid & VLAN_VID_MASK) != rx_ring->vid)
 501                        __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
 502                else if (vid & VLAN_PRIO_MASK)
 503                        __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
 504                                               vid & VLAN_PRIO_MASK);
 505        }
 506
 507        fm10k_type_trans(rx_ring, rx_desc, skb);
 508
 509        return len;
 510}
 511
 512/**
 513 * fm10k_is_non_eop - process handling of non-EOP buffers
 514 * @rx_ring: Rx ring being processed
 515 * @rx_desc: Rx descriptor for current buffer
 516 *
 517 * This function updates next to clean.  If the buffer is an EOP buffer
 518 * this function exits returning false, otherwise it will place the
 519 * sk_buff in the next buffer to be chained and return true indicating
 520 * that this is in fact a non-EOP buffer.
 521 **/
 522static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring,
 523                             union fm10k_rx_desc *rx_desc)
 524{
 525        u32 ntc = rx_ring->next_to_clean + 1;
 526
 527        /* fetch, update, and store next to clean */
 528        ntc = (ntc < rx_ring->count) ? ntc : 0;
 529        rx_ring->next_to_clean = ntc;
 530
 531        prefetch(FM10K_RX_DESC(rx_ring, ntc));
 532
 533        if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP)))
 534                return false;
 535
 536        return true;
 537}
 538
 539/**
 540 * fm10k_cleanup_headers - Correct corrupted or empty headers
 541 * @rx_ring: rx descriptor ring packet is being transacted on
 542 * @rx_desc: pointer to the EOP Rx descriptor
 543 * @skb: pointer to current skb being fixed
 544 *
 545 * Address the case where we are pulling data in on pages only
 546 * and as such no data is present in the skb header.
 547 *
 548 * In addition if skb is not at least 60 bytes we need to pad it so that
 549 * it is large enough to qualify as a valid Ethernet frame.
 550 *
 551 * Returns true if an error was encountered and skb was freed.
 552 **/
 553static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring,
 554                                  union fm10k_rx_desc *rx_desc,
 555                                  struct sk_buff *skb)
 556{
 557        if (unlikely((fm10k_test_staterr(rx_desc,
 558                                         FM10K_RXD_STATUS_RXE)))) {
 559#define FM10K_TEST_RXD_BIT(rxd, bit) \
 560        ((rxd)->w.csum_err & cpu_to_le16(bit))
 561                if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_ERROR))
 562                        rx_ring->rx_stats.switch_errors++;
 563                if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_NO_DESCRIPTOR))
 564                        rx_ring->rx_stats.drops++;
 565                if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_PP_ERROR))
 566                        rx_ring->rx_stats.pp_errors++;
 567                if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_READY))
 568                        rx_ring->rx_stats.link_errors++;
 569                if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_TOO_BIG))
 570                        rx_ring->rx_stats.length_errors++;
 571                dev_kfree_skb_any(skb);
 572                rx_ring->rx_stats.errors++;
 573                return true;
 574        }
 575
 576        /* if eth_skb_pad returns an error the skb was freed */
 577        if (eth_skb_pad(skb))
 578                return true;
 579
 580        return false;
 581}
 582
 583/**
 584 * fm10k_receive_skb - helper function to handle rx indications
 585 * @q_vector: structure containing interrupt and ring information
 586 * @skb: packet to send up
 587 **/
 588static void fm10k_receive_skb(struct fm10k_q_vector *q_vector,
 589                              struct sk_buff *skb)
 590{
 591        napi_gro_receive(&q_vector->napi, skb);
 592}
 593
 594static int fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector,
 595                              struct fm10k_ring *rx_ring,
 596                              int budget)
 597{
 598        struct sk_buff *skb = rx_ring->skb;
 599        unsigned int total_bytes = 0, total_packets = 0;
 600        u16 cleaned_count = fm10k_desc_unused(rx_ring);
 601
 602        while (likely(total_packets < budget)) {
 603                union fm10k_rx_desc *rx_desc;
 604
 605                /* return some buffers to hardware, one at a time is too slow */
 606                if (cleaned_count >= FM10K_RX_BUFFER_WRITE) {
 607                        fm10k_alloc_rx_buffers(rx_ring, cleaned_count);
 608                        cleaned_count = 0;
 609                }
 610
 611                rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean);
 612
 613                if (!rx_desc->d.staterr)
 614                        break;
 615
 616                /* This memory barrier is needed to keep us from reading
 617                 * any other fields out of the rx_desc until we know the
 618                 * descriptor has been written back
 619                 */
 620                dma_rmb();
 621
 622                /* retrieve a buffer from the ring */
 623                skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb);
 624
 625                /* exit if we failed to retrieve a buffer */
 626                if (!skb)
 627                        break;
 628
 629                cleaned_count++;
 630
 631                /* fetch next buffer in frame if non-eop */
 632                if (fm10k_is_non_eop(rx_ring, rx_desc))
 633                        continue;
 634
 635                /* verify the packet layout is correct */
 636                if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) {
 637                        skb = NULL;
 638                        continue;
 639                }
 640
 641                /* populate checksum, timestamp, VLAN, and protocol */
 642                total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb);
 643
 644                fm10k_receive_skb(q_vector, skb);
 645
 646                /* reset skb pointer */
 647                skb = NULL;
 648
 649                /* update budget accounting */
 650                total_packets++;
 651        }
 652
 653        /* place incomplete frames back on ring for completion */
 654        rx_ring->skb = skb;
 655
 656        u64_stats_update_begin(&rx_ring->syncp);
 657        rx_ring->stats.packets += total_packets;
 658        rx_ring->stats.bytes += total_bytes;
 659        u64_stats_update_end(&rx_ring->syncp);
 660        q_vector->rx.total_packets += total_packets;
 661        q_vector->rx.total_bytes += total_bytes;
 662
 663        return total_packets;
 664}
 665
 666#define VXLAN_HLEN (sizeof(struct udphdr) + 8)
 667static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb)
 668{
 669        struct fm10k_intfc *interface = netdev_priv(skb->dev);
 670        struct fm10k_vxlan_port *vxlan_port;
 671
 672        /* we can only offload a vxlan if we recognize it as such */
 673        vxlan_port = list_first_entry_or_null(&interface->vxlan_port,
 674                                              struct fm10k_vxlan_port, list);
 675
 676        if (!vxlan_port)
 677                return NULL;
 678        if (vxlan_port->port != udp_hdr(skb)->dest)
 679                return NULL;
 680
 681        /* return offset of udp_hdr plus 8 bytes for VXLAN header */
 682        return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN);
 683}
 684
 685#define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF)
 686#define NVGRE_TNI htons(0x2000)
 687struct fm10k_nvgre_hdr {
 688        __be16 flags;
 689        __be16 proto;
 690        __be32 tni;
 691};
 692
 693static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb)
 694{
 695        struct fm10k_nvgre_hdr *nvgre_hdr;
 696        int hlen = ip_hdrlen(skb);
 697
 698        /* currently only IPv4 is supported due to hlen above */
 699        if (vlan_get_protocol(skb) != htons(ETH_P_IP))
 700                return NULL;
 701
 702        /* our transport header should be NVGRE */
 703        nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen);
 704
 705        /* verify all reserved flags are 0 */
 706        if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS)
 707                return NULL;
 708
 709        /* report start of ethernet header */
 710        if (nvgre_hdr->flags & NVGRE_TNI)
 711                return (struct ethhdr *)(nvgre_hdr + 1);
 712
 713        return (struct ethhdr *)(&nvgre_hdr->tni);
 714}
 715
 716__be16 fm10k_tx_encap_offload(struct sk_buff *skb)
 717{
 718        u8 l4_hdr = 0, inner_l4_hdr = 0, inner_l4_hlen;
 719        struct ethhdr *eth_hdr;
 720
 721        if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
 722            skb->inner_protocol != htons(ETH_P_TEB))
 723                return 0;
 724
 725        switch (vlan_get_protocol(skb)) {
 726        case htons(ETH_P_IP):
 727                l4_hdr = ip_hdr(skb)->protocol;
 728                break;
 729        case htons(ETH_P_IPV6):
 730                l4_hdr = ipv6_hdr(skb)->nexthdr;
 731                break;
 732        default:
 733                return 0;
 734        }
 735
 736        switch (l4_hdr) {
 737        case IPPROTO_UDP:
 738                eth_hdr = fm10k_port_is_vxlan(skb);
 739                break;
 740        case IPPROTO_GRE:
 741                eth_hdr = fm10k_gre_is_nvgre(skb);
 742                break;
 743        default:
 744                return 0;
 745        }
 746
 747        if (!eth_hdr)
 748                return 0;
 749
 750        switch (eth_hdr->h_proto) {
 751        case htons(ETH_P_IP):
 752                inner_l4_hdr = inner_ip_hdr(skb)->protocol;
 753                break;
 754        case htons(ETH_P_IPV6):
 755                inner_l4_hdr = inner_ipv6_hdr(skb)->nexthdr;
 756                break;
 757        default:
 758                return 0;
 759        }
 760
 761        switch (inner_l4_hdr) {
 762        case IPPROTO_TCP:
 763                inner_l4_hlen = inner_tcp_hdrlen(skb);
 764                break;
 765        case IPPROTO_UDP:
 766                inner_l4_hlen = 8;
 767                break;
 768        default:
 769                return 0;
 770        }
 771
 772        /* The hardware allows tunnel offloads only if the combined inner and
 773         * outer header is 184 bytes or less
 774         */
 775        if (skb_inner_transport_header(skb) + inner_l4_hlen -
 776            skb_mac_header(skb) > FM10K_TUNNEL_HEADER_LENGTH)
 777                return 0;
 778
 779        return eth_hdr->h_proto;
 780}
 781
 782static int fm10k_tso(struct fm10k_ring *tx_ring,
 783                     struct fm10k_tx_buffer *first)
 784{
 785        struct sk_buff *skb = first->skb;
 786        struct fm10k_tx_desc *tx_desc;
 787        unsigned char *th;
 788        u8 hdrlen;
 789
 790        if (skb->ip_summed != CHECKSUM_PARTIAL)
 791                return 0;
 792
 793        if (!skb_is_gso(skb))
 794                return 0;
 795
 796        /* compute header lengths */
 797        if (skb->encapsulation) {
 798                if (!fm10k_tx_encap_offload(skb))
 799                        goto err_vxlan;
 800                th = skb_inner_transport_header(skb);
 801        } else {
 802                th = skb_transport_header(skb);
 803        }
 804
 805        /* compute offset from SOF to transport header and add header len */
 806        hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2);
 807
 808        first->tx_flags |= FM10K_TX_FLAGS_CSUM;
 809
 810        /* update gso size and bytecount with header size */
 811        first->gso_segs = skb_shinfo(skb)->gso_segs;
 812        first->bytecount += (first->gso_segs - 1) * hdrlen;
 813
 814        /* populate Tx descriptor header size and mss */
 815        tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
 816        tx_desc->hdrlen = hdrlen;
 817        tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
 818
 819        return 1;
 820err_vxlan:
 821        tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL;
 822        if (!net_ratelimit())
 823                netdev_err(tx_ring->netdev,
 824                           "TSO requested for unsupported tunnel, disabling offload\n");
 825        return -1;
 826}
 827
 828static void fm10k_tx_csum(struct fm10k_ring *tx_ring,
 829                          struct fm10k_tx_buffer *first)
 830{
 831        struct sk_buff *skb = first->skb;
 832        struct fm10k_tx_desc *tx_desc;
 833        union {
 834                struct iphdr *ipv4;
 835                struct ipv6hdr *ipv6;
 836                u8 *raw;
 837        } network_hdr;
 838        __be16 protocol;
 839        u8 l4_hdr = 0;
 840
 841        if (skb->ip_summed != CHECKSUM_PARTIAL)
 842                goto no_csum;
 843
 844        if (skb->encapsulation) {
 845                protocol = fm10k_tx_encap_offload(skb);
 846                if (!protocol) {
 847                        if (skb_checksum_help(skb)) {
 848                                dev_warn(tx_ring->dev,
 849                                         "failed to offload encap csum!\n");
 850                                tx_ring->tx_stats.csum_err++;
 851                        }
 852                        goto no_csum;
 853                }
 854                network_hdr.raw = skb_inner_network_header(skb);
 855        } else {
 856                protocol = vlan_get_protocol(skb);
 857                network_hdr.raw = skb_network_header(skb);
 858        }
 859
 860        switch (protocol) {
 861        case htons(ETH_P_IP):
 862                l4_hdr = network_hdr.ipv4->protocol;
 863                break;
 864        case htons(ETH_P_IPV6):
 865                l4_hdr = network_hdr.ipv6->nexthdr;
 866                break;
 867        default:
 868                if (unlikely(net_ratelimit())) {
 869                        dev_warn(tx_ring->dev,
 870                                 "partial checksum but ip version=%x!\n",
 871                                 protocol);
 872                }
 873                tx_ring->tx_stats.csum_err++;
 874                goto no_csum;
 875        }
 876
 877        switch (l4_hdr) {
 878        case IPPROTO_TCP:
 879        case IPPROTO_UDP:
 880                break;
 881        case IPPROTO_GRE:
 882                if (skb->encapsulation)
 883                        break;
 884        default:
 885                if (unlikely(net_ratelimit())) {
 886                        dev_warn(tx_ring->dev,
 887                                 "partial checksum but l4 proto=%x!\n",
 888                                 l4_hdr);
 889                }
 890                tx_ring->tx_stats.csum_err++;
 891                goto no_csum;
 892        }
 893
 894        /* update TX checksum flag */
 895        first->tx_flags |= FM10K_TX_FLAGS_CSUM;
 896        tx_ring->tx_stats.csum_good++;
 897
 898no_csum:
 899        /* populate Tx descriptor header size and mss */
 900        tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
 901        tx_desc->hdrlen = 0;
 902        tx_desc->mss = 0;
 903}
 904
 905#define FM10K_SET_FLAG(_input, _flag, _result) \
 906        ((_flag <= _result) ? \
 907         ((u32)(_input & _flag) * (_result / _flag)) : \
 908         ((u32)(_input & _flag) / (_flag / _result)))
 909
 910static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags)
 911{
 912        /* set type for advanced descriptor with frame checksum insertion */
 913        u32 desc_flags = 0;
 914
 915        /* set timestamping bits */
 916        if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
 917            likely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
 918                desc_flags |= FM10K_TXD_FLAG_TIME;
 919
 920        /* set checksum offload bits */
 921        desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM,
 922                                     FM10K_TXD_FLAG_CSUM);
 923
 924        return desc_flags;
 925}
 926
 927static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring,
 928                               struct fm10k_tx_desc *tx_desc, u16 i,
 929                               dma_addr_t dma, unsigned int size, u8 desc_flags)
 930{
 931        /* set RS and INT for last frame in a cache line */
 932        if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0)
 933                desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT;
 934
 935        /* record values to descriptor */
 936        tx_desc->buffer_addr = cpu_to_le64(dma);
 937        tx_desc->flags = desc_flags;
 938        tx_desc->buflen = cpu_to_le16(size);
 939
 940        /* return true if we just wrapped the ring */
 941        return i == tx_ring->count;
 942}
 943
 944static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
 945{
 946        netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
 947
 948        /* Memory barrier before checking head and tail */
 949        smp_mb();
 950
 951        /* Check again in a case another CPU has just made room available */
 952        if (likely(fm10k_desc_unused(tx_ring) < size))
 953                return -EBUSY;
 954
 955        /* A reprieve! - use start_queue because it doesn't call schedule */
 956        netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
 957        ++tx_ring->tx_stats.restart_queue;
 958        return 0;
 959}
 960
 961static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
 962{
 963        if (likely(fm10k_desc_unused(tx_ring) >= size))
 964                return 0;
 965        return __fm10k_maybe_stop_tx(tx_ring, size);
 966}
 967
 968static void fm10k_tx_map(struct fm10k_ring *tx_ring,
 969                         struct fm10k_tx_buffer *first)
 970{
 971        struct sk_buff *skb = first->skb;
 972        struct fm10k_tx_buffer *tx_buffer;
 973        struct fm10k_tx_desc *tx_desc;
 974        struct skb_frag_struct *frag;
 975        unsigned char *data;
 976        dma_addr_t dma;
 977        unsigned int data_len, size;
 978        u32 tx_flags = first->tx_flags;
 979        u16 i = tx_ring->next_to_use;
 980        u8 flags = fm10k_tx_desc_flags(skb, tx_flags);
 981
 982        tx_desc = FM10K_TX_DESC(tx_ring, i);
 983
 984        /* add HW VLAN tag */
 985        if (skb_vlan_tag_present(skb))
 986                tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
 987        else
 988                tx_desc->vlan = 0;
 989
 990        size = skb_headlen(skb);
 991        data = skb->data;
 992
 993        dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
 994
 995        data_len = skb->data_len;
 996        tx_buffer = first;
 997
 998        for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
 999                if (dma_mapping_error(tx_ring->dev, dma))
1000                        goto dma_error;
1001
1002                /* record length, and DMA address */
1003                dma_unmap_len_set(tx_buffer, len, size);
1004                dma_unmap_addr_set(tx_buffer, dma, dma);
1005
1006                while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) {
1007                        if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma,
1008                                               FM10K_MAX_DATA_PER_TXD, flags)) {
1009                                tx_desc = FM10K_TX_DESC(tx_ring, 0);
1010                                i = 0;
1011                        }
1012
1013                        dma += FM10K_MAX_DATA_PER_TXD;
1014                        size -= FM10K_MAX_DATA_PER_TXD;
1015                }
1016
1017                if (likely(!data_len))
1018                        break;
1019
1020                if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++,
1021                                       dma, size, flags)) {
1022                        tx_desc = FM10K_TX_DESC(tx_ring, 0);
1023                        i = 0;
1024                }
1025
1026                size = skb_frag_size(frag);
1027                data_len -= size;
1028
1029                dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1030                                       DMA_TO_DEVICE);
1031
1032                tx_buffer = &tx_ring->tx_buffer[i];
1033        }
1034
1035        /* write last descriptor with LAST bit set */
1036        flags |= FM10K_TXD_FLAG_LAST;
1037
1038        if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags))
1039                i = 0;
1040
1041        /* record bytecount for BQL */
1042        netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1043
1044        /* record SW timestamp if HW timestamp is not available */
1045        skb_tx_timestamp(first->skb);
1046
1047        /* Force memory writes to complete before letting h/w know there
1048         * are new descriptors to fetch.  (Only applicable for weak-ordered
1049         * memory model archs, such as IA-64).
1050         *
1051         * We also need this memory barrier to make certain all of the
1052         * status bits have been updated before next_to_watch is written.
1053         */
1054        wmb();
1055
1056        /* set next_to_watch value indicating a packet is present */
1057        first->next_to_watch = tx_desc;
1058
1059        tx_ring->next_to_use = i;
1060
1061        /* Make sure there is space in the ring for the next send. */
1062        fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED);
1063
1064        /* notify HW of packet */
1065        if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
1066                writel(i, tx_ring->tail);
1067
1068                /* we need this if more than one processor can write to our tail
1069                 * at a time, it synchronizes IO on IA64/Altix systems
1070                 */
1071                mmiowb();
1072        }
1073
1074        return;
1075dma_error:
1076        dev_err(tx_ring->dev, "TX DMA map failed\n");
1077
1078        /* clear dma mappings for failed tx_buffer map */
1079        for (;;) {
1080                tx_buffer = &tx_ring->tx_buffer[i];
1081                fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
1082                if (tx_buffer == first)
1083                        break;
1084                if (i == 0)
1085                        i = tx_ring->count;
1086                i--;
1087        }
1088
1089        tx_ring->next_to_use = i;
1090}
1091
1092netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb,
1093                                  struct fm10k_ring *tx_ring)
1094{
1095        u16 count = TXD_USE_COUNT(skb_headlen(skb));
1096        struct fm10k_tx_buffer *first;
1097        unsigned short f;
1098        u32 tx_flags = 0;
1099        int tso;
1100
1101        /* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD,
1102         *       + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD,
1103         *       + 2 desc gap to keep tail from touching head
1104         * otherwise try next time
1105         */
1106        for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1107                count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
1108
1109        if (fm10k_maybe_stop_tx(tx_ring, count + 3)) {
1110                tx_ring->tx_stats.tx_busy++;
1111                return NETDEV_TX_BUSY;
1112        }
1113
1114        /* record the location of the first descriptor for this packet */
1115        first = &tx_ring->tx_buffer[tx_ring->next_to_use];
1116        first->skb = skb;
1117        first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
1118        first->gso_segs = 1;
1119
1120        /* record initial flags and protocol */
1121        first->tx_flags = tx_flags;
1122
1123        tso = fm10k_tso(tx_ring, first);
1124        if (tso < 0)
1125                goto out_drop;
1126        else if (!tso)
1127                fm10k_tx_csum(tx_ring, first);
1128
1129        fm10k_tx_map(tx_ring, first);
1130
1131        return NETDEV_TX_OK;
1132
1133out_drop:
1134        dev_kfree_skb_any(first->skb);
1135        first->skb = NULL;
1136
1137        return NETDEV_TX_OK;
1138}
1139
1140static u64 fm10k_get_tx_completed(struct fm10k_ring *ring)
1141{
1142        return ring->stats.packets;
1143}
1144
1145static u64 fm10k_get_tx_pending(struct fm10k_ring *ring)
1146{
1147        /* use SW head and tail until we have real hardware */
1148        u32 head = ring->next_to_clean;
1149        u32 tail = ring->next_to_use;
1150
1151        return ((head <= tail) ? tail : tail + ring->count) - head;
1152}
1153
1154bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring)
1155{
1156        u32 tx_done = fm10k_get_tx_completed(tx_ring);
1157        u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
1158        u32 tx_pending = fm10k_get_tx_pending(tx_ring);
1159
1160        clear_check_for_tx_hang(tx_ring);
1161
1162        /* Check for a hung queue, but be thorough. This verifies
1163         * that a transmit has been completed since the previous
1164         * check AND there is at least one packet pending. By
1165         * requiring this to fail twice we avoid races with
1166         * clearing the ARMED bit and conditions where we
1167         * run the check_tx_hang logic with a transmit completion
1168         * pending but without time to complete it yet.
1169         */
1170        if (!tx_pending || (tx_done_old != tx_done)) {
1171                /* update completed stats and continue */
1172                tx_ring->tx_stats.tx_done_old = tx_done;
1173                /* reset the countdown */
1174                clear_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state);
1175
1176                return false;
1177        }
1178
1179        /* make sure it is true for two checks in a row */
1180        return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state);
1181}
1182
1183/**
1184 * fm10k_tx_timeout_reset - initiate reset due to Tx timeout
1185 * @interface: driver private struct
1186 **/
1187void fm10k_tx_timeout_reset(struct fm10k_intfc *interface)
1188{
1189        /* Do the reset outside of interrupt context */
1190        if (!test_bit(__FM10K_DOWN, &interface->state)) {
1191                interface->tx_timeout_count++;
1192                interface->flags |= FM10K_FLAG_RESET_REQUESTED;
1193                fm10k_service_event_schedule(interface);
1194        }
1195}
1196
1197/**
1198 * fm10k_clean_tx_irq - Reclaim resources after transmit completes
1199 * @q_vector: structure containing interrupt and ring information
1200 * @tx_ring: tx ring to clean
1201 **/
1202static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector,
1203                               struct fm10k_ring *tx_ring)
1204{
1205        struct fm10k_intfc *interface = q_vector->interface;
1206        struct fm10k_tx_buffer *tx_buffer;
1207        struct fm10k_tx_desc *tx_desc;
1208        unsigned int total_bytes = 0, total_packets = 0;
1209        unsigned int budget = q_vector->tx.work_limit;
1210        unsigned int i = tx_ring->next_to_clean;
1211
1212        if (test_bit(__FM10K_DOWN, &interface->state))
1213                return true;
1214
1215        tx_buffer = &tx_ring->tx_buffer[i];
1216        tx_desc = FM10K_TX_DESC(tx_ring, i);
1217        i -= tx_ring->count;
1218
1219        do {
1220                struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch;
1221
1222                /* if next_to_watch is not set then there is no work pending */
1223                if (!eop_desc)
1224                        break;
1225
1226                /* prevent any other reads prior to eop_desc */
1227                read_barrier_depends();
1228
1229                /* if DD is not set pending work has not been completed */
1230                if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE))
1231                        break;
1232
1233                /* clear next_to_watch to prevent false hangs */
1234                tx_buffer->next_to_watch = NULL;
1235
1236                /* update the statistics for this packet */
1237                total_bytes += tx_buffer->bytecount;
1238                total_packets += tx_buffer->gso_segs;
1239
1240                /* free the skb */
1241                dev_consume_skb_any(tx_buffer->skb);
1242
1243                /* unmap skb header data */
1244                dma_unmap_single(tx_ring->dev,
1245                                 dma_unmap_addr(tx_buffer, dma),
1246                                 dma_unmap_len(tx_buffer, len),
1247                                 DMA_TO_DEVICE);
1248
1249                /* clear tx_buffer data */
1250                tx_buffer->skb = NULL;
1251                dma_unmap_len_set(tx_buffer, len, 0);
1252
1253                /* unmap remaining buffers */
1254                while (tx_desc != eop_desc) {
1255                        tx_buffer++;
1256                        tx_desc++;
1257                        i++;
1258                        if (unlikely(!i)) {
1259                                i -= tx_ring->count;
1260                                tx_buffer = tx_ring->tx_buffer;
1261                                tx_desc = FM10K_TX_DESC(tx_ring, 0);
1262                        }
1263
1264                        /* unmap any remaining paged data */
1265                        if (dma_unmap_len(tx_buffer, len)) {
1266                                dma_unmap_page(tx_ring->dev,
1267                                               dma_unmap_addr(tx_buffer, dma),
1268                                               dma_unmap_len(tx_buffer, len),
1269                                               DMA_TO_DEVICE);
1270                                dma_unmap_len_set(tx_buffer, len, 0);
1271                        }
1272                }
1273
1274                /* move us one more past the eop_desc for start of next pkt */
1275                tx_buffer++;
1276                tx_desc++;
1277                i++;
1278                if (unlikely(!i)) {
1279                        i -= tx_ring->count;
1280                        tx_buffer = tx_ring->tx_buffer;
1281                        tx_desc = FM10K_TX_DESC(tx_ring, 0);
1282                }
1283
1284                /* issue prefetch for next Tx descriptor */
1285                prefetch(tx_desc);
1286
1287                /* update budget accounting */
1288                budget--;
1289        } while (likely(budget));
1290
1291        i += tx_ring->count;
1292        tx_ring->next_to_clean = i;
1293        u64_stats_update_begin(&tx_ring->syncp);
1294        tx_ring->stats.bytes += total_bytes;
1295        tx_ring->stats.packets += total_packets;
1296        u64_stats_update_end(&tx_ring->syncp);
1297        q_vector->tx.total_bytes += total_bytes;
1298        q_vector->tx.total_packets += total_packets;
1299
1300        if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) {
1301                /* schedule immediate reset if we believe we hung */
1302                struct fm10k_hw *hw = &interface->hw;
1303
1304                netif_err(interface, drv, tx_ring->netdev,
1305                          "Detected Tx Unit Hang\n"
1306                          "  Tx Queue             <%d>\n"
1307                          "  TDH, TDT             <%x>, <%x>\n"
1308                          "  next_to_use          <%x>\n"
1309                          "  next_to_clean        <%x>\n",
1310                          tx_ring->queue_index,
1311                          fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)),
1312                          fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)),
1313                          tx_ring->next_to_use, i);
1314
1315                netif_stop_subqueue(tx_ring->netdev,
1316                                    tx_ring->queue_index);
1317
1318                netif_info(interface, probe, tx_ring->netdev,
1319                           "tx hang %d detected on queue %d, resetting interface\n",
1320                           interface->tx_timeout_count + 1,
1321                           tx_ring->queue_index);
1322
1323                fm10k_tx_timeout_reset(interface);
1324
1325                /* the netdev is about to reset, no point in enabling stuff */
1326                return true;
1327        }
1328
1329        /* notify netdev of completed buffers */
1330        netdev_tx_completed_queue(txring_txq(tx_ring),
1331                                  total_packets, total_bytes);
1332
1333#define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2)
1334        if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1335                     (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
1336                /* Make sure that anybody stopping the queue after this
1337                 * sees the new next_to_clean.
1338                 */
1339                smp_mb();
1340                if (__netif_subqueue_stopped(tx_ring->netdev,
1341                                             tx_ring->queue_index) &&
1342                    !test_bit(__FM10K_DOWN, &interface->state)) {
1343                        netif_wake_subqueue(tx_ring->netdev,
1344                                            tx_ring->queue_index);
1345                        ++tx_ring->tx_stats.restart_queue;
1346                }
1347        }
1348
1349        return !!budget;
1350}
1351
1352/**
1353 * fm10k_update_itr - update the dynamic ITR value based on packet size
1354 *
1355 *      Stores a new ITR value based on strictly on packet size.  The
1356 *      divisors and thresholds used by this function were determined based
1357 *      on theoretical maximum wire speed and testing data, in order to
1358 *      minimize response time while increasing bulk throughput.
1359 *
1360 * @ring_container: Container for rings to have ITR updated
1361 **/
1362static void fm10k_update_itr(struct fm10k_ring_container *ring_container)
1363{
1364        unsigned int avg_wire_size, packets, itr_round;
1365
1366        /* Only update ITR if we are using adaptive setting */
1367        if (!ITR_IS_ADAPTIVE(ring_container->itr))
1368                goto clear_counts;
1369
1370        packets = ring_container->total_packets;
1371        if (!packets)
1372                goto clear_counts;
1373
1374        avg_wire_size = ring_container->total_bytes / packets;
1375
1376        /* The following is a crude approximation of:
1377         *  wmem_default / (size + overhead) = desired_pkts_per_int
1378         *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1379         *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1380         *
1381         * Assuming wmem_default is 212992 and overhead is 640 bytes per
1382         * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1383         * formula down to
1384         *
1385         *  (34 * (size + 24)) / (size + 640) = ITR
1386         *
1387         * We first do some math on the packet size and then finally bitshift
1388         * by 8 after rounding up. We also have to account for PCIe link speed
1389         * difference as ITR scales based on this.
1390         */
1391        if (avg_wire_size <= 360) {
1392                /* Start at 250K ints/sec and gradually drop to 77K ints/sec */
1393                avg_wire_size *= 8;
1394                avg_wire_size += 376;
1395        } else if (avg_wire_size <= 1152) {
1396                /* 77K ints/sec to 45K ints/sec */
1397                avg_wire_size *= 3;
1398                avg_wire_size += 2176;
1399        } else if (avg_wire_size <= 1920) {
1400                /* 45K ints/sec to 38K ints/sec */
1401                avg_wire_size += 4480;
1402        } else {
1403                /* plateau at a limit of 38K ints/sec */
1404                avg_wire_size = 6656;
1405        }
1406
1407        /* Perform final bitshift for division after rounding up to ensure
1408         * that the calculation will never get below a 1. The bit shift
1409         * accounts for changes in the ITR due to PCIe link speed.
1410         */
1411        itr_round = ACCESS_ONCE(ring_container->itr_scale) + 8;
1412        avg_wire_size += (1 << itr_round) - 1;
1413        avg_wire_size >>= itr_round;
1414
1415        /* write back value and retain adaptive flag */
1416        ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE;
1417
1418clear_counts:
1419        ring_container->total_bytes = 0;
1420        ring_container->total_packets = 0;
1421}
1422
1423static void fm10k_qv_enable(struct fm10k_q_vector *q_vector)
1424{
1425        /* Enable auto-mask and clear the current mask */
1426        u32 itr = FM10K_ITR_ENABLE;
1427
1428        /* Update Tx ITR */
1429        fm10k_update_itr(&q_vector->tx);
1430
1431        /* Update Rx ITR */
1432        fm10k_update_itr(&q_vector->rx);
1433
1434        /* Store Tx itr in timer slot 0 */
1435        itr |= (q_vector->tx.itr & FM10K_ITR_MAX);
1436
1437        /* Shift Rx itr to timer slot 1 */
1438        itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT;
1439
1440        /* Write the final value to the ITR register */
1441        writel(itr, q_vector->itr);
1442}
1443
1444static int fm10k_poll(struct napi_struct *napi, int budget)
1445{
1446        struct fm10k_q_vector *q_vector =
1447                               container_of(napi, struct fm10k_q_vector, napi);
1448        struct fm10k_ring *ring;
1449        int per_ring_budget, work_done = 0;
1450        bool clean_complete = true;
1451
1452        fm10k_for_each_ring(ring, q_vector->tx)
1453                clean_complete &= fm10k_clean_tx_irq(q_vector, ring);
1454
1455        /* Handle case where we are called by netpoll with a budget of 0 */
1456        if (budget <= 0)
1457                return budget;
1458
1459        /* attempt to distribute budget to each queue fairly, but don't
1460         * allow the budget to go below 1 because we'll exit polling
1461         */
1462        if (q_vector->rx.count > 1)
1463                per_ring_budget = max(budget / q_vector->rx.count, 1);
1464        else
1465                per_ring_budget = budget;
1466
1467        fm10k_for_each_ring(ring, q_vector->rx) {
1468                int work = fm10k_clean_rx_irq(q_vector, ring, per_ring_budget);
1469
1470                work_done += work;
1471                clean_complete &= !!(work < per_ring_budget);
1472        }
1473
1474        /* If all work not completed, return budget and keep polling */
1475        if (!clean_complete)
1476                return budget;
1477
1478        /* all work done, exit the polling mode */
1479        napi_complete_done(napi, work_done);
1480
1481        /* re-enable the q_vector */
1482        fm10k_qv_enable(q_vector);
1483
1484        return 0;
1485}
1486
1487/**
1488 * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device
1489 * @interface: board private structure to initialize
1490 *
1491 * When QoS (Quality of Service) is enabled, allocate queues for
1492 * each traffic class.  If multiqueue isn't available,then abort QoS
1493 * initialization.
1494 *
1495 * This function handles all combinations of Qos and RSS.
1496 *
1497 **/
1498static bool fm10k_set_qos_queues(struct fm10k_intfc *interface)
1499{
1500        struct net_device *dev = interface->netdev;
1501        struct fm10k_ring_feature *f;
1502        int rss_i, i;
1503        int pcs;
1504
1505        /* Map queue offset and counts onto allocated tx queues */
1506        pcs = netdev_get_num_tc(dev);
1507
1508        if (pcs <= 1)
1509                return false;
1510
1511        /* set QoS mask and indices */
1512        f = &interface->ring_feature[RING_F_QOS];
1513        f->indices = pcs;
1514        f->mask = (1 << fls(pcs - 1)) - 1;
1515
1516        /* determine the upper limit for our current DCB mode */
1517        rss_i = interface->hw.mac.max_queues / pcs;
1518        rss_i = 1 << (fls(rss_i) - 1);
1519
1520        /* set RSS mask and indices */
1521        f = &interface->ring_feature[RING_F_RSS];
1522        rss_i = min_t(u16, rss_i, f->limit);
1523        f->indices = rss_i;
1524        f->mask = (1 << fls(rss_i - 1)) - 1;
1525
1526        /* configure pause class to queue mapping */
1527        for (i = 0; i < pcs; i++)
1528                netdev_set_tc_queue(dev, i, rss_i, rss_i * i);
1529
1530        interface->num_rx_queues = rss_i * pcs;
1531        interface->num_tx_queues = rss_i * pcs;
1532
1533        return true;
1534}
1535
1536/**
1537 * fm10k_set_rss_queues: Allocate queues for RSS
1538 * @interface: board private structure to initialize
1539 *
1540 * This is our "base" multiqueue mode.  RSS (Receive Side Scaling) will try
1541 * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
1542 *
1543 **/
1544static bool fm10k_set_rss_queues(struct fm10k_intfc *interface)
1545{
1546        struct fm10k_ring_feature *f;
1547        u16 rss_i;
1548
1549        f = &interface->ring_feature[RING_F_RSS];
1550        rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit);
1551
1552        /* record indices and power of 2 mask for RSS */
1553        f->indices = rss_i;
1554        f->mask = (1 << fls(rss_i - 1)) - 1;
1555
1556        interface->num_rx_queues = rss_i;
1557        interface->num_tx_queues = rss_i;
1558
1559        return true;
1560}
1561
1562/**
1563 * fm10k_set_num_queues: Allocate queues for device, feature dependent
1564 * @interface: board private structure to initialize
1565 *
1566 * This is the top level queue allocation routine.  The order here is very
1567 * important, starting with the "most" number of features turned on at once,
1568 * and ending with the smallest set of features.  This way large combinations
1569 * can be allocated if they're turned on, and smaller combinations are the
1570 * fallthrough conditions.
1571 *
1572 **/
1573static void fm10k_set_num_queues(struct fm10k_intfc *interface)
1574{
1575        /* Start with base case */
1576        interface->num_rx_queues = 1;
1577        interface->num_tx_queues = 1;
1578
1579        if (fm10k_set_qos_queues(interface))
1580                return;
1581
1582        fm10k_set_rss_queues(interface);
1583}
1584
1585/**
1586 * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector
1587 * @interface: board private structure to initialize
1588 * @v_count: q_vectors allocated on interface, used for ring interleaving
1589 * @v_idx: index of vector in interface struct
1590 * @txr_count: total number of Tx rings to allocate
1591 * @txr_idx: index of first Tx ring to allocate
1592 * @rxr_count: total number of Rx rings to allocate
1593 * @rxr_idx: index of first Rx ring to allocate
1594 *
1595 * We allocate one q_vector.  If allocation fails we return -ENOMEM.
1596 **/
1597static int fm10k_alloc_q_vector(struct fm10k_intfc *interface,
1598                                unsigned int v_count, unsigned int v_idx,
1599                                unsigned int txr_count, unsigned int txr_idx,
1600                                unsigned int rxr_count, unsigned int rxr_idx)
1601{
1602        struct fm10k_q_vector *q_vector;
1603        struct fm10k_ring *ring;
1604        int ring_count, size;
1605
1606        ring_count = txr_count + rxr_count;
1607        size = sizeof(struct fm10k_q_vector) +
1608               (sizeof(struct fm10k_ring) * ring_count);
1609
1610        /* allocate q_vector and rings */
1611        q_vector = kzalloc(size, GFP_KERNEL);
1612        if (!q_vector)
1613                return -ENOMEM;
1614
1615        /* initialize NAPI */
1616        netif_napi_add(interface->netdev, &q_vector->napi,
1617                       fm10k_poll, NAPI_POLL_WEIGHT);
1618
1619        /* tie q_vector and interface together */
1620        interface->q_vector[v_idx] = q_vector;
1621        q_vector->interface = interface;
1622        q_vector->v_idx = v_idx;
1623
1624        /* initialize pointer to rings */
1625        ring = q_vector->ring;
1626
1627        /* save Tx ring container info */
1628        q_vector->tx.ring = ring;
1629        q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK;
1630        q_vector->tx.itr = interface->tx_itr;
1631        q_vector->tx.itr_scale = interface->hw.mac.itr_scale;
1632        q_vector->tx.count = txr_count;
1633
1634        while (txr_count) {
1635                /* assign generic ring traits */
1636                ring->dev = &interface->pdev->dev;
1637                ring->netdev = interface->netdev;
1638
1639                /* configure backlink on ring */
1640                ring->q_vector = q_vector;
1641
1642                /* apply Tx specific ring traits */
1643                ring->count = interface->tx_ring_count;
1644                ring->queue_index = txr_idx;
1645
1646                /* assign ring to interface */
1647                interface->tx_ring[txr_idx] = ring;
1648
1649                /* update count and index */
1650                txr_count--;
1651                txr_idx += v_count;
1652
1653                /* push pointer to next ring */
1654                ring++;
1655        }
1656
1657        /* save Rx ring container info */
1658        q_vector->rx.ring = ring;
1659        q_vector->rx.itr = interface->rx_itr;
1660        q_vector->rx.itr_scale = interface->hw.mac.itr_scale;
1661        q_vector->rx.count = rxr_count;
1662
1663        while (rxr_count) {
1664                /* assign generic ring traits */
1665                ring->dev = &interface->pdev->dev;
1666                ring->netdev = interface->netdev;
1667                rcu_assign_pointer(ring->l2_accel, interface->l2_accel);
1668
1669                /* configure backlink on ring */
1670                ring->q_vector = q_vector;
1671
1672                /* apply Rx specific ring traits */
1673                ring->count = interface->rx_ring_count;
1674                ring->queue_index = rxr_idx;
1675
1676                /* assign ring to interface */
1677                interface->rx_ring[rxr_idx] = ring;
1678
1679                /* update count and index */
1680                rxr_count--;
1681                rxr_idx += v_count;
1682
1683                /* push pointer to next ring */
1684                ring++;
1685        }
1686
1687        fm10k_dbg_q_vector_init(q_vector);
1688
1689        return 0;
1690}
1691
1692/**
1693 * fm10k_free_q_vector - Free memory allocated for specific interrupt vector
1694 * @interface: board private structure to initialize
1695 * @v_idx: Index of vector to be freed
1696 *
1697 * This function frees the memory allocated to the q_vector.  In addition if
1698 * NAPI is enabled it will delete any references to the NAPI struct prior
1699 * to freeing the q_vector.
1700 **/
1701static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx)
1702{
1703        struct fm10k_q_vector *q_vector = interface->q_vector[v_idx];
1704        struct fm10k_ring *ring;
1705
1706        fm10k_dbg_q_vector_exit(q_vector);
1707
1708        fm10k_for_each_ring(ring, q_vector->tx)
1709                interface->tx_ring[ring->queue_index] = NULL;
1710
1711        fm10k_for_each_ring(ring, q_vector->rx)
1712                interface->rx_ring[ring->queue_index] = NULL;
1713
1714        interface->q_vector[v_idx] = NULL;
1715        netif_napi_del(&q_vector->napi);
1716        kfree_rcu(q_vector, rcu);
1717}
1718
1719/**
1720 * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors
1721 * @interface: board private structure to initialize
1722 *
1723 * We allocate one q_vector per queue interrupt.  If allocation fails we
1724 * return -ENOMEM.
1725 **/
1726static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface)
1727{
1728        unsigned int q_vectors = interface->num_q_vectors;
1729        unsigned int rxr_remaining = interface->num_rx_queues;
1730        unsigned int txr_remaining = interface->num_tx_queues;
1731        unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1732        int err;
1733
1734        if (q_vectors >= (rxr_remaining + txr_remaining)) {
1735                for (; rxr_remaining; v_idx++) {
1736                        err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1737                                                   0, 0, 1, rxr_idx);
1738                        if (err)
1739                                goto err_out;
1740
1741                        /* update counts and index */
1742                        rxr_remaining--;
1743                        rxr_idx++;
1744                }
1745        }
1746
1747        for (; v_idx < q_vectors; v_idx++) {
1748                int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1749                int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1750
1751                err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1752                                           tqpv, txr_idx,
1753                                           rqpv, rxr_idx);
1754
1755                if (err)
1756                        goto err_out;
1757
1758                /* update counts and index */
1759                rxr_remaining -= rqpv;
1760                txr_remaining -= tqpv;
1761                rxr_idx++;
1762                txr_idx++;
1763        }
1764
1765        return 0;
1766
1767err_out:
1768        interface->num_tx_queues = 0;
1769        interface->num_rx_queues = 0;
1770        interface->num_q_vectors = 0;
1771
1772        while (v_idx--)
1773                fm10k_free_q_vector(interface, v_idx);
1774
1775        return -ENOMEM;
1776}
1777
1778/**
1779 * fm10k_free_q_vectors - Free memory allocated for interrupt vectors
1780 * @interface: board private structure to initialize
1781 *
1782 * This function frees the memory allocated to the q_vectors.  In addition if
1783 * NAPI is enabled it will delete any references to the NAPI struct prior
1784 * to freeing the q_vector.
1785 **/
1786static void fm10k_free_q_vectors(struct fm10k_intfc *interface)
1787{
1788        int v_idx = interface->num_q_vectors;
1789
1790        interface->num_tx_queues = 0;
1791        interface->num_rx_queues = 0;
1792        interface->num_q_vectors = 0;
1793
1794        while (v_idx--)
1795                fm10k_free_q_vector(interface, v_idx);
1796}
1797
1798/**
1799 * f10k_reset_msix_capability - reset MSI-X capability
1800 * @interface: board private structure to initialize
1801 *
1802 * Reset the MSI-X capability back to its starting state
1803 **/
1804static void fm10k_reset_msix_capability(struct fm10k_intfc *interface)
1805{
1806        pci_disable_msix(interface->pdev);
1807        kfree(interface->msix_entries);
1808        interface->msix_entries = NULL;
1809}
1810
1811/**
1812 * f10k_init_msix_capability - configure MSI-X capability
1813 * @interface: board private structure to initialize
1814 *
1815 * Attempt to configure the interrupts using the best available
1816 * capabilities of the hardware and the kernel.
1817 **/
1818static int fm10k_init_msix_capability(struct fm10k_intfc *interface)
1819{
1820        struct fm10k_hw *hw = &interface->hw;
1821        int v_budget, vector;
1822
1823        /* It's easy to be greedy for MSI-X vectors, but it really
1824         * doesn't do us much good if we have a lot more vectors
1825         * than CPU's.  So let's be conservative and only ask for
1826         * (roughly) the same number of vectors as there are CPU's.
1827         * the default is to use pairs of vectors
1828         */
1829        v_budget = max(interface->num_rx_queues, interface->num_tx_queues);
1830        v_budget = min_t(u16, v_budget, num_online_cpus());
1831
1832        /* account for vectors not related to queues */
1833        v_budget += NON_Q_VECTORS(hw);
1834
1835        /* At the same time, hardware can only support a maximum of
1836         * hw.mac->max_msix_vectors vectors.  With features
1837         * such as RSS and VMDq, we can easily surpass the number of Rx and Tx
1838         * descriptor queues supported by our device.  Thus, we cap it off in
1839         * those rare cases where the cpu count also exceeds our vector limit.
1840         */
1841        v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors);
1842
1843        /* A failure in MSI-X entry allocation is fatal. */
1844        interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
1845                                          GFP_KERNEL);
1846        if (!interface->msix_entries)
1847                return -ENOMEM;
1848
1849        /* populate entry values */
1850        for (vector = 0; vector < v_budget; vector++)
1851                interface->msix_entries[vector].entry = vector;
1852
1853        /* Attempt to enable MSI-X with requested value */
1854        v_budget = pci_enable_msix_range(interface->pdev,
1855                                         interface->msix_entries,
1856                                         MIN_MSIX_COUNT(hw),
1857                                         v_budget);
1858        if (v_budget < 0) {
1859                kfree(interface->msix_entries);
1860                interface->msix_entries = NULL;
1861                return -ENOMEM;
1862        }
1863
1864        /* record the number of queues available for q_vectors */
1865        interface->num_q_vectors = v_budget - NON_Q_VECTORS(hw);
1866
1867        return 0;
1868}
1869
1870/**
1871 * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS
1872 * @interface: Interface structure continaining rings and devices
1873 *
1874 * Cache the descriptor ring offsets for Qos
1875 **/
1876static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface)
1877{
1878        struct net_device *dev = interface->netdev;
1879        int pc, offset, rss_i, i, q_idx;
1880        u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1;
1881        u8 num_pcs = netdev_get_num_tc(dev);
1882
1883        if (num_pcs <= 1)
1884                return false;
1885
1886        rss_i = interface->ring_feature[RING_F_RSS].indices;
1887
1888        for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) {
1889                q_idx = pc;
1890                for (i = 0; i < rss_i; i++) {
1891                        interface->tx_ring[offset + i]->reg_idx = q_idx;
1892                        interface->tx_ring[offset + i]->qos_pc = pc;
1893                        interface->rx_ring[offset + i]->reg_idx = q_idx;
1894                        interface->rx_ring[offset + i]->qos_pc = pc;
1895                        q_idx += pc_stride;
1896                }
1897        }
1898
1899        return true;
1900}
1901
1902/**
1903 * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS
1904 * @interface: Interface structure continaining rings and devices
1905 *
1906 * Cache the descriptor ring offsets for RSS
1907 **/
1908static void fm10k_cache_ring_rss(struct fm10k_intfc *interface)
1909{
1910        int i;
1911
1912        for (i = 0; i < interface->num_rx_queues; i++)
1913                interface->rx_ring[i]->reg_idx = i;
1914
1915        for (i = 0; i < interface->num_tx_queues; i++)
1916                interface->tx_ring[i]->reg_idx = i;
1917}
1918
1919/**
1920 * fm10k_assign_rings - Map rings to network devices
1921 * @interface: Interface structure containing rings and devices
1922 *
1923 * This function is meant to go though and configure both the network
1924 * devices so that they contain rings, and configure the rings so that
1925 * they function with their network devices.
1926 **/
1927static void fm10k_assign_rings(struct fm10k_intfc *interface)
1928{
1929        if (fm10k_cache_ring_qos(interface))
1930                return;
1931
1932        fm10k_cache_ring_rss(interface);
1933}
1934
1935static void fm10k_init_reta(struct fm10k_intfc *interface)
1936{
1937        u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices;
1938        u32 reta, base;
1939
1940        /* If the Rx flow indirection table has been configured manually, we
1941         * need to maintain it when possible.
1942         */
1943        if (netif_is_rxfh_configured(interface->netdev)) {
1944                for (i = FM10K_RETA_SIZE; i--;) {
1945                        reta = interface->reta[i];
1946                        if ((((reta << 24) >> 24) < rss_i) &&
1947                            (((reta << 16) >> 24) < rss_i) &&
1948                            (((reta <<  8) >> 24) < rss_i) &&
1949                            (((reta)       >> 24) < rss_i))
1950                                continue;
1951
1952                        /* this should never happen */
1953                        dev_err(&interface->pdev->dev,
1954                                "RSS indirection table assigned flows out of queue bounds. Reconfiguring.\n");
1955                        goto repopulate_reta;
1956                }
1957
1958                /* do nothing if all of the elements are in bounds */
1959                return;
1960        }
1961
1962repopulate_reta:
1963        /* Populate the redirection table 4 entries at a time.  To do this
1964         * we are generating the results for n and n+2 and then interleaving
1965         * those with the results with n+1 and n+3.
1966         */
1967        for (i = FM10K_RETA_SIZE; i--;) {
1968                /* first pass generates n and n+2 */
1969                base = ((i * 0x00040004) + 0x00020000) * rss_i;
1970                reta = (base & 0x3F803F80) >> 7;
1971
1972                /* second pass generates n+1 and n+3 */
1973                base += 0x00010001 * rss_i;
1974                reta |= (base & 0x3F803F80) << 1;
1975
1976                interface->reta[i] = reta;
1977        }
1978}
1979
1980/**
1981 * fm10k_init_queueing_scheme - Determine proper queueing scheme
1982 * @interface: board private structure to initialize
1983 *
1984 * We determine which queueing scheme to use based on...
1985 * - Hardware queue count (num_*_queues)
1986 *   - defined by miscellaneous hardware support/features (RSS, etc.)
1987 **/
1988int fm10k_init_queueing_scheme(struct fm10k_intfc *interface)
1989{
1990        int err;
1991
1992        /* Number of supported queues */
1993        fm10k_set_num_queues(interface);
1994
1995        /* Configure MSI-X capability */
1996        err = fm10k_init_msix_capability(interface);
1997        if (err) {
1998                dev_err(&interface->pdev->dev,
1999                        "Unable to initialize MSI-X capability\n");
2000                return err;
2001        }
2002
2003        /* Allocate memory for queues */
2004        err = fm10k_alloc_q_vectors(interface);
2005        if (err) {
2006                fm10k_reset_msix_capability(interface);
2007                return err;
2008        }
2009
2010        /* Map rings to devices, and map devices to physical queues */
2011        fm10k_assign_rings(interface);
2012
2013        /* Initialize RSS redirection table */
2014        fm10k_init_reta(interface);
2015
2016        return 0;
2017}
2018
2019/**
2020 * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings
2021 * @interface: board private structure to clear queueing scheme on
2022 *
2023 * We go through and clear queueing specific resources and reset the structure
2024 * to pre-load conditions
2025 **/
2026void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface)
2027{
2028        fm10k_free_q_vectors(interface);
2029        fm10k_reset_msix_capability(interface);
2030}
2031