linux/drivers/net/ethernet/intel/fm10k/fm10k_pf.c
<<
>>
Prefs
   1/* Intel Ethernet Switch Host Interface Driver
   2 * Copyright(c) 2013 - 2015 Intel Corporation.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms and conditions of the GNU General Public License,
   6 * version 2, as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 * The full GNU General Public License is included in this distribution in
  14 * the file called "COPYING".
  15 *
  16 * Contact Information:
  17 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  18 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  19 */
  20
  21#include "fm10k_pf.h"
  22#include "fm10k_vf.h"
  23
  24/**
  25 *  fm10k_reset_hw_pf - PF hardware reset
  26 *  @hw: pointer to hardware structure
  27 *
  28 *  This function should return the hardware to a state similar to the
  29 *  one it is in after being powered on.
  30 **/
  31static s32 fm10k_reset_hw_pf(struct fm10k_hw *hw)
  32{
  33        s32 err;
  34        u32 reg;
  35        u16 i;
  36
  37        /* Disable interrupts */
  38        fm10k_write_reg(hw, FM10K_EIMR, FM10K_EIMR_DISABLE(ALL));
  39
  40        /* Lock ITR2 reg 0 into itself and disable interrupt moderation */
  41        fm10k_write_reg(hw, FM10K_ITR2(0), 0);
  42        fm10k_write_reg(hw, FM10K_INT_CTRL, 0);
  43
  44        /* We assume here Tx and Rx queue 0 are owned by the PF */
  45
  46        /* Shut off VF access to their queues forcing them to queue 0 */
  47        for (i = 0; i < FM10K_TQMAP_TABLE_SIZE; i++) {
  48                fm10k_write_reg(hw, FM10K_TQMAP(i), 0);
  49                fm10k_write_reg(hw, FM10K_RQMAP(i), 0);
  50        }
  51
  52        /* shut down all rings */
  53        err = fm10k_disable_queues_generic(hw, FM10K_MAX_QUEUES);
  54        if (err)
  55                return err;
  56
  57        /* Verify that DMA is no longer active */
  58        reg = fm10k_read_reg(hw, FM10K_DMA_CTRL);
  59        if (reg & (FM10K_DMA_CTRL_TX_ACTIVE | FM10K_DMA_CTRL_RX_ACTIVE))
  60                return FM10K_ERR_DMA_PENDING;
  61
  62        /* verify the switch is ready for reset */
  63        reg = fm10k_read_reg(hw, FM10K_DMA_CTRL2);
  64        if (!(reg & FM10K_DMA_CTRL2_SWITCH_READY))
  65                goto out;
  66
  67        /* Inititate data path reset */
  68        reg |= FM10K_DMA_CTRL_DATAPATH_RESET;
  69        fm10k_write_reg(hw, FM10K_DMA_CTRL, reg);
  70
  71        /* Flush write and allow 100us for reset to complete */
  72        fm10k_write_flush(hw);
  73        udelay(FM10K_RESET_TIMEOUT);
  74
  75        /* Verify we made it out of reset */
  76        reg = fm10k_read_reg(hw, FM10K_IP);
  77        if (!(reg & FM10K_IP_NOTINRESET))
  78                err = FM10K_ERR_RESET_FAILED;
  79
  80out:
  81        return err;
  82}
  83
  84/**
  85 *  fm10k_is_ari_hierarchy_pf - Indicate ARI hierarchy support
  86 *  @hw: pointer to hardware structure
  87 *
  88 *  Looks at the ARI hierarchy bit to determine whether ARI is supported or not.
  89 **/
  90static bool fm10k_is_ari_hierarchy_pf(struct fm10k_hw *hw)
  91{
  92        u16 sriov_ctrl = fm10k_read_pci_cfg_word(hw, FM10K_PCIE_SRIOV_CTRL);
  93
  94        return !!(sriov_ctrl & FM10K_PCIE_SRIOV_CTRL_VFARI);
  95}
  96
  97/**
  98 *  fm10k_init_hw_pf - PF hardware initialization
  99 *  @hw: pointer to hardware structure
 100 *
 101 **/
 102static s32 fm10k_init_hw_pf(struct fm10k_hw *hw)
 103{
 104        u32 dma_ctrl, txqctl;
 105        u16 i;
 106
 107        /* Establish default VSI as valid */
 108        fm10k_write_reg(hw, FM10K_DGLORTDEC(fm10k_dglort_default), 0);
 109        fm10k_write_reg(hw, FM10K_DGLORTMAP(fm10k_dglort_default),
 110                        FM10K_DGLORTMAP_ANY);
 111
 112        /* Invalidate all other GLORT entries */
 113        for (i = 1; i < FM10K_DGLORT_COUNT; i++)
 114                fm10k_write_reg(hw, FM10K_DGLORTMAP(i), FM10K_DGLORTMAP_NONE);
 115
 116        /* reset ITR2(0) to point to itself */
 117        fm10k_write_reg(hw, FM10K_ITR2(0), 0);
 118
 119        /* reset VF ITR2(0) to point to 0 avoid PF registers */
 120        fm10k_write_reg(hw, FM10K_ITR2(FM10K_ITR_REG_COUNT_PF), 0);
 121
 122        /* loop through all PF ITR2 registers pointing them to the previous */
 123        for (i = 1; i < FM10K_ITR_REG_COUNT_PF; i++)
 124                fm10k_write_reg(hw, FM10K_ITR2(i), i - 1);
 125
 126        /* Enable interrupt moderator if not already enabled */
 127        fm10k_write_reg(hw, FM10K_INT_CTRL, FM10K_INT_CTRL_ENABLEMODERATOR);
 128
 129        /* compute the default txqctl configuration */
 130        txqctl = FM10K_TXQCTL_PF | FM10K_TXQCTL_UNLIMITED_BW |
 131                 (hw->mac.default_vid << FM10K_TXQCTL_VID_SHIFT);
 132
 133        for (i = 0; i < FM10K_MAX_QUEUES; i++) {
 134                /* configure rings for 256 Queue / 32 Descriptor cache mode */
 135                fm10k_write_reg(hw, FM10K_TQDLOC(i),
 136                                (i * FM10K_TQDLOC_BASE_32_DESC) |
 137                                FM10K_TQDLOC_SIZE_32_DESC);
 138                fm10k_write_reg(hw, FM10K_TXQCTL(i), txqctl);
 139
 140                /* configure rings to provide TPH processing hints */
 141                fm10k_write_reg(hw, FM10K_TPH_TXCTRL(i),
 142                                FM10K_TPH_TXCTRL_DESC_TPHEN |
 143                                FM10K_TPH_TXCTRL_DESC_RROEN |
 144                                FM10K_TPH_TXCTRL_DESC_WROEN |
 145                                FM10K_TPH_TXCTRL_DATA_RROEN);
 146                fm10k_write_reg(hw, FM10K_TPH_RXCTRL(i),
 147                                FM10K_TPH_RXCTRL_DESC_TPHEN |
 148                                FM10K_TPH_RXCTRL_DESC_RROEN |
 149                                FM10K_TPH_RXCTRL_DATA_WROEN |
 150                                FM10K_TPH_RXCTRL_HDR_WROEN);
 151        }
 152
 153        /* set max hold interval to align with 1.024 usec in all modes and
 154         * store ITR scale
 155         */
 156        switch (hw->bus.speed) {
 157        case fm10k_bus_speed_2500:
 158                dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN1;
 159                hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN1;
 160                break;
 161        case fm10k_bus_speed_5000:
 162                dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN2;
 163                hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN2;
 164                break;
 165        case fm10k_bus_speed_8000:
 166                dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN3;
 167                hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN3;
 168                break;
 169        default:
 170                dma_ctrl = 0;
 171                /* just in case, assume Gen3 ITR scale */
 172                hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN3;
 173                break;
 174        }
 175
 176        /* Configure TSO flags */
 177        fm10k_write_reg(hw, FM10K_DTXTCPFLGL, FM10K_TSO_FLAGS_LOW);
 178        fm10k_write_reg(hw, FM10K_DTXTCPFLGH, FM10K_TSO_FLAGS_HI);
 179
 180        /* Enable DMA engine
 181         * Set Rx Descriptor size to 32
 182         * Set Minimum MSS to 64
 183         * Set Maximum number of Rx queues to 256 / 32 Descriptor
 184         */
 185        dma_ctrl |= FM10K_DMA_CTRL_TX_ENABLE | FM10K_DMA_CTRL_RX_ENABLE |
 186                    FM10K_DMA_CTRL_RX_DESC_SIZE | FM10K_DMA_CTRL_MINMSS_64 |
 187                    FM10K_DMA_CTRL_32_DESC;
 188
 189        fm10k_write_reg(hw, FM10K_DMA_CTRL, dma_ctrl);
 190
 191        /* record maximum queue count, we limit ourselves to 128 */
 192        hw->mac.max_queues = FM10K_MAX_QUEUES_PF;
 193
 194        /* We support either 64 VFs or 7 VFs depending on if we have ARI */
 195        hw->iov.total_vfs = fm10k_is_ari_hierarchy_pf(hw) ? 64 : 7;
 196
 197        return 0;
 198}
 199
 200/**
 201 *  fm10k_update_vlan_pf - Update status of VLAN ID in VLAN filter table
 202 *  @hw: pointer to hardware structure
 203 *  @vid: VLAN ID to add to table
 204 *  @vsi: Index indicating VF ID or PF ID in table
 205 *  @set: Indicates if this is a set or clear operation
 206 *
 207 *  This function adds or removes the corresponding VLAN ID from the VLAN
 208 *  filter table for the corresponding function.  In addition to the
 209 *  standard set/clear that supports one bit a multi-bit write is
 210 *  supported to set 64 bits at a time.
 211 **/
 212static s32 fm10k_update_vlan_pf(struct fm10k_hw *hw, u32 vid, u8 vsi, bool set)
 213{
 214        u32 vlan_table, reg, mask, bit, len;
 215
 216        /* verify the VSI index is valid */
 217        if (vsi > FM10K_VLAN_TABLE_VSI_MAX)
 218                return FM10K_ERR_PARAM;
 219
 220        /* VLAN multi-bit write:
 221         * The multi-bit write has several parts to it.
 222         *    3                   2                   1                   0
 223         *  1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
 224         * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 225         * | RSVD0 |         Length        |C|RSVD0|        VLAN ID        |
 226         * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 227         *
 228         * VLAN ID: Vlan Starting value
 229         * RSVD0: Reserved section, must be 0
 230         * C: Flag field, 0 is set, 1 is clear (Used in VF VLAN message)
 231         * Length: Number of times to repeat the bit being set
 232         */
 233        len = vid >> 16;
 234        vid = (vid << 17) >> 17;
 235
 236        /* verify the reserved 0 fields are 0 */
 237        if (len >= FM10K_VLAN_TABLE_VID_MAX || vid >= FM10K_VLAN_TABLE_VID_MAX)
 238                return FM10K_ERR_PARAM;
 239
 240        /* Loop through the table updating all required VLANs */
 241        for (reg = FM10K_VLAN_TABLE(vsi, vid / 32), bit = vid % 32;
 242             len < FM10K_VLAN_TABLE_VID_MAX;
 243             len -= 32 - bit, reg++, bit = 0) {
 244                /* record the initial state of the register */
 245                vlan_table = fm10k_read_reg(hw, reg);
 246
 247                /* truncate mask if we are at the start or end of the run */
 248                mask = (~(u32)0 >> ((len < 31) ? 31 - len : 0)) << bit;
 249
 250                /* make necessary modifications to the register */
 251                mask &= set ? ~vlan_table : vlan_table;
 252                if (mask)
 253                        fm10k_write_reg(hw, reg, vlan_table ^ mask);
 254        }
 255
 256        return 0;
 257}
 258
 259/**
 260 *  fm10k_read_mac_addr_pf - Read device MAC address
 261 *  @hw: pointer to the HW structure
 262 *
 263 *  Reads the device MAC address from the SM_AREA and stores the value.
 264 **/
 265static s32 fm10k_read_mac_addr_pf(struct fm10k_hw *hw)
 266{
 267        u8 perm_addr[ETH_ALEN];
 268        u32 serial_num;
 269
 270        serial_num = fm10k_read_reg(hw, FM10K_SM_AREA(1));
 271
 272        /* last byte should be all 1's */
 273        if ((~serial_num) << 24)
 274                return  FM10K_ERR_INVALID_MAC_ADDR;
 275
 276        perm_addr[0] = (u8)(serial_num >> 24);
 277        perm_addr[1] = (u8)(serial_num >> 16);
 278        perm_addr[2] = (u8)(serial_num >> 8);
 279
 280        serial_num = fm10k_read_reg(hw, FM10K_SM_AREA(0));
 281
 282        /* first byte should be all 1's */
 283        if ((~serial_num) >> 24)
 284                return  FM10K_ERR_INVALID_MAC_ADDR;
 285
 286        perm_addr[3] = (u8)(serial_num >> 16);
 287        perm_addr[4] = (u8)(serial_num >> 8);
 288        perm_addr[5] = (u8)(serial_num);
 289
 290        ether_addr_copy(hw->mac.perm_addr, perm_addr);
 291        ether_addr_copy(hw->mac.addr, perm_addr);
 292
 293        return 0;
 294}
 295
 296/**
 297 *  fm10k_glort_valid_pf - Validate that the provided glort is valid
 298 *  @hw: pointer to the HW structure
 299 *  @glort: base glort to be validated
 300 *
 301 *  This function will return an error if the provided glort is invalid
 302 **/
 303bool fm10k_glort_valid_pf(struct fm10k_hw *hw, u16 glort)
 304{
 305        glort &= hw->mac.dglort_map >> FM10K_DGLORTMAP_MASK_SHIFT;
 306
 307        return glort == (hw->mac.dglort_map & FM10K_DGLORTMAP_NONE);
 308}
 309
 310/**
 311 *  fm10k_update_xc_addr_pf - Update device addresses
 312 *  @hw: pointer to the HW structure
 313 *  @glort: base resource tag for this request
 314 *  @mac: MAC address to add/remove from table
 315 *  @vid: VLAN ID to add/remove from table
 316 *  @add: Indicates if this is an add or remove operation
 317 *  @flags: flags field to indicate add and secure
 318 *
 319 *  This function generates a message to the Switch API requesting
 320 *  that the given logical port add/remove the given L2 MAC/VLAN address.
 321 **/
 322static s32 fm10k_update_xc_addr_pf(struct fm10k_hw *hw, u16 glort,
 323                                   const u8 *mac, u16 vid, bool add, u8 flags)
 324{
 325        struct fm10k_mbx_info *mbx = &hw->mbx;
 326        struct fm10k_mac_update mac_update;
 327        u32 msg[5];
 328
 329        /* clear set bit from VLAN ID */
 330        vid &= ~FM10K_VLAN_CLEAR;
 331
 332        /* if glort or VLAN are not valid return error */
 333        if (!fm10k_glort_valid_pf(hw, glort) || vid >= FM10K_VLAN_TABLE_VID_MAX)
 334                return FM10K_ERR_PARAM;
 335
 336        /* record fields */
 337        mac_update.mac_lower = cpu_to_le32(((u32)mac[2] << 24) |
 338                                                 ((u32)mac[3] << 16) |
 339                                                 ((u32)mac[4] << 8) |
 340                                                 ((u32)mac[5]));
 341        mac_update.mac_upper = cpu_to_le16(((u16)mac[0] << 8) |
 342                                           ((u16)mac[1]));
 343        mac_update.vlan = cpu_to_le16(vid);
 344        mac_update.glort = cpu_to_le16(glort);
 345        mac_update.action = add ? 0 : 1;
 346        mac_update.flags = flags;
 347
 348        /* populate mac_update fields */
 349        fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_UPDATE_MAC_FWD_RULE);
 350        fm10k_tlv_attr_put_le_struct(msg, FM10K_PF_ATTR_ID_MAC_UPDATE,
 351                                     &mac_update, sizeof(mac_update));
 352
 353        /* load onto outgoing mailbox */
 354        return mbx->ops.enqueue_tx(hw, mbx, msg);
 355}
 356
 357/**
 358 *  fm10k_update_uc_addr_pf - Update device unicast addresses
 359 *  @hw: pointer to the HW structure
 360 *  @glort: base resource tag for this request
 361 *  @mac: MAC address to add/remove from table
 362 *  @vid: VLAN ID to add/remove from table
 363 *  @add: Indicates if this is an add or remove operation
 364 *  @flags: flags field to indicate add and secure
 365 *
 366 *  This function is used to add or remove unicast addresses for
 367 *  the PF.
 368 **/
 369static s32 fm10k_update_uc_addr_pf(struct fm10k_hw *hw, u16 glort,
 370                                   const u8 *mac, u16 vid, bool add, u8 flags)
 371{
 372        /* verify MAC address is valid */
 373        if (!is_valid_ether_addr(mac))
 374                return FM10K_ERR_PARAM;
 375
 376        return fm10k_update_xc_addr_pf(hw, glort, mac, vid, add, flags);
 377}
 378
 379/**
 380 *  fm10k_update_mc_addr_pf - Update device multicast addresses
 381 *  @hw: pointer to the HW structure
 382 *  @glort: base resource tag for this request
 383 *  @mac: MAC address to add/remove from table
 384 *  @vid: VLAN ID to add/remove from table
 385 *  @add: Indicates if this is an add or remove operation
 386 *
 387 *  This function is used to add or remove multicast MAC addresses for
 388 *  the PF.
 389 **/
 390static s32 fm10k_update_mc_addr_pf(struct fm10k_hw *hw, u16 glort,
 391                                   const u8 *mac, u16 vid, bool add)
 392{
 393        /* verify multicast address is valid */
 394        if (!is_multicast_ether_addr(mac))
 395                return FM10K_ERR_PARAM;
 396
 397        return fm10k_update_xc_addr_pf(hw, glort, mac, vid, add, 0);
 398}
 399
 400/**
 401 *  fm10k_update_xcast_mode_pf - Request update of multicast mode
 402 *  @hw: pointer to hardware structure
 403 *  @glort: base resource tag for this request
 404 *  @mode: integer value indicating mode being requested
 405 *
 406 *  This function will attempt to request a higher mode for the port
 407 *  so that it can enable either multicast, multicast promiscuous, or
 408 *  promiscuous mode of operation.
 409 **/
 410static s32 fm10k_update_xcast_mode_pf(struct fm10k_hw *hw, u16 glort, u8 mode)
 411{
 412        struct fm10k_mbx_info *mbx = &hw->mbx;
 413        u32 msg[3], xcast_mode;
 414
 415        if (mode > FM10K_XCAST_MODE_NONE)
 416                return FM10K_ERR_PARAM;
 417
 418        /* if glort is not valid return error */
 419        if (!fm10k_glort_valid_pf(hw, glort))
 420                return FM10K_ERR_PARAM;
 421
 422        /* write xcast mode as a single u32 value,
 423         * lower 16 bits: glort
 424         * upper 16 bits: mode
 425         */
 426        xcast_mode = ((u32)mode << 16) | glort;
 427
 428        /* generate message requesting to change xcast mode */
 429        fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_XCAST_MODES);
 430        fm10k_tlv_attr_put_u32(msg, FM10K_PF_ATTR_ID_XCAST_MODE, xcast_mode);
 431
 432        /* load onto outgoing mailbox */
 433        return mbx->ops.enqueue_tx(hw, mbx, msg);
 434}
 435
 436/**
 437 *  fm10k_update_int_moderator_pf - Update interrupt moderator linked list
 438 *  @hw: pointer to hardware structure
 439 *
 440 *  This function walks through the MSI-X vector table to determine the
 441 *  number of active interrupts and based on that information updates the
 442 *  interrupt moderator linked list.
 443 **/
 444static void fm10k_update_int_moderator_pf(struct fm10k_hw *hw)
 445{
 446        u32 i;
 447
 448        /* Disable interrupt moderator */
 449        fm10k_write_reg(hw, FM10K_INT_CTRL, 0);
 450
 451        /* loop through PF from last to first looking enabled vectors */
 452        for (i = FM10K_ITR_REG_COUNT_PF - 1; i; i--) {
 453                if (!fm10k_read_reg(hw, FM10K_MSIX_VECTOR_MASK(i)))
 454                        break;
 455        }
 456
 457        /* always reset VFITR2[0] to point to last enabled PF vector */
 458        fm10k_write_reg(hw, FM10K_ITR2(FM10K_ITR_REG_COUNT_PF), i);
 459
 460        /* reset ITR2[0] to point to last enabled PF vector */
 461        if (!hw->iov.num_vfs)
 462                fm10k_write_reg(hw, FM10K_ITR2(0), i);
 463
 464        /* Enable interrupt moderator */
 465        fm10k_write_reg(hw, FM10K_INT_CTRL, FM10K_INT_CTRL_ENABLEMODERATOR);
 466}
 467
 468/**
 469 *  fm10k_update_lport_state_pf - Notify the switch of a change in port state
 470 *  @hw: pointer to the HW structure
 471 *  @glort: base resource tag for this request
 472 *  @count: number of logical ports being updated
 473 *  @enable: boolean value indicating enable or disable
 474 *
 475 *  This function is used to add/remove a logical port from the switch.
 476 **/
 477static s32 fm10k_update_lport_state_pf(struct fm10k_hw *hw, u16 glort,
 478                                       u16 count, bool enable)
 479{
 480        struct fm10k_mbx_info *mbx = &hw->mbx;
 481        u32 msg[3], lport_msg;
 482
 483        /* do nothing if we are being asked to create or destroy 0 ports */
 484        if (!count)
 485                return 0;
 486
 487        /* if glort is not valid return error */
 488        if (!fm10k_glort_valid_pf(hw, glort))
 489                return FM10K_ERR_PARAM;
 490
 491        /* construct the lport message from the 2 pieces of data we have */
 492        lport_msg = ((u32)count << 16) | glort;
 493
 494        /* generate lport create/delete message */
 495        fm10k_tlv_msg_init(msg, enable ? FM10K_PF_MSG_ID_LPORT_CREATE :
 496                                         FM10K_PF_MSG_ID_LPORT_DELETE);
 497        fm10k_tlv_attr_put_u32(msg, FM10K_PF_ATTR_ID_PORT, lport_msg);
 498
 499        /* load onto outgoing mailbox */
 500        return mbx->ops.enqueue_tx(hw, mbx, msg);
 501}
 502
 503/**
 504 *  fm10k_configure_dglort_map_pf - Configures GLORT entry and queues
 505 *  @hw: pointer to hardware structure
 506 *  @dglort: pointer to dglort configuration structure
 507 *
 508 *  Reads the configuration structure contained in dglort_cfg and uses
 509 *  that information to then populate a DGLORTMAP/DEC entry and the queues
 510 *  to which it has been assigned.
 511 **/
 512static s32 fm10k_configure_dglort_map_pf(struct fm10k_hw *hw,
 513                                         struct fm10k_dglort_cfg *dglort)
 514{
 515        u16 glort, queue_count, vsi_count, pc_count;
 516        u16 vsi, queue, pc, q_idx;
 517        u32 txqctl, dglortdec, dglortmap;
 518
 519        /* verify the dglort pointer */
 520        if (!dglort)
 521                return FM10K_ERR_PARAM;
 522
 523        /* verify the dglort values */
 524        if ((dglort->idx > 7) || (dglort->rss_l > 7) || (dglort->pc_l > 3) ||
 525            (dglort->vsi_l > 6) || (dglort->vsi_b > 64) ||
 526            (dglort->queue_l > 8) || (dglort->queue_b >= 256))
 527                return FM10K_ERR_PARAM;
 528
 529        /* determine count of VSIs and queues */
 530        queue_count = 1 << (dglort->rss_l + dglort->pc_l);
 531        vsi_count = 1 << (dglort->vsi_l + dglort->queue_l);
 532        glort = dglort->glort;
 533        q_idx = dglort->queue_b;
 534
 535        /* configure SGLORT for queues */
 536        for (vsi = 0; vsi < vsi_count; vsi++, glort++) {
 537                for (queue = 0; queue < queue_count; queue++, q_idx++) {
 538                        if (q_idx >= FM10K_MAX_QUEUES)
 539                                break;
 540
 541                        fm10k_write_reg(hw, FM10K_TX_SGLORT(q_idx), glort);
 542                        fm10k_write_reg(hw, FM10K_RX_SGLORT(q_idx), glort);
 543                }
 544        }
 545
 546        /* determine count of PCs and queues */
 547        queue_count = 1 << (dglort->queue_l + dglort->rss_l + dglort->vsi_l);
 548        pc_count = 1 << dglort->pc_l;
 549
 550        /* configure PC for Tx queues */
 551        for (pc = 0; pc < pc_count; pc++) {
 552                q_idx = pc + dglort->queue_b;
 553                for (queue = 0; queue < queue_count; queue++) {
 554                        if (q_idx >= FM10K_MAX_QUEUES)
 555                                break;
 556
 557                        txqctl = fm10k_read_reg(hw, FM10K_TXQCTL(q_idx));
 558                        txqctl &= ~FM10K_TXQCTL_PC_MASK;
 559                        txqctl |= pc << FM10K_TXQCTL_PC_SHIFT;
 560                        fm10k_write_reg(hw, FM10K_TXQCTL(q_idx), txqctl);
 561
 562                        q_idx += pc_count;
 563                }
 564        }
 565
 566        /* configure DGLORTDEC */
 567        dglortdec = ((u32)(dglort->rss_l) << FM10K_DGLORTDEC_RSSLENGTH_SHIFT) |
 568                    ((u32)(dglort->queue_b) << FM10K_DGLORTDEC_QBASE_SHIFT) |
 569                    ((u32)(dglort->pc_l) << FM10K_DGLORTDEC_PCLENGTH_SHIFT) |
 570                    ((u32)(dglort->vsi_b) << FM10K_DGLORTDEC_VSIBASE_SHIFT) |
 571                    ((u32)(dglort->vsi_l) << FM10K_DGLORTDEC_VSILENGTH_SHIFT) |
 572                    ((u32)(dglort->queue_l));
 573        if (dglort->inner_rss)
 574                dglortdec |=  FM10K_DGLORTDEC_INNERRSS_ENABLE;
 575
 576        /* configure DGLORTMAP */
 577        dglortmap = (dglort->idx == fm10k_dglort_default) ?
 578                        FM10K_DGLORTMAP_ANY : FM10K_DGLORTMAP_ZERO;
 579        dglortmap <<= dglort->vsi_l + dglort->queue_l + dglort->shared_l;
 580        dglortmap |= dglort->glort;
 581
 582        /* write values to hardware */
 583        fm10k_write_reg(hw, FM10K_DGLORTDEC(dglort->idx), dglortdec);
 584        fm10k_write_reg(hw, FM10K_DGLORTMAP(dglort->idx), dglortmap);
 585
 586        return 0;
 587}
 588
 589u16 fm10k_queues_per_pool(struct fm10k_hw *hw)
 590{
 591        u16 num_pools = hw->iov.num_pools;
 592
 593        return (num_pools > 32) ? 2 : (num_pools > 16) ? 4 : (num_pools > 8) ?
 594               8 : FM10K_MAX_QUEUES_POOL;
 595}
 596
 597u16 fm10k_vf_queue_index(struct fm10k_hw *hw, u16 vf_idx)
 598{
 599        u16 num_vfs = hw->iov.num_vfs;
 600        u16 vf_q_idx = FM10K_MAX_QUEUES;
 601
 602        vf_q_idx -= fm10k_queues_per_pool(hw) * (num_vfs - vf_idx);
 603
 604        return vf_q_idx;
 605}
 606
 607static u16 fm10k_vectors_per_pool(struct fm10k_hw *hw)
 608{
 609        u16 num_pools = hw->iov.num_pools;
 610
 611        return (num_pools > 32) ? 8 : (num_pools > 16) ? 16 :
 612               FM10K_MAX_VECTORS_POOL;
 613}
 614
 615static u16 fm10k_vf_vector_index(struct fm10k_hw *hw, u16 vf_idx)
 616{
 617        u16 vf_v_idx = FM10K_MAX_VECTORS_PF;
 618
 619        vf_v_idx += fm10k_vectors_per_pool(hw) * vf_idx;
 620
 621        return vf_v_idx;
 622}
 623
 624/**
 625 *  fm10k_iov_assign_resources_pf - Assign pool resources for virtualization
 626 *  @hw: pointer to the HW structure
 627 *  @num_vfs: number of VFs to be allocated
 628 *  @num_pools: number of virtualization pools to be allocated
 629 *
 630 *  Allocates queues and traffic classes to virtualization entities to prepare
 631 *  the PF for SR-IOV and VMDq
 632 **/
 633static s32 fm10k_iov_assign_resources_pf(struct fm10k_hw *hw, u16 num_vfs,
 634                                         u16 num_pools)
 635{
 636        u16 qmap_stride, qpp, vpp, vf_q_idx, vf_q_idx0, qmap_idx;
 637        u32 vid = hw->mac.default_vid << FM10K_TXQCTL_VID_SHIFT;
 638        int i, j;
 639
 640        /* hardware only supports up to 64 pools */
 641        if (num_pools > 64)
 642                return FM10K_ERR_PARAM;
 643
 644        /* the number of VFs cannot exceed the number of pools */
 645        if ((num_vfs > num_pools) || (num_vfs > hw->iov.total_vfs))
 646                return FM10K_ERR_PARAM;
 647
 648        /* record number of virtualization entities */
 649        hw->iov.num_vfs = num_vfs;
 650        hw->iov.num_pools = num_pools;
 651
 652        /* determine qmap offsets and counts */
 653        qmap_stride = (num_vfs > 8) ? 32 : 256;
 654        qpp = fm10k_queues_per_pool(hw);
 655        vpp = fm10k_vectors_per_pool(hw);
 656
 657        /* calculate starting index for queues */
 658        vf_q_idx = fm10k_vf_queue_index(hw, 0);
 659        qmap_idx = 0;
 660
 661        /* establish TCs with -1 credits and no quanta to prevent transmit */
 662        for (i = 0; i < num_vfs; i++) {
 663                fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(i), 0);
 664                fm10k_write_reg(hw, FM10K_TC_RATE(i), 0);
 665                fm10k_write_reg(hw, FM10K_TC_CREDIT(i),
 666                                FM10K_TC_CREDIT_CREDIT_MASK);
 667        }
 668
 669        /* zero out all mbmem registers */
 670        for (i = FM10K_VFMBMEM_LEN * num_vfs; i--;)
 671                fm10k_write_reg(hw, FM10K_MBMEM(i), 0);
 672
 673        /* clear event notification of VF FLR */
 674        fm10k_write_reg(hw, FM10K_PFVFLREC(0), ~0);
 675        fm10k_write_reg(hw, FM10K_PFVFLREC(1), ~0);
 676
 677        /* loop through unallocated rings assigning them back to PF */
 678        for (i = FM10K_MAX_QUEUES_PF; i < vf_q_idx; i++) {
 679                fm10k_write_reg(hw, FM10K_TXDCTL(i), 0);
 680                fm10k_write_reg(hw, FM10K_TXQCTL(i), FM10K_TXQCTL_PF |
 681                                FM10K_TXQCTL_UNLIMITED_BW | vid);
 682                fm10k_write_reg(hw, FM10K_RXQCTL(i), FM10K_RXQCTL_PF);
 683        }
 684
 685        /* PF should have already updated VFITR2[0] */
 686
 687        /* update all ITR registers to flow to VFITR2[0] */
 688        for (i = FM10K_ITR_REG_COUNT_PF + 1; i < FM10K_ITR_REG_COUNT; i++) {
 689                if (!(i & (vpp - 1)))
 690                        fm10k_write_reg(hw, FM10K_ITR2(i), i - vpp);
 691                else
 692                        fm10k_write_reg(hw, FM10K_ITR2(i), i - 1);
 693        }
 694
 695        /* update PF ITR2[0] to reference the last vector */
 696        fm10k_write_reg(hw, FM10K_ITR2(0),
 697                        fm10k_vf_vector_index(hw, num_vfs - 1));
 698
 699        /* loop through rings populating rings and TCs */
 700        for (i = 0; i < num_vfs; i++) {
 701                /* record index for VF queue 0 for use in end of loop */
 702                vf_q_idx0 = vf_q_idx;
 703
 704                for (j = 0; j < qpp; j++, qmap_idx++, vf_q_idx++) {
 705                        /* assign VF and locked TC to queues */
 706                        fm10k_write_reg(hw, FM10K_TXDCTL(vf_q_idx), 0);
 707                        fm10k_write_reg(hw, FM10K_TXQCTL(vf_q_idx),
 708                                        (i << FM10K_TXQCTL_TC_SHIFT) | i |
 709                                        FM10K_TXQCTL_VF | vid);
 710                        fm10k_write_reg(hw, FM10K_RXDCTL(vf_q_idx),
 711                                        FM10K_RXDCTL_WRITE_BACK_MIN_DELAY |
 712                                        FM10K_RXDCTL_DROP_ON_EMPTY);
 713                        fm10k_write_reg(hw, FM10K_RXQCTL(vf_q_idx),
 714                                        FM10K_RXQCTL_VF |
 715                                        (i << FM10K_RXQCTL_VF_SHIFT));
 716
 717                        /* map queue pair to VF */
 718                        fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx);
 719                        fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), vf_q_idx);
 720                }
 721
 722                /* repeat the first ring for all of the remaining VF rings */
 723                for (; j < qmap_stride; j++, qmap_idx++) {
 724                        fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx0);
 725                        fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), vf_q_idx0);
 726                }
 727        }
 728
 729        /* loop through remaining indexes assigning all to queue 0 */
 730        while (qmap_idx < FM10K_TQMAP_TABLE_SIZE) {
 731                fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), 0);
 732                fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), 0);
 733                qmap_idx++;
 734        }
 735
 736        return 0;
 737}
 738
 739/**
 740 *  fm10k_iov_configure_tc_pf - Configure the shaping group for VF
 741 *  @hw: pointer to the HW structure
 742 *  @vf_idx: index of VF receiving GLORT
 743 *  @rate: Rate indicated in Mb/s
 744 *
 745 *  Configured the TC for a given VF to allow only up to a given number
 746 *  of Mb/s of outgoing Tx throughput.
 747 **/
 748static s32 fm10k_iov_configure_tc_pf(struct fm10k_hw *hw, u16 vf_idx, int rate)
 749{
 750        /* configure defaults */
 751        u32 interval = FM10K_TC_RATE_INTERVAL_4US_GEN3;
 752        u32 tc_rate = FM10K_TC_RATE_QUANTA_MASK;
 753
 754        /* verify vf is in range */
 755        if (vf_idx >= hw->iov.num_vfs)
 756                return FM10K_ERR_PARAM;
 757
 758        /* set interval to align with 4.096 usec in all modes */
 759        switch (hw->bus.speed) {
 760        case fm10k_bus_speed_2500:
 761                interval = FM10K_TC_RATE_INTERVAL_4US_GEN1;
 762                break;
 763        case fm10k_bus_speed_5000:
 764                interval = FM10K_TC_RATE_INTERVAL_4US_GEN2;
 765                break;
 766        default:
 767                break;
 768        }
 769
 770        if (rate) {
 771                if (rate > FM10K_VF_TC_MAX || rate < FM10K_VF_TC_MIN)
 772                        return FM10K_ERR_PARAM;
 773
 774                /* The quanta is measured in Bytes per 4.096 or 8.192 usec
 775                 * The rate is provided in Mbits per second
 776                 * To tralslate from rate to quanta we need to multiply the
 777                 * rate by 8.192 usec and divide by 8 bits/byte.  To avoid
 778                 * dealing with floating point we can round the values up
 779                 * to the nearest whole number ratio which gives us 128 / 125.
 780                 */
 781                tc_rate = (rate * 128) / 125;
 782
 783                /* try to keep the rate limiting accurate by increasing
 784                 * the number of credits and interval for rates less than 4Gb/s
 785                 */
 786                if (rate < 4000)
 787                        interval <<= 1;
 788                else
 789                        tc_rate >>= 1;
 790        }
 791
 792        /* update rate limiter with new values */
 793        fm10k_write_reg(hw, FM10K_TC_RATE(vf_idx), tc_rate | interval);
 794        fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(vf_idx), FM10K_TC_MAXCREDIT_64K);
 795        fm10k_write_reg(hw, FM10K_TC_CREDIT(vf_idx), FM10K_TC_MAXCREDIT_64K);
 796
 797        return 0;
 798}
 799
 800/**
 801 *  fm10k_iov_assign_int_moderator_pf - Add VF interrupts to moderator list
 802 *  @hw: pointer to the HW structure
 803 *  @vf_idx: index of VF receiving GLORT
 804 *
 805 *  Update the interrupt moderator linked list to include any MSI-X
 806 *  interrupts which the VF has enabled in the MSI-X vector table.
 807 **/
 808static s32 fm10k_iov_assign_int_moderator_pf(struct fm10k_hw *hw, u16 vf_idx)
 809{
 810        u16 vf_v_idx, vf_v_limit, i;
 811
 812        /* verify vf is in range */
 813        if (vf_idx >= hw->iov.num_vfs)
 814                return FM10K_ERR_PARAM;
 815
 816        /* determine vector offset and count */
 817        vf_v_idx = fm10k_vf_vector_index(hw, vf_idx);
 818        vf_v_limit = vf_v_idx + fm10k_vectors_per_pool(hw);
 819
 820        /* search for first vector that is not masked */
 821        for (i = vf_v_limit - 1; i > vf_v_idx; i--) {
 822                if (!fm10k_read_reg(hw, FM10K_MSIX_VECTOR_MASK(i)))
 823                        break;
 824        }
 825
 826        /* reset linked list so it now includes our active vectors */
 827        if (vf_idx == (hw->iov.num_vfs - 1))
 828                fm10k_write_reg(hw, FM10K_ITR2(0), i);
 829        else
 830                fm10k_write_reg(hw, FM10K_ITR2(vf_v_limit), i);
 831
 832        return 0;
 833}
 834
 835/**
 836 *  fm10k_iov_assign_default_mac_vlan_pf - Assign a MAC and VLAN to VF
 837 *  @hw: pointer to the HW structure
 838 *  @vf_info: pointer to VF information structure
 839 *
 840 *  Assign a MAC address and default VLAN to a VF and notify it of the update
 841 **/
 842static s32 fm10k_iov_assign_default_mac_vlan_pf(struct fm10k_hw *hw,
 843                                                struct fm10k_vf_info *vf_info)
 844{
 845        u16 qmap_stride, queues_per_pool, vf_q_idx, timeout, qmap_idx, i;
 846        u32 msg[4], txdctl, txqctl, tdbal = 0, tdbah = 0;
 847        s32 err = 0;
 848        u16 vf_idx, vf_vid;
 849
 850        /* verify vf is in range */
 851        if (!vf_info || vf_info->vf_idx >= hw->iov.num_vfs)
 852                return FM10K_ERR_PARAM;
 853
 854        /* determine qmap offsets and counts */
 855        qmap_stride = (hw->iov.num_vfs > 8) ? 32 : 256;
 856        queues_per_pool = fm10k_queues_per_pool(hw);
 857
 858        /* calculate starting index for queues */
 859        vf_idx = vf_info->vf_idx;
 860        vf_q_idx = fm10k_vf_queue_index(hw, vf_idx);
 861        qmap_idx = qmap_stride * vf_idx;
 862
 863        /* MAP Tx queue back to 0 temporarily, and disable it */
 864        fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), 0);
 865        fm10k_write_reg(hw, FM10K_TXDCTL(vf_q_idx), 0);
 866
 867        /* determine correct default VLAN ID */
 868        if (vf_info->pf_vid)
 869                vf_vid = vf_info->pf_vid | FM10K_VLAN_CLEAR;
 870        else
 871                vf_vid = vf_info->sw_vid;
 872
 873        /* generate MAC_ADDR request */
 874        fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_MAC_VLAN);
 875        fm10k_tlv_attr_put_mac_vlan(msg, FM10K_MAC_VLAN_MSG_DEFAULT_MAC,
 876                                    vf_info->mac, vf_vid);
 877
 878        /* load onto outgoing mailbox, ignore any errors on enqueue */
 879        if (vf_info->mbx.ops.enqueue_tx)
 880                vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg);
 881
 882        /* verify ring has disabled before modifying base address registers */
 883        txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(vf_q_idx));
 884        for (timeout = 0; txdctl & FM10K_TXDCTL_ENABLE; timeout++) {
 885                /* limit ourselves to a 1ms timeout */
 886                if (timeout == 10) {
 887                        err = FM10K_ERR_DMA_PENDING;
 888                        goto err_out;
 889                }
 890
 891                usleep_range(100, 200);
 892                txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(vf_q_idx));
 893        }
 894
 895        /* Update base address registers to contain MAC address */
 896        if (is_valid_ether_addr(vf_info->mac)) {
 897                tdbal = (((u32)vf_info->mac[3]) << 24) |
 898                        (((u32)vf_info->mac[4]) << 16) |
 899                        (((u32)vf_info->mac[5]) << 8);
 900
 901                tdbah = (((u32)0xFF)            << 24) |
 902                        (((u32)vf_info->mac[0]) << 16) |
 903                        (((u32)vf_info->mac[1]) << 8) |
 904                        ((u32)vf_info->mac[2]);
 905        }
 906
 907        /* Record the base address into queue 0 */
 908        fm10k_write_reg(hw, FM10K_TDBAL(vf_q_idx), tdbal);
 909        fm10k_write_reg(hw, FM10K_TDBAH(vf_q_idx), tdbah);
 910
 911        /* Provide the VF the ITR scale, using software-defined fields in TDLEN
 912         * to pass the information during VF initialization. See definition of
 913         * FM10K_TDLEN_ITR_SCALE_SHIFT for more details.
 914         */
 915        fm10k_write_reg(hw, FM10K_TDLEN(vf_q_idx), hw->mac.itr_scale <<
 916                                                   FM10K_TDLEN_ITR_SCALE_SHIFT);
 917
 918err_out:
 919        /* configure Queue control register */
 920        txqctl = ((u32)vf_vid << FM10K_TXQCTL_VID_SHIFT) &
 921                 FM10K_TXQCTL_VID_MASK;
 922        txqctl |= (vf_idx << FM10K_TXQCTL_TC_SHIFT) |
 923                  FM10K_TXQCTL_VF | vf_idx;
 924
 925        /* assign VLAN ID */
 926        for (i = 0; i < queues_per_pool; i++)
 927                fm10k_write_reg(hw, FM10K_TXQCTL(vf_q_idx + i), txqctl);
 928
 929        /* restore the queue back to VF ownership */
 930        fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx);
 931        return err;
 932}
 933
 934/**
 935 *  fm10k_iov_reset_resources_pf - Reassign queues and interrupts to a VF
 936 *  @hw: pointer to the HW structure
 937 *  @vf_info: pointer to VF information structure
 938 *
 939 *  Reassign the interrupts and queues to a VF following an FLR
 940 **/
 941static s32 fm10k_iov_reset_resources_pf(struct fm10k_hw *hw,
 942                                        struct fm10k_vf_info *vf_info)
 943{
 944        u16 qmap_stride, queues_per_pool, vf_q_idx, qmap_idx;
 945        u32 tdbal = 0, tdbah = 0, txqctl, rxqctl;
 946        u16 vf_v_idx, vf_v_limit, vf_vid;
 947        u8 vf_idx = vf_info->vf_idx;
 948        int i;
 949
 950        /* verify vf is in range */
 951        if (vf_idx >= hw->iov.num_vfs)
 952                return FM10K_ERR_PARAM;
 953
 954        /* clear event notification of VF FLR */
 955        fm10k_write_reg(hw, FM10K_PFVFLREC(vf_idx / 32), 1 << (vf_idx % 32));
 956
 957        /* force timeout and then disconnect the mailbox */
 958        vf_info->mbx.timeout = 0;
 959        if (vf_info->mbx.ops.disconnect)
 960                vf_info->mbx.ops.disconnect(hw, &vf_info->mbx);
 961
 962        /* determine vector offset and count */
 963        vf_v_idx = fm10k_vf_vector_index(hw, vf_idx);
 964        vf_v_limit = vf_v_idx + fm10k_vectors_per_pool(hw);
 965
 966        /* determine qmap offsets and counts */
 967        qmap_stride = (hw->iov.num_vfs > 8) ? 32 : 256;
 968        queues_per_pool = fm10k_queues_per_pool(hw);
 969        qmap_idx = qmap_stride * vf_idx;
 970
 971        /* make all the queues inaccessible to the VF */
 972        for (i = qmap_idx; i < (qmap_idx + qmap_stride); i++) {
 973                fm10k_write_reg(hw, FM10K_TQMAP(i), 0);
 974                fm10k_write_reg(hw, FM10K_RQMAP(i), 0);
 975        }
 976
 977        /* calculate starting index for queues */
 978        vf_q_idx = fm10k_vf_queue_index(hw, vf_idx);
 979
 980        /* determine correct default VLAN ID */
 981        if (vf_info->pf_vid)
 982                vf_vid = vf_info->pf_vid;
 983        else
 984                vf_vid = vf_info->sw_vid;
 985
 986        /* configure Queue control register */
 987        txqctl = ((u32)vf_vid << FM10K_TXQCTL_VID_SHIFT) |
 988                 (vf_idx << FM10K_TXQCTL_TC_SHIFT) |
 989                 FM10K_TXQCTL_VF | vf_idx;
 990        rxqctl = FM10K_RXQCTL_VF | (vf_idx << FM10K_RXQCTL_VF_SHIFT);
 991
 992        /* stop further DMA and reset queue ownership back to VF */
 993        for (i = vf_q_idx; i < (queues_per_pool + vf_q_idx); i++) {
 994                fm10k_write_reg(hw, FM10K_TXDCTL(i), 0);
 995                fm10k_write_reg(hw, FM10K_TXQCTL(i), txqctl);
 996                fm10k_write_reg(hw, FM10K_RXDCTL(i),
 997                                FM10K_RXDCTL_WRITE_BACK_MIN_DELAY |
 998                                FM10K_RXDCTL_DROP_ON_EMPTY);
 999                fm10k_write_reg(hw, FM10K_RXQCTL(i), rxqctl);
1000        }
1001
1002        /* reset TC with -1 credits and no quanta to prevent transmit */
1003        fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(vf_idx), 0);
1004        fm10k_write_reg(hw, FM10K_TC_RATE(vf_idx), 0);
1005        fm10k_write_reg(hw, FM10K_TC_CREDIT(vf_idx),
1006                        FM10K_TC_CREDIT_CREDIT_MASK);
1007
1008        /* update our first entry in the table based on previous VF */
1009        if (!vf_idx)
1010                hw->mac.ops.update_int_moderator(hw);
1011        else
1012                hw->iov.ops.assign_int_moderator(hw, vf_idx - 1);
1013
1014        /* reset linked list so it now includes our active vectors */
1015        if (vf_idx == (hw->iov.num_vfs - 1))
1016                fm10k_write_reg(hw, FM10K_ITR2(0), vf_v_idx);
1017        else
1018                fm10k_write_reg(hw, FM10K_ITR2(vf_v_limit), vf_v_idx);
1019
1020        /* link remaining vectors so that next points to previous */
1021        for (vf_v_idx++; vf_v_idx < vf_v_limit; vf_v_idx++)
1022                fm10k_write_reg(hw, FM10K_ITR2(vf_v_idx), vf_v_idx - 1);
1023
1024        /* zero out MBMEM, VLAN_TABLE, RETA, RSSRK, and MRQC registers */
1025        for (i = FM10K_VFMBMEM_LEN; i--;)
1026                fm10k_write_reg(hw, FM10K_MBMEM_VF(vf_idx, i), 0);
1027        for (i = FM10K_VLAN_TABLE_SIZE; i--;)
1028                fm10k_write_reg(hw, FM10K_VLAN_TABLE(vf_info->vsi, i), 0);
1029        for (i = FM10K_RETA_SIZE; i--;)
1030                fm10k_write_reg(hw, FM10K_RETA(vf_info->vsi, i), 0);
1031        for (i = FM10K_RSSRK_SIZE; i--;)
1032                fm10k_write_reg(hw, FM10K_RSSRK(vf_info->vsi, i), 0);
1033        fm10k_write_reg(hw, FM10K_MRQC(vf_info->vsi), 0);
1034
1035        /* Update base address registers to contain MAC address */
1036        if (is_valid_ether_addr(vf_info->mac)) {
1037                tdbal = (((u32)vf_info->mac[3]) << 24) |
1038                        (((u32)vf_info->mac[4]) << 16) |
1039                        (((u32)vf_info->mac[5]) << 8);
1040                tdbah = (((u32)0xFF)       << 24) |
1041                        (((u32)vf_info->mac[0]) << 16) |
1042                        (((u32)vf_info->mac[1]) << 8) |
1043                        ((u32)vf_info->mac[2]);
1044        }
1045
1046        /* map queue pairs back to VF from last to first */
1047        for (i = queues_per_pool; i--;) {
1048                fm10k_write_reg(hw, FM10K_TDBAL(vf_q_idx + i), tdbal);
1049                fm10k_write_reg(hw, FM10K_TDBAH(vf_q_idx + i), tdbah);
1050                /* See definition of FM10K_TDLEN_ITR_SCALE_SHIFT for an
1051                 * explanation of how TDLEN is used.
1052                 */
1053                fm10k_write_reg(hw, FM10K_TDLEN(vf_q_idx + i),
1054                                hw->mac.itr_scale <<
1055                                FM10K_TDLEN_ITR_SCALE_SHIFT);
1056                fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx + i), vf_q_idx + i);
1057                fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx + i), vf_q_idx + i);
1058        }
1059
1060        /* repeat the first ring for all the remaining VF rings */
1061        for (i = queues_per_pool; i < qmap_stride; i++) {
1062                fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx + i), vf_q_idx);
1063                fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx + i), vf_q_idx);
1064        }
1065
1066        return 0;
1067}
1068
1069/**
1070 *  fm10k_iov_set_lport_pf - Assign and enable a logical port for a given VF
1071 *  @hw: pointer to hardware structure
1072 *  @vf_info: pointer to VF information structure
1073 *  @lport_idx: Logical port offset from the hardware glort
1074 *  @flags: Set of capability flags to extend port beyond basic functionality
1075 *
1076 *  This function allows enabling a VF port by assigning it a GLORT and
1077 *  setting the flags so that it can enable an Rx mode.
1078 **/
1079static s32 fm10k_iov_set_lport_pf(struct fm10k_hw *hw,
1080                                  struct fm10k_vf_info *vf_info,
1081                                  u16 lport_idx, u8 flags)
1082{
1083        u16 glort = (hw->mac.dglort_map + lport_idx) & FM10K_DGLORTMAP_NONE;
1084
1085        /* if glort is not valid return error */
1086        if (!fm10k_glort_valid_pf(hw, glort))
1087                return FM10K_ERR_PARAM;
1088
1089        vf_info->vf_flags = flags | FM10K_VF_FLAG_NONE_CAPABLE;
1090        vf_info->glort = glort;
1091
1092        return 0;
1093}
1094
1095/**
1096 *  fm10k_iov_reset_lport_pf - Disable a logical port for a given VF
1097 *  @hw: pointer to hardware structure
1098 *  @vf_info: pointer to VF information structure
1099 *
1100 *  This function disables a VF port by stripping it of a GLORT and
1101 *  setting the flags so that it cannot enable any Rx mode.
1102 **/
1103static void fm10k_iov_reset_lport_pf(struct fm10k_hw *hw,
1104                                     struct fm10k_vf_info *vf_info)
1105{
1106        u32 msg[1];
1107
1108        /* need to disable the port if it is already enabled */
1109        if (FM10K_VF_FLAG_ENABLED(vf_info)) {
1110                /* notify switch that this port has been disabled */
1111                fm10k_update_lport_state_pf(hw, vf_info->glort, 1, false);
1112
1113                /* generate port state response to notify VF it is not ready */
1114                fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_LPORT_STATE);
1115                vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg);
1116        }
1117
1118        /* clear flags and glort if it exists */
1119        vf_info->vf_flags = 0;
1120        vf_info->glort = 0;
1121}
1122
1123/**
1124 *  fm10k_iov_update_stats_pf - Updates hardware related statistics for VFs
1125 *  @hw: pointer to hardware structure
1126 *  @q: stats for all queues of a VF
1127 *  @vf_idx: index of VF
1128 *
1129 *  This function collects queue stats for VFs.
1130 **/
1131static void fm10k_iov_update_stats_pf(struct fm10k_hw *hw,
1132                                      struct fm10k_hw_stats_q *q,
1133                                      u16 vf_idx)
1134{
1135        u32 idx, qpp;
1136
1137        /* get stats for all of the queues */
1138        qpp = fm10k_queues_per_pool(hw);
1139        idx = fm10k_vf_queue_index(hw, vf_idx);
1140        fm10k_update_hw_stats_q(hw, q, idx, qpp);
1141}
1142
1143static s32 fm10k_iov_report_timestamp_pf(struct fm10k_hw *hw,
1144                                         struct fm10k_vf_info *vf_info,
1145                                         u64 timestamp)
1146{
1147        u32 msg[4];
1148
1149        /* generate port state response to notify VF it is not ready */
1150        fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_1588);
1151        fm10k_tlv_attr_put_u64(msg, FM10K_1588_MSG_TIMESTAMP, timestamp);
1152
1153        return vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg);
1154}
1155
1156/**
1157 *  fm10k_iov_msg_msix_pf - Message handler for MSI-X request from VF
1158 *  @hw: Pointer to hardware structure
1159 *  @results: Pointer array to message, results[0] is pointer to message
1160 *  @mbx: Pointer to mailbox information structure
1161 *
1162 *  This function is a default handler for MSI-X requests from the VF.  The
1163 *  assumption is that in this case it is acceptable to just directly
1164 *  hand off the message from the VF to the underlying shared code.
1165 **/
1166s32 fm10k_iov_msg_msix_pf(struct fm10k_hw *hw, u32 **results,
1167                          struct fm10k_mbx_info *mbx)
1168{
1169        struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
1170        u8 vf_idx = vf_info->vf_idx;
1171
1172        return hw->iov.ops.assign_int_moderator(hw, vf_idx);
1173}
1174
1175/**
1176 * fm10k_iov_select_vid - Select correct default VLAN ID
1177 * @hw: Pointer to hardware structure
1178 * @vid: VLAN ID to correct
1179 *
1180 * Will report an error if the VLAN ID is out of range. For VID = 0, it will
1181 * return either the pf_vid or sw_vid depending on which one is set.
1182 */
1183static s32 fm10k_iov_select_vid(struct fm10k_vf_info *vf_info, u16 vid)
1184{
1185        if (!vid)
1186                return vf_info->pf_vid ? vf_info->pf_vid : vf_info->sw_vid;
1187        else if (vf_info->pf_vid && vid != vf_info->pf_vid)
1188                return FM10K_ERR_PARAM;
1189        else
1190                return vid;
1191}
1192
1193/**
1194 *  fm10k_iov_msg_mac_vlan_pf - Message handler for MAC/VLAN request from VF
1195 *  @hw: Pointer to hardware structure
1196 *  @results: Pointer array to message, results[0] is pointer to message
1197 *  @mbx: Pointer to mailbox information structure
1198 *
1199 *  This function is a default handler for MAC/VLAN requests from the VF.
1200 *  The assumption is that in this case it is acceptable to just directly
1201 *  hand off the message from the VF to the underlying shared code.
1202 **/
1203s32 fm10k_iov_msg_mac_vlan_pf(struct fm10k_hw *hw, u32 **results,
1204                              struct fm10k_mbx_info *mbx)
1205{
1206        struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
1207        u8 mac[ETH_ALEN];
1208        u32 *result;
1209        int err = 0;
1210        bool set;
1211        u16 vlan;
1212        u32 vid;
1213
1214        /* we shouldn't be updating rules on a disabled interface */
1215        if (!FM10K_VF_FLAG_ENABLED(vf_info))
1216                err = FM10K_ERR_PARAM;
1217
1218        if (!err && !!results[FM10K_MAC_VLAN_MSG_VLAN]) {
1219                result = results[FM10K_MAC_VLAN_MSG_VLAN];
1220
1221                /* record VLAN id requested */
1222                err = fm10k_tlv_attr_get_u32(result, &vid);
1223                if (err)
1224                        return err;
1225
1226                set = !(vid & FM10K_VLAN_CLEAR);
1227                vid &= ~FM10K_VLAN_CLEAR;
1228
1229                /* if the length field has been set, this is a multi-bit
1230                 * update request. For multi-bit requests, simply disallow
1231                 * them when the pf_vid has been set. In this case, the PF
1232                 * should have already cleared the VLAN_TABLE, and if we
1233                 * allowed them, it could allow a rogue VF to receive traffic
1234                 * on a VLAN it was not assigned. In the single-bit case, we
1235                 * need to modify requests for VLAN 0 to use the default PF or
1236                 * SW vid when assigned.
1237                 */
1238
1239                if (vid >> 16) {
1240                        /* prevent multi-bit requests when PF has
1241                         * administratively set the VLAN for this VF
1242                         */
1243                        if (vf_info->pf_vid)
1244                                return FM10K_ERR_PARAM;
1245                } else {
1246                        err = fm10k_iov_select_vid(vf_info, (u16)vid);
1247                        if (err < 0)
1248                                return err;
1249
1250                        vid = err;
1251                }
1252
1253                /* update VSI info for VF in regards to VLAN table */
1254                err = hw->mac.ops.update_vlan(hw, vid, vf_info->vsi, set);
1255        }
1256
1257        if (!err && !!results[FM10K_MAC_VLAN_MSG_MAC]) {
1258                result = results[FM10K_MAC_VLAN_MSG_MAC];
1259
1260                /* record unicast MAC address requested */
1261                err = fm10k_tlv_attr_get_mac_vlan(result, mac, &vlan);
1262                if (err)
1263                        return err;
1264
1265                /* block attempts to set MAC for a locked device */
1266                if (is_valid_ether_addr(vf_info->mac) &&
1267                    !ether_addr_equal(mac, vf_info->mac))
1268                        return FM10K_ERR_PARAM;
1269
1270                set = !(vlan & FM10K_VLAN_CLEAR);
1271                vlan &= ~FM10K_VLAN_CLEAR;
1272
1273                err = fm10k_iov_select_vid(vf_info, vlan);
1274                if (err < 0)
1275                        return err;
1276
1277                vlan = (u16)err;
1278
1279                /* notify switch of request for new unicast address */
1280                err = hw->mac.ops.update_uc_addr(hw, vf_info->glort,
1281                                                 mac, vlan, set, 0);
1282        }
1283
1284        if (!err && !!results[FM10K_MAC_VLAN_MSG_MULTICAST]) {
1285                result = results[FM10K_MAC_VLAN_MSG_MULTICAST];
1286
1287                /* record multicast MAC address requested */
1288                err = fm10k_tlv_attr_get_mac_vlan(result, mac, &vlan);
1289                if (err)
1290                        return err;
1291
1292                /* verify that the VF is allowed to request multicast */
1293                if (!(vf_info->vf_flags & FM10K_VF_FLAG_MULTI_ENABLED))
1294                        return FM10K_ERR_PARAM;
1295
1296                set = !(vlan & FM10K_VLAN_CLEAR);
1297                vlan &= ~FM10K_VLAN_CLEAR;
1298
1299                err = fm10k_iov_select_vid(vf_info, vlan);
1300                if (err < 0)
1301                        return err;
1302
1303                vlan = (u16)err;
1304
1305                /* notify switch of request for new multicast address */
1306                err = hw->mac.ops.update_mc_addr(hw, vf_info->glort,
1307                                                 mac, vlan, set);
1308        }
1309
1310        return err;
1311}
1312
1313/**
1314 *  fm10k_iov_supported_xcast_mode_pf - Determine best match for xcast mode
1315 *  @vf_info: VF info structure containing capability flags
1316 *  @mode: Requested xcast mode
1317 *
1318 *  This function outputs the mode that most closely matches the requested
1319 *  mode.  If not modes match it will request we disable the port
1320 **/
1321static u8 fm10k_iov_supported_xcast_mode_pf(struct fm10k_vf_info *vf_info,
1322                                            u8 mode)
1323{
1324        u8 vf_flags = vf_info->vf_flags;
1325
1326        /* match up mode to capabilities as best as possible */
1327        switch (mode) {
1328        case FM10K_XCAST_MODE_PROMISC:
1329                if (vf_flags & FM10K_VF_FLAG_PROMISC_CAPABLE)
1330                        return FM10K_XCAST_MODE_PROMISC;
1331                /* fallthough */
1332        case FM10K_XCAST_MODE_ALLMULTI:
1333                if (vf_flags & FM10K_VF_FLAG_ALLMULTI_CAPABLE)
1334                        return FM10K_XCAST_MODE_ALLMULTI;
1335                /* fallthough */
1336        case FM10K_XCAST_MODE_MULTI:
1337                if (vf_flags & FM10K_VF_FLAG_MULTI_CAPABLE)
1338                        return FM10K_XCAST_MODE_MULTI;
1339                /* fallthough */
1340        case FM10K_XCAST_MODE_NONE:
1341                if (vf_flags & FM10K_VF_FLAG_NONE_CAPABLE)
1342                        return FM10K_XCAST_MODE_NONE;
1343                /* fallthough */
1344        default:
1345                break;
1346        }
1347
1348        /* disable interface as it should not be able to request any */
1349        return FM10K_XCAST_MODE_DISABLE;
1350}
1351
1352/**
1353 *  fm10k_iov_msg_lport_state_pf - Message handler for port state requests
1354 *  @hw: Pointer to hardware structure
1355 *  @results: Pointer array to message, results[0] is pointer to message
1356 *  @mbx: Pointer to mailbox information structure
1357 *
1358 *  This function is a default handler for port state requests.  The port
1359 *  state requests for now are basic and consist of enabling or disabling
1360 *  the port.
1361 **/
1362s32 fm10k_iov_msg_lport_state_pf(struct fm10k_hw *hw, u32 **results,
1363                                 struct fm10k_mbx_info *mbx)
1364{
1365        struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
1366        u32 *result;
1367        s32 err = 0;
1368        u32 msg[2];
1369        u8 mode = 0;
1370
1371        /* verify VF is allowed to enable even minimal mode */
1372        if (!(vf_info->vf_flags & FM10K_VF_FLAG_NONE_CAPABLE))
1373                return FM10K_ERR_PARAM;
1374
1375        if (!!results[FM10K_LPORT_STATE_MSG_XCAST_MODE]) {
1376                result = results[FM10K_LPORT_STATE_MSG_XCAST_MODE];
1377
1378                /* XCAST mode update requested */
1379                err = fm10k_tlv_attr_get_u8(result, &mode);
1380                if (err)
1381                        return FM10K_ERR_PARAM;
1382
1383                /* prep for possible demotion depending on capabilities */
1384                mode = fm10k_iov_supported_xcast_mode_pf(vf_info, mode);
1385
1386                /* if mode is not currently enabled, enable it */
1387                if (!(FM10K_VF_FLAG_ENABLED(vf_info) & (1 << mode)))
1388                        fm10k_update_xcast_mode_pf(hw, vf_info->glort, mode);
1389
1390                /* swap mode back to a bit flag */
1391                mode = FM10K_VF_FLAG_SET_MODE(mode);
1392        } else if (!results[FM10K_LPORT_STATE_MSG_DISABLE]) {
1393                /* need to disable the port if it is already enabled */
1394                if (FM10K_VF_FLAG_ENABLED(vf_info))
1395                        err = fm10k_update_lport_state_pf(hw, vf_info->glort,
1396                                                          1, false);
1397
1398                /* we need to clear VF_FLAG_ENABLED flags in order to ensure
1399                 * that we actually re-enable the LPORT state below. Note that
1400                 * this has no impact if the VF is already disabled, as the
1401                 * flags are already cleared.
1402                 */
1403                if (!err)
1404                        vf_info->vf_flags = FM10K_VF_FLAG_CAPABLE(vf_info);
1405
1406                /* when enabling the port we should reset the rate limiters */
1407                hw->iov.ops.configure_tc(hw, vf_info->vf_idx, vf_info->rate);
1408
1409                /* set mode for minimal functionality */
1410                mode = FM10K_VF_FLAG_SET_MODE_NONE;
1411
1412                /* generate port state response to notify VF it is ready */
1413                fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_LPORT_STATE);
1414                fm10k_tlv_attr_put_bool(msg, FM10K_LPORT_STATE_MSG_READY);
1415                mbx->ops.enqueue_tx(hw, mbx, msg);
1416        }
1417
1418        /* if enable state toggled note the update */
1419        if (!err && (!FM10K_VF_FLAG_ENABLED(vf_info) != !mode))
1420                err = fm10k_update_lport_state_pf(hw, vf_info->glort, 1,
1421                                                  !!mode);
1422
1423        /* if state change succeeded, then update our stored state */
1424        mode |= FM10K_VF_FLAG_CAPABLE(vf_info);
1425        if (!err)
1426                vf_info->vf_flags = mode;
1427
1428        return err;
1429}
1430
1431/**
1432 *  fm10k_update_stats_hw_pf - Updates hardware related statistics of PF
1433 *  @hw: pointer to hardware structure
1434 *  @stats: pointer to the stats structure to update
1435 *
1436 *  This function collects and aggregates global and per queue hardware
1437 *  statistics.
1438 **/
1439static void fm10k_update_hw_stats_pf(struct fm10k_hw *hw,
1440                                     struct fm10k_hw_stats *stats)
1441{
1442        u32 timeout, ur, ca, um, xec, vlan_drop, loopback_drop, nodesc_drop;
1443        u32 id, id_prev;
1444
1445        /* Use Tx queue 0 as a canary to detect a reset */
1446        id = fm10k_read_reg(hw, FM10K_TXQCTL(0));
1447
1448        /* Read Global Statistics */
1449        do {
1450                timeout = fm10k_read_hw_stats_32b(hw, FM10K_STATS_TIMEOUT,
1451                                                  &stats->timeout);
1452                ur = fm10k_read_hw_stats_32b(hw, FM10K_STATS_UR, &stats->ur);
1453                ca = fm10k_read_hw_stats_32b(hw, FM10K_STATS_CA, &stats->ca);
1454                um = fm10k_read_hw_stats_32b(hw, FM10K_STATS_UM, &stats->um);
1455                xec = fm10k_read_hw_stats_32b(hw, FM10K_STATS_XEC, &stats->xec);
1456                vlan_drop = fm10k_read_hw_stats_32b(hw, FM10K_STATS_VLAN_DROP,
1457                                                    &stats->vlan_drop);
1458                loopback_drop =
1459                        fm10k_read_hw_stats_32b(hw,
1460                                                FM10K_STATS_LOOPBACK_DROP,
1461                                                &stats->loopback_drop);
1462                nodesc_drop = fm10k_read_hw_stats_32b(hw,
1463                                                      FM10K_STATS_NODESC_DROP,
1464                                                      &stats->nodesc_drop);
1465
1466                /* if value has not changed then we have consistent data */
1467                id_prev = id;
1468                id = fm10k_read_reg(hw, FM10K_TXQCTL(0));
1469        } while ((id ^ id_prev) & FM10K_TXQCTL_ID_MASK);
1470
1471        /* drop non-ID bits and set VALID ID bit */
1472        id &= FM10K_TXQCTL_ID_MASK;
1473        id |= FM10K_STAT_VALID;
1474
1475        /* Update Global Statistics */
1476        if (stats->stats_idx == id) {
1477                stats->timeout.count += timeout;
1478                stats->ur.count += ur;
1479                stats->ca.count += ca;
1480                stats->um.count += um;
1481                stats->xec.count += xec;
1482                stats->vlan_drop.count += vlan_drop;
1483                stats->loopback_drop.count += loopback_drop;
1484                stats->nodesc_drop.count += nodesc_drop;
1485        }
1486
1487        /* Update bases and record current PF id */
1488        fm10k_update_hw_base_32b(&stats->timeout, timeout);
1489        fm10k_update_hw_base_32b(&stats->ur, ur);
1490        fm10k_update_hw_base_32b(&stats->ca, ca);
1491        fm10k_update_hw_base_32b(&stats->um, um);
1492        fm10k_update_hw_base_32b(&stats->xec, xec);
1493        fm10k_update_hw_base_32b(&stats->vlan_drop, vlan_drop);
1494        fm10k_update_hw_base_32b(&stats->loopback_drop, loopback_drop);
1495        fm10k_update_hw_base_32b(&stats->nodesc_drop, nodesc_drop);
1496        stats->stats_idx = id;
1497
1498        /* Update Queue Statistics */
1499        fm10k_update_hw_stats_q(hw, stats->q, 0, hw->mac.max_queues);
1500}
1501
1502/**
1503 *  fm10k_rebind_hw_stats_pf - Resets base for hardware statistics of PF
1504 *  @hw: pointer to hardware structure
1505 *  @stats: pointer to the stats structure to update
1506 *
1507 *  This function resets the base for global and per queue hardware
1508 *  statistics.
1509 **/
1510static void fm10k_rebind_hw_stats_pf(struct fm10k_hw *hw,
1511                                     struct fm10k_hw_stats *stats)
1512{
1513        /* Unbind Global Statistics */
1514        fm10k_unbind_hw_stats_32b(&stats->timeout);
1515        fm10k_unbind_hw_stats_32b(&stats->ur);
1516        fm10k_unbind_hw_stats_32b(&stats->ca);
1517        fm10k_unbind_hw_stats_32b(&stats->um);
1518        fm10k_unbind_hw_stats_32b(&stats->xec);
1519        fm10k_unbind_hw_stats_32b(&stats->vlan_drop);
1520        fm10k_unbind_hw_stats_32b(&stats->loopback_drop);
1521        fm10k_unbind_hw_stats_32b(&stats->nodesc_drop);
1522
1523        /* Unbind Queue Statistics */
1524        fm10k_unbind_hw_stats_q(stats->q, 0, hw->mac.max_queues);
1525
1526        /* Reinitialize bases for all stats */
1527        fm10k_update_hw_stats_pf(hw, stats);
1528}
1529
1530/**
1531 *  fm10k_set_dma_mask_pf - Configures PhyAddrSpace to limit DMA to system
1532 *  @hw: pointer to hardware structure
1533 *  @dma_mask: 64 bit DMA mask required for platform
1534 *
1535 *  This function sets the PHYADDR.PhyAddrSpace bits for the endpoint in order
1536 *  to limit the access to memory beyond what is physically in the system.
1537 **/
1538static void fm10k_set_dma_mask_pf(struct fm10k_hw *hw, u64 dma_mask)
1539{
1540        /* we need to write the upper 32 bits of DMA mask to PhyAddrSpace */
1541        u32 phyaddr = (u32)(dma_mask >> 32);
1542
1543        fm10k_write_reg(hw, FM10K_PHYADDR, phyaddr);
1544}
1545
1546/**
1547 *  fm10k_get_fault_pf - Record a fault in one of the interface units
1548 *  @hw: pointer to hardware structure
1549 *  @type: pointer to fault type register offset
1550 *  @fault: pointer to memory location to record the fault
1551 *
1552 *  Record the fault register contents to the fault data structure and
1553 *  clear the entry from the register.
1554 *
1555 *  Returns ERR_PARAM if invalid register is specified or no error is present.
1556 **/
1557static s32 fm10k_get_fault_pf(struct fm10k_hw *hw, int type,
1558                              struct fm10k_fault *fault)
1559{
1560        u32 func;
1561
1562        /* verify the fault register is in range and is aligned */
1563        switch (type) {
1564        case FM10K_PCA_FAULT:
1565        case FM10K_THI_FAULT:
1566        case FM10K_FUM_FAULT:
1567                break;
1568        default:
1569                return FM10K_ERR_PARAM;
1570        }
1571
1572        /* only service faults that are valid */
1573        func = fm10k_read_reg(hw, type + FM10K_FAULT_FUNC);
1574        if (!(func & FM10K_FAULT_FUNC_VALID))
1575                return FM10K_ERR_PARAM;
1576
1577        /* read remaining fields */
1578        fault->address = fm10k_read_reg(hw, type + FM10K_FAULT_ADDR_HI);
1579        fault->address <<= 32;
1580        fault->address = fm10k_read_reg(hw, type + FM10K_FAULT_ADDR_LO);
1581        fault->specinfo = fm10k_read_reg(hw, type + FM10K_FAULT_SPECINFO);
1582
1583        /* clear valid bit to allow for next error */
1584        fm10k_write_reg(hw, type + FM10K_FAULT_FUNC, FM10K_FAULT_FUNC_VALID);
1585
1586        /* Record which function triggered the error */
1587        if (func & FM10K_FAULT_FUNC_PF)
1588                fault->func = 0;
1589        else
1590                fault->func = 1 + ((func & FM10K_FAULT_FUNC_VF_MASK) >>
1591                                   FM10K_FAULT_FUNC_VF_SHIFT);
1592
1593        /* record fault type */
1594        fault->type = func & FM10K_FAULT_FUNC_TYPE_MASK;
1595
1596        return 0;
1597}
1598
1599/**
1600 *  fm10k_request_lport_map_pf - Request LPORT map from the switch API
1601 *  @hw: pointer to hardware structure
1602 *
1603 **/
1604static s32 fm10k_request_lport_map_pf(struct fm10k_hw *hw)
1605{
1606        struct fm10k_mbx_info *mbx = &hw->mbx;
1607        u32 msg[1];
1608
1609        /* issue request asking for LPORT map */
1610        fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_LPORT_MAP);
1611
1612        /* load onto outgoing mailbox */
1613        return mbx->ops.enqueue_tx(hw, mbx, msg);
1614}
1615
1616/**
1617 *  fm10k_get_host_state_pf - Returns the state of the switch and mailbox
1618 *  @hw: pointer to hardware structure
1619 *  @switch_ready: pointer to boolean value that will record switch state
1620 *
1621 *  This funciton will check the DMA_CTRL2 register and mailbox in order
1622 *  to determine if the switch is ready for the PF to begin requesting
1623 *  addresses and mapping traffic to the local interface.
1624 **/
1625static s32 fm10k_get_host_state_pf(struct fm10k_hw *hw, bool *switch_ready)
1626{
1627        s32 ret_val = 0;
1628        u32 dma_ctrl2;
1629
1630        /* verify the switch is ready for interaction */
1631        dma_ctrl2 = fm10k_read_reg(hw, FM10K_DMA_CTRL2);
1632        if (!(dma_ctrl2 & FM10K_DMA_CTRL2_SWITCH_READY))
1633                goto out;
1634
1635        /* retrieve generic host state info */
1636        ret_val = fm10k_get_host_state_generic(hw, switch_ready);
1637        if (ret_val)
1638                goto out;
1639
1640        /* interface cannot receive traffic without logical ports */
1641        if (hw->mac.dglort_map == FM10K_DGLORTMAP_NONE)
1642                ret_val = fm10k_request_lport_map_pf(hw);
1643
1644out:
1645        return ret_val;
1646}
1647
1648/* This structure defines the attibutes to be parsed below */
1649const struct fm10k_tlv_attr fm10k_lport_map_msg_attr[] = {
1650        FM10K_TLV_ATTR_U32(FM10K_PF_ATTR_ID_LPORT_MAP),
1651        FM10K_TLV_ATTR_LAST
1652};
1653
1654/**
1655 *  fm10k_msg_lport_map_pf - Message handler for lport_map message from SM
1656 *  @hw: Pointer to hardware structure
1657 *  @results: pointer array containing parsed data
1658 *  @mbx: Pointer to mailbox information structure
1659 *
1660 *  This handler configures the lport mapping based on the reply from the
1661 *  switch API.
1662 **/
1663s32 fm10k_msg_lport_map_pf(struct fm10k_hw *hw, u32 **results,
1664                           struct fm10k_mbx_info *mbx)
1665{
1666        u16 glort, mask;
1667        u32 dglort_map;
1668        s32 err;
1669
1670        err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_LPORT_MAP],
1671                                     &dglort_map);
1672        if (err)
1673                return err;
1674
1675        /* extract values out of the header */
1676        glort = FM10K_MSG_HDR_FIELD_GET(dglort_map, LPORT_MAP_GLORT);
1677        mask = FM10K_MSG_HDR_FIELD_GET(dglort_map, LPORT_MAP_MASK);
1678
1679        /* verify mask is set and none of the masked bits in glort are set */
1680        if (!mask || (glort & ~mask))
1681                return FM10K_ERR_PARAM;
1682
1683        /* verify the mask is contiguous, and that it is 1's followed by 0's */
1684        if (((~(mask - 1) & mask) + mask) & FM10K_DGLORTMAP_NONE)
1685                return FM10K_ERR_PARAM;
1686
1687        /* record the glort, mask, and port count */
1688        hw->mac.dglort_map = dglort_map;
1689
1690        return 0;
1691}
1692
1693const struct fm10k_tlv_attr fm10k_update_pvid_msg_attr[] = {
1694        FM10K_TLV_ATTR_U32(FM10K_PF_ATTR_ID_UPDATE_PVID),
1695        FM10K_TLV_ATTR_LAST
1696};
1697
1698/**
1699 *  fm10k_msg_update_pvid_pf - Message handler for port VLAN message from SM
1700 *  @hw: Pointer to hardware structure
1701 *  @results: pointer array containing parsed data
1702 *  @mbx: Pointer to mailbox information structure
1703 *
1704 *  This handler configures the default VLAN for the PF
1705 **/
1706static s32 fm10k_msg_update_pvid_pf(struct fm10k_hw *hw, u32 **results,
1707                                    struct fm10k_mbx_info *mbx)
1708{
1709        u16 glort, pvid;
1710        u32 pvid_update;
1711        s32 err;
1712
1713        err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_UPDATE_PVID],
1714                                     &pvid_update);
1715        if (err)
1716                return err;
1717
1718        /* extract values from the pvid update */
1719        glort = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_GLORT);
1720        pvid = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_PVID);
1721
1722        /* if glort is not valid return error */
1723        if (!fm10k_glort_valid_pf(hw, glort))
1724                return FM10K_ERR_PARAM;
1725
1726        /* verify VLAN ID is valid */
1727        if (pvid >= FM10K_VLAN_TABLE_VID_MAX)
1728                return FM10K_ERR_PARAM;
1729
1730        /* record the port VLAN ID value */
1731        hw->mac.default_vid = pvid;
1732
1733        return 0;
1734}
1735
1736/**
1737 *  fm10k_record_global_table_data - Move global table data to swapi table info
1738 *  @from: pointer to source table data structure
1739 *  @to: pointer to destination table info structure
1740 *
1741 *  This function is will copy table_data to the table_info contained in
1742 *  the hw struct.
1743 **/
1744static void fm10k_record_global_table_data(struct fm10k_global_table_data *from,
1745                                           struct fm10k_swapi_table_info *to)
1746{
1747        /* convert from le32 struct to CPU byte ordered values */
1748        to->used = le32_to_cpu(from->used);
1749        to->avail = le32_to_cpu(from->avail);
1750}
1751
1752const struct fm10k_tlv_attr fm10k_err_msg_attr[] = {
1753        FM10K_TLV_ATTR_LE_STRUCT(FM10K_PF_ATTR_ID_ERR,
1754                                 sizeof(struct fm10k_swapi_error)),
1755        FM10K_TLV_ATTR_LAST
1756};
1757
1758/**
1759 *  fm10k_msg_err_pf - Message handler for error reply
1760 *  @hw: Pointer to hardware structure
1761 *  @results: pointer array containing parsed data
1762 *  @mbx: Pointer to mailbox information structure
1763 *
1764 *  This handler will capture the data for any error replies to previous
1765 *  messages that the PF has sent.
1766 **/
1767s32 fm10k_msg_err_pf(struct fm10k_hw *hw, u32 **results,
1768                     struct fm10k_mbx_info *mbx)
1769{
1770        struct fm10k_swapi_error err_msg;
1771        s32 err;
1772
1773        /* extract structure from message */
1774        err = fm10k_tlv_attr_get_le_struct(results[FM10K_PF_ATTR_ID_ERR],
1775                                           &err_msg, sizeof(err_msg));
1776        if (err)
1777                return err;
1778
1779        /* record table status */
1780        fm10k_record_global_table_data(&err_msg.mac, &hw->swapi.mac);
1781        fm10k_record_global_table_data(&err_msg.nexthop, &hw->swapi.nexthop);
1782        fm10k_record_global_table_data(&err_msg.ffu, &hw->swapi.ffu);
1783
1784        /* record SW API status value */
1785        hw->swapi.status = le32_to_cpu(err_msg.status);
1786
1787        return 0;
1788}
1789
1790const struct fm10k_tlv_attr fm10k_1588_timestamp_msg_attr[] = {
1791        FM10K_TLV_ATTR_LE_STRUCT(FM10K_PF_ATTR_ID_1588_TIMESTAMP,
1792                                 sizeof(struct fm10k_swapi_1588_timestamp)),
1793        FM10K_TLV_ATTR_LAST
1794};
1795
1796/* currently there is no shared 1588 timestamp handler */
1797
1798/**
1799 *  fm10k_adjust_systime_pf - Adjust systime frequency
1800 *  @hw: pointer to hardware structure
1801 *  @ppb: adjustment rate in parts per billion
1802 *
1803 *  This function will adjust the SYSTIME_CFG register contained in BAR 4
1804 *  if this function is supported for BAR 4 access.  The adjustment amount
1805 *  is based on the parts per billion value provided and adjusted to a
1806 *  value based on parts per 2^48 clock cycles.
1807 *
1808 *  If adjustment is not supported or the requested value is too large
1809 *  we will return an error.
1810 **/
1811static s32 fm10k_adjust_systime_pf(struct fm10k_hw *hw, s32 ppb)
1812{
1813        u64 systime_adjust;
1814
1815        /* if sw_addr is not set we don't have switch register access */
1816        if (!hw->sw_addr)
1817                return ppb ? FM10K_ERR_PARAM : 0;
1818
1819        /* we must convert the value from parts per billion to parts per
1820         * 2^48 cycles.  In addition I have opted to only use the 30 most
1821         * significant bits of the adjustment value as the 8 least
1822         * significant bits are located in another register and represent
1823         * a value significantly less than a part per billion, the result
1824         * of dropping the 8 least significant bits is that the adjustment
1825         * value is effectively multiplied by 2^8 when we write it.
1826         *
1827         * As a result of all this the math for this breaks down as follows:
1828         *      ppb / 10^9 == adjust * 2^8 / 2^48
1829         * If we solve this for adjust, and simplify it comes out as:
1830         *      ppb * 2^31 / 5^9 == adjust
1831         */
1832        systime_adjust = (ppb < 0) ? -ppb : ppb;
1833        systime_adjust <<= 31;
1834        do_div(systime_adjust, 1953125);
1835
1836        /* verify the requested adjustment value is in range */
1837        if (systime_adjust > FM10K_SW_SYSTIME_ADJUST_MASK)
1838                return FM10K_ERR_PARAM;
1839
1840        if (ppb > 0)
1841                systime_adjust |= FM10K_SW_SYSTIME_ADJUST_DIR_POSITIVE;
1842
1843        fm10k_write_sw_reg(hw, FM10K_SW_SYSTIME_ADJUST, (u32)systime_adjust);
1844
1845        return 0;
1846}
1847
1848/**
1849 *  fm10k_read_systime_pf - Reads value of systime registers
1850 *  @hw: pointer to the hardware structure
1851 *
1852 *  Function reads the content of 2 registers, combined to represent a 64 bit
1853 *  value measured in nanosecods.  In order to guarantee the value is accurate
1854 *  we check the 32 most significant bits both before and after reading the
1855 *  32 least significant bits to verify they didn't change as we were reading
1856 *  the registers.
1857 **/
1858static u64 fm10k_read_systime_pf(struct fm10k_hw *hw)
1859{
1860        u32 systime_l, systime_h, systime_tmp;
1861
1862        systime_h = fm10k_read_reg(hw, FM10K_SYSTIME + 1);
1863
1864        do {
1865                systime_tmp = systime_h;
1866                systime_l = fm10k_read_reg(hw, FM10K_SYSTIME);
1867                systime_h = fm10k_read_reg(hw, FM10K_SYSTIME + 1);
1868        } while (systime_tmp != systime_h);
1869
1870        return ((u64)systime_h << 32) | systime_l;
1871}
1872
1873static const struct fm10k_msg_data fm10k_msg_data_pf[] = {
1874        FM10K_PF_MSG_ERR_HANDLER(XCAST_MODES, fm10k_msg_err_pf),
1875        FM10K_PF_MSG_ERR_HANDLER(UPDATE_MAC_FWD_RULE, fm10k_msg_err_pf),
1876        FM10K_PF_MSG_LPORT_MAP_HANDLER(fm10k_msg_lport_map_pf),
1877        FM10K_PF_MSG_ERR_HANDLER(LPORT_CREATE, fm10k_msg_err_pf),
1878        FM10K_PF_MSG_ERR_HANDLER(LPORT_DELETE, fm10k_msg_err_pf),
1879        FM10K_PF_MSG_UPDATE_PVID_HANDLER(fm10k_msg_update_pvid_pf),
1880        FM10K_TLV_MSG_ERROR_HANDLER(fm10k_tlv_msg_error),
1881};
1882
1883static const struct fm10k_mac_ops mac_ops_pf = {
1884        .get_bus_info           = fm10k_get_bus_info_generic,
1885        .reset_hw               = fm10k_reset_hw_pf,
1886        .init_hw                = fm10k_init_hw_pf,
1887        .start_hw               = fm10k_start_hw_generic,
1888        .stop_hw                = fm10k_stop_hw_generic,
1889        .update_vlan            = fm10k_update_vlan_pf,
1890        .read_mac_addr          = fm10k_read_mac_addr_pf,
1891        .update_uc_addr         = fm10k_update_uc_addr_pf,
1892        .update_mc_addr         = fm10k_update_mc_addr_pf,
1893        .update_xcast_mode      = fm10k_update_xcast_mode_pf,
1894        .update_int_moderator   = fm10k_update_int_moderator_pf,
1895        .update_lport_state     = fm10k_update_lport_state_pf,
1896        .update_hw_stats        = fm10k_update_hw_stats_pf,
1897        .rebind_hw_stats        = fm10k_rebind_hw_stats_pf,
1898        .configure_dglort_map   = fm10k_configure_dglort_map_pf,
1899        .set_dma_mask           = fm10k_set_dma_mask_pf,
1900        .get_fault              = fm10k_get_fault_pf,
1901        .get_host_state         = fm10k_get_host_state_pf,
1902        .adjust_systime         = fm10k_adjust_systime_pf,
1903        .read_systime           = fm10k_read_systime_pf,
1904};
1905
1906static const struct fm10k_iov_ops iov_ops_pf = {
1907        .assign_resources               = fm10k_iov_assign_resources_pf,
1908        .configure_tc                   = fm10k_iov_configure_tc_pf,
1909        .assign_int_moderator           = fm10k_iov_assign_int_moderator_pf,
1910        .assign_default_mac_vlan        = fm10k_iov_assign_default_mac_vlan_pf,
1911        .reset_resources                = fm10k_iov_reset_resources_pf,
1912        .set_lport                      = fm10k_iov_set_lport_pf,
1913        .reset_lport                    = fm10k_iov_reset_lport_pf,
1914        .update_stats                   = fm10k_iov_update_stats_pf,
1915        .report_timestamp               = fm10k_iov_report_timestamp_pf,
1916};
1917
1918static s32 fm10k_get_invariants_pf(struct fm10k_hw *hw)
1919{
1920        fm10k_get_invariants_generic(hw);
1921
1922        return fm10k_sm_mbx_init(hw, &hw->mbx, fm10k_msg_data_pf);
1923}
1924
1925const struct fm10k_info fm10k_pf_info = {
1926        .mac            = fm10k_mac_pf,
1927        .get_invariants = fm10k_get_invariants_pf,
1928        .mac_ops        = &mac_ops_pf,
1929        .iov_ops        = &iov_ops_pf,
1930};
1931