linux/drivers/net/ethernet/intel/igbvf/netdev.c
<<
>>
Prefs
   1/*******************************************************************************
   2
   3  Intel(R) 82576 Virtual Function Linux driver
   4  Copyright(c) 2009 - 2012 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, see <http://www.gnu.org/licenses/>.
  17
  18  The full GNU General Public License is included in this distribution in
  19  the file called "COPYING".
  20
  21  Contact Information:
  22  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  23  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  24
  25*******************************************************************************/
  26
  27#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  28
  29#include <linux/module.h>
  30#include <linux/types.h>
  31#include <linux/init.h>
  32#include <linux/pci.h>
  33#include <linux/vmalloc.h>
  34#include <linux/pagemap.h>
  35#include <linux/delay.h>
  36#include <linux/netdevice.h>
  37#include <linux/tcp.h>
  38#include <linux/ipv6.h>
  39#include <linux/slab.h>
  40#include <net/checksum.h>
  41#include <net/ip6_checksum.h>
  42#include <linux/mii.h>
  43#include <linux/ethtool.h>
  44#include <linux/if_vlan.h>
  45#include <linux/prefetch.h>
  46#include <linux/sctp.h>
  47
  48#include "igbvf.h"
  49
  50#define DRV_VERSION "2.0.2-k"
  51char igbvf_driver_name[] = "igbvf";
  52const char igbvf_driver_version[] = DRV_VERSION;
  53static const char igbvf_driver_string[] =
  54                  "Intel(R) Gigabit Virtual Function Network Driver";
  55static const char igbvf_copyright[] =
  56                  "Copyright (c) 2009 - 2012 Intel Corporation.";
  57
  58#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
  59static int debug = -1;
  60module_param(debug, int, 0);
  61MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  62
  63static int igbvf_poll(struct napi_struct *napi, int budget);
  64static void igbvf_reset(struct igbvf_adapter *);
  65static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
  66static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
  67
  68static struct igbvf_info igbvf_vf_info = {
  69        .mac            = e1000_vfadapt,
  70        .flags          = 0,
  71        .pba            = 10,
  72        .init_ops       = e1000_init_function_pointers_vf,
  73};
  74
  75static struct igbvf_info igbvf_i350_vf_info = {
  76        .mac            = e1000_vfadapt_i350,
  77        .flags          = 0,
  78        .pba            = 10,
  79        .init_ops       = e1000_init_function_pointers_vf,
  80};
  81
  82static const struct igbvf_info *igbvf_info_tbl[] = {
  83        [board_vf]      = &igbvf_vf_info,
  84        [board_i350_vf] = &igbvf_i350_vf_info,
  85};
  86
  87/**
  88 * igbvf_desc_unused - calculate if we have unused descriptors
  89 * @rx_ring: address of receive ring structure
  90 **/
  91static int igbvf_desc_unused(struct igbvf_ring *ring)
  92{
  93        if (ring->next_to_clean > ring->next_to_use)
  94                return ring->next_to_clean - ring->next_to_use - 1;
  95
  96        return ring->count + ring->next_to_clean - ring->next_to_use - 1;
  97}
  98
  99/**
 100 * igbvf_receive_skb - helper function to handle Rx indications
 101 * @adapter: board private structure
 102 * @status: descriptor status field as written by hardware
 103 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
 104 * @skb: pointer to sk_buff to be indicated to stack
 105 **/
 106static void igbvf_receive_skb(struct igbvf_adapter *adapter,
 107                              struct net_device *netdev,
 108                              struct sk_buff *skb,
 109                              u32 status, u16 vlan)
 110{
 111        u16 vid;
 112
 113        if (status & E1000_RXD_STAT_VP) {
 114                if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) &&
 115                    (status & E1000_RXDEXT_STATERR_LB))
 116                        vid = be16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
 117                else
 118                        vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
 119                if (test_bit(vid, adapter->active_vlans))
 120                        __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
 121        }
 122
 123        napi_gro_receive(&adapter->rx_ring->napi, skb);
 124}
 125
 126static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
 127                                         u32 status_err, struct sk_buff *skb)
 128{
 129        skb_checksum_none_assert(skb);
 130
 131        /* Ignore Checksum bit is set or checksum is disabled through ethtool */
 132        if ((status_err & E1000_RXD_STAT_IXSM) ||
 133            (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
 134                return;
 135
 136        /* TCP/UDP checksum error bit is set */
 137        if (status_err &
 138            (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
 139                /* let the stack verify checksum errors */
 140                adapter->hw_csum_err++;
 141                return;
 142        }
 143
 144        /* It must be a TCP or UDP packet with a valid checksum */
 145        if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
 146                skb->ip_summed = CHECKSUM_UNNECESSARY;
 147
 148        adapter->hw_csum_good++;
 149}
 150
 151/**
 152 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
 153 * @rx_ring: address of ring structure to repopulate
 154 * @cleaned_count: number of buffers to repopulate
 155 **/
 156static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
 157                                   int cleaned_count)
 158{
 159        struct igbvf_adapter *adapter = rx_ring->adapter;
 160        struct net_device *netdev = adapter->netdev;
 161        struct pci_dev *pdev = adapter->pdev;
 162        union e1000_adv_rx_desc *rx_desc;
 163        struct igbvf_buffer *buffer_info;
 164        struct sk_buff *skb;
 165        unsigned int i;
 166        int bufsz;
 167
 168        i = rx_ring->next_to_use;
 169        buffer_info = &rx_ring->buffer_info[i];
 170
 171        if (adapter->rx_ps_hdr_size)
 172                bufsz = adapter->rx_ps_hdr_size;
 173        else
 174                bufsz = adapter->rx_buffer_len;
 175
 176        while (cleaned_count--) {
 177                rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
 178
 179                if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
 180                        if (!buffer_info->page) {
 181                                buffer_info->page = alloc_page(GFP_ATOMIC);
 182                                if (!buffer_info->page) {
 183                                        adapter->alloc_rx_buff_failed++;
 184                                        goto no_buffers;
 185                                }
 186                                buffer_info->page_offset = 0;
 187                        } else {
 188                                buffer_info->page_offset ^= PAGE_SIZE / 2;
 189                        }
 190                        buffer_info->page_dma =
 191                                dma_map_page(&pdev->dev, buffer_info->page,
 192                                             buffer_info->page_offset,
 193                                             PAGE_SIZE / 2,
 194                                             DMA_FROM_DEVICE);
 195                        if (dma_mapping_error(&pdev->dev,
 196                                              buffer_info->page_dma)) {
 197                                __free_page(buffer_info->page);
 198                                buffer_info->page = NULL;
 199                                dev_err(&pdev->dev, "RX DMA map failed\n");
 200                                break;
 201                        }
 202                }
 203
 204                if (!buffer_info->skb) {
 205                        skb = netdev_alloc_skb_ip_align(netdev, bufsz);
 206                        if (!skb) {
 207                                adapter->alloc_rx_buff_failed++;
 208                                goto no_buffers;
 209                        }
 210
 211                        buffer_info->skb = skb;
 212                        buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
 213                                                          bufsz,
 214                                                          DMA_FROM_DEVICE);
 215                        if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 216                                dev_kfree_skb(buffer_info->skb);
 217                                buffer_info->skb = NULL;
 218                                dev_err(&pdev->dev, "RX DMA map failed\n");
 219                                goto no_buffers;
 220                        }
 221                }
 222                /* Refresh the desc even if buffer_addrs didn't change because
 223                 * each write-back erases this info.
 224                 */
 225                if (adapter->rx_ps_hdr_size) {
 226                        rx_desc->read.pkt_addr =
 227                             cpu_to_le64(buffer_info->page_dma);
 228                        rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
 229                } else {
 230                        rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
 231                        rx_desc->read.hdr_addr = 0;
 232                }
 233
 234                i++;
 235                if (i == rx_ring->count)
 236                        i = 0;
 237                buffer_info = &rx_ring->buffer_info[i];
 238        }
 239
 240no_buffers:
 241        if (rx_ring->next_to_use != i) {
 242                rx_ring->next_to_use = i;
 243                if (i == 0)
 244                        i = (rx_ring->count - 1);
 245                else
 246                        i--;
 247
 248                /* Force memory writes to complete before letting h/w
 249                 * know there are new descriptors to fetch.  (Only
 250                 * applicable for weak-ordered memory model archs,
 251                 * such as IA-64).
 252                */
 253                wmb();
 254                writel(i, adapter->hw.hw_addr + rx_ring->tail);
 255        }
 256}
 257
 258/**
 259 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
 260 * @adapter: board private structure
 261 *
 262 * the return value indicates whether actual cleaning was done, there
 263 * is no guarantee that everything was cleaned
 264 **/
 265static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
 266                               int *work_done, int work_to_do)
 267{
 268        struct igbvf_ring *rx_ring = adapter->rx_ring;
 269        struct net_device *netdev = adapter->netdev;
 270        struct pci_dev *pdev = adapter->pdev;
 271        union e1000_adv_rx_desc *rx_desc, *next_rxd;
 272        struct igbvf_buffer *buffer_info, *next_buffer;
 273        struct sk_buff *skb;
 274        bool cleaned = false;
 275        int cleaned_count = 0;
 276        unsigned int total_bytes = 0, total_packets = 0;
 277        unsigned int i;
 278        u32 length, hlen, staterr;
 279
 280        i = rx_ring->next_to_clean;
 281        rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
 282        staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 283
 284        while (staterr & E1000_RXD_STAT_DD) {
 285                if (*work_done >= work_to_do)
 286                        break;
 287                (*work_done)++;
 288                rmb(); /* read descriptor and rx_buffer_info after status DD */
 289
 290                buffer_info = &rx_ring->buffer_info[i];
 291
 292                /* HW will not DMA in data larger than the given buffer, even
 293                 * if it parses the (NFS, of course) header to be larger.  In
 294                 * that case, it fills the header buffer and spills the rest
 295                 * into the page.
 296                 */
 297                hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info)
 298                       & E1000_RXDADV_HDRBUFLEN_MASK) >>
 299                       E1000_RXDADV_HDRBUFLEN_SHIFT;
 300                if (hlen > adapter->rx_ps_hdr_size)
 301                        hlen = adapter->rx_ps_hdr_size;
 302
 303                length = le16_to_cpu(rx_desc->wb.upper.length);
 304                cleaned = true;
 305                cleaned_count++;
 306
 307                skb = buffer_info->skb;
 308                prefetch(skb->data - NET_IP_ALIGN);
 309                buffer_info->skb = NULL;
 310                if (!adapter->rx_ps_hdr_size) {
 311                        dma_unmap_single(&pdev->dev, buffer_info->dma,
 312                                         adapter->rx_buffer_len,
 313                                         DMA_FROM_DEVICE);
 314                        buffer_info->dma = 0;
 315                        skb_put(skb, length);
 316                        goto send_up;
 317                }
 318
 319                if (!skb_shinfo(skb)->nr_frags) {
 320                        dma_unmap_single(&pdev->dev, buffer_info->dma,
 321                                         adapter->rx_ps_hdr_size,
 322                                         DMA_FROM_DEVICE);
 323                        buffer_info->dma = 0;
 324                        skb_put(skb, hlen);
 325                }
 326
 327                if (length) {
 328                        dma_unmap_page(&pdev->dev, buffer_info->page_dma,
 329                                       PAGE_SIZE / 2,
 330                                       DMA_FROM_DEVICE);
 331                        buffer_info->page_dma = 0;
 332
 333                        skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
 334                                           buffer_info->page,
 335                                           buffer_info->page_offset,
 336                                           length);
 337
 338                        if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
 339                            (page_count(buffer_info->page) != 1))
 340                                buffer_info->page = NULL;
 341                        else
 342                                get_page(buffer_info->page);
 343
 344                        skb->len += length;
 345                        skb->data_len += length;
 346                        skb->truesize += PAGE_SIZE / 2;
 347                }
 348send_up:
 349                i++;
 350                if (i == rx_ring->count)
 351                        i = 0;
 352                next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
 353                prefetch(next_rxd);
 354                next_buffer = &rx_ring->buffer_info[i];
 355
 356                if (!(staterr & E1000_RXD_STAT_EOP)) {
 357                        buffer_info->skb = next_buffer->skb;
 358                        buffer_info->dma = next_buffer->dma;
 359                        next_buffer->skb = skb;
 360                        next_buffer->dma = 0;
 361                        goto next_desc;
 362                }
 363
 364                if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
 365                        dev_kfree_skb_irq(skb);
 366                        goto next_desc;
 367                }
 368
 369                total_bytes += skb->len;
 370                total_packets++;
 371
 372                igbvf_rx_checksum_adv(adapter, staterr, skb);
 373
 374                skb->protocol = eth_type_trans(skb, netdev);
 375
 376                igbvf_receive_skb(adapter, netdev, skb, staterr,
 377                                  rx_desc->wb.upper.vlan);
 378
 379next_desc:
 380                rx_desc->wb.upper.status_error = 0;
 381
 382                /* return some buffers to hardware, one at a time is too slow */
 383                if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
 384                        igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
 385                        cleaned_count = 0;
 386                }
 387
 388                /* use prefetched values */
 389                rx_desc = next_rxd;
 390                buffer_info = next_buffer;
 391
 392                staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 393        }
 394
 395        rx_ring->next_to_clean = i;
 396        cleaned_count = igbvf_desc_unused(rx_ring);
 397
 398        if (cleaned_count)
 399                igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
 400
 401        adapter->total_rx_packets += total_packets;
 402        adapter->total_rx_bytes += total_bytes;
 403        adapter->net_stats.rx_bytes += total_bytes;
 404        adapter->net_stats.rx_packets += total_packets;
 405        return cleaned;
 406}
 407
 408static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
 409                            struct igbvf_buffer *buffer_info)
 410{
 411        if (buffer_info->dma) {
 412                if (buffer_info->mapped_as_page)
 413                        dma_unmap_page(&adapter->pdev->dev,
 414                                       buffer_info->dma,
 415                                       buffer_info->length,
 416                                       DMA_TO_DEVICE);
 417                else
 418                        dma_unmap_single(&adapter->pdev->dev,
 419                                         buffer_info->dma,
 420                                         buffer_info->length,
 421                                         DMA_TO_DEVICE);
 422                buffer_info->dma = 0;
 423        }
 424        if (buffer_info->skb) {
 425                dev_kfree_skb_any(buffer_info->skb);
 426                buffer_info->skb = NULL;
 427        }
 428        buffer_info->time_stamp = 0;
 429}
 430
 431/**
 432 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
 433 * @adapter: board private structure
 434 *
 435 * Return 0 on success, negative on failure
 436 **/
 437int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
 438                             struct igbvf_ring *tx_ring)
 439{
 440        struct pci_dev *pdev = adapter->pdev;
 441        int size;
 442
 443        size = sizeof(struct igbvf_buffer) * tx_ring->count;
 444        tx_ring->buffer_info = vzalloc(size);
 445        if (!tx_ring->buffer_info)
 446                goto err;
 447
 448        /* round up to nearest 4K */
 449        tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
 450        tx_ring->size = ALIGN(tx_ring->size, 4096);
 451
 452        tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
 453                                           &tx_ring->dma, GFP_KERNEL);
 454        if (!tx_ring->desc)
 455                goto err;
 456
 457        tx_ring->adapter = adapter;
 458        tx_ring->next_to_use = 0;
 459        tx_ring->next_to_clean = 0;
 460
 461        return 0;
 462err:
 463        vfree(tx_ring->buffer_info);
 464        dev_err(&adapter->pdev->dev,
 465                "Unable to allocate memory for the transmit descriptor ring\n");
 466        return -ENOMEM;
 467}
 468
 469/**
 470 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
 471 * @adapter: board private structure
 472 *
 473 * Returns 0 on success, negative on failure
 474 **/
 475int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
 476                             struct igbvf_ring *rx_ring)
 477{
 478        struct pci_dev *pdev = adapter->pdev;
 479        int size, desc_len;
 480
 481        size = sizeof(struct igbvf_buffer) * rx_ring->count;
 482        rx_ring->buffer_info = vzalloc(size);
 483        if (!rx_ring->buffer_info)
 484                goto err;
 485
 486        desc_len = sizeof(union e1000_adv_rx_desc);
 487
 488        /* Round up to nearest 4K */
 489        rx_ring->size = rx_ring->count * desc_len;
 490        rx_ring->size = ALIGN(rx_ring->size, 4096);
 491
 492        rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
 493                                           &rx_ring->dma, GFP_KERNEL);
 494        if (!rx_ring->desc)
 495                goto err;
 496
 497        rx_ring->next_to_clean = 0;
 498        rx_ring->next_to_use = 0;
 499
 500        rx_ring->adapter = adapter;
 501
 502        return 0;
 503
 504err:
 505        vfree(rx_ring->buffer_info);
 506        rx_ring->buffer_info = NULL;
 507        dev_err(&adapter->pdev->dev,
 508                "Unable to allocate memory for the receive descriptor ring\n");
 509        return -ENOMEM;
 510}
 511
 512/**
 513 * igbvf_clean_tx_ring - Free Tx Buffers
 514 * @tx_ring: ring to be cleaned
 515 **/
 516static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
 517{
 518        struct igbvf_adapter *adapter = tx_ring->adapter;
 519        struct igbvf_buffer *buffer_info;
 520        unsigned long size;
 521        unsigned int i;
 522
 523        if (!tx_ring->buffer_info)
 524                return;
 525
 526        /* Free all the Tx ring sk_buffs */
 527        for (i = 0; i < tx_ring->count; i++) {
 528                buffer_info = &tx_ring->buffer_info[i];
 529                igbvf_put_txbuf(adapter, buffer_info);
 530        }
 531
 532        size = sizeof(struct igbvf_buffer) * tx_ring->count;
 533        memset(tx_ring->buffer_info, 0, size);
 534
 535        /* Zero out the descriptor ring */
 536        memset(tx_ring->desc, 0, tx_ring->size);
 537
 538        tx_ring->next_to_use = 0;
 539        tx_ring->next_to_clean = 0;
 540
 541        writel(0, adapter->hw.hw_addr + tx_ring->head);
 542        writel(0, adapter->hw.hw_addr + tx_ring->tail);
 543}
 544
 545/**
 546 * igbvf_free_tx_resources - Free Tx Resources per Queue
 547 * @tx_ring: ring to free resources from
 548 *
 549 * Free all transmit software resources
 550 **/
 551void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
 552{
 553        struct pci_dev *pdev = tx_ring->adapter->pdev;
 554
 555        igbvf_clean_tx_ring(tx_ring);
 556
 557        vfree(tx_ring->buffer_info);
 558        tx_ring->buffer_info = NULL;
 559
 560        dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
 561                          tx_ring->dma);
 562
 563        tx_ring->desc = NULL;
 564}
 565
 566/**
 567 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
 568 * @adapter: board private structure
 569 **/
 570static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
 571{
 572        struct igbvf_adapter *adapter = rx_ring->adapter;
 573        struct igbvf_buffer *buffer_info;
 574        struct pci_dev *pdev = adapter->pdev;
 575        unsigned long size;
 576        unsigned int i;
 577
 578        if (!rx_ring->buffer_info)
 579                return;
 580
 581        /* Free all the Rx ring sk_buffs */
 582        for (i = 0; i < rx_ring->count; i++) {
 583                buffer_info = &rx_ring->buffer_info[i];
 584                if (buffer_info->dma) {
 585                        if (adapter->rx_ps_hdr_size) {
 586                                dma_unmap_single(&pdev->dev, buffer_info->dma,
 587                                                 adapter->rx_ps_hdr_size,
 588                                                 DMA_FROM_DEVICE);
 589                        } else {
 590                                dma_unmap_single(&pdev->dev, buffer_info->dma,
 591                                                 adapter->rx_buffer_len,
 592                                                 DMA_FROM_DEVICE);
 593                        }
 594                        buffer_info->dma = 0;
 595                }
 596
 597                if (buffer_info->skb) {
 598                        dev_kfree_skb(buffer_info->skb);
 599                        buffer_info->skb = NULL;
 600                }
 601
 602                if (buffer_info->page) {
 603                        if (buffer_info->page_dma)
 604                                dma_unmap_page(&pdev->dev,
 605                                               buffer_info->page_dma,
 606                                               PAGE_SIZE / 2,
 607                                               DMA_FROM_DEVICE);
 608                        put_page(buffer_info->page);
 609                        buffer_info->page = NULL;
 610                        buffer_info->page_dma = 0;
 611                        buffer_info->page_offset = 0;
 612                }
 613        }
 614
 615        size = sizeof(struct igbvf_buffer) * rx_ring->count;
 616        memset(rx_ring->buffer_info, 0, size);
 617
 618        /* Zero out the descriptor ring */
 619        memset(rx_ring->desc, 0, rx_ring->size);
 620
 621        rx_ring->next_to_clean = 0;
 622        rx_ring->next_to_use = 0;
 623
 624        writel(0, adapter->hw.hw_addr + rx_ring->head);
 625        writel(0, adapter->hw.hw_addr + rx_ring->tail);
 626}
 627
 628/**
 629 * igbvf_free_rx_resources - Free Rx Resources
 630 * @rx_ring: ring to clean the resources from
 631 *
 632 * Free all receive software resources
 633 **/
 634
 635void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
 636{
 637        struct pci_dev *pdev = rx_ring->adapter->pdev;
 638
 639        igbvf_clean_rx_ring(rx_ring);
 640
 641        vfree(rx_ring->buffer_info);
 642        rx_ring->buffer_info = NULL;
 643
 644        dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
 645                          rx_ring->dma);
 646        rx_ring->desc = NULL;
 647}
 648
 649/**
 650 * igbvf_update_itr - update the dynamic ITR value based on statistics
 651 * @adapter: pointer to adapter
 652 * @itr_setting: current adapter->itr
 653 * @packets: the number of packets during this measurement interval
 654 * @bytes: the number of bytes during this measurement interval
 655 *
 656 * Stores a new ITR value based on packets and byte counts during the last
 657 * interrupt.  The advantage of per interrupt computation is faster updates
 658 * and more accurate ITR for the current traffic pattern.  Constants in this
 659 * function were computed based on theoretical maximum wire speed and thresholds
 660 * were set based on testing data as well as attempting to minimize response
 661 * time while increasing bulk throughput.
 662 **/
 663static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter,
 664                                           enum latency_range itr_setting,
 665                                           int packets, int bytes)
 666{
 667        enum latency_range retval = itr_setting;
 668
 669        if (packets == 0)
 670                goto update_itr_done;
 671
 672        switch (itr_setting) {
 673        case lowest_latency:
 674                /* handle TSO and jumbo frames */
 675                if (bytes/packets > 8000)
 676                        retval = bulk_latency;
 677                else if ((packets < 5) && (bytes > 512))
 678                        retval = low_latency;
 679                break;
 680        case low_latency:  /* 50 usec aka 20000 ints/s */
 681                if (bytes > 10000) {
 682                        /* this if handles the TSO accounting */
 683                        if (bytes/packets > 8000)
 684                                retval = bulk_latency;
 685                        else if ((packets < 10) || ((bytes/packets) > 1200))
 686                                retval = bulk_latency;
 687                        else if ((packets > 35))
 688                                retval = lowest_latency;
 689                } else if (bytes/packets > 2000) {
 690                        retval = bulk_latency;
 691                } else if (packets <= 2 && bytes < 512) {
 692                        retval = lowest_latency;
 693                }
 694                break;
 695        case bulk_latency: /* 250 usec aka 4000 ints/s */
 696                if (bytes > 25000) {
 697                        if (packets > 35)
 698                                retval = low_latency;
 699                } else if (bytes < 6000) {
 700                        retval = low_latency;
 701                }
 702                break;
 703        default:
 704                break;
 705        }
 706
 707update_itr_done:
 708        return retval;
 709}
 710
 711static int igbvf_range_to_itr(enum latency_range current_range)
 712{
 713        int new_itr;
 714
 715        switch (current_range) {
 716        /* counts and packets in update_itr are dependent on these numbers */
 717        case lowest_latency:
 718                new_itr = IGBVF_70K_ITR;
 719                break;
 720        case low_latency:
 721                new_itr = IGBVF_20K_ITR;
 722                break;
 723        case bulk_latency:
 724                new_itr = IGBVF_4K_ITR;
 725                break;
 726        default:
 727                new_itr = IGBVF_START_ITR;
 728                break;
 729        }
 730        return new_itr;
 731}
 732
 733static void igbvf_set_itr(struct igbvf_adapter *adapter)
 734{
 735        u32 new_itr;
 736
 737        adapter->tx_ring->itr_range =
 738                        igbvf_update_itr(adapter,
 739                                         adapter->tx_ring->itr_val,
 740                                         adapter->total_tx_packets,
 741                                         adapter->total_tx_bytes);
 742
 743        /* conservative mode (itr 3) eliminates the lowest_latency setting */
 744        if (adapter->requested_itr == 3 &&
 745            adapter->tx_ring->itr_range == lowest_latency)
 746                adapter->tx_ring->itr_range = low_latency;
 747
 748        new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range);
 749
 750        if (new_itr != adapter->tx_ring->itr_val) {
 751                u32 current_itr = adapter->tx_ring->itr_val;
 752                /* this attempts to bias the interrupt rate towards Bulk
 753                 * by adding intermediate steps when interrupt rate is
 754                 * increasing
 755                 */
 756                new_itr = new_itr > current_itr ?
 757                          min(current_itr + (new_itr >> 2), new_itr) :
 758                          new_itr;
 759                adapter->tx_ring->itr_val = new_itr;
 760
 761                adapter->tx_ring->set_itr = 1;
 762        }
 763
 764        adapter->rx_ring->itr_range =
 765                        igbvf_update_itr(adapter, adapter->rx_ring->itr_val,
 766                                         adapter->total_rx_packets,
 767                                         adapter->total_rx_bytes);
 768        if (adapter->requested_itr == 3 &&
 769            adapter->rx_ring->itr_range == lowest_latency)
 770                adapter->rx_ring->itr_range = low_latency;
 771
 772        new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range);
 773
 774        if (new_itr != adapter->rx_ring->itr_val) {
 775                u32 current_itr = adapter->rx_ring->itr_val;
 776
 777                new_itr = new_itr > current_itr ?
 778                          min(current_itr + (new_itr >> 2), new_itr) :
 779                          new_itr;
 780                adapter->rx_ring->itr_val = new_itr;
 781
 782                adapter->rx_ring->set_itr = 1;
 783        }
 784}
 785
 786/**
 787 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
 788 * @adapter: board private structure
 789 *
 790 * returns true if ring is completely cleaned
 791 **/
 792static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
 793{
 794        struct igbvf_adapter *adapter = tx_ring->adapter;
 795        struct net_device *netdev = adapter->netdev;
 796        struct igbvf_buffer *buffer_info;
 797        struct sk_buff *skb;
 798        union e1000_adv_tx_desc *tx_desc, *eop_desc;
 799        unsigned int total_bytes = 0, total_packets = 0;
 800        unsigned int i, count = 0;
 801        bool cleaned = false;
 802
 803        i = tx_ring->next_to_clean;
 804        buffer_info = &tx_ring->buffer_info[i];
 805        eop_desc = buffer_info->next_to_watch;
 806
 807        do {
 808                /* if next_to_watch is not set then there is no work pending */
 809                if (!eop_desc)
 810                        break;
 811
 812                /* prevent any other reads prior to eop_desc */
 813                read_barrier_depends();
 814
 815                /* if DD is not set pending work has not been completed */
 816                if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
 817                        break;
 818
 819                /* clear next_to_watch to prevent false hangs */
 820                buffer_info->next_to_watch = NULL;
 821
 822                for (cleaned = false; !cleaned; count++) {
 823                        tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
 824                        cleaned = (tx_desc == eop_desc);
 825                        skb = buffer_info->skb;
 826
 827                        if (skb) {
 828                                unsigned int segs, bytecount;
 829
 830                                /* gso_segs is currently only valid for tcp */
 831                                segs = skb_shinfo(skb)->gso_segs ?: 1;
 832                                /* multiply data chunks by size of headers */
 833                                bytecount = ((segs - 1) * skb_headlen(skb)) +
 834                                            skb->len;
 835                                total_packets += segs;
 836                                total_bytes += bytecount;
 837                        }
 838
 839                        igbvf_put_txbuf(adapter, buffer_info);
 840                        tx_desc->wb.status = 0;
 841
 842                        i++;
 843                        if (i == tx_ring->count)
 844                                i = 0;
 845
 846                        buffer_info = &tx_ring->buffer_info[i];
 847                }
 848
 849                eop_desc = buffer_info->next_to_watch;
 850        } while (count < tx_ring->count);
 851
 852        tx_ring->next_to_clean = i;
 853
 854        if (unlikely(count && netif_carrier_ok(netdev) &&
 855            igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
 856                /* Make sure that anybody stopping the queue after this
 857                 * sees the new next_to_clean.
 858                 */
 859                smp_mb();
 860                if (netif_queue_stopped(netdev) &&
 861                    !(test_bit(__IGBVF_DOWN, &adapter->state))) {
 862                        netif_wake_queue(netdev);
 863                        ++adapter->restart_queue;
 864                }
 865        }
 866
 867        adapter->net_stats.tx_bytes += total_bytes;
 868        adapter->net_stats.tx_packets += total_packets;
 869        return count < tx_ring->count;
 870}
 871
 872static irqreturn_t igbvf_msix_other(int irq, void *data)
 873{
 874        struct net_device *netdev = data;
 875        struct igbvf_adapter *adapter = netdev_priv(netdev);
 876        struct e1000_hw *hw = &adapter->hw;
 877
 878        adapter->int_counter1++;
 879
 880        hw->mac.get_link_status = 1;
 881        if (!test_bit(__IGBVF_DOWN, &adapter->state))
 882                mod_timer(&adapter->watchdog_timer, jiffies + 1);
 883
 884        ew32(EIMS, adapter->eims_other);
 885
 886        return IRQ_HANDLED;
 887}
 888
 889static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
 890{
 891        struct net_device *netdev = data;
 892        struct igbvf_adapter *adapter = netdev_priv(netdev);
 893        struct e1000_hw *hw = &adapter->hw;
 894        struct igbvf_ring *tx_ring = adapter->tx_ring;
 895
 896        if (tx_ring->set_itr) {
 897                writel(tx_ring->itr_val,
 898                       adapter->hw.hw_addr + tx_ring->itr_register);
 899                adapter->tx_ring->set_itr = 0;
 900        }
 901
 902        adapter->total_tx_bytes = 0;
 903        adapter->total_tx_packets = 0;
 904
 905        /* auto mask will automatically re-enable the interrupt when we write
 906         * EICS
 907         */
 908        if (!igbvf_clean_tx_irq(tx_ring))
 909                /* Ring was not completely cleaned, so fire another interrupt */
 910                ew32(EICS, tx_ring->eims_value);
 911        else
 912                ew32(EIMS, tx_ring->eims_value);
 913
 914        return IRQ_HANDLED;
 915}
 916
 917static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
 918{
 919        struct net_device *netdev = data;
 920        struct igbvf_adapter *adapter = netdev_priv(netdev);
 921
 922        adapter->int_counter0++;
 923
 924        /* Write the ITR value calculated at the end of the
 925         * previous interrupt.
 926         */
 927        if (adapter->rx_ring->set_itr) {
 928                writel(adapter->rx_ring->itr_val,
 929                       adapter->hw.hw_addr + adapter->rx_ring->itr_register);
 930                adapter->rx_ring->set_itr = 0;
 931        }
 932
 933        if (napi_schedule_prep(&adapter->rx_ring->napi)) {
 934                adapter->total_rx_bytes = 0;
 935                adapter->total_rx_packets = 0;
 936                __napi_schedule(&adapter->rx_ring->napi);
 937        }
 938
 939        return IRQ_HANDLED;
 940}
 941
 942#define IGBVF_NO_QUEUE -1
 943
 944static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
 945                                int tx_queue, int msix_vector)
 946{
 947        struct e1000_hw *hw = &adapter->hw;
 948        u32 ivar, index;
 949
 950        /* 82576 uses a table-based method for assigning vectors.
 951         * Each queue has a single entry in the table to which we write
 952         * a vector number along with a "valid" bit.  Sadly, the layout
 953         * of the table is somewhat counterintuitive.
 954         */
 955        if (rx_queue > IGBVF_NO_QUEUE) {
 956                index = (rx_queue >> 1);
 957                ivar = array_er32(IVAR0, index);
 958                if (rx_queue & 0x1) {
 959                        /* vector goes into third byte of register */
 960                        ivar = ivar & 0xFF00FFFF;
 961                        ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
 962                } else {
 963                        /* vector goes into low byte of register */
 964                        ivar = ivar & 0xFFFFFF00;
 965                        ivar |= msix_vector | E1000_IVAR_VALID;
 966                }
 967                adapter->rx_ring[rx_queue].eims_value = 1 << msix_vector;
 968                array_ew32(IVAR0, index, ivar);
 969        }
 970        if (tx_queue > IGBVF_NO_QUEUE) {
 971                index = (tx_queue >> 1);
 972                ivar = array_er32(IVAR0, index);
 973                if (tx_queue & 0x1) {
 974                        /* vector goes into high byte of register */
 975                        ivar = ivar & 0x00FFFFFF;
 976                        ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
 977                } else {
 978                        /* vector goes into second byte of register */
 979                        ivar = ivar & 0xFFFF00FF;
 980                        ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
 981                }
 982                adapter->tx_ring[tx_queue].eims_value = 1 << msix_vector;
 983                array_ew32(IVAR0, index, ivar);
 984        }
 985}
 986
 987/**
 988 * igbvf_configure_msix - Configure MSI-X hardware
 989 * @adapter: board private structure
 990 *
 991 * igbvf_configure_msix sets up the hardware to properly
 992 * generate MSI-X interrupts.
 993 **/
 994static void igbvf_configure_msix(struct igbvf_adapter *adapter)
 995{
 996        u32 tmp;
 997        struct e1000_hw *hw = &adapter->hw;
 998        struct igbvf_ring *tx_ring = adapter->tx_ring;
 999        struct igbvf_ring *rx_ring = adapter->rx_ring;
1000        int vector = 0;
1001
1002        adapter->eims_enable_mask = 0;
1003
1004        igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
1005        adapter->eims_enable_mask |= tx_ring->eims_value;
1006        writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register);
1007        igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
1008        adapter->eims_enable_mask |= rx_ring->eims_value;
1009        writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register);
1010
1011        /* set vector for other causes, i.e. link changes */
1012
1013        tmp = (vector++ | E1000_IVAR_VALID);
1014
1015        ew32(IVAR_MISC, tmp);
1016
1017        adapter->eims_enable_mask = (1 << (vector)) - 1;
1018        adapter->eims_other = 1 << (vector - 1);
1019        e1e_flush();
1020}
1021
1022static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
1023{
1024        if (adapter->msix_entries) {
1025                pci_disable_msix(adapter->pdev);
1026                kfree(adapter->msix_entries);
1027                adapter->msix_entries = NULL;
1028        }
1029}
1030
1031/**
1032 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1033 * @adapter: board private structure
1034 *
1035 * Attempt to configure interrupts using the best available
1036 * capabilities of the hardware and kernel.
1037 **/
1038static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1039{
1040        int err = -ENOMEM;
1041        int i;
1042
1043        /* we allocate 3 vectors, 1 for Tx, 1 for Rx, one for PF messages */
1044        adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1045                                        GFP_KERNEL);
1046        if (adapter->msix_entries) {
1047                for (i = 0; i < 3; i++)
1048                        adapter->msix_entries[i].entry = i;
1049
1050                err = pci_enable_msix_range(adapter->pdev,
1051                                            adapter->msix_entries, 3, 3);
1052        }
1053
1054        if (err < 0) {
1055                /* MSI-X failed */
1056                dev_err(&adapter->pdev->dev,
1057                        "Failed to initialize MSI-X interrupts.\n");
1058                igbvf_reset_interrupt_capability(adapter);
1059        }
1060}
1061
1062/**
1063 * igbvf_request_msix - Initialize MSI-X interrupts
1064 * @adapter: board private structure
1065 *
1066 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1067 * kernel.
1068 **/
1069static int igbvf_request_msix(struct igbvf_adapter *adapter)
1070{
1071        struct net_device *netdev = adapter->netdev;
1072        int err = 0, vector = 0;
1073
1074        if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1075                sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1076                sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1077        } else {
1078                memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1079                memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1080        }
1081
1082        err = request_irq(adapter->msix_entries[vector].vector,
1083                          igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1084                          netdev);
1085        if (err)
1086                goto out;
1087
1088        adapter->tx_ring->itr_register = E1000_EITR(vector);
1089        adapter->tx_ring->itr_val = adapter->current_itr;
1090        vector++;
1091
1092        err = request_irq(adapter->msix_entries[vector].vector,
1093                          igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1094                          netdev);
1095        if (err)
1096                goto out;
1097
1098        adapter->rx_ring->itr_register = E1000_EITR(vector);
1099        adapter->rx_ring->itr_val = adapter->current_itr;
1100        vector++;
1101
1102        err = request_irq(adapter->msix_entries[vector].vector,
1103                          igbvf_msix_other, 0, netdev->name, netdev);
1104        if (err)
1105                goto out;
1106
1107        igbvf_configure_msix(adapter);
1108        return 0;
1109out:
1110        return err;
1111}
1112
1113/**
1114 * igbvf_alloc_queues - Allocate memory for all rings
1115 * @adapter: board private structure to initialize
1116 **/
1117static int igbvf_alloc_queues(struct igbvf_adapter *adapter)
1118{
1119        struct net_device *netdev = adapter->netdev;
1120
1121        adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1122        if (!adapter->tx_ring)
1123                return -ENOMEM;
1124
1125        adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1126        if (!adapter->rx_ring) {
1127                kfree(adapter->tx_ring);
1128                return -ENOMEM;
1129        }
1130
1131        netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1132
1133        return 0;
1134}
1135
1136/**
1137 * igbvf_request_irq - initialize interrupts
1138 * @adapter: board private structure
1139 *
1140 * Attempts to configure interrupts using the best available
1141 * capabilities of the hardware and kernel.
1142 **/
1143static int igbvf_request_irq(struct igbvf_adapter *adapter)
1144{
1145        int err = -1;
1146
1147        /* igbvf supports msi-x only */
1148        if (adapter->msix_entries)
1149                err = igbvf_request_msix(adapter);
1150
1151        if (!err)
1152                return err;
1153
1154        dev_err(&adapter->pdev->dev,
1155                "Unable to allocate interrupt, Error: %d\n", err);
1156
1157        return err;
1158}
1159
1160static void igbvf_free_irq(struct igbvf_adapter *adapter)
1161{
1162        struct net_device *netdev = adapter->netdev;
1163        int vector;
1164
1165        if (adapter->msix_entries) {
1166                for (vector = 0; vector < 3; vector++)
1167                        free_irq(adapter->msix_entries[vector].vector, netdev);
1168        }
1169}
1170
1171/**
1172 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1173 * @adapter: board private structure
1174 **/
1175static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1176{
1177        struct e1000_hw *hw = &adapter->hw;
1178
1179        ew32(EIMC, ~0);
1180
1181        if (adapter->msix_entries)
1182                ew32(EIAC, 0);
1183}
1184
1185/**
1186 * igbvf_irq_enable - Enable default interrupt generation settings
1187 * @adapter: board private structure
1188 **/
1189static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1190{
1191        struct e1000_hw *hw = &adapter->hw;
1192
1193        ew32(EIAC, adapter->eims_enable_mask);
1194        ew32(EIAM, adapter->eims_enable_mask);
1195        ew32(EIMS, adapter->eims_enable_mask);
1196}
1197
1198/**
1199 * igbvf_poll - NAPI Rx polling callback
1200 * @napi: struct associated with this polling callback
1201 * @budget: amount of packets driver is allowed to process this poll
1202 **/
1203static int igbvf_poll(struct napi_struct *napi, int budget)
1204{
1205        struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1206        struct igbvf_adapter *adapter = rx_ring->adapter;
1207        struct e1000_hw *hw = &adapter->hw;
1208        int work_done = 0;
1209
1210        igbvf_clean_rx_irq(adapter, &work_done, budget);
1211
1212        /* If not enough Rx work done, exit the polling mode */
1213        if (work_done < budget) {
1214                napi_complete_done(napi, work_done);
1215
1216                if (adapter->requested_itr & 3)
1217                        igbvf_set_itr(adapter);
1218
1219                if (!test_bit(__IGBVF_DOWN, &adapter->state))
1220                        ew32(EIMS, adapter->rx_ring->eims_value);
1221        }
1222
1223        return work_done;
1224}
1225
1226/**
1227 * igbvf_set_rlpml - set receive large packet maximum length
1228 * @adapter: board private structure
1229 *
1230 * Configure the maximum size of packets that will be received
1231 */
1232static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1233{
1234        int max_frame_size;
1235        struct e1000_hw *hw = &adapter->hw;
1236
1237        max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1238        e1000_rlpml_set_vf(hw, max_frame_size);
1239}
1240
1241static int igbvf_vlan_rx_add_vid(struct net_device *netdev,
1242                                 __be16 proto, u16 vid)
1243{
1244        struct igbvf_adapter *adapter = netdev_priv(netdev);
1245        struct e1000_hw *hw = &adapter->hw;
1246
1247        if (hw->mac.ops.set_vfta(hw, vid, true)) {
1248                dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1249                return -EINVAL;
1250        }
1251        set_bit(vid, adapter->active_vlans);
1252        return 0;
1253}
1254
1255static int igbvf_vlan_rx_kill_vid(struct net_device *netdev,
1256                                  __be16 proto, u16 vid)
1257{
1258        struct igbvf_adapter *adapter = netdev_priv(netdev);
1259        struct e1000_hw *hw = &adapter->hw;
1260
1261        if (hw->mac.ops.set_vfta(hw, vid, false)) {
1262                dev_err(&adapter->pdev->dev,
1263                        "Failed to remove vlan id %d\n", vid);
1264                return -EINVAL;
1265        }
1266        clear_bit(vid, adapter->active_vlans);
1267        return 0;
1268}
1269
1270static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1271{
1272        u16 vid;
1273
1274        for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1275                igbvf_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
1276}
1277
1278/**
1279 * igbvf_configure_tx - Configure Transmit Unit after Reset
1280 * @adapter: board private structure
1281 *
1282 * Configure the Tx unit of the MAC after a reset.
1283 **/
1284static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1285{
1286        struct e1000_hw *hw = &adapter->hw;
1287        struct igbvf_ring *tx_ring = adapter->tx_ring;
1288        u64 tdba;
1289        u32 txdctl, dca_txctrl;
1290
1291        /* disable transmits */
1292        txdctl = er32(TXDCTL(0));
1293        ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1294        e1e_flush();
1295        msleep(10);
1296
1297        /* Setup the HW Tx Head and Tail descriptor pointers */
1298        ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1299        tdba = tx_ring->dma;
1300        ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1301        ew32(TDBAH(0), (tdba >> 32));
1302        ew32(TDH(0), 0);
1303        ew32(TDT(0), 0);
1304        tx_ring->head = E1000_TDH(0);
1305        tx_ring->tail = E1000_TDT(0);
1306
1307        /* Turn off Relaxed Ordering on head write-backs.  The writebacks
1308         * MUST be delivered in order or it will completely screw up
1309         * our bookkeeping.
1310         */
1311        dca_txctrl = er32(DCA_TXCTRL(0));
1312        dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1313        ew32(DCA_TXCTRL(0), dca_txctrl);
1314
1315        /* enable transmits */
1316        txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1317        ew32(TXDCTL(0), txdctl);
1318
1319        /* Setup Transmit Descriptor Settings for eop descriptor */
1320        adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1321
1322        /* enable Report Status bit */
1323        adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1324}
1325
1326/**
1327 * igbvf_setup_srrctl - configure the receive control registers
1328 * @adapter: Board private structure
1329 **/
1330static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1331{
1332        struct e1000_hw *hw = &adapter->hw;
1333        u32 srrctl = 0;
1334
1335        srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1336                    E1000_SRRCTL_BSIZEHDR_MASK |
1337                    E1000_SRRCTL_BSIZEPKT_MASK);
1338
1339        /* Enable queue drop to avoid head of line blocking */
1340        srrctl |= E1000_SRRCTL_DROP_EN;
1341
1342        /* Setup buffer sizes */
1343        srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1344                  E1000_SRRCTL_BSIZEPKT_SHIFT;
1345
1346        if (adapter->rx_buffer_len < 2048) {
1347                adapter->rx_ps_hdr_size = 0;
1348                srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1349        } else {
1350                adapter->rx_ps_hdr_size = 128;
1351                srrctl |= adapter->rx_ps_hdr_size <<
1352                          E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1353                srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1354        }
1355
1356        ew32(SRRCTL(0), srrctl);
1357}
1358
1359/**
1360 * igbvf_configure_rx - Configure Receive Unit after Reset
1361 * @adapter: board private structure
1362 *
1363 * Configure the Rx unit of the MAC after a reset.
1364 **/
1365static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1366{
1367        struct e1000_hw *hw = &adapter->hw;
1368        struct igbvf_ring *rx_ring = adapter->rx_ring;
1369        u64 rdba;
1370        u32 rdlen, rxdctl;
1371
1372        /* disable receives */
1373        rxdctl = er32(RXDCTL(0));
1374        ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1375        e1e_flush();
1376        msleep(10);
1377
1378        rdlen = rx_ring->count * sizeof(union e1000_adv_rx_desc);
1379
1380        /* Setup the HW Rx Head and Tail Descriptor Pointers and
1381         * the Base and Length of the Rx Descriptor Ring
1382         */
1383        rdba = rx_ring->dma;
1384        ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1385        ew32(RDBAH(0), (rdba >> 32));
1386        ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1387        rx_ring->head = E1000_RDH(0);
1388        rx_ring->tail = E1000_RDT(0);
1389        ew32(RDH(0), 0);
1390        ew32(RDT(0), 0);
1391
1392        rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1393        rxdctl &= 0xFFF00000;
1394        rxdctl |= IGBVF_RX_PTHRESH;
1395        rxdctl |= IGBVF_RX_HTHRESH << 8;
1396        rxdctl |= IGBVF_RX_WTHRESH << 16;
1397
1398        igbvf_set_rlpml(adapter);
1399
1400        /* enable receives */
1401        ew32(RXDCTL(0), rxdctl);
1402}
1403
1404/**
1405 * igbvf_set_multi - Multicast and Promiscuous mode set
1406 * @netdev: network interface device structure
1407 *
1408 * The set_multi entry point is called whenever the multicast address
1409 * list or the network interface flags are updated.  This routine is
1410 * responsible for configuring the hardware for proper multicast,
1411 * promiscuous mode, and all-multi behavior.
1412 **/
1413static void igbvf_set_multi(struct net_device *netdev)
1414{
1415        struct igbvf_adapter *adapter = netdev_priv(netdev);
1416        struct e1000_hw *hw = &adapter->hw;
1417        struct netdev_hw_addr *ha;
1418        u8  *mta_list = NULL;
1419        int i;
1420
1421        if (!netdev_mc_empty(netdev)) {
1422                mta_list = kmalloc_array(netdev_mc_count(netdev), ETH_ALEN,
1423                                         GFP_ATOMIC);
1424                if (!mta_list)
1425                        return;
1426        }
1427
1428        /* prepare a packed array of only addresses. */
1429        i = 0;
1430        netdev_for_each_mc_addr(ha, netdev)
1431                memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1432
1433        hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1434        kfree(mta_list);
1435}
1436
1437/**
1438 * igbvf_configure - configure the hardware for Rx and Tx
1439 * @adapter: private board structure
1440 **/
1441static void igbvf_configure(struct igbvf_adapter *adapter)
1442{
1443        igbvf_set_multi(adapter->netdev);
1444
1445        igbvf_restore_vlan(adapter);
1446
1447        igbvf_configure_tx(adapter);
1448        igbvf_setup_srrctl(adapter);
1449        igbvf_configure_rx(adapter);
1450        igbvf_alloc_rx_buffers(adapter->rx_ring,
1451                               igbvf_desc_unused(adapter->rx_ring));
1452}
1453
1454/* igbvf_reset - bring the hardware into a known good state
1455 * @adapter: private board structure
1456 *
1457 * This function boots the hardware and enables some settings that
1458 * require a configuration cycle of the hardware - those cannot be
1459 * set/changed during runtime. After reset the device needs to be
1460 * properly configured for Rx, Tx etc.
1461 */
1462static void igbvf_reset(struct igbvf_adapter *adapter)
1463{
1464        struct e1000_mac_info *mac = &adapter->hw.mac;
1465        struct net_device *netdev = adapter->netdev;
1466        struct e1000_hw *hw = &adapter->hw;
1467
1468        /* Allow time for pending master requests to run */
1469        if (mac->ops.reset_hw(hw))
1470                dev_err(&adapter->pdev->dev, "PF still resetting\n");
1471
1472        mac->ops.init_hw(hw);
1473
1474        if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1475                memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1476                       netdev->addr_len);
1477                memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1478                       netdev->addr_len);
1479        }
1480
1481        adapter->last_reset = jiffies;
1482}
1483
1484int igbvf_up(struct igbvf_adapter *adapter)
1485{
1486        struct e1000_hw *hw = &adapter->hw;
1487
1488        /* hardware has been reset, we need to reload some things */
1489        igbvf_configure(adapter);
1490
1491        clear_bit(__IGBVF_DOWN, &adapter->state);
1492
1493        napi_enable(&adapter->rx_ring->napi);
1494        if (adapter->msix_entries)
1495                igbvf_configure_msix(adapter);
1496
1497        /* Clear any pending interrupts. */
1498        er32(EICR);
1499        igbvf_irq_enable(adapter);
1500
1501        /* start the watchdog */
1502        hw->mac.get_link_status = 1;
1503        mod_timer(&adapter->watchdog_timer, jiffies + 1);
1504
1505        return 0;
1506}
1507
1508void igbvf_down(struct igbvf_adapter *adapter)
1509{
1510        struct net_device *netdev = adapter->netdev;
1511        struct e1000_hw *hw = &adapter->hw;
1512        u32 rxdctl, txdctl;
1513
1514        /* signal that we're down so the interrupt handler does not
1515         * reschedule our watchdog timer
1516         */
1517        set_bit(__IGBVF_DOWN, &adapter->state);
1518
1519        /* disable receives in the hardware */
1520        rxdctl = er32(RXDCTL(0));
1521        ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1522
1523        netif_carrier_off(netdev);
1524        netif_stop_queue(netdev);
1525
1526        /* disable transmits in the hardware */
1527        txdctl = er32(TXDCTL(0));
1528        ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1529
1530        /* flush both disables and wait for them to finish */
1531        e1e_flush();
1532        msleep(10);
1533
1534        napi_disable(&adapter->rx_ring->napi);
1535
1536        igbvf_irq_disable(adapter);
1537
1538        del_timer_sync(&adapter->watchdog_timer);
1539
1540        /* record the stats before reset*/
1541        igbvf_update_stats(adapter);
1542
1543        adapter->link_speed = 0;
1544        adapter->link_duplex = 0;
1545
1546        igbvf_reset(adapter);
1547        igbvf_clean_tx_ring(adapter->tx_ring);
1548        igbvf_clean_rx_ring(adapter->rx_ring);
1549}
1550
1551void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1552{
1553        might_sleep();
1554        while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1555                usleep_range(1000, 2000);
1556        igbvf_down(adapter);
1557        igbvf_up(adapter);
1558        clear_bit(__IGBVF_RESETTING, &adapter->state);
1559}
1560
1561/**
1562 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1563 * @adapter: board private structure to initialize
1564 *
1565 * igbvf_sw_init initializes the Adapter private data structure.
1566 * Fields are initialized based on PCI device information and
1567 * OS network device settings (MTU size).
1568 **/
1569static int igbvf_sw_init(struct igbvf_adapter *adapter)
1570{
1571        struct net_device *netdev = adapter->netdev;
1572        s32 rc;
1573
1574        adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1575        adapter->rx_ps_hdr_size = 0;
1576        adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1577        adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1578
1579        adapter->tx_int_delay = 8;
1580        adapter->tx_abs_int_delay = 32;
1581        adapter->rx_int_delay = 0;
1582        adapter->rx_abs_int_delay = 8;
1583        adapter->requested_itr = 3;
1584        adapter->current_itr = IGBVF_START_ITR;
1585
1586        /* Set various function pointers */
1587        adapter->ei->init_ops(&adapter->hw);
1588
1589        rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1590        if (rc)
1591                return rc;
1592
1593        rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1594        if (rc)
1595                return rc;
1596
1597        igbvf_set_interrupt_capability(adapter);
1598
1599        if (igbvf_alloc_queues(adapter))
1600                return -ENOMEM;
1601
1602        spin_lock_init(&adapter->tx_queue_lock);
1603
1604        /* Explicitly disable IRQ since the NIC can be in any state. */
1605        igbvf_irq_disable(adapter);
1606
1607        spin_lock_init(&adapter->stats_lock);
1608
1609        set_bit(__IGBVF_DOWN, &adapter->state);
1610        return 0;
1611}
1612
1613static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1614{
1615        struct e1000_hw *hw = &adapter->hw;
1616
1617        adapter->stats.last_gprc = er32(VFGPRC);
1618        adapter->stats.last_gorc = er32(VFGORC);
1619        adapter->stats.last_gptc = er32(VFGPTC);
1620        adapter->stats.last_gotc = er32(VFGOTC);
1621        adapter->stats.last_mprc = er32(VFMPRC);
1622        adapter->stats.last_gotlbc = er32(VFGOTLBC);
1623        adapter->stats.last_gptlbc = er32(VFGPTLBC);
1624        adapter->stats.last_gorlbc = er32(VFGORLBC);
1625        adapter->stats.last_gprlbc = er32(VFGPRLBC);
1626
1627        adapter->stats.base_gprc = er32(VFGPRC);
1628        adapter->stats.base_gorc = er32(VFGORC);
1629        adapter->stats.base_gptc = er32(VFGPTC);
1630        adapter->stats.base_gotc = er32(VFGOTC);
1631        adapter->stats.base_mprc = er32(VFMPRC);
1632        adapter->stats.base_gotlbc = er32(VFGOTLBC);
1633        adapter->stats.base_gptlbc = er32(VFGPTLBC);
1634        adapter->stats.base_gorlbc = er32(VFGORLBC);
1635        adapter->stats.base_gprlbc = er32(VFGPRLBC);
1636}
1637
1638/**
1639 * igbvf_open - Called when a network interface is made active
1640 * @netdev: network interface device structure
1641 *
1642 * Returns 0 on success, negative value on failure
1643 *
1644 * The open entry point is called when a network interface is made
1645 * active by the system (IFF_UP).  At this point all resources needed
1646 * for transmit and receive operations are allocated, the interrupt
1647 * handler is registered with the OS, the watchdog timer is started,
1648 * and the stack is notified that the interface is ready.
1649 **/
1650static int igbvf_open(struct net_device *netdev)
1651{
1652        struct igbvf_adapter *adapter = netdev_priv(netdev);
1653        struct e1000_hw *hw = &adapter->hw;
1654        int err;
1655
1656        /* disallow open during test */
1657        if (test_bit(__IGBVF_TESTING, &adapter->state))
1658                return -EBUSY;
1659
1660        /* allocate transmit descriptors */
1661        err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1662        if (err)
1663                goto err_setup_tx;
1664
1665        /* allocate receive descriptors */
1666        err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1667        if (err)
1668                goto err_setup_rx;
1669
1670        /* before we allocate an interrupt, we must be ready to handle it.
1671         * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1672         * as soon as we call pci_request_irq, so we have to setup our
1673         * clean_rx handler before we do so.
1674         */
1675        igbvf_configure(adapter);
1676
1677        err = igbvf_request_irq(adapter);
1678        if (err)
1679                goto err_req_irq;
1680
1681        /* From here on the code is the same as igbvf_up() */
1682        clear_bit(__IGBVF_DOWN, &adapter->state);
1683
1684        napi_enable(&adapter->rx_ring->napi);
1685
1686        /* clear any pending interrupts */
1687        er32(EICR);
1688
1689        igbvf_irq_enable(adapter);
1690
1691        /* start the watchdog */
1692        hw->mac.get_link_status = 1;
1693        mod_timer(&adapter->watchdog_timer, jiffies + 1);
1694
1695        return 0;
1696
1697err_req_irq:
1698        igbvf_free_rx_resources(adapter->rx_ring);
1699err_setup_rx:
1700        igbvf_free_tx_resources(adapter->tx_ring);
1701err_setup_tx:
1702        igbvf_reset(adapter);
1703
1704        return err;
1705}
1706
1707/**
1708 * igbvf_close - Disables a network interface
1709 * @netdev: network interface device structure
1710 *
1711 * Returns 0, this is not allowed to fail
1712 *
1713 * The close entry point is called when an interface is de-activated
1714 * by the OS.  The hardware is still under the drivers control, but
1715 * needs to be disabled.  A global MAC reset is issued to stop the
1716 * hardware, and all transmit and receive resources are freed.
1717 **/
1718static int igbvf_close(struct net_device *netdev)
1719{
1720        struct igbvf_adapter *adapter = netdev_priv(netdev);
1721
1722        WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1723        igbvf_down(adapter);
1724
1725        igbvf_free_irq(adapter);
1726
1727        igbvf_free_tx_resources(adapter->tx_ring);
1728        igbvf_free_rx_resources(adapter->rx_ring);
1729
1730        return 0;
1731}
1732
1733/**
1734 * igbvf_set_mac - Change the Ethernet Address of the NIC
1735 * @netdev: network interface device structure
1736 * @p: pointer to an address structure
1737 *
1738 * Returns 0 on success, negative on failure
1739 **/
1740static int igbvf_set_mac(struct net_device *netdev, void *p)
1741{
1742        struct igbvf_adapter *adapter = netdev_priv(netdev);
1743        struct e1000_hw *hw = &adapter->hw;
1744        struct sockaddr *addr = p;
1745
1746        if (!is_valid_ether_addr(addr->sa_data))
1747                return -EADDRNOTAVAIL;
1748
1749        memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1750
1751        hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1752
1753        if (!ether_addr_equal(addr->sa_data, hw->mac.addr))
1754                return -EADDRNOTAVAIL;
1755
1756        memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1757
1758        return 0;
1759}
1760
1761#define UPDATE_VF_COUNTER(reg, name) \
1762{ \
1763        u32 current_counter = er32(reg); \
1764        if (current_counter < adapter->stats.last_##name) \
1765                adapter->stats.name += 0x100000000LL; \
1766        adapter->stats.last_##name = current_counter; \
1767        adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1768        adapter->stats.name |= current_counter; \
1769}
1770
1771/**
1772 * igbvf_update_stats - Update the board statistics counters
1773 * @adapter: board private structure
1774**/
1775void igbvf_update_stats(struct igbvf_adapter *adapter)
1776{
1777        struct e1000_hw *hw = &adapter->hw;
1778        struct pci_dev *pdev = adapter->pdev;
1779
1780        /* Prevent stats update while adapter is being reset, link is down
1781         * or if the pci connection is down.
1782         */
1783        if (adapter->link_speed == 0)
1784                return;
1785
1786        if (test_bit(__IGBVF_RESETTING, &adapter->state))
1787                return;
1788
1789        if (pci_channel_offline(pdev))
1790                return;
1791
1792        UPDATE_VF_COUNTER(VFGPRC, gprc);
1793        UPDATE_VF_COUNTER(VFGORC, gorc);
1794        UPDATE_VF_COUNTER(VFGPTC, gptc);
1795        UPDATE_VF_COUNTER(VFGOTC, gotc);
1796        UPDATE_VF_COUNTER(VFMPRC, mprc);
1797        UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1798        UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1799        UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1800        UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1801
1802        /* Fill out the OS statistics structure */
1803        adapter->net_stats.multicast = adapter->stats.mprc;
1804}
1805
1806static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1807{
1808        dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1809                 adapter->link_speed,
1810                 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
1811}
1812
1813static bool igbvf_has_link(struct igbvf_adapter *adapter)
1814{
1815        struct e1000_hw *hw = &adapter->hw;
1816        s32 ret_val = E1000_SUCCESS;
1817        bool link_active;
1818
1819        /* If interface is down, stay link down */
1820        if (test_bit(__IGBVF_DOWN, &adapter->state))
1821                return false;
1822
1823        ret_val = hw->mac.ops.check_for_link(hw);
1824        link_active = !hw->mac.get_link_status;
1825
1826        /* if check for link returns error we will need to reset */
1827        if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1828                schedule_work(&adapter->reset_task);
1829
1830        return link_active;
1831}
1832
1833/**
1834 * igbvf_watchdog - Timer Call-back
1835 * @data: pointer to adapter cast into an unsigned long
1836 **/
1837static void igbvf_watchdog(unsigned long data)
1838{
1839        struct igbvf_adapter *adapter = (struct igbvf_adapter *)data;
1840
1841        /* Do the rest outside of interrupt context */
1842        schedule_work(&adapter->watchdog_task);
1843}
1844
1845static void igbvf_watchdog_task(struct work_struct *work)
1846{
1847        struct igbvf_adapter *adapter = container_of(work,
1848                                                     struct igbvf_adapter,
1849                                                     watchdog_task);
1850        struct net_device *netdev = adapter->netdev;
1851        struct e1000_mac_info *mac = &adapter->hw.mac;
1852        struct igbvf_ring *tx_ring = adapter->tx_ring;
1853        struct e1000_hw *hw = &adapter->hw;
1854        u32 link;
1855        int tx_pending = 0;
1856
1857        link = igbvf_has_link(adapter);
1858
1859        if (link) {
1860                if (!netif_carrier_ok(netdev)) {
1861                        mac->ops.get_link_up_info(&adapter->hw,
1862                                                  &adapter->link_speed,
1863                                                  &adapter->link_duplex);
1864                        igbvf_print_link_info(adapter);
1865
1866                        netif_carrier_on(netdev);
1867                        netif_wake_queue(netdev);
1868                }
1869        } else {
1870                if (netif_carrier_ok(netdev)) {
1871                        adapter->link_speed = 0;
1872                        adapter->link_duplex = 0;
1873                        dev_info(&adapter->pdev->dev, "Link is Down\n");
1874                        netif_carrier_off(netdev);
1875                        netif_stop_queue(netdev);
1876                }
1877        }
1878
1879        if (netif_carrier_ok(netdev)) {
1880                igbvf_update_stats(adapter);
1881        } else {
1882                tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1883                              tx_ring->count);
1884                if (tx_pending) {
1885                        /* We've lost link, so the controller stops DMA,
1886                         * but we've got queued Tx work that's never going
1887                         * to get done, so reset controller to flush Tx.
1888                         * (Do the reset outside of interrupt context).
1889                         */
1890                        adapter->tx_timeout_count++;
1891                        schedule_work(&adapter->reset_task);
1892                }
1893        }
1894
1895        /* Cause software interrupt to ensure Rx ring is cleaned */
1896        ew32(EICS, adapter->rx_ring->eims_value);
1897
1898        /* Reset the timer */
1899        if (!test_bit(__IGBVF_DOWN, &adapter->state))
1900                mod_timer(&adapter->watchdog_timer,
1901                          round_jiffies(jiffies + (2 * HZ)));
1902}
1903
1904#define IGBVF_TX_FLAGS_CSUM             0x00000001
1905#define IGBVF_TX_FLAGS_VLAN             0x00000002
1906#define IGBVF_TX_FLAGS_TSO              0x00000004
1907#define IGBVF_TX_FLAGS_IPV4             0x00000008
1908#define IGBVF_TX_FLAGS_VLAN_MASK        0xffff0000
1909#define IGBVF_TX_FLAGS_VLAN_SHIFT       16
1910
1911static void igbvf_tx_ctxtdesc(struct igbvf_ring *tx_ring, u32 vlan_macip_lens,
1912                              u32 type_tucmd, u32 mss_l4len_idx)
1913{
1914        struct e1000_adv_tx_context_desc *context_desc;
1915        struct igbvf_buffer *buffer_info;
1916        u16 i = tx_ring->next_to_use;
1917
1918        context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1919        buffer_info = &tx_ring->buffer_info[i];
1920
1921        i++;
1922        tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1923
1924        /* set bits to identify this as an advanced context descriptor */
1925        type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
1926
1927        context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
1928        context_desc->seqnum_seed       = 0;
1929        context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
1930        context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
1931
1932        buffer_info->time_stamp = jiffies;
1933        buffer_info->dma = 0;
1934}
1935
1936static int igbvf_tso(struct igbvf_adapter *adapter,
1937                     struct igbvf_ring *tx_ring,
1938                     struct sk_buff *skb, u32 tx_flags, u8 *hdr_len,
1939                     __be16 protocol)
1940{
1941        struct e1000_adv_tx_context_desc *context_desc;
1942        struct igbvf_buffer *buffer_info;
1943        u32 info = 0, tu_cmd = 0;
1944        u32 mss_l4len_idx, l4len;
1945        unsigned int i;
1946        int err;
1947
1948        *hdr_len = 0;
1949
1950        err = skb_cow_head(skb, 0);
1951        if (err < 0) {
1952                dev_err(&adapter->pdev->dev, "igbvf_tso returning an error\n");
1953                return err;
1954        }
1955
1956        l4len = tcp_hdrlen(skb);
1957        *hdr_len += l4len;
1958
1959        if (protocol == htons(ETH_P_IP)) {
1960                struct iphdr *iph = ip_hdr(skb);
1961
1962                iph->tot_len = 0;
1963                iph->check = 0;
1964                tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1965                                                         iph->daddr, 0,
1966                                                         IPPROTO_TCP,
1967                                                         0);
1968        } else if (skb_is_gso_v6(skb)) {
1969                ipv6_hdr(skb)->payload_len = 0;
1970                tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1971                                                       &ipv6_hdr(skb)->daddr,
1972                                                       0, IPPROTO_TCP, 0);
1973        }
1974
1975        i = tx_ring->next_to_use;
1976
1977        buffer_info = &tx_ring->buffer_info[i];
1978        context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1979        /* VLAN MACLEN IPLEN */
1980        if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1981                info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1982        info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1983        *hdr_len += skb_network_offset(skb);
1984        info |= (skb_transport_header(skb) - skb_network_header(skb));
1985        *hdr_len += (skb_transport_header(skb) - skb_network_header(skb));
1986        context_desc->vlan_macip_lens = cpu_to_le32(info);
1987
1988        /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1989        tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1990
1991        if (protocol == htons(ETH_P_IP))
1992                tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1993        tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1994
1995        context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
1996
1997        /* MSS L4LEN IDX */
1998        mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
1999        mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
2000
2001        context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2002        context_desc->seqnum_seed = 0;
2003
2004        buffer_info->time_stamp = jiffies;
2005        buffer_info->dma = 0;
2006        i++;
2007        if (i == tx_ring->count)
2008                i = 0;
2009
2010        tx_ring->next_to_use = i;
2011
2012        return true;
2013}
2014
2015static inline bool igbvf_ipv6_csum_is_sctp(struct sk_buff *skb)
2016{
2017        unsigned int offset = 0;
2018
2019        ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
2020
2021        return offset == skb_checksum_start_offset(skb);
2022}
2023
2024static bool igbvf_tx_csum(struct igbvf_ring *tx_ring, struct sk_buff *skb,
2025                          u32 tx_flags, __be16 protocol)
2026{
2027        u32 vlan_macip_lens = 0;
2028        u32 type_tucmd = 0;
2029
2030        if (skb->ip_summed != CHECKSUM_PARTIAL) {
2031csum_failed:
2032                if (!(tx_flags & IGBVF_TX_FLAGS_VLAN))
2033                        return false;
2034                goto no_csum;
2035        }
2036
2037        switch (skb->csum_offset) {
2038        case offsetof(struct tcphdr, check):
2039                type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2040                /* fall through */
2041        case offsetof(struct udphdr, check):
2042                break;
2043        case offsetof(struct sctphdr, checksum):
2044                /* validate that this is actually an SCTP request */
2045                if (((protocol == htons(ETH_P_IP)) &&
2046                     (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
2047                    ((protocol == htons(ETH_P_IPV6)) &&
2048                     igbvf_ipv6_csum_is_sctp(skb))) {
2049                        type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
2050                        break;
2051                }
2052        default:
2053                skb_checksum_help(skb);
2054                goto csum_failed;
2055        }
2056
2057        vlan_macip_lens = skb_checksum_start_offset(skb) -
2058                          skb_network_offset(skb);
2059no_csum:
2060        vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
2061        vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2062
2063        igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
2064        return true;
2065}
2066
2067static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2068{
2069        struct igbvf_adapter *adapter = netdev_priv(netdev);
2070
2071        /* there is enough descriptors then we don't need to worry  */
2072        if (igbvf_desc_unused(adapter->tx_ring) >= size)
2073                return 0;
2074
2075        netif_stop_queue(netdev);
2076
2077        /* Herbert's original patch had:
2078         *  smp_mb__after_netif_stop_queue();
2079         * but since that doesn't exist yet, just open code it.
2080         */
2081        smp_mb();
2082
2083        /* We need to check again just in case room has been made available */
2084        if (igbvf_desc_unused(adapter->tx_ring) < size)
2085                return -EBUSY;
2086
2087        netif_wake_queue(netdev);
2088
2089        ++adapter->restart_queue;
2090        return 0;
2091}
2092
2093#define IGBVF_MAX_TXD_PWR       16
2094#define IGBVF_MAX_DATA_PER_TXD  (1 << IGBVF_MAX_TXD_PWR)
2095
2096static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2097                                   struct igbvf_ring *tx_ring,
2098                                   struct sk_buff *skb)
2099{
2100        struct igbvf_buffer *buffer_info;
2101        struct pci_dev *pdev = adapter->pdev;
2102        unsigned int len = skb_headlen(skb);
2103        unsigned int count = 0, i;
2104        unsigned int f;
2105
2106        i = tx_ring->next_to_use;
2107
2108        buffer_info = &tx_ring->buffer_info[i];
2109        BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2110        buffer_info->length = len;
2111        /* set time_stamp *before* dma to help avoid a possible race */
2112        buffer_info->time_stamp = jiffies;
2113        buffer_info->mapped_as_page = false;
2114        buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2115                                          DMA_TO_DEVICE);
2116        if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2117                goto dma_error;
2118
2119        for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2120                const struct skb_frag_struct *frag;
2121
2122                count++;
2123                i++;
2124                if (i == tx_ring->count)
2125                        i = 0;
2126
2127                frag = &skb_shinfo(skb)->frags[f];
2128                len = skb_frag_size(frag);
2129
2130                buffer_info = &tx_ring->buffer_info[i];
2131                BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2132                buffer_info->length = len;
2133                buffer_info->time_stamp = jiffies;
2134                buffer_info->mapped_as_page = true;
2135                buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2136                                                    DMA_TO_DEVICE);
2137                if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2138                        goto dma_error;
2139        }
2140
2141        tx_ring->buffer_info[i].skb = skb;
2142
2143        return ++count;
2144
2145dma_error:
2146        dev_err(&pdev->dev, "TX DMA map failed\n");
2147
2148        /* clear timestamp and dma mappings for failed buffer_info mapping */
2149        buffer_info->dma = 0;
2150        buffer_info->time_stamp = 0;
2151        buffer_info->length = 0;
2152        buffer_info->mapped_as_page = false;
2153        if (count)
2154                count--;
2155
2156        /* clear timestamp and dma mappings for remaining portion of packet */
2157        while (count--) {
2158                if (i == 0)
2159                        i += tx_ring->count;
2160                i--;
2161                buffer_info = &tx_ring->buffer_info[i];
2162                igbvf_put_txbuf(adapter, buffer_info);
2163        }
2164
2165        return 0;
2166}
2167
2168static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2169                                      struct igbvf_ring *tx_ring,
2170                                      int tx_flags, int count,
2171                                      unsigned int first, u32 paylen,
2172                                      u8 hdr_len)
2173{
2174        union e1000_adv_tx_desc *tx_desc = NULL;
2175        struct igbvf_buffer *buffer_info;
2176        u32 olinfo_status = 0, cmd_type_len;
2177        unsigned int i;
2178
2179        cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2180                        E1000_ADVTXD_DCMD_DEXT);
2181
2182        if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2183                cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2184
2185        if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2186                cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2187
2188                /* insert tcp checksum */
2189                olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2190
2191                /* insert ip checksum */
2192                if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2193                        olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2194
2195        } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2196                olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2197        }
2198
2199        olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2200
2201        i = tx_ring->next_to_use;
2202        while (count--) {
2203                buffer_info = &tx_ring->buffer_info[i];
2204                tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2205                tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2206                tx_desc->read.cmd_type_len =
2207                         cpu_to_le32(cmd_type_len | buffer_info->length);
2208                tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2209                i++;
2210                if (i == tx_ring->count)
2211                        i = 0;
2212        }
2213
2214        tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2215        /* Force memory writes to complete before letting h/w
2216         * know there are new descriptors to fetch.  (Only
2217         * applicable for weak-ordered memory model archs,
2218         * such as IA-64).
2219         */
2220        wmb();
2221
2222        tx_ring->buffer_info[first].next_to_watch = tx_desc;
2223        tx_ring->next_to_use = i;
2224        writel(i, adapter->hw.hw_addr + tx_ring->tail);
2225        /* we need this if more than one processor can write to our tail
2226         * at a time, it synchronizes IO on IA64/Altix systems
2227         */
2228        mmiowb();
2229}
2230
2231static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2232                                             struct net_device *netdev,
2233                                             struct igbvf_ring *tx_ring)
2234{
2235        struct igbvf_adapter *adapter = netdev_priv(netdev);
2236        unsigned int first, tx_flags = 0;
2237        u8 hdr_len = 0;
2238        int count = 0;
2239        int tso = 0;
2240        __be16 protocol = vlan_get_protocol(skb);
2241
2242        if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2243                dev_kfree_skb_any(skb);
2244                return NETDEV_TX_OK;
2245        }
2246
2247        if (skb->len <= 0) {
2248                dev_kfree_skb_any(skb);
2249                return NETDEV_TX_OK;
2250        }
2251
2252        /* need: count + 4 desc gap to keep tail from touching
2253         *       + 2 desc gap to keep tail from touching head,
2254         *       + 1 desc for skb->data,
2255         *       + 1 desc for context descriptor,
2256         * head, otherwise try next time
2257         */
2258        if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2259                /* this is a hard error */
2260                return NETDEV_TX_BUSY;
2261        }
2262
2263        if (skb_vlan_tag_present(skb)) {
2264                tx_flags |= IGBVF_TX_FLAGS_VLAN;
2265                tx_flags |= (skb_vlan_tag_get(skb) <<
2266                             IGBVF_TX_FLAGS_VLAN_SHIFT);
2267        }
2268
2269        if (protocol == htons(ETH_P_IP))
2270                tx_flags |= IGBVF_TX_FLAGS_IPV4;
2271
2272        first = tx_ring->next_to_use;
2273
2274        tso = skb_is_gso(skb) ?
2275                igbvf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len, protocol) : 0;
2276        if (unlikely(tso < 0)) {
2277                dev_kfree_skb_any(skb);
2278                return NETDEV_TX_OK;
2279        }
2280
2281        if (tso)
2282                tx_flags |= IGBVF_TX_FLAGS_TSO;
2283        else if (igbvf_tx_csum(tx_ring, skb, tx_flags, protocol) &&
2284                 (skb->ip_summed == CHECKSUM_PARTIAL))
2285                tx_flags |= IGBVF_TX_FLAGS_CSUM;
2286
2287        /* count reflects descriptors mapped, if 0 then mapping error
2288         * has occurred and we need to rewind the descriptor queue
2289         */
2290        count = igbvf_tx_map_adv(adapter, tx_ring, skb);
2291
2292        if (count) {
2293                igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2294                                   first, skb->len, hdr_len);
2295                /* Make sure there is space in the ring for the next send. */
2296                igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2297        } else {
2298                dev_kfree_skb_any(skb);
2299                tx_ring->buffer_info[first].time_stamp = 0;
2300                tx_ring->next_to_use = first;
2301        }
2302
2303        return NETDEV_TX_OK;
2304}
2305
2306static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2307                                    struct net_device *netdev)
2308{
2309        struct igbvf_adapter *adapter = netdev_priv(netdev);
2310        struct igbvf_ring *tx_ring;
2311
2312        if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2313                dev_kfree_skb_any(skb);
2314                return NETDEV_TX_OK;
2315        }
2316
2317        tx_ring = &adapter->tx_ring[0];
2318
2319        return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2320}
2321
2322/**
2323 * igbvf_tx_timeout - Respond to a Tx Hang
2324 * @netdev: network interface device structure
2325 **/
2326static void igbvf_tx_timeout(struct net_device *netdev)
2327{
2328        struct igbvf_adapter *adapter = netdev_priv(netdev);
2329
2330        /* Do the reset outside of interrupt context */
2331        adapter->tx_timeout_count++;
2332        schedule_work(&adapter->reset_task);
2333}
2334
2335static void igbvf_reset_task(struct work_struct *work)
2336{
2337        struct igbvf_adapter *adapter;
2338
2339        adapter = container_of(work, struct igbvf_adapter, reset_task);
2340
2341        igbvf_reinit_locked(adapter);
2342}
2343
2344/**
2345 * igbvf_get_stats - Get System Network Statistics
2346 * @netdev: network interface device structure
2347 *
2348 * Returns the address of the device statistics structure.
2349 * The statistics are actually updated from the timer callback.
2350 **/
2351static struct net_device_stats *igbvf_get_stats(struct net_device *netdev)
2352{
2353        struct igbvf_adapter *adapter = netdev_priv(netdev);
2354
2355        /* only return the current stats */
2356        return &adapter->net_stats;
2357}
2358
2359/**
2360 * igbvf_change_mtu - Change the Maximum Transfer Unit
2361 * @netdev: network interface device structure
2362 * @new_mtu: new value for maximum frame size
2363 *
2364 * Returns 0 on success, negative on failure
2365 **/
2366static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2367{
2368        struct igbvf_adapter *adapter = netdev_priv(netdev);
2369        int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2370
2371        if (new_mtu < 68 || new_mtu > INT_MAX - ETH_HLEN - ETH_FCS_LEN ||
2372            max_frame > MAX_JUMBO_FRAME_SIZE)
2373                return -EINVAL;
2374
2375#define MAX_STD_JUMBO_FRAME_SIZE 9234
2376        if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2377                dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2378                return -EINVAL;
2379        }
2380
2381        while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2382                usleep_range(1000, 2000);
2383        /* igbvf_down has a dependency on max_frame_size */
2384        adapter->max_frame_size = max_frame;
2385        if (netif_running(netdev))
2386                igbvf_down(adapter);
2387
2388        /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2389         * means we reserve 2 more, this pushes us to allocate from the next
2390         * larger slab size.
2391         * i.e. RXBUFFER_2048 --> size-4096 slab
2392         * However with the new *_jumbo_rx* routines, jumbo receives will use
2393         * fragmented skbs
2394         */
2395
2396        if (max_frame <= 1024)
2397                adapter->rx_buffer_len = 1024;
2398        else if (max_frame <= 2048)
2399                adapter->rx_buffer_len = 2048;
2400        else
2401#if (PAGE_SIZE / 2) > 16384
2402                adapter->rx_buffer_len = 16384;
2403#else
2404                adapter->rx_buffer_len = PAGE_SIZE / 2;
2405#endif
2406
2407        /* adjust allocation if LPE protects us, and we aren't using SBP */
2408        if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2409            (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2410                adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2411                                         ETH_FCS_LEN;
2412
2413        dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2414                 netdev->mtu, new_mtu);
2415        netdev->mtu = new_mtu;
2416
2417        if (netif_running(netdev))
2418                igbvf_up(adapter);
2419        else
2420                igbvf_reset(adapter);
2421
2422        clear_bit(__IGBVF_RESETTING, &adapter->state);
2423
2424        return 0;
2425}
2426
2427static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2428{
2429        switch (cmd) {
2430        default:
2431                return -EOPNOTSUPP;
2432        }
2433}
2434
2435static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2436{
2437        struct net_device *netdev = pci_get_drvdata(pdev);
2438        struct igbvf_adapter *adapter = netdev_priv(netdev);
2439#ifdef CONFIG_PM
2440        int retval = 0;
2441#endif
2442
2443        netif_device_detach(netdev);
2444
2445        if (netif_running(netdev)) {
2446                WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2447                igbvf_down(adapter);
2448                igbvf_free_irq(adapter);
2449        }
2450
2451#ifdef CONFIG_PM
2452        retval = pci_save_state(pdev);
2453        if (retval)
2454                return retval;
2455#endif
2456
2457        pci_disable_device(pdev);
2458
2459        return 0;
2460}
2461
2462#ifdef CONFIG_PM
2463static int igbvf_resume(struct pci_dev *pdev)
2464{
2465        struct net_device *netdev = pci_get_drvdata(pdev);
2466        struct igbvf_adapter *adapter = netdev_priv(netdev);
2467        u32 err;
2468
2469        pci_restore_state(pdev);
2470        err = pci_enable_device_mem(pdev);
2471        if (err) {
2472                dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2473                return err;
2474        }
2475
2476        pci_set_master(pdev);
2477
2478        if (netif_running(netdev)) {
2479                err = igbvf_request_irq(adapter);
2480                if (err)
2481                        return err;
2482        }
2483
2484        igbvf_reset(adapter);
2485
2486        if (netif_running(netdev))
2487                igbvf_up(adapter);
2488
2489        netif_device_attach(netdev);
2490
2491        return 0;
2492}
2493#endif
2494
2495static void igbvf_shutdown(struct pci_dev *pdev)
2496{
2497        igbvf_suspend(pdev, PMSG_SUSPEND);
2498}
2499
2500#ifdef CONFIG_NET_POLL_CONTROLLER
2501/* Polling 'interrupt' - used by things like netconsole to send skbs
2502 * without having to re-enable interrupts. It's not called while
2503 * the interrupt routine is executing.
2504 */
2505static void igbvf_netpoll(struct net_device *netdev)
2506{
2507        struct igbvf_adapter *adapter = netdev_priv(netdev);
2508
2509        disable_irq(adapter->pdev->irq);
2510
2511        igbvf_clean_tx_irq(adapter->tx_ring);
2512
2513        enable_irq(adapter->pdev->irq);
2514}
2515#endif
2516
2517/**
2518 * igbvf_io_error_detected - called when PCI error is detected
2519 * @pdev: Pointer to PCI device
2520 * @state: The current pci connection state
2521 *
2522 * This function is called after a PCI bus error affecting
2523 * this device has been detected.
2524 */
2525static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2526                                                pci_channel_state_t state)
2527{
2528        struct net_device *netdev = pci_get_drvdata(pdev);
2529        struct igbvf_adapter *adapter = netdev_priv(netdev);
2530
2531        netif_device_detach(netdev);
2532
2533        if (state == pci_channel_io_perm_failure)
2534                return PCI_ERS_RESULT_DISCONNECT;
2535
2536        if (netif_running(netdev))
2537                igbvf_down(adapter);
2538        pci_disable_device(pdev);
2539
2540        /* Request a slot slot reset. */
2541        return PCI_ERS_RESULT_NEED_RESET;
2542}
2543
2544/**
2545 * igbvf_io_slot_reset - called after the pci bus has been reset.
2546 * @pdev: Pointer to PCI device
2547 *
2548 * Restart the card from scratch, as if from a cold-boot. Implementation
2549 * resembles the first-half of the igbvf_resume routine.
2550 */
2551static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2552{
2553        struct net_device *netdev = pci_get_drvdata(pdev);
2554        struct igbvf_adapter *adapter = netdev_priv(netdev);
2555
2556        if (pci_enable_device_mem(pdev)) {
2557                dev_err(&pdev->dev,
2558                        "Cannot re-enable PCI device after reset.\n");
2559                return PCI_ERS_RESULT_DISCONNECT;
2560        }
2561        pci_set_master(pdev);
2562
2563        igbvf_reset(adapter);
2564
2565        return PCI_ERS_RESULT_RECOVERED;
2566}
2567
2568/**
2569 * igbvf_io_resume - called when traffic can start flowing again.
2570 * @pdev: Pointer to PCI device
2571 *
2572 * This callback is called when the error recovery driver tells us that
2573 * its OK to resume normal operation. Implementation resembles the
2574 * second-half of the igbvf_resume routine.
2575 */
2576static void igbvf_io_resume(struct pci_dev *pdev)
2577{
2578        struct net_device *netdev = pci_get_drvdata(pdev);
2579        struct igbvf_adapter *adapter = netdev_priv(netdev);
2580
2581        if (netif_running(netdev)) {
2582                if (igbvf_up(adapter)) {
2583                        dev_err(&pdev->dev,
2584                                "can't bring device back up after reset\n");
2585                        return;
2586                }
2587        }
2588
2589        netif_device_attach(netdev);
2590}
2591
2592static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2593{
2594        struct e1000_hw *hw = &adapter->hw;
2595        struct net_device *netdev = adapter->netdev;
2596        struct pci_dev *pdev = adapter->pdev;
2597
2598        if (hw->mac.type == e1000_vfadapt_i350)
2599                dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2600        else
2601                dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2602        dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2603}
2604
2605static int igbvf_set_features(struct net_device *netdev,
2606                              netdev_features_t features)
2607{
2608        struct igbvf_adapter *adapter = netdev_priv(netdev);
2609
2610        if (features & NETIF_F_RXCSUM)
2611                adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2612        else
2613                adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2614
2615        return 0;
2616}
2617
2618static const struct net_device_ops igbvf_netdev_ops = {
2619        .ndo_open               = igbvf_open,
2620        .ndo_stop               = igbvf_close,
2621        .ndo_start_xmit         = igbvf_xmit_frame,
2622        .ndo_get_stats          = igbvf_get_stats,
2623        .ndo_set_rx_mode        = igbvf_set_multi,
2624        .ndo_set_mac_address    = igbvf_set_mac,
2625        .ndo_change_mtu         = igbvf_change_mtu,
2626        .ndo_do_ioctl           = igbvf_ioctl,
2627        .ndo_tx_timeout         = igbvf_tx_timeout,
2628        .ndo_vlan_rx_add_vid    = igbvf_vlan_rx_add_vid,
2629        .ndo_vlan_rx_kill_vid   = igbvf_vlan_rx_kill_vid,
2630#ifdef CONFIG_NET_POLL_CONTROLLER
2631        .ndo_poll_controller    = igbvf_netpoll,
2632#endif
2633        .ndo_set_features       = igbvf_set_features,
2634        .ndo_features_check     = passthru_features_check,
2635};
2636
2637/**
2638 * igbvf_probe - Device Initialization Routine
2639 * @pdev: PCI device information struct
2640 * @ent: entry in igbvf_pci_tbl
2641 *
2642 * Returns 0 on success, negative on failure
2643 *
2644 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2645 * The OS initialization, configuring of the adapter private structure,
2646 * and a hardware reset occur.
2647 **/
2648static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2649{
2650        struct net_device *netdev;
2651        struct igbvf_adapter *adapter;
2652        struct e1000_hw *hw;
2653        const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2654
2655        static int cards_found;
2656        int err, pci_using_dac;
2657
2658        err = pci_enable_device_mem(pdev);
2659        if (err)
2660                return err;
2661
2662        pci_using_dac = 0;
2663        err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2664        if (!err) {
2665                pci_using_dac = 1;
2666        } else {
2667                err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2668                if (err) {
2669                        dev_err(&pdev->dev,
2670                                "No usable DMA configuration, aborting\n");
2671                        goto err_dma;
2672                }
2673        }
2674
2675        err = pci_request_regions(pdev, igbvf_driver_name);
2676        if (err)
2677                goto err_pci_reg;
2678
2679        pci_set_master(pdev);
2680
2681        err = -ENOMEM;
2682        netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2683        if (!netdev)
2684                goto err_alloc_etherdev;
2685
2686        SET_NETDEV_DEV(netdev, &pdev->dev);
2687
2688        pci_set_drvdata(pdev, netdev);
2689        adapter = netdev_priv(netdev);
2690        hw = &adapter->hw;
2691        adapter->netdev = netdev;
2692        adapter->pdev = pdev;
2693        adapter->ei = ei;
2694        adapter->pba = ei->pba;
2695        adapter->flags = ei->flags;
2696        adapter->hw.back = adapter;
2697        adapter->hw.mac.type = ei->mac;
2698        adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2699
2700        /* PCI config space info */
2701
2702        hw->vendor_id = pdev->vendor;
2703        hw->device_id = pdev->device;
2704        hw->subsystem_vendor_id = pdev->subsystem_vendor;
2705        hw->subsystem_device_id = pdev->subsystem_device;
2706        hw->revision_id = pdev->revision;
2707
2708        err = -EIO;
2709        adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2710                                      pci_resource_len(pdev, 0));
2711
2712        if (!adapter->hw.hw_addr)
2713                goto err_ioremap;
2714
2715        if (ei->get_variants) {
2716                err = ei->get_variants(adapter);
2717                if (err)
2718                        goto err_get_variants;
2719        }
2720
2721        /* setup adapter struct */
2722        err = igbvf_sw_init(adapter);
2723        if (err)
2724                goto err_sw_init;
2725
2726        /* construct the net_device struct */
2727        netdev->netdev_ops = &igbvf_netdev_ops;
2728
2729        igbvf_set_ethtool_ops(netdev);
2730        netdev->watchdog_timeo = 5 * HZ;
2731        strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2732
2733        adapter->bd_number = cards_found++;
2734
2735        netdev->hw_features = NETIF_F_SG |
2736                              NETIF_F_TSO |
2737                              NETIF_F_TSO6 |
2738                              NETIF_F_RXCSUM |
2739                              NETIF_F_HW_CSUM |
2740                              NETIF_F_SCTP_CRC;
2741
2742        netdev->features = netdev->hw_features |
2743                           NETIF_F_HW_VLAN_CTAG_TX |
2744                           NETIF_F_HW_VLAN_CTAG_RX |
2745                           NETIF_F_HW_VLAN_CTAG_FILTER;
2746
2747        if (pci_using_dac)
2748                netdev->features |= NETIF_F_HIGHDMA;
2749
2750        netdev->vlan_features |= NETIF_F_SG |
2751                                 NETIF_F_TSO |
2752                                 NETIF_F_TSO6 |
2753                                 NETIF_F_HW_CSUM |
2754                                 NETIF_F_SCTP_CRC;
2755
2756        netdev->mpls_features |= NETIF_F_HW_CSUM;
2757        netdev->hw_enc_features |= NETIF_F_HW_CSUM;
2758
2759        /*reset the controller to put the device in a known good state */
2760        err = hw->mac.ops.reset_hw(hw);
2761        if (err) {
2762                dev_info(&pdev->dev,
2763                         "PF still in reset state. Is the PF interface up?\n");
2764        } else {
2765                err = hw->mac.ops.read_mac_addr(hw);
2766                if (err)
2767                        dev_info(&pdev->dev, "Error reading MAC address.\n");
2768                else if (is_zero_ether_addr(adapter->hw.mac.addr))
2769                        dev_info(&pdev->dev,
2770                                 "MAC address not assigned by administrator.\n");
2771                memcpy(netdev->dev_addr, adapter->hw.mac.addr,
2772                       netdev->addr_len);
2773        }
2774
2775        if (!is_valid_ether_addr(netdev->dev_addr)) {
2776                dev_info(&pdev->dev, "Assigning random MAC address.\n");
2777                eth_hw_addr_random(netdev);
2778                memcpy(adapter->hw.mac.addr, netdev->dev_addr,
2779                       netdev->addr_len);
2780        }
2781
2782        setup_timer(&adapter->watchdog_timer, &igbvf_watchdog,
2783                    (unsigned long)adapter);
2784
2785        INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2786        INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2787
2788        /* ring size defaults */
2789        adapter->rx_ring->count = 1024;
2790        adapter->tx_ring->count = 1024;
2791
2792        /* reset the hardware with the new settings */
2793        igbvf_reset(adapter);
2794
2795        /* set hardware-specific flags */
2796        if (adapter->hw.mac.type == e1000_vfadapt_i350)
2797                adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP;
2798
2799        strcpy(netdev->name, "eth%d");
2800        err = register_netdev(netdev);
2801        if (err)
2802                goto err_hw_init;
2803
2804        /* tell the stack to leave us alone until igbvf_open() is called */
2805        netif_carrier_off(netdev);
2806        netif_stop_queue(netdev);
2807
2808        igbvf_print_device_info(adapter);
2809
2810        igbvf_initialize_last_counter_stats(adapter);
2811
2812        return 0;
2813
2814err_hw_init:
2815        kfree(adapter->tx_ring);
2816        kfree(adapter->rx_ring);
2817err_sw_init:
2818        igbvf_reset_interrupt_capability(adapter);
2819err_get_variants:
2820        iounmap(adapter->hw.hw_addr);
2821err_ioremap:
2822        free_netdev(netdev);
2823err_alloc_etherdev:
2824        pci_release_regions(pdev);
2825err_pci_reg:
2826err_dma:
2827        pci_disable_device(pdev);
2828        return err;
2829}
2830
2831/**
2832 * igbvf_remove - Device Removal Routine
2833 * @pdev: PCI device information struct
2834 *
2835 * igbvf_remove is called by the PCI subsystem to alert the driver
2836 * that it should release a PCI device.  The could be caused by a
2837 * Hot-Plug event, or because the driver is going to be removed from
2838 * memory.
2839 **/
2840static void igbvf_remove(struct pci_dev *pdev)
2841{
2842        struct net_device *netdev = pci_get_drvdata(pdev);
2843        struct igbvf_adapter *adapter = netdev_priv(netdev);
2844        struct e1000_hw *hw = &adapter->hw;
2845
2846        /* The watchdog timer may be rescheduled, so explicitly
2847         * disable it from being rescheduled.
2848         */
2849        set_bit(__IGBVF_DOWN, &adapter->state);
2850        del_timer_sync(&adapter->watchdog_timer);
2851
2852        cancel_work_sync(&adapter->reset_task);
2853        cancel_work_sync(&adapter->watchdog_task);
2854
2855        unregister_netdev(netdev);
2856
2857        igbvf_reset_interrupt_capability(adapter);
2858
2859        /* it is important to delete the NAPI struct prior to freeing the
2860         * Rx ring so that you do not end up with null pointer refs
2861         */
2862        netif_napi_del(&adapter->rx_ring->napi);
2863        kfree(adapter->tx_ring);
2864        kfree(adapter->rx_ring);
2865
2866        iounmap(hw->hw_addr);
2867        if (hw->flash_address)
2868                iounmap(hw->flash_address);
2869        pci_release_regions(pdev);
2870
2871        free_netdev(netdev);
2872
2873        pci_disable_device(pdev);
2874}
2875
2876/* PCI Error Recovery (ERS) */
2877static const struct pci_error_handlers igbvf_err_handler = {
2878        .error_detected = igbvf_io_error_detected,
2879        .slot_reset = igbvf_io_slot_reset,
2880        .resume = igbvf_io_resume,
2881};
2882
2883static const struct pci_device_id igbvf_pci_tbl[] = {
2884        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2885        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2886        { } /* terminate list */
2887};
2888MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2889
2890/* PCI Device API Driver */
2891static struct pci_driver igbvf_driver = {
2892        .name           = igbvf_driver_name,
2893        .id_table       = igbvf_pci_tbl,
2894        .probe          = igbvf_probe,
2895        .remove         = igbvf_remove,
2896#ifdef CONFIG_PM
2897        /* Power Management Hooks */
2898        .suspend        = igbvf_suspend,
2899        .resume         = igbvf_resume,
2900#endif
2901        .shutdown       = igbvf_shutdown,
2902        .err_handler    = &igbvf_err_handler
2903};
2904
2905/**
2906 * igbvf_init_module - Driver Registration Routine
2907 *
2908 * igbvf_init_module is the first routine called when the driver is
2909 * loaded. All it does is register with the PCI subsystem.
2910 **/
2911static int __init igbvf_init_module(void)
2912{
2913        int ret;
2914
2915        pr_info("%s - version %s\n", igbvf_driver_string, igbvf_driver_version);
2916        pr_info("%s\n", igbvf_copyright);
2917
2918        ret = pci_register_driver(&igbvf_driver);
2919
2920        return ret;
2921}
2922module_init(igbvf_init_module);
2923
2924/**
2925 * igbvf_exit_module - Driver Exit Cleanup Routine
2926 *
2927 * igbvf_exit_module is called just before the driver is removed
2928 * from memory.
2929 **/
2930static void __exit igbvf_exit_module(void)
2931{
2932        pci_unregister_driver(&igbvf_driver);
2933}
2934module_exit(igbvf_exit_module);
2935
2936MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2937MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
2938MODULE_LICENSE("GPL");
2939MODULE_VERSION(DRV_VERSION);
2940
2941/* netdev.c */
2942