linux/drivers/net/ethernet/intel/ixgbe/ixgbe_common.c
<<
>>
Prefs
   1/*******************************************************************************
   2
   3  Intel 10 Gigabit PCI Express Linux driver
   4  Copyright(c) 1999 - 2015 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  Linux NICS <linux.nics@intel.com>
  24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  26
  27*******************************************************************************/
  28
  29#include <linux/pci.h>
  30#include <linux/delay.h>
  31#include <linux/sched.h>
  32#include <linux/netdevice.h>
  33
  34#include "ixgbe.h"
  35#include "ixgbe_common.h"
  36#include "ixgbe_phy.h"
  37
  38static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
  39static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
  40static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
  41static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
  42static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
  43static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
  44                                        u16 count);
  45static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
  46static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
  47static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
  48static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
  49
  50static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
  51static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
  52static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
  53                                             u16 words, u16 *data);
  54static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
  55                                             u16 words, u16 *data);
  56static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
  57                                                 u16 offset);
  58static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw);
  59
  60/* Base table for registers values that change by MAC */
  61const u32 ixgbe_mvals_8259X[IXGBE_MVALS_IDX_LIMIT] = {
  62        IXGBE_MVALS_INIT(8259X)
  63};
  64
  65/**
  66 *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
  67 *  control
  68 *  @hw: pointer to hardware structure
  69 *
  70 *  There are several phys that do not support autoneg flow control. This
  71 *  function check the device id to see if the associated phy supports
  72 *  autoneg flow control.
  73 **/
  74bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
  75{
  76        bool supported = false;
  77        ixgbe_link_speed speed;
  78        bool link_up;
  79
  80        switch (hw->phy.media_type) {
  81        case ixgbe_media_type_fiber:
  82                hw->mac.ops.check_link(hw, &speed, &link_up, false);
  83                /* if link is down, assume supported */
  84                if (link_up)
  85                        supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
  86                                true : false;
  87                else
  88                        supported = true;
  89                break;
  90        case ixgbe_media_type_backplane:
  91                supported = true;
  92                break;
  93        case ixgbe_media_type_copper:
  94                /* only some copper devices support flow control autoneg */
  95                switch (hw->device_id) {
  96                case IXGBE_DEV_ID_82599_T3_LOM:
  97                case IXGBE_DEV_ID_X540T:
  98                case IXGBE_DEV_ID_X540T1:
  99                case IXGBE_DEV_ID_X550T:
 100                case IXGBE_DEV_ID_X550EM_X_10G_T:
 101                        supported = true;
 102                        break;
 103                default:
 104                        break;
 105                }
 106        default:
 107                break;
 108        }
 109
 110        return supported;
 111}
 112
 113/**
 114 *  ixgbe_setup_fc - Set up flow control
 115 *  @hw: pointer to hardware structure
 116 *
 117 *  Called at init time to set up flow control.
 118 **/
 119static s32 ixgbe_setup_fc(struct ixgbe_hw *hw)
 120{
 121        s32 ret_val = 0;
 122        u32 reg = 0, reg_bp = 0;
 123        u16 reg_cu = 0;
 124        bool locked = false;
 125
 126        /*
 127         * Validate the requested mode.  Strict IEEE mode does not allow
 128         * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
 129         */
 130        if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
 131                hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
 132                return IXGBE_ERR_INVALID_LINK_SETTINGS;
 133        }
 134
 135        /*
 136         * 10gig parts do not have a word in the EEPROM to determine the
 137         * default flow control setting, so we explicitly set it to full.
 138         */
 139        if (hw->fc.requested_mode == ixgbe_fc_default)
 140                hw->fc.requested_mode = ixgbe_fc_full;
 141
 142        /*
 143         * Set up the 1G and 10G flow control advertisement registers so the
 144         * HW will be able to do fc autoneg once the cable is plugged in.  If
 145         * we link at 10G, the 1G advertisement is harmless and vice versa.
 146         */
 147        switch (hw->phy.media_type) {
 148        case ixgbe_media_type_backplane:
 149                /* some MAC's need RMW protection on AUTOC */
 150                ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
 151                if (ret_val)
 152                        return ret_val;
 153
 154                /* only backplane uses autoc so fall though */
 155        case ixgbe_media_type_fiber:
 156                reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
 157
 158                break;
 159        case ixgbe_media_type_copper:
 160                hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
 161                                        MDIO_MMD_AN, &reg_cu);
 162                break;
 163        default:
 164                break;
 165        }
 166
 167        /*
 168         * The possible values of fc.requested_mode are:
 169         * 0: Flow control is completely disabled
 170         * 1: Rx flow control is enabled (we can receive pause frames,
 171         *    but not send pause frames).
 172         * 2: Tx flow control is enabled (we can send pause frames but
 173         *    we do not support receiving pause frames).
 174         * 3: Both Rx and Tx flow control (symmetric) are enabled.
 175         * other: Invalid.
 176         */
 177        switch (hw->fc.requested_mode) {
 178        case ixgbe_fc_none:
 179                /* Flow control completely disabled by software override. */
 180                reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
 181                if (hw->phy.media_type == ixgbe_media_type_backplane)
 182                        reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
 183                                    IXGBE_AUTOC_ASM_PAUSE);
 184                else if (hw->phy.media_type == ixgbe_media_type_copper)
 185                        reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
 186                break;
 187        case ixgbe_fc_tx_pause:
 188                /*
 189                 * Tx Flow control is enabled, and Rx Flow control is
 190                 * disabled by software override.
 191                 */
 192                reg |= IXGBE_PCS1GANA_ASM_PAUSE;
 193                reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
 194                if (hw->phy.media_type == ixgbe_media_type_backplane) {
 195                        reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
 196                        reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
 197                } else if (hw->phy.media_type == ixgbe_media_type_copper) {
 198                        reg_cu |= IXGBE_TAF_ASM_PAUSE;
 199                        reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
 200                }
 201                break;
 202        case ixgbe_fc_rx_pause:
 203                /*
 204                 * Rx Flow control is enabled and Tx Flow control is
 205                 * disabled by software override. Since there really
 206                 * isn't a way to advertise that we are capable of RX
 207                 * Pause ONLY, we will advertise that we support both
 208                 * symmetric and asymmetric Rx PAUSE, as such we fall
 209                 * through to the fc_full statement.  Later, we will
 210                 * disable the adapter's ability to send PAUSE frames.
 211                 */
 212        case ixgbe_fc_full:
 213                /* Flow control (both Rx and Tx) is enabled by SW override. */
 214                reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
 215                if (hw->phy.media_type == ixgbe_media_type_backplane)
 216                        reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
 217                                  IXGBE_AUTOC_ASM_PAUSE;
 218                else if (hw->phy.media_type == ixgbe_media_type_copper)
 219                        reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
 220                break;
 221        default:
 222                hw_dbg(hw, "Flow control param set incorrectly\n");
 223                return IXGBE_ERR_CONFIG;
 224        }
 225
 226        if (hw->mac.type != ixgbe_mac_X540) {
 227                /*
 228                 * Enable auto-negotiation between the MAC & PHY;
 229                 * the MAC will advertise clause 37 flow control.
 230                 */
 231                IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
 232                reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
 233
 234                /* Disable AN timeout */
 235                if (hw->fc.strict_ieee)
 236                        reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
 237
 238                IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
 239                hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
 240        }
 241
 242        /*
 243         * AUTOC restart handles negotiation of 1G and 10G on backplane
 244         * and copper. There is no need to set the PCS1GCTL register.
 245         *
 246         */
 247        if (hw->phy.media_type == ixgbe_media_type_backplane) {
 248                /* Need the SW/FW semaphore around AUTOC writes if 82599 and
 249                 * LESM is on, likewise reset_pipeline requries the lock as
 250                 * it also writes AUTOC.
 251                 */
 252                ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
 253                if (ret_val)
 254                        return ret_val;
 255
 256        } else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
 257                   ixgbe_device_supports_autoneg_fc(hw)) {
 258                hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
 259                                      MDIO_MMD_AN, reg_cu);
 260        }
 261
 262        hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
 263        return ret_val;
 264}
 265
 266/**
 267 *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
 268 *  @hw: pointer to hardware structure
 269 *
 270 *  Starts the hardware by filling the bus info structure and media type, clears
 271 *  all on chip counters, initializes receive address registers, multicast
 272 *  table, VLAN filter table, calls routine to set up link and flow control
 273 *  settings, and leaves transmit and receive units disabled and uninitialized
 274 **/
 275s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
 276{
 277        s32 ret_val;
 278        u32 ctrl_ext;
 279
 280        /* Set the media type */
 281        hw->phy.media_type = hw->mac.ops.get_media_type(hw);
 282
 283        /* Identify the PHY */
 284        hw->phy.ops.identify(hw);
 285
 286        /* Clear the VLAN filter table */
 287        hw->mac.ops.clear_vfta(hw);
 288
 289        /* Clear statistics registers */
 290        hw->mac.ops.clear_hw_cntrs(hw);
 291
 292        /* Set No Snoop Disable */
 293        ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
 294        ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
 295        IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
 296        IXGBE_WRITE_FLUSH(hw);
 297
 298        /* Setup flow control */
 299        ret_val = ixgbe_setup_fc(hw);
 300        if (ret_val)
 301                return ret_val;
 302
 303        /* Clear adapter stopped flag */
 304        hw->adapter_stopped = false;
 305
 306        return 0;
 307}
 308
 309/**
 310 *  ixgbe_start_hw_gen2 - Init sequence for common device family
 311 *  @hw: pointer to hw structure
 312 *
 313 * Performs the init sequence common to the second generation
 314 * of 10 GbE devices.
 315 * Devices in the second generation:
 316 *     82599
 317 *     X540
 318 **/
 319s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
 320{
 321        u32 i;
 322
 323        /* Clear the rate limiters */
 324        for (i = 0; i < hw->mac.max_tx_queues; i++) {
 325                IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
 326                IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
 327        }
 328        IXGBE_WRITE_FLUSH(hw);
 329
 330#ifndef CONFIG_SPARC
 331        /* Disable relaxed ordering */
 332        for (i = 0; i < hw->mac.max_tx_queues; i++) {
 333                u32 regval;
 334
 335                regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
 336                regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
 337                IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
 338        }
 339
 340        for (i = 0; i < hw->mac.max_rx_queues; i++) {
 341                u32 regval;
 342
 343                regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
 344                regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
 345                            IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
 346                IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
 347        }
 348#endif
 349        return 0;
 350}
 351
 352/**
 353 *  ixgbe_init_hw_generic - Generic hardware initialization
 354 *  @hw: pointer to hardware structure
 355 *
 356 *  Initialize the hardware by resetting the hardware, filling the bus info
 357 *  structure and media type, clears all on chip counters, initializes receive
 358 *  address registers, multicast table, VLAN filter table, calls routine to set
 359 *  up link and flow control settings, and leaves transmit and receive units
 360 *  disabled and uninitialized
 361 **/
 362s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
 363{
 364        s32 status;
 365
 366        /* Reset the hardware */
 367        status = hw->mac.ops.reset_hw(hw);
 368
 369        if (status == 0) {
 370                /* Start the HW */
 371                status = hw->mac.ops.start_hw(hw);
 372        }
 373
 374        return status;
 375}
 376
 377/**
 378 *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
 379 *  @hw: pointer to hardware structure
 380 *
 381 *  Clears all hardware statistics counters by reading them from the hardware
 382 *  Statistics counters are clear on read.
 383 **/
 384s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
 385{
 386        u16 i = 0;
 387
 388        IXGBE_READ_REG(hw, IXGBE_CRCERRS);
 389        IXGBE_READ_REG(hw, IXGBE_ILLERRC);
 390        IXGBE_READ_REG(hw, IXGBE_ERRBC);
 391        IXGBE_READ_REG(hw, IXGBE_MSPDC);
 392        for (i = 0; i < 8; i++)
 393                IXGBE_READ_REG(hw, IXGBE_MPC(i));
 394
 395        IXGBE_READ_REG(hw, IXGBE_MLFC);
 396        IXGBE_READ_REG(hw, IXGBE_MRFC);
 397        IXGBE_READ_REG(hw, IXGBE_RLEC);
 398        IXGBE_READ_REG(hw, IXGBE_LXONTXC);
 399        IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
 400        if (hw->mac.type >= ixgbe_mac_82599EB) {
 401                IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
 402                IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
 403        } else {
 404                IXGBE_READ_REG(hw, IXGBE_LXONRXC);
 405                IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
 406        }
 407
 408        for (i = 0; i < 8; i++) {
 409                IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
 410                IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
 411                if (hw->mac.type >= ixgbe_mac_82599EB) {
 412                        IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
 413                        IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
 414                } else {
 415                        IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
 416                        IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
 417                }
 418        }
 419        if (hw->mac.type >= ixgbe_mac_82599EB)
 420                for (i = 0; i < 8; i++)
 421                        IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
 422        IXGBE_READ_REG(hw, IXGBE_PRC64);
 423        IXGBE_READ_REG(hw, IXGBE_PRC127);
 424        IXGBE_READ_REG(hw, IXGBE_PRC255);
 425        IXGBE_READ_REG(hw, IXGBE_PRC511);
 426        IXGBE_READ_REG(hw, IXGBE_PRC1023);
 427        IXGBE_READ_REG(hw, IXGBE_PRC1522);
 428        IXGBE_READ_REG(hw, IXGBE_GPRC);
 429        IXGBE_READ_REG(hw, IXGBE_BPRC);
 430        IXGBE_READ_REG(hw, IXGBE_MPRC);
 431        IXGBE_READ_REG(hw, IXGBE_GPTC);
 432        IXGBE_READ_REG(hw, IXGBE_GORCL);
 433        IXGBE_READ_REG(hw, IXGBE_GORCH);
 434        IXGBE_READ_REG(hw, IXGBE_GOTCL);
 435        IXGBE_READ_REG(hw, IXGBE_GOTCH);
 436        if (hw->mac.type == ixgbe_mac_82598EB)
 437                for (i = 0; i < 8; i++)
 438                        IXGBE_READ_REG(hw, IXGBE_RNBC(i));
 439        IXGBE_READ_REG(hw, IXGBE_RUC);
 440        IXGBE_READ_REG(hw, IXGBE_RFC);
 441        IXGBE_READ_REG(hw, IXGBE_ROC);
 442        IXGBE_READ_REG(hw, IXGBE_RJC);
 443        IXGBE_READ_REG(hw, IXGBE_MNGPRC);
 444        IXGBE_READ_REG(hw, IXGBE_MNGPDC);
 445        IXGBE_READ_REG(hw, IXGBE_MNGPTC);
 446        IXGBE_READ_REG(hw, IXGBE_TORL);
 447        IXGBE_READ_REG(hw, IXGBE_TORH);
 448        IXGBE_READ_REG(hw, IXGBE_TPR);
 449        IXGBE_READ_REG(hw, IXGBE_TPT);
 450        IXGBE_READ_REG(hw, IXGBE_PTC64);
 451        IXGBE_READ_REG(hw, IXGBE_PTC127);
 452        IXGBE_READ_REG(hw, IXGBE_PTC255);
 453        IXGBE_READ_REG(hw, IXGBE_PTC511);
 454        IXGBE_READ_REG(hw, IXGBE_PTC1023);
 455        IXGBE_READ_REG(hw, IXGBE_PTC1522);
 456        IXGBE_READ_REG(hw, IXGBE_MPTC);
 457        IXGBE_READ_REG(hw, IXGBE_BPTC);
 458        for (i = 0; i < 16; i++) {
 459                IXGBE_READ_REG(hw, IXGBE_QPRC(i));
 460                IXGBE_READ_REG(hw, IXGBE_QPTC(i));
 461                if (hw->mac.type >= ixgbe_mac_82599EB) {
 462                        IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
 463                        IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
 464                        IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
 465                        IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
 466                        IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
 467                } else {
 468                        IXGBE_READ_REG(hw, IXGBE_QBRC(i));
 469                        IXGBE_READ_REG(hw, IXGBE_QBTC(i));
 470                }
 471        }
 472
 473        if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
 474                if (hw->phy.id == 0)
 475                        hw->phy.ops.identify(hw);
 476                hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
 477                hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
 478                hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
 479                hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
 480        }
 481
 482        return 0;
 483}
 484
 485/**
 486 *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
 487 *  @hw: pointer to hardware structure
 488 *  @pba_num: stores the part number string from the EEPROM
 489 *  @pba_num_size: part number string buffer length
 490 *
 491 *  Reads the part number string from the EEPROM.
 492 **/
 493s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
 494                                  u32 pba_num_size)
 495{
 496        s32 ret_val;
 497        u16 data;
 498        u16 pba_ptr;
 499        u16 offset;
 500        u16 length;
 501
 502        if (pba_num == NULL) {
 503                hw_dbg(hw, "PBA string buffer was null\n");
 504                return IXGBE_ERR_INVALID_ARGUMENT;
 505        }
 506
 507        ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
 508        if (ret_val) {
 509                hw_dbg(hw, "NVM Read Error\n");
 510                return ret_val;
 511        }
 512
 513        ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
 514        if (ret_val) {
 515                hw_dbg(hw, "NVM Read Error\n");
 516                return ret_val;
 517        }
 518
 519        /*
 520         * if data is not ptr guard the PBA must be in legacy format which
 521         * means pba_ptr is actually our second data word for the PBA number
 522         * and we can decode it into an ascii string
 523         */
 524        if (data != IXGBE_PBANUM_PTR_GUARD) {
 525                hw_dbg(hw, "NVM PBA number is not stored as string\n");
 526
 527                /* we will need 11 characters to store the PBA */
 528                if (pba_num_size < 11) {
 529                        hw_dbg(hw, "PBA string buffer too small\n");
 530                        return IXGBE_ERR_NO_SPACE;
 531                }
 532
 533                /* extract hex string from data and pba_ptr */
 534                pba_num[0] = (data >> 12) & 0xF;
 535                pba_num[1] = (data >> 8) & 0xF;
 536                pba_num[2] = (data >> 4) & 0xF;
 537                pba_num[3] = data & 0xF;
 538                pba_num[4] = (pba_ptr >> 12) & 0xF;
 539                pba_num[5] = (pba_ptr >> 8) & 0xF;
 540                pba_num[6] = '-';
 541                pba_num[7] = 0;
 542                pba_num[8] = (pba_ptr >> 4) & 0xF;
 543                pba_num[9] = pba_ptr & 0xF;
 544
 545                /* put a null character on the end of our string */
 546                pba_num[10] = '\0';
 547
 548                /* switch all the data but the '-' to hex char */
 549                for (offset = 0; offset < 10; offset++) {
 550                        if (pba_num[offset] < 0xA)
 551                                pba_num[offset] += '0';
 552                        else if (pba_num[offset] < 0x10)
 553                                pba_num[offset] += 'A' - 0xA;
 554                }
 555
 556                return 0;
 557        }
 558
 559        ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
 560        if (ret_val) {
 561                hw_dbg(hw, "NVM Read Error\n");
 562                return ret_val;
 563        }
 564
 565        if (length == 0xFFFF || length == 0) {
 566                hw_dbg(hw, "NVM PBA number section invalid length\n");
 567                return IXGBE_ERR_PBA_SECTION;
 568        }
 569
 570        /* check if pba_num buffer is big enough */
 571        if (pba_num_size  < (((u32)length * 2) - 1)) {
 572                hw_dbg(hw, "PBA string buffer too small\n");
 573                return IXGBE_ERR_NO_SPACE;
 574        }
 575
 576        /* trim pba length from start of string */
 577        pba_ptr++;
 578        length--;
 579
 580        for (offset = 0; offset < length; offset++) {
 581                ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
 582                if (ret_val) {
 583                        hw_dbg(hw, "NVM Read Error\n");
 584                        return ret_val;
 585                }
 586                pba_num[offset * 2] = (u8)(data >> 8);
 587                pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
 588        }
 589        pba_num[offset * 2] = '\0';
 590
 591        return 0;
 592}
 593
 594/**
 595 *  ixgbe_get_mac_addr_generic - Generic get MAC address
 596 *  @hw: pointer to hardware structure
 597 *  @mac_addr: Adapter MAC address
 598 *
 599 *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
 600 *  A reset of the adapter must be performed prior to calling this function
 601 *  in order for the MAC address to have been loaded from the EEPROM into RAR0
 602 **/
 603s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
 604{
 605        u32 rar_high;
 606        u32 rar_low;
 607        u16 i;
 608
 609        rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
 610        rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
 611
 612        for (i = 0; i < 4; i++)
 613                mac_addr[i] = (u8)(rar_low >> (i*8));
 614
 615        for (i = 0; i < 2; i++)
 616                mac_addr[i+4] = (u8)(rar_high >> (i*8));
 617
 618        return 0;
 619}
 620
 621enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
 622{
 623        switch (link_status & IXGBE_PCI_LINK_WIDTH) {
 624        case IXGBE_PCI_LINK_WIDTH_1:
 625                return ixgbe_bus_width_pcie_x1;
 626        case IXGBE_PCI_LINK_WIDTH_2:
 627                return ixgbe_bus_width_pcie_x2;
 628        case IXGBE_PCI_LINK_WIDTH_4:
 629                return ixgbe_bus_width_pcie_x4;
 630        case IXGBE_PCI_LINK_WIDTH_8:
 631                return ixgbe_bus_width_pcie_x8;
 632        default:
 633                return ixgbe_bus_width_unknown;
 634        }
 635}
 636
 637enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
 638{
 639        switch (link_status & IXGBE_PCI_LINK_SPEED) {
 640        case IXGBE_PCI_LINK_SPEED_2500:
 641                return ixgbe_bus_speed_2500;
 642        case IXGBE_PCI_LINK_SPEED_5000:
 643                return ixgbe_bus_speed_5000;
 644        case IXGBE_PCI_LINK_SPEED_8000:
 645                return ixgbe_bus_speed_8000;
 646        default:
 647                return ixgbe_bus_speed_unknown;
 648        }
 649}
 650
 651/**
 652 *  ixgbe_get_bus_info_generic - Generic set PCI bus info
 653 *  @hw: pointer to hardware structure
 654 *
 655 *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
 656 **/
 657s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
 658{
 659        u16 link_status;
 660
 661        hw->bus.type = ixgbe_bus_type_pci_express;
 662
 663        /* Get the negotiated link width and speed from PCI config space */
 664        link_status = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_LINK_STATUS);
 665
 666        hw->bus.width = ixgbe_convert_bus_width(link_status);
 667        hw->bus.speed = ixgbe_convert_bus_speed(link_status);
 668
 669        hw->mac.ops.set_lan_id(hw);
 670
 671        return 0;
 672}
 673
 674/**
 675 *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
 676 *  @hw: pointer to the HW structure
 677 *
 678 *  Determines the LAN function id by reading memory-mapped registers
 679 *  and swaps the port value if requested.
 680 **/
 681void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
 682{
 683        struct ixgbe_bus_info *bus = &hw->bus;
 684        u32 reg;
 685
 686        reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
 687        bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
 688        bus->lan_id = bus->func;
 689
 690        /* check for a port swap */
 691        reg = IXGBE_READ_REG(hw, IXGBE_FACTPS(hw));
 692        if (reg & IXGBE_FACTPS_LFS)
 693                bus->func ^= 0x1;
 694}
 695
 696/**
 697 *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
 698 *  @hw: pointer to hardware structure
 699 *
 700 *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
 701 *  disables transmit and receive units. The adapter_stopped flag is used by
 702 *  the shared code and drivers to determine if the adapter is in a stopped
 703 *  state and should not touch the hardware.
 704 **/
 705s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
 706{
 707        u32 reg_val;
 708        u16 i;
 709
 710        /*
 711         * Set the adapter_stopped flag so other driver functions stop touching
 712         * the hardware
 713         */
 714        hw->adapter_stopped = true;
 715
 716        /* Disable the receive unit */
 717        hw->mac.ops.disable_rx(hw);
 718
 719        /* Clear interrupt mask to stop interrupts from being generated */
 720        IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
 721
 722        /* Clear any pending interrupts, flush previous writes */
 723        IXGBE_READ_REG(hw, IXGBE_EICR);
 724
 725        /* Disable the transmit unit.  Each queue must be disabled. */
 726        for (i = 0; i < hw->mac.max_tx_queues; i++)
 727                IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
 728
 729        /* Disable the receive unit by stopping each queue */
 730        for (i = 0; i < hw->mac.max_rx_queues; i++) {
 731                reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
 732                reg_val &= ~IXGBE_RXDCTL_ENABLE;
 733                reg_val |= IXGBE_RXDCTL_SWFLSH;
 734                IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
 735        }
 736
 737        /* flush all queues disables */
 738        IXGBE_WRITE_FLUSH(hw);
 739        usleep_range(1000, 2000);
 740
 741        /*
 742         * Prevent the PCI-E bus from from hanging by disabling PCI-E master
 743         * access and verify no pending requests
 744         */
 745        return ixgbe_disable_pcie_master(hw);
 746}
 747
 748/**
 749 *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
 750 *  @hw: pointer to hardware structure
 751 *  @index: led number to turn on
 752 **/
 753s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
 754{
 755        u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
 756
 757        /* To turn on the LED, set mode to ON. */
 758        led_reg &= ~IXGBE_LED_MODE_MASK(index);
 759        led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
 760        IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
 761        IXGBE_WRITE_FLUSH(hw);
 762
 763        return 0;
 764}
 765
 766/**
 767 *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
 768 *  @hw: pointer to hardware structure
 769 *  @index: led number to turn off
 770 **/
 771s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
 772{
 773        u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
 774
 775        /* To turn off the LED, set mode to OFF. */
 776        led_reg &= ~IXGBE_LED_MODE_MASK(index);
 777        led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
 778        IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
 779        IXGBE_WRITE_FLUSH(hw);
 780
 781        return 0;
 782}
 783
 784/**
 785 *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
 786 *  @hw: pointer to hardware structure
 787 *
 788 *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
 789 *  ixgbe_hw struct in order to set up EEPROM access.
 790 **/
 791s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
 792{
 793        struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
 794        u32 eec;
 795        u16 eeprom_size;
 796
 797        if (eeprom->type == ixgbe_eeprom_uninitialized) {
 798                eeprom->type = ixgbe_eeprom_none;
 799                /* Set default semaphore delay to 10ms which is a well
 800                 * tested value */
 801                eeprom->semaphore_delay = 10;
 802                /* Clear EEPROM page size, it will be initialized as needed */
 803                eeprom->word_page_size = 0;
 804
 805                /*
 806                 * Check for EEPROM present first.
 807                 * If not present leave as none
 808                 */
 809                eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
 810                if (eec & IXGBE_EEC_PRES) {
 811                        eeprom->type = ixgbe_eeprom_spi;
 812
 813                        /*
 814                         * SPI EEPROM is assumed here.  This code would need to
 815                         * change if a future EEPROM is not SPI.
 816                         */
 817                        eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
 818                                            IXGBE_EEC_SIZE_SHIFT);
 819                        eeprom->word_size = 1 << (eeprom_size +
 820                                                  IXGBE_EEPROM_WORD_SIZE_SHIFT);
 821                }
 822
 823                if (eec & IXGBE_EEC_ADDR_SIZE)
 824                        eeprom->address_bits = 16;
 825                else
 826                        eeprom->address_bits = 8;
 827                hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: %d\n",
 828                       eeprom->type, eeprom->word_size, eeprom->address_bits);
 829        }
 830
 831        return 0;
 832}
 833
 834/**
 835 *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
 836 *  @hw: pointer to hardware structure
 837 *  @offset: offset within the EEPROM to write
 838 *  @words: number of words
 839 *  @data: 16 bit word(s) to write to EEPROM
 840 *
 841 *  Reads 16 bit word(s) from EEPROM through bit-bang method
 842 **/
 843s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
 844                                               u16 words, u16 *data)
 845{
 846        s32 status;
 847        u16 i, count;
 848
 849        hw->eeprom.ops.init_params(hw);
 850
 851        if (words == 0)
 852                return IXGBE_ERR_INVALID_ARGUMENT;
 853
 854        if (offset + words > hw->eeprom.word_size)
 855                return IXGBE_ERR_EEPROM;
 856
 857        /*
 858         * The EEPROM page size cannot be queried from the chip. We do lazy
 859         * initialization. It is worth to do that when we write large buffer.
 860         */
 861        if ((hw->eeprom.word_page_size == 0) &&
 862            (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
 863                ixgbe_detect_eeprom_page_size_generic(hw, offset);
 864
 865        /*
 866         * We cannot hold synchronization semaphores for too long
 867         * to avoid other entity starvation. However it is more efficient
 868         * to read in bursts than synchronizing access for each word.
 869         */
 870        for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
 871                count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
 872                         IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
 873                status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
 874                                                            count, &data[i]);
 875
 876                if (status != 0)
 877                        break;
 878        }
 879
 880        return status;
 881}
 882
 883/**
 884 *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
 885 *  @hw: pointer to hardware structure
 886 *  @offset: offset within the EEPROM to be written to
 887 *  @words: number of word(s)
 888 *  @data: 16 bit word(s) to be written to the EEPROM
 889 *
 890 *  If ixgbe_eeprom_update_checksum is not called after this function, the
 891 *  EEPROM will most likely contain an invalid checksum.
 892 **/
 893static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
 894                                              u16 words, u16 *data)
 895{
 896        s32 status;
 897        u16 word;
 898        u16 page_size;
 899        u16 i;
 900        u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
 901
 902        /* Prepare the EEPROM for writing  */
 903        status = ixgbe_acquire_eeprom(hw);
 904        if (status)
 905                return status;
 906
 907        if (ixgbe_ready_eeprom(hw) != 0) {
 908                ixgbe_release_eeprom(hw);
 909                return IXGBE_ERR_EEPROM;
 910        }
 911
 912        for (i = 0; i < words; i++) {
 913                ixgbe_standby_eeprom(hw);
 914
 915                /* Send the WRITE ENABLE command (8 bit opcode) */
 916                ixgbe_shift_out_eeprom_bits(hw,
 917                                            IXGBE_EEPROM_WREN_OPCODE_SPI,
 918                                            IXGBE_EEPROM_OPCODE_BITS);
 919
 920                ixgbe_standby_eeprom(hw);
 921
 922                /* Some SPI eeproms use the 8th address bit embedded
 923                 * in the opcode
 924                 */
 925                if ((hw->eeprom.address_bits == 8) &&
 926                    ((offset + i) >= 128))
 927                        write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
 928
 929                /* Send the Write command (8-bit opcode + addr) */
 930                ixgbe_shift_out_eeprom_bits(hw, write_opcode,
 931                                            IXGBE_EEPROM_OPCODE_BITS);
 932                ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
 933                                            hw->eeprom.address_bits);
 934
 935                page_size = hw->eeprom.word_page_size;
 936
 937                /* Send the data in burst via SPI */
 938                do {
 939                        word = data[i];
 940                        word = (word >> 8) | (word << 8);
 941                        ixgbe_shift_out_eeprom_bits(hw, word, 16);
 942
 943                        if (page_size == 0)
 944                                break;
 945
 946                        /* do not wrap around page */
 947                        if (((offset + i) & (page_size - 1)) ==
 948                            (page_size - 1))
 949                                break;
 950                } while (++i < words);
 951
 952                ixgbe_standby_eeprom(hw);
 953                usleep_range(10000, 20000);
 954        }
 955        /* Done with writing - release the EEPROM */
 956        ixgbe_release_eeprom(hw);
 957
 958        return 0;
 959}
 960
 961/**
 962 *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
 963 *  @hw: pointer to hardware structure
 964 *  @offset: offset within the EEPROM to be written to
 965 *  @data: 16 bit word to be written to the EEPROM
 966 *
 967 *  If ixgbe_eeprom_update_checksum is not called after this function, the
 968 *  EEPROM will most likely contain an invalid checksum.
 969 **/
 970s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
 971{
 972        hw->eeprom.ops.init_params(hw);
 973
 974        if (offset >= hw->eeprom.word_size)
 975                return IXGBE_ERR_EEPROM;
 976
 977        return ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
 978}
 979
 980/**
 981 *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
 982 *  @hw: pointer to hardware structure
 983 *  @offset: offset within the EEPROM to be read
 984 *  @words: number of word(s)
 985 *  @data: read 16 bit words(s) from EEPROM
 986 *
 987 *  Reads 16 bit word(s) from EEPROM through bit-bang method
 988 **/
 989s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
 990                                              u16 words, u16 *data)
 991{
 992        s32 status;
 993        u16 i, count;
 994
 995        hw->eeprom.ops.init_params(hw);
 996
 997        if (words == 0)
 998                return IXGBE_ERR_INVALID_ARGUMENT;
 999
1000        if (offset + words > hw->eeprom.word_size)
1001                return IXGBE_ERR_EEPROM;
1002
1003        /*
1004         * We cannot hold synchronization semaphores for too long
1005         * to avoid other entity starvation. However it is more efficient
1006         * to read in bursts than synchronizing access for each word.
1007         */
1008        for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1009                count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1010                         IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1011
1012                status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1013                                                           count, &data[i]);
1014
1015                if (status)
1016                        return status;
1017        }
1018
1019        return 0;
1020}
1021
1022/**
1023 *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1024 *  @hw: pointer to hardware structure
1025 *  @offset: offset within the EEPROM to be read
1026 *  @words: number of word(s)
1027 *  @data: read 16 bit word(s) from EEPROM
1028 *
1029 *  Reads 16 bit word(s) from EEPROM through bit-bang method
1030 **/
1031static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1032                                             u16 words, u16 *data)
1033{
1034        s32 status;
1035        u16 word_in;
1036        u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1037        u16 i;
1038
1039        /* Prepare the EEPROM for reading  */
1040        status = ixgbe_acquire_eeprom(hw);
1041        if (status)
1042                return status;
1043
1044        if (ixgbe_ready_eeprom(hw) != 0) {
1045                ixgbe_release_eeprom(hw);
1046                return IXGBE_ERR_EEPROM;
1047        }
1048
1049        for (i = 0; i < words; i++) {
1050                ixgbe_standby_eeprom(hw);
1051                /* Some SPI eeproms use the 8th address bit embedded
1052                 * in the opcode
1053                 */
1054                if ((hw->eeprom.address_bits == 8) &&
1055                    ((offset + i) >= 128))
1056                        read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1057
1058                /* Send the READ command (opcode + addr) */
1059                ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1060                                            IXGBE_EEPROM_OPCODE_BITS);
1061                ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1062                                            hw->eeprom.address_bits);
1063
1064                /* Read the data. */
1065                word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1066                data[i] = (word_in >> 8) | (word_in << 8);
1067        }
1068
1069        /* End this read operation */
1070        ixgbe_release_eeprom(hw);
1071
1072        return 0;
1073}
1074
1075/**
1076 *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1077 *  @hw: pointer to hardware structure
1078 *  @offset: offset within the EEPROM to be read
1079 *  @data: read 16 bit value from EEPROM
1080 *
1081 *  Reads 16 bit value from EEPROM through bit-bang method
1082 **/
1083s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1084                                       u16 *data)
1085{
1086        hw->eeprom.ops.init_params(hw);
1087
1088        if (offset >= hw->eeprom.word_size)
1089                return IXGBE_ERR_EEPROM;
1090
1091        return ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1092}
1093
1094/**
1095 *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1096 *  @hw: pointer to hardware structure
1097 *  @offset: offset of word in the EEPROM to read
1098 *  @words: number of word(s)
1099 *  @data: 16 bit word(s) from the EEPROM
1100 *
1101 *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1102 **/
1103s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1104                                   u16 words, u16 *data)
1105{
1106        u32 eerd;
1107        s32 status;
1108        u32 i;
1109
1110        hw->eeprom.ops.init_params(hw);
1111
1112        if (words == 0)
1113                return IXGBE_ERR_INVALID_ARGUMENT;
1114
1115        if (offset >= hw->eeprom.word_size)
1116                return IXGBE_ERR_EEPROM;
1117
1118        for (i = 0; i < words; i++) {
1119                eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1120                       IXGBE_EEPROM_RW_REG_START;
1121
1122                IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1123                status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1124
1125                if (status == 0) {
1126                        data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1127                                   IXGBE_EEPROM_RW_REG_DATA);
1128                } else {
1129                        hw_dbg(hw, "Eeprom read timed out\n");
1130                        return status;
1131                }
1132        }
1133
1134        return 0;
1135}
1136
1137/**
1138 *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1139 *  @hw: pointer to hardware structure
1140 *  @offset: offset within the EEPROM to be used as a scratch pad
1141 *
1142 *  Discover EEPROM page size by writing marching data at given offset.
1143 *  This function is called only when we are writing a new large buffer
1144 *  at given offset so the data would be overwritten anyway.
1145 **/
1146static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1147                                                 u16 offset)
1148{
1149        u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1150        s32 status;
1151        u16 i;
1152
1153        for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1154                data[i] = i;
1155
1156        hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1157        status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1158                                             IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1159        hw->eeprom.word_page_size = 0;
1160        if (status)
1161                return status;
1162
1163        status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1164        if (status)
1165                return status;
1166
1167        /*
1168         * When writing in burst more than the actual page size
1169         * EEPROM address wraps around current page.
1170         */
1171        hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1172
1173        hw_dbg(hw, "Detected EEPROM page size = %d words.\n",
1174               hw->eeprom.word_page_size);
1175        return 0;
1176}
1177
1178/**
1179 *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1180 *  @hw: pointer to hardware structure
1181 *  @offset: offset of  word in the EEPROM to read
1182 *  @data: word read from the EEPROM
1183 *
1184 *  Reads a 16 bit word from the EEPROM using the EERD register.
1185 **/
1186s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1187{
1188        return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1189}
1190
1191/**
1192 *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1193 *  @hw: pointer to hardware structure
1194 *  @offset: offset of  word in the EEPROM to write
1195 *  @words: number of words
1196 *  @data: word(s) write to the EEPROM
1197 *
1198 *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1199 **/
1200s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1201                                    u16 words, u16 *data)
1202{
1203        u32 eewr;
1204        s32 status;
1205        u16 i;
1206
1207        hw->eeprom.ops.init_params(hw);
1208
1209        if (words == 0)
1210                return IXGBE_ERR_INVALID_ARGUMENT;
1211
1212        if (offset >= hw->eeprom.word_size)
1213                return IXGBE_ERR_EEPROM;
1214
1215        for (i = 0; i < words; i++) {
1216                eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1217                       (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1218                       IXGBE_EEPROM_RW_REG_START;
1219
1220                status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1221                if (status) {
1222                        hw_dbg(hw, "Eeprom write EEWR timed out\n");
1223                        return status;
1224                }
1225
1226                IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1227
1228                status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1229                if (status) {
1230                        hw_dbg(hw, "Eeprom write EEWR timed out\n");
1231                        return status;
1232                }
1233        }
1234
1235        return 0;
1236}
1237
1238/**
1239 *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1240 *  @hw: pointer to hardware structure
1241 *  @offset: offset of  word in the EEPROM to write
1242 *  @data: word write to the EEPROM
1243 *
1244 *  Write a 16 bit word to the EEPROM using the EEWR register.
1245 **/
1246s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1247{
1248        return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1249}
1250
1251/**
1252 *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1253 *  @hw: pointer to hardware structure
1254 *  @ee_reg: EEPROM flag for polling
1255 *
1256 *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1257 *  read or write is done respectively.
1258 **/
1259static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1260{
1261        u32 i;
1262        u32 reg;
1263
1264        for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1265                if (ee_reg == IXGBE_NVM_POLL_READ)
1266                        reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1267                else
1268                        reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1269
1270                if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1271                        return 0;
1272                }
1273                udelay(5);
1274        }
1275        return IXGBE_ERR_EEPROM;
1276}
1277
1278/**
1279 *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1280 *  @hw: pointer to hardware structure
1281 *
1282 *  Prepares EEPROM for access using bit-bang method. This function should
1283 *  be called before issuing a command to the EEPROM.
1284 **/
1285static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1286{
1287        u32 eec;
1288        u32 i;
1289
1290        if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1291                return IXGBE_ERR_SWFW_SYNC;
1292
1293        eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1294
1295        /* Request EEPROM Access */
1296        eec |= IXGBE_EEC_REQ;
1297        IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1298
1299        for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1300                eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1301                if (eec & IXGBE_EEC_GNT)
1302                        break;
1303                udelay(5);
1304        }
1305
1306        /* Release if grant not acquired */
1307        if (!(eec & IXGBE_EEC_GNT)) {
1308                eec &= ~IXGBE_EEC_REQ;
1309                IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1310                hw_dbg(hw, "Could not acquire EEPROM grant\n");
1311
1312                hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1313                return IXGBE_ERR_EEPROM;
1314        }
1315
1316        /* Setup EEPROM for Read/Write */
1317        /* Clear CS and SK */
1318        eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1319        IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1320        IXGBE_WRITE_FLUSH(hw);
1321        udelay(1);
1322        return 0;
1323}
1324
1325/**
1326 *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1327 *  @hw: pointer to hardware structure
1328 *
1329 *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1330 **/
1331static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1332{
1333        u32 timeout = 2000;
1334        u32 i;
1335        u32 swsm;
1336
1337        /* Get SMBI software semaphore between device drivers first */
1338        for (i = 0; i < timeout; i++) {
1339                /*
1340                 * If the SMBI bit is 0 when we read it, then the bit will be
1341                 * set and we have the semaphore
1342                 */
1343                swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1344                if (!(swsm & IXGBE_SWSM_SMBI))
1345                        break;
1346                usleep_range(50, 100);
1347        }
1348
1349        if (i == timeout) {
1350                hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore not granted.\n");
1351                /* this release is particularly important because our attempts
1352                 * above to get the semaphore may have succeeded, and if there
1353                 * was a timeout, we should unconditionally clear the semaphore
1354                 * bits to free the driver to make progress
1355                 */
1356                ixgbe_release_eeprom_semaphore(hw);
1357
1358                usleep_range(50, 100);
1359                /* one last try
1360                 * If the SMBI bit is 0 when we read it, then the bit will be
1361                 * set and we have the semaphore
1362                 */
1363                swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1364                if (swsm & IXGBE_SWSM_SMBI) {
1365                        hw_dbg(hw, "Software semaphore SMBI between device drivers not granted.\n");
1366                        return IXGBE_ERR_EEPROM;
1367                }
1368        }
1369
1370        /* Now get the semaphore between SW/FW through the SWESMBI bit */
1371        for (i = 0; i < timeout; i++) {
1372                swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1373
1374                /* Set the SW EEPROM semaphore bit to request access */
1375                swsm |= IXGBE_SWSM_SWESMBI;
1376                IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1377
1378                /* If we set the bit successfully then we got the
1379                 * semaphore.
1380                 */
1381                swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1382                if (swsm & IXGBE_SWSM_SWESMBI)
1383                        break;
1384
1385                usleep_range(50, 100);
1386        }
1387
1388        /* Release semaphores and return error if SW EEPROM semaphore
1389         * was not granted because we don't have access to the EEPROM
1390         */
1391        if (i >= timeout) {
1392                hw_dbg(hw, "SWESMBI Software EEPROM semaphore not granted.\n");
1393                ixgbe_release_eeprom_semaphore(hw);
1394                return IXGBE_ERR_EEPROM;
1395        }
1396
1397        return 0;
1398}
1399
1400/**
1401 *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1402 *  @hw: pointer to hardware structure
1403 *
1404 *  This function clears hardware semaphore bits.
1405 **/
1406static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1407{
1408        u32 swsm;
1409
1410        swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1411
1412        /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1413        swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1414        IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1415        IXGBE_WRITE_FLUSH(hw);
1416}
1417
1418/**
1419 *  ixgbe_ready_eeprom - Polls for EEPROM ready
1420 *  @hw: pointer to hardware structure
1421 **/
1422static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1423{
1424        u16 i;
1425        u8 spi_stat_reg;
1426
1427        /*
1428         * Read "Status Register" repeatedly until the LSB is cleared.  The
1429         * EEPROM will signal that the command has been completed by clearing
1430         * bit 0 of the internal status register.  If it's not cleared within
1431         * 5 milliseconds, then error out.
1432         */
1433        for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1434                ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1435                                            IXGBE_EEPROM_OPCODE_BITS);
1436                spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1437                if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1438                        break;
1439
1440                udelay(5);
1441                ixgbe_standby_eeprom(hw);
1442        }
1443
1444        /*
1445         * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1446         * devices (and only 0-5mSec on 5V devices)
1447         */
1448        if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1449                hw_dbg(hw, "SPI EEPROM Status error\n");
1450                return IXGBE_ERR_EEPROM;
1451        }
1452
1453        return 0;
1454}
1455
1456/**
1457 *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1458 *  @hw: pointer to hardware structure
1459 **/
1460static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1461{
1462        u32 eec;
1463
1464        eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1465
1466        /* Toggle CS to flush commands */
1467        eec |= IXGBE_EEC_CS;
1468        IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1469        IXGBE_WRITE_FLUSH(hw);
1470        udelay(1);
1471        eec &= ~IXGBE_EEC_CS;
1472        IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1473        IXGBE_WRITE_FLUSH(hw);
1474        udelay(1);
1475}
1476
1477/**
1478 *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1479 *  @hw: pointer to hardware structure
1480 *  @data: data to send to the EEPROM
1481 *  @count: number of bits to shift out
1482 **/
1483static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1484                                        u16 count)
1485{
1486        u32 eec;
1487        u32 mask;
1488        u32 i;
1489
1490        eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1491
1492        /*
1493         * Mask is used to shift "count" bits of "data" out to the EEPROM
1494         * one bit at a time.  Determine the starting bit based on count
1495         */
1496        mask = 0x01 << (count - 1);
1497
1498        for (i = 0; i < count; i++) {
1499                /*
1500                 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1501                 * "1", and then raising and then lowering the clock (the SK
1502                 * bit controls the clock input to the EEPROM).  A "0" is
1503                 * shifted out to the EEPROM by setting "DI" to "0" and then
1504                 * raising and then lowering the clock.
1505                 */
1506                if (data & mask)
1507                        eec |= IXGBE_EEC_DI;
1508                else
1509                        eec &= ~IXGBE_EEC_DI;
1510
1511                IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1512                IXGBE_WRITE_FLUSH(hw);
1513
1514                udelay(1);
1515
1516                ixgbe_raise_eeprom_clk(hw, &eec);
1517                ixgbe_lower_eeprom_clk(hw, &eec);
1518
1519                /*
1520                 * Shift mask to signify next bit of data to shift in to the
1521                 * EEPROM
1522                 */
1523                mask = mask >> 1;
1524        }
1525
1526        /* We leave the "DI" bit set to "0" when we leave this routine. */
1527        eec &= ~IXGBE_EEC_DI;
1528        IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1529        IXGBE_WRITE_FLUSH(hw);
1530}
1531
1532/**
1533 *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1534 *  @hw: pointer to hardware structure
1535 **/
1536static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1537{
1538        u32 eec;
1539        u32 i;
1540        u16 data = 0;
1541
1542        /*
1543         * In order to read a register from the EEPROM, we need to shift
1544         * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1545         * the clock input to the EEPROM (setting the SK bit), and then reading
1546         * the value of the "DO" bit.  During this "shifting in" process the
1547         * "DI" bit should always be clear.
1548         */
1549        eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1550
1551        eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1552
1553        for (i = 0; i < count; i++) {
1554                data = data << 1;
1555                ixgbe_raise_eeprom_clk(hw, &eec);
1556
1557                eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1558
1559                eec &= ~(IXGBE_EEC_DI);
1560                if (eec & IXGBE_EEC_DO)
1561                        data |= 1;
1562
1563                ixgbe_lower_eeprom_clk(hw, &eec);
1564        }
1565
1566        return data;
1567}
1568
1569/**
1570 *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1571 *  @hw: pointer to hardware structure
1572 *  @eec: EEC register's current value
1573 **/
1574static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1575{
1576        /*
1577         * Raise the clock input to the EEPROM
1578         * (setting the SK bit), then delay
1579         */
1580        *eec = *eec | IXGBE_EEC_SK;
1581        IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1582        IXGBE_WRITE_FLUSH(hw);
1583        udelay(1);
1584}
1585
1586/**
1587 *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1588 *  @hw: pointer to hardware structure
1589 *  @eecd: EECD's current value
1590 **/
1591static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1592{
1593        /*
1594         * Lower the clock input to the EEPROM (clearing the SK bit), then
1595         * delay
1596         */
1597        *eec = *eec & ~IXGBE_EEC_SK;
1598        IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1599        IXGBE_WRITE_FLUSH(hw);
1600        udelay(1);
1601}
1602
1603/**
1604 *  ixgbe_release_eeprom - Release EEPROM, release semaphores
1605 *  @hw: pointer to hardware structure
1606 **/
1607static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1608{
1609        u32 eec;
1610
1611        eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1612
1613        eec |= IXGBE_EEC_CS;  /* Pull CS high */
1614        eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1615
1616        IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1617        IXGBE_WRITE_FLUSH(hw);
1618
1619        udelay(1);
1620
1621        /* Stop requesting EEPROM access */
1622        eec &= ~IXGBE_EEC_REQ;
1623        IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1624
1625        hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1626
1627        /*
1628         * Delay before attempt to obtain semaphore again to allow FW
1629         * access. semaphore_delay is in ms we need us for usleep_range
1630         */
1631        usleep_range(hw->eeprom.semaphore_delay * 1000,
1632                     hw->eeprom.semaphore_delay * 2000);
1633}
1634
1635/**
1636 *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1637 *  @hw: pointer to hardware structure
1638 **/
1639s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1640{
1641        u16 i;
1642        u16 j;
1643        u16 checksum = 0;
1644        u16 length = 0;
1645        u16 pointer = 0;
1646        u16 word = 0;
1647
1648        /* Include 0x0-0x3F in the checksum */
1649        for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1650                if (hw->eeprom.ops.read(hw, i, &word)) {
1651                        hw_dbg(hw, "EEPROM read failed\n");
1652                        break;
1653                }
1654                checksum += word;
1655        }
1656
1657        /* Include all data from pointers except for the fw pointer */
1658        for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1659                if (hw->eeprom.ops.read(hw, i, &pointer)) {
1660                        hw_dbg(hw, "EEPROM read failed\n");
1661                        return IXGBE_ERR_EEPROM;
1662                }
1663
1664                /* If the pointer seems invalid */
1665                if (pointer == 0xFFFF || pointer == 0)
1666                        continue;
1667
1668                if (hw->eeprom.ops.read(hw, pointer, &length)) {
1669                        hw_dbg(hw, "EEPROM read failed\n");
1670                        return IXGBE_ERR_EEPROM;
1671                }
1672
1673                if (length == 0xFFFF || length == 0)
1674                        continue;
1675
1676                for (j = pointer + 1; j <= pointer + length; j++) {
1677                        if (hw->eeprom.ops.read(hw, j, &word)) {
1678                                hw_dbg(hw, "EEPROM read failed\n");
1679                                return IXGBE_ERR_EEPROM;
1680                        }
1681                        checksum += word;
1682                }
1683        }
1684
1685        checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1686
1687        return (s32)checksum;
1688}
1689
1690/**
1691 *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1692 *  @hw: pointer to hardware structure
1693 *  @checksum_val: calculated checksum
1694 *
1695 *  Performs checksum calculation and validates the EEPROM checksum.  If the
1696 *  caller does not need checksum_val, the value can be NULL.
1697 **/
1698s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1699                                           u16 *checksum_val)
1700{
1701        s32 status;
1702        u16 checksum;
1703        u16 read_checksum = 0;
1704
1705        /*
1706         * Read the first word from the EEPROM. If this times out or fails, do
1707         * not continue or we could be in for a very long wait while every
1708         * EEPROM read fails
1709         */
1710        status = hw->eeprom.ops.read(hw, 0, &checksum);
1711        if (status) {
1712                hw_dbg(hw, "EEPROM read failed\n");
1713                return status;
1714        }
1715
1716        status = hw->eeprom.ops.calc_checksum(hw);
1717        if (status < 0)
1718                return status;
1719
1720        checksum = (u16)(status & 0xffff);
1721
1722        status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1723        if (status) {
1724                hw_dbg(hw, "EEPROM read failed\n");
1725                return status;
1726        }
1727
1728        /* Verify read checksum from EEPROM is the same as
1729         * calculated checksum
1730         */
1731        if (read_checksum != checksum)
1732                status = IXGBE_ERR_EEPROM_CHECKSUM;
1733
1734        /* If the user cares, return the calculated checksum */
1735        if (checksum_val)
1736                *checksum_val = checksum;
1737
1738        return status;
1739}
1740
1741/**
1742 *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1743 *  @hw: pointer to hardware structure
1744 **/
1745s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1746{
1747        s32 status;
1748        u16 checksum;
1749
1750        /*
1751         * Read the first word from the EEPROM. If this times out or fails, do
1752         * not continue or we could be in for a very long wait while every
1753         * EEPROM read fails
1754         */
1755        status = hw->eeprom.ops.read(hw, 0, &checksum);
1756        if (status) {
1757                hw_dbg(hw, "EEPROM read failed\n");
1758                return status;
1759        }
1760
1761        status = hw->eeprom.ops.calc_checksum(hw);
1762        if (status < 0)
1763                return status;
1764
1765        checksum = (u16)(status & 0xffff);
1766
1767        status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
1768
1769        return status;
1770}
1771
1772/**
1773 *  ixgbe_set_rar_generic - Set Rx address register
1774 *  @hw: pointer to hardware structure
1775 *  @index: Receive address register to write
1776 *  @addr: Address to put into receive address register
1777 *  @vmdq: VMDq "set" or "pool" index
1778 *  @enable_addr: set flag that address is active
1779 *
1780 *  Puts an ethernet address into a receive address register.
1781 **/
1782s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1783                          u32 enable_addr)
1784{
1785        u32 rar_low, rar_high;
1786        u32 rar_entries = hw->mac.num_rar_entries;
1787
1788        /* Make sure we are using a valid rar index range */
1789        if (index >= rar_entries) {
1790                hw_dbg(hw, "RAR index %d is out of range.\n", index);
1791                return IXGBE_ERR_INVALID_ARGUMENT;
1792        }
1793
1794        /* setup VMDq pool selection before this RAR gets enabled */
1795        hw->mac.ops.set_vmdq(hw, index, vmdq);
1796
1797        /*
1798         * HW expects these in little endian so we reverse the byte
1799         * order from network order (big endian) to little endian
1800         */
1801        rar_low = ((u32)addr[0] |
1802                   ((u32)addr[1] << 8) |
1803                   ((u32)addr[2] << 16) |
1804                   ((u32)addr[3] << 24));
1805        /*
1806         * Some parts put the VMDq setting in the extra RAH bits,
1807         * so save everything except the lower 16 bits that hold part
1808         * of the address and the address valid bit.
1809         */
1810        rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1811        rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1812        rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1813
1814        if (enable_addr != 0)
1815                rar_high |= IXGBE_RAH_AV;
1816
1817        IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1818        IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1819
1820        return 0;
1821}
1822
1823/**
1824 *  ixgbe_clear_rar_generic - Remove Rx address register
1825 *  @hw: pointer to hardware structure
1826 *  @index: Receive address register to write
1827 *
1828 *  Clears an ethernet address from a receive address register.
1829 **/
1830s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1831{
1832        u32 rar_high;
1833        u32 rar_entries = hw->mac.num_rar_entries;
1834
1835        /* Make sure we are using a valid rar index range */
1836        if (index >= rar_entries) {
1837                hw_dbg(hw, "RAR index %d is out of range.\n", index);
1838                return IXGBE_ERR_INVALID_ARGUMENT;
1839        }
1840
1841        /*
1842         * Some parts put the VMDq setting in the extra RAH bits,
1843         * so save everything except the lower 16 bits that hold part
1844         * of the address and the address valid bit.
1845         */
1846        rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1847        rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1848
1849        IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1850        IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1851
1852        /* clear VMDq pool/queue selection for this RAR */
1853        hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1854
1855        return 0;
1856}
1857
1858/**
1859 *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1860 *  @hw: pointer to hardware structure
1861 *
1862 *  Places the MAC address in receive address register 0 and clears the rest
1863 *  of the receive address registers. Clears the multicast table. Assumes
1864 *  the receiver is in reset when the routine is called.
1865 **/
1866s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1867{
1868        u32 i;
1869        u32 rar_entries = hw->mac.num_rar_entries;
1870
1871        /*
1872         * If the current mac address is valid, assume it is a software override
1873         * to the permanent address.
1874         * Otherwise, use the permanent address from the eeprom.
1875         */
1876        if (!is_valid_ether_addr(hw->mac.addr)) {
1877                /* Get the MAC address from the RAR0 for later reference */
1878                hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1879
1880                hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1881        } else {
1882                /* Setup the receive address. */
1883                hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1884                hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1885
1886                hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1887        }
1888
1889        /*  clear VMDq pool/queue selection for RAR 0 */
1890        hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1891
1892        hw->addr_ctrl.overflow_promisc = 0;
1893
1894        hw->addr_ctrl.rar_used_count = 1;
1895
1896        /* Zero out the other receive addresses. */
1897        hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1898        for (i = 1; i < rar_entries; i++) {
1899                IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1900                IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1901        }
1902
1903        /* Clear the MTA */
1904        hw->addr_ctrl.mta_in_use = 0;
1905        IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1906
1907        hw_dbg(hw, " Clearing MTA\n");
1908        for (i = 0; i < hw->mac.mcft_size; i++)
1909                IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1910
1911        if (hw->mac.ops.init_uta_tables)
1912                hw->mac.ops.init_uta_tables(hw);
1913
1914        return 0;
1915}
1916
1917/**
1918 *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
1919 *  @hw: pointer to hardware structure
1920 *  @mc_addr: the multicast address
1921 *
1922 *  Extracts the 12 bits, from a multicast address, to determine which
1923 *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
1924 *  incoming rx multicast addresses, to determine the bit-vector to check in
1925 *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1926 *  by the MO field of the MCSTCTRL. The MO field is set during initialization
1927 *  to mc_filter_type.
1928 **/
1929static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1930{
1931        u32 vector = 0;
1932
1933        switch (hw->mac.mc_filter_type) {
1934        case 0:   /* use bits [47:36] of the address */
1935                vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1936                break;
1937        case 1:   /* use bits [46:35] of the address */
1938                vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1939                break;
1940        case 2:   /* use bits [45:34] of the address */
1941                vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1942                break;
1943        case 3:   /* use bits [43:32] of the address */
1944                vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
1945                break;
1946        default:  /* Invalid mc_filter_type */
1947                hw_dbg(hw, "MC filter type param set incorrectly\n");
1948                break;
1949        }
1950
1951        /* vector can only be 12-bits or boundary will be exceeded */
1952        vector &= 0xFFF;
1953        return vector;
1954}
1955
1956/**
1957 *  ixgbe_set_mta - Set bit-vector in multicast table
1958 *  @hw: pointer to hardware structure
1959 *  @hash_value: Multicast address hash value
1960 *
1961 *  Sets the bit-vector in the multicast table.
1962 **/
1963static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
1964{
1965        u32 vector;
1966        u32 vector_bit;
1967        u32 vector_reg;
1968
1969        hw->addr_ctrl.mta_in_use++;
1970
1971        vector = ixgbe_mta_vector(hw, mc_addr);
1972        hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
1973
1974        /*
1975         * The MTA is a register array of 128 32-bit registers. It is treated
1976         * like an array of 4096 bits.  We want to set bit
1977         * BitArray[vector_value]. So we figure out what register the bit is
1978         * in, read it, OR in the new bit, then write back the new value.  The
1979         * register is determined by the upper 7 bits of the vector value and
1980         * the bit within that register are determined by the lower 5 bits of
1981         * the value.
1982         */
1983        vector_reg = (vector >> 5) & 0x7F;
1984        vector_bit = vector & 0x1F;
1985        hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
1986}
1987
1988/**
1989 *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
1990 *  @hw: pointer to hardware structure
1991 *  @netdev: pointer to net device structure
1992 *
1993 *  The given list replaces any existing list. Clears the MC addrs from receive
1994 *  address registers and the multicast table. Uses unused receive address
1995 *  registers for the first multicast addresses, and hashes the rest into the
1996 *  multicast table.
1997 **/
1998s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
1999                                      struct net_device *netdev)
2000{
2001        struct netdev_hw_addr *ha;
2002        u32 i;
2003
2004        /*
2005         * Set the new number of MC addresses that we are being requested to
2006         * use.
2007         */
2008        hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
2009        hw->addr_ctrl.mta_in_use = 0;
2010
2011        /* Clear mta_shadow */
2012        hw_dbg(hw, " Clearing MTA\n");
2013        memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2014
2015        /* Update mta shadow */
2016        netdev_for_each_mc_addr(ha, netdev) {
2017                hw_dbg(hw, " Adding the multicast addresses:\n");
2018                ixgbe_set_mta(hw, ha->addr);
2019        }
2020
2021        /* Enable mta */
2022        for (i = 0; i < hw->mac.mcft_size; i++)
2023                IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2024                                      hw->mac.mta_shadow[i]);
2025
2026        if (hw->addr_ctrl.mta_in_use > 0)
2027                IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2028                                IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2029
2030        hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
2031        return 0;
2032}
2033
2034/**
2035 *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2036 *  @hw: pointer to hardware structure
2037 *
2038 *  Enables multicast address in RAR and the use of the multicast hash table.
2039 **/
2040s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2041{
2042        struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2043
2044        if (a->mta_in_use > 0)
2045                IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2046                                hw->mac.mc_filter_type);
2047
2048        return 0;
2049}
2050
2051/**
2052 *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2053 *  @hw: pointer to hardware structure
2054 *
2055 *  Disables multicast address in RAR and the use of the multicast hash table.
2056 **/
2057s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2058{
2059        struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2060
2061        if (a->mta_in_use > 0)
2062                IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2063
2064        return 0;
2065}
2066
2067/**
2068 *  ixgbe_fc_enable_generic - Enable flow control
2069 *  @hw: pointer to hardware structure
2070 *
2071 *  Enable flow control according to the current settings.
2072 **/
2073s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2074{
2075        u32 mflcn_reg, fccfg_reg;
2076        u32 reg;
2077        u32 fcrtl, fcrth;
2078        int i;
2079
2080        /* Validate the water mark configuration. */
2081        if (!hw->fc.pause_time)
2082                return IXGBE_ERR_INVALID_LINK_SETTINGS;
2083
2084        /* Low water mark of zero causes XOFF floods */
2085        for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2086                if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2087                    hw->fc.high_water[i]) {
2088                        if (!hw->fc.low_water[i] ||
2089                            hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2090                                hw_dbg(hw, "Invalid water mark configuration\n");
2091                                return IXGBE_ERR_INVALID_LINK_SETTINGS;
2092                        }
2093                }
2094        }
2095
2096        /* Negotiate the fc mode to use */
2097        ixgbe_fc_autoneg(hw);
2098
2099        /* Disable any previous flow control settings */
2100        mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2101        mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2102
2103        fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2104        fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2105
2106        /*
2107         * The possible values of fc.current_mode are:
2108         * 0: Flow control is completely disabled
2109         * 1: Rx flow control is enabled (we can receive pause frames,
2110         *    but not send pause frames).
2111         * 2: Tx flow control is enabled (we can send pause frames but
2112         *    we do not support receiving pause frames).
2113         * 3: Both Rx and Tx flow control (symmetric) are enabled.
2114         * other: Invalid.
2115         */
2116        switch (hw->fc.current_mode) {
2117        case ixgbe_fc_none:
2118                /*
2119                 * Flow control is disabled by software override or autoneg.
2120                 * The code below will actually disable it in the HW.
2121                 */
2122                break;
2123        case ixgbe_fc_rx_pause:
2124                /*
2125                 * Rx Flow control is enabled and Tx Flow control is
2126                 * disabled by software override. Since there really
2127                 * isn't a way to advertise that we are capable of RX
2128                 * Pause ONLY, we will advertise that we support both
2129                 * symmetric and asymmetric Rx PAUSE.  Later, we will
2130                 * disable the adapter's ability to send PAUSE frames.
2131                 */
2132                mflcn_reg |= IXGBE_MFLCN_RFCE;
2133                break;
2134        case ixgbe_fc_tx_pause:
2135                /*
2136                 * Tx Flow control is enabled, and Rx Flow control is
2137                 * disabled by software override.
2138                 */
2139                fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2140                break;
2141        case ixgbe_fc_full:
2142                /* Flow control (both Rx and Tx) is enabled by SW override. */
2143                mflcn_reg |= IXGBE_MFLCN_RFCE;
2144                fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2145                break;
2146        default:
2147                hw_dbg(hw, "Flow control param set incorrectly\n");
2148                return IXGBE_ERR_CONFIG;
2149        }
2150
2151        /* Set 802.3x based flow control settings. */
2152        mflcn_reg |= IXGBE_MFLCN_DPF;
2153        IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2154        IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2155
2156        /* Set up and enable Rx high/low water mark thresholds, enable XON. */
2157        for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2158                if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2159                    hw->fc.high_water[i]) {
2160                        fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2161                        IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2162                        fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2163                } else {
2164                        IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2165                        /*
2166                         * In order to prevent Tx hangs when the internal Tx
2167                         * switch is enabled we must set the high water mark
2168                         * to the Rx packet buffer size - 24KB.  This allows
2169                         * the Tx switch to function even under heavy Rx
2170                         * workloads.
2171                         */
2172                        fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2173                }
2174
2175                IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2176        }
2177
2178        /* Configure pause time (2 TCs per register) */
2179        reg = hw->fc.pause_time * 0x00010001;
2180        for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
2181                IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2182
2183        IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2184
2185        return 0;
2186}
2187
2188/**
2189 *  ixgbe_negotiate_fc - Negotiate flow control
2190 *  @hw: pointer to hardware structure
2191 *  @adv_reg: flow control advertised settings
2192 *  @lp_reg: link partner's flow control settings
2193 *  @adv_sym: symmetric pause bit in advertisement
2194 *  @adv_asm: asymmetric pause bit in advertisement
2195 *  @lp_sym: symmetric pause bit in link partner advertisement
2196 *  @lp_asm: asymmetric pause bit in link partner advertisement
2197 *
2198 *  Find the intersection between advertised settings and link partner's
2199 *  advertised settings
2200 **/
2201static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2202                              u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2203{
2204        if ((!(adv_reg)) ||  (!(lp_reg)))
2205                return IXGBE_ERR_FC_NOT_NEGOTIATED;
2206
2207        if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2208                /*
2209                 * Now we need to check if the user selected Rx ONLY
2210                 * of pause frames.  In this case, we had to advertise
2211                 * FULL flow control because we could not advertise RX
2212                 * ONLY. Hence, we must now check to see if we need to
2213                 * turn OFF the TRANSMISSION of PAUSE frames.
2214                 */
2215                if (hw->fc.requested_mode == ixgbe_fc_full) {
2216                        hw->fc.current_mode = ixgbe_fc_full;
2217                        hw_dbg(hw, "Flow Control = FULL.\n");
2218                } else {
2219                        hw->fc.current_mode = ixgbe_fc_rx_pause;
2220                        hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2221                }
2222        } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2223                   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2224                hw->fc.current_mode = ixgbe_fc_tx_pause;
2225                hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2226        } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2227                   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2228                hw->fc.current_mode = ixgbe_fc_rx_pause;
2229                hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2230        } else {
2231                hw->fc.current_mode = ixgbe_fc_none;
2232                hw_dbg(hw, "Flow Control = NONE.\n");
2233        }
2234        return 0;
2235}
2236
2237/**
2238 *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2239 *  @hw: pointer to hardware structure
2240 *
2241 *  Enable flow control according on 1 gig fiber.
2242 **/
2243static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2244{
2245        u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2246        s32 ret_val;
2247
2248        /*
2249         * On multispeed fiber at 1g, bail out if
2250         * - link is up but AN did not complete, or if
2251         * - link is up and AN completed but timed out
2252         */
2253
2254        linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2255        if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2256            (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2257                return IXGBE_ERR_FC_NOT_NEGOTIATED;
2258
2259        pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2260        pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2261
2262        ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2263                               pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2264                               IXGBE_PCS1GANA_ASM_PAUSE,
2265                               IXGBE_PCS1GANA_SYM_PAUSE,
2266                               IXGBE_PCS1GANA_ASM_PAUSE);
2267
2268        return ret_val;
2269}
2270
2271/**
2272 *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2273 *  @hw: pointer to hardware structure
2274 *
2275 *  Enable flow control according to IEEE clause 37.
2276 **/
2277static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2278{
2279        u32 links2, anlp1_reg, autoc_reg, links;
2280        s32 ret_val;
2281
2282        /*
2283         * On backplane, bail out if
2284         * - backplane autoneg was not completed, or if
2285         * - we are 82599 and link partner is not AN enabled
2286         */
2287        links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2288        if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2289                return IXGBE_ERR_FC_NOT_NEGOTIATED;
2290
2291        if (hw->mac.type == ixgbe_mac_82599EB) {
2292                links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2293                if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2294                        return IXGBE_ERR_FC_NOT_NEGOTIATED;
2295        }
2296        /*
2297         * Read the 10g AN autoc and LP ability registers and resolve
2298         * local flow control settings accordingly
2299         */
2300        autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2301        anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2302
2303        ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2304                anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2305                IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2306
2307        return ret_val;
2308}
2309
2310/**
2311 *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2312 *  @hw: pointer to hardware structure
2313 *
2314 *  Enable flow control according to IEEE clause 37.
2315 **/
2316static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2317{
2318        u16 technology_ability_reg = 0;
2319        u16 lp_technology_ability_reg = 0;
2320
2321        hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2322                             MDIO_MMD_AN,
2323                             &technology_ability_reg);
2324        hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2325                             MDIO_MMD_AN,
2326                             &lp_technology_ability_reg);
2327
2328        return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2329                                  (u32)lp_technology_ability_reg,
2330                                  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2331                                  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2332}
2333
2334/**
2335 *  ixgbe_fc_autoneg - Configure flow control
2336 *  @hw: pointer to hardware structure
2337 *
2338 *  Compares our advertised flow control capabilities to those advertised by
2339 *  our link partner, and determines the proper flow control mode to use.
2340 **/
2341void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2342{
2343        s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2344        ixgbe_link_speed speed;
2345        bool link_up;
2346
2347        /*
2348         * AN should have completed when the cable was plugged in.
2349         * Look for reasons to bail out.  Bail out if:
2350         * - FC autoneg is disabled, or if
2351         * - link is not up.
2352         *
2353         * Since we're being called from an LSC, link is already known to be up.
2354         * So use link_up_wait_to_complete=false.
2355         */
2356        if (hw->fc.disable_fc_autoneg)
2357                goto out;
2358
2359        hw->mac.ops.check_link(hw, &speed, &link_up, false);
2360        if (!link_up)
2361                goto out;
2362
2363        switch (hw->phy.media_type) {
2364        /* Autoneg flow control on fiber adapters */
2365        case ixgbe_media_type_fiber:
2366                if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2367                        ret_val = ixgbe_fc_autoneg_fiber(hw);
2368                break;
2369
2370        /* Autoneg flow control on backplane adapters */
2371        case ixgbe_media_type_backplane:
2372                ret_val = ixgbe_fc_autoneg_backplane(hw);
2373                break;
2374
2375        /* Autoneg flow control on copper adapters */
2376        case ixgbe_media_type_copper:
2377                if (ixgbe_device_supports_autoneg_fc(hw))
2378                        ret_val = ixgbe_fc_autoneg_copper(hw);
2379                break;
2380
2381        default:
2382                break;
2383        }
2384
2385out:
2386        if (ret_val == 0) {
2387                hw->fc.fc_was_autonegged = true;
2388        } else {
2389                hw->fc.fc_was_autonegged = false;
2390                hw->fc.current_mode = hw->fc.requested_mode;
2391        }
2392}
2393
2394/**
2395 * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
2396 * @hw: pointer to hardware structure
2397 *
2398 * System-wide timeout range is encoded in PCIe Device Control2 register.
2399 *
2400 *  Add 10% to specified maximum and return the number of times to poll for
2401 *  completion timeout, in units of 100 microsec.  Never return less than
2402 *  800 = 80 millisec.
2403 **/
2404static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
2405{
2406        s16 devctl2;
2407        u32 pollcnt;
2408
2409        devctl2 = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_CONTROL2);
2410        devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
2411
2412        switch (devctl2) {
2413        case IXGBE_PCIDEVCTRL2_65_130ms:
2414                 pollcnt = 1300;         /* 130 millisec */
2415                break;
2416        case IXGBE_PCIDEVCTRL2_260_520ms:
2417                pollcnt = 5200;         /* 520 millisec */
2418                break;
2419        case IXGBE_PCIDEVCTRL2_1_2s:
2420                pollcnt = 20000;        /* 2 sec */
2421                break;
2422        case IXGBE_PCIDEVCTRL2_4_8s:
2423                pollcnt = 80000;        /* 8 sec */
2424                break;
2425        case IXGBE_PCIDEVCTRL2_17_34s:
2426                pollcnt = 34000;        /* 34 sec */
2427                break;
2428        case IXGBE_PCIDEVCTRL2_50_100us:        /* 100 microsecs */
2429        case IXGBE_PCIDEVCTRL2_1_2ms:           /* 2 millisecs */
2430        case IXGBE_PCIDEVCTRL2_16_32ms:         /* 32 millisec */
2431        case IXGBE_PCIDEVCTRL2_16_32ms_def:     /* 32 millisec default */
2432        default:
2433                pollcnt = 800;          /* 80 millisec minimum */
2434                break;
2435        }
2436
2437        /* add 10% to spec maximum */
2438        return (pollcnt * 11) / 10;
2439}
2440
2441/**
2442 *  ixgbe_disable_pcie_master - Disable PCI-express master access
2443 *  @hw: pointer to hardware structure
2444 *
2445 *  Disables PCI-Express master access and verifies there are no pending
2446 *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2447 *  bit hasn't caused the master requests to be disabled, else 0
2448 *  is returned signifying master requests disabled.
2449 **/
2450static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2451{
2452        u32 i, poll;
2453        u16 value;
2454
2455        /* Always set this bit to ensure any future transactions are blocked */
2456        IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2457
2458        /* Poll for bit to read as set */
2459        for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2460                if (IXGBE_READ_REG(hw, IXGBE_CTRL) & IXGBE_CTRL_GIO_DIS)
2461                        break;
2462                usleep_range(100, 120);
2463        }
2464        if (i >= IXGBE_PCI_MASTER_DISABLE_TIMEOUT) {
2465                hw_dbg(hw, "GIO disable did not set - requesting resets\n");
2466                goto gio_disable_fail;
2467        }
2468
2469        /* Exit if master requests are blocked */
2470        if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
2471            ixgbe_removed(hw->hw_addr))
2472                return 0;
2473
2474        /* Poll for master request bit to clear */
2475        for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2476                udelay(100);
2477                if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2478                        return 0;
2479        }
2480
2481        /*
2482         * Two consecutive resets are required via CTRL.RST per datasheet
2483         * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
2484         * of this need.  The first reset prevents new master requests from
2485         * being issued by our device.  We then must wait 1usec or more for any
2486         * remaining completions from the PCIe bus to trickle in, and then reset
2487         * again to clear out any effects they may have had on our device.
2488         */
2489        hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
2490gio_disable_fail:
2491        hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2492
2493        if (hw->mac.type >= ixgbe_mac_X550)
2494                return 0;
2495
2496        /*
2497         * Before proceeding, make sure that the PCIe block does not have
2498         * transactions pending.
2499         */
2500        poll = ixgbe_pcie_timeout_poll(hw);
2501        for (i = 0; i < poll; i++) {
2502                udelay(100);
2503                value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
2504                if (ixgbe_removed(hw->hw_addr))
2505                        return 0;
2506                if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2507                        return 0;
2508        }
2509
2510        hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2511        return IXGBE_ERR_MASTER_REQUESTS_PENDING;
2512}
2513
2514/**
2515 *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2516 *  @hw: pointer to hardware structure
2517 *  @mask: Mask to specify which semaphore to acquire
2518 *
2519 *  Acquires the SWFW semaphore through the GSSR register for the specified
2520 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2521 **/
2522s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2523{
2524        u32 gssr = 0;
2525        u32 swmask = mask;
2526        u32 fwmask = mask << 5;
2527        u32 timeout = 200;
2528        u32 i;
2529
2530        for (i = 0; i < timeout; i++) {
2531                /*
2532                 * SW NVM semaphore bit is used for access to all
2533                 * SW_FW_SYNC bits (not just NVM)
2534                 */
2535                if (ixgbe_get_eeprom_semaphore(hw))
2536                        return IXGBE_ERR_SWFW_SYNC;
2537
2538                gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2539                if (!(gssr & (fwmask | swmask))) {
2540                        gssr |= swmask;
2541                        IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2542                        ixgbe_release_eeprom_semaphore(hw);
2543                        return 0;
2544                } else {
2545                        /* Resource is currently in use by FW or SW */
2546                        ixgbe_release_eeprom_semaphore(hw);
2547                        usleep_range(5000, 10000);
2548                }
2549        }
2550
2551        /* If time expired clear the bits holding the lock and retry */
2552        if (gssr & (fwmask | swmask))
2553                ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
2554
2555        usleep_range(5000, 10000);
2556        return IXGBE_ERR_SWFW_SYNC;
2557}
2558
2559/**
2560 *  ixgbe_release_swfw_sync - Release SWFW semaphore
2561 *  @hw: pointer to hardware structure
2562 *  @mask: Mask to specify which semaphore to release
2563 *
2564 *  Releases the SWFW semaphore through the GSSR register for the specified
2565 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2566 **/
2567void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2568{
2569        u32 gssr;
2570        u32 swmask = mask;
2571
2572        ixgbe_get_eeprom_semaphore(hw);
2573
2574        gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2575        gssr &= ~swmask;
2576        IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2577
2578        ixgbe_release_eeprom_semaphore(hw);
2579}
2580
2581/**
2582 * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
2583 * @hw: pointer to hardware structure
2584 * @reg_val: Value we read from AUTOC
2585 * @locked: bool to indicate whether the SW/FW lock should be taken.  Never
2586 *          true in this the generic case.
2587 *
2588 * The default case requires no protection so just to the register read.
2589 **/
2590s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
2591{
2592        *locked = false;
2593        *reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2594        return 0;
2595}
2596
2597/**
2598 * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
2599 * @hw: pointer to hardware structure
2600 * @reg_val: value to write to AUTOC
2601 * @locked: bool to indicate whether the SW/FW lock was already taken by
2602 *          previous read.
2603 **/
2604s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
2605{
2606        IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
2607        return 0;
2608}
2609
2610/**
2611 *  ixgbe_disable_rx_buff_generic - Stops the receive data path
2612 *  @hw: pointer to hardware structure
2613 *
2614 *  Stops the receive data path and waits for the HW to internally
2615 *  empty the Rx security block.
2616 **/
2617s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2618{
2619#define IXGBE_MAX_SECRX_POLL 40
2620        int i;
2621        int secrxreg;
2622
2623        secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2624        secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2625        IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2626        for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2627                secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2628                if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2629                        break;
2630                else
2631                        /* Use interrupt-safe sleep just in case */
2632                        udelay(1000);
2633        }
2634
2635        /* For informational purposes only */
2636        if (i >= IXGBE_MAX_SECRX_POLL)
2637                hw_dbg(hw, "Rx unit being enabled before security path fully disabled. Continuing with init.\n");
2638
2639        return 0;
2640
2641}
2642
2643/**
2644 *  ixgbe_enable_rx_buff - Enables the receive data path
2645 *  @hw: pointer to hardware structure
2646 *
2647 *  Enables the receive data path
2648 **/
2649s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2650{
2651        int secrxreg;
2652
2653        secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2654        secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2655        IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2656        IXGBE_WRITE_FLUSH(hw);
2657
2658        return 0;
2659}
2660
2661/**
2662 *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2663 *  @hw: pointer to hardware structure
2664 *  @regval: register value to write to RXCTRL
2665 *
2666 *  Enables the Rx DMA unit
2667 **/
2668s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2669{
2670        if (regval & IXGBE_RXCTRL_RXEN)
2671                hw->mac.ops.enable_rx(hw);
2672        else
2673                hw->mac.ops.disable_rx(hw);
2674
2675        return 0;
2676}
2677
2678/**
2679 *  ixgbe_blink_led_start_generic - Blink LED based on index.
2680 *  @hw: pointer to hardware structure
2681 *  @index: led number to blink
2682 **/
2683s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2684{
2685        ixgbe_link_speed speed = 0;
2686        bool link_up = false;
2687        u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2688        u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2689        bool locked = false;
2690        s32 ret_val;
2691
2692        /*
2693         * Link must be up to auto-blink the LEDs;
2694         * Force it if link is down.
2695         */
2696        hw->mac.ops.check_link(hw, &speed, &link_up, false);
2697
2698        if (!link_up) {
2699                ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2700                if (ret_val)
2701                        return ret_val;
2702
2703                autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2704                autoc_reg |= IXGBE_AUTOC_FLU;
2705
2706                ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2707                if (ret_val)
2708                        return ret_val;
2709
2710                IXGBE_WRITE_FLUSH(hw);
2711
2712                usleep_range(10000, 20000);
2713        }
2714
2715        led_reg &= ~IXGBE_LED_MODE_MASK(index);
2716        led_reg |= IXGBE_LED_BLINK(index);
2717        IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2718        IXGBE_WRITE_FLUSH(hw);
2719
2720        return 0;
2721}
2722
2723/**
2724 *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2725 *  @hw: pointer to hardware structure
2726 *  @index: led number to stop blinking
2727 **/
2728s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2729{
2730        u32 autoc_reg = 0;
2731        u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2732        bool locked = false;
2733        s32 ret_val;
2734
2735        ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2736        if (ret_val)
2737                return ret_val;
2738
2739        autoc_reg &= ~IXGBE_AUTOC_FLU;
2740        autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2741
2742        ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2743        if (ret_val)
2744                return ret_val;
2745
2746        led_reg &= ~IXGBE_LED_MODE_MASK(index);
2747        led_reg &= ~IXGBE_LED_BLINK(index);
2748        led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2749        IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2750        IXGBE_WRITE_FLUSH(hw);
2751
2752        return 0;
2753}
2754
2755/**
2756 *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2757 *  @hw: pointer to hardware structure
2758 *  @san_mac_offset: SAN MAC address offset
2759 *
2760 *  This function will read the EEPROM location for the SAN MAC address
2761 *  pointer, and returns the value at that location.  This is used in both
2762 *  get and set mac_addr routines.
2763 **/
2764static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2765                                        u16 *san_mac_offset)
2766{
2767        s32 ret_val;
2768
2769        /*
2770         * First read the EEPROM pointer to see if the MAC addresses are
2771         * available.
2772         */
2773        ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
2774                                      san_mac_offset);
2775        if (ret_val)
2776                hw_err(hw, "eeprom read at offset %d failed\n",
2777                       IXGBE_SAN_MAC_ADDR_PTR);
2778
2779        return ret_val;
2780}
2781
2782/**
2783 *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2784 *  @hw: pointer to hardware structure
2785 *  @san_mac_addr: SAN MAC address
2786 *
2787 *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
2788 *  per-port, so set_lan_id() must be called before reading the addresses.
2789 *  set_lan_id() is called by identify_sfp(), but this cannot be relied
2790 *  upon for non-SFP connections, so we must call it here.
2791 **/
2792s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2793{
2794        u16 san_mac_data, san_mac_offset;
2795        u8 i;
2796        s32 ret_val;
2797
2798        /*
2799         * First read the EEPROM pointer to see if the MAC addresses are
2800         * available.  If they're not, no point in calling set_lan_id() here.
2801         */
2802        ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2803        if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
2804
2805                goto san_mac_addr_clr;
2806
2807        /* make sure we know which port we need to program */
2808        hw->mac.ops.set_lan_id(hw);
2809        /* apply the port offset to the address offset */
2810        (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2811                         (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2812        for (i = 0; i < 3; i++) {
2813                ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
2814                                              &san_mac_data);
2815                if (ret_val) {
2816                        hw_err(hw, "eeprom read at offset %d failed\n",
2817                               san_mac_offset);
2818                        goto san_mac_addr_clr;
2819                }
2820                san_mac_addr[i * 2] = (u8)(san_mac_data);
2821                san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2822                san_mac_offset++;
2823        }
2824        return 0;
2825
2826san_mac_addr_clr:
2827        /* No addresses available in this EEPROM.  It's not necessarily an
2828         * error though, so just wipe the local address and return.
2829         */
2830        for (i = 0; i < 6; i++)
2831                san_mac_addr[i] = 0xFF;
2832        return ret_val;
2833}
2834
2835/**
2836 *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2837 *  @hw: pointer to hardware structure
2838 *
2839 *  Read PCIe configuration space, and get the MSI-X vector count from
2840 *  the capabilities table.
2841 **/
2842u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2843{
2844        u16 msix_count;
2845        u16 max_msix_count;
2846        u16 pcie_offset;
2847
2848        switch (hw->mac.type) {
2849        case ixgbe_mac_82598EB:
2850                pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2851                max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2852                break;
2853        case ixgbe_mac_82599EB:
2854        case ixgbe_mac_X540:
2855        case ixgbe_mac_X550:
2856        case ixgbe_mac_X550EM_x:
2857                pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2858                max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2859                break;
2860        default:
2861                return 1;
2862        }
2863
2864        msix_count = ixgbe_read_pci_cfg_word(hw, pcie_offset);
2865        if (ixgbe_removed(hw->hw_addr))
2866                msix_count = 0;
2867        msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2868
2869        /* MSI-X count is zero-based in HW */
2870        msix_count++;
2871
2872        if (msix_count > max_msix_count)
2873                msix_count = max_msix_count;
2874
2875        return msix_count;
2876}
2877
2878/**
2879 *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2880 *  @hw: pointer to hardware struct
2881 *  @rar: receive address register index to disassociate
2882 *  @vmdq: VMDq pool index to remove from the rar
2883 **/
2884s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2885{
2886        u32 mpsar_lo, mpsar_hi;
2887        u32 rar_entries = hw->mac.num_rar_entries;
2888
2889        /* Make sure we are using a valid rar index range */
2890        if (rar >= rar_entries) {
2891                hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2892                return IXGBE_ERR_INVALID_ARGUMENT;
2893        }
2894
2895        mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2896        mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2897
2898        if (ixgbe_removed(hw->hw_addr))
2899                return 0;
2900
2901        if (!mpsar_lo && !mpsar_hi)
2902                return 0;
2903
2904        if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2905                if (mpsar_lo) {
2906                        IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2907                        mpsar_lo = 0;
2908                }
2909                if (mpsar_hi) {
2910                        IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2911                        mpsar_hi = 0;
2912                }
2913        } else if (vmdq < 32) {
2914                mpsar_lo &= ~(1 << vmdq);
2915                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2916        } else {
2917                mpsar_hi &= ~(1 << (vmdq - 32));
2918                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2919        }
2920
2921        /* was that the last pool using this rar? */
2922        if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
2923                hw->mac.ops.clear_rar(hw, rar);
2924        return 0;
2925}
2926
2927/**
2928 *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
2929 *  @hw: pointer to hardware struct
2930 *  @rar: receive address register index to associate with a VMDq index
2931 *  @vmdq: VMDq pool index
2932 **/
2933s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2934{
2935        u32 mpsar;
2936        u32 rar_entries = hw->mac.num_rar_entries;
2937
2938        /* Make sure we are using a valid rar index range */
2939        if (rar >= rar_entries) {
2940                hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2941                return IXGBE_ERR_INVALID_ARGUMENT;
2942        }
2943
2944        if (vmdq < 32) {
2945                mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2946                mpsar |= 1 << vmdq;
2947                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
2948        } else {
2949                mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2950                mpsar |= 1 << (vmdq - 32);
2951                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
2952        }
2953        return 0;
2954}
2955
2956/**
2957 *  This function should only be involved in the IOV mode.
2958 *  In IOV mode, Default pool is next pool after the number of
2959 *  VFs advertized and not 0.
2960 *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
2961 *
2962 *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
2963 *  @hw: pointer to hardware struct
2964 *  @vmdq: VMDq pool index
2965 **/
2966s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
2967{
2968        u32 rar = hw->mac.san_mac_rar_index;
2969
2970        if (vmdq < 32) {
2971                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
2972                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2973        } else {
2974                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2975                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
2976        }
2977
2978        return 0;
2979}
2980
2981/**
2982 *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
2983 *  @hw: pointer to hardware structure
2984 **/
2985s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
2986{
2987        int i;
2988
2989        for (i = 0; i < 128; i++)
2990                IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
2991
2992        return 0;
2993}
2994
2995/**
2996 *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
2997 *  @hw: pointer to hardware structure
2998 *  @vlan: VLAN id to write to VLAN filter
2999 *
3000 *  return the VLVF index where this VLAN id should be placed
3001 *
3002 **/
3003static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3004{
3005        s32 regindex, first_empty_slot;
3006        u32 bits;
3007
3008        /* short cut the special case */
3009        if (vlan == 0)
3010                return 0;
3011
3012        /* if vlvf_bypass is set we don't want to use an empty slot, we
3013         * will simply bypass the VLVF if there are no entries present in the
3014         * VLVF that contain our VLAN
3015         */
3016        first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0;
3017
3018        /* add VLAN enable bit for comparison */
3019        vlan |= IXGBE_VLVF_VIEN;
3020
3021        /* Search for the vlan id in the VLVF entries. Save off the first empty
3022         * slot found along the way.
3023         *
3024         * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3025         */
3026        for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3027                bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3028                if (bits == vlan)
3029                        return regindex;
3030                if (!first_empty_slot && !bits)
3031                        first_empty_slot = regindex;
3032        }
3033
3034        /* If we are here then we didn't find the VLAN.  Return first empty
3035         * slot we found during our search, else error.
3036         */
3037        if (!first_empty_slot)
3038                hw_dbg(hw, "No space in VLVF.\n");
3039
3040        return first_empty_slot ? : IXGBE_ERR_NO_SPACE;
3041}
3042
3043/**
3044 *  ixgbe_set_vfta_generic - Set VLAN filter table
3045 *  @hw: pointer to hardware structure
3046 *  @vlan: VLAN id to write to VLAN filter
3047 *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
3048 *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
3049 *  @vlvf_bypass: boolean flag indicating updating default pool is okay
3050 *
3051 *  Turn on/off specified VLAN in the VLAN filter table.
3052 **/
3053s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3054                           bool vlan_on, bool vlvf_bypass)
3055{
3056        u32 regidx, vfta_delta, vfta, bits;
3057        s32 vlvf_index;
3058
3059        if ((vlan > 4095) || (vind > 63))
3060                return IXGBE_ERR_PARAM;
3061
3062        /*
3063         * this is a 2 part operation - first the VFTA, then the
3064         * VLVF and VLVFB if VT Mode is set
3065         * We don't write the VFTA until we know the VLVF part succeeded.
3066         */
3067
3068        /* Part 1
3069         * The VFTA is a bitstring made up of 128 32-bit registers
3070         * that enable the particular VLAN id, much like the MTA:
3071         *    bits[11-5]: which register
3072         *    bits[4-0]:  which bit in the register
3073         */
3074        regidx = vlan / 32;
3075        vfta_delta = 1 << (vlan % 32);
3076        vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
3077
3078        /* vfta_delta represents the difference between the current value
3079         * of vfta and the value we want in the register.  Since the diff
3080         * is an XOR mask we can just update vfta using an XOR.
3081         */
3082        vfta_delta &= vlan_on ? ~vfta : vfta;
3083        vfta ^= vfta_delta;
3084
3085        /* Part 2
3086         * If VT Mode is set
3087         *   Either vlan_on
3088         *     make sure the vlan is in VLVF
3089         *     set the vind bit in the matching VLVFB
3090         *   Or !vlan_on
3091         *     clear the pool bit and possibly the vind
3092         */
3093        if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
3094                goto vfta_update;
3095
3096        vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
3097        if (vlvf_index < 0) {
3098                if (vlvf_bypass)
3099                        goto vfta_update;
3100                return vlvf_index;
3101        }
3102
3103        bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
3104
3105        /* set the pool bit */
3106        bits |= 1 << (vind % 32);
3107        if (vlan_on)
3108                goto vlvf_update;
3109
3110        /* clear the pool bit */
3111        bits ^= 1 << (vind % 32);
3112
3113        if (!bits &&
3114            !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
3115                /* Clear VFTA first, then disable VLVF.  Otherwise
3116                 * we run the risk of stray packets leaking into
3117                 * the PF via the default pool
3118                 */
3119                if (vfta_delta)
3120                        IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3121
3122                /* disable VLVF and clear remaining bit from pool */
3123                IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3124                IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
3125
3126                return 0;
3127        }
3128
3129        /* If there are still bits set in the VLVFB registers
3130         * for the VLAN ID indicated we need to see if the
3131         * caller is requesting that we clear the VFTA entry bit.
3132         * If the caller has requested that we clear the VFTA
3133         * entry bit but there are still pools/VFs using this VLAN
3134         * ID entry then ignore the request.  We're not worried
3135         * about the case where we're turning the VFTA VLAN ID
3136         * entry bit on, only when requested to turn it off as
3137         * there may be multiple pools and/or VFs using the
3138         * VLAN ID entry.  In that case we cannot clear the
3139         * VFTA bit until all pools/VFs using that VLAN ID have also
3140         * been cleared.  This will be indicated by "bits" being
3141         * zero.
3142         */
3143        vfta_delta = 0;
3144
3145vlvf_update:
3146        /* record pool change and enable VLAN ID if not already enabled */
3147        IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
3148        IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
3149
3150vfta_update:
3151        /* Update VFTA now that we are ready for traffic */
3152        if (vfta_delta)
3153                IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3154
3155        return 0;
3156}
3157
3158/**
3159 *  ixgbe_clear_vfta_generic - Clear VLAN filter table
3160 *  @hw: pointer to hardware structure
3161 *
3162 *  Clears the VLAN filer table, and the VMDq index associated with the filter
3163 **/
3164s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3165{
3166        u32 offset;
3167
3168        for (offset = 0; offset < hw->mac.vft_size; offset++)
3169                IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3170
3171        for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3172                IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3173                IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
3174                IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2 + 1), 0);
3175        }
3176
3177        return 0;
3178}
3179
3180/**
3181 *  ixgbe_check_mac_link_generic - Determine link and speed status
3182 *  @hw: pointer to hardware structure
3183 *  @speed: pointer to link speed
3184 *  @link_up: true when link is up
3185 *  @link_up_wait_to_complete: bool used to wait for link up or not
3186 *
3187 *  Reads the links register to determine if link is up and the current speed
3188 **/
3189s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3190                                 bool *link_up, bool link_up_wait_to_complete)
3191{
3192        u32 links_reg, links_orig;
3193        u32 i;
3194
3195        /* clear the old state */
3196        links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3197
3198        links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3199
3200        if (links_orig != links_reg) {
3201                hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3202                       links_orig, links_reg);
3203        }
3204
3205        if (link_up_wait_to_complete) {
3206                for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3207                        if (links_reg & IXGBE_LINKS_UP) {
3208                                *link_up = true;
3209                                break;
3210                        } else {
3211                                *link_up = false;
3212                        }
3213                        msleep(100);
3214                        links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3215                }
3216        } else {
3217                if (links_reg & IXGBE_LINKS_UP)
3218                        *link_up = true;
3219                else
3220                        *link_up = false;
3221        }
3222
3223        switch (links_reg & IXGBE_LINKS_SPEED_82599) {
3224        case IXGBE_LINKS_SPEED_10G_82599:
3225                if ((hw->mac.type >= ixgbe_mac_X550) &&
3226                    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3227                        *speed = IXGBE_LINK_SPEED_2_5GB_FULL;
3228                else
3229                        *speed = IXGBE_LINK_SPEED_10GB_FULL;
3230                break;
3231        case IXGBE_LINKS_SPEED_1G_82599:
3232                *speed = IXGBE_LINK_SPEED_1GB_FULL;
3233                break;
3234        case IXGBE_LINKS_SPEED_100_82599:
3235                if ((hw->mac.type >= ixgbe_mac_X550) &&
3236                    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3237                        *speed = IXGBE_LINK_SPEED_5GB_FULL;
3238                else
3239                        *speed = IXGBE_LINK_SPEED_100_FULL;
3240                break;
3241        default:
3242                *speed = IXGBE_LINK_SPEED_UNKNOWN;
3243        }
3244
3245        return 0;
3246}
3247
3248/**
3249 *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3250 *  the EEPROM
3251 *  @hw: pointer to hardware structure
3252 *  @wwnn_prefix: the alternative WWNN prefix
3253 *  @wwpn_prefix: the alternative WWPN prefix
3254 *
3255 *  This function will read the EEPROM from the alternative SAN MAC address
3256 *  block to check the support for the alternative WWNN/WWPN prefix support.
3257 **/
3258s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3259                                        u16 *wwpn_prefix)
3260{
3261        u16 offset, caps;
3262        u16 alt_san_mac_blk_offset;
3263
3264        /* clear output first */
3265        *wwnn_prefix = 0xFFFF;
3266        *wwpn_prefix = 0xFFFF;
3267
3268        /* check if alternative SAN MAC is supported */
3269        offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
3270        if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
3271                goto wwn_prefix_err;
3272
3273        if ((alt_san_mac_blk_offset == 0) ||
3274            (alt_san_mac_blk_offset == 0xFFFF))
3275                return 0;
3276
3277        /* check capability in alternative san mac address block */
3278        offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3279        if (hw->eeprom.ops.read(hw, offset, &caps))
3280                goto wwn_prefix_err;
3281        if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3282                return 0;
3283
3284        /* get the corresponding prefix for WWNN/WWPN */
3285        offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3286        if (hw->eeprom.ops.read(hw, offset, wwnn_prefix))
3287                hw_err(hw, "eeprom read at offset %d failed\n", offset);
3288
3289        offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3290        if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
3291                goto wwn_prefix_err;
3292
3293        return 0;
3294
3295wwn_prefix_err:
3296        hw_err(hw, "eeprom read at offset %d failed\n", offset);
3297        return 0;
3298}
3299
3300/**
3301 *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3302 *  @hw: pointer to hardware structure
3303 *  @enable: enable or disable switch for anti-spoofing
3304 *  @pf: Physical Function pool - do not enable anti-spoofing for the PF
3305 *
3306 **/
3307void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
3308{
3309        int j;
3310        int pf_target_reg = pf >> 3;
3311        int pf_target_shift = pf % 8;
3312        u32 pfvfspoof = 0;
3313
3314        if (hw->mac.type == ixgbe_mac_82598EB)
3315                return;
3316
3317        if (enable)
3318                pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
3319
3320        /*
3321         * PFVFSPOOF register array is size 8 with 8 bits assigned to
3322         * MAC anti-spoof enables in each register array element.
3323         */
3324        for (j = 0; j < pf_target_reg; j++)
3325                IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3326
3327        /*
3328         * The PF should be allowed to spoof so that it can support
3329         * emulation mode NICs.  Do not set the bits assigned to the PF
3330         */
3331        pfvfspoof &= (1 << pf_target_shift) - 1;
3332        IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3333
3334        /*
3335         * Remaining pools belong to the PF so they do not need to have
3336         * anti-spoofing enabled.
3337         */
3338        for (j++; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
3339                IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), 0);
3340}
3341
3342/**
3343 *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3344 *  @hw: pointer to hardware structure
3345 *  @enable: enable or disable switch for VLAN anti-spoofing
3346 *  @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3347 *
3348 **/
3349void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3350{
3351        int vf_target_reg = vf >> 3;
3352        int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3353        u32 pfvfspoof;
3354
3355        if (hw->mac.type == ixgbe_mac_82598EB)
3356                return;
3357
3358        pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3359        if (enable)
3360                pfvfspoof |= (1 << vf_target_shift);
3361        else
3362                pfvfspoof &= ~(1 << vf_target_shift);
3363        IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3364}
3365
3366/**
3367 *  ixgbe_get_device_caps_generic - Get additional device capabilities
3368 *  @hw: pointer to hardware structure
3369 *  @device_caps: the EEPROM word with the extra device capabilities
3370 *
3371 *  This function will read the EEPROM location for the device capabilities,
3372 *  and return the word through device_caps.
3373 **/
3374s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3375{
3376        hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3377
3378        return 0;
3379}
3380
3381/**
3382 * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3383 * @hw: pointer to hardware structure
3384 * @num_pb: number of packet buffers to allocate
3385 * @headroom: reserve n KB of headroom
3386 * @strategy: packet buffer allocation strategy
3387 **/
3388void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3389                             int num_pb,
3390                             u32 headroom,
3391                             int strategy)
3392{
3393        u32 pbsize = hw->mac.rx_pb_size;
3394        int i = 0;
3395        u32 rxpktsize, txpktsize, txpbthresh;
3396
3397        /* Reserve headroom */
3398        pbsize -= headroom;
3399
3400        if (!num_pb)
3401                num_pb = 1;
3402
3403        /* Divide remaining packet buffer space amongst the number
3404         * of packet buffers requested using supplied strategy.
3405         */
3406        switch (strategy) {
3407        case (PBA_STRATEGY_WEIGHTED):
3408                /* pba_80_48 strategy weight first half of packet buffer with
3409                 * 5/8 of the packet buffer space.
3410                 */
3411                rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3412                pbsize -= rxpktsize * (num_pb / 2);
3413                rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3414                for (; i < (num_pb / 2); i++)
3415                        IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3416                /* Fall through to configure remaining packet buffers */
3417        case (PBA_STRATEGY_EQUAL):
3418                /* Divide the remaining Rx packet buffer evenly among the TCs */
3419                rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3420                for (; i < num_pb; i++)
3421                        IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3422                break;
3423        default:
3424                break;
3425        }
3426
3427        /*
3428         * Setup Tx packet buffer and threshold equally for all TCs
3429         * TXPBTHRESH register is set in K so divide by 1024 and subtract
3430         * 10 since the largest packet we support is just over 9K.
3431         */
3432        txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3433        txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3434        for (i = 0; i < num_pb; i++) {
3435                IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3436                IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3437        }
3438
3439        /* Clear unused TCs, if any, to zero buffer size*/
3440        for (; i < IXGBE_MAX_PB; i++) {
3441                IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3442                IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3443                IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3444        }
3445}
3446
3447/**
3448 *  ixgbe_calculate_checksum - Calculate checksum for buffer
3449 *  @buffer: pointer to EEPROM
3450 *  @length: size of EEPROM to calculate a checksum for
3451 *
3452 *  Calculates the checksum for some buffer on a specified length.  The
3453 *  checksum calculated is returned.
3454 **/
3455static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3456{
3457        u32 i;
3458        u8 sum = 0;
3459
3460        if (!buffer)
3461                return 0;
3462
3463        for (i = 0; i < length; i++)
3464                sum += buffer[i];
3465
3466        return (u8) (0 - sum);
3467}
3468
3469/**
3470 *  ixgbe_host_interface_command - Issue command to manageability block
3471 *  @hw: pointer to the HW structure
3472 *  @buffer: contains the command to write and where the return status will
3473 *           be placed
3474 *  @length: length of buffer, must be multiple of 4 bytes
3475 *  @timeout: time in ms to wait for command completion
3476 *  @return_data: read and return data from the buffer (true) or not (false)
3477 *  Needed because FW structures are big endian and decoding of
3478 *  these fields can be 8 bit or 16 bit based on command. Decoding
3479 *  is not easily understood without making a table of commands.
3480 *  So we will leave this up to the caller to read back the data
3481 *  in these cases.
3482 *
3483 *  Communicates with the manageability block.  On success return 0
3484 *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3485 **/
3486s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
3487                                 u32 length, u32 timeout,
3488                                 bool return_data)
3489{
3490        u32 hicr, i, bi, fwsts;
3491        u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3492        u16 buf_len, dword_len;
3493
3494        if (length == 0 || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3495                hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3496                return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3497        }
3498
3499        /* Set bit 9 of FWSTS clearing FW reset indication */
3500        fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
3501        IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
3502
3503        /* Check that the host interface is enabled. */
3504        hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3505        if ((hicr & IXGBE_HICR_EN) == 0) {
3506                hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3507                return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3508        }
3509
3510        /* Calculate length in DWORDs. We must be DWORD aligned */
3511        if ((length % (sizeof(u32))) != 0) {
3512                hw_dbg(hw, "Buffer length failure, not aligned to dword");
3513                return IXGBE_ERR_INVALID_ARGUMENT;
3514        }
3515
3516        dword_len = length >> 2;
3517
3518        /*
3519         * The device driver writes the relevant command block
3520         * into the ram area.
3521         */
3522        for (i = 0; i < dword_len; i++)
3523                IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3524                                      i, cpu_to_le32(buffer[i]));
3525
3526        /* Setting this bit tells the ARC that a new command is pending. */
3527        IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3528
3529        for (i = 0; i < timeout; i++) {
3530                hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3531                if (!(hicr & IXGBE_HICR_C))
3532                        break;
3533                usleep_range(1000, 2000);
3534        }
3535
3536        /* Check command successful completion. */
3537        if ((timeout != 0 && i == timeout) ||
3538            (!(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))) {
3539                hw_dbg(hw, "Command has failed with no status valid.\n");
3540                return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3541        }
3542
3543        if (!return_data)
3544                return 0;
3545
3546        /* Calculate length in DWORDs */
3547        dword_len = hdr_size >> 2;
3548
3549        /* first pull in the header so we know the buffer length */
3550        for (bi = 0; bi < dword_len; bi++) {
3551                buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3552                le32_to_cpus(&buffer[bi]);
3553        }
3554
3555        /* If there is any thing in data position pull it in */
3556        buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
3557        if (buf_len == 0)
3558                return 0;
3559
3560        if (length < (buf_len + hdr_size)) {
3561                hw_dbg(hw, "Buffer not large enough for reply message.\n");
3562                return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3563        }
3564
3565        /* Calculate length in DWORDs, add 3 for odd lengths */
3566        dword_len = (buf_len + 3) >> 2;
3567
3568        /* Pull in the rest of the buffer (bi is where we left off)*/
3569        for (; bi <= dword_len; bi++) {
3570                buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3571                le32_to_cpus(&buffer[bi]);
3572        }
3573
3574        return 0;
3575}
3576
3577/**
3578 *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3579 *  @hw: pointer to the HW structure
3580 *  @maj: driver version major number
3581 *  @min: driver version minor number
3582 *  @build: driver version build number
3583 *  @sub: driver version sub build number
3584 *
3585 *  Sends driver version number to firmware through the manageability
3586 *  block.  On success return 0
3587 *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3588 *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3589 **/
3590s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3591                                 u8 build, u8 sub)
3592{
3593        struct ixgbe_hic_drv_info fw_cmd;
3594        int i;
3595        s32 ret_val;
3596
3597        if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM))
3598                return IXGBE_ERR_SWFW_SYNC;
3599
3600        fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3601        fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3602        fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3603        fw_cmd.port_num = (u8)hw->bus.func;
3604        fw_cmd.ver_maj = maj;
3605        fw_cmd.ver_min = min;
3606        fw_cmd.ver_build = build;
3607        fw_cmd.ver_sub = sub;
3608        fw_cmd.hdr.checksum = 0;
3609        fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3610                                (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3611        fw_cmd.pad = 0;
3612        fw_cmd.pad2 = 0;
3613
3614        for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3615                ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
3616                                                       sizeof(fw_cmd),
3617                                                       IXGBE_HI_COMMAND_TIMEOUT,
3618                                                       true);
3619                if (ret_val != 0)
3620                        continue;
3621
3622                if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3623                    FW_CEM_RESP_STATUS_SUCCESS)
3624                        ret_val = 0;
3625                else
3626                        ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3627
3628                break;
3629        }
3630
3631        hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3632        return ret_val;
3633}
3634
3635/**
3636 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3637 * @hw: pointer to the hardware structure
3638 *
3639 * The 82599 and x540 MACs can experience issues if TX work is still pending
3640 * when a reset occurs.  This function prevents this by flushing the PCIe
3641 * buffers on the system.
3642 **/
3643void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3644{
3645        u32 gcr_ext, hlreg0, i, poll;
3646        u16 value;
3647
3648        /*
3649         * If double reset is not requested then all transactions should
3650         * already be clear and as such there is no work to do
3651         */
3652        if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3653                return;
3654
3655        /*
3656         * Set loopback enable to prevent any transmits from being sent
3657         * should the link come up.  This assumes that the RXCTRL.RXEN bit
3658         * has already been cleared.
3659         */
3660        hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3661        IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3662
3663        /* wait for a last completion before clearing buffers */
3664        IXGBE_WRITE_FLUSH(hw);
3665        usleep_range(3000, 6000);
3666
3667        /* Before proceeding, make sure that the PCIe block does not have
3668         * transactions pending.
3669         */
3670        poll = ixgbe_pcie_timeout_poll(hw);
3671        for (i = 0; i < poll; i++) {
3672                usleep_range(100, 200);
3673                value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
3674                if (ixgbe_removed(hw->hw_addr))
3675                        break;
3676                if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3677                        break;
3678        }
3679
3680        /* initiate cleaning flow for buffers in the PCIe transaction layer */
3681        gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3682        IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3683                        gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3684
3685        /* Flush all writes and allow 20usec for all transactions to clear */
3686        IXGBE_WRITE_FLUSH(hw);
3687        udelay(20);
3688
3689        /* restore previous register values */
3690        IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3691        IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3692}
3693
3694static const u8 ixgbe_emc_temp_data[4] = {
3695        IXGBE_EMC_INTERNAL_DATA,
3696        IXGBE_EMC_DIODE1_DATA,
3697        IXGBE_EMC_DIODE2_DATA,
3698        IXGBE_EMC_DIODE3_DATA
3699};
3700static const u8 ixgbe_emc_therm_limit[4] = {
3701        IXGBE_EMC_INTERNAL_THERM_LIMIT,
3702        IXGBE_EMC_DIODE1_THERM_LIMIT,
3703        IXGBE_EMC_DIODE2_THERM_LIMIT,
3704        IXGBE_EMC_DIODE3_THERM_LIMIT
3705};
3706
3707/**
3708 *  ixgbe_get_ets_data - Extracts the ETS bit data
3709 *  @hw: pointer to hardware structure
3710 *  @ets_cfg: extected ETS data
3711 *  @ets_offset: offset of ETS data
3712 *
3713 *  Returns error code.
3714 **/
3715static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
3716                              u16 *ets_offset)
3717{
3718        s32 status;
3719
3720        status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
3721        if (status)
3722                return status;
3723
3724        if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF))
3725                return IXGBE_NOT_IMPLEMENTED;
3726
3727        status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
3728        if (status)
3729                return status;
3730
3731        if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED)
3732                return IXGBE_NOT_IMPLEMENTED;
3733
3734        return 0;
3735}
3736
3737/**
3738 *  ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
3739 *  @hw: pointer to hardware structure
3740 *
3741 *  Returns the thermal sensor data structure
3742 **/
3743s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3744{
3745        s32 status;
3746        u16 ets_offset;
3747        u16 ets_cfg;
3748        u16 ets_sensor;
3749        u8  num_sensors;
3750        u8  i;
3751        struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3752
3753        /* Only support thermal sensors attached to physical port 0 */
3754        if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3755                return IXGBE_NOT_IMPLEMENTED;
3756
3757        status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3758        if (status)
3759                return status;
3760
3761        num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3762        if (num_sensors > IXGBE_MAX_SENSORS)
3763                num_sensors = IXGBE_MAX_SENSORS;
3764
3765        for (i = 0; i < num_sensors; i++) {
3766                u8  sensor_index;
3767                u8  sensor_location;
3768
3769                status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3770                                             &ets_sensor);
3771                if (status)
3772                        return status;
3773
3774                sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3775                                IXGBE_ETS_DATA_INDEX_SHIFT);
3776                sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3777                                   IXGBE_ETS_DATA_LOC_SHIFT);
3778
3779                if (sensor_location != 0) {
3780                        status = hw->phy.ops.read_i2c_byte(hw,
3781                                        ixgbe_emc_temp_data[sensor_index],
3782                                        IXGBE_I2C_THERMAL_SENSOR_ADDR,
3783                                        &data->sensor[i].temp);
3784                        if (status)
3785                                return status;
3786                }
3787        }
3788
3789        return 0;
3790}
3791
3792/**
3793 * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3794 * @hw: pointer to hardware structure
3795 *
3796 * Inits the thermal sensor thresholds according to the NVM map
3797 * and save off the threshold and location values into mac.thermal_sensor_data
3798 **/
3799s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
3800{
3801        s32 status;
3802        u16 ets_offset;
3803        u16 ets_cfg;
3804        u16 ets_sensor;
3805        u8  low_thresh_delta;
3806        u8  num_sensors;
3807        u8  therm_limit;
3808        u8  i;
3809        struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3810
3811        memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
3812
3813        /* Only support thermal sensors attached to physical port 0 */
3814        if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3815                return IXGBE_NOT_IMPLEMENTED;
3816
3817        status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3818        if (status)
3819                return status;
3820
3821        low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
3822                             IXGBE_ETS_LTHRES_DELTA_SHIFT);
3823        num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3824        if (num_sensors > IXGBE_MAX_SENSORS)
3825                num_sensors = IXGBE_MAX_SENSORS;
3826
3827        for (i = 0; i < num_sensors; i++) {
3828                u8  sensor_index;
3829                u8  sensor_location;
3830
3831                if (hw->eeprom.ops.read(hw, ets_offset + 1 + i, &ets_sensor)) {
3832                        hw_err(hw, "eeprom read at offset %d failed\n",
3833                               ets_offset + 1 + i);
3834                        continue;
3835                }
3836                sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3837                                IXGBE_ETS_DATA_INDEX_SHIFT);
3838                sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3839                                   IXGBE_ETS_DATA_LOC_SHIFT);
3840                therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
3841
3842                hw->phy.ops.write_i2c_byte(hw,
3843                        ixgbe_emc_therm_limit[sensor_index],
3844                        IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
3845
3846                if (sensor_location == 0)
3847                        continue;
3848
3849                data->sensor[i].location = sensor_location;
3850                data->sensor[i].caution_thresh = therm_limit;
3851                data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
3852        }
3853
3854        return 0;
3855}
3856
3857void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
3858{
3859        u32 rxctrl;
3860
3861        rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
3862        if (rxctrl & IXGBE_RXCTRL_RXEN) {
3863                if (hw->mac.type != ixgbe_mac_82598EB) {
3864                        u32 pfdtxgswc;
3865
3866                        pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
3867                        if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
3868                                pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
3869                                IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
3870                                hw->mac.set_lben = true;
3871                        } else {
3872                                hw->mac.set_lben = false;
3873                        }
3874                }
3875                rxctrl &= ~IXGBE_RXCTRL_RXEN;
3876                IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
3877        }
3878}
3879
3880void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
3881{
3882        u32 rxctrl;
3883
3884        rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
3885        IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
3886
3887        if (hw->mac.type != ixgbe_mac_82598EB) {
3888                if (hw->mac.set_lben) {
3889                        u32 pfdtxgswc;
3890
3891                        pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
3892                        pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
3893                        IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
3894                        hw->mac.set_lben = false;
3895                }
3896        }
3897}
3898
3899/** ixgbe_mng_present - returns true when management capability is present
3900 * @hw: pointer to hardware structure
3901 **/
3902bool ixgbe_mng_present(struct ixgbe_hw *hw)
3903{
3904        u32 fwsm;
3905
3906        if (hw->mac.type < ixgbe_mac_82599EB)
3907                return false;
3908
3909        fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM(hw));
3910        fwsm &= IXGBE_FWSM_MODE_MASK;
3911        return fwsm == IXGBE_FWSM_FW_MODE_PT;
3912}
3913
3914/**
3915 *  ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
3916 *  @hw: pointer to hardware structure
3917 *  @speed: new link speed
3918 *  @autoneg_wait_to_complete: true when waiting for completion is needed
3919 *
3920 *  Set the link speed in the MAC and/or PHY register and restarts link.
3921 */
3922s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
3923                                          ixgbe_link_speed speed,
3924                                          bool autoneg_wait_to_complete)
3925{
3926        ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
3927        ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
3928        s32 status = 0;
3929        u32 speedcnt = 0;
3930        u32 i = 0;
3931        bool autoneg, link_up = false;
3932
3933        /* Mask off requested but non-supported speeds */
3934        status = hw->mac.ops.get_link_capabilities(hw, &link_speed, &autoneg);
3935        if (status)
3936                return status;
3937
3938        speed &= link_speed;
3939
3940        /* Try each speed one by one, highest priority first.  We do this in
3941         * software because 10Gb fiber doesn't support speed autonegotiation.
3942         */
3943        if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
3944                speedcnt++;
3945                highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
3946
3947                /* If we already have link at this speed, just jump out */
3948                status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
3949                                                false);
3950                if (status)
3951                        return status;
3952
3953                if (link_speed == IXGBE_LINK_SPEED_10GB_FULL && link_up)
3954                        goto out;
3955
3956                /* Set the module link speed */
3957                switch (hw->phy.media_type) {
3958                case ixgbe_media_type_fiber:
3959                        hw->mac.ops.set_rate_select_speed(hw,
3960                                                    IXGBE_LINK_SPEED_10GB_FULL);
3961                        break;
3962                case ixgbe_media_type_fiber_qsfp:
3963                        /* QSFP module automatically detects MAC link speed */
3964                        break;
3965                default:
3966                        hw_dbg(hw, "Unexpected media type\n");
3967                        break;
3968                }
3969
3970                /* Allow module to change analog characteristics (1G->10G) */
3971                msleep(40);
3972
3973                status = hw->mac.ops.setup_mac_link(hw,
3974                                                    IXGBE_LINK_SPEED_10GB_FULL,
3975                                                    autoneg_wait_to_complete);
3976                if (status)
3977                        return status;
3978
3979                /* Flap the Tx laser if it has not already been done */
3980                if (hw->mac.ops.flap_tx_laser)
3981                        hw->mac.ops.flap_tx_laser(hw);
3982
3983                /* Wait for the controller to acquire link.  Per IEEE 802.3ap,
3984                 * Section 73.10.2, we may have to wait up to 500ms if KR is
3985                 * attempted.  82599 uses the same timing for 10g SFI.
3986                 */
3987                for (i = 0; i < 5; i++) {
3988                        /* Wait for the link partner to also set speed */
3989                        msleep(100);
3990
3991                        /* If we have link, just jump out */
3992                        status = hw->mac.ops.check_link(hw, &link_speed,
3993                                                        &link_up, false);
3994                        if (status)
3995                                return status;
3996
3997                        if (link_up)
3998                                goto out;
3999                }
4000        }
4001
4002        if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
4003                speedcnt++;
4004                if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
4005                        highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
4006
4007                /* If we already have link at this speed, just jump out */
4008                status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
4009                                                false);
4010                if (status)
4011                        return status;
4012
4013                if (link_speed == IXGBE_LINK_SPEED_1GB_FULL && link_up)
4014                        goto out;
4015
4016                /* Set the module link speed */
4017                switch (hw->phy.media_type) {
4018                case ixgbe_media_type_fiber:
4019                        hw->mac.ops.set_rate_select_speed(hw,
4020                                                     IXGBE_LINK_SPEED_1GB_FULL);
4021                        break;
4022                case ixgbe_media_type_fiber_qsfp:
4023                        /* QSFP module automatically detects link speed */
4024                        break;
4025                default:
4026                        hw_dbg(hw, "Unexpected media type\n");
4027                        break;
4028                }
4029
4030                /* Allow module to change analog characteristics (10G->1G) */
4031                msleep(40);
4032
4033                status = hw->mac.ops.setup_mac_link(hw,
4034                                                    IXGBE_LINK_SPEED_1GB_FULL,
4035                                                    autoneg_wait_to_complete);
4036                if (status)
4037                        return status;
4038
4039                /* Flap the Tx laser if it has not already been done */
4040                if (hw->mac.ops.flap_tx_laser)
4041                        hw->mac.ops.flap_tx_laser(hw);
4042
4043                /* Wait for the link partner to also set speed */
4044                msleep(100);
4045
4046                /* If we have link, just jump out */
4047                status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
4048                                                false);
4049                if (status)
4050                        return status;
4051
4052                if (link_up)
4053                        goto out;
4054        }
4055
4056        /* We didn't get link.  Configure back to the highest speed we tried,
4057         * (if there was more than one).  We call ourselves back with just the
4058         * single highest speed that the user requested.
4059         */
4060        if (speedcnt > 1)
4061                status = ixgbe_setup_mac_link_multispeed_fiber(hw,
4062                                                      highest_link_speed,
4063                                                      autoneg_wait_to_complete);
4064
4065out:
4066        /* Set autoneg_advertised value based on input link speed */
4067        hw->phy.autoneg_advertised = 0;
4068
4069        if (speed & IXGBE_LINK_SPEED_10GB_FULL)
4070                hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
4071
4072        if (speed & IXGBE_LINK_SPEED_1GB_FULL)
4073                hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
4074
4075        return status;
4076}
4077
4078/**
4079 *  ixgbe_set_soft_rate_select_speed - Set module link speed
4080 *  @hw: pointer to hardware structure
4081 *  @speed: link speed to set
4082 *
4083 *  Set module link speed via the soft rate select.
4084 */
4085void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
4086                                      ixgbe_link_speed speed)
4087{
4088        s32 status;
4089        u8 rs, eeprom_data;
4090
4091        switch (speed) {
4092        case IXGBE_LINK_SPEED_10GB_FULL:
4093                /* one bit mask same as setting on */
4094                rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
4095                break;
4096        case IXGBE_LINK_SPEED_1GB_FULL:
4097                rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
4098                break;
4099        default:
4100                hw_dbg(hw, "Invalid fixed module speed\n");
4101                return;
4102        }
4103
4104        /* Set RS0 */
4105        status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4106                                           IXGBE_I2C_EEPROM_DEV_ADDR2,
4107                                           &eeprom_data);
4108        if (status) {
4109                hw_dbg(hw, "Failed to read Rx Rate Select RS0\n");
4110                return;
4111        }
4112
4113        eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4114
4115        status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4116                                            IXGBE_I2C_EEPROM_DEV_ADDR2,
4117                                            eeprom_data);
4118        if (status) {
4119                hw_dbg(hw, "Failed to write Rx Rate Select RS0\n");
4120                return;
4121        }
4122}
4123