linux/drivers/net/ethernet/marvell/pxa168_eth.c
<<
>>
Prefs
   1/*
   2 * PXA168 ethernet driver.
   3 * Most of the code is derived from mv643xx ethernet driver.
   4 *
   5 * Copyright (C) 2010 Marvell International Ltd.
   6 *              Sachin Sanap <ssanap@marvell.com>
   7 *              Zhangfei Gao <zgao6@marvell.com>
   8 *              Philip Rakity <prakity@marvell.com>
   9 *              Mark Brown <markb@marvell.com>
  10 *
  11 * This program is free software; you can redistribute it and/or
  12 * modify it under the terms of the GNU General Public License
  13 * as published by the Free Software Foundation; either version 2
  14 * of the License, or (at your option) any later version.
  15 *
  16 * This program is distributed in the hope that it will be useful,
  17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  19 * GNU General Public License for more details.
  20 *
  21 * You should have received a copy of the GNU General Public License
  22 * along with this program; if not, see <http://www.gnu.org/licenses/>.
  23 */
  24
  25#include <linux/bitops.h>
  26#include <linux/clk.h>
  27#include <linux/delay.h>
  28#include <linux/dma-mapping.h>
  29#include <linux/etherdevice.h>
  30#include <linux/ethtool.h>
  31#include <linux/in.h>
  32#include <linux/interrupt.h>
  33#include <linux/io.h>
  34#include <linux/ip.h>
  35#include <linux/kernel.h>
  36#include <linux/module.h>
  37#include <linux/of.h>
  38#include <linux/of_net.h>
  39#include <linux/phy.h>
  40#include <linux/platform_device.h>
  41#include <linux/pxa168_eth.h>
  42#include <linux/tcp.h>
  43#include <linux/types.h>
  44#include <linux/udp.h>
  45#include <linux/workqueue.h>
  46
  47#include <asm/pgtable.h>
  48#include <asm/cacheflush.h>
  49
  50#define DRIVER_NAME     "pxa168-eth"
  51#define DRIVER_VERSION  "0.3"
  52
  53/*
  54 * Registers
  55 */
  56
  57#define PHY_ADDRESS             0x0000
  58#define SMI                     0x0010
  59#define PORT_CONFIG             0x0400
  60#define PORT_CONFIG_EXT         0x0408
  61#define PORT_COMMAND            0x0410
  62#define PORT_STATUS             0x0418
  63#define HTPR                    0x0428
  64#define MAC_ADDR_LOW            0x0430
  65#define MAC_ADDR_HIGH           0x0438
  66#define SDMA_CONFIG             0x0440
  67#define SDMA_CMD                0x0448
  68#define INT_CAUSE               0x0450
  69#define INT_W_CLEAR             0x0454
  70#define INT_MASK                0x0458
  71#define ETH_F_RX_DESC_0         0x0480
  72#define ETH_C_RX_DESC_0         0x04A0
  73#define ETH_C_TX_DESC_1         0x04E4
  74
  75/* smi register */
  76#define SMI_BUSY                (1 << 28)       /* 0 - Write, 1 - Read  */
  77#define SMI_R_VALID             (1 << 27)       /* 0 - Write, 1 - Read  */
  78#define SMI_OP_W                (0 << 26)       /* Write operation      */
  79#define SMI_OP_R                (1 << 26)       /* Read operation */
  80
  81#define PHY_WAIT_ITERATIONS     10
  82
  83#define PXA168_ETH_PHY_ADDR_DEFAULT     0
  84/* RX & TX descriptor command */
  85#define BUF_OWNED_BY_DMA        (1 << 31)
  86
  87/* RX descriptor status */
  88#define RX_EN_INT               (1 << 23)
  89#define RX_FIRST_DESC           (1 << 17)
  90#define RX_LAST_DESC            (1 << 16)
  91#define RX_ERROR                (1 << 15)
  92
  93/* TX descriptor command */
  94#define TX_EN_INT               (1 << 23)
  95#define TX_GEN_CRC              (1 << 22)
  96#define TX_ZERO_PADDING         (1 << 18)
  97#define TX_FIRST_DESC           (1 << 17)
  98#define TX_LAST_DESC            (1 << 16)
  99#define TX_ERROR                (1 << 15)
 100
 101/* SDMA_CMD */
 102#define SDMA_CMD_AT             (1 << 31)
 103#define SDMA_CMD_TXDL           (1 << 24)
 104#define SDMA_CMD_TXDH           (1 << 23)
 105#define SDMA_CMD_AR             (1 << 15)
 106#define SDMA_CMD_ERD            (1 << 7)
 107
 108/* Bit definitions of the Port Config Reg */
 109#define PCR_DUPLEX_FULL         (1 << 15)
 110#define PCR_HS                  (1 << 12)
 111#define PCR_EN                  (1 << 7)
 112#define PCR_PM                  (1 << 0)
 113
 114/* Bit definitions of the Port Config Extend Reg */
 115#define PCXR_2BSM               (1 << 28)
 116#define PCXR_DSCP_EN            (1 << 21)
 117#define PCXR_RMII_EN            (1 << 20)
 118#define PCXR_AN_SPEED_DIS       (1 << 19)
 119#define PCXR_SPEED_100          (1 << 18)
 120#define PCXR_MFL_1518           (0 << 14)
 121#define PCXR_MFL_1536           (1 << 14)
 122#define PCXR_MFL_2048           (2 << 14)
 123#define PCXR_MFL_64K            (3 << 14)
 124#define PCXR_FLOWCTL_DIS        (1 << 12)
 125#define PCXR_FLP                (1 << 11)
 126#define PCXR_AN_FLOWCTL_DIS     (1 << 10)
 127#define PCXR_AN_DUPLEX_DIS      (1 << 9)
 128#define PCXR_PRIO_TX_OFF        3
 129#define PCXR_TX_HIGH_PRI        (7 << PCXR_PRIO_TX_OFF)
 130
 131/* Bit definitions of the SDMA Config Reg */
 132#define SDCR_BSZ_OFF            12
 133#define SDCR_BSZ8               (3 << SDCR_BSZ_OFF)
 134#define SDCR_BSZ4               (2 << SDCR_BSZ_OFF)
 135#define SDCR_BSZ2               (1 << SDCR_BSZ_OFF)
 136#define SDCR_BSZ1               (0 << SDCR_BSZ_OFF)
 137#define SDCR_BLMR               (1 << 6)
 138#define SDCR_BLMT               (1 << 7)
 139#define SDCR_RIFB               (1 << 9)
 140#define SDCR_RC_OFF             2
 141#define SDCR_RC_MAX_RETRANS     (0xf << SDCR_RC_OFF)
 142
 143/*
 144 * Bit definitions of the Interrupt Cause Reg
 145 * and Interrupt MASK Reg is the same
 146 */
 147#define ICR_RXBUF               (1 << 0)
 148#define ICR_TXBUF_H             (1 << 2)
 149#define ICR_TXBUF_L             (1 << 3)
 150#define ICR_TXEND_H             (1 << 6)
 151#define ICR_TXEND_L             (1 << 7)
 152#define ICR_RXERR               (1 << 8)
 153#define ICR_TXERR_H             (1 << 10)
 154#define ICR_TXERR_L             (1 << 11)
 155#define ICR_TX_UDR              (1 << 13)
 156#define ICR_MII_CH              (1 << 28)
 157
 158#define ALL_INTS (ICR_TXBUF_H  | ICR_TXBUF_L  | ICR_TX_UDR |\
 159                                ICR_TXERR_H  | ICR_TXERR_L |\
 160                                ICR_TXEND_H  | ICR_TXEND_L |\
 161                                ICR_RXBUF | ICR_RXERR  | ICR_MII_CH)
 162
 163#define ETH_HW_IP_ALIGN         2       /* hw aligns IP header */
 164
 165#define NUM_RX_DESCS            64
 166#define NUM_TX_DESCS            64
 167
 168#define HASH_ADD                0
 169#define HASH_DELETE             1
 170#define HASH_ADDR_TABLE_SIZE    0x4000  /* 16K (1/2K address - PCR_HS == 1) */
 171#define HOP_NUMBER              12
 172
 173/* Bit definitions for Port status */
 174#define PORT_SPEED_100          (1 << 0)
 175#define FULL_DUPLEX             (1 << 1)
 176#define FLOW_CONTROL_DISABLED   (1 << 2)
 177#define LINK_UP                 (1 << 3)
 178
 179/* Bit definitions for work to be done */
 180#define WORK_TX_DONE            (1 << 1)
 181
 182/*
 183 * Misc definitions.
 184 */
 185#define SKB_DMA_REALIGN         ((PAGE_SIZE - NET_SKB_PAD) % SMP_CACHE_BYTES)
 186
 187struct rx_desc {
 188        u32 cmd_sts;            /* Descriptor command status            */
 189        u16 byte_cnt;           /* Descriptor buffer byte count         */
 190        u16 buf_size;           /* Buffer size                          */
 191        u32 buf_ptr;            /* Descriptor buffer pointer            */
 192        u32 next_desc_ptr;      /* Next descriptor pointer              */
 193};
 194
 195struct tx_desc {
 196        u32 cmd_sts;            /* Command/status field                 */
 197        u16 reserved;
 198        u16 byte_cnt;           /* buffer byte count                    */
 199        u32 buf_ptr;            /* pointer to buffer for this descriptor */
 200        u32 next_desc_ptr;      /* Pointer to next descriptor           */
 201};
 202
 203struct pxa168_eth_private {
 204        int port_num;           /* User Ethernet port number    */
 205        int phy_addr;
 206        int phy_speed;
 207        int phy_duplex;
 208        phy_interface_t phy_intf;
 209
 210        int rx_resource_err;    /* Rx ring resource error flag */
 211
 212        /* Next available and first returning Rx resource */
 213        int rx_curr_desc_q, rx_used_desc_q;
 214
 215        /* Next available and first returning Tx resource */
 216        int tx_curr_desc_q, tx_used_desc_q;
 217
 218        struct rx_desc *p_rx_desc_area;
 219        dma_addr_t rx_desc_dma;
 220        int rx_desc_area_size;
 221        struct sk_buff **rx_skb;
 222
 223        struct tx_desc *p_tx_desc_area;
 224        dma_addr_t tx_desc_dma;
 225        int tx_desc_area_size;
 226        struct sk_buff **tx_skb;
 227
 228        struct work_struct tx_timeout_task;
 229
 230        struct net_device *dev;
 231        struct napi_struct napi;
 232        u8 work_todo;
 233        int skb_size;
 234
 235        /* Size of Tx Ring per queue */
 236        int tx_ring_size;
 237        /* Number of tx descriptors in use */
 238        int tx_desc_count;
 239        /* Size of Rx Ring per queue */
 240        int rx_ring_size;
 241        /* Number of rx descriptors in use */
 242        int rx_desc_count;
 243
 244        /*
 245         * Used in case RX Ring is empty, which can occur when
 246         * system does not have resources (skb's)
 247         */
 248        struct timer_list timeout;
 249        struct mii_bus *smi_bus;
 250        struct phy_device *phy;
 251
 252        /* clock */
 253        struct clk *clk;
 254        struct pxa168_eth_platform_data *pd;
 255        /*
 256         * Ethernet controller base address.
 257         */
 258        void __iomem *base;
 259
 260        /* Pointer to the hardware address filter table */
 261        void *htpr;
 262        dma_addr_t htpr_dma;
 263};
 264
 265struct addr_table_entry {
 266        __le32 lo;
 267        __le32 hi;
 268};
 269
 270/* Bit fields of a Hash Table Entry */
 271enum hash_table_entry {
 272        HASH_ENTRY_VALID = 1,
 273        SKIP = 2,
 274        HASH_ENTRY_RECEIVE_DISCARD = 4,
 275        HASH_ENTRY_RECEIVE_DISCARD_BIT = 2
 276};
 277
 278static int pxa168_get_settings(struct net_device *dev, struct ethtool_cmd *cmd);
 279static int pxa168_set_settings(struct net_device *dev, struct ethtool_cmd *cmd);
 280static int pxa168_init_hw(struct pxa168_eth_private *pep);
 281static int pxa168_init_phy(struct net_device *dev);
 282static void eth_port_reset(struct net_device *dev);
 283static void eth_port_start(struct net_device *dev);
 284static int pxa168_eth_open(struct net_device *dev);
 285static int pxa168_eth_stop(struct net_device *dev);
 286
 287static inline u32 rdl(struct pxa168_eth_private *pep, int offset)
 288{
 289        return readl(pep->base + offset);
 290}
 291
 292static inline void wrl(struct pxa168_eth_private *pep, int offset, u32 data)
 293{
 294        writel(data, pep->base + offset);
 295}
 296
 297static void abort_dma(struct pxa168_eth_private *pep)
 298{
 299        int delay;
 300        int max_retries = 40;
 301
 302        do {
 303                wrl(pep, SDMA_CMD, SDMA_CMD_AR | SDMA_CMD_AT);
 304                udelay(100);
 305
 306                delay = 10;
 307                while ((rdl(pep, SDMA_CMD) & (SDMA_CMD_AR | SDMA_CMD_AT))
 308                       && delay-- > 0) {
 309                        udelay(10);
 310                }
 311        } while (max_retries-- > 0 && delay <= 0);
 312
 313        if (max_retries <= 0)
 314                netdev_err(pep->dev, "%s : DMA Stuck\n", __func__);
 315}
 316
 317static void rxq_refill(struct net_device *dev)
 318{
 319        struct pxa168_eth_private *pep = netdev_priv(dev);
 320        struct sk_buff *skb;
 321        struct rx_desc *p_used_rx_desc;
 322        int used_rx_desc;
 323
 324        while (pep->rx_desc_count < pep->rx_ring_size) {
 325                int size;
 326
 327                skb = netdev_alloc_skb(dev, pep->skb_size);
 328                if (!skb)
 329                        break;
 330                if (SKB_DMA_REALIGN)
 331                        skb_reserve(skb, SKB_DMA_REALIGN);
 332                pep->rx_desc_count++;
 333                /* Get 'used' Rx descriptor */
 334                used_rx_desc = pep->rx_used_desc_q;
 335                p_used_rx_desc = &pep->p_rx_desc_area[used_rx_desc];
 336                size = skb_end_pointer(skb) - skb->data;
 337                p_used_rx_desc->buf_ptr = dma_map_single(NULL,
 338                                                         skb->data,
 339                                                         size,
 340                                                         DMA_FROM_DEVICE);
 341                p_used_rx_desc->buf_size = size;
 342                pep->rx_skb[used_rx_desc] = skb;
 343
 344                /* Return the descriptor to DMA ownership */
 345                wmb();
 346                p_used_rx_desc->cmd_sts = BUF_OWNED_BY_DMA | RX_EN_INT;
 347                wmb();
 348
 349                /* Move the used descriptor pointer to the next descriptor */
 350                pep->rx_used_desc_q = (used_rx_desc + 1) % pep->rx_ring_size;
 351
 352                /* Any Rx return cancels the Rx resource error status */
 353                pep->rx_resource_err = 0;
 354
 355                skb_reserve(skb, ETH_HW_IP_ALIGN);
 356        }
 357
 358        /*
 359         * If RX ring is empty of SKB, set a timer to try allocating
 360         * again at a later time.
 361         */
 362        if (pep->rx_desc_count == 0) {
 363                pep->timeout.expires = jiffies + (HZ / 10);
 364                add_timer(&pep->timeout);
 365        }
 366}
 367
 368static inline void rxq_refill_timer_wrapper(unsigned long data)
 369{
 370        struct pxa168_eth_private *pep = (void *)data;
 371        napi_schedule(&pep->napi);
 372}
 373
 374static inline u8 flip_8_bits(u8 x)
 375{
 376        return (((x) & 0x01) << 3) | (((x) & 0x02) << 1)
 377            | (((x) & 0x04) >> 1) | (((x) & 0x08) >> 3)
 378            | (((x) & 0x10) << 3) | (((x) & 0x20) << 1)
 379            | (((x) & 0x40) >> 1) | (((x) & 0x80) >> 3);
 380}
 381
 382static void nibble_swap_every_byte(unsigned char *mac_addr)
 383{
 384        int i;
 385        for (i = 0; i < ETH_ALEN; i++) {
 386                mac_addr[i] = ((mac_addr[i] & 0x0f) << 4) |
 387                                ((mac_addr[i] & 0xf0) >> 4);
 388        }
 389}
 390
 391static void inverse_every_nibble(unsigned char *mac_addr)
 392{
 393        int i;
 394        for (i = 0; i < ETH_ALEN; i++)
 395                mac_addr[i] = flip_8_bits(mac_addr[i]);
 396}
 397
 398/*
 399 * ----------------------------------------------------------------------------
 400 * This function will calculate the hash function of the address.
 401 * Inputs
 402 * mac_addr_orig    - MAC address.
 403 * Outputs
 404 * return the calculated entry.
 405 */
 406static u32 hash_function(unsigned char *mac_addr_orig)
 407{
 408        u32 hash_result;
 409        u32 addr0;
 410        u32 addr1;
 411        u32 addr2;
 412        u32 addr3;
 413        unsigned char mac_addr[ETH_ALEN];
 414
 415        /* Make a copy of MAC address since we are going to performe bit
 416         * operations on it
 417         */
 418        memcpy(mac_addr, mac_addr_orig, ETH_ALEN);
 419
 420        nibble_swap_every_byte(mac_addr);
 421        inverse_every_nibble(mac_addr);
 422
 423        addr0 = (mac_addr[5] >> 2) & 0x3f;
 424        addr1 = (mac_addr[5] & 0x03) | (((mac_addr[4] & 0x7f)) << 2);
 425        addr2 = ((mac_addr[4] & 0x80) >> 7) | mac_addr[3] << 1;
 426        addr3 = (mac_addr[2] & 0xff) | ((mac_addr[1] & 1) << 8);
 427
 428        hash_result = (addr0 << 9) | (addr1 ^ addr2 ^ addr3);
 429        hash_result = hash_result & 0x07ff;
 430        return hash_result;
 431}
 432
 433/*
 434 * ----------------------------------------------------------------------------
 435 * This function will add/del an entry to the address table.
 436 * Inputs
 437 * pep - ETHERNET .
 438 * mac_addr - MAC address.
 439 * skip - if 1, skip this address.Used in case of deleting an entry which is a
 440 *        part of chain in the hash table.We can't just delete the entry since
 441 *        that will break the chain.We need to defragment the tables time to
 442 *        time.
 443 * rd   - 0 Discard packet upon match.
 444 *      - 1 Receive packet upon match.
 445 * Outputs
 446 * address table entry is added/deleted.
 447 * 0 if success.
 448 * -ENOSPC if table full
 449 */
 450static int add_del_hash_entry(struct pxa168_eth_private *pep,
 451                              unsigned char *mac_addr,
 452                              u32 rd, u32 skip, int del)
 453{
 454        struct addr_table_entry *entry, *start;
 455        u32 new_high;
 456        u32 new_low;
 457        u32 i;
 458
 459        new_low = (((mac_addr[1] >> 4) & 0xf) << 15)
 460            | (((mac_addr[1] >> 0) & 0xf) << 11)
 461            | (((mac_addr[0] >> 4) & 0xf) << 7)
 462            | (((mac_addr[0] >> 0) & 0xf) << 3)
 463            | (((mac_addr[3] >> 4) & 0x1) << 31)
 464            | (((mac_addr[3] >> 0) & 0xf) << 27)
 465            | (((mac_addr[2] >> 4) & 0xf) << 23)
 466            | (((mac_addr[2] >> 0) & 0xf) << 19)
 467            | (skip << SKIP) | (rd << HASH_ENTRY_RECEIVE_DISCARD_BIT)
 468            | HASH_ENTRY_VALID;
 469
 470        new_high = (((mac_addr[5] >> 4) & 0xf) << 15)
 471            | (((mac_addr[5] >> 0) & 0xf) << 11)
 472            | (((mac_addr[4] >> 4) & 0xf) << 7)
 473            | (((mac_addr[4] >> 0) & 0xf) << 3)
 474            | (((mac_addr[3] >> 5) & 0x7) << 0);
 475
 476        /*
 477         * Pick the appropriate table, start scanning for free/reusable
 478         * entries at the index obtained by hashing the specified MAC address
 479         */
 480        start = pep->htpr;
 481        entry = start + hash_function(mac_addr);
 482        for (i = 0; i < HOP_NUMBER; i++) {
 483                if (!(le32_to_cpu(entry->lo) & HASH_ENTRY_VALID)) {
 484                        break;
 485                } else {
 486                        /* if same address put in same position */
 487                        if (((le32_to_cpu(entry->lo) & 0xfffffff8) ==
 488                                (new_low & 0xfffffff8)) &&
 489                                (le32_to_cpu(entry->hi) == new_high)) {
 490                                break;
 491                        }
 492                }
 493                if (entry == start + 0x7ff)
 494                        entry = start;
 495                else
 496                        entry++;
 497        }
 498
 499        if (((le32_to_cpu(entry->lo) & 0xfffffff8) != (new_low & 0xfffffff8)) &&
 500            (le32_to_cpu(entry->hi) != new_high) && del)
 501                return 0;
 502
 503        if (i == HOP_NUMBER) {
 504                if (!del) {
 505                        netdev_info(pep->dev,
 506                                    "%s: table section is full, need to "
 507                                    "move to 16kB implementation?\n",
 508                                    __FILE__);
 509                        return -ENOSPC;
 510                } else
 511                        return 0;
 512        }
 513
 514        /*
 515         * Update the selected entry
 516         */
 517        if (del) {
 518                entry->hi = 0;
 519                entry->lo = 0;
 520        } else {
 521                entry->hi = cpu_to_le32(new_high);
 522                entry->lo = cpu_to_le32(new_low);
 523        }
 524
 525        return 0;
 526}
 527
 528/*
 529 * ----------------------------------------------------------------------------
 530 *  Create an addressTable entry from MAC address info
 531 *  found in the specifed net_device struct
 532 *
 533 *  Input : pointer to ethernet interface network device structure
 534 *  Output : N/A
 535 */
 536static void update_hash_table_mac_address(struct pxa168_eth_private *pep,
 537                                          unsigned char *oaddr,
 538                                          unsigned char *addr)
 539{
 540        /* Delete old entry */
 541        if (oaddr)
 542                add_del_hash_entry(pep, oaddr, 1, 0, HASH_DELETE);
 543        /* Add new entry */
 544        add_del_hash_entry(pep, addr, 1, 0, HASH_ADD);
 545}
 546
 547static int init_hash_table(struct pxa168_eth_private *pep)
 548{
 549        /*
 550         * Hardware expects CPU to build a hash table based on a predefined
 551         * hash function and populate it based on hardware address. The
 552         * location of the hash table is identified by 32-bit pointer stored
 553         * in HTPR internal register. Two possible sizes exists for the hash
 554         * table 8kB (256kB of DRAM required (4 x 64 kB banks)) and 1/2kB
 555         * (16kB of DRAM required (4 x 4 kB banks)).We currently only support
 556         * 1/2kB.
 557         */
 558        /* TODO: Add support for 8kB hash table and alternative hash
 559         * function.Driver can dynamically switch to them if the 1/2kB hash
 560         * table is full.
 561         */
 562        if (pep->htpr == NULL) {
 563                pep->htpr = dma_zalloc_coherent(pep->dev->dev.parent,
 564                                                HASH_ADDR_TABLE_SIZE,
 565                                                &pep->htpr_dma, GFP_KERNEL);
 566                if (pep->htpr == NULL)
 567                        return -ENOMEM;
 568        } else {
 569                memset(pep->htpr, 0, HASH_ADDR_TABLE_SIZE);
 570        }
 571        wrl(pep, HTPR, pep->htpr_dma);
 572        return 0;
 573}
 574
 575static void pxa168_eth_set_rx_mode(struct net_device *dev)
 576{
 577        struct pxa168_eth_private *pep = netdev_priv(dev);
 578        struct netdev_hw_addr *ha;
 579        u32 val;
 580
 581        val = rdl(pep, PORT_CONFIG);
 582        if (dev->flags & IFF_PROMISC)
 583                val |= PCR_PM;
 584        else
 585                val &= ~PCR_PM;
 586        wrl(pep, PORT_CONFIG, val);
 587
 588        /*
 589         * Remove the old list of MAC address and add dev->addr
 590         * and multicast address.
 591         */
 592        memset(pep->htpr, 0, HASH_ADDR_TABLE_SIZE);
 593        update_hash_table_mac_address(pep, NULL, dev->dev_addr);
 594
 595        netdev_for_each_mc_addr(ha, dev)
 596                update_hash_table_mac_address(pep, NULL, ha->addr);
 597}
 598
 599static void pxa168_eth_get_mac_address(struct net_device *dev,
 600                                       unsigned char *addr)
 601{
 602        struct pxa168_eth_private *pep = netdev_priv(dev);
 603        unsigned int mac_h = rdl(pep, MAC_ADDR_HIGH);
 604        unsigned int mac_l = rdl(pep, MAC_ADDR_LOW);
 605
 606        addr[0] = (mac_h >> 24) & 0xff;
 607        addr[1] = (mac_h >> 16) & 0xff;
 608        addr[2] = (mac_h >> 8) & 0xff;
 609        addr[3] = mac_h & 0xff;
 610        addr[4] = (mac_l >> 8) & 0xff;
 611        addr[5] = mac_l & 0xff;
 612}
 613
 614static int pxa168_eth_set_mac_address(struct net_device *dev, void *addr)
 615{
 616        struct sockaddr *sa = addr;
 617        struct pxa168_eth_private *pep = netdev_priv(dev);
 618        unsigned char oldMac[ETH_ALEN];
 619        u32 mac_h, mac_l;
 620
 621        if (!is_valid_ether_addr(sa->sa_data))
 622                return -EADDRNOTAVAIL;
 623        memcpy(oldMac, dev->dev_addr, ETH_ALEN);
 624        memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN);
 625
 626        mac_h = dev->dev_addr[0] << 24;
 627        mac_h |= dev->dev_addr[1] << 16;
 628        mac_h |= dev->dev_addr[2] << 8;
 629        mac_h |= dev->dev_addr[3];
 630        mac_l = dev->dev_addr[4] << 8;
 631        mac_l |= dev->dev_addr[5];
 632        wrl(pep, MAC_ADDR_HIGH, mac_h);
 633        wrl(pep, MAC_ADDR_LOW, mac_l);
 634
 635        netif_addr_lock_bh(dev);
 636        update_hash_table_mac_address(pep, oldMac, dev->dev_addr);
 637        netif_addr_unlock_bh(dev);
 638        return 0;
 639}
 640
 641static void eth_port_start(struct net_device *dev)
 642{
 643        unsigned int val = 0;
 644        struct pxa168_eth_private *pep = netdev_priv(dev);
 645        int tx_curr_desc, rx_curr_desc;
 646
 647        phy_start(pep->phy);
 648
 649        /* Assignment of Tx CTRP of given queue */
 650        tx_curr_desc = pep->tx_curr_desc_q;
 651        wrl(pep, ETH_C_TX_DESC_1,
 652            (u32) (pep->tx_desc_dma + tx_curr_desc * sizeof(struct tx_desc)));
 653
 654        /* Assignment of Rx CRDP of given queue */
 655        rx_curr_desc = pep->rx_curr_desc_q;
 656        wrl(pep, ETH_C_RX_DESC_0,
 657            (u32) (pep->rx_desc_dma + rx_curr_desc * sizeof(struct rx_desc)));
 658
 659        wrl(pep, ETH_F_RX_DESC_0,
 660            (u32) (pep->rx_desc_dma + rx_curr_desc * sizeof(struct rx_desc)));
 661
 662        /* Clear all interrupts */
 663        wrl(pep, INT_CAUSE, 0);
 664
 665        /* Enable all interrupts for receive, transmit and error. */
 666        wrl(pep, INT_MASK, ALL_INTS);
 667
 668        val = rdl(pep, PORT_CONFIG);
 669        val |= PCR_EN;
 670        wrl(pep, PORT_CONFIG, val);
 671
 672        /* Start RX DMA engine */
 673        val = rdl(pep, SDMA_CMD);
 674        val |= SDMA_CMD_ERD;
 675        wrl(pep, SDMA_CMD, val);
 676}
 677
 678static void eth_port_reset(struct net_device *dev)
 679{
 680        struct pxa168_eth_private *pep = netdev_priv(dev);
 681        unsigned int val = 0;
 682
 683        /* Stop all interrupts for receive, transmit and error. */
 684        wrl(pep, INT_MASK, 0);
 685
 686        /* Clear all interrupts */
 687        wrl(pep, INT_CAUSE, 0);
 688
 689        /* Stop RX DMA */
 690        val = rdl(pep, SDMA_CMD);
 691        val &= ~SDMA_CMD_ERD;   /* abort dma command */
 692
 693        /* Abort any transmit and receive operations and put DMA
 694         * in idle state.
 695         */
 696        abort_dma(pep);
 697
 698        /* Disable port */
 699        val = rdl(pep, PORT_CONFIG);
 700        val &= ~PCR_EN;
 701        wrl(pep, PORT_CONFIG, val);
 702
 703        phy_stop(pep->phy);
 704}
 705
 706/*
 707 * txq_reclaim - Free the tx desc data for completed descriptors
 708 * If force is non-zero, frees uncompleted descriptors as well
 709 */
 710static int txq_reclaim(struct net_device *dev, int force)
 711{
 712        struct pxa168_eth_private *pep = netdev_priv(dev);
 713        struct tx_desc *desc;
 714        u32 cmd_sts;
 715        struct sk_buff *skb;
 716        int tx_index;
 717        dma_addr_t addr;
 718        int count;
 719        int released = 0;
 720
 721        netif_tx_lock(dev);
 722
 723        pep->work_todo &= ~WORK_TX_DONE;
 724        while (pep->tx_desc_count > 0) {
 725                tx_index = pep->tx_used_desc_q;
 726                desc = &pep->p_tx_desc_area[tx_index];
 727                cmd_sts = desc->cmd_sts;
 728                if (!force && (cmd_sts & BUF_OWNED_BY_DMA)) {
 729                        if (released > 0) {
 730                                goto txq_reclaim_end;
 731                        } else {
 732                                released = -1;
 733                                goto txq_reclaim_end;
 734                        }
 735                }
 736                pep->tx_used_desc_q = (tx_index + 1) % pep->tx_ring_size;
 737                pep->tx_desc_count--;
 738                addr = desc->buf_ptr;
 739                count = desc->byte_cnt;
 740                skb = pep->tx_skb[tx_index];
 741                if (skb)
 742                        pep->tx_skb[tx_index] = NULL;
 743
 744                if (cmd_sts & TX_ERROR) {
 745                        if (net_ratelimit())
 746                                netdev_err(dev, "Error in TX\n");
 747                        dev->stats.tx_errors++;
 748                }
 749                dma_unmap_single(NULL, addr, count, DMA_TO_DEVICE);
 750                if (skb)
 751                        dev_kfree_skb_irq(skb);
 752                released++;
 753        }
 754txq_reclaim_end:
 755        netif_tx_unlock(dev);
 756        return released;
 757}
 758
 759static void pxa168_eth_tx_timeout(struct net_device *dev)
 760{
 761        struct pxa168_eth_private *pep = netdev_priv(dev);
 762
 763        netdev_info(dev, "TX timeout  desc_count %d\n", pep->tx_desc_count);
 764
 765        schedule_work(&pep->tx_timeout_task);
 766}
 767
 768static void pxa168_eth_tx_timeout_task(struct work_struct *work)
 769{
 770        struct pxa168_eth_private *pep = container_of(work,
 771                                                 struct pxa168_eth_private,
 772                                                 tx_timeout_task);
 773        struct net_device *dev = pep->dev;
 774        pxa168_eth_stop(dev);
 775        pxa168_eth_open(dev);
 776}
 777
 778static int rxq_process(struct net_device *dev, int budget)
 779{
 780        struct pxa168_eth_private *pep = netdev_priv(dev);
 781        struct net_device_stats *stats = &dev->stats;
 782        unsigned int received_packets = 0;
 783        struct sk_buff *skb;
 784
 785        while (budget-- > 0) {
 786                int rx_next_curr_desc, rx_curr_desc, rx_used_desc;
 787                struct rx_desc *rx_desc;
 788                unsigned int cmd_sts;
 789
 790                /* Do not process Rx ring in case of Rx ring resource error */
 791                if (pep->rx_resource_err)
 792                        break;
 793                rx_curr_desc = pep->rx_curr_desc_q;
 794                rx_used_desc = pep->rx_used_desc_q;
 795                rx_desc = &pep->p_rx_desc_area[rx_curr_desc];
 796                cmd_sts = rx_desc->cmd_sts;
 797                rmb();
 798                if (cmd_sts & (BUF_OWNED_BY_DMA))
 799                        break;
 800                skb = pep->rx_skb[rx_curr_desc];
 801                pep->rx_skb[rx_curr_desc] = NULL;
 802
 803                rx_next_curr_desc = (rx_curr_desc + 1) % pep->rx_ring_size;
 804                pep->rx_curr_desc_q = rx_next_curr_desc;
 805
 806                /* Rx descriptors exhausted. */
 807                /* Set the Rx ring resource error flag */
 808                if (rx_next_curr_desc == rx_used_desc)
 809                        pep->rx_resource_err = 1;
 810                pep->rx_desc_count--;
 811                dma_unmap_single(NULL, rx_desc->buf_ptr,
 812                                 rx_desc->buf_size,
 813                                 DMA_FROM_DEVICE);
 814                received_packets++;
 815                /*
 816                 * Update statistics.
 817                 * Note byte count includes 4 byte CRC count
 818                 */
 819                stats->rx_packets++;
 820                stats->rx_bytes += rx_desc->byte_cnt;
 821                /*
 822                 * In case received a packet without first / last bits on OR
 823                 * the error summary bit is on, the packets needs to be droped.
 824                 */
 825                if (((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) !=
 826                     (RX_FIRST_DESC | RX_LAST_DESC))
 827                    || (cmd_sts & RX_ERROR)) {
 828
 829                        stats->rx_dropped++;
 830                        if ((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) !=
 831                            (RX_FIRST_DESC | RX_LAST_DESC)) {
 832                                if (net_ratelimit())
 833                                        netdev_err(dev,
 834                                                   "Rx pkt on multiple desc\n");
 835                        }
 836                        if (cmd_sts & RX_ERROR)
 837                                stats->rx_errors++;
 838                        dev_kfree_skb_irq(skb);
 839                } else {
 840                        /*
 841                         * The -4 is for the CRC in the trailer of the
 842                         * received packet
 843                         */
 844                        skb_put(skb, rx_desc->byte_cnt - 4);
 845                        skb->protocol = eth_type_trans(skb, dev);
 846                        netif_receive_skb(skb);
 847                }
 848        }
 849        /* Fill RX ring with skb's */
 850        rxq_refill(dev);
 851        return received_packets;
 852}
 853
 854static int pxa168_eth_collect_events(struct pxa168_eth_private *pep,
 855                                     struct net_device *dev)
 856{
 857        u32 icr;
 858        int ret = 0;
 859
 860        icr = rdl(pep, INT_CAUSE);
 861        if (icr == 0)
 862                return IRQ_NONE;
 863
 864        wrl(pep, INT_CAUSE, ~icr);
 865        if (icr & (ICR_TXBUF_H | ICR_TXBUF_L)) {
 866                pep->work_todo |= WORK_TX_DONE;
 867                ret = 1;
 868        }
 869        if (icr & ICR_RXBUF)
 870                ret = 1;
 871        return ret;
 872}
 873
 874static irqreturn_t pxa168_eth_int_handler(int irq, void *dev_id)
 875{
 876        struct net_device *dev = (struct net_device *)dev_id;
 877        struct pxa168_eth_private *pep = netdev_priv(dev);
 878
 879        if (unlikely(!pxa168_eth_collect_events(pep, dev)))
 880                return IRQ_NONE;
 881        /* Disable interrupts */
 882        wrl(pep, INT_MASK, 0);
 883        napi_schedule(&pep->napi);
 884        return IRQ_HANDLED;
 885}
 886
 887static void pxa168_eth_recalc_skb_size(struct pxa168_eth_private *pep)
 888{
 889        int skb_size;
 890
 891        /*
 892         * Reserve 2+14 bytes for an ethernet header (the hardware
 893         * automatically prepends 2 bytes of dummy data to each
 894         * received packet), 16 bytes for up to four VLAN tags, and
 895         * 4 bytes for the trailing FCS -- 36 bytes total.
 896         */
 897        skb_size = pep->dev->mtu + 36;
 898
 899        /*
 900         * Make sure that the skb size is a multiple of 8 bytes, as
 901         * the lower three bits of the receive descriptor's buffer
 902         * size field are ignored by the hardware.
 903         */
 904        pep->skb_size = (skb_size + 7) & ~7;
 905
 906        /*
 907         * If NET_SKB_PAD is smaller than a cache line,
 908         * netdev_alloc_skb() will cause skb->data to be misaligned
 909         * to a cache line boundary.  If this is the case, include
 910         * some extra space to allow re-aligning the data area.
 911         */
 912        pep->skb_size += SKB_DMA_REALIGN;
 913
 914}
 915
 916static int set_port_config_ext(struct pxa168_eth_private *pep)
 917{
 918        int skb_size;
 919
 920        pxa168_eth_recalc_skb_size(pep);
 921        if  (pep->skb_size <= 1518)
 922                skb_size = PCXR_MFL_1518;
 923        else if (pep->skb_size <= 1536)
 924                skb_size = PCXR_MFL_1536;
 925        else if (pep->skb_size <= 2048)
 926                skb_size = PCXR_MFL_2048;
 927        else
 928                skb_size = PCXR_MFL_64K;
 929
 930        /* Extended Port Configuration */
 931        wrl(pep, PORT_CONFIG_EXT,
 932            PCXR_AN_SPEED_DIS |          /* Disable HW AN */
 933            PCXR_AN_DUPLEX_DIS |
 934            PCXR_AN_FLOWCTL_DIS |
 935            PCXR_2BSM |                  /* Two byte prefix aligns IP hdr */
 936            PCXR_DSCP_EN |               /* Enable DSCP in IP */
 937            skb_size | PCXR_FLP |        /* do not force link pass */
 938            PCXR_TX_HIGH_PRI);           /* Transmit - high priority queue */
 939
 940        return 0;
 941}
 942
 943static void pxa168_eth_adjust_link(struct net_device *dev)
 944{
 945        struct pxa168_eth_private *pep = netdev_priv(dev);
 946        struct phy_device *phy = pep->phy;
 947        u32 cfg, cfg_o = rdl(pep, PORT_CONFIG);
 948        u32 cfgext, cfgext_o = rdl(pep, PORT_CONFIG_EXT);
 949
 950        cfg = cfg_o & ~PCR_DUPLEX_FULL;
 951        cfgext = cfgext_o & ~(PCXR_SPEED_100 | PCXR_FLOWCTL_DIS | PCXR_RMII_EN);
 952
 953        if (phy->interface == PHY_INTERFACE_MODE_RMII)
 954                cfgext |= PCXR_RMII_EN;
 955        if (phy->speed == SPEED_100)
 956                cfgext |= PCXR_SPEED_100;
 957        if (phy->duplex)
 958                cfg |= PCR_DUPLEX_FULL;
 959        if (!phy->pause)
 960                cfgext |= PCXR_FLOWCTL_DIS;
 961
 962        /* Bail out if there has nothing changed */
 963        if (cfg == cfg_o && cfgext == cfgext_o)
 964                return;
 965
 966        wrl(pep, PORT_CONFIG, cfg);
 967        wrl(pep, PORT_CONFIG_EXT, cfgext);
 968
 969        phy_print_status(phy);
 970}
 971
 972static int pxa168_init_phy(struct net_device *dev)
 973{
 974        struct pxa168_eth_private *pep = netdev_priv(dev);
 975        struct ethtool_cmd cmd;
 976        int err;
 977
 978        if (pep->phy)
 979                return 0;
 980
 981        pep->phy = mdiobus_scan(pep->smi_bus, pep->phy_addr);
 982        if (IS_ERR(pep->phy))
 983                return PTR_ERR(pep->phy);
 984        if (!pep->phy)
 985                return -ENODEV;
 986
 987        err = phy_connect_direct(dev, pep->phy, pxa168_eth_adjust_link,
 988                                 pep->phy_intf);
 989        if (err)
 990                return err;
 991
 992        err = pxa168_get_settings(dev, &cmd);
 993        if (err)
 994                return err;
 995
 996        cmd.phy_address = pep->phy_addr;
 997        cmd.speed = pep->phy_speed;
 998        cmd.duplex = pep->phy_duplex;
 999        cmd.advertising = PHY_BASIC_FEATURES;
1000        cmd.autoneg = AUTONEG_ENABLE;
1001
1002        if (cmd.speed != 0)
1003                cmd.autoneg = AUTONEG_DISABLE;
1004
1005        return pxa168_set_settings(dev, &cmd);
1006}
1007
1008static int pxa168_init_hw(struct pxa168_eth_private *pep)
1009{
1010        int err = 0;
1011
1012        /* Disable interrupts */
1013        wrl(pep, INT_MASK, 0);
1014        wrl(pep, INT_CAUSE, 0);
1015        /* Write to ICR to clear interrupts. */
1016        wrl(pep, INT_W_CLEAR, 0);
1017        /* Abort any transmit and receive operations and put DMA
1018         * in idle state.
1019         */
1020        abort_dma(pep);
1021        /* Initialize address hash table */
1022        err = init_hash_table(pep);
1023        if (err)
1024                return err;
1025        /* SDMA configuration */
1026        wrl(pep, SDMA_CONFIG, SDCR_BSZ8 |       /* Burst size = 32 bytes */
1027            SDCR_RIFB |                         /* Rx interrupt on frame */
1028            SDCR_BLMT |                         /* Little endian transmit */
1029            SDCR_BLMR |                         /* Little endian receive */
1030            SDCR_RC_MAX_RETRANS);               /* Max retransmit count */
1031        /* Port Configuration */
1032        wrl(pep, PORT_CONFIG, PCR_HS);          /* Hash size is 1/2kb */
1033        set_port_config_ext(pep);
1034
1035        return err;
1036}
1037
1038static int rxq_init(struct net_device *dev)
1039{
1040        struct pxa168_eth_private *pep = netdev_priv(dev);
1041        struct rx_desc *p_rx_desc;
1042        int size = 0, i = 0;
1043        int rx_desc_num = pep->rx_ring_size;
1044
1045        /* Allocate RX skb rings */
1046        pep->rx_skb = kzalloc(sizeof(*pep->rx_skb) * pep->rx_ring_size,
1047                             GFP_KERNEL);
1048        if (!pep->rx_skb)
1049                return -ENOMEM;
1050
1051        /* Allocate RX ring */
1052        pep->rx_desc_count = 0;
1053        size = pep->rx_ring_size * sizeof(struct rx_desc);
1054        pep->rx_desc_area_size = size;
1055        pep->p_rx_desc_area = dma_zalloc_coherent(pep->dev->dev.parent, size,
1056                                                  &pep->rx_desc_dma,
1057                                                  GFP_KERNEL);
1058        if (!pep->p_rx_desc_area)
1059                goto out;
1060
1061        /* initialize the next_desc_ptr links in the Rx descriptors ring */
1062        p_rx_desc = pep->p_rx_desc_area;
1063        for (i = 0; i < rx_desc_num; i++) {
1064                p_rx_desc[i].next_desc_ptr = pep->rx_desc_dma +
1065                    ((i + 1) % rx_desc_num) * sizeof(struct rx_desc);
1066        }
1067        /* Save Rx desc pointer to driver struct. */
1068        pep->rx_curr_desc_q = 0;
1069        pep->rx_used_desc_q = 0;
1070        pep->rx_desc_area_size = rx_desc_num * sizeof(struct rx_desc);
1071        return 0;
1072out:
1073        kfree(pep->rx_skb);
1074        return -ENOMEM;
1075}
1076
1077static void rxq_deinit(struct net_device *dev)
1078{
1079        struct pxa168_eth_private *pep = netdev_priv(dev);
1080        int curr;
1081
1082        /* Free preallocated skb's on RX rings */
1083        for (curr = 0; pep->rx_desc_count && curr < pep->rx_ring_size; curr++) {
1084                if (pep->rx_skb[curr]) {
1085                        dev_kfree_skb(pep->rx_skb[curr]);
1086                        pep->rx_desc_count--;
1087                }
1088        }
1089        if (pep->rx_desc_count)
1090                netdev_err(dev, "Error in freeing Rx Ring. %d skb's still\n",
1091                           pep->rx_desc_count);
1092        /* Free RX ring */
1093        if (pep->p_rx_desc_area)
1094                dma_free_coherent(pep->dev->dev.parent, pep->rx_desc_area_size,
1095                                  pep->p_rx_desc_area, pep->rx_desc_dma);
1096        kfree(pep->rx_skb);
1097}
1098
1099static int txq_init(struct net_device *dev)
1100{
1101        struct pxa168_eth_private *pep = netdev_priv(dev);
1102        struct tx_desc *p_tx_desc;
1103        int size = 0, i = 0;
1104        int tx_desc_num = pep->tx_ring_size;
1105
1106        pep->tx_skb = kzalloc(sizeof(*pep->tx_skb) * pep->tx_ring_size,
1107                             GFP_KERNEL);
1108        if (!pep->tx_skb)
1109                return -ENOMEM;
1110
1111        /* Allocate TX ring */
1112        pep->tx_desc_count = 0;
1113        size = pep->tx_ring_size * sizeof(struct tx_desc);
1114        pep->tx_desc_area_size = size;
1115        pep->p_tx_desc_area = dma_zalloc_coherent(pep->dev->dev.parent, size,
1116                                                  &pep->tx_desc_dma,
1117                                                  GFP_KERNEL);
1118        if (!pep->p_tx_desc_area)
1119                goto out;
1120        /* Initialize the next_desc_ptr links in the Tx descriptors ring */
1121        p_tx_desc = pep->p_tx_desc_area;
1122        for (i = 0; i < tx_desc_num; i++) {
1123                p_tx_desc[i].next_desc_ptr = pep->tx_desc_dma +
1124                    ((i + 1) % tx_desc_num) * sizeof(struct tx_desc);
1125        }
1126        pep->tx_curr_desc_q = 0;
1127        pep->tx_used_desc_q = 0;
1128        pep->tx_desc_area_size = tx_desc_num * sizeof(struct tx_desc);
1129        return 0;
1130out:
1131        kfree(pep->tx_skb);
1132        return -ENOMEM;
1133}
1134
1135static void txq_deinit(struct net_device *dev)
1136{
1137        struct pxa168_eth_private *pep = netdev_priv(dev);
1138
1139        /* Free outstanding skb's on TX ring */
1140        txq_reclaim(dev, 1);
1141        BUG_ON(pep->tx_used_desc_q != pep->tx_curr_desc_q);
1142        /* Free TX ring */
1143        if (pep->p_tx_desc_area)
1144                dma_free_coherent(pep->dev->dev.parent, pep->tx_desc_area_size,
1145                                  pep->p_tx_desc_area, pep->tx_desc_dma);
1146        kfree(pep->tx_skb);
1147}
1148
1149static int pxa168_eth_open(struct net_device *dev)
1150{
1151        struct pxa168_eth_private *pep = netdev_priv(dev);
1152        int err;
1153
1154        err = pxa168_init_phy(dev);
1155        if (err)
1156                return err;
1157
1158        err = request_irq(dev->irq, pxa168_eth_int_handler, 0, dev->name, dev);
1159        if (err) {
1160                dev_err(&dev->dev, "can't assign irq\n");
1161                return -EAGAIN;
1162        }
1163        pep->rx_resource_err = 0;
1164        err = rxq_init(dev);
1165        if (err != 0)
1166                goto out_free_irq;
1167        err = txq_init(dev);
1168        if (err != 0)
1169                goto out_free_rx_skb;
1170        pep->rx_used_desc_q = 0;
1171        pep->rx_curr_desc_q = 0;
1172
1173        /* Fill RX ring with skb's */
1174        rxq_refill(dev);
1175        pep->rx_used_desc_q = 0;
1176        pep->rx_curr_desc_q = 0;
1177        netif_carrier_off(dev);
1178        napi_enable(&pep->napi);
1179        eth_port_start(dev);
1180        return 0;
1181out_free_rx_skb:
1182        rxq_deinit(dev);
1183out_free_irq:
1184        free_irq(dev->irq, dev);
1185        return err;
1186}
1187
1188static int pxa168_eth_stop(struct net_device *dev)
1189{
1190        struct pxa168_eth_private *pep = netdev_priv(dev);
1191        eth_port_reset(dev);
1192
1193        /* Disable interrupts */
1194        wrl(pep, INT_MASK, 0);
1195        wrl(pep, INT_CAUSE, 0);
1196        /* Write to ICR to clear interrupts. */
1197        wrl(pep, INT_W_CLEAR, 0);
1198        napi_disable(&pep->napi);
1199        del_timer_sync(&pep->timeout);
1200        netif_carrier_off(dev);
1201        free_irq(dev->irq, dev);
1202        rxq_deinit(dev);
1203        txq_deinit(dev);
1204
1205        return 0;
1206}
1207
1208static int pxa168_eth_change_mtu(struct net_device *dev, int mtu)
1209{
1210        int retval;
1211        struct pxa168_eth_private *pep = netdev_priv(dev);
1212
1213        if ((mtu > 9500) || (mtu < 68))
1214                return -EINVAL;
1215
1216        dev->mtu = mtu;
1217        retval = set_port_config_ext(pep);
1218
1219        if (!netif_running(dev))
1220                return 0;
1221
1222        /*
1223         * Stop and then re-open the interface. This will allocate RX
1224         * skbs of the new MTU.
1225         * There is a possible danger that the open will not succeed,
1226         * due to memory being full.
1227         */
1228        pxa168_eth_stop(dev);
1229        if (pxa168_eth_open(dev)) {
1230                dev_err(&dev->dev,
1231                        "fatal error on re-opening device after MTU change\n");
1232        }
1233
1234        return 0;
1235}
1236
1237static int eth_alloc_tx_desc_index(struct pxa168_eth_private *pep)
1238{
1239        int tx_desc_curr;
1240
1241        tx_desc_curr = pep->tx_curr_desc_q;
1242        pep->tx_curr_desc_q = (tx_desc_curr + 1) % pep->tx_ring_size;
1243        BUG_ON(pep->tx_curr_desc_q == pep->tx_used_desc_q);
1244        pep->tx_desc_count++;
1245
1246        return tx_desc_curr;
1247}
1248
1249static int pxa168_rx_poll(struct napi_struct *napi, int budget)
1250{
1251        struct pxa168_eth_private *pep =
1252            container_of(napi, struct pxa168_eth_private, napi);
1253        struct net_device *dev = pep->dev;
1254        int work_done = 0;
1255
1256        /*
1257         * We call txq_reclaim every time since in NAPI interupts are disabled
1258         * and due to this we miss the TX_DONE interrupt,which is not updated in
1259         * interrupt status register.
1260         */
1261        txq_reclaim(dev, 0);
1262        if (netif_queue_stopped(dev)
1263            && pep->tx_ring_size - pep->tx_desc_count > 1) {
1264                netif_wake_queue(dev);
1265        }
1266        work_done = rxq_process(dev, budget);
1267        if (work_done < budget) {
1268                napi_complete(napi);
1269                wrl(pep, INT_MASK, ALL_INTS);
1270        }
1271
1272        return work_done;
1273}
1274
1275static int pxa168_eth_start_xmit(struct sk_buff *skb, struct net_device *dev)
1276{
1277        struct pxa168_eth_private *pep = netdev_priv(dev);
1278        struct net_device_stats *stats = &dev->stats;
1279        struct tx_desc *desc;
1280        int tx_index;
1281        int length;
1282
1283        tx_index = eth_alloc_tx_desc_index(pep);
1284        desc = &pep->p_tx_desc_area[tx_index];
1285        length = skb->len;
1286        pep->tx_skb[tx_index] = skb;
1287        desc->byte_cnt = length;
1288        desc->buf_ptr = dma_map_single(NULL, skb->data, length, DMA_TO_DEVICE);
1289
1290        skb_tx_timestamp(skb);
1291
1292        wmb();
1293        desc->cmd_sts = BUF_OWNED_BY_DMA | TX_GEN_CRC | TX_FIRST_DESC |
1294                        TX_ZERO_PADDING | TX_LAST_DESC | TX_EN_INT;
1295        wmb();
1296        wrl(pep, SDMA_CMD, SDMA_CMD_TXDH | SDMA_CMD_ERD);
1297
1298        stats->tx_bytes += length;
1299        stats->tx_packets++;
1300        dev->trans_start = jiffies;
1301        if (pep->tx_ring_size - pep->tx_desc_count <= 1) {
1302                /* We handled the current skb, but now we are out of space.*/
1303                netif_stop_queue(dev);
1304        }
1305
1306        return NETDEV_TX_OK;
1307}
1308
1309static int smi_wait_ready(struct pxa168_eth_private *pep)
1310{
1311        int i = 0;
1312
1313        /* wait for the SMI register to become available */
1314        for (i = 0; rdl(pep, SMI) & SMI_BUSY; i++) {
1315                if (i == PHY_WAIT_ITERATIONS)
1316                        return -ETIMEDOUT;
1317                msleep(10);
1318        }
1319
1320        return 0;
1321}
1322
1323static int pxa168_smi_read(struct mii_bus *bus, int phy_addr, int regnum)
1324{
1325        struct pxa168_eth_private *pep = bus->priv;
1326        int i = 0;
1327        int val;
1328
1329        if (smi_wait_ready(pep)) {
1330                netdev_warn(pep->dev, "pxa168_eth: SMI bus busy timeout\n");
1331                return -ETIMEDOUT;
1332        }
1333        wrl(pep, SMI, (phy_addr << 16) | (regnum << 21) | SMI_OP_R);
1334        /* now wait for the data to be valid */
1335        for (i = 0; !((val = rdl(pep, SMI)) & SMI_R_VALID); i++) {
1336                if (i == PHY_WAIT_ITERATIONS) {
1337                        netdev_warn(pep->dev,
1338                                    "pxa168_eth: SMI bus read not valid\n");
1339                        return -ENODEV;
1340                }
1341                msleep(10);
1342        }
1343
1344        return val & 0xffff;
1345}
1346
1347static int pxa168_smi_write(struct mii_bus *bus, int phy_addr, int regnum,
1348                            u16 value)
1349{
1350        struct pxa168_eth_private *pep = bus->priv;
1351
1352        if (smi_wait_ready(pep)) {
1353                netdev_warn(pep->dev, "pxa168_eth: SMI bus busy timeout\n");
1354                return -ETIMEDOUT;
1355        }
1356
1357        wrl(pep, SMI, (phy_addr << 16) | (regnum << 21) |
1358            SMI_OP_W | (value & 0xffff));
1359
1360        if (smi_wait_ready(pep)) {
1361                netdev_err(pep->dev, "pxa168_eth: SMI bus busy timeout\n");
1362                return -ETIMEDOUT;
1363        }
1364
1365        return 0;
1366}
1367
1368static int pxa168_eth_do_ioctl(struct net_device *dev, struct ifreq *ifr,
1369                               int cmd)
1370{
1371        struct pxa168_eth_private *pep = netdev_priv(dev);
1372        if (pep->phy != NULL)
1373                return phy_mii_ioctl(pep->phy, ifr, cmd);
1374
1375        return -EOPNOTSUPP;
1376}
1377
1378static int pxa168_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1379{
1380        struct pxa168_eth_private *pep = netdev_priv(dev);
1381        int err;
1382
1383        err = phy_read_status(pep->phy);
1384        if (err == 0)
1385                err = phy_ethtool_gset(pep->phy, cmd);
1386
1387        return err;
1388}
1389
1390static int pxa168_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1391{
1392        struct pxa168_eth_private *pep = netdev_priv(dev);
1393
1394        return phy_ethtool_sset(pep->phy, cmd);
1395}
1396
1397static void pxa168_get_drvinfo(struct net_device *dev,
1398                               struct ethtool_drvinfo *info)
1399{
1400        strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver));
1401        strlcpy(info->version, DRIVER_VERSION, sizeof(info->version));
1402        strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
1403        strlcpy(info->bus_info, "N/A", sizeof(info->bus_info));
1404}
1405
1406static const struct ethtool_ops pxa168_ethtool_ops = {
1407        .get_settings   = pxa168_get_settings,
1408        .set_settings   = pxa168_set_settings,
1409        .get_drvinfo    = pxa168_get_drvinfo,
1410        .get_link       = ethtool_op_get_link,
1411        .get_ts_info    = ethtool_op_get_ts_info,
1412};
1413
1414static const struct net_device_ops pxa168_eth_netdev_ops = {
1415        .ndo_open               = pxa168_eth_open,
1416        .ndo_stop               = pxa168_eth_stop,
1417        .ndo_start_xmit         = pxa168_eth_start_xmit,
1418        .ndo_set_rx_mode        = pxa168_eth_set_rx_mode,
1419        .ndo_set_mac_address    = pxa168_eth_set_mac_address,
1420        .ndo_validate_addr      = eth_validate_addr,
1421        .ndo_do_ioctl           = pxa168_eth_do_ioctl,
1422        .ndo_change_mtu         = pxa168_eth_change_mtu,
1423        .ndo_tx_timeout         = pxa168_eth_tx_timeout,
1424};
1425
1426static int pxa168_eth_probe(struct platform_device *pdev)
1427{
1428        struct pxa168_eth_private *pep = NULL;
1429        struct net_device *dev = NULL;
1430        struct resource *res;
1431        struct clk *clk;
1432        struct device_node *np;
1433        const unsigned char *mac_addr = NULL;
1434        int err;
1435
1436        printk(KERN_NOTICE "PXA168 10/100 Ethernet Driver\n");
1437
1438        clk = devm_clk_get(&pdev->dev, NULL);
1439        if (IS_ERR(clk)) {
1440                dev_err(&pdev->dev, "Fast Ethernet failed to get clock\n");
1441                return -ENODEV;
1442        }
1443        clk_prepare_enable(clk);
1444
1445        dev = alloc_etherdev(sizeof(struct pxa168_eth_private));
1446        if (!dev) {
1447                err = -ENOMEM;
1448                goto err_clk;
1449        }
1450
1451        platform_set_drvdata(pdev, dev);
1452        pep = netdev_priv(dev);
1453        pep->dev = dev;
1454        pep->clk = clk;
1455
1456        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1457        pep->base = devm_ioremap_resource(&pdev->dev, res);
1458        if (IS_ERR(pep->base)) {
1459                err = -ENOMEM;
1460                goto err_netdev;
1461        }
1462
1463        res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1464        BUG_ON(!res);
1465        dev->irq = res->start;
1466        dev->netdev_ops = &pxa168_eth_netdev_ops;
1467        dev->watchdog_timeo = 2 * HZ;
1468        dev->base_addr = 0;
1469        dev->ethtool_ops = &pxa168_ethtool_ops;
1470
1471        INIT_WORK(&pep->tx_timeout_task, pxa168_eth_tx_timeout_task);
1472
1473        if (pdev->dev.of_node)
1474                mac_addr = of_get_mac_address(pdev->dev.of_node);
1475
1476        if (mac_addr && is_valid_ether_addr(mac_addr)) {
1477                ether_addr_copy(dev->dev_addr, mac_addr);
1478        } else {
1479                /* try reading the mac address, if set by the bootloader */
1480                pxa168_eth_get_mac_address(dev, dev->dev_addr);
1481                if (!is_valid_ether_addr(dev->dev_addr)) {
1482                        dev_info(&pdev->dev, "Using random mac address\n");
1483                        eth_hw_addr_random(dev);
1484                }
1485        }
1486
1487        pep->rx_ring_size = NUM_RX_DESCS;
1488        pep->tx_ring_size = NUM_TX_DESCS;
1489
1490        pep->pd = dev_get_platdata(&pdev->dev);
1491        if (pep->pd) {
1492                if (pep->pd->rx_queue_size)
1493                        pep->rx_ring_size = pep->pd->rx_queue_size;
1494
1495                if (pep->pd->tx_queue_size)
1496                        pep->tx_ring_size = pep->pd->tx_queue_size;
1497
1498                pep->port_num = pep->pd->port_number;
1499                pep->phy_addr = pep->pd->phy_addr;
1500                pep->phy_speed = pep->pd->speed;
1501                pep->phy_duplex = pep->pd->duplex;
1502                pep->phy_intf = pep->pd->intf;
1503
1504                if (pep->pd->init)
1505                        pep->pd->init();
1506        } else if (pdev->dev.of_node) {
1507                of_property_read_u32(pdev->dev.of_node, "port-id",
1508                                     &pep->port_num);
1509
1510                np = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0);
1511                if (!np) {
1512                        dev_err(&pdev->dev, "missing phy-handle\n");
1513                        err = -EINVAL;
1514                        goto err_netdev;
1515                }
1516                of_property_read_u32(np, "reg", &pep->phy_addr);
1517                pep->phy_intf = of_get_phy_mode(pdev->dev.of_node);
1518        }
1519
1520        /* Hardware supports only 3 ports */
1521        BUG_ON(pep->port_num > 2);
1522        netif_napi_add(dev, &pep->napi, pxa168_rx_poll, pep->rx_ring_size);
1523
1524        memset(&pep->timeout, 0, sizeof(struct timer_list));
1525        init_timer(&pep->timeout);
1526        pep->timeout.function = rxq_refill_timer_wrapper;
1527        pep->timeout.data = (unsigned long)pep;
1528
1529        pep->smi_bus = mdiobus_alloc();
1530        if (pep->smi_bus == NULL) {
1531                err = -ENOMEM;
1532                goto err_netdev;
1533        }
1534        pep->smi_bus->priv = pep;
1535        pep->smi_bus->name = "pxa168_eth smi";
1536        pep->smi_bus->read = pxa168_smi_read;
1537        pep->smi_bus->write = pxa168_smi_write;
1538        snprintf(pep->smi_bus->id, MII_BUS_ID_SIZE, "%s-%d",
1539                pdev->name, pdev->id);
1540        pep->smi_bus->parent = &pdev->dev;
1541        pep->smi_bus->phy_mask = 0xffffffff;
1542        err = mdiobus_register(pep->smi_bus);
1543        if (err)
1544                goto err_free_mdio;
1545
1546        SET_NETDEV_DEV(dev, &pdev->dev);
1547        pxa168_init_hw(pep);
1548        err = register_netdev(dev);
1549        if (err)
1550                goto err_mdiobus;
1551        return 0;
1552
1553err_mdiobus:
1554        mdiobus_unregister(pep->smi_bus);
1555err_free_mdio:
1556        mdiobus_free(pep->smi_bus);
1557err_netdev:
1558        free_netdev(dev);
1559err_clk:
1560        clk_disable_unprepare(clk);
1561        return err;
1562}
1563
1564static int pxa168_eth_remove(struct platform_device *pdev)
1565{
1566        struct net_device *dev = platform_get_drvdata(pdev);
1567        struct pxa168_eth_private *pep = netdev_priv(dev);
1568
1569        if (pep->htpr) {
1570                dma_free_coherent(pep->dev->dev.parent, HASH_ADDR_TABLE_SIZE,
1571                                  pep->htpr, pep->htpr_dma);
1572                pep->htpr = NULL;
1573        }
1574        if (pep->phy)
1575                phy_disconnect(pep->phy);
1576        if (pep->clk) {
1577                clk_disable_unprepare(pep->clk);
1578        }
1579
1580        mdiobus_unregister(pep->smi_bus);
1581        mdiobus_free(pep->smi_bus);
1582        unregister_netdev(dev);
1583        cancel_work_sync(&pep->tx_timeout_task);
1584        free_netdev(dev);
1585        return 0;
1586}
1587
1588static void pxa168_eth_shutdown(struct platform_device *pdev)
1589{
1590        struct net_device *dev = platform_get_drvdata(pdev);
1591        eth_port_reset(dev);
1592}
1593
1594#ifdef CONFIG_PM
1595static int pxa168_eth_resume(struct platform_device *pdev)
1596{
1597        return -ENOSYS;
1598}
1599
1600static int pxa168_eth_suspend(struct platform_device *pdev, pm_message_t state)
1601{
1602        return -ENOSYS;
1603}
1604
1605#else
1606#define pxa168_eth_resume NULL
1607#define pxa168_eth_suspend NULL
1608#endif
1609
1610static const struct of_device_id pxa168_eth_of_match[] = {
1611        { .compatible = "marvell,pxa168-eth" },
1612        { },
1613};
1614MODULE_DEVICE_TABLE(of, pxa168_eth_of_match);
1615
1616static struct platform_driver pxa168_eth_driver = {
1617        .probe = pxa168_eth_probe,
1618        .remove = pxa168_eth_remove,
1619        .shutdown = pxa168_eth_shutdown,
1620        .resume = pxa168_eth_resume,
1621        .suspend = pxa168_eth_suspend,
1622        .driver = {
1623                .name           = DRIVER_NAME,
1624                .of_match_table = of_match_ptr(pxa168_eth_of_match),
1625        },
1626};
1627
1628module_platform_driver(pxa168_eth_driver);
1629
1630MODULE_LICENSE("GPL");
1631MODULE_DESCRIPTION("Ethernet driver for Marvell PXA168");
1632MODULE_ALIAS("platform:pxa168_eth");
1633