linux/drivers/net/ethernet/natsemi/ns83820.c
<<
>>
Prefs
   1#define VERSION "0.23"
   2/* ns83820.c by Benjamin LaHaise with contributions.
   3 *
   4 * Questions/comments/discussion to linux-ns83820@kvack.org.
   5 *
   6 * $Revision: 1.34.2.23 $
   7 *
   8 * Copyright 2001 Benjamin LaHaise.
   9 * Copyright 2001, 2002 Red Hat.
  10 *
  11 * Mmmm, chocolate vanilla mocha...
  12 *
  13 *
  14 * This program is free software; you can redistribute it and/or modify
  15 * it under the terms of the GNU General Public License as published by
  16 * the Free Software Foundation; either version 2 of the License, or
  17 * (at your option) any later version.
  18 *
  19 * This program is distributed in the hope that it will be useful,
  20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  22 * GNU General Public License for more details.
  23 *
  24 * You should have received a copy of the GNU General Public License
  25 * along with this program; if not, see <http://www.gnu.org/licenses/>.
  26 *
  27 *
  28 * ChangeLog
  29 * =========
  30 *      20010414        0.1 - created
  31 *      20010622        0.2 - basic rx and tx.
  32 *      20010711        0.3 - added duplex and link state detection support.
  33 *      20010713        0.4 - zero copy, no hangs.
  34 *                      0.5 - 64 bit dma support (davem will hate me for this)
  35 *                          - disable jumbo frames to avoid tx hangs
  36 *                          - work around tx deadlocks on my 1.02 card via
  37 *                            fiddling with TXCFG
  38 *      20010810        0.6 - use pci dma api for ringbuffers, work on ia64
  39 *      20010816        0.7 - misc cleanups
  40 *      20010826        0.8 - fix critical zero copy bugs
  41 *                      0.9 - internal experiment
  42 *      20010827        0.10 - fix ia64 unaligned access.
  43 *      20010906        0.11 - accept all packets with checksum errors as
  44 *                             otherwise fragments get lost
  45 *                           - fix >> 32 bugs
  46 *                      0.12 - add statistics counters
  47 *                           - add allmulti/promisc support
  48 *      20011009        0.13 - hotplug support, other smaller pci api cleanups
  49 *      20011204        0.13a - optical transceiver support added
  50 *                              by Michael Clark <michael@metaparadigm.com>
  51 *      20011205        0.13b - call register_netdev earlier in initialization
  52 *                              suppress duplicate link status messages
  53 *      20011117        0.14 - ethtool GDRVINFO, GLINK support from jgarzik
  54 *      20011204        0.15    get ppc (big endian) working
  55 *      20011218        0.16    various cleanups
  56 *      20020310        0.17    speedups
  57 *      20020610        0.18 -  actually use the pci dma api for highmem
  58 *                           -  remove pci latency register fiddling
  59 *                      0.19 -  better bist support
  60 *                           -  add ihr and reset_phy parameters
  61 *                           -  gmii bus probing
  62 *                           -  fix missed txok introduced during performance
  63 *                              tuning
  64 *                      0.20 -  fix stupid RFEN thinko.  i am such a smurf.
  65 *      20040828        0.21 -  add hardware vlan accleration
  66 *                              by Neil Horman <nhorman@redhat.com>
  67 *      20050406        0.22 -  improved DAC ifdefs from Andi Kleen
  68 *                           -  removal of dead code from Adrian Bunk
  69 *                           -  fix half duplex collision behaviour
  70 * Driver Overview
  71 * ===============
  72 *
  73 * This driver was originally written for the National Semiconductor
  74 * 83820 chip, a 10/100/1000 Mbps 64 bit PCI ethernet NIC.  Hopefully
  75 * this code will turn out to be a) clean, b) correct, and c) fast.
  76 * With that in mind, I'm aiming to split the code up as much as
  77 * reasonably possible.  At present there are X major sections that
  78 * break down into a) packet receive, b) packet transmit, c) link
  79 * management, d) initialization and configuration.  Where possible,
  80 * these code paths are designed to run in parallel.
  81 *
  82 * This driver has been tested and found to work with the following
  83 * cards (in no particular order):
  84 *
  85 *      Cameo           SOHO-GA2000T    SOHO-GA2500T
  86 *      D-Link          DGE-500T
  87 *      PureData        PDP8023Z-TG
  88 *      SMC             SMC9452TX       SMC9462TX
  89 *      Netgear         GA621
  90 *
  91 * Special thanks to SMC for providing hardware to test this driver on.
  92 *
  93 * Reports of success or failure would be greatly appreciated.
  94 */
  95//#define dprintk               printk
  96#define dprintk(x...)           do { } while (0)
  97
  98#include <linux/module.h>
  99#include <linux/moduleparam.h>
 100#include <linux/types.h>
 101#include <linux/pci.h>
 102#include <linux/dma-mapping.h>
 103#include <linux/netdevice.h>
 104#include <linux/etherdevice.h>
 105#include <linux/delay.h>
 106#include <linux/workqueue.h>
 107#include <linux/init.h>
 108#include <linux/interrupt.h>
 109#include <linux/ip.h>   /* for iph */
 110#include <linux/in.h>   /* for IPPROTO_... */
 111#include <linux/compiler.h>
 112#include <linux/prefetch.h>
 113#include <linux/ethtool.h>
 114#include <linux/sched.h>
 115#include <linux/timer.h>
 116#include <linux/if_vlan.h>
 117#include <linux/rtnetlink.h>
 118#include <linux/jiffies.h>
 119#include <linux/slab.h>
 120
 121#include <asm/io.h>
 122#include <asm/uaccess.h>
 123
 124#define DRV_NAME "ns83820"
 125
 126/* Global parameters.  See module_param near the bottom. */
 127static int ihr = 2;
 128static int reset_phy = 0;
 129static int lnksts = 0;          /* CFG_LNKSTS bit polarity */
 130
 131/* Dprintk is used for more interesting debug events */
 132#undef Dprintk
 133#define Dprintk                 dprintk
 134
 135/* tunables */
 136#define RX_BUF_SIZE     1500    /* 8192 */
 137#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
 138#define NS83820_VLAN_ACCEL_SUPPORT
 139#endif
 140
 141/* Must not exceed ~65000. */
 142#define NR_RX_DESC      64
 143#define NR_TX_DESC      128
 144
 145/* not tunable */
 146#define REAL_RX_BUF_SIZE (RX_BUF_SIZE + 14)     /* rx/tx mac addr + type */
 147
 148#define MIN_TX_DESC_FREE        8
 149
 150/* register defines */
 151#define CFGCS           0x04
 152
 153#define CR_TXE          0x00000001
 154#define CR_TXD          0x00000002
 155/* Ramit : Here's a tip, don't do a RXD immediately followed by an RXE
 156 * The Receive engine skips one descriptor and moves
 157 * onto the next one!! */
 158#define CR_RXE          0x00000004
 159#define CR_RXD          0x00000008
 160#define CR_TXR          0x00000010
 161#define CR_RXR          0x00000020
 162#define CR_SWI          0x00000080
 163#define CR_RST          0x00000100
 164
 165#define PTSCR_EEBIST_FAIL       0x00000001
 166#define PTSCR_EEBIST_EN         0x00000002
 167#define PTSCR_EELOAD_EN         0x00000004
 168#define PTSCR_RBIST_FAIL        0x000001b8
 169#define PTSCR_RBIST_DONE        0x00000200
 170#define PTSCR_RBIST_EN          0x00000400
 171#define PTSCR_RBIST_RST         0x00002000
 172
 173#define MEAR_EEDI               0x00000001
 174#define MEAR_EEDO               0x00000002
 175#define MEAR_EECLK              0x00000004
 176#define MEAR_EESEL              0x00000008
 177#define MEAR_MDIO               0x00000010
 178#define MEAR_MDDIR              0x00000020
 179#define MEAR_MDC                0x00000040
 180
 181#define ISR_TXDESC3     0x40000000
 182#define ISR_TXDESC2     0x20000000
 183#define ISR_TXDESC1     0x10000000
 184#define ISR_TXDESC0     0x08000000
 185#define ISR_RXDESC3     0x04000000
 186#define ISR_RXDESC2     0x02000000
 187#define ISR_RXDESC1     0x01000000
 188#define ISR_RXDESC0     0x00800000
 189#define ISR_TXRCMP      0x00400000
 190#define ISR_RXRCMP      0x00200000
 191#define ISR_DPERR       0x00100000
 192#define ISR_SSERR       0x00080000
 193#define ISR_RMABT       0x00040000
 194#define ISR_RTABT       0x00020000
 195#define ISR_RXSOVR      0x00010000
 196#define ISR_HIBINT      0x00008000
 197#define ISR_PHY         0x00004000
 198#define ISR_PME         0x00002000
 199#define ISR_SWI         0x00001000
 200#define ISR_MIB         0x00000800
 201#define ISR_TXURN       0x00000400
 202#define ISR_TXIDLE      0x00000200
 203#define ISR_TXERR       0x00000100
 204#define ISR_TXDESC      0x00000080
 205#define ISR_TXOK        0x00000040
 206#define ISR_RXORN       0x00000020
 207#define ISR_RXIDLE      0x00000010
 208#define ISR_RXEARLY     0x00000008
 209#define ISR_RXERR       0x00000004
 210#define ISR_RXDESC      0x00000002
 211#define ISR_RXOK        0x00000001
 212
 213#define TXCFG_CSI       0x80000000
 214#define TXCFG_HBI       0x40000000
 215#define TXCFG_MLB       0x20000000
 216#define TXCFG_ATP       0x10000000
 217#define TXCFG_ECRETRY   0x00800000
 218#define TXCFG_BRST_DIS  0x00080000
 219#define TXCFG_MXDMA1024 0x00000000
 220#define TXCFG_MXDMA512  0x00700000
 221#define TXCFG_MXDMA256  0x00600000
 222#define TXCFG_MXDMA128  0x00500000
 223#define TXCFG_MXDMA64   0x00400000
 224#define TXCFG_MXDMA32   0x00300000
 225#define TXCFG_MXDMA16   0x00200000
 226#define TXCFG_MXDMA8    0x00100000
 227
 228#define CFG_LNKSTS      0x80000000
 229#define CFG_SPDSTS      0x60000000
 230#define CFG_SPDSTS1     0x40000000
 231#define CFG_SPDSTS0     0x20000000
 232#define CFG_DUPSTS      0x10000000
 233#define CFG_TBI_EN      0x01000000
 234#define CFG_MODE_1000   0x00400000
 235/* Ramit : Dont' ever use AUTO_1000, it never works and is buggy.
 236 * Read the Phy response and then configure the MAC accordingly */
 237#define CFG_AUTO_1000   0x00200000
 238#define CFG_PINT_CTL    0x001c0000
 239#define CFG_PINT_DUPSTS 0x00100000
 240#define CFG_PINT_LNKSTS 0x00080000
 241#define CFG_PINT_SPDSTS 0x00040000
 242#define CFG_TMRTEST     0x00020000
 243#define CFG_MRM_DIS     0x00010000
 244#define CFG_MWI_DIS     0x00008000
 245#define CFG_T64ADDR     0x00004000
 246#define CFG_PCI64_DET   0x00002000
 247#define CFG_DATA64_EN   0x00001000
 248#define CFG_M64ADDR     0x00000800
 249#define CFG_PHY_RST     0x00000400
 250#define CFG_PHY_DIS     0x00000200
 251#define CFG_EXTSTS_EN   0x00000100
 252#define CFG_REQALG      0x00000080
 253#define CFG_SB          0x00000040
 254#define CFG_POW         0x00000020
 255#define CFG_EXD         0x00000010
 256#define CFG_PESEL       0x00000008
 257#define CFG_BROM_DIS    0x00000004
 258#define CFG_EXT_125     0x00000002
 259#define CFG_BEM         0x00000001
 260
 261#define EXTSTS_UDPPKT   0x00200000
 262#define EXTSTS_TCPPKT   0x00080000
 263#define EXTSTS_IPPKT    0x00020000
 264#define EXTSTS_VPKT     0x00010000
 265#define EXTSTS_VTG_MASK 0x0000ffff
 266
 267#define SPDSTS_POLARITY (CFG_SPDSTS1 | CFG_SPDSTS0 | CFG_DUPSTS | (lnksts ? CFG_LNKSTS : 0))
 268
 269#define MIBC_MIBS       0x00000008
 270#define MIBC_ACLR       0x00000004
 271#define MIBC_FRZ        0x00000002
 272#define MIBC_WRN        0x00000001
 273
 274#define PCR_PSEN        (1 << 31)
 275#define PCR_PS_MCAST    (1 << 30)
 276#define PCR_PS_DA       (1 << 29)
 277#define PCR_STHI_8      (3 << 23)
 278#define PCR_STLO_4      (1 << 23)
 279#define PCR_FFHI_8K     (3 << 21)
 280#define PCR_FFLO_4K     (1 << 21)
 281#define PCR_PAUSE_CNT   0xFFFE
 282
 283#define RXCFG_AEP       0x80000000
 284#define RXCFG_ARP       0x40000000
 285#define RXCFG_STRIPCRC  0x20000000
 286#define RXCFG_RX_FD     0x10000000
 287#define RXCFG_ALP       0x08000000
 288#define RXCFG_AIRL      0x04000000
 289#define RXCFG_MXDMA512  0x00700000
 290#define RXCFG_DRTH      0x0000003e
 291#define RXCFG_DRTH0     0x00000002
 292
 293#define RFCR_RFEN       0x80000000
 294#define RFCR_AAB        0x40000000
 295#define RFCR_AAM        0x20000000
 296#define RFCR_AAU        0x10000000
 297#define RFCR_APM        0x08000000
 298#define RFCR_APAT       0x07800000
 299#define RFCR_APAT3      0x04000000
 300#define RFCR_APAT2      0x02000000
 301#define RFCR_APAT1      0x01000000
 302#define RFCR_APAT0      0x00800000
 303#define RFCR_AARP       0x00400000
 304#define RFCR_MHEN       0x00200000
 305#define RFCR_UHEN       0x00100000
 306#define RFCR_ULM        0x00080000
 307
 308#define VRCR_RUDPE      0x00000080
 309#define VRCR_RTCPE      0x00000040
 310#define VRCR_RIPE       0x00000020
 311#define VRCR_IPEN       0x00000010
 312#define VRCR_DUTF       0x00000008
 313#define VRCR_DVTF       0x00000004
 314#define VRCR_VTREN      0x00000002
 315#define VRCR_VTDEN      0x00000001
 316
 317#define VTCR_PPCHK      0x00000008
 318#define VTCR_GCHK       0x00000004
 319#define VTCR_VPPTI      0x00000002
 320#define VTCR_VGTI       0x00000001
 321
 322#define CR              0x00
 323#define CFG             0x04
 324#define MEAR            0x08
 325#define PTSCR           0x0c
 326#define ISR             0x10
 327#define IMR             0x14
 328#define IER             0x18
 329#define IHR             0x1c
 330#define TXDP            0x20
 331#define TXDP_HI         0x24
 332#define TXCFG           0x28
 333#define GPIOR           0x2c
 334#define RXDP            0x30
 335#define RXDP_HI         0x34
 336#define RXCFG           0x38
 337#define PQCR            0x3c
 338#define WCSR            0x40
 339#define PCR             0x44
 340#define RFCR            0x48
 341#define RFDR            0x4c
 342
 343#define SRR             0x58
 344
 345#define VRCR            0xbc
 346#define VTCR            0xc0
 347#define VDR             0xc4
 348#define CCSR            0xcc
 349
 350#define TBICR           0xe0
 351#define TBISR           0xe4
 352#define TANAR           0xe8
 353#define TANLPAR         0xec
 354#define TANER           0xf0
 355#define TESR            0xf4
 356
 357#define TBICR_MR_AN_ENABLE      0x00001000
 358#define TBICR_MR_RESTART_AN     0x00000200
 359
 360#define TBISR_MR_LINK_STATUS    0x00000020
 361#define TBISR_MR_AN_COMPLETE    0x00000004
 362
 363#define TANAR_PS2               0x00000100
 364#define TANAR_PS1               0x00000080
 365#define TANAR_HALF_DUP          0x00000040
 366#define TANAR_FULL_DUP          0x00000020
 367
 368#define GPIOR_GP5_OE            0x00000200
 369#define GPIOR_GP4_OE            0x00000100
 370#define GPIOR_GP3_OE            0x00000080
 371#define GPIOR_GP2_OE            0x00000040
 372#define GPIOR_GP1_OE            0x00000020
 373#define GPIOR_GP3_OUT           0x00000004
 374#define GPIOR_GP1_OUT           0x00000001
 375
 376#define LINK_AUTONEGOTIATE      0x01
 377#define LINK_DOWN               0x02
 378#define LINK_UP                 0x04
 379
 380#define HW_ADDR_LEN     sizeof(dma_addr_t)
 381#define desc_addr_set(desc, addr)                               \
 382        do {                                                    \
 383                ((desc)[0] = cpu_to_le32(addr));                \
 384                if (HW_ADDR_LEN == 8)                           \
 385                        (desc)[1] = cpu_to_le32(((u64)addr) >> 32);     \
 386        } while(0)
 387#define desc_addr_get(desc)                                     \
 388        (le32_to_cpu((desc)[0]) | \
 389        (HW_ADDR_LEN == 8 ? ((dma_addr_t)le32_to_cpu((desc)[1]))<<32 : 0))
 390
 391#define DESC_LINK               0
 392#define DESC_BUFPTR             (DESC_LINK + HW_ADDR_LEN/4)
 393#define DESC_CMDSTS             (DESC_BUFPTR + HW_ADDR_LEN/4)
 394#define DESC_EXTSTS             (DESC_CMDSTS + 4/4)
 395
 396#define CMDSTS_OWN      0x80000000
 397#define CMDSTS_MORE     0x40000000
 398#define CMDSTS_INTR     0x20000000
 399#define CMDSTS_ERR      0x10000000
 400#define CMDSTS_OK       0x08000000
 401#define CMDSTS_RUNT     0x00200000
 402#define CMDSTS_LEN_MASK 0x0000ffff
 403
 404#define CMDSTS_DEST_MASK        0x01800000
 405#define CMDSTS_DEST_SELF        0x00800000
 406#define CMDSTS_DEST_MULTI       0x01000000
 407
 408#define DESC_SIZE       8               /* Should be cache line sized */
 409
 410struct rx_info {
 411        spinlock_t      lock;
 412        int             up;
 413        unsigned long   idle;
 414
 415        struct sk_buff  *skbs[NR_RX_DESC];
 416
 417        __le32          *next_rx_desc;
 418        u16             next_rx, next_empty;
 419
 420        __le32          *descs;
 421        dma_addr_t      phy_descs;
 422};
 423
 424
 425struct ns83820 {
 426        u8                      __iomem *base;
 427
 428        struct pci_dev          *pci_dev;
 429        struct net_device       *ndev;
 430
 431        struct rx_info          rx_info;
 432        struct tasklet_struct   rx_tasklet;
 433
 434        unsigned                ihr;
 435        struct work_struct      tq_refill;
 436
 437        /* protects everything below.  irqsave when using. */
 438        spinlock_t              misc_lock;
 439
 440        u32                     CFG_cache;
 441
 442        u32                     MEAR_cache;
 443        u32                     IMR_cache;
 444
 445        unsigned                linkstate;
 446
 447        spinlock_t      tx_lock;
 448
 449        u16             tx_done_idx;
 450        u16             tx_idx;
 451        volatile u16    tx_free_idx;    /* idx of free desc chain */
 452        u16             tx_intr_idx;
 453
 454        atomic_t        nr_tx_skbs;
 455        struct sk_buff  *tx_skbs[NR_TX_DESC];
 456
 457        char            pad[16] __attribute__((aligned(16)));
 458        __le32          *tx_descs;
 459        dma_addr_t      tx_phy_descs;
 460
 461        struct timer_list       tx_watchdog;
 462};
 463
 464static inline struct ns83820 *PRIV(struct net_device *dev)
 465{
 466        return netdev_priv(dev);
 467}
 468
 469#define __kick_rx(dev)  writel(CR_RXE, dev->base + CR)
 470
 471static inline void kick_rx(struct net_device *ndev)
 472{
 473        struct ns83820 *dev = PRIV(ndev);
 474        dprintk("kick_rx: maybe kicking\n");
 475        if (test_and_clear_bit(0, &dev->rx_info.idle)) {
 476                dprintk("actually kicking\n");
 477                writel(dev->rx_info.phy_descs +
 478                        (4 * DESC_SIZE * dev->rx_info.next_rx),
 479                       dev->base + RXDP);
 480                if (dev->rx_info.next_rx == dev->rx_info.next_empty)
 481                        printk(KERN_DEBUG "%s: uh-oh: next_rx == next_empty???\n",
 482                                ndev->name);
 483                __kick_rx(dev);
 484        }
 485}
 486
 487//free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC
 488#define start_tx_okay(dev)      \
 489        (((NR_TX_DESC-2 + dev->tx_done_idx - dev->tx_free_idx) % NR_TX_DESC) > MIN_TX_DESC_FREE)
 490
 491/* Packet Receiver
 492 *
 493 * The hardware supports linked lists of receive descriptors for
 494 * which ownership is transferred back and forth by means of an
 495 * ownership bit.  While the hardware does support the use of a
 496 * ring for receive descriptors, we only make use of a chain in
 497 * an attempt to reduce bus traffic under heavy load scenarios.
 498 * This will also make bugs a bit more obvious.  The current code
 499 * only makes use of a single rx chain; I hope to implement
 500 * priority based rx for version 1.0.  Goal: even under overload
 501 * conditions, still route realtime traffic with as low jitter as
 502 * possible.
 503 */
 504static inline void build_rx_desc(struct ns83820 *dev, __le32 *desc, dma_addr_t link, dma_addr_t buf, u32 cmdsts, u32 extsts)
 505{
 506        desc_addr_set(desc + DESC_LINK, link);
 507        desc_addr_set(desc + DESC_BUFPTR, buf);
 508        desc[DESC_EXTSTS] = cpu_to_le32(extsts);
 509        mb();
 510        desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
 511}
 512
 513#define nr_rx_empty(dev) ((NR_RX_DESC-2 + dev->rx_info.next_rx - dev->rx_info.next_empty) % NR_RX_DESC)
 514static inline int ns83820_add_rx_skb(struct ns83820 *dev, struct sk_buff *skb)
 515{
 516        unsigned next_empty;
 517        u32 cmdsts;
 518        __le32 *sg;
 519        dma_addr_t buf;
 520
 521        next_empty = dev->rx_info.next_empty;
 522
 523        /* don't overrun last rx marker */
 524        if (unlikely(nr_rx_empty(dev) <= 2)) {
 525                kfree_skb(skb);
 526                return 1;
 527        }
 528
 529#if 0
 530        dprintk("next_empty[%d] nr_used[%d] next_rx[%d]\n",
 531                dev->rx_info.next_empty,
 532                dev->rx_info.nr_used,
 533                dev->rx_info.next_rx
 534                );
 535#endif
 536
 537        sg = dev->rx_info.descs + (next_empty * DESC_SIZE);
 538        BUG_ON(NULL != dev->rx_info.skbs[next_empty]);
 539        dev->rx_info.skbs[next_empty] = skb;
 540
 541        dev->rx_info.next_empty = (next_empty + 1) % NR_RX_DESC;
 542        cmdsts = REAL_RX_BUF_SIZE | CMDSTS_INTR;
 543        buf = pci_map_single(dev->pci_dev, skb->data,
 544                             REAL_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
 545        build_rx_desc(dev, sg, 0, buf, cmdsts, 0);
 546        /* update link of previous rx */
 547        if (likely(next_empty != dev->rx_info.next_rx))
 548                dev->rx_info.descs[((NR_RX_DESC + next_empty - 1) % NR_RX_DESC) * DESC_SIZE] = cpu_to_le32(dev->rx_info.phy_descs + (next_empty * DESC_SIZE * 4));
 549
 550        return 0;
 551}
 552
 553static inline int rx_refill(struct net_device *ndev, gfp_t gfp)
 554{
 555        struct ns83820 *dev = PRIV(ndev);
 556        unsigned i;
 557        unsigned long flags = 0;
 558
 559        if (unlikely(nr_rx_empty(dev) <= 2))
 560                return 0;
 561
 562        dprintk("rx_refill(%p)\n", ndev);
 563        if (gfp == GFP_ATOMIC)
 564                spin_lock_irqsave(&dev->rx_info.lock, flags);
 565        for (i=0; i<NR_RX_DESC; i++) {
 566                struct sk_buff *skb;
 567                long res;
 568
 569                /* extra 16 bytes for alignment */
 570                skb = __netdev_alloc_skb(ndev, REAL_RX_BUF_SIZE+16, gfp);
 571                if (unlikely(!skb))
 572                        break;
 573
 574                skb_reserve(skb, skb->data - PTR_ALIGN(skb->data, 16));
 575                if (gfp != GFP_ATOMIC)
 576                        spin_lock_irqsave(&dev->rx_info.lock, flags);
 577                res = ns83820_add_rx_skb(dev, skb);
 578                if (gfp != GFP_ATOMIC)
 579                        spin_unlock_irqrestore(&dev->rx_info.lock, flags);
 580                if (res) {
 581                        i = 1;
 582                        break;
 583                }
 584        }
 585        if (gfp == GFP_ATOMIC)
 586                spin_unlock_irqrestore(&dev->rx_info.lock, flags);
 587
 588        return i ? 0 : -ENOMEM;
 589}
 590
 591static void rx_refill_atomic(struct net_device *ndev)
 592{
 593        rx_refill(ndev, GFP_ATOMIC);
 594}
 595
 596/* REFILL */
 597static inline void queue_refill(struct work_struct *work)
 598{
 599        struct ns83820 *dev = container_of(work, struct ns83820, tq_refill);
 600        struct net_device *ndev = dev->ndev;
 601
 602        rx_refill(ndev, GFP_KERNEL);
 603        if (dev->rx_info.up)
 604                kick_rx(ndev);
 605}
 606
 607static inline void clear_rx_desc(struct ns83820 *dev, unsigned i)
 608{
 609        build_rx_desc(dev, dev->rx_info.descs + (DESC_SIZE * i), 0, 0, CMDSTS_OWN, 0);
 610}
 611
 612static void phy_intr(struct net_device *ndev)
 613{
 614        struct ns83820 *dev = PRIV(ndev);
 615        static const char *speeds[] = { "10", "100", "1000", "1000(?)", "1000F" };
 616        u32 cfg, new_cfg;
 617        u32 tbisr, tanar, tanlpar;
 618        int speed, fullduplex, newlinkstate;
 619
 620        cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
 621
 622        if (dev->CFG_cache & CFG_TBI_EN) {
 623                /* we have an optical transceiver */
 624                tbisr = readl(dev->base + TBISR);
 625                tanar = readl(dev->base + TANAR);
 626                tanlpar = readl(dev->base + TANLPAR);
 627                dprintk("phy_intr: tbisr=%08x, tanar=%08x, tanlpar=%08x\n",
 628                        tbisr, tanar, tanlpar);
 629
 630                if ( (fullduplex = (tanlpar & TANAR_FULL_DUP) &&
 631                      (tanar & TANAR_FULL_DUP)) ) {
 632
 633                        /* both of us are full duplex */
 634                        writel(readl(dev->base + TXCFG)
 635                               | TXCFG_CSI | TXCFG_HBI | TXCFG_ATP,
 636                               dev->base + TXCFG);
 637                        writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
 638                               dev->base + RXCFG);
 639                        /* Light up full duplex LED */
 640                        writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT,
 641                               dev->base + GPIOR);
 642
 643                } else if (((tanlpar & TANAR_HALF_DUP) &&
 644                            (tanar & TANAR_HALF_DUP)) ||
 645                           ((tanlpar & TANAR_FULL_DUP) &&
 646                            (tanar & TANAR_HALF_DUP)) ||
 647                           ((tanlpar & TANAR_HALF_DUP) &&
 648                            (tanar & TANAR_FULL_DUP))) {
 649
 650                        /* one or both of us are half duplex */
 651                        writel((readl(dev->base + TXCFG)
 652                                & ~(TXCFG_CSI | TXCFG_HBI)) | TXCFG_ATP,
 653                               dev->base + TXCFG);
 654                        writel(readl(dev->base + RXCFG) & ~RXCFG_RX_FD,
 655                               dev->base + RXCFG);
 656                        /* Turn off full duplex LED */
 657                        writel(readl(dev->base + GPIOR) & ~GPIOR_GP1_OUT,
 658                               dev->base + GPIOR);
 659                }
 660
 661                speed = 4; /* 1000F */
 662
 663        } else {
 664                /* we have a copper transceiver */
 665                new_cfg = dev->CFG_cache & ~(CFG_SB | CFG_MODE_1000 | CFG_SPDSTS);
 666
 667                if (cfg & CFG_SPDSTS1)
 668                        new_cfg |= CFG_MODE_1000;
 669                else
 670                        new_cfg &= ~CFG_MODE_1000;
 671
 672                speed = ((cfg / CFG_SPDSTS0) & 3);
 673                fullduplex = (cfg & CFG_DUPSTS);
 674
 675                if (fullduplex) {
 676                        new_cfg |= CFG_SB;
 677                        writel(readl(dev->base + TXCFG)
 678                                        | TXCFG_CSI | TXCFG_HBI,
 679                               dev->base + TXCFG);
 680                        writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
 681                               dev->base + RXCFG);
 682                } else {
 683                        writel(readl(dev->base + TXCFG)
 684                                        & ~(TXCFG_CSI | TXCFG_HBI),
 685                               dev->base + TXCFG);
 686                        writel(readl(dev->base + RXCFG) & ~(RXCFG_RX_FD),
 687                               dev->base + RXCFG);
 688                }
 689
 690                if ((cfg & CFG_LNKSTS) &&
 691                    ((new_cfg ^ dev->CFG_cache) != 0)) {
 692                        writel(new_cfg, dev->base + CFG);
 693                        dev->CFG_cache = new_cfg;
 694                }
 695
 696                dev->CFG_cache &= ~CFG_SPDSTS;
 697                dev->CFG_cache |= cfg & CFG_SPDSTS;
 698        }
 699
 700        newlinkstate = (cfg & CFG_LNKSTS) ? LINK_UP : LINK_DOWN;
 701
 702        if (newlinkstate & LINK_UP &&
 703            dev->linkstate != newlinkstate) {
 704                netif_start_queue(ndev);
 705                netif_wake_queue(ndev);
 706                printk(KERN_INFO "%s: link now %s mbps, %s duplex and up.\n",
 707                        ndev->name,
 708                        speeds[speed],
 709                        fullduplex ? "full" : "half");
 710        } else if (newlinkstate & LINK_DOWN &&
 711                   dev->linkstate != newlinkstate) {
 712                netif_stop_queue(ndev);
 713                printk(KERN_INFO "%s: link now down.\n", ndev->name);
 714        }
 715
 716        dev->linkstate = newlinkstate;
 717}
 718
 719static int ns83820_setup_rx(struct net_device *ndev)
 720{
 721        struct ns83820 *dev = PRIV(ndev);
 722        unsigned i;
 723        int ret;
 724
 725        dprintk("ns83820_setup_rx(%p)\n", ndev);
 726
 727        dev->rx_info.idle = 1;
 728        dev->rx_info.next_rx = 0;
 729        dev->rx_info.next_rx_desc = dev->rx_info.descs;
 730        dev->rx_info.next_empty = 0;
 731
 732        for (i=0; i<NR_RX_DESC; i++)
 733                clear_rx_desc(dev, i);
 734
 735        writel(0, dev->base + RXDP_HI);
 736        writel(dev->rx_info.phy_descs, dev->base + RXDP);
 737
 738        ret = rx_refill(ndev, GFP_KERNEL);
 739        if (!ret) {
 740                dprintk("starting receiver\n");
 741                /* prevent the interrupt handler from stomping on us */
 742                spin_lock_irq(&dev->rx_info.lock);
 743
 744                writel(0x0001, dev->base + CCSR);
 745                writel(0, dev->base + RFCR);
 746                writel(0x7fc00000, dev->base + RFCR);
 747                writel(0xffc00000, dev->base + RFCR);
 748
 749                dev->rx_info.up = 1;
 750
 751                phy_intr(ndev);
 752
 753                /* Okay, let it rip */
 754                spin_lock(&dev->misc_lock);
 755                dev->IMR_cache |= ISR_PHY;
 756                dev->IMR_cache |= ISR_RXRCMP;
 757                //dev->IMR_cache |= ISR_RXERR;
 758                //dev->IMR_cache |= ISR_RXOK;
 759                dev->IMR_cache |= ISR_RXORN;
 760                dev->IMR_cache |= ISR_RXSOVR;
 761                dev->IMR_cache |= ISR_RXDESC;
 762                dev->IMR_cache |= ISR_RXIDLE;
 763                dev->IMR_cache |= ISR_TXDESC;
 764                dev->IMR_cache |= ISR_TXIDLE;
 765
 766                writel(dev->IMR_cache, dev->base + IMR);
 767                writel(1, dev->base + IER);
 768                spin_unlock(&dev->misc_lock);
 769
 770                kick_rx(ndev);
 771
 772                spin_unlock_irq(&dev->rx_info.lock);
 773        }
 774        return ret;
 775}
 776
 777static void ns83820_cleanup_rx(struct ns83820 *dev)
 778{
 779        unsigned i;
 780        unsigned long flags;
 781
 782        dprintk("ns83820_cleanup_rx(%p)\n", dev);
 783
 784        /* disable receive interrupts */
 785        spin_lock_irqsave(&dev->misc_lock, flags);
 786        dev->IMR_cache &= ~(ISR_RXOK | ISR_RXDESC | ISR_RXERR | ISR_RXEARLY | ISR_RXIDLE);
 787        writel(dev->IMR_cache, dev->base + IMR);
 788        spin_unlock_irqrestore(&dev->misc_lock, flags);
 789
 790        /* synchronize with the interrupt handler and kill it */
 791        dev->rx_info.up = 0;
 792        synchronize_irq(dev->pci_dev->irq);
 793
 794        /* touch the pci bus... */
 795        readl(dev->base + IMR);
 796
 797        /* assumes the transmitter is already disabled and reset */
 798        writel(0, dev->base + RXDP_HI);
 799        writel(0, dev->base + RXDP);
 800
 801        for (i=0; i<NR_RX_DESC; i++) {
 802                struct sk_buff *skb = dev->rx_info.skbs[i];
 803                dev->rx_info.skbs[i] = NULL;
 804                clear_rx_desc(dev, i);
 805                kfree_skb(skb);
 806        }
 807}
 808
 809static void ns83820_rx_kick(struct net_device *ndev)
 810{
 811        struct ns83820 *dev = PRIV(ndev);
 812        /*if (nr_rx_empty(dev) >= NR_RX_DESC/4)*/ {
 813                if (dev->rx_info.up) {
 814                        rx_refill_atomic(ndev);
 815                        kick_rx(ndev);
 816                }
 817        }
 818
 819        if (dev->rx_info.up && nr_rx_empty(dev) > NR_RX_DESC*3/4)
 820                schedule_work(&dev->tq_refill);
 821        else
 822                kick_rx(ndev);
 823        if (dev->rx_info.idle)
 824                printk(KERN_DEBUG "%s: BAD\n", ndev->name);
 825}
 826
 827/* rx_irq
 828 *
 829 */
 830static void rx_irq(struct net_device *ndev)
 831{
 832        struct ns83820 *dev = PRIV(ndev);
 833        struct rx_info *info = &dev->rx_info;
 834        unsigned next_rx;
 835        int rx_rc, len;
 836        u32 cmdsts;
 837        __le32 *desc;
 838        unsigned long flags;
 839        int nr = 0;
 840
 841        dprintk("rx_irq(%p)\n", ndev);
 842        dprintk("rxdp: %08x, descs: %08lx next_rx[%d]: %p next_empty[%d]: %p\n",
 843                readl(dev->base + RXDP),
 844                (long)(dev->rx_info.phy_descs),
 845                (int)dev->rx_info.next_rx,
 846                (dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_rx)),
 847                (int)dev->rx_info.next_empty,
 848                (dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_empty))
 849                );
 850
 851        spin_lock_irqsave(&info->lock, flags);
 852        if (!info->up)
 853                goto out;
 854
 855        dprintk("walking descs\n");
 856        next_rx = info->next_rx;
 857        desc = info->next_rx_desc;
 858        while ((CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) &&
 859               (cmdsts != CMDSTS_OWN)) {
 860                struct sk_buff *skb;
 861                u32 extsts = le32_to_cpu(desc[DESC_EXTSTS]);
 862                dma_addr_t bufptr = desc_addr_get(desc + DESC_BUFPTR);
 863
 864                dprintk("cmdsts: %08x\n", cmdsts);
 865                dprintk("link: %08x\n", cpu_to_le32(desc[DESC_LINK]));
 866                dprintk("extsts: %08x\n", extsts);
 867
 868                skb = info->skbs[next_rx];
 869                info->skbs[next_rx] = NULL;
 870                info->next_rx = (next_rx + 1) % NR_RX_DESC;
 871
 872                mb();
 873                clear_rx_desc(dev, next_rx);
 874
 875                pci_unmap_single(dev->pci_dev, bufptr,
 876                                 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
 877                len = cmdsts & CMDSTS_LEN_MASK;
 878#ifdef NS83820_VLAN_ACCEL_SUPPORT
 879                /* NH: As was mentioned below, this chip is kinda
 880                 * brain dead about vlan tag stripping.  Frames
 881                 * that are 64 bytes with a vlan header appended
 882                 * like arp frames, or pings, are flagged as Runts
 883                 * when the tag is stripped and hardware.  This
 884                 * also means that the OK bit in the descriptor
 885                 * is cleared when the frame comes in so we have
 886                 * to do a specific length check here to make sure
 887                 * the frame would have been ok, had we not stripped
 888                 * the tag.
 889                 */
 890                if (likely((CMDSTS_OK & cmdsts) ||
 891                        ((cmdsts & CMDSTS_RUNT) && len >= 56))) {
 892#else
 893                if (likely(CMDSTS_OK & cmdsts)) {
 894#endif
 895                        skb_put(skb, len);
 896                        if (unlikely(!skb))
 897                                goto netdev_mangle_me_harder_failed;
 898                        if (cmdsts & CMDSTS_DEST_MULTI)
 899                                ndev->stats.multicast++;
 900                        ndev->stats.rx_packets++;
 901                        ndev->stats.rx_bytes += len;
 902                        if ((extsts & 0x002a0000) && !(extsts & 0x00540000)) {
 903                                skb->ip_summed = CHECKSUM_UNNECESSARY;
 904                        } else {
 905                                skb_checksum_none_assert(skb);
 906                        }
 907                        skb->protocol = eth_type_trans(skb, ndev);
 908#ifdef NS83820_VLAN_ACCEL_SUPPORT
 909                        if(extsts & EXTSTS_VPKT) {
 910                                unsigned short tag;
 911
 912                                tag = ntohs(extsts & EXTSTS_VTG_MASK);
 913                                __vlan_hwaccel_put_tag(skb, htons(ETH_P_IPV6), tag);
 914                        }
 915#endif
 916                        rx_rc = netif_rx(skb);
 917                        if (NET_RX_DROP == rx_rc) {
 918netdev_mangle_me_harder_failed:
 919                                ndev->stats.rx_dropped++;
 920                        }
 921                } else {
 922                        kfree_skb(skb);
 923                }
 924
 925                nr++;
 926                next_rx = info->next_rx;
 927                desc = info->descs + (DESC_SIZE * next_rx);
 928        }
 929        info->next_rx = next_rx;
 930        info->next_rx_desc = info->descs + (DESC_SIZE * next_rx);
 931
 932out:
 933        if (0 && !nr) {
 934                Dprintk("dazed: cmdsts_f: %08x\n", cmdsts);
 935        }
 936
 937        spin_unlock_irqrestore(&info->lock, flags);
 938}
 939
 940static void rx_action(unsigned long _dev)
 941{
 942        struct net_device *ndev = (void *)_dev;
 943        struct ns83820 *dev = PRIV(ndev);
 944        rx_irq(ndev);
 945        writel(ihr, dev->base + IHR);
 946
 947        spin_lock_irq(&dev->misc_lock);
 948        dev->IMR_cache |= ISR_RXDESC;
 949        writel(dev->IMR_cache, dev->base + IMR);
 950        spin_unlock_irq(&dev->misc_lock);
 951
 952        rx_irq(ndev);
 953        ns83820_rx_kick(ndev);
 954}
 955
 956/* Packet Transmit code
 957 */
 958static inline void kick_tx(struct ns83820 *dev)
 959{
 960        dprintk("kick_tx(%p): tx_idx=%d free_idx=%d\n",
 961                dev, dev->tx_idx, dev->tx_free_idx);
 962        writel(CR_TXE, dev->base + CR);
 963}
 964
 965/* No spinlock needed on the transmit irq path as the interrupt handler is
 966 * serialized.
 967 */
 968static void do_tx_done(struct net_device *ndev)
 969{
 970        struct ns83820 *dev = PRIV(ndev);
 971        u32 cmdsts, tx_done_idx;
 972        __le32 *desc;
 973
 974        dprintk("do_tx_done(%p)\n", ndev);
 975        tx_done_idx = dev->tx_done_idx;
 976        desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
 977
 978        dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
 979                tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
 980        while ((tx_done_idx != dev->tx_free_idx) &&
 981               !(CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) ) {
 982                struct sk_buff *skb;
 983                unsigned len;
 984                dma_addr_t addr;
 985
 986                if (cmdsts & CMDSTS_ERR)
 987                        ndev->stats.tx_errors++;
 988                if (cmdsts & CMDSTS_OK)
 989                        ndev->stats.tx_packets++;
 990                if (cmdsts & CMDSTS_OK)
 991                        ndev->stats.tx_bytes += cmdsts & 0xffff;
 992
 993                dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
 994                        tx_done_idx, dev->tx_free_idx, cmdsts);
 995                skb = dev->tx_skbs[tx_done_idx];
 996                dev->tx_skbs[tx_done_idx] = NULL;
 997                dprintk("done(%p)\n", skb);
 998
 999                len = cmdsts & CMDSTS_LEN_MASK;
1000                addr = desc_addr_get(desc + DESC_BUFPTR);
1001                if (skb) {
1002                        pci_unmap_single(dev->pci_dev,
1003                                        addr,
1004                                        len,
1005                                        PCI_DMA_TODEVICE);
1006                        dev_kfree_skb_irq(skb);
1007                        atomic_dec(&dev->nr_tx_skbs);
1008                } else
1009                        pci_unmap_page(dev->pci_dev,
1010                                        addr,
1011                                        len,
1012                                        PCI_DMA_TODEVICE);
1013
1014                tx_done_idx = (tx_done_idx + 1) % NR_TX_DESC;
1015                dev->tx_done_idx = tx_done_idx;
1016                desc[DESC_CMDSTS] = cpu_to_le32(0);
1017                mb();
1018                desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1019        }
1020
1021        /* Allow network stack to resume queueing packets after we've
1022         * finished transmitting at least 1/4 of the packets in the queue.
1023         */
1024        if (netif_queue_stopped(ndev) && start_tx_okay(dev)) {
1025                dprintk("start_queue(%p)\n", ndev);
1026                netif_start_queue(ndev);
1027                netif_wake_queue(ndev);
1028        }
1029}
1030
1031static void ns83820_cleanup_tx(struct ns83820 *dev)
1032{
1033        unsigned i;
1034
1035        for (i=0; i<NR_TX_DESC; i++) {
1036                struct sk_buff *skb = dev->tx_skbs[i];
1037                dev->tx_skbs[i] = NULL;
1038                if (skb) {
1039                        __le32 *desc = dev->tx_descs + (i * DESC_SIZE);
1040                        pci_unmap_single(dev->pci_dev,
1041                                        desc_addr_get(desc + DESC_BUFPTR),
1042                                        le32_to_cpu(desc[DESC_CMDSTS]) & CMDSTS_LEN_MASK,
1043                                        PCI_DMA_TODEVICE);
1044                        dev_kfree_skb_irq(skb);
1045                        atomic_dec(&dev->nr_tx_skbs);
1046                }
1047        }
1048
1049        memset(dev->tx_descs, 0, NR_TX_DESC * DESC_SIZE * 4);
1050}
1051
1052/* transmit routine.  This code relies on the network layer serializing
1053 * its calls in, but will run happily in parallel with the interrupt
1054 * handler.  This code currently has provisions for fragmenting tx buffers
1055 * while trying to track down a bug in either the zero copy code or
1056 * the tx fifo (hence the MAX_FRAG_LEN).
1057 */
1058static netdev_tx_t ns83820_hard_start_xmit(struct sk_buff *skb,
1059                                           struct net_device *ndev)
1060{
1061        struct ns83820 *dev = PRIV(ndev);
1062        u32 free_idx, cmdsts, extsts;
1063        int nr_free, nr_frags;
1064        unsigned tx_done_idx, last_idx;
1065        dma_addr_t buf;
1066        unsigned len;
1067        skb_frag_t *frag;
1068        int stopped = 0;
1069        int do_intr = 0;
1070        volatile __le32 *first_desc;
1071
1072        dprintk("ns83820_hard_start_xmit\n");
1073
1074        nr_frags =  skb_shinfo(skb)->nr_frags;
1075again:
1076        if (unlikely(dev->CFG_cache & CFG_LNKSTS)) {
1077                netif_stop_queue(ndev);
1078                if (unlikely(dev->CFG_cache & CFG_LNKSTS))
1079                        return NETDEV_TX_BUSY;
1080                netif_start_queue(ndev);
1081        }
1082
1083        last_idx = free_idx = dev->tx_free_idx;
1084        tx_done_idx = dev->tx_done_idx;
1085        nr_free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC;
1086        nr_free -= 1;
1087        if (nr_free <= nr_frags) {
1088                dprintk("stop_queue - not enough(%p)\n", ndev);
1089                netif_stop_queue(ndev);
1090
1091                /* Check again: we may have raced with a tx done irq */
1092                if (dev->tx_done_idx != tx_done_idx) {
1093                        dprintk("restart queue(%p)\n", ndev);
1094                        netif_start_queue(ndev);
1095                        goto again;
1096                }
1097                return NETDEV_TX_BUSY;
1098        }
1099
1100        if (free_idx == dev->tx_intr_idx) {
1101                do_intr = 1;
1102                dev->tx_intr_idx = (dev->tx_intr_idx + NR_TX_DESC/4) % NR_TX_DESC;
1103        }
1104
1105        nr_free -= nr_frags;
1106        if (nr_free < MIN_TX_DESC_FREE) {
1107                dprintk("stop_queue - last entry(%p)\n", ndev);
1108                netif_stop_queue(ndev);
1109                stopped = 1;
1110        }
1111
1112        frag = skb_shinfo(skb)->frags;
1113        if (!nr_frags)
1114                frag = NULL;
1115        extsts = 0;
1116        if (skb->ip_summed == CHECKSUM_PARTIAL) {
1117                extsts |= EXTSTS_IPPKT;
1118                if (IPPROTO_TCP == ip_hdr(skb)->protocol)
1119                        extsts |= EXTSTS_TCPPKT;
1120                else if (IPPROTO_UDP == ip_hdr(skb)->protocol)
1121                        extsts |= EXTSTS_UDPPKT;
1122        }
1123
1124#ifdef NS83820_VLAN_ACCEL_SUPPORT
1125        if (skb_vlan_tag_present(skb)) {
1126                /* fetch the vlan tag info out of the
1127                 * ancillary data if the vlan code
1128                 * is using hw vlan acceleration
1129                 */
1130                short tag = skb_vlan_tag_get(skb);
1131                extsts |= (EXTSTS_VPKT | htons(tag));
1132        }
1133#endif
1134
1135        len = skb->len;
1136        if (nr_frags)
1137                len -= skb->data_len;
1138        buf = pci_map_single(dev->pci_dev, skb->data, len, PCI_DMA_TODEVICE);
1139
1140        first_desc = dev->tx_descs + (free_idx * DESC_SIZE);
1141
1142        for (;;) {
1143                volatile __le32 *desc = dev->tx_descs + (free_idx * DESC_SIZE);
1144
1145                dprintk("frag[%3u]: %4u @ 0x%08Lx\n", free_idx, len,
1146                        (unsigned long long)buf);
1147                last_idx = free_idx;
1148                free_idx = (free_idx + 1) % NR_TX_DESC;
1149                desc[DESC_LINK] = cpu_to_le32(dev->tx_phy_descs + (free_idx * DESC_SIZE * 4));
1150                desc_addr_set(desc + DESC_BUFPTR, buf);
1151                desc[DESC_EXTSTS] = cpu_to_le32(extsts);
1152
1153                cmdsts = ((nr_frags) ? CMDSTS_MORE : do_intr ? CMDSTS_INTR : 0);
1154                cmdsts |= (desc == first_desc) ? 0 : CMDSTS_OWN;
1155                cmdsts |= len;
1156                desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
1157
1158                if (!nr_frags)
1159                        break;
1160
1161                buf = skb_frag_dma_map(&dev->pci_dev->dev, frag, 0,
1162                                       skb_frag_size(frag), DMA_TO_DEVICE);
1163                dprintk("frag: buf=%08Lx  page=%08lx offset=%08lx\n",
1164                        (long long)buf, (long) page_to_pfn(frag->page),
1165                        frag->page_offset);
1166                len = skb_frag_size(frag);
1167                frag++;
1168                nr_frags--;
1169        }
1170        dprintk("done pkt\n");
1171
1172        spin_lock_irq(&dev->tx_lock);
1173        dev->tx_skbs[last_idx] = skb;
1174        first_desc[DESC_CMDSTS] |= cpu_to_le32(CMDSTS_OWN);
1175        dev->tx_free_idx = free_idx;
1176        atomic_inc(&dev->nr_tx_skbs);
1177        spin_unlock_irq(&dev->tx_lock);
1178
1179        kick_tx(dev);
1180
1181        /* Check again: we may have raced with a tx done irq */
1182        if (stopped && (dev->tx_done_idx != tx_done_idx) && start_tx_okay(dev))
1183                netif_start_queue(ndev);
1184
1185        return NETDEV_TX_OK;
1186}
1187
1188static void ns83820_update_stats(struct ns83820 *dev)
1189{
1190        struct net_device *ndev = dev->ndev;
1191        u8 __iomem *base = dev->base;
1192
1193        /* the DP83820 will freeze counters, so we need to read all of them */
1194        ndev->stats.rx_errors           += readl(base + 0x60) & 0xffff;
1195        ndev->stats.rx_crc_errors       += readl(base + 0x64) & 0xffff;
1196        ndev->stats.rx_missed_errors    += readl(base + 0x68) & 0xffff;
1197        ndev->stats.rx_frame_errors     += readl(base + 0x6c) & 0xffff;
1198        /*ndev->stats.rx_symbol_errors +=*/ readl(base + 0x70);
1199        ndev->stats.rx_length_errors    += readl(base + 0x74) & 0xffff;
1200        ndev->stats.rx_length_errors    += readl(base + 0x78) & 0xffff;
1201        /*ndev->stats.rx_badopcode_errors += */ readl(base + 0x7c);
1202        /*ndev->stats.rx_pause_count += */  readl(base + 0x80);
1203        /*ndev->stats.tx_pause_count += */  readl(base + 0x84);
1204        ndev->stats.tx_carrier_errors   += readl(base + 0x88) & 0xff;
1205}
1206
1207static struct net_device_stats *ns83820_get_stats(struct net_device *ndev)
1208{
1209        struct ns83820 *dev = PRIV(ndev);
1210
1211        /* somewhat overkill */
1212        spin_lock_irq(&dev->misc_lock);
1213        ns83820_update_stats(dev);
1214        spin_unlock_irq(&dev->misc_lock);
1215
1216        return &ndev->stats;
1217}
1218
1219/* Let ethtool retrieve info */
1220static int ns83820_get_settings(struct net_device *ndev,
1221                                struct ethtool_cmd *cmd)
1222{
1223        struct ns83820 *dev = PRIV(ndev);
1224        u32 cfg, tanar, tbicr;
1225        int fullduplex   = 0;
1226
1227        /*
1228         * Here's the list of available ethtool commands from other drivers:
1229         *      cmd->advertising =
1230         *      ethtool_cmd_speed_set(cmd, ...)
1231         *      cmd->duplex =
1232         *      cmd->port = 0;
1233         *      cmd->phy_address =
1234         *      cmd->transceiver = 0;
1235         *      cmd->autoneg =
1236         *      cmd->maxtxpkt = 0;
1237         *      cmd->maxrxpkt = 0;
1238         */
1239
1240        /* read current configuration */
1241        cfg   = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1242        tanar = readl(dev->base + TANAR);
1243        tbicr = readl(dev->base + TBICR);
1244
1245        fullduplex = (cfg & CFG_DUPSTS) ? 1 : 0;
1246
1247        cmd->supported = SUPPORTED_Autoneg;
1248
1249        if (dev->CFG_cache & CFG_TBI_EN) {
1250                /* we have optical interface */
1251                cmd->supported |= SUPPORTED_1000baseT_Half |
1252                                        SUPPORTED_1000baseT_Full |
1253                                        SUPPORTED_FIBRE;
1254                cmd->port       = PORT_FIBRE;
1255        } else {
1256                /* we have copper */
1257                cmd->supported |= SUPPORTED_10baseT_Half |
1258                        SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half |
1259                        SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Half |
1260                        SUPPORTED_1000baseT_Full |
1261                        SUPPORTED_MII;
1262                cmd->port = PORT_MII;
1263        }
1264
1265        cmd->duplex = fullduplex ? DUPLEX_FULL : DUPLEX_HALF;
1266        switch (cfg / CFG_SPDSTS0 & 3) {
1267        case 2:
1268                ethtool_cmd_speed_set(cmd, SPEED_1000);
1269                break;
1270        case 1:
1271                ethtool_cmd_speed_set(cmd, SPEED_100);
1272                break;
1273        default:
1274                ethtool_cmd_speed_set(cmd, SPEED_10);
1275                break;
1276        }
1277        cmd->autoneg = (tbicr & TBICR_MR_AN_ENABLE)
1278                ? AUTONEG_ENABLE : AUTONEG_DISABLE;
1279        return 0;
1280}
1281
1282/* Let ethool change settings*/
1283static int ns83820_set_settings(struct net_device *ndev,
1284                                struct ethtool_cmd *cmd)
1285{
1286        struct ns83820 *dev = PRIV(ndev);
1287        u32 cfg, tanar;
1288        int have_optical = 0;
1289        int fullduplex   = 0;
1290
1291        /* read current configuration */
1292        cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1293        tanar = readl(dev->base + TANAR);
1294
1295        if (dev->CFG_cache & CFG_TBI_EN) {
1296                /* we have optical */
1297                have_optical = 1;
1298                fullduplex   = (tanar & TANAR_FULL_DUP);
1299
1300        } else {
1301                /* we have copper */
1302                fullduplex = cfg & CFG_DUPSTS;
1303        }
1304
1305        spin_lock_irq(&dev->misc_lock);
1306        spin_lock(&dev->tx_lock);
1307
1308        /* Set duplex */
1309        if (cmd->duplex != fullduplex) {
1310                if (have_optical) {
1311                        /*set full duplex*/
1312                        if (cmd->duplex == DUPLEX_FULL) {
1313                                /* force full duplex */
1314                                writel(readl(dev->base + TXCFG)
1315                                        | TXCFG_CSI | TXCFG_HBI | TXCFG_ATP,
1316                                        dev->base + TXCFG);
1317                                writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
1318                                        dev->base + RXCFG);
1319                                /* Light up full duplex LED */
1320                                writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT,
1321                                        dev->base + GPIOR);
1322                        } else {
1323                                /*TODO: set half duplex */
1324                        }
1325
1326                } else {
1327                        /*we have copper*/
1328                        /* TODO: Set duplex for copper cards */
1329                }
1330                printk(KERN_INFO "%s: Duplex set via ethtool\n",
1331                ndev->name);
1332        }
1333
1334        /* Set autonegotiation */
1335        if (1) {
1336                if (cmd->autoneg == AUTONEG_ENABLE) {
1337                        /* restart auto negotiation */
1338                        writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN,
1339                                dev->base + TBICR);
1340                        writel(TBICR_MR_AN_ENABLE, dev->base + TBICR);
1341                                dev->linkstate = LINK_AUTONEGOTIATE;
1342
1343                        printk(KERN_INFO "%s: autoneg enabled via ethtool\n",
1344                                ndev->name);
1345                } else {
1346                        /* disable auto negotiation */
1347                        writel(0x00000000, dev->base + TBICR);
1348                }
1349
1350                printk(KERN_INFO "%s: autoneg %s via ethtool\n", ndev->name,
1351                                cmd->autoneg ? "ENABLED" : "DISABLED");
1352        }
1353
1354        phy_intr(ndev);
1355        spin_unlock(&dev->tx_lock);
1356        spin_unlock_irq(&dev->misc_lock);
1357
1358        return 0;
1359}
1360/* end ethtool get/set support -df */
1361
1362static void ns83820_get_drvinfo(struct net_device *ndev, struct ethtool_drvinfo *info)
1363{
1364        struct ns83820 *dev = PRIV(ndev);
1365        strlcpy(info->driver, "ns83820", sizeof(info->driver));
1366        strlcpy(info->version, VERSION, sizeof(info->version));
1367        strlcpy(info->bus_info, pci_name(dev->pci_dev), sizeof(info->bus_info));
1368}
1369
1370static u32 ns83820_get_link(struct net_device *ndev)
1371{
1372        struct ns83820 *dev = PRIV(ndev);
1373        u32 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1374        return cfg & CFG_LNKSTS ? 1 : 0;
1375}
1376
1377static const struct ethtool_ops ops = {
1378        .get_settings    = ns83820_get_settings,
1379        .set_settings    = ns83820_set_settings,
1380        .get_drvinfo     = ns83820_get_drvinfo,
1381        .get_link        = ns83820_get_link
1382};
1383
1384static inline void ns83820_disable_interrupts(struct ns83820 *dev)
1385{
1386        writel(0, dev->base + IMR);
1387        writel(0, dev->base + IER);
1388        readl(dev->base + IER);
1389}
1390
1391/* this function is called in irq context from the ISR */
1392static void ns83820_mib_isr(struct ns83820 *dev)
1393{
1394        unsigned long flags;
1395        spin_lock_irqsave(&dev->misc_lock, flags);
1396        ns83820_update_stats(dev);
1397        spin_unlock_irqrestore(&dev->misc_lock, flags);
1398}
1399
1400static void ns83820_do_isr(struct net_device *ndev, u32 isr);
1401static irqreturn_t ns83820_irq(int foo, void *data)
1402{
1403        struct net_device *ndev = data;
1404        struct ns83820 *dev = PRIV(ndev);
1405        u32 isr;
1406        dprintk("ns83820_irq(%p)\n", ndev);
1407
1408        dev->ihr = 0;
1409
1410        isr = readl(dev->base + ISR);
1411        dprintk("irq: %08x\n", isr);
1412        ns83820_do_isr(ndev, isr);
1413        return IRQ_HANDLED;
1414}
1415
1416static void ns83820_do_isr(struct net_device *ndev, u32 isr)
1417{
1418        struct ns83820 *dev = PRIV(ndev);
1419        unsigned long flags;
1420
1421#ifdef DEBUG
1422        if (isr & ~(ISR_PHY | ISR_RXDESC | ISR_RXEARLY | ISR_RXOK | ISR_RXERR | ISR_TXIDLE | ISR_TXOK | ISR_TXDESC))
1423                Dprintk("odd isr? 0x%08x\n", isr);
1424#endif
1425
1426        if (ISR_RXIDLE & isr) {
1427                dev->rx_info.idle = 1;
1428                Dprintk("oh dear, we are idle\n");
1429                ns83820_rx_kick(ndev);
1430        }
1431
1432        if ((ISR_RXDESC | ISR_RXOK) & isr) {
1433                prefetch(dev->rx_info.next_rx_desc);
1434
1435                spin_lock_irqsave(&dev->misc_lock, flags);
1436                dev->IMR_cache &= ~(ISR_RXDESC | ISR_RXOK);
1437                writel(dev->IMR_cache, dev->base + IMR);
1438                spin_unlock_irqrestore(&dev->misc_lock, flags);
1439
1440                tasklet_schedule(&dev->rx_tasklet);
1441                //rx_irq(ndev);
1442                //writel(4, dev->base + IHR);
1443        }
1444
1445        if ((ISR_RXIDLE | ISR_RXORN | ISR_RXDESC | ISR_RXOK | ISR_RXERR) & isr)
1446                ns83820_rx_kick(ndev);
1447
1448        if (unlikely(ISR_RXSOVR & isr)) {
1449                //printk("overrun: rxsovr\n");
1450                ndev->stats.rx_fifo_errors++;
1451        }
1452
1453        if (unlikely(ISR_RXORN & isr)) {
1454                //printk("overrun: rxorn\n");
1455                ndev->stats.rx_fifo_errors++;
1456        }
1457
1458        if ((ISR_RXRCMP & isr) && dev->rx_info.up)
1459                writel(CR_RXE, dev->base + CR);
1460
1461        if (ISR_TXIDLE & isr) {
1462                u32 txdp;
1463                txdp = readl(dev->base + TXDP);
1464                dprintk("txdp: %08x\n", txdp);
1465                txdp -= dev->tx_phy_descs;
1466                dev->tx_idx = txdp / (DESC_SIZE * 4);
1467                if (dev->tx_idx >= NR_TX_DESC) {
1468                        printk(KERN_ALERT "%s: BUG -- txdp out of range\n", ndev->name);
1469                        dev->tx_idx = 0;
1470                }
1471                /* The may have been a race between a pci originated read
1472                 * and the descriptor update from the cpu.  Just in case,
1473                 * kick the transmitter if the hardware thinks it is on a
1474                 * different descriptor than we are.
1475                 */
1476                if (dev->tx_idx != dev->tx_free_idx)
1477                        kick_tx(dev);
1478        }
1479
1480        /* Defer tx ring processing until more than a minimum amount of
1481         * work has accumulated
1482         */
1483        if ((ISR_TXDESC | ISR_TXIDLE | ISR_TXOK | ISR_TXERR) & isr) {
1484                spin_lock_irqsave(&dev->tx_lock, flags);
1485                do_tx_done(ndev);
1486                spin_unlock_irqrestore(&dev->tx_lock, flags);
1487
1488                /* Disable TxOk if there are no outstanding tx packets.
1489                 */
1490                if ((dev->tx_done_idx == dev->tx_free_idx) &&
1491                    (dev->IMR_cache & ISR_TXOK)) {
1492                        spin_lock_irqsave(&dev->misc_lock, flags);
1493                        dev->IMR_cache &= ~ISR_TXOK;
1494                        writel(dev->IMR_cache, dev->base + IMR);
1495                        spin_unlock_irqrestore(&dev->misc_lock, flags);
1496                }
1497        }
1498
1499        /* The TxIdle interrupt can come in before the transmit has
1500         * completed.  Normally we reap packets off of the combination
1501         * of TxDesc and TxIdle and leave TxOk disabled (since it
1502         * occurs on every packet), but when no further irqs of this
1503         * nature are expected, we must enable TxOk.
1504         */
1505        if ((ISR_TXIDLE & isr) && (dev->tx_done_idx != dev->tx_free_idx)) {
1506                spin_lock_irqsave(&dev->misc_lock, flags);
1507                dev->IMR_cache |= ISR_TXOK;
1508                writel(dev->IMR_cache, dev->base + IMR);
1509                spin_unlock_irqrestore(&dev->misc_lock, flags);
1510        }
1511
1512        /* MIB interrupt: one of the statistics counters is about to overflow */
1513        if (unlikely(ISR_MIB & isr))
1514                ns83820_mib_isr(dev);
1515
1516        /* PHY: Link up/down/negotiation state change */
1517        if (unlikely(ISR_PHY & isr))
1518                phy_intr(ndev);
1519
1520#if 0   /* Still working on the interrupt mitigation strategy */
1521        if (dev->ihr)
1522                writel(dev->ihr, dev->base + IHR);
1523#endif
1524}
1525
1526static void ns83820_do_reset(struct ns83820 *dev, u32 which)
1527{
1528        Dprintk("resetting chip...\n");
1529        writel(which, dev->base + CR);
1530        do {
1531                schedule();
1532        } while (readl(dev->base + CR) & which);
1533        Dprintk("okay!\n");
1534}
1535
1536static int ns83820_stop(struct net_device *ndev)
1537{
1538        struct ns83820 *dev = PRIV(ndev);
1539
1540        /* FIXME: protect against interrupt handler? */
1541        del_timer_sync(&dev->tx_watchdog);
1542
1543        ns83820_disable_interrupts(dev);
1544
1545        dev->rx_info.up = 0;
1546        synchronize_irq(dev->pci_dev->irq);
1547
1548        ns83820_do_reset(dev, CR_RST);
1549
1550        synchronize_irq(dev->pci_dev->irq);
1551
1552        spin_lock_irq(&dev->misc_lock);
1553        dev->IMR_cache &= ~(ISR_TXURN | ISR_TXIDLE | ISR_TXERR | ISR_TXDESC | ISR_TXOK);
1554        spin_unlock_irq(&dev->misc_lock);
1555
1556        ns83820_cleanup_rx(dev);
1557        ns83820_cleanup_tx(dev);
1558
1559        return 0;
1560}
1561
1562static void ns83820_tx_timeout(struct net_device *ndev)
1563{
1564        struct ns83820 *dev = PRIV(ndev);
1565        u32 tx_done_idx;
1566        __le32 *desc;
1567        unsigned long flags;
1568
1569        spin_lock_irqsave(&dev->tx_lock, flags);
1570
1571        tx_done_idx = dev->tx_done_idx;
1572        desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1573
1574        printk(KERN_INFO "%s: tx_timeout: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1575                ndev->name,
1576                tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1577
1578#if defined(DEBUG)
1579        {
1580                u32 isr;
1581                isr = readl(dev->base + ISR);
1582                printk("irq: %08x imr: %08x\n", isr, dev->IMR_cache);
1583                ns83820_do_isr(ndev, isr);
1584        }
1585#endif
1586
1587        do_tx_done(ndev);
1588
1589        tx_done_idx = dev->tx_done_idx;
1590        desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1591
1592        printk(KERN_INFO "%s: after: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1593                ndev->name,
1594                tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1595
1596        spin_unlock_irqrestore(&dev->tx_lock, flags);
1597}
1598
1599static void ns83820_tx_watch(unsigned long data)
1600{
1601        struct net_device *ndev = (void *)data;
1602        struct ns83820 *dev = PRIV(ndev);
1603
1604#if defined(DEBUG)
1605        printk("ns83820_tx_watch: %u %u %d\n",
1606                dev->tx_done_idx, dev->tx_free_idx, atomic_read(&dev->nr_tx_skbs)
1607                );
1608#endif
1609
1610        if (time_after(jiffies, dev_trans_start(ndev) + 1*HZ) &&
1611            dev->tx_done_idx != dev->tx_free_idx) {
1612                printk(KERN_DEBUG "%s: ns83820_tx_watch: %u %u %d\n",
1613                        ndev->name,
1614                        dev->tx_done_idx, dev->tx_free_idx,
1615                        atomic_read(&dev->nr_tx_skbs));
1616                ns83820_tx_timeout(ndev);
1617        }
1618
1619        mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
1620}
1621
1622static int ns83820_open(struct net_device *ndev)
1623{
1624        struct ns83820 *dev = PRIV(ndev);
1625        unsigned i;
1626        u32 desc;
1627        int ret;
1628
1629        dprintk("ns83820_open\n");
1630
1631        writel(0, dev->base + PQCR);
1632
1633        ret = ns83820_setup_rx(ndev);
1634        if (ret)
1635                goto failed;
1636
1637        memset(dev->tx_descs, 0, 4 * NR_TX_DESC * DESC_SIZE);
1638        for (i=0; i<NR_TX_DESC; i++) {
1639                dev->tx_descs[(i * DESC_SIZE) + DESC_LINK]
1640                                = cpu_to_le32(
1641                                  dev->tx_phy_descs
1642                                  + ((i+1) % NR_TX_DESC) * DESC_SIZE * 4);
1643        }
1644
1645        dev->tx_idx = 0;
1646        dev->tx_done_idx = 0;
1647        desc = dev->tx_phy_descs;
1648        writel(0, dev->base + TXDP_HI);
1649        writel(desc, dev->base + TXDP);
1650
1651        init_timer(&dev->tx_watchdog);
1652        dev->tx_watchdog.data = (unsigned long)ndev;
1653        dev->tx_watchdog.function = ns83820_tx_watch;
1654        mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
1655
1656        netif_start_queue(ndev);        /* FIXME: wait for phy to come up */
1657
1658        return 0;
1659
1660failed:
1661        ns83820_stop(ndev);
1662        return ret;
1663}
1664
1665static void ns83820_getmac(struct ns83820 *dev, u8 *mac)
1666{
1667        unsigned i;
1668        for (i=0; i<3; i++) {
1669                u32 data;
1670
1671                /* Read from the perfect match memory: this is loaded by
1672                 * the chip from the EEPROM via the EELOAD self test.
1673                 */
1674                writel(i*2, dev->base + RFCR);
1675                data = readl(dev->base + RFDR);
1676
1677                *mac++ = data;
1678                *mac++ = data >> 8;
1679        }
1680}
1681
1682static int ns83820_change_mtu(struct net_device *ndev, int new_mtu)
1683{
1684        if (new_mtu > RX_BUF_SIZE)
1685                return -EINVAL;
1686        ndev->mtu = new_mtu;
1687        return 0;
1688}
1689
1690static void ns83820_set_multicast(struct net_device *ndev)
1691{
1692        struct ns83820 *dev = PRIV(ndev);
1693        u8 __iomem *rfcr = dev->base + RFCR;
1694        u32 and_mask = 0xffffffff;
1695        u32 or_mask = 0;
1696        u32 val;
1697
1698        if (ndev->flags & IFF_PROMISC)
1699                or_mask |= RFCR_AAU | RFCR_AAM;
1700        else
1701                and_mask &= ~(RFCR_AAU | RFCR_AAM);
1702
1703        if (ndev->flags & IFF_ALLMULTI || netdev_mc_count(ndev))
1704                or_mask |= RFCR_AAM;
1705        else
1706                and_mask &= ~RFCR_AAM;
1707
1708        spin_lock_irq(&dev->misc_lock);
1709        val = (readl(rfcr) & and_mask) | or_mask;
1710        /* Ramit : RFCR Write Fix doc says RFEN must be 0 modify other bits */
1711        writel(val & ~RFCR_RFEN, rfcr);
1712        writel(val, rfcr);
1713        spin_unlock_irq(&dev->misc_lock);
1714}
1715
1716static void ns83820_run_bist(struct net_device *ndev, const char *name, u32 enable, u32 done, u32 fail)
1717{
1718        struct ns83820 *dev = PRIV(ndev);
1719        int timed_out = 0;
1720        unsigned long start;
1721        u32 status;
1722        int loops = 0;
1723
1724        dprintk("%s: start %s\n", ndev->name, name);
1725
1726        start = jiffies;
1727
1728        writel(enable, dev->base + PTSCR);
1729        for (;;) {
1730                loops++;
1731                status = readl(dev->base + PTSCR);
1732                if (!(status & enable))
1733                        break;
1734                if (status & done)
1735                        break;
1736                if (status & fail)
1737                        break;
1738                if (time_after_eq(jiffies, start + HZ)) {
1739                        timed_out = 1;
1740                        break;
1741                }
1742                schedule_timeout_uninterruptible(1);
1743        }
1744
1745        if (status & fail)
1746                printk(KERN_INFO "%s: %s failed! (0x%08x & 0x%08x)\n",
1747                        ndev->name, name, status, fail);
1748        else if (timed_out)
1749                printk(KERN_INFO "%s: run_bist %s timed out! (%08x)\n",
1750                        ndev->name, name, status);
1751
1752        dprintk("%s: done %s in %d loops\n", ndev->name, name, loops);
1753}
1754
1755#ifdef PHY_CODE_IS_FINISHED
1756static void ns83820_mii_write_bit(struct ns83820 *dev, int bit)
1757{
1758        /* drive MDC low */
1759        dev->MEAR_cache &= ~MEAR_MDC;
1760        writel(dev->MEAR_cache, dev->base + MEAR);
1761        readl(dev->base + MEAR);
1762
1763        /* enable output, set bit */
1764        dev->MEAR_cache |= MEAR_MDDIR;
1765        if (bit)
1766                dev->MEAR_cache |= MEAR_MDIO;
1767        else
1768                dev->MEAR_cache &= ~MEAR_MDIO;
1769
1770        /* set the output bit */
1771        writel(dev->MEAR_cache, dev->base + MEAR);
1772        readl(dev->base + MEAR);
1773
1774        /* Wait.  Max clock rate is 2.5MHz, this way we come in under 1MHz */
1775        udelay(1);
1776
1777        /* drive MDC high causing the data bit to be latched */
1778        dev->MEAR_cache |= MEAR_MDC;
1779        writel(dev->MEAR_cache, dev->base + MEAR);
1780        readl(dev->base + MEAR);
1781
1782        /* Wait again... */
1783        udelay(1);
1784}
1785
1786static int ns83820_mii_read_bit(struct ns83820 *dev)
1787{
1788        int bit;
1789
1790        /* drive MDC low, disable output */
1791        dev->MEAR_cache &= ~MEAR_MDC;
1792        dev->MEAR_cache &= ~MEAR_MDDIR;
1793        writel(dev->MEAR_cache, dev->base + MEAR);
1794        readl(dev->base + MEAR);
1795
1796        /* Wait.  Max clock rate is 2.5MHz, this way we come in under 1MHz */
1797        udelay(1);
1798
1799        /* drive MDC high causing the data bit to be latched */
1800        bit = (readl(dev->base + MEAR) & MEAR_MDIO) ? 1 : 0;
1801        dev->MEAR_cache |= MEAR_MDC;
1802        writel(dev->MEAR_cache, dev->base + MEAR);
1803
1804        /* Wait again... */
1805        udelay(1);
1806
1807        return bit;
1808}
1809
1810static unsigned ns83820_mii_read_reg(struct ns83820 *dev, unsigned phy, unsigned reg)
1811{
1812        unsigned data = 0;
1813        int i;
1814
1815        /* read some garbage so that we eventually sync up */
1816        for (i=0; i<64; i++)
1817                ns83820_mii_read_bit(dev);
1818
1819        ns83820_mii_write_bit(dev, 0);  /* start */
1820        ns83820_mii_write_bit(dev, 1);
1821        ns83820_mii_write_bit(dev, 1);  /* opcode read */
1822        ns83820_mii_write_bit(dev, 0);
1823
1824        /* write out the phy address: 5 bits, msb first */
1825        for (i=0; i<5; i++)
1826                ns83820_mii_write_bit(dev, phy & (0x10 >> i));
1827
1828        /* write out the register address, 5 bits, msb first */
1829        for (i=0; i<5; i++)
1830                ns83820_mii_write_bit(dev, reg & (0x10 >> i));
1831
1832        ns83820_mii_read_bit(dev);      /* turn around cycles */
1833        ns83820_mii_read_bit(dev);
1834
1835        /* read in the register data, 16 bits msb first */
1836        for (i=0; i<16; i++) {
1837                data <<= 1;
1838                data |= ns83820_mii_read_bit(dev);
1839        }
1840
1841        return data;
1842}
1843
1844static unsigned ns83820_mii_write_reg(struct ns83820 *dev, unsigned phy, unsigned reg, unsigned data)
1845{
1846        int i;
1847
1848        /* read some garbage so that we eventually sync up */
1849        for (i=0; i<64; i++)
1850                ns83820_mii_read_bit(dev);
1851
1852        ns83820_mii_write_bit(dev, 0);  /* start */
1853        ns83820_mii_write_bit(dev, 1);
1854        ns83820_mii_write_bit(dev, 0);  /* opcode read */
1855        ns83820_mii_write_bit(dev, 1);
1856
1857        /* write out the phy address: 5 bits, msb first */
1858        for (i=0; i<5; i++)
1859                ns83820_mii_write_bit(dev, phy & (0x10 >> i));
1860
1861        /* write out the register address, 5 bits, msb first */
1862        for (i=0; i<5; i++)
1863                ns83820_mii_write_bit(dev, reg & (0x10 >> i));
1864
1865        ns83820_mii_read_bit(dev);      /* turn around cycles */
1866        ns83820_mii_read_bit(dev);
1867
1868        /* read in the register data, 16 bits msb first */
1869        for (i=0; i<16; i++)
1870                ns83820_mii_write_bit(dev, (data >> (15 - i)) & 1);
1871
1872        return data;
1873}
1874
1875static void ns83820_probe_phy(struct net_device *ndev)
1876{
1877        struct ns83820 *dev = PRIV(ndev);
1878        static int first;
1879        int i;
1880#define MII_PHYIDR1     0x02
1881#define MII_PHYIDR2     0x03
1882
1883#if 0
1884        if (!first) {
1885                unsigned tmp;
1886                ns83820_mii_read_reg(dev, 1, 0x09);
1887                ns83820_mii_write_reg(dev, 1, 0x10, 0x0d3e);
1888
1889                tmp = ns83820_mii_read_reg(dev, 1, 0x00);
1890                ns83820_mii_write_reg(dev, 1, 0x00, tmp | 0x8000);
1891                udelay(1300);
1892                ns83820_mii_read_reg(dev, 1, 0x09);
1893        }
1894#endif
1895        first = 1;
1896
1897        for (i=1; i<2; i++) {
1898                int j;
1899                unsigned a, b;
1900                a = ns83820_mii_read_reg(dev, i, MII_PHYIDR1);
1901                b = ns83820_mii_read_reg(dev, i, MII_PHYIDR2);
1902
1903                //printk("%s: phy %d: 0x%04x 0x%04x\n",
1904                //      ndev->name, i, a, b);
1905
1906                for (j=0; j<0x16; j+=4) {
1907                        dprintk("%s: [0x%02x] %04x %04x %04x %04x\n",
1908                                ndev->name, j,
1909                                ns83820_mii_read_reg(dev, i, 0 + j),
1910                                ns83820_mii_read_reg(dev, i, 1 + j),
1911                                ns83820_mii_read_reg(dev, i, 2 + j),
1912                                ns83820_mii_read_reg(dev, i, 3 + j)
1913                                );
1914                }
1915        }
1916        {
1917                unsigned a, b;
1918                /* read firmware version: memory addr is 0x8402 and 0x8403 */
1919                ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
1920                ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
1921                a = ns83820_mii_read_reg(dev, 1, 0x1d);
1922
1923                ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
1924                ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
1925                b = ns83820_mii_read_reg(dev, 1, 0x1d);
1926                dprintk("version: 0x%04x 0x%04x\n", a, b);
1927        }
1928}
1929#endif
1930
1931static const struct net_device_ops netdev_ops = {
1932        .ndo_open               = ns83820_open,
1933        .ndo_stop               = ns83820_stop,
1934        .ndo_start_xmit         = ns83820_hard_start_xmit,
1935        .ndo_get_stats          = ns83820_get_stats,
1936        .ndo_change_mtu         = ns83820_change_mtu,
1937        .ndo_set_rx_mode        = ns83820_set_multicast,
1938        .ndo_validate_addr      = eth_validate_addr,
1939        .ndo_set_mac_address    = eth_mac_addr,
1940        .ndo_tx_timeout         = ns83820_tx_timeout,
1941};
1942
1943static int ns83820_init_one(struct pci_dev *pci_dev,
1944                            const struct pci_device_id *id)
1945{
1946        struct net_device *ndev;
1947        struct ns83820 *dev;
1948        long addr;
1949        int err;
1950        int using_dac = 0;
1951
1952        /* See if we can set the dma mask early on; failure is fatal. */
1953        if (sizeof(dma_addr_t) == 8 &&
1954                !pci_set_dma_mask(pci_dev, DMA_BIT_MASK(64))) {
1955                using_dac = 1;
1956        } else if (!pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32))) {
1957                using_dac = 0;
1958        } else {
1959                dev_warn(&pci_dev->dev, "pci_set_dma_mask failed!\n");
1960                return -ENODEV;
1961        }
1962
1963        ndev = alloc_etherdev(sizeof(struct ns83820));
1964        err = -ENOMEM;
1965        if (!ndev)
1966                goto out;
1967
1968        dev = PRIV(ndev);
1969        dev->ndev = ndev;
1970
1971        spin_lock_init(&dev->rx_info.lock);
1972        spin_lock_init(&dev->tx_lock);
1973        spin_lock_init(&dev->misc_lock);
1974        dev->pci_dev = pci_dev;
1975
1976        SET_NETDEV_DEV(ndev, &pci_dev->dev);
1977
1978        INIT_WORK(&dev->tq_refill, queue_refill);
1979        tasklet_init(&dev->rx_tasklet, rx_action, (unsigned long)ndev);
1980
1981        err = pci_enable_device(pci_dev);
1982        if (err) {
1983                dev_info(&pci_dev->dev, "pci_enable_dev failed: %d\n", err);
1984                goto out_free;
1985        }
1986
1987        pci_set_master(pci_dev);
1988        addr = pci_resource_start(pci_dev, 1);
1989        dev->base = ioremap_nocache(addr, PAGE_SIZE);
1990        dev->tx_descs = pci_alloc_consistent(pci_dev,
1991                        4 * DESC_SIZE * NR_TX_DESC, &dev->tx_phy_descs);
1992        dev->rx_info.descs = pci_alloc_consistent(pci_dev,
1993                        4 * DESC_SIZE * NR_RX_DESC, &dev->rx_info.phy_descs);
1994        err = -ENOMEM;
1995        if (!dev->base || !dev->tx_descs || !dev->rx_info.descs)
1996                goto out_disable;
1997
1998        dprintk("%p: %08lx  %p: %08lx\n",
1999                dev->tx_descs, (long)dev->tx_phy_descs,
2000                dev->rx_info.descs, (long)dev->rx_info.phy_descs);
2001
2002        ns83820_disable_interrupts(dev);
2003
2004        dev->IMR_cache = 0;
2005
2006        err = request_irq(pci_dev->irq, ns83820_irq, IRQF_SHARED,
2007                          DRV_NAME, ndev);
2008        if (err) {
2009                dev_info(&pci_dev->dev, "unable to register irq %d, err %d\n",
2010                        pci_dev->irq, err);
2011                goto out_disable;
2012        }
2013
2014        /*
2015         * FIXME: we are holding rtnl_lock() over obscenely long area only
2016         * because some of the setup code uses dev->name.  It's Wrong(tm) -
2017         * we should be using driver-specific names for all that stuff.
2018         * For now that will do, but we really need to come back and kill
2019         * most of the dev_alloc_name() users later.
2020         */
2021        rtnl_lock();
2022        err = dev_alloc_name(ndev, ndev->name);
2023        if (err < 0) {
2024                dev_info(&pci_dev->dev, "unable to get netdev name: %d\n", err);
2025                goto out_free_irq;
2026        }
2027
2028        printk("%s: ns83820.c: 0x22c: %08x, subsystem: %04x:%04x\n",
2029                ndev->name, le32_to_cpu(readl(dev->base + 0x22c)),
2030                pci_dev->subsystem_vendor, pci_dev->subsystem_device);
2031
2032        ndev->netdev_ops = &netdev_ops;
2033        ndev->ethtool_ops = &ops;
2034        ndev->watchdog_timeo = 5 * HZ;
2035        pci_set_drvdata(pci_dev, ndev);
2036
2037        ns83820_do_reset(dev, CR_RST);
2038
2039        /* Must reset the ram bist before running it */
2040        writel(PTSCR_RBIST_RST, dev->base + PTSCR);
2041        ns83820_run_bist(ndev, "sram bist",   PTSCR_RBIST_EN,
2042                         PTSCR_RBIST_DONE, PTSCR_RBIST_FAIL);
2043        ns83820_run_bist(ndev, "eeprom bist", PTSCR_EEBIST_EN, 0,
2044                         PTSCR_EEBIST_FAIL);
2045        ns83820_run_bist(ndev, "eeprom load", PTSCR_EELOAD_EN, 0, 0);
2046
2047        /* I love config registers */
2048        dev->CFG_cache = readl(dev->base + CFG);
2049
2050        if ((dev->CFG_cache & CFG_PCI64_DET)) {
2051                printk(KERN_INFO "%s: detected 64 bit PCI data bus.\n",
2052                        ndev->name);
2053                /*dev->CFG_cache |= CFG_DATA64_EN;*/
2054                if (!(dev->CFG_cache & CFG_DATA64_EN))
2055                        printk(KERN_INFO "%s: EEPROM did not enable 64 bit bus.  Disabled.\n",
2056                                ndev->name);
2057        } else
2058                dev->CFG_cache &= ~(CFG_DATA64_EN);
2059
2060        dev->CFG_cache &= (CFG_TBI_EN  | CFG_MRM_DIS   | CFG_MWI_DIS |
2061                           CFG_T64ADDR | CFG_DATA64_EN | CFG_EXT_125 |
2062                           CFG_M64ADDR);
2063        dev->CFG_cache |= CFG_PINT_DUPSTS | CFG_PINT_LNKSTS | CFG_PINT_SPDSTS |
2064                          CFG_EXTSTS_EN   | CFG_EXD         | CFG_PESEL;
2065        dev->CFG_cache |= CFG_REQALG;
2066        dev->CFG_cache |= CFG_POW;
2067        dev->CFG_cache |= CFG_TMRTEST;
2068
2069        /* When compiled with 64 bit addressing, we must always enable
2070         * the 64 bit descriptor format.
2071         */
2072        if (sizeof(dma_addr_t) == 8)
2073                dev->CFG_cache |= CFG_M64ADDR;
2074        if (using_dac)
2075                dev->CFG_cache |= CFG_T64ADDR;
2076
2077        /* Big endian mode does not seem to do what the docs suggest */
2078        dev->CFG_cache &= ~CFG_BEM;
2079
2080        /* setup optical transceiver if we have one */
2081        if (dev->CFG_cache & CFG_TBI_EN) {
2082                printk(KERN_INFO "%s: enabling optical transceiver\n",
2083                        ndev->name);
2084                writel(readl(dev->base + GPIOR) | 0x3e8, dev->base + GPIOR);
2085
2086                /* setup auto negotiation feature advertisement */
2087                writel(readl(dev->base + TANAR)
2088                       | TANAR_HALF_DUP | TANAR_FULL_DUP,
2089                       dev->base + TANAR);
2090
2091                /* start auto negotiation */
2092                writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN,
2093                       dev->base + TBICR);
2094                writel(TBICR_MR_AN_ENABLE, dev->base + TBICR);
2095                dev->linkstate = LINK_AUTONEGOTIATE;
2096
2097                dev->CFG_cache |= CFG_MODE_1000;
2098        }
2099
2100        writel(dev->CFG_cache, dev->base + CFG);
2101        dprintk("CFG: %08x\n", dev->CFG_cache);
2102
2103        if (reset_phy) {
2104                printk(KERN_INFO "%s: resetting phy\n", ndev->name);
2105                writel(dev->CFG_cache | CFG_PHY_RST, dev->base + CFG);
2106                msleep(10);
2107                writel(dev->CFG_cache, dev->base + CFG);
2108        }
2109
2110#if 0   /* Huh?  This sets the PCI latency register.  Should be done via
2111         * the PCI layer.  FIXME.
2112         */
2113        if (readl(dev->base + SRR))
2114                writel(readl(dev->base+0x20c) | 0xfe00, dev->base + 0x20c);
2115#endif
2116
2117        /* Note!  The DMA burst size interacts with packet
2118         * transmission, such that the largest packet that
2119         * can be transmitted is 8192 - FLTH - burst size.
2120         * If only the transmit fifo was larger...
2121         */
2122        /* Ramit : 1024 DMA is not a good idea, it ends up banging
2123         * some DELL and COMPAQ SMP systems */
2124        writel(TXCFG_CSI | TXCFG_HBI | TXCFG_ATP | TXCFG_MXDMA512
2125                | ((1600 / 32) * 0x100),
2126                dev->base + TXCFG);
2127
2128        /* Flush the interrupt holdoff timer */
2129        writel(0x000, dev->base + IHR);
2130        writel(0x100, dev->base + IHR);
2131        writel(0x000, dev->base + IHR);
2132
2133        /* Set Rx to full duplex, don't accept runt, errored, long or length
2134         * range errored packets.  Use 512 byte DMA.
2135         */
2136        /* Ramit : 1024 DMA is not a good idea, it ends up banging
2137         * some DELL and COMPAQ SMP systems
2138         * Turn on ALP, only we are accpeting Jumbo Packets */
2139        writel(RXCFG_AEP | RXCFG_ARP | RXCFG_AIRL | RXCFG_RX_FD
2140                | RXCFG_STRIPCRC
2141                //| RXCFG_ALP
2142                | (RXCFG_MXDMA512) | 0, dev->base + RXCFG);
2143
2144        /* Disable priority queueing */
2145        writel(0, dev->base + PQCR);
2146
2147        /* Enable IP checksum validation and detetion of VLAN headers.
2148         * Note: do not set the reject options as at least the 0x102
2149         * revision of the chip does not properly accept IP fragments
2150         * at least for UDP.
2151         */
2152        /* Ramit : Be sure to turn on RXCFG_ARP if VLAN's are enabled, since
2153         * the MAC it calculates the packetsize AFTER stripping the VLAN
2154         * header, and if a VLAN Tagged packet of 64 bytes is received (like
2155         * a ping with a VLAN header) then the card, strips the 4 byte VLAN
2156         * tag and then checks the packet size, so if RXCFG_ARP is not enabled,
2157         * it discrards it!.  These guys......
2158         * also turn on tag stripping if hardware acceleration is enabled
2159         */
2160#ifdef NS83820_VLAN_ACCEL_SUPPORT
2161#define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN|VRCR_VTREN)
2162#else
2163#define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN)
2164#endif
2165        writel(VRCR_INIT_VALUE, dev->base + VRCR);
2166
2167        /* Enable per-packet TCP/UDP/IP checksumming
2168         * and per packet vlan tag insertion if
2169         * vlan hardware acceleration is enabled
2170         */
2171#ifdef NS83820_VLAN_ACCEL_SUPPORT
2172#define VTCR_INIT_VALUE (VTCR_PPCHK|VTCR_VPPTI)
2173#else
2174#define VTCR_INIT_VALUE VTCR_PPCHK
2175#endif
2176        writel(VTCR_INIT_VALUE, dev->base + VTCR);
2177
2178        /* Ramit : Enable async and sync pause frames */
2179        /* writel(0, dev->base + PCR); */
2180        writel((PCR_PS_MCAST | PCR_PS_DA | PCR_PSEN | PCR_FFLO_4K |
2181                PCR_FFHI_8K | PCR_STLO_4 | PCR_STHI_8 | PCR_PAUSE_CNT),
2182                dev->base + PCR);
2183
2184        /* Disable Wake On Lan */
2185        writel(0, dev->base + WCSR);
2186
2187        ns83820_getmac(dev, ndev->dev_addr);
2188
2189        /* Yes, we support dumb IP checksum on transmit */
2190        ndev->features |= NETIF_F_SG;
2191        ndev->features |= NETIF_F_IP_CSUM;
2192
2193#ifdef NS83820_VLAN_ACCEL_SUPPORT
2194        /* We also support hardware vlan acceleration */
2195        ndev->features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
2196#endif
2197
2198        if (using_dac) {
2199                printk(KERN_INFO "%s: using 64 bit addressing.\n",
2200                        ndev->name);
2201                ndev->features |= NETIF_F_HIGHDMA;
2202        }
2203
2204        printk(KERN_INFO "%s: ns83820 v" VERSION ": DP83820 v%u.%u: %pM io=0x%08lx irq=%d f=%s\n",
2205                ndev->name,
2206                (unsigned)readl(dev->base + SRR) >> 8,
2207                (unsigned)readl(dev->base + SRR) & 0xff,
2208                ndev->dev_addr, addr, pci_dev->irq,
2209                (ndev->features & NETIF_F_HIGHDMA) ? "h,sg" : "sg"
2210                );
2211
2212#ifdef PHY_CODE_IS_FINISHED
2213        ns83820_probe_phy(ndev);
2214#endif
2215
2216        err = register_netdevice(ndev);
2217        if (err) {
2218                printk(KERN_INFO "ns83820: unable to register netdev: %d\n", err);
2219                goto out_cleanup;
2220        }
2221        rtnl_unlock();
2222
2223        return 0;
2224
2225out_cleanup:
2226        ns83820_disable_interrupts(dev); /* paranoia */
2227out_free_irq:
2228        rtnl_unlock();
2229        free_irq(pci_dev->irq, ndev);
2230out_disable:
2231        if (dev->base)
2232                iounmap(dev->base);
2233        pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_TX_DESC, dev->tx_descs, dev->tx_phy_descs);
2234        pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_RX_DESC, dev->rx_info.descs, dev->rx_info.phy_descs);
2235        pci_disable_device(pci_dev);
2236out_free:
2237        free_netdev(ndev);
2238out:
2239        return err;
2240}
2241
2242static void ns83820_remove_one(struct pci_dev *pci_dev)
2243{
2244        struct net_device *ndev = pci_get_drvdata(pci_dev);
2245        struct ns83820 *dev = PRIV(ndev); /* ok even if NULL */
2246
2247        if (!ndev)                      /* paranoia */
2248                return;
2249
2250        ns83820_disable_interrupts(dev); /* paranoia */
2251
2252        unregister_netdev(ndev);
2253        free_irq(dev->pci_dev->irq, ndev);
2254        iounmap(dev->base);
2255        pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_TX_DESC,
2256                        dev->tx_descs, dev->tx_phy_descs);
2257        pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_RX_DESC,
2258                        dev->rx_info.descs, dev->rx_info.phy_descs);
2259        pci_disable_device(dev->pci_dev);
2260        free_netdev(ndev);
2261}
2262
2263static const struct pci_device_id ns83820_pci_tbl[] = {
2264        { 0x100b, 0x0022, PCI_ANY_ID, PCI_ANY_ID, 0, .driver_data = 0, },
2265        { 0, },
2266};
2267
2268static struct pci_driver driver = {
2269        .name           = "ns83820",
2270        .id_table       = ns83820_pci_tbl,
2271        .probe          = ns83820_init_one,
2272        .remove         = ns83820_remove_one,
2273#if 0   /* FIXME: implement */
2274        .suspend        = ,
2275        .resume         = ,
2276#endif
2277};
2278
2279
2280static int __init ns83820_init(void)
2281{
2282        printk(KERN_INFO "ns83820.c: National Semiconductor DP83820 10/100/1000 driver.\n");
2283        return pci_register_driver(&driver);
2284}
2285
2286static void __exit ns83820_exit(void)
2287{
2288        pci_unregister_driver(&driver);
2289}
2290
2291MODULE_AUTHOR("Benjamin LaHaise <bcrl@kvack.org>");
2292MODULE_DESCRIPTION("National Semiconductor DP83820 10/100/1000 driver");
2293MODULE_LICENSE("GPL");
2294
2295MODULE_DEVICE_TABLE(pci, ns83820_pci_tbl);
2296
2297module_param(lnksts, int, 0);
2298MODULE_PARM_DESC(lnksts, "Polarity of LNKSTS bit");
2299
2300module_param(ihr, int, 0);
2301MODULE_PARM_DESC(ihr, "Time in 100 us increments to delay interrupts (range 0-127)");
2302
2303module_param(reset_phy, int, 0);
2304MODULE_PARM_DESC(reset_phy, "Set to 1 to reset the PHY on startup");
2305
2306module_init(ns83820_init);
2307module_exit(ns83820_exit);
2308