linux/drivers/net/ethernet/smsc/smc91x.c
<<
>>
Prefs
   1/*
   2 * smc91x.c
   3 * This is a driver for SMSC's 91C9x/91C1xx single-chip Ethernet devices.
   4 *
   5 * Copyright (C) 1996 by Erik Stahlman
   6 * Copyright (C) 2001 Standard Microsystems Corporation
   7 *      Developed by Simple Network Magic Corporation
   8 * Copyright (C) 2003 Monta Vista Software, Inc.
   9 *      Unified SMC91x driver by Nicolas Pitre
  10 *
  11 * This program is free software; you can redistribute it and/or modify
  12 * it under the terms of the GNU General Public License as published by
  13 * the Free Software Foundation; either version 2 of the License, or
  14 * (at your option) any later version.
  15 *
  16 * This program is distributed in the hope that it will be useful,
  17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  19 * GNU General Public License for more details.
  20 *
  21 * You should have received a copy of the GNU General Public License
  22 * along with this program; if not, see <http://www.gnu.org/licenses/>.
  23 *
  24 * Arguments:
  25 *      io      = for the base address
  26 *      irq     = for the IRQ
  27 *      nowait  = 0 for normal wait states, 1 eliminates additional wait states
  28 *
  29 * original author:
  30 *      Erik Stahlman <erik@vt.edu>
  31 *
  32 * hardware multicast code:
  33 *    Peter Cammaert <pc@denkart.be>
  34 *
  35 * contributors:
  36 *      Daris A Nevil <dnevil@snmc.com>
  37 *      Nicolas Pitre <nico@fluxnic.net>
  38 *      Russell King <rmk@arm.linux.org.uk>
  39 *
  40 * History:
  41 *   08/20/00  Arnaldo Melo       fix kfree(skb) in smc_hardware_send_packet
  42 *   12/15/00  Christian Jullien  fix "Warning: kfree_skb on hard IRQ"
  43 *   03/16/01  Daris A Nevil      modified smc9194.c for use with LAN91C111
  44 *   08/22/01  Scott Anderson     merge changes from smc9194 to smc91111
  45 *   08/21/01  Pramod B Bhardwaj  added support for RevB of LAN91C111
  46 *   12/20/01  Jeff Sutherland    initial port to Xscale PXA with DMA support
  47 *   04/07/03  Nicolas Pitre      unified SMC91x driver, killed irq races,
  48 *                                more bus abstraction, big cleanup, etc.
  49 *   29/09/03  Russell King       - add driver model support
  50 *                                - ethtool support
  51 *                                - convert to use generic MII interface
  52 *                                - add link up/down notification
  53 *                                - don't try to handle full negotiation in
  54 *                                  smc_phy_configure
  55 *                                - clean up (and fix stack overrun) in PHY
  56 *                                  MII read/write functions
  57 *   22/09/04  Nicolas Pitre      big update (see commit log for details)
  58 */
  59static const char version[] =
  60        "smc91x.c: v1.1, sep 22 2004 by Nicolas Pitre <nico@fluxnic.net>";
  61
  62/* Debugging level */
  63#ifndef SMC_DEBUG
  64#define SMC_DEBUG               0
  65#endif
  66
  67
  68#include <linux/module.h>
  69#include <linux/kernel.h>
  70#include <linux/sched.h>
  71#include <linux/delay.h>
  72#include <linux/interrupt.h>
  73#include <linux/irq.h>
  74#include <linux/errno.h>
  75#include <linux/ioport.h>
  76#include <linux/crc32.h>
  77#include <linux/platform_device.h>
  78#include <linux/spinlock.h>
  79#include <linux/ethtool.h>
  80#include <linux/mii.h>
  81#include <linux/workqueue.h>
  82#include <linux/of.h>
  83#include <linux/of_device.h>
  84#include <linux/of_gpio.h>
  85
  86#include <linux/netdevice.h>
  87#include <linux/etherdevice.h>
  88#include <linux/skbuff.h>
  89
  90#include <asm/io.h>
  91
  92#include "smc91x.h"
  93
  94#if defined(CONFIG_ASSABET_NEPONSET)
  95#include <mach/assabet.h>
  96#include <mach/neponset.h>
  97#endif
  98
  99#ifndef SMC_NOWAIT
 100# define SMC_NOWAIT             0
 101#endif
 102static int nowait = SMC_NOWAIT;
 103module_param(nowait, int, 0400);
 104MODULE_PARM_DESC(nowait, "set to 1 for no wait state");
 105
 106/*
 107 * Transmit timeout, default 5 seconds.
 108 */
 109static int watchdog = 1000;
 110module_param(watchdog, int, 0400);
 111MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
 112
 113MODULE_LICENSE("GPL");
 114MODULE_ALIAS("platform:smc91x");
 115
 116/*
 117 * The internal workings of the driver.  If you are changing anything
 118 * here with the SMC stuff, you should have the datasheet and know
 119 * what you are doing.
 120 */
 121#define CARDNAME "smc91x"
 122
 123/*
 124 * Use power-down feature of the chip
 125 */
 126#define POWER_DOWN              1
 127
 128/*
 129 * Wait time for memory to be free.  This probably shouldn't be
 130 * tuned that much, as waiting for this means nothing else happens
 131 * in the system
 132 */
 133#define MEMORY_WAIT_TIME        16
 134
 135/*
 136 * The maximum number of processing loops allowed for each call to the
 137 * IRQ handler.
 138 */
 139#define MAX_IRQ_LOOPS           8
 140
 141/*
 142 * This selects whether TX packets are sent one by one to the SMC91x internal
 143 * memory and throttled until transmission completes.  This may prevent
 144 * RX overruns a litle by keeping much of the memory free for RX packets
 145 * but to the expense of reduced TX throughput and increased IRQ overhead.
 146 * Note this is not a cure for a too slow data bus or too high IRQ latency.
 147 */
 148#define THROTTLE_TX_PKTS        0
 149
 150/*
 151 * The MII clock high/low times.  2x this number gives the MII clock period
 152 * in microseconds. (was 50, but this gives 6.4ms for each MII transaction!)
 153 */
 154#define MII_DELAY               1
 155
 156#define DBG(n, dev, fmt, ...)                                   \
 157        do {                                                    \
 158                if (SMC_DEBUG >= (n))                           \
 159                        netdev_dbg(dev, fmt, ##__VA_ARGS__);    \
 160        } while (0)
 161
 162#define PRINTK(dev, fmt, ...)                                   \
 163        do {                                                    \
 164                if (SMC_DEBUG > 0)                              \
 165                        netdev_info(dev, fmt, ##__VA_ARGS__);   \
 166                else                                            \
 167                        netdev_dbg(dev, fmt, ##__VA_ARGS__);    \
 168        } while (0)
 169
 170#if SMC_DEBUG > 3
 171static void PRINT_PKT(u_char *buf, int length)
 172{
 173        int i;
 174        int remainder;
 175        int lines;
 176
 177        lines = length / 16;
 178        remainder = length % 16;
 179
 180        for (i = 0; i < lines ; i ++) {
 181                int cur;
 182                printk(KERN_DEBUG);
 183                for (cur = 0; cur < 8; cur++) {
 184                        u_char a, b;
 185                        a = *buf++;
 186                        b = *buf++;
 187                        pr_cont("%02x%02x ", a, b);
 188                }
 189                pr_cont("\n");
 190        }
 191        printk(KERN_DEBUG);
 192        for (i = 0; i < remainder/2 ; i++) {
 193                u_char a, b;
 194                a = *buf++;
 195                b = *buf++;
 196                pr_cont("%02x%02x ", a, b);
 197        }
 198        pr_cont("\n");
 199}
 200#else
 201static inline void PRINT_PKT(u_char *buf, int length) { }
 202#endif
 203
 204
 205/* this enables an interrupt in the interrupt mask register */
 206#define SMC_ENABLE_INT(lp, x) do {                                      \
 207        unsigned char mask;                                             \
 208        unsigned long smc_enable_flags;                                 \
 209        spin_lock_irqsave(&lp->lock, smc_enable_flags);                 \
 210        mask = SMC_GET_INT_MASK(lp);                                    \
 211        mask |= (x);                                                    \
 212        SMC_SET_INT_MASK(lp, mask);                                     \
 213        spin_unlock_irqrestore(&lp->lock, smc_enable_flags);            \
 214} while (0)
 215
 216/* this disables an interrupt from the interrupt mask register */
 217#define SMC_DISABLE_INT(lp, x) do {                                     \
 218        unsigned char mask;                                             \
 219        unsigned long smc_disable_flags;                                \
 220        spin_lock_irqsave(&lp->lock, smc_disable_flags);                \
 221        mask = SMC_GET_INT_MASK(lp);                                    \
 222        mask &= ~(x);                                                   \
 223        SMC_SET_INT_MASK(lp, mask);                                     \
 224        spin_unlock_irqrestore(&lp->lock, smc_disable_flags);           \
 225} while (0)
 226
 227/*
 228 * Wait while MMU is busy.  This is usually in the order of a few nanosecs
 229 * if at all, but let's avoid deadlocking the system if the hardware
 230 * decides to go south.
 231 */
 232#define SMC_WAIT_MMU_BUSY(lp) do {                                      \
 233        if (unlikely(SMC_GET_MMU_CMD(lp) & MC_BUSY)) {          \
 234                unsigned long timeout = jiffies + 2;                    \
 235                while (SMC_GET_MMU_CMD(lp) & MC_BUSY) {         \
 236                        if (time_after(jiffies, timeout)) {             \
 237                                netdev_dbg(dev, "timeout %s line %d\n", \
 238                                           __FILE__, __LINE__);         \
 239                                break;                                  \
 240                        }                                               \
 241                        cpu_relax();                                    \
 242                }                                                       \
 243        }                                                               \
 244} while (0)
 245
 246
 247/*
 248 * this does a soft reset on the device
 249 */
 250static void smc_reset(struct net_device *dev)
 251{
 252        struct smc_local *lp = netdev_priv(dev);
 253        void __iomem *ioaddr = lp->base;
 254        unsigned int ctl, cfg;
 255        struct sk_buff *pending_skb;
 256
 257        DBG(2, dev, "%s\n", __func__);
 258
 259        /* Disable all interrupts, block TX tasklet */
 260        spin_lock_irq(&lp->lock);
 261        SMC_SELECT_BANK(lp, 2);
 262        SMC_SET_INT_MASK(lp, 0);
 263        pending_skb = lp->pending_tx_skb;
 264        lp->pending_tx_skb = NULL;
 265        spin_unlock_irq(&lp->lock);
 266
 267        /* free any pending tx skb */
 268        if (pending_skb) {
 269                dev_kfree_skb(pending_skb);
 270                dev->stats.tx_errors++;
 271                dev->stats.tx_aborted_errors++;
 272        }
 273
 274        /*
 275         * This resets the registers mostly to defaults, but doesn't
 276         * affect EEPROM.  That seems unnecessary
 277         */
 278        SMC_SELECT_BANK(lp, 0);
 279        SMC_SET_RCR(lp, RCR_SOFTRST);
 280
 281        /*
 282         * Setup the Configuration Register
 283         * This is necessary because the CONFIG_REG is not affected
 284         * by a soft reset
 285         */
 286        SMC_SELECT_BANK(lp, 1);
 287
 288        cfg = CONFIG_DEFAULT;
 289
 290        /*
 291         * Setup for fast accesses if requested.  If the card/system
 292         * can't handle it then there will be no recovery except for
 293         * a hard reset or power cycle
 294         */
 295        if (lp->cfg.flags & SMC91X_NOWAIT)
 296                cfg |= CONFIG_NO_WAIT;
 297
 298        /*
 299         * Release from possible power-down state
 300         * Configuration register is not affected by Soft Reset
 301         */
 302        cfg |= CONFIG_EPH_POWER_EN;
 303
 304        SMC_SET_CONFIG(lp, cfg);
 305
 306        /* this should pause enough for the chip to be happy */
 307        /*
 308         * elaborate?  What does the chip _need_? --jgarzik
 309         *
 310         * This seems to be undocumented, but something the original
 311         * driver(s) have always done.  Suspect undocumented timing
 312         * info/determined empirically. --rmk
 313         */
 314        udelay(1);
 315
 316        /* Disable transmit and receive functionality */
 317        SMC_SELECT_BANK(lp, 0);
 318        SMC_SET_RCR(lp, RCR_CLEAR);
 319        SMC_SET_TCR(lp, TCR_CLEAR);
 320
 321        SMC_SELECT_BANK(lp, 1);
 322        ctl = SMC_GET_CTL(lp) | CTL_LE_ENABLE;
 323
 324        /*
 325         * Set the control register to automatically release successfully
 326         * transmitted packets, to make the best use out of our limited
 327         * memory
 328         */
 329        if(!THROTTLE_TX_PKTS)
 330                ctl |= CTL_AUTO_RELEASE;
 331        else
 332                ctl &= ~CTL_AUTO_RELEASE;
 333        SMC_SET_CTL(lp, ctl);
 334
 335        /* Reset the MMU */
 336        SMC_SELECT_BANK(lp, 2);
 337        SMC_SET_MMU_CMD(lp, MC_RESET);
 338        SMC_WAIT_MMU_BUSY(lp);
 339}
 340
 341/*
 342 * Enable Interrupts, Receive, and Transmit
 343 */
 344static void smc_enable(struct net_device *dev)
 345{
 346        struct smc_local *lp = netdev_priv(dev);
 347        void __iomem *ioaddr = lp->base;
 348        int mask;
 349
 350        DBG(2, dev, "%s\n", __func__);
 351
 352        /* see the header file for options in TCR/RCR DEFAULT */
 353        SMC_SELECT_BANK(lp, 0);
 354        SMC_SET_TCR(lp, lp->tcr_cur_mode);
 355        SMC_SET_RCR(lp, lp->rcr_cur_mode);
 356
 357        SMC_SELECT_BANK(lp, 1);
 358        SMC_SET_MAC_ADDR(lp, dev->dev_addr);
 359
 360        /* now, enable interrupts */
 361        mask = IM_EPH_INT|IM_RX_OVRN_INT|IM_RCV_INT;
 362        if (lp->version >= (CHIP_91100 << 4))
 363                mask |= IM_MDINT;
 364        SMC_SELECT_BANK(lp, 2);
 365        SMC_SET_INT_MASK(lp, mask);
 366
 367        /*
 368         * From this point the register bank must _NOT_ be switched away
 369         * to something else than bank 2 without proper locking against
 370         * races with any tasklet or interrupt handlers until smc_shutdown()
 371         * or smc_reset() is called.
 372         */
 373}
 374
 375/*
 376 * this puts the device in an inactive state
 377 */
 378static void smc_shutdown(struct net_device *dev)
 379{
 380        struct smc_local *lp = netdev_priv(dev);
 381        void __iomem *ioaddr = lp->base;
 382        struct sk_buff *pending_skb;
 383
 384        DBG(2, dev, "%s: %s\n", CARDNAME, __func__);
 385
 386        /* no more interrupts for me */
 387        spin_lock_irq(&lp->lock);
 388        SMC_SELECT_BANK(lp, 2);
 389        SMC_SET_INT_MASK(lp, 0);
 390        pending_skb = lp->pending_tx_skb;
 391        lp->pending_tx_skb = NULL;
 392        spin_unlock_irq(&lp->lock);
 393        if (pending_skb)
 394                dev_kfree_skb(pending_skb);
 395
 396        /* and tell the card to stay away from that nasty outside world */
 397        SMC_SELECT_BANK(lp, 0);
 398        SMC_SET_RCR(lp, RCR_CLEAR);
 399        SMC_SET_TCR(lp, TCR_CLEAR);
 400
 401#ifdef POWER_DOWN
 402        /* finally, shut the chip down */
 403        SMC_SELECT_BANK(lp, 1);
 404        SMC_SET_CONFIG(lp, SMC_GET_CONFIG(lp) & ~CONFIG_EPH_POWER_EN);
 405#endif
 406}
 407
 408/*
 409 * This is the procedure to handle the receipt of a packet.
 410 */
 411static inline void  smc_rcv(struct net_device *dev)
 412{
 413        struct smc_local *lp = netdev_priv(dev);
 414        void __iomem *ioaddr = lp->base;
 415        unsigned int packet_number, status, packet_len;
 416
 417        DBG(3, dev, "%s\n", __func__);
 418
 419        packet_number = SMC_GET_RXFIFO(lp);
 420        if (unlikely(packet_number & RXFIFO_REMPTY)) {
 421                PRINTK(dev, "smc_rcv with nothing on FIFO.\n");
 422                return;
 423        }
 424
 425        /* read from start of packet */
 426        SMC_SET_PTR(lp, PTR_READ | PTR_RCV | PTR_AUTOINC);
 427
 428        /* First two words are status and packet length */
 429        SMC_GET_PKT_HDR(lp, status, packet_len);
 430        packet_len &= 0x07ff;  /* mask off top bits */
 431        DBG(2, dev, "RX PNR 0x%x STATUS 0x%04x LENGTH 0x%04x (%d)\n",
 432            packet_number, status, packet_len, packet_len);
 433
 434        back:
 435        if (unlikely(packet_len < 6 || status & RS_ERRORS)) {
 436                if (status & RS_TOOLONG && packet_len <= (1514 + 4 + 6)) {
 437                        /* accept VLAN packets */
 438                        status &= ~RS_TOOLONG;
 439                        goto back;
 440                }
 441                if (packet_len < 6) {
 442                        /* bloody hardware */
 443                        netdev_err(dev, "fubar (rxlen %u status %x\n",
 444                                   packet_len, status);
 445                        status |= RS_TOOSHORT;
 446                }
 447                SMC_WAIT_MMU_BUSY(lp);
 448                SMC_SET_MMU_CMD(lp, MC_RELEASE);
 449                dev->stats.rx_errors++;
 450                if (status & RS_ALGNERR)
 451                        dev->stats.rx_frame_errors++;
 452                if (status & (RS_TOOSHORT | RS_TOOLONG))
 453                        dev->stats.rx_length_errors++;
 454                if (status & RS_BADCRC)
 455                        dev->stats.rx_crc_errors++;
 456        } else {
 457                struct sk_buff *skb;
 458                unsigned char *data;
 459                unsigned int data_len;
 460
 461                /* set multicast stats */
 462                if (status & RS_MULTICAST)
 463                        dev->stats.multicast++;
 464
 465                /*
 466                 * Actual payload is packet_len - 6 (or 5 if odd byte).
 467                 * We want skb_reserve(2) and the final ctrl word
 468                 * (2 bytes, possibly containing the payload odd byte).
 469                 * Furthermore, we add 2 bytes to allow rounding up to
 470                 * multiple of 4 bytes on 32 bit buses.
 471                 * Hence packet_len - 6 + 2 + 2 + 2.
 472                 */
 473                skb = netdev_alloc_skb(dev, packet_len);
 474                if (unlikely(skb == NULL)) {
 475                        SMC_WAIT_MMU_BUSY(lp);
 476                        SMC_SET_MMU_CMD(lp, MC_RELEASE);
 477                        dev->stats.rx_dropped++;
 478                        return;
 479                }
 480
 481                /* Align IP header to 32 bits */
 482                skb_reserve(skb, 2);
 483
 484                /* BUG: the LAN91C111 rev A never sets this bit. Force it. */
 485                if (lp->version == 0x90)
 486                        status |= RS_ODDFRAME;
 487
 488                /*
 489                 * If odd length: packet_len - 5,
 490                 * otherwise packet_len - 6.
 491                 * With the trailing ctrl byte it's packet_len - 4.
 492                 */
 493                data_len = packet_len - ((status & RS_ODDFRAME) ? 5 : 6);
 494                data = skb_put(skb, data_len);
 495                SMC_PULL_DATA(lp, data, packet_len - 4);
 496
 497                SMC_WAIT_MMU_BUSY(lp);
 498                SMC_SET_MMU_CMD(lp, MC_RELEASE);
 499
 500                PRINT_PKT(data, packet_len - 4);
 501
 502                skb->protocol = eth_type_trans(skb, dev);
 503                netif_rx(skb);
 504                dev->stats.rx_packets++;
 505                dev->stats.rx_bytes += data_len;
 506        }
 507}
 508
 509#ifdef CONFIG_SMP
 510/*
 511 * On SMP we have the following problem:
 512 *
 513 *      A = smc_hardware_send_pkt()
 514 *      B = smc_hard_start_xmit()
 515 *      C = smc_interrupt()
 516 *
 517 * A and B can never be executed simultaneously.  However, at least on UP,
 518 * it is possible (and even desirable) for C to interrupt execution of
 519 * A or B in order to have better RX reliability and avoid overruns.
 520 * C, just like A and B, must have exclusive access to the chip and
 521 * each of them must lock against any other concurrent access.
 522 * Unfortunately this is not possible to have C suspend execution of A or
 523 * B taking place on another CPU. On UP this is no an issue since A and B
 524 * are run from softirq context and C from hard IRQ context, and there is
 525 * no other CPU where concurrent access can happen.
 526 * If ever there is a way to force at least B and C to always be executed
 527 * on the same CPU then we could use read/write locks to protect against
 528 * any other concurrent access and C would always interrupt B. But life
 529 * isn't that easy in a SMP world...
 530 */
 531#define smc_special_trylock(lock, flags)                                \
 532({                                                                      \
 533        int __ret;                                                      \
 534        local_irq_save(flags);                                          \
 535        __ret = spin_trylock(lock);                                     \
 536        if (!__ret)                                                     \
 537                local_irq_restore(flags);                               \
 538        __ret;                                                          \
 539})
 540#define smc_special_lock(lock, flags)           spin_lock_irqsave(lock, flags)
 541#define smc_special_unlock(lock, flags)         spin_unlock_irqrestore(lock, flags)
 542#else
 543#define smc_special_trylock(lock, flags)        ((void)flags, true)
 544#define smc_special_lock(lock, flags)           do { flags = 0; } while (0)
 545#define smc_special_unlock(lock, flags) do { flags = 0; } while (0)
 546#endif
 547
 548/*
 549 * This is called to actually send a packet to the chip.
 550 */
 551static void smc_hardware_send_pkt(unsigned long data)
 552{
 553        struct net_device *dev = (struct net_device *)data;
 554        struct smc_local *lp = netdev_priv(dev);
 555        void __iomem *ioaddr = lp->base;
 556        struct sk_buff *skb;
 557        unsigned int packet_no, len;
 558        unsigned char *buf;
 559        unsigned long flags;
 560
 561        DBG(3, dev, "%s\n", __func__);
 562
 563        if (!smc_special_trylock(&lp->lock, flags)) {
 564                netif_stop_queue(dev);
 565                tasklet_schedule(&lp->tx_task);
 566                return;
 567        }
 568
 569        skb = lp->pending_tx_skb;
 570        if (unlikely(!skb)) {
 571                smc_special_unlock(&lp->lock, flags);
 572                return;
 573        }
 574        lp->pending_tx_skb = NULL;
 575
 576        packet_no = SMC_GET_AR(lp);
 577        if (unlikely(packet_no & AR_FAILED)) {
 578                netdev_err(dev, "Memory allocation failed.\n");
 579                dev->stats.tx_errors++;
 580                dev->stats.tx_fifo_errors++;
 581                smc_special_unlock(&lp->lock, flags);
 582                goto done;
 583        }
 584
 585        /* point to the beginning of the packet */
 586        SMC_SET_PN(lp, packet_no);
 587        SMC_SET_PTR(lp, PTR_AUTOINC);
 588
 589        buf = skb->data;
 590        len = skb->len;
 591        DBG(2, dev, "TX PNR 0x%x LENGTH 0x%04x (%d) BUF 0x%p\n",
 592            packet_no, len, len, buf);
 593        PRINT_PKT(buf, len);
 594
 595        /*
 596         * Send the packet length (+6 for status words, length, and ctl.
 597         * The card will pad to 64 bytes with zeroes if packet is too small.
 598         */
 599        SMC_PUT_PKT_HDR(lp, 0, len + 6);
 600
 601        /* send the actual data */
 602        SMC_PUSH_DATA(lp, buf, len & ~1);
 603
 604        /* Send final ctl word with the last byte if there is one */
 605        SMC_outw(((len & 1) ? (0x2000 | buf[len-1]) : 0), ioaddr, DATA_REG(lp));
 606
 607        /*
 608         * If THROTTLE_TX_PKTS is set, we stop the queue here. This will
 609         * have the effect of having at most one packet queued for TX
 610         * in the chip's memory at all time.
 611         *
 612         * If THROTTLE_TX_PKTS is not set then the queue is stopped only
 613         * when memory allocation (MC_ALLOC) does not succeed right away.
 614         */
 615        if (THROTTLE_TX_PKTS)
 616                netif_stop_queue(dev);
 617
 618        /* queue the packet for TX */
 619        SMC_SET_MMU_CMD(lp, MC_ENQUEUE);
 620        smc_special_unlock(&lp->lock, flags);
 621
 622        dev->trans_start = jiffies;
 623        dev->stats.tx_packets++;
 624        dev->stats.tx_bytes += len;
 625
 626        SMC_ENABLE_INT(lp, IM_TX_INT | IM_TX_EMPTY_INT);
 627
 628done:   if (!THROTTLE_TX_PKTS)
 629                netif_wake_queue(dev);
 630
 631        dev_consume_skb_any(skb);
 632}
 633
 634/*
 635 * Since I am not sure if I will have enough room in the chip's ram
 636 * to store the packet, I call this routine which either sends it
 637 * now, or set the card to generates an interrupt when ready
 638 * for the packet.
 639 */
 640static int smc_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
 641{
 642        struct smc_local *lp = netdev_priv(dev);
 643        void __iomem *ioaddr = lp->base;
 644        unsigned int numPages, poll_count, status;
 645        unsigned long flags;
 646
 647        DBG(3, dev, "%s\n", __func__);
 648
 649        BUG_ON(lp->pending_tx_skb != NULL);
 650
 651        /*
 652         * The MMU wants the number of pages to be the number of 256 bytes
 653         * 'pages', minus 1 (since a packet can't ever have 0 pages :))
 654         *
 655         * The 91C111 ignores the size bits, but earlier models don't.
 656         *
 657         * Pkt size for allocating is data length +6 (for additional status
 658         * words, length and ctl)
 659         *
 660         * If odd size then last byte is included in ctl word.
 661         */
 662        numPages = ((skb->len & ~1) + (6 - 1)) >> 8;
 663        if (unlikely(numPages > 7)) {
 664                netdev_warn(dev, "Far too big packet error.\n");
 665                dev->stats.tx_errors++;
 666                dev->stats.tx_dropped++;
 667                dev_kfree_skb_any(skb);
 668                return NETDEV_TX_OK;
 669        }
 670
 671        smc_special_lock(&lp->lock, flags);
 672
 673        /* now, try to allocate the memory */
 674        SMC_SET_MMU_CMD(lp, MC_ALLOC | numPages);
 675
 676        /*
 677         * Poll the chip for a short amount of time in case the
 678         * allocation succeeds quickly.
 679         */
 680        poll_count = MEMORY_WAIT_TIME;
 681        do {
 682                status = SMC_GET_INT(lp);
 683                if (status & IM_ALLOC_INT) {
 684                        SMC_ACK_INT(lp, IM_ALLOC_INT);
 685                        break;
 686                }
 687        } while (--poll_count);
 688
 689        smc_special_unlock(&lp->lock, flags);
 690
 691        lp->pending_tx_skb = skb;
 692        if (!poll_count) {
 693                /* oh well, wait until the chip finds memory later */
 694                netif_stop_queue(dev);
 695                DBG(2, dev, "TX memory allocation deferred.\n");
 696                SMC_ENABLE_INT(lp, IM_ALLOC_INT);
 697        } else {
 698                /*
 699                 * Allocation succeeded: push packet to the chip's own memory
 700                 * immediately.
 701                 */
 702                smc_hardware_send_pkt((unsigned long)dev);
 703        }
 704
 705        return NETDEV_TX_OK;
 706}
 707
 708/*
 709 * This handles a TX interrupt, which is only called when:
 710 * - a TX error occurred, or
 711 * - CTL_AUTO_RELEASE is not set and TX of a packet completed.
 712 */
 713static void smc_tx(struct net_device *dev)
 714{
 715        struct smc_local *lp = netdev_priv(dev);
 716        void __iomem *ioaddr = lp->base;
 717        unsigned int saved_packet, packet_no, tx_status, pkt_len;
 718
 719        DBG(3, dev, "%s\n", __func__);
 720
 721        /* If the TX FIFO is empty then nothing to do */
 722        packet_no = SMC_GET_TXFIFO(lp);
 723        if (unlikely(packet_no & TXFIFO_TEMPTY)) {
 724                PRINTK(dev, "smc_tx with nothing on FIFO.\n");
 725                return;
 726        }
 727
 728        /* select packet to read from */
 729        saved_packet = SMC_GET_PN(lp);
 730        SMC_SET_PN(lp, packet_no);
 731
 732        /* read the first word (status word) from this packet */
 733        SMC_SET_PTR(lp, PTR_AUTOINC | PTR_READ);
 734        SMC_GET_PKT_HDR(lp, tx_status, pkt_len);
 735        DBG(2, dev, "TX STATUS 0x%04x PNR 0x%02x\n",
 736            tx_status, packet_no);
 737
 738        if (!(tx_status & ES_TX_SUC))
 739                dev->stats.tx_errors++;
 740
 741        if (tx_status & ES_LOSTCARR)
 742                dev->stats.tx_carrier_errors++;
 743
 744        if (tx_status & (ES_LATCOL | ES_16COL)) {
 745                PRINTK(dev, "%s occurred on last xmit\n",
 746                       (tx_status & ES_LATCOL) ?
 747                        "late collision" : "too many collisions");
 748                dev->stats.tx_window_errors++;
 749                if (!(dev->stats.tx_window_errors & 63) && net_ratelimit()) {
 750                        netdev_info(dev, "unexpectedly large number of bad collisions. Please check duplex setting.\n");
 751                }
 752        }
 753
 754        /* kill the packet */
 755        SMC_WAIT_MMU_BUSY(lp);
 756        SMC_SET_MMU_CMD(lp, MC_FREEPKT);
 757
 758        /* Don't restore Packet Number Reg until busy bit is cleared */
 759        SMC_WAIT_MMU_BUSY(lp);
 760        SMC_SET_PN(lp, saved_packet);
 761
 762        /* re-enable transmit */
 763        SMC_SELECT_BANK(lp, 0);
 764        SMC_SET_TCR(lp, lp->tcr_cur_mode);
 765        SMC_SELECT_BANK(lp, 2);
 766}
 767
 768
 769/*---PHY CONTROL AND CONFIGURATION-----------------------------------------*/
 770
 771static void smc_mii_out(struct net_device *dev, unsigned int val, int bits)
 772{
 773        struct smc_local *lp = netdev_priv(dev);
 774        void __iomem *ioaddr = lp->base;
 775        unsigned int mii_reg, mask;
 776
 777        mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
 778        mii_reg |= MII_MDOE;
 779
 780        for (mask = 1 << (bits - 1); mask; mask >>= 1) {
 781                if (val & mask)
 782                        mii_reg |= MII_MDO;
 783                else
 784                        mii_reg &= ~MII_MDO;
 785
 786                SMC_SET_MII(lp, mii_reg);
 787                udelay(MII_DELAY);
 788                SMC_SET_MII(lp, mii_reg | MII_MCLK);
 789                udelay(MII_DELAY);
 790        }
 791}
 792
 793static unsigned int smc_mii_in(struct net_device *dev, int bits)
 794{
 795        struct smc_local *lp = netdev_priv(dev);
 796        void __iomem *ioaddr = lp->base;
 797        unsigned int mii_reg, mask, val;
 798
 799        mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
 800        SMC_SET_MII(lp, mii_reg);
 801
 802        for (mask = 1 << (bits - 1), val = 0; mask; mask >>= 1) {
 803                if (SMC_GET_MII(lp) & MII_MDI)
 804                        val |= mask;
 805
 806                SMC_SET_MII(lp, mii_reg);
 807                udelay(MII_DELAY);
 808                SMC_SET_MII(lp, mii_reg | MII_MCLK);
 809                udelay(MII_DELAY);
 810        }
 811
 812        return val;
 813}
 814
 815/*
 816 * Reads a register from the MII Management serial interface
 817 */
 818static int smc_phy_read(struct net_device *dev, int phyaddr, int phyreg)
 819{
 820        struct smc_local *lp = netdev_priv(dev);
 821        void __iomem *ioaddr = lp->base;
 822        unsigned int phydata;
 823
 824        SMC_SELECT_BANK(lp, 3);
 825
 826        /* Idle - 32 ones */
 827        smc_mii_out(dev, 0xffffffff, 32);
 828
 829        /* Start code (01) + read (10) + phyaddr + phyreg */
 830        smc_mii_out(dev, 6 << 10 | phyaddr << 5 | phyreg, 14);
 831
 832        /* Turnaround (2bits) + phydata */
 833        phydata = smc_mii_in(dev, 18);
 834
 835        /* Return to idle state */
 836        SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
 837
 838        DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
 839            __func__, phyaddr, phyreg, phydata);
 840
 841        SMC_SELECT_BANK(lp, 2);
 842        return phydata;
 843}
 844
 845/*
 846 * Writes a register to the MII Management serial interface
 847 */
 848static void smc_phy_write(struct net_device *dev, int phyaddr, int phyreg,
 849                          int phydata)
 850{
 851        struct smc_local *lp = netdev_priv(dev);
 852        void __iomem *ioaddr = lp->base;
 853
 854        SMC_SELECT_BANK(lp, 3);
 855
 856        /* Idle - 32 ones */
 857        smc_mii_out(dev, 0xffffffff, 32);
 858
 859        /* Start code (01) + write (01) + phyaddr + phyreg + turnaround + phydata */
 860        smc_mii_out(dev, 5 << 28 | phyaddr << 23 | phyreg << 18 | 2 << 16 | phydata, 32);
 861
 862        /* Return to idle state */
 863        SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
 864
 865        DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
 866            __func__, phyaddr, phyreg, phydata);
 867
 868        SMC_SELECT_BANK(lp, 2);
 869}
 870
 871/*
 872 * Finds and reports the PHY address
 873 */
 874static void smc_phy_detect(struct net_device *dev)
 875{
 876        struct smc_local *lp = netdev_priv(dev);
 877        int phyaddr;
 878
 879        DBG(2, dev, "%s\n", __func__);
 880
 881        lp->phy_type = 0;
 882
 883        /*
 884         * Scan all 32 PHY addresses if necessary, starting at
 885         * PHY#1 to PHY#31, and then PHY#0 last.
 886         */
 887        for (phyaddr = 1; phyaddr < 33; ++phyaddr) {
 888                unsigned int id1, id2;
 889
 890                /* Read the PHY identifiers */
 891                id1 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID1);
 892                id2 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID2);
 893
 894                DBG(3, dev, "phy_id1=0x%x, phy_id2=0x%x\n",
 895                    id1, id2);
 896
 897                /* Make sure it is a valid identifier */
 898                if (id1 != 0x0000 && id1 != 0xffff && id1 != 0x8000 &&
 899                    id2 != 0x0000 && id2 != 0xffff && id2 != 0x8000) {
 900                        /* Save the PHY's address */
 901                        lp->mii.phy_id = phyaddr & 31;
 902                        lp->phy_type = id1 << 16 | id2;
 903                        break;
 904                }
 905        }
 906}
 907
 908/*
 909 * Sets the PHY to a configuration as determined by the user
 910 */
 911static int smc_phy_fixed(struct net_device *dev)
 912{
 913        struct smc_local *lp = netdev_priv(dev);
 914        void __iomem *ioaddr = lp->base;
 915        int phyaddr = lp->mii.phy_id;
 916        int bmcr, cfg1;
 917
 918        DBG(3, dev, "%s\n", __func__);
 919
 920        /* Enter Link Disable state */
 921        cfg1 = smc_phy_read(dev, phyaddr, PHY_CFG1_REG);
 922        cfg1 |= PHY_CFG1_LNKDIS;
 923        smc_phy_write(dev, phyaddr, PHY_CFG1_REG, cfg1);
 924
 925        /*
 926         * Set our fixed capabilities
 927         * Disable auto-negotiation
 928         */
 929        bmcr = 0;
 930
 931        if (lp->ctl_rfduplx)
 932                bmcr |= BMCR_FULLDPLX;
 933
 934        if (lp->ctl_rspeed == 100)
 935                bmcr |= BMCR_SPEED100;
 936
 937        /* Write our capabilities to the phy control register */
 938        smc_phy_write(dev, phyaddr, MII_BMCR, bmcr);
 939
 940        /* Re-Configure the Receive/Phy Control register */
 941        SMC_SELECT_BANK(lp, 0);
 942        SMC_SET_RPC(lp, lp->rpc_cur_mode);
 943        SMC_SELECT_BANK(lp, 2);
 944
 945        return 1;
 946}
 947
 948/**
 949 * smc_phy_reset - reset the phy
 950 * @dev: net device
 951 * @phy: phy address
 952 *
 953 * Issue a software reset for the specified PHY and
 954 * wait up to 100ms for the reset to complete.  We should
 955 * not access the PHY for 50ms after issuing the reset.
 956 *
 957 * The time to wait appears to be dependent on the PHY.
 958 *
 959 * Must be called with lp->lock locked.
 960 */
 961static int smc_phy_reset(struct net_device *dev, int phy)
 962{
 963        struct smc_local *lp = netdev_priv(dev);
 964        unsigned int bmcr;
 965        int timeout;
 966
 967        smc_phy_write(dev, phy, MII_BMCR, BMCR_RESET);
 968
 969        for (timeout = 2; timeout; timeout--) {
 970                spin_unlock_irq(&lp->lock);
 971                msleep(50);
 972                spin_lock_irq(&lp->lock);
 973
 974                bmcr = smc_phy_read(dev, phy, MII_BMCR);
 975                if (!(bmcr & BMCR_RESET))
 976                        break;
 977        }
 978
 979        return bmcr & BMCR_RESET;
 980}
 981
 982/**
 983 * smc_phy_powerdown - powerdown phy
 984 * @dev: net device
 985 *
 986 * Power down the specified PHY
 987 */
 988static void smc_phy_powerdown(struct net_device *dev)
 989{
 990        struct smc_local *lp = netdev_priv(dev);
 991        unsigned int bmcr;
 992        int phy = lp->mii.phy_id;
 993
 994        if (lp->phy_type == 0)
 995                return;
 996
 997        /* We need to ensure that no calls to smc_phy_configure are
 998           pending.
 999        */
1000        cancel_work_sync(&lp->phy_configure);
1001
1002        bmcr = smc_phy_read(dev, phy, MII_BMCR);
1003        smc_phy_write(dev, phy, MII_BMCR, bmcr | BMCR_PDOWN);
1004}
1005
1006/**
1007 * smc_phy_check_media - check the media status and adjust TCR
1008 * @dev: net device
1009 * @init: set true for initialisation
1010 *
1011 * Select duplex mode depending on negotiation state.  This
1012 * also updates our carrier state.
1013 */
1014static void smc_phy_check_media(struct net_device *dev, int init)
1015{
1016        struct smc_local *lp = netdev_priv(dev);
1017        void __iomem *ioaddr = lp->base;
1018
1019        if (mii_check_media(&lp->mii, netif_msg_link(lp), init)) {
1020                /* duplex state has changed */
1021                if (lp->mii.full_duplex) {
1022                        lp->tcr_cur_mode |= TCR_SWFDUP;
1023                } else {
1024                        lp->tcr_cur_mode &= ~TCR_SWFDUP;
1025                }
1026
1027                SMC_SELECT_BANK(lp, 0);
1028                SMC_SET_TCR(lp, lp->tcr_cur_mode);
1029        }
1030}
1031
1032/*
1033 * Configures the specified PHY through the MII management interface
1034 * using Autonegotiation.
1035 * Calls smc_phy_fixed() if the user has requested a certain config.
1036 * If RPC ANEG bit is set, the media selection is dependent purely on
1037 * the selection by the MII (either in the MII BMCR reg or the result
1038 * of autonegotiation.)  If the RPC ANEG bit is cleared, the selection
1039 * is controlled by the RPC SPEED and RPC DPLX bits.
1040 */
1041static void smc_phy_configure(struct work_struct *work)
1042{
1043        struct smc_local *lp =
1044                container_of(work, struct smc_local, phy_configure);
1045        struct net_device *dev = lp->dev;
1046        void __iomem *ioaddr = lp->base;
1047        int phyaddr = lp->mii.phy_id;
1048        int my_phy_caps; /* My PHY capabilities */
1049        int my_ad_caps; /* My Advertised capabilities */
1050        int status;
1051
1052        DBG(3, dev, "smc_program_phy()\n");
1053
1054        spin_lock_irq(&lp->lock);
1055
1056        /*
1057         * We should not be called if phy_type is zero.
1058         */
1059        if (lp->phy_type == 0)
1060                goto smc_phy_configure_exit;
1061
1062        if (smc_phy_reset(dev, phyaddr)) {
1063                netdev_info(dev, "PHY reset timed out\n");
1064                goto smc_phy_configure_exit;
1065        }
1066
1067        /*
1068         * Enable PHY Interrupts (for register 18)
1069         * Interrupts listed here are disabled
1070         */
1071        smc_phy_write(dev, phyaddr, PHY_MASK_REG,
1072                PHY_INT_LOSSSYNC | PHY_INT_CWRD | PHY_INT_SSD |
1073                PHY_INT_ESD | PHY_INT_RPOL | PHY_INT_JAB |
1074                PHY_INT_SPDDET | PHY_INT_DPLXDET);
1075
1076        /* Configure the Receive/Phy Control register */
1077        SMC_SELECT_BANK(lp, 0);
1078        SMC_SET_RPC(lp, lp->rpc_cur_mode);
1079
1080        /* If the user requested no auto neg, then go set his request */
1081        if (lp->mii.force_media) {
1082                smc_phy_fixed(dev);
1083                goto smc_phy_configure_exit;
1084        }
1085
1086        /* Copy our capabilities from MII_BMSR to MII_ADVERTISE */
1087        my_phy_caps = smc_phy_read(dev, phyaddr, MII_BMSR);
1088
1089        if (!(my_phy_caps & BMSR_ANEGCAPABLE)) {
1090                netdev_info(dev, "Auto negotiation NOT supported\n");
1091                smc_phy_fixed(dev);
1092                goto smc_phy_configure_exit;
1093        }
1094
1095        my_ad_caps = ADVERTISE_CSMA; /* I am CSMA capable */
1096
1097        if (my_phy_caps & BMSR_100BASE4)
1098                my_ad_caps |= ADVERTISE_100BASE4;
1099        if (my_phy_caps & BMSR_100FULL)
1100                my_ad_caps |= ADVERTISE_100FULL;
1101        if (my_phy_caps & BMSR_100HALF)
1102                my_ad_caps |= ADVERTISE_100HALF;
1103        if (my_phy_caps & BMSR_10FULL)
1104                my_ad_caps |= ADVERTISE_10FULL;
1105        if (my_phy_caps & BMSR_10HALF)
1106                my_ad_caps |= ADVERTISE_10HALF;
1107
1108        /* Disable capabilities not selected by our user */
1109        if (lp->ctl_rspeed != 100)
1110                my_ad_caps &= ~(ADVERTISE_100BASE4|ADVERTISE_100FULL|ADVERTISE_100HALF);
1111
1112        if (!lp->ctl_rfduplx)
1113                my_ad_caps &= ~(ADVERTISE_100FULL|ADVERTISE_10FULL);
1114
1115        /* Update our Auto-Neg Advertisement Register */
1116        smc_phy_write(dev, phyaddr, MII_ADVERTISE, my_ad_caps);
1117        lp->mii.advertising = my_ad_caps;
1118
1119        /*
1120         * Read the register back.  Without this, it appears that when
1121         * auto-negotiation is restarted, sometimes it isn't ready and
1122         * the link does not come up.
1123         */
1124        status = smc_phy_read(dev, phyaddr, MII_ADVERTISE);
1125
1126        DBG(2, dev, "phy caps=%x\n", my_phy_caps);
1127        DBG(2, dev, "phy advertised caps=%x\n", my_ad_caps);
1128
1129        /* Restart auto-negotiation process in order to advertise my caps */
1130        smc_phy_write(dev, phyaddr, MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART);
1131
1132        smc_phy_check_media(dev, 1);
1133
1134smc_phy_configure_exit:
1135        SMC_SELECT_BANK(lp, 2);
1136        spin_unlock_irq(&lp->lock);
1137}
1138
1139/*
1140 * smc_phy_interrupt
1141 *
1142 * Purpose:  Handle interrupts relating to PHY register 18. This is
1143 *  called from the "hard" interrupt handler under our private spinlock.
1144 */
1145static void smc_phy_interrupt(struct net_device *dev)
1146{
1147        struct smc_local *lp = netdev_priv(dev);
1148        int phyaddr = lp->mii.phy_id;
1149        int phy18;
1150
1151        DBG(2, dev, "%s\n", __func__);
1152
1153        if (lp->phy_type == 0)
1154                return;
1155
1156        for(;;) {
1157                smc_phy_check_media(dev, 0);
1158
1159                /* Read PHY Register 18, Status Output */
1160                phy18 = smc_phy_read(dev, phyaddr, PHY_INT_REG);
1161                if ((phy18 & PHY_INT_INT) == 0)
1162                        break;
1163        }
1164}
1165
1166/*--- END PHY CONTROL AND CONFIGURATION-------------------------------------*/
1167
1168static void smc_10bt_check_media(struct net_device *dev, int init)
1169{
1170        struct smc_local *lp = netdev_priv(dev);
1171        void __iomem *ioaddr = lp->base;
1172        unsigned int old_carrier, new_carrier;
1173
1174        old_carrier = netif_carrier_ok(dev) ? 1 : 0;
1175
1176        SMC_SELECT_BANK(lp, 0);
1177        new_carrier = (SMC_GET_EPH_STATUS(lp) & ES_LINK_OK) ? 1 : 0;
1178        SMC_SELECT_BANK(lp, 2);
1179
1180        if (init || (old_carrier != new_carrier)) {
1181                if (!new_carrier) {
1182                        netif_carrier_off(dev);
1183                } else {
1184                        netif_carrier_on(dev);
1185                }
1186                if (netif_msg_link(lp))
1187                        netdev_info(dev, "link %s\n",
1188                                    new_carrier ? "up" : "down");
1189        }
1190}
1191
1192static void smc_eph_interrupt(struct net_device *dev)
1193{
1194        struct smc_local *lp = netdev_priv(dev);
1195        void __iomem *ioaddr = lp->base;
1196        unsigned int ctl;
1197
1198        smc_10bt_check_media(dev, 0);
1199
1200        SMC_SELECT_BANK(lp, 1);
1201        ctl = SMC_GET_CTL(lp);
1202        SMC_SET_CTL(lp, ctl & ~CTL_LE_ENABLE);
1203        SMC_SET_CTL(lp, ctl);
1204        SMC_SELECT_BANK(lp, 2);
1205}
1206
1207/*
1208 * This is the main routine of the driver, to handle the device when
1209 * it needs some attention.
1210 */
1211static irqreturn_t smc_interrupt(int irq, void *dev_id)
1212{
1213        struct net_device *dev = dev_id;
1214        struct smc_local *lp = netdev_priv(dev);
1215        void __iomem *ioaddr = lp->base;
1216        int status, mask, timeout, card_stats;
1217        int saved_pointer;
1218
1219        DBG(3, dev, "%s\n", __func__);
1220
1221        spin_lock(&lp->lock);
1222
1223        /* A preamble may be used when there is a potential race
1224         * between the interruptible transmit functions and this
1225         * ISR. */
1226        SMC_INTERRUPT_PREAMBLE;
1227
1228        saved_pointer = SMC_GET_PTR(lp);
1229        mask = SMC_GET_INT_MASK(lp);
1230        SMC_SET_INT_MASK(lp, 0);
1231
1232        /* set a timeout value, so I don't stay here forever */
1233        timeout = MAX_IRQ_LOOPS;
1234
1235        do {
1236                status = SMC_GET_INT(lp);
1237
1238                DBG(2, dev, "INT 0x%02x MASK 0x%02x MEM 0x%04x FIFO 0x%04x\n",
1239                    status, mask,
1240                    ({ int meminfo; SMC_SELECT_BANK(lp, 0);
1241                       meminfo = SMC_GET_MIR(lp);
1242                       SMC_SELECT_BANK(lp, 2); meminfo; }),
1243                    SMC_GET_FIFO(lp));
1244
1245                status &= mask;
1246                if (!status)
1247                        break;
1248
1249                if (status & IM_TX_INT) {
1250                        /* do this before RX as it will free memory quickly */
1251                        DBG(3, dev, "TX int\n");
1252                        smc_tx(dev);
1253                        SMC_ACK_INT(lp, IM_TX_INT);
1254                        if (THROTTLE_TX_PKTS)
1255                                netif_wake_queue(dev);
1256                } else if (status & IM_RCV_INT) {
1257                        DBG(3, dev, "RX irq\n");
1258                        smc_rcv(dev);
1259                } else if (status & IM_ALLOC_INT) {
1260                        DBG(3, dev, "Allocation irq\n");
1261                        tasklet_hi_schedule(&lp->tx_task);
1262                        mask &= ~IM_ALLOC_INT;
1263                } else if (status & IM_TX_EMPTY_INT) {
1264                        DBG(3, dev, "TX empty\n");
1265                        mask &= ~IM_TX_EMPTY_INT;
1266
1267                        /* update stats */
1268                        SMC_SELECT_BANK(lp, 0);
1269                        card_stats = SMC_GET_COUNTER(lp);
1270                        SMC_SELECT_BANK(lp, 2);
1271
1272                        /* single collisions */
1273                        dev->stats.collisions += card_stats & 0xF;
1274                        card_stats >>= 4;
1275
1276                        /* multiple collisions */
1277                        dev->stats.collisions += card_stats & 0xF;
1278                } else if (status & IM_RX_OVRN_INT) {
1279                        DBG(1, dev, "RX overrun (EPH_ST 0x%04x)\n",
1280                            ({ int eph_st; SMC_SELECT_BANK(lp, 0);
1281                               eph_st = SMC_GET_EPH_STATUS(lp);
1282                               SMC_SELECT_BANK(lp, 2); eph_st; }));
1283                        SMC_ACK_INT(lp, IM_RX_OVRN_INT);
1284                        dev->stats.rx_errors++;
1285                        dev->stats.rx_fifo_errors++;
1286                } else if (status & IM_EPH_INT) {
1287                        smc_eph_interrupt(dev);
1288                } else if (status & IM_MDINT) {
1289                        SMC_ACK_INT(lp, IM_MDINT);
1290                        smc_phy_interrupt(dev);
1291                } else if (status & IM_ERCV_INT) {
1292                        SMC_ACK_INT(lp, IM_ERCV_INT);
1293                        PRINTK(dev, "UNSUPPORTED: ERCV INTERRUPT\n");
1294                }
1295        } while (--timeout);
1296
1297        /* restore register states */
1298        SMC_SET_PTR(lp, saved_pointer);
1299        SMC_SET_INT_MASK(lp, mask);
1300        spin_unlock(&lp->lock);
1301
1302#ifndef CONFIG_NET_POLL_CONTROLLER
1303        if (timeout == MAX_IRQ_LOOPS)
1304                PRINTK(dev, "spurious interrupt (mask = 0x%02x)\n",
1305                       mask);
1306#endif
1307        DBG(3, dev, "Interrupt done (%d loops)\n",
1308            MAX_IRQ_LOOPS - timeout);
1309
1310        /*
1311         * We return IRQ_HANDLED unconditionally here even if there was
1312         * nothing to do.  There is a possibility that a packet might
1313         * get enqueued into the chip right after TX_EMPTY_INT is raised
1314         * but just before the CPU acknowledges the IRQ.
1315         * Better take an unneeded IRQ in some occasions than complexifying
1316         * the code for all cases.
1317         */
1318        return IRQ_HANDLED;
1319}
1320
1321#ifdef CONFIG_NET_POLL_CONTROLLER
1322/*
1323 * Polling receive - used by netconsole and other diagnostic tools
1324 * to allow network i/o with interrupts disabled.
1325 */
1326static void smc_poll_controller(struct net_device *dev)
1327{
1328        disable_irq(dev->irq);
1329        smc_interrupt(dev->irq, dev);
1330        enable_irq(dev->irq);
1331}
1332#endif
1333
1334/* Our watchdog timed out. Called by the networking layer */
1335static void smc_timeout(struct net_device *dev)
1336{
1337        struct smc_local *lp = netdev_priv(dev);
1338        void __iomem *ioaddr = lp->base;
1339        int status, mask, eph_st, meminfo, fifo;
1340
1341        DBG(2, dev, "%s\n", __func__);
1342
1343        spin_lock_irq(&lp->lock);
1344        status = SMC_GET_INT(lp);
1345        mask = SMC_GET_INT_MASK(lp);
1346        fifo = SMC_GET_FIFO(lp);
1347        SMC_SELECT_BANK(lp, 0);
1348        eph_st = SMC_GET_EPH_STATUS(lp);
1349        meminfo = SMC_GET_MIR(lp);
1350        SMC_SELECT_BANK(lp, 2);
1351        spin_unlock_irq(&lp->lock);
1352        PRINTK(dev, "TX timeout (INT 0x%02x INTMASK 0x%02x MEM 0x%04x FIFO 0x%04x EPH_ST 0x%04x)\n",
1353               status, mask, meminfo, fifo, eph_st);
1354
1355        smc_reset(dev);
1356        smc_enable(dev);
1357
1358        /*
1359         * Reconfiguring the PHY doesn't seem like a bad idea here, but
1360         * smc_phy_configure() calls msleep() which calls schedule_timeout()
1361         * which calls schedule().  Hence we use a work queue.
1362         */
1363        if (lp->phy_type != 0)
1364                schedule_work(&lp->phy_configure);
1365
1366        /* We can accept TX packets again */
1367        dev->trans_start = jiffies; /* prevent tx timeout */
1368        netif_wake_queue(dev);
1369}
1370
1371/*
1372 * This routine will, depending on the values passed to it,
1373 * either make it accept multicast packets, go into
1374 * promiscuous mode (for TCPDUMP and cousins) or accept
1375 * a select set of multicast packets
1376 */
1377static void smc_set_multicast_list(struct net_device *dev)
1378{
1379        struct smc_local *lp = netdev_priv(dev);
1380        void __iomem *ioaddr = lp->base;
1381        unsigned char multicast_table[8];
1382        int update_multicast = 0;
1383
1384        DBG(2, dev, "%s\n", __func__);
1385
1386        if (dev->flags & IFF_PROMISC) {
1387                DBG(2, dev, "RCR_PRMS\n");
1388                lp->rcr_cur_mode |= RCR_PRMS;
1389        }
1390
1391/* BUG?  I never disable promiscuous mode if multicasting was turned on.
1392   Now, I turn off promiscuous mode, but I don't do anything to multicasting
1393   when promiscuous mode is turned on.
1394*/
1395
1396        /*
1397         * Here, I am setting this to accept all multicast packets.
1398         * I don't need to zero the multicast table, because the flag is
1399         * checked before the table is
1400         */
1401        else if (dev->flags & IFF_ALLMULTI || netdev_mc_count(dev) > 16) {
1402                DBG(2, dev, "RCR_ALMUL\n");
1403                lp->rcr_cur_mode |= RCR_ALMUL;
1404        }
1405
1406        /*
1407         * This sets the internal hardware table to filter out unwanted
1408         * multicast packets before they take up memory.
1409         *
1410         * The SMC chip uses a hash table where the high 6 bits of the CRC of
1411         * address are the offset into the table.  If that bit is 1, then the
1412         * multicast packet is accepted.  Otherwise, it's dropped silently.
1413         *
1414         * To use the 6 bits as an offset into the table, the high 3 bits are
1415         * the number of the 8 bit register, while the low 3 bits are the bit
1416         * within that register.
1417         */
1418        else if (!netdev_mc_empty(dev)) {
1419                struct netdev_hw_addr *ha;
1420
1421                /* table for flipping the order of 3 bits */
1422                static const unsigned char invert3[] = {0, 4, 2, 6, 1, 5, 3, 7};
1423
1424                /* start with a table of all zeros: reject all */
1425                memset(multicast_table, 0, sizeof(multicast_table));
1426
1427                netdev_for_each_mc_addr(ha, dev) {
1428                        int position;
1429
1430                        /* only use the low order bits */
1431                        position = crc32_le(~0, ha->addr, 6) & 0x3f;
1432
1433                        /* do some messy swapping to put the bit in the right spot */
1434                        multicast_table[invert3[position&7]] |=
1435                                (1<<invert3[(position>>3)&7]);
1436                }
1437
1438                /* be sure I get rid of flags I might have set */
1439                lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1440
1441                /* now, the table can be loaded into the chipset */
1442                update_multicast = 1;
1443        } else  {
1444                DBG(2, dev, "~(RCR_PRMS|RCR_ALMUL)\n");
1445                lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1446
1447                /*
1448                 * since I'm disabling all multicast entirely, I need to
1449                 * clear the multicast list
1450                 */
1451                memset(multicast_table, 0, sizeof(multicast_table));
1452                update_multicast = 1;
1453        }
1454
1455        spin_lock_irq(&lp->lock);
1456        SMC_SELECT_BANK(lp, 0);
1457        SMC_SET_RCR(lp, lp->rcr_cur_mode);
1458        if (update_multicast) {
1459                SMC_SELECT_BANK(lp, 3);
1460                SMC_SET_MCAST(lp, multicast_table);
1461        }
1462        SMC_SELECT_BANK(lp, 2);
1463        spin_unlock_irq(&lp->lock);
1464}
1465
1466
1467/*
1468 * Open and Initialize the board
1469 *
1470 * Set up everything, reset the card, etc..
1471 */
1472static int
1473smc_open(struct net_device *dev)
1474{
1475        struct smc_local *lp = netdev_priv(dev);
1476
1477        DBG(2, dev, "%s\n", __func__);
1478
1479        /* Setup the default Register Modes */
1480        lp->tcr_cur_mode = TCR_DEFAULT;
1481        lp->rcr_cur_mode = RCR_DEFAULT;
1482        lp->rpc_cur_mode = RPC_DEFAULT |
1483                                lp->cfg.leda << RPC_LSXA_SHFT |
1484                                lp->cfg.ledb << RPC_LSXB_SHFT;
1485
1486        /*
1487         * If we are not using a MII interface, we need to
1488         * monitor our own carrier signal to detect faults.
1489         */
1490        if (lp->phy_type == 0)
1491                lp->tcr_cur_mode |= TCR_MON_CSN;
1492
1493        /* reset the hardware */
1494        smc_reset(dev);
1495        smc_enable(dev);
1496
1497        /* Configure the PHY, initialize the link state */
1498        if (lp->phy_type != 0)
1499                smc_phy_configure(&lp->phy_configure);
1500        else {
1501                spin_lock_irq(&lp->lock);
1502                smc_10bt_check_media(dev, 1);
1503                spin_unlock_irq(&lp->lock);
1504        }
1505
1506        netif_start_queue(dev);
1507        return 0;
1508}
1509
1510/*
1511 * smc_close
1512 *
1513 * this makes the board clean up everything that it can
1514 * and not talk to the outside world.   Caused by
1515 * an 'ifconfig ethX down'
1516 */
1517static int smc_close(struct net_device *dev)
1518{
1519        struct smc_local *lp = netdev_priv(dev);
1520
1521        DBG(2, dev, "%s\n", __func__);
1522
1523        netif_stop_queue(dev);
1524        netif_carrier_off(dev);
1525
1526        /* clear everything */
1527        smc_shutdown(dev);
1528        tasklet_kill(&lp->tx_task);
1529        smc_phy_powerdown(dev);
1530        return 0;
1531}
1532
1533/*
1534 * Ethtool support
1535 */
1536static int
1537smc_ethtool_getsettings(struct net_device *dev, struct ethtool_cmd *cmd)
1538{
1539        struct smc_local *lp = netdev_priv(dev);
1540        int ret;
1541
1542        cmd->maxtxpkt = 1;
1543        cmd->maxrxpkt = 1;
1544
1545        if (lp->phy_type != 0) {
1546                spin_lock_irq(&lp->lock);
1547                ret = mii_ethtool_gset(&lp->mii, cmd);
1548                spin_unlock_irq(&lp->lock);
1549        } else {
1550                cmd->supported = SUPPORTED_10baseT_Half |
1551                                 SUPPORTED_10baseT_Full |
1552                                 SUPPORTED_TP | SUPPORTED_AUI;
1553
1554                if (lp->ctl_rspeed == 10)
1555                        ethtool_cmd_speed_set(cmd, SPEED_10);
1556                else if (lp->ctl_rspeed == 100)
1557                        ethtool_cmd_speed_set(cmd, SPEED_100);
1558
1559                cmd->autoneg = AUTONEG_DISABLE;
1560                cmd->transceiver = XCVR_INTERNAL;
1561                cmd->port = 0;
1562                cmd->duplex = lp->tcr_cur_mode & TCR_SWFDUP ? DUPLEX_FULL : DUPLEX_HALF;
1563
1564                ret = 0;
1565        }
1566
1567        return ret;
1568}
1569
1570static int
1571smc_ethtool_setsettings(struct net_device *dev, struct ethtool_cmd *cmd)
1572{
1573        struct smc_local *lp = netdev_priv(dev);
1574        int ret;
1575
1576        if (lp->phy_type != 0) {
1577                spin_lock_irq(&lp->lock);
1578                ret = mii_ethtool_sset(&lp->mii, cmd);
1579                spin_unlock_irq(&lp->lock);
1580        } else {
1581                if (cmd->autoneg != AUTONEG_DISABLE ||
1582                    cmd->speed != SPEED_10 ||
1583                    (cmd->duplex != DUPLEX_HALF && cmd->duplex != DUPLEX_FULL) ||
1584                    (cmd->port != PORT_TP && cmd->port != PORT_AUI))
1585                        return -EINVAL;
1586
1587//              lp->port = cmd->port;
1588                lp->ctl_rfduplx = cmd->duplex == DUPLEX_FULL;
1589
1590//              if (netif_running(dev))
1591//                      smc_set_port(dev);
1592
1593                ret = 0;
1594        }
1595
1596        return ret;
1597}
1598
1599static void
1600smc_ethtool_getdrvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1601{
1602        strlcpy(info->driver, CARDNAME, sizeof(info->driver));
1603        strlcpy(info->version, version, sizeof(info->version));
1604        strlcpy(info->bus_info, dev_name(dev->dev.parent),
1605                sizeof(info->bus_info));
1606}
1607
1608static int smc_ethtool_nwayreset(struct net_device *dev)
1609{
1610        struct smc_local *lp = netdev_priv(dev);
1611        int ret = -EINVAL;
1612
1613        if (lp->phy_type != 0) {
1614                spin_lock_irq(&lp->lock);
1615                ret = mii_nway_restart(&lp->mii);
1616                spin_unlock_irq(&lp->lock);
1617        }
1618
1619        return ret;
1620}
1621
1622static u32 smc_ethtool_getmsglevel(struct net_device *dev)
1623{
1624        struct smc_local *lp = netdev_priv(dev);
1625        return lp->msg_enable;
1626}
1627
1628static void smc_ethtool_setmsglevel(struct net_device *dev, u32 level)
1629{
1630        struct smc_local *lp = netdev_priv(dev);
1631        lp->msg_enable = level;
1632}
1633
1634static int smc_write_eeprom_word(struct net_device *dev, u16 addr, u16 word)
1635{
1636        u16 ctl;
1637        struct smc_local *lp = netdev_priv(dev);
1638        void __iomem *ioaddr = lp->base;
1639
1640        spin_lock_irq(&lp->lock);
1641        /* load word into GP register */
1642        SMC_SELECT_BANK(lp, 1);
1643        SMC_SET_GP(lp, word);
1644        /* set the address to put the data in EEPROM */
1645        SMC_SELECT_BANK(lp, 2);
1646        SMC_SET_PTR(lp, addr);
1647        /* tell it to write */
1648        SMC_SELECT_BANK(lp, 1);
1649        ctl = SMC_GET_CTL(lp);
1650        SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_STORE));
1651        /* wait for it to finish */
1652        do {
1653                udelay(1);
1654        } while (SMC_GET_CTL(lp) & CTL_STORE);
1655        /* clean up */
1656        SMC_SET_CTL(lp, ctl);
1657        SMC_SELECT_BANK(lp, 2);
1658        spin_unlock_irq(&lp->lock);
1659        return 0;
1660}
1661
1662static int smc_read_eeprom_word(struct net_device *dev, u16 addr, u16 *word)
1663{
1664        u16 ctl;
1665        struct smc_local *lp = netdev_priv(dev);
1666        void __iomem *ioaddr = lp->base;
1667
1668        spin_lock_irq(&lp->lock);
1669        /* set the EEPROM address to get the data from */
1670        SMC_SELECT_BANK(lp, 2);
1671        SMC_SET_PTR(lp, addr | PTR_READ);
1672        /* tell it to load */
1673        SMC_SELECT_BANK(lp, 1);
1674        SMC_SET_GP(lp, 0xffff); /* init to known */
1675        ctl = SMC_GET_CTL(lp);
1676        SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_RELOAD));
1677        /* wait for it to finish */
1678        do {
1679                udelay(1);
1680        } while (SMC_GET_CTL(lp) & CTL_RELOAD);
1681        /* read word from GP register */
1682        *word = SMC_GET_GP(lp);
1683        /* clean up */
1684        SMC_SET_CTL(lp, ctl);
1685        SMC_SELECT_BANK(lp, 2);
1686        spin_unlock_irq(&lp->lock);
1687        return 0;
1688}
1689
1690static int smc_ethtool_geteeprom_len(struct net_device *dev)
1691{
1692        return 0x23 * 2;
1693}
1694
1695static int smc_ethtool_geteeprom(struct net_device *dev,
1696                struct ethtool_eeprom *eeprom, u8 *data)
1697{
1698        int i;
1699        int imax;
1700
1701        DBG(1, dev, "Reading %d bytes at %d(0x%x)\n",
1702                eeprom->len, eeprom->offset, eeprom->offset);
1703        imax = smc_ethtool_geteeprom_len(dev);
1704        for (i = 0; i < eeprom->len; i += 2) {
1705                int ret;
1706                u16 wbuf;
1707                int offset = i + eeprom->offset;
1708                if (offset > imax)
1709                        break;
1710                ret = smc_read_eeprom_word(dev, offset >> 1, &wbuf);
1711                if (ret != 0)
1712                        return ret;
1713                DBG(2, dev, "Read 0x%x from 0x%x\n", wbuf, offset >> 1);
1714                data[i] = (wbuf >> 8) & 0xff;
1715                data[i+1] = wbuf & 0xff;
1716        }
1717        return 0;
1718}
1719
1720static int smc_ethtool_seteeprom(struct net_device *dev,
1721                struct ethtool_eeprom *eeprom, u8 *data)
1722{
1723        int i;
1724        int imax;
1725
1726        DBG(1, dev, "Writing %d bytes to %d(0x%x)\n",
1727            eeprom->len, eeprom->offset, eeprom->offset);
1728        imax = smc_ethtool_geteeprom_len(dev);
1729        for (i = 0; i < eeprom->len; i += 2) {
1730                int ret;
1731                u16 wbuf;
1732                int offset = i + eeprom->offset;
1733                if (offset > imax)
1734                        break;
1735                wbuf = (data[i] << 8) | data[i + 1];
1736                DBG(2, dev, "Writing 0x%x to 0x%x\n", wbuf, offset >> 1);
1737                ret = smc_write_eeprom_word(dev, offset >> 1, wbuf);
1738                if (ret != 0)
1739                        return ret;
1740        }
1741        return 0;
1742}
1743
1744
1745static const struct ethtool_ops smc_ethtool_ops = {
1746        .get_settings   = smc_ethtool_getsettings,
1747        .set_settings   = smc_ethtool_setsettings,
1748        .get_drvinfo    = smc_ethtool_getdrvinfo,
1749
1750        .get_msglevel   = smc_ethtool_getmsglevel,
1751        .set_msglevel   = smc_ethtool_setmsglevel,
1752        .nway_reset     = smc_ethtool_nwayreset,
1753        .get_link       = ethtool_op_get_link,
1754        .get_eeprom_len = smc_ethtool_geteeprom_len,
1755        .get_eeprom     = smc_ethtool_geteeprom,
1756        .set_eeprom     = smc_ethtool_seteeprom,
1757};
1758
1759static const struct net_device_ops smc_netdev_ops = {
1760        .ndo_open               = smc_open,
1761        .ndo_stop               = smc_close,
1762        .ndo_start_xmit         = smc_hard_start_xmit,
1763        .ndo_tx_timeout         = smc_timeout,
1764        .ndo_set_rx_mode        = smc_set_multicast_list,
1765        .ndo_change_mtu         = eth_change_mtu,
1766        .ndo_validate_addr      = eth_validate_addr,
1767        .ndo_set_mac_address    = eth_mac_addr,
1768#ifdef CONFIG_NET_POLL_CONTROLLER
1769        .ndo_poll_controller    = smc_poll_controller,
1770#endif
1771};
1772
1773/*
1774 * smc_findirq
1775 *
1776 * This routine has a simple purpose -- make the SMC chip generate an
1777 * interrupt, so an auto-detect routine can detect it, and find the IRQ,
1778 */
1779/*
1780 * does this still work?
1781 *
1782 * I just deleted auto_irq.c, since it was never built...
1783 *   --jgarzik
1784 */
1785static int smc_findirq(struct smc_local *lp)
1786{
1787        void __iomem *ioaddr = lp->base;
1788        int timeout = 20;
1789        unsigned long cookie;
1790
1791        DBG(2, lp->dev, "%s: %s\n", CARDNAME, __func__);
1792
1793        cookie = probe_irq_on();
1794
1795        /*
1796         * What I try to do here is trigger an ALLOC_INT. This is done
1797         * by allocating a small chunk of memory, which will give an interrupt
1798         * when done.
1799         */
1800        /* enable ALLOCation interrupts ONLY */
1801        SMC_SELECT_BANK(lp, 2);
1802        SMC_SET_INT_MASK(lp, IM_ALLOC_INT);
1803
1804        /*
1805         * Allocate 512 bytes of memory.  Note that the chip was just
1806         * reset so all the memory is available
1807         */
1808        SMC_SET_MMU_CMD(lp, MC_ALLOC | 1);
1809
1810        /*
1811         * Wait until positive that the interrupt has been generated
1812         */
1813        do {
1814                int int_status;
1815                udelay(10);
1816                int_status = SMC_GET_INT(lp);
1817                if (int_status & IM_ALLOC_INT)
1818                        break;          /* got the interrupt */
1819        } while (--timeout);
1820
1821        /*
1822         * there is really nothing that I can do here if timeout fails,
1823         * as autoirq_report will return a 0 anyway, which is what I
1824         * want in this case.   Plus, the clean up is needed in both
1825         * cases.
1826         */
1827
1828        /* and disable all interrupts again */
1829        SMC_SET_INT_MASK(lp, 0);
1830
1831        /* and return what I found */
1832        return probe_irq_off(cookie);
1833}
1834
1835/*
1836 * Function: smc_probe(unsigned long ioaddr)
1837 *
1838 * Purpose:
1839 *      Tests to see if a given ioaddr points to an SMC91x chip.
1840 *      Returns a 0 on success
1841 *
1842 * Algorithm:
1843 *      (1) see if the high byte of BANK_SELECT is 0x33
1844 *      (2) compare the ioaddr with the base register's address
1845 *      (3) see if I recognize the chip ID in the appropriate register
1846 *
1847 * Here I do typical initialization tasks.
1848 *
1849 * o  Initialize the structure if needed
1850 * o  print out my vanity message if not done so already
1851 * o  print out what type of hardware is detected
1852 * o  print out the ethernet address
1853 * o  find the IRQ
1854 * o  set up my private data
1855 * o  configure the dev structure with my subroutines
1856 * o  actually GRAB the irq.
1857 * o  GRAB the region
1858 */
1859static int smc_probe(struct net_device *dev, void __iomem *ioaddr,
1860                     unsigned long irq_flags)
1861{
1862        struct smc_local *lp = netdev_priv(dev);
1863        int retval;
1864        unsigned int val, revision_register;
1865        const char *version_string;
1866
1867        DBG(2, dev, "%s: %s\n", CARDNAME, __func__);
1868
1869        /* First, see if the high byte is 0x33 */
1870        val = SMC_CURRENT_BANK(lp);
1871        DBG(2, dev, "%s: bank signature probe returned 0x%04x\n",
1872            CARDNAME, val);
1873        if ((val & 0xFF00) != 0x3300) {
1874                if ((val & 0xFF) == 0x33) {
1875                        netdev_warn(dev,
1876                                    "%s: Detected possible byte-swapped interface at IOADDR %p\n",
1877                                    CARDNAME, ioaddr);
1878                }
1879                retval = -ENODEV;
1880                goto err_out;
1881        }
1882
1883        /*
1884         * The above MIGHT indicate a device, but I need to write to
1885         * further test this.
1886         */
1887        SMC_SELECT_BANK(lp, 0);
1888        val = SMC_CURRENT_BANK(lp);
1889        if ((val & 0xFF00) != 0x3300) {
1890                retval = -ENODEV;
1891                goto err_out;
1892        }
1893
1894        /*
1895         * well, we've already written once, so hopefully another
1896         * time won't hurt.  This time, I need to switch the bank
1897         * register to bank 1, so I can access the base address
1898         * register
1899         */
1900        SMC_SELECT_BANK(lp, 1);
1901        val = SMC_GET_BASE(lp);
1902        val = ((val & 0x1F00) >> 3) << SMC_IO_SHIFT;
1903        if (((unsigned long)ioaddr & (0x3e0 << SMC_IO_SHIFT)) != val) {
1904                netdev_warn(dev, "%s: IOADDR %p doesn't match configuration (%x).\n",
1905                            CARDNAME, ioaddr, val);
1906        }
1907
1908        /*
1909         * check if the revision register is something that I
1910         * recognize.  These might need to be added to later,
1911         * as future revisions could be added.
1912         */
1913        SMC_SELECT_BANK(lp, 3);
1914        revision_register = SMC_GET_REV(lp);
1915        DBG(2, dev, "%s: revision = 0x%04x\n", CARDNAME, revision_register);
1916        version_string = chip_ids[ (revision_register >> 4) & 0xF];
1917        if (!version_string || (revision_register & 0xff00) != 0x3300) {
1918                /* I don't recognize this chip, so... */
1919                netdev_warn(dev, "%s: IO %p: Unrecognized revision register 0x%04x, Contact author.\n",
1920                            CARDNAME, ioaddr, revision_register);
1921
1922                retval = -ENODEV;
1923                goto err_out;
1924        }
1925
1926        /* At this point I'll assume that the chip is an SMC91x. */
1927        pr_info_once("%s\n", version);
1928
1929        /* fill in some of the fields */
1930        dev->base_addr = (unsigned long)ioaddr;
1931        lp->base = ioaddr;
1932        lp->version = revision_register & 0xff;
1933        spin_lock_init(&lp->lock);
1934
1935        /* Get the MAC address */
1936        SMC_SELECT_BANK(lp, 1);
1937        SMC_GET_MAC_ADDR(lp, dev->dev_addr);
1938
1939        /* now, reset the chip, and put it into a known state */
1940        smc_reset(dev);
1941
1942        /*
1943         * If dev->irq is 0, then the device has to be banged on to see
1944         * what the IRQ is.
1945         *
1946         * This banging doesn't always detect the IRQ, for unknown reasons.
1947         * a workaround is to reset the chip and try again.
1948         *
1949         * Interestingly, the DOS packet driver *SETS* the IRQ on the card to
1950         * be what is requested on the command line.   I don't do that, mostly
1951         * because the card that I have uses a non-standard method of accessing
1952         * the IRQs, and because this _should_ work in most configurations.
1953         *
1954         * Specifying an IRQ is done with the assumption that the user knows
1955         * what (s)he is doing.  No checking is done!!!!
1956         */
1957        if (dev->irq < 1) {
1958                int trials;
1959
1960                trials = 3;
1961                while (trials--) {
1962                        dev->irq = smc_findirq(lp);
1963                        if (dev->irq)
1964                                break;
1965                        /* kick the card and try again */
1966                        smc_reset(dev);
1967                }
1968        }
1969        if (dev->irq == 0) {
1970                netdev_warn(dev, "Couldn't autodetect your IRQ. Use irq=xx.\n");
1971                retval = -ENODEV;
1972                goto err_out;
1973        }
1974        dev->irq = irq_canonicalize(dev->irq);
1975
1976        dev->watchdog_timeo = msecs_to_jiffies(watchdog);
1977        dev->netdev_ops = &smc_netdev_ops;
1978        dev->ethtool_ops = &smc_ethtool_ops;
1979
1980        tasklet_init(&lp->tx_task, smc_hardware_send_pkt, (unsigned long)dev);
1981        INIT_WORK(&lp->phy_configure, smc_phy_configure);
1982        lp->dev = dev;
1983        lp->mii.phy_id_mask = 0x1f;
1984        lp->mii.reg_num_mask = 0x1f;
1985        lp->mii.force_media = 0;
1986        lp->mii.full_duplex = 0;
1987        lp->mii.dev = dev;
1988        lp->mii.mdio_read = smc_phy_read;
1989        lp->mii.mdio_write = smc_phy_write;
1990
1991        /*
1992         * Locate the phy, if any.
1993         */
1994        if (lp->version >= (CHIP_91100 << 4))
1995                smc_phy_detect(dev);
1996
1997        /* then shut everything down to save power */
1998        smc_shutdown(dev);
1999        smc_phy_powerdown(dev);
2000
2001        /* Set default parameters */
2002        lp->msg_enable = NETIF_MSG_LINK;
2003        lp->ctl_rfduplx = 0;
2004        lp->ctl_rspeed = 10;
2005
2006        if (lp->version >= (CHIP_91100 << 4)) {
2007                lp->ctl_rfduplx = 1;
2008                lp->ctl_rspeed = 100;
2009        }
2010
2011        /* Grab the IRQ */
2012        retval = request_irq(dev->irq, smc_interrupt, irq_flags, dev->name, dev);
2013        if (retval)
2014                goto err_out;
2015
2016#ifdef CONFIG_ARCH_PXA
2017#  ifdef SMC_USE_PXA_DMA
2018        lp->cfg.flags |= SMC91X_USE_DMA;
2019#  endif
2020        if (lp->cfg.flags & SMC91X_USE_DMA) {
2021                dma_cap_mask_t mask;
2022                struct pxad_param param;
2023
2024                dma_cap_zero(mask);
2025                dma_cap_set(DMA_SLAVE, mask);
2026                param.prio = PXAD_PRIO_LOWEST;
2027                param.drcmr = -1UL;
2028
2029                lp->dma_chan =
2030                        dma_request_slave_channel_compat(mask, pxad_filter_fn,
2031                                                         &param, &dev->dev,
2032                                                         "data");
2033        }
2034#endif
2035
2036        retval = register_netdev(dev);
2037        if (retval == 0) {
2038                /* now, print out the card info, in a short format.. */
2039                netdev_info(dev, "%s (rev %d) at %p IRQ %d",
2040                            version_string, revision_register & 0x0f,
2041                            lp->base, dev->irq);
2042
2043                if (lp->dma_chan)
2044                        pr_cont(" DMA %p", lp->dma_chan);
2045
2046                pr_cont("%s%s\n",
2047                        lp->cfg.flags & SMC91X_NOWAIT ? " [nowait]" : "",
2048                        THROTTLE_TX_PKTS ? " [throttle_tx]" : "");
2049
2050                if (!is_valid_ether_addr(dev->dev_addr)) {
2051                        netdev_warn(dev, "Invalid ethernet MAC address. Please set using ifconfig\n");
2052                } else {
2053                        /* Print the Ethernet address */
2054                        netdev_info(dev, "Ethernet addr: %pM\n",
2055                                    dev->dev_addr);
2056                }
2057
2058                if (lp->phy_type == 0) {
2059                        PRINTK(dev, "No PHY found\n");
2060                } else if ((lp->phy_type & 0xfffffff0) == 0x0016f840) {
2061                        PRINTK(dev, "PHY LAN83C183 (LAN91C111 Internal)\n");
2062                } else if ((lp->phy_type & 0xfffffff0) == 0x02821c50) {
2063                        PRINTK(dev, "PHY LAN83C180\n");
2064                }
2065        }
2066
2067err_out:
2068#ifdef CONFIG_ARCH_PXA
2069        if (retval && lp->dma_chan)
2070                dma_release_channel(lp->dma_chan);
2071#endif
2072        return retval;
2073}
2074
2075static int smc_enable_device(struct platform_device *pdev)
2076{
2077        struct net_device *ndev = platform_get_drvdata(pdev);
2078        struct smc_local *lp = netdev_priv(ndev);
2079        unsigned long flags;
2080        unsigned char ecor, ecsr;
2081        void __iomem *addr;
2082        struct resource * res;
2083
2084        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2085        if (!res)
2086                return 0;
2087
2088        /*
2089         * Map the attribute space.  This is overkill, but clean.
2090         */
2091        addr = ioremap(res->start, ATTRIB_SIZE);
2092        if (!addr)
2093                return -ENOMEM;
2094
2095        /*
2096         * Reset the device.  We must disable IRQs around this
2097         * since a reset causes the IRQ line become active.
2098         */
2099        local_irq_save(flags);
2100        ecor = readb(addr + (ECOR << SMC_IO_SHIFT)) & ~ECOR_RESET;
2101        writeb(ecor | ECOR_RESET, addr + (ECOR << SMC_IO_SHIFT));
2102        readb(addr + (ECOR << SMC_IO_SHIFT));
2103
2104        /*
2105         * Wait 100us for the chip to reset.
2106         */
2107        udelay(100);
2108
2109        /*
2110         * The device will ignore all writes to the enable bit while
2111         * reset is asserted, even if the reset bit is cleared in the
2112         * same write.  Must clear reset first, then enable the device.
2113         */
2114        writeb(ecor, addr + (ECOR << SMC_IO_SHIFT));
2115        writeb(ecor | ECOR_ENABLE, addr + (ECOR << SMC_IO_SHIFT));
2116
2117        /*
2118         * Set the appropriate byte/word mode.
2119         */
2120        ecsr = readb(addr + (ECSR << SMC_IO_SHIFT)) & ~ECSR_IOIS8;
2121        if (!SMC_16BIT(lp))
2122                ecsr |= ECSR_IOIS8;
2123        writeb(ecsr, addr + (ECSR << SMC_IO_SHIFT));
2124        local_irq_restore(flags);
2125
2126        iounmap(addr);
2127
2128        /*
2129         * Wait for the chip to wake up.  We could poll the control
2130         * register in the main register space, but that isn't mapped
2131         * yet.  We know this is going to take 750us.
2132         */
2133        msleep(1);
2134
2135        return 0;
2136}
2137
2138static int smc_request_attrib(struct platform_device *pdev,
2139                              struct net_device *ndev)
2140{
2141        struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2142        struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2143
2144        if (!res)
2145                return 0;
2146
2147        if (!request_mem_region(res->start, ATTRIB_SIZE, CARDNAME))
2148                return -EBUSY;
2149
2150        return 0;
2151}
2152
2153static void smc_release_attrib(struct platform_device *pdev,
2154                               struct net_device *ndev)
2155{
2156        struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2157        struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2158
2159        if (res)
2160                release_mem_region(res->start, ATTRIB_SIZE);
2161}
2162
2163static inline void smc_request_datacs(struct platform_device *pdev, struct net_device *ndev)
2164{
2165        if (SMC_CAN_USE_DATACS) {
2166                struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2167                struct smc_local *lp = netdev_priv(ndev);
2168
2169                if (!res)
2170                        return;
2171
2172                if(!request_mem_region(res->start, SMC_DATA_EXTENT, CARDNAME)) {
2173                        netdev_info(ndev, "%s: failed to request datacs memory region.\n",
2174                                    CARDNAME);
2175                        return;
2176                }
2177
2178                lp->datacs = ioremap(res->start, SMC_DATA_EXTENT);
2179        }
2180}
2181
2182static void smc_release_datacs(struct platform_device *pdev, struct net_device *ndev)
2183{
2184        if (SMC_CAN_USE_DATACS) {
2185                struct smc_local *lp = netdev_priv(ndev);
2186                struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2187
2188                if (lp->datacs)
2189                        iounmap(lp->datacs);
2190
2191                lp->datacs = NULL;
2192
2193                if (res)
2194                        release_mem_region(res->start, SMC_DATA_EXTENT);
2195        }
2196}
2197
2198#if IS_BUILTIN(CONFIG_OF)
2199static const struct of_device_id smc91x_match[] = {
2200        { .compatible = "smsc,lan91c94", },
2201        { .compatible = "smsc,lan91c111", },
2202        {},
2203};
2204MODULE_DEVICE_TABLE(of, smc91x_match);
2205
2206/**
2207 * of_try_set_control_gpio - configure a gpio if it exists
2208 */
2209static int try_toggle_control_gpio(struct device *dev,
2210                                   struct gpio_desc **desc,
2211                                   const char *name, int index,
2212                                   int value, unsigned int nsdelay)
2213{
2214        struct gpio_desc *gpio = *desc;
2215        enum gpiod_flags flags = value ? GPIOD_OUT_LOW : GPIOD_OUT_HIGH;
2216
2217        gpio = devm_gpiod_get_index_optional(dev, name, index, flags);
2218        if (IS_ERR(gpio))
2219                return PTR_ERR(gpio);
2220
2221        if (gpio) {
2222                if (nsdelay)
2223                        usleep_range(nsdelay, 2 * nsdelay);
2224                gpiod_set_value_cansleep(gpio, value);
2225        }
2226        *desc = gpio;
2227
2228        return 0;
2229}
2230#endif
2231
2232/*
2233 * smc_init(void)
2234 *   Input parameters:
2235 *      dev->base_addr == 0, try to find all possible locations
2236 *      dev->base_addr > 0x1ff, this is the address to check
2237 *      dev->base_addr == <anything else>, return failure code
2238 *
2239 *   Output:
2240 *      0 --> there is a device
2241 *      anything else, error
2242 */
2243static int smc_drv_probe(struct platform_device *pdev)
2244{
2245        struct smc91x_platdata *pd = dev_get_platdata(&pdev->dev);
2246        const struct of_device_id *match = NULL;
2247        struct smc_local *lp;
2248        struct net_device *ndev;
2249        struct resource *res;
2250        unsigned int __iomem *addr;
2251        unsigned long irq_flags = SMC_IRQ_FLAGS;
2252        unsigned long irq_resflags;
2253        int ret;
2254
2255        ndev = alloc_etherdev(sizeof(struct smc_local));
2256        if (!ndev) {
2257                ret = -ENOMEM;
2258                goto out;
2259        }
2260        SET_NETDEV_DEV(ndev, &pdev->dev);
2261
2262        /* get configuration from platform data, only allow use of
2263         * bus width if both SMC_CAN_USE_xxx and SMC91X_USE_xxx are set.
2264         */
2265
2266        lp = netdev_priv(ndev);
2267        lp->cfg.flags = 0;
2268
2269        if (pd) {
2270                memcpy(&lp->cfg, pd, sizeof(lp->cfg));
2271                lp->io_shift = SMC91X_IO_SHIFT(lp->cfg.flags);
2272        }
2273
2274#if IS_BUILTIN(CONFIG_OF)
2275        match = of_match_device(of_match_ptr(smc91x_match), &pdev->dev);
2276        if (match) {
2277                struct device_node *np = pdev->dev.of_node;
2278                u32 val;
2279
2280                /* Optional pwrdwn GPIO configured? */
2281                ret = try_toggle_control_gpio(&pdev->dev, &lp->power_gpio,
2282                                              "power", 0, 0, 100);
2283                if (ret)
2284                        return ret;
2285
2286                /*
2287                 * Optional reset GPIO configured? Minimum 100 ns reset needed
2288                 * according to LAN91C96 datasheet page 14.
2289                 */
2290                ret = try_toggle_control_gpio(&pdev->dev, &lp->reset_gpio,
2291                                              "reset", 0, 0, 100);
2292                if (ret)
2293                        return ret;
2294
2295                /*
2296                 * Need to wait for optional EEPROM to load, max 750 us according
2297                 * to LAN91C96 datasheet page 55.
2298                 */
2299                if (lp->reset_gpio)
2300                        usleep_range(750, 1000);
2301
2302                /* Combination of IO widths supported, default to 16-bit */
2303                if (!of_property_read_u32(np, "reg-io-width", &val)) {
2304                        if (val & 1)
2305                                lp->cfg.flags |= SMC91X_USE_8BIT;
2306                        if ((val == 0) || (val & 2))
2307                                lp->cfg.flags |= SMC91X_USE_16BIT;
2308                        if (val & 4)
2309                                lp->cfg.flags |= SMC91X_USE_32BIT;
2310                } else {
2311                        lp->cfg.flags |= SMC91X_USE_16BIT;
2312                }
2313        }
2314#endif
2315
2316        if (!pd && !match) {
2317                lp->cfg.flags |= (SMC_CAN_USE_8BIT)  ? SMC91X_USE_8BIT  : 0;
2318                lp->cfg.flags |= (SMC_CAN_USE_16BIT) ? SMC91X_USE_16BIT : 0;
2319                lp->cfg.flags |= (SMC_CAN_USE_32BIT) ? SMC91X_USE_32BIT : 0;
2320                lp->cfg.flags |= (nowait) ? SMC91X_NOWAIT : 0;
2321        }
2322
2323        if (!lp->cfg.leda && !lp->cfg.ledb) {
2324                lp->cfg.leda = RPC_LSA_DEFAULT;
2325                lp->cfg.ledb = RPC_LSB_DEFAULT;
2326        }
2327
2328        ndev->dma = (unsigned char)-1;
2329
2330        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2331        if (!res)
2332                res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2333        if (!res) {
2334                ret = -ENODEV;
2335                goto out_free_netdev;
2336        }
2337
2338
2339        if (!request_mem_region(res->start, SMC_IO_EXTENT, CARDNAME)) {
2340                ret = -EBUSY;
2341                goto out_free_netdev;
2342        }
2343
2344        ndev->irq = platform_get_irq(pdev, 0);
2345        if (ndev->irq < 0) {
2346                ret = ndev->irq;
2347                goto out_release_io;
2348        }
2349        /*
2350         * If this platform does not specify any special irqflags, or if
2351         * the resource supplies a trigger, override the irqflags with
2352         * the trigger flags from the resource.
2353         */
2354        irq_resflags = irqd_get_trigger_type(irq_get_irq_data(ndev->irq));
2355        if (irq_flags == -1 || irq_resflags & IRQF_TRIGGER_MASK)
2356                irq_flags = irq_resflags & IRQF_TRIGGER_MASK;
2357
2358        ret = smc_request_attrib(pdev, ndev);
2359        if (ret)
2360                goto out_release_io;
2361#if defined(CONFIG_ASSABET_NEPONSET)
2362        if (machine_is_assabet() && machine_has_neponset())
2363                neponset_ncr_set(NCR_ENET_OSC_EN);
2364#endif
2365        platform_set_drvdata(pdev, ndev);
2366        ret = smc_enable_device(pdev);
2367        if (ret)
2368                goto out_release_attrib;
2369
2370        addr = ioremap(res->start, SMC_IO_EXTENT);
2371        if (!addr) {
2372                ret = -ENOMEM;
2373                goto out_release_attrib;
2374        }
2375
2376#ifdef CONFIG_ARCH_PXA
2377        {
2378                struct smc_local *lp = netdev_priv(ndev);
2379                lp->device = &pdev->dev;
2380                lp->physaddr = res->start;
2381
2382        }
2383#endif
2384
2385        ret = smc_probe(ndev, addr, irq_flags);
2386        if (ret != 0)
2387                goto out_iounmap;
2388
2389        smc_request_datacs(pdev, ndev);
2390
2391        return 0;
2392
2393 out_iounmap:
2394        iounmap(addr);
2395 out_release_attrib:
2396        smc_release_attrib(pdev, ndev);
2397 out_release_io:
2398        release_mem_region(res->start, SMC_IO_EXTENT);
2399 out_free_netdev:
2400        free_netdev(ndev);
2401 out:
2402        pr_info("%s: not found (%d).\n", CARDNAME, ret);
2403
2404        return ret;
2405}
2406
2407static int smc_drv_remove(struct platform_device *pdev)
2408{
2409        struct net_device *ndev = platform_get_drvdata(pdev);
2410        struct smc_local *lp = netdev_priv(ndev);
2411        struct resource *res;
2412
2413        unregister_netdev(ndev);
2414
2415        free_irq(ndev->irq, ndev);
2416
2417#ifdef CONFIG_ARCH_PXA
2418        if (lp->dma_chan)
2419                dma_release_channel(lp->dma_chan);
2420#endif
2421        iounmap(lp->base);
2422
2423        smc_release_datacs(pdev,ndev);
2424        smc_release_attrib(pdev,ndev);
2425
2426        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2427        if (!res)
2428                res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2429        release_mem_region(res->start, SMC_IO_EXTENT);
2430
2431        free_netdev(ndev);
2432
2433        return 0;
2434}
2435
2436static int smc_drv_suspend(struct device *dev)
2437{
2438        struct platform_device *pdev = to_platform_device(dev);
2439        struct net_device *ndev = platform_get_drvdata(pdev);
2440
2441        if (ndev) {
2442                if (netif_running(ndev)) {
2443                        netif_device_detach(ndev);
2444                        smc_shutdown(ndev);
2445                        smc_phy_powerdown(ndev);
2446                }
2447        }
2448        return 0;
2449}
2450
2451static int smc_drv_resume(struct device *dev)
2452{
2453        struct platform_device *pdev = to_platform_device(dev);
2454        struct net_device *ndev = platform_get_drvdata(pdev);
2455
2456        if (ndev) {
2457                struct smc_local *lp = netdev_priv(ndev);
2458                smc_enable_device(pdev);
2459                if (netif_running(ndev)) {
2460                        smc_reset(ndev);
2461                        smc_enable(ndev);
2462                        if (lp->phy_type != 0)
2463                                smc_phy_configure(&lp->phy_configure);
2464                        netif_device_attach(ndev);
2465                }
2466        }
2467        return 0;
2468}
2469
2470static struct dev_pm_ops smc_drv_pm_ops = {
2471        .suspend        = smc_drv_suspend,
2472        .resume         = smc_drv_resume,
2473};
2474
2475static struct platform_driver smc_driver = {
2476        .probe          = smc_drv_probe,
2477        .remove         = smc_drv_remove,
2478        .driver         = {
2479                .name   = CARDNAME,
2480                .pm     = &smc_drv_pm_ops,
2481                .of_match_table = of_match_ptr(smc91x_match),
2482        },
2483};
2484
2485module_platform_driver(smc_driver);
2486