linux/drivers/net/ethernet/tundra/tsi108_eth.c
<<
>>
Prefs
   1/*******************************************************************************
   2
   3  Copyright(c) 2006 Tundra Semiconductor Corporation.
   4
   5  This program is free software; you can redistribute it and/or modify it
   6  under the terms of the GNU General Public License as published by the Free
   7  Software Foundation; either version 2 of the License, or (at your option)
   8  any later version.
   9
  10  This program is distributed in the hope that it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc., 59
  17  Temple Place - Suite 330, Boston, MA  02111-1307, USA.
  18
  19*******************************************************************************/
  20
  21/* This driver is based on the driver code originally developed
  22 * for the Intel IOC80314 (ForestLake) Gigabit Ethernet by
  23 * scott.wood@timesys.com  * Copyright (C) 2003 TimeSys Corporation
  24 *
  25 * Currently changes from original version are:
  26 * - porting to Tsi108-based platform and kernel 2.6 (kong.lai@tundra.com)
  27 * - modifications to handle two ports independently and support for
  28 *   additional PHY devices (alexandre.bounine@tundra.com)
  29 * - Get hardware information from platform device. (tie-fei.zang@freescale.com)
  30 *
  31 */
  32
  33#include <linux/module.h>
  34#include <linux/types.h>
  35#include <linux/interrupt.h>
  36#include <linux/net.h>
  37#include <linux/netdevice.h>
  38#include <linux/etherdevice.h>
  39#include <linux/ethtool.h>
  40#include <linux/skbuff.h>
  41#include <linux/spinlock.h>
  42#include <linux/delay.h>
  43#include <linux/crc32.h>
  44#include <linux/mii.h>
  45#include <linux/device.h>
  46#include <linux/pci.h>
  47#include <linux/rtnetlink.h>
  48#include <linux/timer.h>
  49#include <linux/platform_device.h>
  50#include <linux/gfp.h>
  51
  52#include <asm/io.h>
  53#include <asm/tsi108.h>
  54
  55#include "tsi108_eth.h"
  56
  57#define MII_READ_DELAY 10000    /* max link wait time in msec */
  58
  59#define TSI108_RXRING_LEN     256
  60
  61/* NOTE: The driver currently does not support receiving packets
  62 * larger than the buffer size, so don't decrease this (unless you
  63 * want to add such support).
  64 */
  65#define TSI108_RXBUF_SIZE     1536
  66
  67#define TSI108_TXRING_LEN     256
  68
  69#define TSI108_TX_INT_FREQ    64
  70
  71/* Check the phy status every half a second. */
  72#define CHECK_PHY_INTERVAL (HZ/2)
  73
  74static int tsi108_init_one(struct platform_device *pdev);
  75static int tsi108_ether_remove(struct platform_device *pdev);
  76
  77struct tsi108_prv_data {
  78        void  __iomem *regs;    /* Base of normal regs */
  79        void  __iomem *phyregs; /* Base of register bank used for PHY access */
  80
  81        struct net_device *dev;
  82        struct napi_struct napi;
  83
  84        unsigned int phy;               /* Index of PHY for this interface */
  85        unsigned int irq_num;
  86        unsigned int id;
  87        unsigned int phy_type;
  88
  89        struct timer_list timer;/* Timer that triggers the check phy function */
  90        unsigned int rxtail;    /* Next entry in rxring to read */
  91        unsigned int rxhead;    /* Next entry in rxring to give a new buffer */
  92        unsigned int rxfree;    /* Number of free, allocated RX buffers */
  93
  94        unsigned int rxpending; /* Non-zero if there are still descriptors
  95                                 * to be processed from a previous descriptor
  96                                 * interrupt condition that has been cleared */
  97
  98        unsigned int txtail;    /* Next TX descriptor to check status on */
  99        unsigned int txhead;    /* Next TX descriptor to use */
 100
 101        /* Number of free TX descriptors.  This could be calculated from
 102         * rxhead and rxtail if one descriptor were left unused to disambiguate
 103         * full and empty conditions, but it's simpler to just keep track
 104         * explicitly. */
 105
 106        unsigned int txfree;
 107
 108        unsigned int phy_ok;            /* The PHY is currently powered on. */
 109
 110        /* PHY status (duplex is 1 for half, 2 for full,
 111         * so that the default 0 indicates that neither has
 112         * yet been configured). */
 113
 114        unsigned int link_up;
 115        unsigned int speed;
 116        unsigned int duplex;
 117
 118        tx_desc *txring;
 119        rx_desc *rxring;
 120        struct sk_buff *txskbs[TSI108_TXRING_LEN];
 121        struct sk_buff *rxskbs[TSI108_RXRING_LEN];
 122
 123        dma_addr_t txdma, rxdma;
 124
 125        /* txlock nests in misclock and phy_lock */
 126
 127        spinlock_t txlock, misclock;
 128
 129        /* stats is used to hold the upper bits of each hardware counter,
 130         * and tmpstats is used to hold the full values for returning
 131         * to the caller of get_stats().  They must be separate in case
 132         * an overflow interrupt occurs before the stats are consumed.
 133         */
 134
 135        struct net_device_stats stats;
 136        struct net_device_stats tmpstats;
 137
 138        /* These stats are kept separate in hardware, thus require individual
 139         * fields for handling carry.  They are combined in get_stats.
 140         */
 141
 142        unsigned long rx_fcs;   /* Add to rx_frame_errors */
 143        unsigned long rx_short_fcs;     /* Add to rx_frame_errors */
 144        unsigned long rx_long_fcs;      /* Add to rx_frame_errors */
 145        unsigned long rx_underruns;     /* Add to rx_length_errors */
 146        unsigned long rx_overruns;      /* Add to rx_length_errors */
 147
 148        unsigned long tx_coll_abort;    /* Add to tx_aborted_errors/collisions */
 149        unsigned long tx_pause_drop;    /* Add to tx_aborted_errors */
 150
 151        unsigned long mc_hash[16];
 152        u32 msg_enable;                 /* debug message level */
 153        struct mii_if_info mii_if;
 154        unsigned int init_media;
 155};
 156
 157/* Structure for a device driver */
 158
 159static struct platform_driver tsi_eth_driver = {
 160        .probe = tsi108_init_one,
 161        .remove = tsi108_ether_remove,
 162        .driver = {
 163                .name = "tsi-ethernet",
 164        },
 165};
 166
 167static void tsi108_timed_checker(unsigned long dev_ptr);
 168
 169static void dump_eth_one(struct net_device *dev)
 170{
 171        struct tsi108_prv_data *data = netdev_priv(dev);
 172
 173        printk("Dumping %s...\n", dev->name);
 174        printk("intstat %x intmask %x phy_ok %d"
 175               " link %d speed %d duplex %d\n",
 176               TSI_READ(TSI108_EC_INTSTAT),
 177               TSI_READ(TSI108_EC_INTMASK), data->phy_ok,
 178               data->link_up, data->speed, data->duplex);
 179
 180        printk("TX: head %d, tail %d, free %d, stat %x, estat %x, err %x\n",
 181               data->txhead, data->txtail, data->txfree,
 182               TSI_READ(TSI108_EC_TXSTAT),
 183               TSI_READ(TSI108_EC_TXESTAT),
 184               TSI_READ(TSI108_EC_TXERR));
 185
 186        printk("RX: head %d, tail %d, free %d, stat %x,"
 187               " estat %x, err %x, pending %d\n\n",
 188               data->rxhead, data->rxtail, data->rxfree,
 189               TSI_READ(TSI108_EC_RXSTAT),
 190               TSI_READ(TSI108_EC_RXESTAT),
 191               TSI_READ(TSI108_EC_RXERR), data->rxpending);
 192}
 193
 194/* Synchronization is needed between the thread and up/down events.
 195 * Note that the PHY is accessed through the same registers for both
 196 * interfaces, so this can't be made interface-specific.
 197 */
 198
 199static DEFINE_SPINLOCK(phy_lock);
 200
 201static int tsi108_read_mii(struct tsi108_prv_data *data, int reg)
 202{
 203        unsigned i;
 204
 205        TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
 206                                (data->phy << TSI108_MAC_MII_ADDR_PHY) |
 207                                (reg << TSI108_MAC_MII_ADDR_REG));
 208        TSI_WRITE_PHY(TSI108_MAC_MII_CMD, 0);
 209        TSI_WRITE_PHY(TSI108_MAC_MII_CMD, TSI108_MAC_MII_CMD_READ);
 210        for (i = 0; i < 100; i++) {
 211                if (!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
 212                      (TSI108_MAC_MII_IND_NOTVALID | TSI108_MAC_MII_IND_BUSY)))
 213                        break;
 214                udelay(10);
 215        }
 216
 217        if (i == 100)
 218                return 0xffff;
 219        else
 220                return TSI_READ_PHY(TSI108_MAC_MII_DATAIN);
 221}
 222
 223static void tsi108_write_mii(struct tsi108_prv_data *data,
 224                                int reg, u16 val)
 225{
 226        unsigned i = 100;
 227        TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
 228                                (data->phy << TSI108_MAC_MII_ADDR_PHY) |
 229                                (reg << TSI108_MAC_MII_ADDR_REG));
 230        TSI_WRITE_PHY(TSI108_MAC_MII_DATAOUT, val);
 231        while (i--) {
 232                if(!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
 233                        TSI108_MAC_MII_IND_BUSY))
 234                        break;
 235                udelay(10);
 236        }
 237}
 238
 239static int tsi108_mdio_read(struct net_device *dev, int addr, int reg)
 240{
 241        struct tsi108_prv_data *data = netdev_priv(dev);
 242        return tsi108_read_mii(data, reg);
 243}
 244
 245static void tsi108_mdio_write(struct net_device *dev, int addr, int reg, int val)
 246{
 247        struct tsi108_prv_data *data = netdev_priv(dev);
 248        tsi108_write_mii(data, reg, val);
 249}
 250
 251static inline void tsi108_write_tbi(struct tsi108_prv_data *data,
 252                                        int reg, u16 val)
 253{
 254        unsigned i = 1000;
 255        TSI_WRITE(TSI108_MAC_MII_ADDR,
 256                             (0x1e << TSI108_MAC_MII_ADDR_PHY)
 257                             | (reg << TSI108_MAC_MII_ADDR_REG));
 258        TSI_WRITE(TSI108_MAC_MII_DATAOUT, val);
 259        while(i--) {
 260                if(!(TSI_READ(TSI108_MAC_MII_IND) & TSI108_MAC_MII_IND_BUSY))
 261                        return;
 262                udelay(10);
 263        }
 264        printk(KERN_ERR "%s function time out\n", __func__);
 265}
 266
 267static int mii_speed(struct mii_if_info *mii)
 268{
 269        int advert, lpa, val, media;
 270        int lpa2 = 0;
 271        int speed;
 272
 273        if (!mii_link_ok(mii))
 274                return 0;
 275
 276        val = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_BMSR);
 277        if ((val & BMSR_ANEGCOMPLETE) == 0)
 278                return 0;
 279
 280        advert = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_ADVERTISE);
 281        lpa = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_LPA);
 282        media = mii_nway_result(advert & lpa);
 283
 284        if (mii->supports_gmii)
 285                lpa2 = mii->mdio_read(mii->dev, mii->phy_id, MII_STAT1000);
 286
 287        speed = lpa2 & (LPA_1000FULL | LPA_1000HALF) ? 1000 :
 288                        (media & (ADVERTISE_100FULL | ADVERTISE_100HALF) ? 100 : 10);
 289        return speed;
 290}
 291
 292static void tsi108_check_phy(struct net_device *dev)
 293{
 294        struct tsi108_prv_data *data = netdev_priv(dev);
 295        u32 mac_cfg2_reg, portctrl_reg;
 296        u32 duplex;
 297        u32 speed;
 298        unsigned long flags;
 299
 300        spin_lock_irqsave(&phy_lock, flags);
 301
 302        if (!data->phy_ok)
 303                goto out;
 304
 305        duplex = mii_check_media(&data->mii_if, netif_msg_link(data), data->init_media);
 306        data->init_media = 0;
 307
 308        if (netif_carrier_ok(dev)) {
 309
 310                speed = mii_speed(&data->mii_if);
 311
 312                if ((speed != data->speed) || duplex) {
 313
 314                        mac_cfg2_reg = TSI_READ(TSI108_MAC_CFG2);
 315                        portctrl_reg = TSI_READ(TSI108_EC_PORTCTRL);
 316
 317                        mac_cfg2_reg &= ~TSI108_MAC_CFG2_IFACE_MASK;
 318
 319                        if (speed == 1000) {
 320                                mac_cfg2_reg |= TSI108_MAC_CFG2_GIG;
 321                                portctrl_reg &= ~TSI108_EC_PORTCTRL_NOGIG;
 322                        } else {
 323                                mac_cfg2_reg |= TSI108_MAC_CFG2_NOGIG;
 324                                portctrl_reg |= TSI108_EC_PORTCTRL_NOGIG;
 325                        }
 326
 327                        data->speed = speed;
 328
 329                        if (data->mii_if.full_duplex) {
 330                                mac_cfg2_reg |= TSI108_MAC_CFG2_FULLDUPLEX;
 331                                portctrl_reg &= ~TSI108_EC_PORTCTRL_HALFDUPLEX;
 332                                data->duplex = 2;
 333                        } else {
 334                                mac_cfg2_reg &= ~TSI108_MAC_CFG2_FULLDUPLEX;
 335                                portctrl_reg |= TSI108_EC_PORTCTRL_HALFDUPLEX;
 336                                data->duplex = 1;
 337                        }
 338
 339                        TSI_WRITE(TSI108_MAC_CFG2, mac_cfg2_reg);
 340                        TSI_WRITE(TSI108_EC_PORTCTRL, portctrl_reg);
 341                }
 342
 343                if (data->link_up == 0) {
 344                        /* The manual says it can take 3-4 usecs for the speed change
 345                         * to take effect.
 346                         */
 347                        udelay(5);
 348
 349                        spin_lock(&data->txlock);
 350                        if (is_valid_ether_addr(dev->dev_addr) && data->txfree)
 351                                netif_wake_queue(dev);
 352
 353                        data->link_up = 1;
 354                        spin_unlock(&data->txlock);
 355                }
 356        } else {
 357                if (data->link_up == 1) {
 358                        netif_stop_queue(dev);
 359                        data->link_up = 0;
 360                        printk(KERN_NOTICE "%s : link is down\n", dev->name);
 361                }
 362
 363                goto out;
 364        }
 365
 366
 367out:
 368        spin_unlock_irqrestore(&phy_lock, flags);
 369}
 370
 371static inline void
 372tsi108_stat_carry_one(int carry, int carry_bit, int carry_shift,
 373                      unsigned long *upper)
 374{
 375        if (carry & carry_bit)
 376                *upper += carry_shift;
 377}
 378
 379static void tsi108_stat_carry(struct net_device *dev)
 380{
 381        struct tsi108_prv_data *data = netdev_priv(dev);
 382        u32 carry1, carry2;
 383
 384        spin_lock_irq(&data->misclock);
 385
 386        carry1 = TSI_READ(TSI108_STAT_CARRY1);
 387        carry2 = TSI_READ(TSI108_STAT_CARRY2);
 388
 389        TSI_WRITE(TSI108_STAT_CARRY1, carry1);
 390        TSI_WRITE(TSI108_STAT_CARRY2, carry2);
 391
 392        tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXBYTES,
 393                              TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
 394
 395        tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXPKTS,
 396                              TSI108_STAT_RXPKTS_CARRY,
 397                              &data->stats.rx_packets);
 398
 399        tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFCS,
 400                              TSI108_STAT_RXFCS_CARRY, &data->rx_fcs);
 401
 402        tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXMCAST,
 403                              TSI108_STAT_RXMCAST_CARRY,
 404                              &data->stats.multicast);
 405
 406        tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXALIGN,
 407                              TSI108_STAT_RXALIGN_CARRY,
 408                              &data->stats.rx_frame_errors);
 409
 410        tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXLENGTH,
 411                              TSI108_STAT_RXLENGTH_CARRY,
 412                              &data->stats.rx_length_errors);
 413
 414        tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXRUNT,
 415                              TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
 416
 417        tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJUMBO,
 418                              TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
 419
 420        tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFRAG,
 421                              TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
 422
 423        tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJABBER,
 424                              TSI108_STAT_RXJABBER_CARRY, &data->rx_long_fcs);
 425
 426        tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXDROP,
 427                              TSI108_STAT_RXDROP_CARRY,
 428                              &data->stats.rx_missed_errors);
 429
 430        tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXBYTES,
 431                              TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
 432
 433        tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPKTS,
 434                              TSI108_STAT_TXPKTS_CARRY,
 435                              &data->stats.tx_packets);
 436
 437        tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXDEF,
 438                              TSI108_STAT_TXEXDEF_CARRY,
 439                              &data->stats.tx_aborted_errors);
 440
 441        tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXCOL,
 442                              TSI108_STAT_TXEXCOL_CARRY, &data->tx_coll_abort);
 443
 444        tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXTCOL,
 445                              TSI108_STAT_TXTCOL_CARRY,
 446                              &data->stats.collisions);
 447
 448        tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPAUSE,
 449                              TSI108_STAT_TXPAUSEDROP_CARRY,
 450                              &data->tx_pause_drop);
 451
 452        spin_unlock_irq(&data->misclock);
 453}
 454
 455/* Read a stat counter atomically with respect to carries.
 456 * data->misclock must be held.
 457 */
 458static inline unsigned long
 459tsi108_read_stat(struct tsi108_prv_data * data, int reg, int carry_bit,
 460                 int carry_shift, unsigned long *upper)
 461{
 462        int carryreg;
 463        unsigned long val;
 464
 465        if (reg < 0xb0)
 466                carryreg = TSI108_STAT_CARRY1;
 467        else
 468                carryreg = TSI108_STAT_CARRY2;
 469
 470      again:
 471        val = TSI_READ(reg) | *upper;
 472
 473        /* Check to see if it overflowed, but the interrupt hasn't
 474         * been serviced yet.  If so, handle the carry here, and
 475         * try again.
 476         */
 477
 478        if (unlikely(TSI_READ(carryreg) & carry_bit)) {
 479                *upper += carry_shift;
 480                TSI_WRITE(carryreg, carry_bit);
 481                goto again;
 482        }
 483
 484        return val;
 485}
 486
 487static struct net_device_stats *tsi108_get_stats(struct net_device *dev)
 488{
 489        unsigned long excol;
 490
 491        struct tsi108_prv_data *data = netdev_priv(dev);
 492        spin_lock_irq(&data->misclock);
 493
 494        data->tmpstats.rx_packets =
 495            tsi108_read_stat(data, TSI108_STAT_RXPKTS,
 496                             TSI108_STAT_CARRY1_RXPKTS,
 497                             TSI108_STAT_RXPKTS_CARRY, &data->stats.rx_packets);
 498
 499        data->tmpstats.tx_packets =
 500            tsi108_read_stat(data, TSI108_STAT_TXPKTS,
 501                             TSI108_STAT_CARRY2_TXPKTS,
 502                             TSI108_STAT_TXPKTS_CARRY, &data->stats.tx_packets);
 503
 504        data->tmpstats.rx_bytes =
 505            tsi108_read_stat(data, TSI108_STAT_RXBYTES,
 506                             TSI108_STAT_CARRY1_RXBYTES,
 507                             TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
 508
 509        data->tmpstats.tx_bytes =
 510            tsi108_read_stat(data, TSI108_STAT_TXBYTES,
 511                             TSI108_STAT_CARRY2_TXBYTES,
 512                             TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
 513
 514        data->tmpstats.multicast =
 515            tsi108_read_stat(data, TSI108_STAT_RXMCAST,
 516                             TSI108_STAT_CARRY1_RXMCAST,
 517                             TSI108_STAT_RXMCAST_CARRY, &data->stats.multicast);
 518
 519        excol = tsi108_read_stat(data, TSI108_STAT_TXEXCOL,
 520                                 TSI108_STAT_CARRY2_TXEXCOL,
 521                                 TSI108_STAT_TXEXCOL_CARRY,
 522                                 &data->tx_coll_abort);
 523
 524        data->tmpstats.collisions =
 525            tsi108_read_stat(data, TSI108_STAT_TXTCOL,
 526                             TSI108_STAT_CARRY2_TXTCOL,
 527                             TSI108_STAT_TXTCOL_CARRY, &data->stats.collisions);
 528
 529        data->tmpstats.collisions += excol;
 530
 531        data->tmpstats.rx_length_errors =
 532            tsi108_read_stat(data, TSI108_STAT_RXLENGTH,
 533                             TSI108_STAT_CARRY1_RXLENGTH,
 534                             TSI108_STAT_RXLENGTH_CARRY,
 535                             &data->stats.rx_length_errors);
 536
 537        data->tmpstats.rx_length_errors +=
 538            tsi108_read_stat(data, TSI108_STAT_RXRUNT,
 539                             TSI108_STAT_CARRY1_RXRUNT,
 540                             TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
 541
 542        data->tmpstats.rx_length_errors +=
 543            tsi108_read_stat(data, TSI108_STAT_RXJUMBO,
 544                             TSI108_STAT_CARRY1_RXJUMBO,
 545                             TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
 546
 547        data->tmpstats.rx_frame_errors =
 548            tsi108_read_stat(data, TSI108_STAT_RXALIGN,
 549                             TSI108_STAT_CARRY1_RXALIGN,
 550                             TSI108_STAT_RXALIGN_CARRY,
 551                             &data->stats.rx_frame_errors);
 552
 553        data->tmpstats.rx_frame_errors +=
 554            tsi108_read_stat(data, TSI108_STAT_RXFCS,
 555                             TSI108_STAT_CARRY1_RXFCS, TSI108_STAT_RXFCS_CARRY,
 556                             &data->rx_fcs);
 557
 558        data->tmpstats.rx_frame_errors +=
 559            tsi108_read_stat(data, TSI108_STAT_RXFRAG,
 560                             TSI108_STAT_CARRY1_RXFRAG,
 561                             TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
 562
 563        data->tmpstats.rx_missed_errors =
 564            tsi108_read_stat(data, TSI108_STAT_RXDROP,
 565                             TSI108_STAT_CARRY1_RXDROP,
 566                             TSI108_STAT_RXDROP_CARRY,
 567                             &data->stats.rx_missed_errors);
 568
 569        /* These three are maintained by software. */
 570        data->tmpstats.rx_fifo_errors = data->stats.rx_fifo_errors;
 571        data->tmpstats.rx_crc_errors = data->stats.rx_crc_errors;
 572
 573        data->tmpstats.tx_aborted_errors =
 574            tsi108_read_stat(data, TSI108_STAT_TXEXDEF,
 575                             TSI108_STAT_CARRY2_TXEXDEF,
 576                             TSI108_STAT_TXEXDEF_CARRY,
 577                             &data->stats.tx_aborted_errors);
 578
 579        data->tmpstats.tx_aborted_errors +=
 580            tsi108_read_stat(data, TSI108_STAT_TXPAUSEDROP,
 581                             TSI108_STAT_CARRY2_TXPAUSE,
 582                             TSI108_STAT_TXPAUSEDROP_CARRY,
 583                             &data->tx_pause_drop);
 584
 585        data->tmpstats.tx_aborted_errors += excol;
 586
 587        data->tmpstats.tx_errors = data->tmpstats.tx_aborted_errors;
 588        data->tmpstats.rx_errors = data->tmpstats.rx_length_errors +
 589            data->tmpstats.rx_crc_errors +
 590            data->tmpstats.rx_frame_errors +
 591            data->tmpstats.rx_fifo_errors + data->tmpstats.rx_missed_errors;
 592
 593        spin_unlock_irq(&data->misclock);
 594        return &data->tmpstats;
 595}
 596
 597static void tsi108_restart_rx(struct tsi108_prv_data * data, struct net_device *dev)
 598{
 599        TSI_WRITE(TSI108_EC_RXQ_PTRHIGH,
 600                             TSI108_EC_RXQ_PTRHIGH_VALID);
 601
 602        TSI_WRITE(TSI108_EC_RXCTRL, TSI108_EC_RXCTRL_GO
 603                             | TSI108_EC_RXCTRL_QUEUE0);
 604}
 605
 606static void tsi108_restart_tx(struct tsi108_prv_data * data)
 607{
 608        TSI_WRITE(TSI108_EC_TXQ_PTRHIGH,
 609                             TSI108_EC_TXQ_PTRHIGH_VALID);
 610
 611        TSI_WRITE(TSI108_EC_TXCTRL, TSI108_EC_TXCTRL_IDLEINT |
 612                             TSI108_EC_TXCTRL_GO | TSI108_EC_TXCTRL_QUEUE0);
 613}
 614
 615/* txlock must be held by caller, with IRQs disabled, and
 616 * with permission to re-enable them when the lock is dropped.
 617 */
 618static void tsi108_complete_tx(struct net_device *dev)
 619{
 620        struct tsi108_prv_data *data = netdev_priv(dev);
 621        int tx;
 622        struct sk_buff *skb;
 623        int release = 0;
 624
 625        while (!data->txfree || data->txhead != data->txtail) {
 626                tx = data->txtail;
 627
 628                if (data->txring[tx].misc & TSI108_TX_OWN)
 629                        break;
 630
 631                skb = data->txskbs[tx];
 632
 633                if (!(data->txring[tx].misc & TSI108_TX_OK))
 634                        printk("%s: bad tx packet, misc %x\n",
 635                               dev->name, data->txring[tx].misc);
 636
 637                data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
 638                data->txfree++;
 639
 640                if (data->txring[tx].misc & TSI108_TX_EOF) {
 641                        dev_kfree_skb_any(skb);
 642                        release++;
 643                }
 644        }
 645
 646        if (release) {
 647                if (is_valid_ether_addr(dev->dev_addr) && data->link_up)
 648                        netif_wake_queue(dev);
 649        }
 650}
 651
 652static int tsi108_send_packet(struct sk_buff * skb, struct net_device *dev)
 653{
 654        struct tsi108_prv_data *data = netdev_priv(dev);
 655        int frags = skb_shinfo(skb)->nr_frags + 1;
 656        int i;
 657
 658        if (!data->phy_ok && net_ratelimit())
 659                printk(KERN_ERR "%s: Transmit while PHY is down!\n", dev->name);
 660
 661        if (!data->link_up) {
 662                printk(KERN_ERR "%s: Transmit while link is down!\n",
 663                       dev->name);
 664                netif_stop_queue(dev);
 665                return NETDEV_TX_BUSY;
 666        }
 667
 668        if (data->txfree < MAX_SKB_FRAGS + 1) {
 669                netif_stop_queue(dev);
 670
 671                if (net_ratelimit())
 672                        printk(KERN_ERR "%s: Transmit with full tx ring!\n",
 673                               dev->name);
 674                return NETDEV_TX_BUSY;
 675        }
 676
 677        if (data->txfree - frags < MAX_SKB_FRAGS + 1) {
 678                netif_stop_queue(dev);
 679        }
 680
 681        spin_lock_irq(&data->txlock);
 682
 683        for (i = 0; i < frags; i++) {
 684                int misc = 0;
 685                int tx = data->txhead;
 686
 687                /* This is done to mark every TSI108_TX_INT_FREQ tx buffers with
 688                 * the interrupt bit.  TX descriptor-complete interrupts are
 689                 * enabled when the queue fills up, and masked when there is
 690                 * still free space.  This way, when saturating the outbound
 691                 * link, the tx interrupts are kept to a reasonable level.
 692                 * When the queue is not full, reclamation of skbs still occurs
 693                 * as new packets are transmitted, or on a queue-empty
 694                 * interrupt.
 695                 */
 696
 697                if ((tx % TSI108_TX_INT_FREQ == 0) &&
 698                    ((TSI108_TXRING_LEN - data->txfree) >= TSI108_TX_INT_FREQ))
 699                        misc = TSI108_TX_INT;
 700
 701                data->txskbs[tx] = skb;
 702
 703                if (i == 0) {
 704                        data->txring[tx].buf0 = dma_map_single(NULL, skb->data,
 705                                        skb_headlen(skb), DMA_TO_DEVICE);
 706                        data->txring[tx].len = skb_headlen(skb);
 707                        misc |= TSI108_TX_SOF;
 708                } else {
 709                        const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
 710
 711                        data->txring[tx].buf0 = skb_frag_dma_map(NULL, frag,
 712                                                                 0,
 713                                                                 skb_frag_size(frag),
 714                                                                 DMA_TO_DEVICE);
 715                        data->txring[tx].len = skb_frag_size(frag);
 716                }
 717
 718                if (i == frags - 1)
 719                        misc |= TSI108_TX_EOF;
 720
 721                if (netif_msg_pktdata(data)) {
 722                        int i;
 723                        printk("%s: Tx Frame contents (%d)\n", dev->name,
 724                               skb->len);
 725                        for (i = 0; i < skb->len; i++)
 726                                printk(" %2.2x", skb->data[i]);
 727                        printk(".\n");
 728                }
 729                data->txring[tx].misc = misc | TSI108_TX_OWN;
 730
 731                data->txhead = (data->txhead + 1) % TSI108_TXRING_LEN;
 732                data->txfree--;
 733        }
 734
 735        tsi108_complete_tx(dev);
 736
 737        /* This must be done after the check for completed tx descriptors,
 738         * so that the tail pointer is correct.
 739         */
 740
 741        if (!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_QUEUE0))
 742                tsi108_restart_tx(data);
 743
 744        spin_unlock_irq(&data->txlock);
 745        return NETDEV_TX_OK;
 746}
 747
 748static int tsi108_complete_rx(struct net_device *dev, int budget)
 749{
 750        struct tsi108_prv_data *data = netdev_priv(dev);
 751        int done = 0;
 752
 753        while (data->rxfree && done != budget) {
 754                int rx = data->rxtail;
 755                struct sk_buff *skb;
 756
 757                if (data->rxring[rx].misc & TSI108_RX_OWN)
 758                        break;
 759
 760                skb = data->rxskbs[rx];
 761                data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
 762                data->rxfree--;
 763                done++;
 764
 765                if (data->rxring[rx].misc & TSI108_RX_BAD) {
 766                        spin_lock_irq(&data->misclock);
 767
 768                        if (data->rxring[rx].misc & TSI108_RX_CRC)
 769                                data->stats.rx_crc_errors++;
 770                        if (data->rxring[rx].misc & TSI108_RX_OVER)
 771                                data->stats.rx_fifo_errors++;
 772
 773                        spin_unlock_irq(&data->misclock);
 774
 775                        dev_kfree_skb_any(skb);
 776                        continue;
 777                }
 778                if (netif_msg_pktdata(data)) {
 779                        int i;
 780                        printk("%s: Rx Frame contents (%d)\n",
 781                               dev->name, data->rxring[rx].len);
 782                        for (i = 0; i < data->rxring[rx].len; i++)
 783                                printk(" %2.2x", skb->data[i]);
 784                        printk(".\n");
 785                }
 786
 787                skb_put(skb, data->rxring[rx].len);
 788                skb->protocol = eth_type_trans(skb, dev);
 789                netif_receive_skb(skb);
 790        }
 791
 792        return done;
 793}
 794
 795static int tsi108_refill_rx(struct net_device *dev, int budget)
 796{
 797        struct tsi108_prv_data *data = netdev_priv(dev);
 798        int done = 0;
 799
 800        while (data->rxfree != TSI108_RXRING_LEN && done != budget) {
 801                int rx = data->rxhead;
 802                struct sk_buff *skb;
 803
 804                skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE);
 805                data->rxskbs[rx] = skb;
 806                if (!skb)
 807                        break;
 808
 809                data->rxring[rx].buf0 = dma_map_single(NULL, skb->data,
 810                                                        TSI108_RX_SKB_SIZE,
 811                                                        DMA_FROM_DEVICE);
 812
 813                /* Sometimes the hardware sets blen to zero after packet
 814                 * reception, even though the manual says that it's only ever
 815                 * modified by the driver.
 816                 */
 817
 818                data->rxring[rx].blen = TSI108_RX_SKB_SIZE;
 819                data->rxring[rx].misc = TSI108_RX_OWN | TSI108_RX_INT;
 820
 821                data->rxhead = (data->rxhead + 1) % TSI108_RXRING_LEN;
 822                data->rxfree++;
 823                done++;
 824        }
 825
 826        if (done != 0 && !(TSI_READ(TSI108_EC_RXSTAT) &
 827                           TSI108_EC_RXSTAT_QUEUE0))
 828                tsi108_restart_rx(data, dev);
 829
 830        return done;
 831}
 832
 833static int tsi108_poll(struct napi_struct *napi, int budget)
 834{
 835        struct tsi108_prv_data *data = container_of(napi, struct tsi108_prv_data, napi);
 836        struct net_device *dev = data->dev;
 837        u32 estat = TSI_READ(TSI108_EC_RXESTAT);
 838        u32 intstat = TSI_READ(TSI108_EC_INTSTAT);
 839        int num_received = 0, num_filled = 0;
 840
 841        intstat &= TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
 842            TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR | TSI108_INT_RXWAIT;
 843
 844        TSI_WRITE(TSI108_EC_RXESTAT, estat);
 845        TSI_WRITE(TSI108_EC_INTSTAT, intstat);
 846
 847        if (data->rxpending || (estat & TSI108_EC_RXESTAT_Q0_DESCINT))
 848                num_received = tsi108_complete_rx(dev, budget);
 849
 850        /* This should normally fill no more slots than the number of
 851         * packets received in tsi108_complete_rx().  The exception
 852         * is when we previously ran out of memory for RX SKBs.  In that
 853         * case, it's helpful to obey the budget, not only so that the
 854         * CPU isn't hogged, but so that memory (which may still be low)
 855         * is not hogged by one device.
 856         *
 857         * A work unit is considered to be two SKBs to allow us to catch
 858         * up when the ring has shrunk due to out-of-memory but we're
 859         * still removing the full budget's worth of packets each time.
 860         */
 861
 862        if (data->rxfree < TSI108_RXRING_LEN)
 863                num_filled = tsi108_refill_rx(dev, budget * 2);
 864
 865        if (intstat & TSI108_INT_RXERROR) {
 866                u32 err = TSI_READ(TSI108_EC_RXERR);
 867                TSI_WRITE(TSI108_EC_RXERR, err);
 868
 869                if (err) {
 870                        if (net_ratelimit())
 871                                printk(KERN_DEBUG "%s: RX error %x\n",
 872                                       dev->name, err);
 873
 874                        if (!(TSI_READ(TSI108_EC_RXSTAT) &
 875                              TSI108_EC_RXSTAT_QUEUE0))
 876                                tsi108_restart_rx(data, dev);
 877                }
 878        }
 879
 880        if (intstat & TSI108_INT_RXOVERRUN) {
 881                spin_lock_irq(&data->misclock);
 882                data->stats.rx_fifo_errors++;
 883                spin_unlock_irq(&data->misclock);
 884        }
 885
 886        if (num_received < budget) {
 887                data->rxpending = 0;
 888                napi_complete(napi);
 889
 890                TSI_WRITE(TSI108_EC_INTMASK,
 891                                     TSI_READ(TSI108_EC_INTMASK)
 892                                     & ~(TSI108_INT_RXQUEUE0
 893                                         | TSI108_INT_RXTHRESH |
 894                                         TSI108_INT_RXOVERRUN |
 895                                         TSI108_INT_RXERROR |
 896                                         TSI108_INT_RXWAIT));
 897        } else {
 898                data->rxpending = 1;
 899        }
 900
 901        return num_received;
 902}
 903
 904static void tsi108_rx_int(struct net_device *dev)
 905{
 906        struct tsi108_prv_data *data = netdev_priv(dev);
 907
 908        /* A race could cause dev to already be scheduled, so it's not an
 909         * error if that happens (and interrupts shouldn't be re-masked,
 910         * because that can cause harmful races, if poll has already
 911         * unmasked them but not cleared LINK_STATE_SCHED).
 912         *
 913         * This can happen if this code races with tsi108_poll(), which masks
 914         * the interrupts after tsi108_irq_one() read the mask, but before
 915         * napi_schedule is called.  It could also happen due to calls
 916         * from tsi108_check_rxring().
 917         */
 918
 919        if (napi_schedule_prep(&data->napi)) {
 920                /* Mask, rather than ack, the receive interrupts.  The ack
 921                 * will happen in tsi108_poll().
 922                 */
 923
 924                TSI_WRITE(TSI108_EC_INTMASK,
 925                                     TSI_READ(TSI108_EC_INTMASK) |
 926                                     TSI108_INT_RXQUEUE0
 927                                     | TSI108_INT_RXTHRESH |
 928                                     TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR |
 929                                     TSI108_INT_RXWAIT);
 930                __napi_schedule(&data->napi);
 931        } else {
 932                if (!netif_running(dev)) {
 933                        /* This can happen if an interrupt occurs while the
 934                         * interface is being brought down, as the START
 935                         * bit is cleared before the stop function is called.
 936                         *
 937                         * In this case, the interrupts must be masked, or
 938                         * they will continue indefinitely.
 939                         *
 940                         * There's a race here if the interface is brought down
 941                         * and then up in rapid succession, as the device could
 942                         * be made running after the above check and before
 943                         * the masking below.  This will only happen if the IRQ
 944                         * thread has a lower priority than the task brining
 945                         * up the interface.  Fixing this race would likely
 946                         * require changes in generic code.
 947                         */
 948
 949                        TSI_WRITE(TSI108_EC_INTMASK,
 950                                             TSI_READ
 951                                             (TSI108_EC_INTMASK) |
 952                                             TSI108_INT_RXQUEUE0 |
 953                                             TSI108_INT_RXTHRESH |
 954                                             TSI108_INT_RXOVERRUN |
 955                                             TSI108_INT_RXERROR |
 956                                             TSI108_INT_RXWAIT);
 957                }
 958        }
 959}
 960
 961/* If the RX ring has run out of memory, try periodically
 962 * to allocate some more, as otherwise poll would never
 963 * get called (apart from the initial end-of-queue condition).
 964 *
 965 * This is called once per second (by default) from the thread.
 966 */
 967
 968static void tsi108_check_rxring(struct net_device *dev)
 969{
 970        struct tsi108_prv_data *data = netdev_priv(dev);
 971
 972        /* A poll is scheduled, as opposed to caling tsi108_refill_rx
 973         * directly, so as to keep the receive path single-threaded
 974         * (and thus not needing a lock).
 975         */
 976
 977        if (netif_running(dev) && data->rxfree < TSI108_RXRING_LEN / 4)
 978                tsi108_rx_int(dev);
 979}
 980
 981static void tsi108_tx_int(struct net_device *dev)
 982{
 983        struct tsi108_prv_data *data = netdev_priv(dev);
 984        u32 estat = TSI_READ(TSI108_EC_TXESTAT);
 985
 986        TSI_WRITE(TSI108_EC_TXESTAT, estat);
 987        TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_TXQUEUE0 |
 988                             TSI108_INT_TXIDLE | TSI108_INT_TXERROR);
 989        if (estat & TSI108_EC_TXESTAT_Q0_ERR) {
 990                u32 err = TSI_READ(TSI108_EC_TXERR);
 991                TSI_WRITE(TSI108_EC_TXERR, err);
 992
 993                if (err && net_ratelimit())
 994                        printk(KERN_ERR "%s: TX error %x\n", dev->name, err);
 995        }
 996
 997        if (estat & (TSI108_EC_TXESTAT_Q0_DESCINT | TSI108_EC_TXESTAT_Q0_EOQ)) {
 998                spin_lock(&data->txlock);
 999                tsi108_complete_tx(dev);
1000                spin_unlock(&data->txlock);
1001        }
1002}
1003
1004
1005static irqreturn_t tsi108_irq(int irq, void *dev_id)
1006{
1007        struct net_device *dev = dev_id;
1008        struct tsi108_prv_data *data = netdev_priv(dev);
1009        u32 stat = TSI_READ(TSI108_EC_INTSTAT);
1010
1011        if (!(stat & TSI108_INT_ANY))
1012                return IRQ_NONE;        /* Not our interrupt */
1013
1014        stat &= ~TSI_READ(TSI108_EC_INTMASK);
1015
1016        if (stat & (TSI108_INT_TXQUEUE0 | TSI108_INT_TXIDLE |
1017                    TSI108_INT_TXERROR))
1018                tsi108_tx_int(dev);
1019        if (stat & (TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
1020                    TSI108_INT_RXWAIT | TSI108_INT_RXOVERRUN |
1021                    TSI108_INT_RXERROR))
1022                tsi108_rx_int(dev);
1023
1024        if (stat & TSI108_INT_SFN) {
1025                if (net_ratelimit())
1026                        printk(KERN_DEBUG "%s: SFN error\n", dev->name);
1027                TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_SFN);
1028        }
1029
1030        if (stat & TSI108_INT_STATCARRY) {
1031                tsi108_stat_carry(dev);
1032                TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_STATCARRY);
1033        }
1034
1035        return IRQ_HANDLED;
1036}
1037
1038static void tsi108_stop_ethernet(struct net_device *dev)
1039{
1040        struct tsi108_prv_data *data = netdev_priv(dev);
1041        int i = 1000;
1042        /* Disable all TX and RX queues ... */
1043        TSI_WRITE(TSI108_EC_TXCTRL, 0);
1044        TSI_WRITE(TSI108_EC_RXCTRL, 0);
1045
1046        /* ...and wait for them to become idle */
1047        while(i--) {
1048                if(!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_ACTIVE))
1049                        break;
1050                udelay(10);
1051        }
1052        i = 1000;
1053        while(i--){
1054                if(!(TSI_READ(TSI108_EC_RXSTAT) & TSI108_EC_RXSTAT_ACTIVE))
1055                        return;
1056                udelay(10);
1057        }
1058        printk(KERN_ERR "%s function time out\n", __func__);
1059}
1060
1061static void tsi108_reset_ether(struct tsi108_prv_data * data)
1062{
1063        TSI_WRITE(TSI108_MAC_CFG1, TSI108_MAC_CFG1_SOFTRST);
1064        udelay(100);
1065        TSI_WRITE(TSI108_MAC_CFG1, 0);
1066
1067        TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATRST);
1068        udelay(100);
1069        TSI_WRITE(TSI108_EC_PORTCTRL,
1070                             TSI_READ(TSI108_EC_PORTCTRL) &
1071                             ~TSI108_EC_PORTCTRL_STATRST);
1072
1073        TSI_WRITE(TSI108_EC_TXCFG, TSI108_EC_TXCFG_RST);
1074        udelay(100);
1075        TSI_WRITE(TSI108_EC_TXCFG,
1076                             TSI_READ(TSI108_EC_TXCFG) &
1077                             ~TSI108_EC_TXCFG_RST);
1078
1079        TSI_WRITE(TSI108_EC_RXCFG, TSI108_EC_RXCFG_RST);
1080        udelay(100);
1081        TSI_WRITE(TSI108_EC_RXCFG,
1082                             TSI_READ(TSI108_EC_RXCFG) &
1083                             ~TSI108_EC_RXCFG_RST);
1084
1085        TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1086                             TSI_READ(TSI108_MAC_MII_MGMT_CFG) |
1087                             TSI108_MAC_MII_MGMT_RST);
1088        udelay(100);
1089        TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1090                             (TSI_READ(TSI108_MAC_MII_MGMT_CFG) &
1091                             ~(TSI108_MAC_MII_MGMT_RST |
1092                               TSI108_MAC_MII_MGMT_CLK)) | 0x07);
1093}
1094
1095static int tsi108_get_mac(struct net_device *dev)
1096{
1097        struct tsi108_prv_data *data = netdev_priv(dev);
1098        u32 word1 = TSI_READ(TSI108_MAC_ADDR1);
1099        u32 word2 = TSI_READ(TSI108_MAC_ADDR2);
1100
1101        /* Note that the octets are reversed from what the manual says,
1102         * producing an even weirder ordering...
1103         */
1104        if (word2 == 0 && word1 == 0) {
1105                dev->dev_addr[0] = 0x00;
1106                dev->dev_addr[1] = 0x06;
1107                dev->dev_addr[2] = 0xd2;
1108                dev->dev_addr[3] = 0x00;
1109                dev->dev_addr[4] = 0x00;
1110                if (0x8 == data->phy)
1111                        dev->dev_addr[5] = 0x01;
1112                else
1113                        dev->dev_addr[5] = 0x02;
1114
1115                word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1116
1117                word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1118                    (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1119
1120                TSI_WRITE(TSI108_MAC_ADDR1, word1);
1121                TSI_WRITE(TSI108_MAC_ADDR2, word2);
1122        } else {
1123                dev->dev_addr[0] = (word2 >> 16) & 0xff;
1124                dev->dev_addr[1] = (word2 >> 24) & 0xff;
1125                dev->dev_addr[2] = (word1 >> 0) & 0xff;
1126                dev->dev_addr[3] = (word1 >> 8) & 0xff;
1127                dev->dev_addr[4] = (word1 >> 16) & 0xff;
1128                dev->dev_addr[5] = (word1 >> 24) & 0xff;
1129        }
1130
1131        if (!is_valid_ether_addr(dev->dev_addr)) {
1132                printk(KERN_ERR
1133                       "%s: Invalid MAC address. word1: %08x, word2: %08x\n",
1134                       dev->name, word1, word2);
1135                return -EINVAL;
1136        }
1137
1138        return 0;
1139}
1140
1141static int tsi108_set_mac(struct net_device *dev, void *addr)
1142{
1143        struct tsi108_prv_data *data = netdev_priv(dev);
1144        u32 word1, word2;
1145        int i;
1146
1147        if (!is_valid_ether_addr(addr))
1148                return -EADDRNOTAVAIL;
1149
1150        for (i = 0; i < 6; i++)
1151                /* +2 is for the offset of the HW addr type */
1152                dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];
1153
1154        word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1155
1156        word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1157            (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1158
1159        spin_lock_irq(&data->misclock);
1160        TSI_WRITE(TSI108_MAC_ADDR1, word1);
1161        TSI_WRITE(TSI108_MAC_ADDR2, word2);
1162        spin_lock(&data->txlock);
1163
1164        if (data->txfree && data->link_up)
1165                netif_wake_queue(dev);
1166
1167        spin_unlock(&data->txlock);
1168        spin_unlock_irq(&data->misclock);
1169        return 0;
1170}
1171
1172/* Protected by dev->xmit_lock. */
1173static void tsi108_set_rx_mode(struct net_device *dev)
1174{
1175        struct tsi108_prv_data *data = netdev_priv(dev);
1176        u32 rxcfg = TSI_READ(TSI108_EC_RXCFG);
1177
1178        if (dev->flags & IFF_PROMISC) {
1179                rxcfg &= ~(TSI108_EC_RXCFG_UC_HASH | TSI108_EC_RXCFG_MC_HASH);
1180                rxcfg |= TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE;
1181                goto out;
1182        }
1183
1184        rxcfg &= ~(TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE);
1185
1186        if (dev->flags & IFF_ALLMULTI || !netdev_mc_empty(dev)) {
1187                int i;
1188                struct netdev_hw_addr *ha;
1189                rxcfg |= TSI108_EC_RXCFG_MFE | TSI108_EC_RXCFG_MC_HASH;
1190
1191                memset(data->mc_hash, 0, sizeof(data->mc_hash));
1192
1193                netdev_for_each_mc_addr(ha, dev) {
1194                        u32 hash, crc;
1195
1196                        crc = ether_crc(6, ha->addr);
1197                        hash = crc >> 23;
1198                        __set_bit(hash, &data->mc_hash[0]);
1199                }
1200
1201                TSI_WRITE(TSI108_EC_HASHADDR,
1202                                     TSI108_EC_HASHADDR_AUTOINC |
1203                                     TSI108_EC_HASHADDR_MCAST);
1204
1205                for (i = 0; i < 16; i++) {
1206                        /* The manual says that the hardware may drop
1207                         * back-to-back writes to the data register.
1208                         */
1209                        udelay(1);
1210                        TSI_WRITE(TSI108_EC_HASHDATA,
1211                                             data->mc_hash[i]);
1212                }
1213        }
1214
1215      out:
1216        TSI_WRITE(TSI108_EC_RXCFG, rxcfg);
1217}
1218
1219static void tsi108_init_phy(struct net_device *dev)
1220{
1221        struct tsi108_prv_data *data = netdev_priv(dev);
1222        u32 i = 0;
1223        u16 phyval = 0;
1224        unsigned long flags;
1225
1226        spin_lock_irqsave(&phy_lock, flags);
1227
1228        tsi108_write_mii(data, MII_BMCR, BMCR_RESET);
1229        while (--i) {
1230                if(!(tsi108_read_mii(data, MII_BMCR) & BMCR_RESET))
1231                        break;
1232                udelay(10);
1233        }
1234        if (i == 0)
1235                printk(KERN_ERR "%s function time out\n", __func__);
1236
1237        if (data->phy_type == TSI108_PHY_BCM54XX) {
1238                tsi108_write_mii(data, 0x09, 0x0300);
1239                tsi108_write_mii(data, 0x10, 0x1020);
1240                tsi108_write_mii(data, 0x1c, 0x8c00);
1241        }
1242
1243        tsi108_write_mii(data,
1244                         MII_BMCR,
1245                         BMCR_ANENABLE | BMCR_ANRESTART);
1246        while (tsi108_read_mii(data, MII_BMCR) & BMCR_ANRESTART)
1247                cpu_relax();
1248
1249        /* Set G/MII mode and receive clock select in TBI control #2.  The
1250         * second port won't work if this isn't done, even though we don't
1251         * use TBI mode.
1252         */
1253
1254        tsi108_write_tbi(data, 0x11, 0x30);
1255
1256        /* FIXME: It seems to take more than 2 back-to-back reads to the
1257         * PHY_STAT register before the link up status bit is set.
1258         */
1259
1260        data->link_up = 0;
1261
1262        while (!((phyval = tsi108_read_mii(data, MII_BMSR)) &
1263                 BMSR_LSTATUS)) {
1264                if (i++ > (MII_READ_DELAY / 10)) {
1265                        break;
1266                }
1267                spin_unlock_irqrestore(&phy_lock, flags);
1268                msleep(10);
1269                spin_lock_irqsave(&phy_lock, flags);
1270        }
1271
1272        data->mii_if.supports_gmii = mii_check_gmii_support(&data->mii_if);
1273        printk(KERN_DEBUG "PHY_STAT reg contains %08x\n", phyval);
1274        data->phy_ok = 1;
1275        data->init_media = 1;
1276        spin_unlock_irqrestore(&phy_lock, flags);
1277}
1278
1279static void tsi108_kill_phy(struct net_device *dev)
1280{
1281        struct tsi108_prv_data *data = netdev_priv(dev);
1282        unsigned long flags;
1283
1284        spin_lock_irqsave(&phy_lock, flags);
1285        tsi108_write_mii(data, MII_BMCR, BMCR_PDOWN);
1286        data->phy_ok = 0;
1287        spin_unlock_irqrestore(&phy_lock, flags);
1288}
1289
1290static int tsi108_open(struct net_device *dev)
1291{
1292        int i;
1293        struct tsi108_prv_data *data = netdev_priv(dev);
1294        unsigned int rxring_size = TSI108_RXRING_LEN * sizeof(rx_desc);
1295        unsigned int txring_size = TSI108_TXRING_LEN * sizeof(tx_desc);
1296
1297        i = request_irq(data->irq_num, tsi108_irq, 0, dev->name, dev);
1298        if (i != 0) {
1299                printk(KERN_ERR "tsi108_eth%d: Could not allocate IRQ%d.\n",
1300                       data->id, data->irq_num);
1301                return i;
1302        } else {
1303                dev->irq = data->irq_num;
1304                printk(KERN_NOTICE
1305                       "tsi108_open : Port %d Assigned IRQ %d to %s\n",
1306                       data->id, dev->irq, dev->name);
1307        }
1308
1309        data->rxring = dma_zalloc_coherent(NULL, rxring_size, &data->rxdma,
1310                                           GFP_KERNEL);
1311        if (!data->rxring)
1312                return -ENOMEM;
1313
1314        data->txring = dma_zalloc_coherent(NULL, txring_size, &data->txdma,
1315                                           GFP_KERNEL);
1316        if (!data->txring) {
1317                pci_free_consistent(0, rxring_size, data->rxring, data->rxdma);
1318                return -ENOMEM;
1319        }
1320
1321        for (i = 0; i < TSI108_RXRING_LEN; i++) {
1322                data->rxring[i].next0 = data->rxdma + (i + 1) * sizeof(rx_desc);
1323                data->rxring[i].blen = TSI108_RXBUF_SIZE;
1324                data->rxring[i].vlan = 0;
1325        }
1326
1327        data->rxring[TSI108_RXRING_LEN - 1].next0 = data->rxdma;
1328
1329        data->rxtail = 0;
1330        data->rxhead = 0;
1331
1332        for (i = 0; i < TSI108_RXRING_LEN; i++) {
1333                struct sk_buff *skb;
1334
1335                skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE);
1336                if (!skb) {
1337                        /* Bah.  No memory for now, but maybe we'll get
1338                         * some more later.
1339                         * For now, we'll live with the smaller ring.
1340                         */
1341                        printk(KERN_WARNING
1342                               "%s: Could only allocate %d receive skb(s).\n",
1343                               dev->name, i);
1344                        data->rxhead = i;
1345                        break;
1346                }
1347
1348                data->rxskbs[i] = skb;
1349                data->rxring[i].buf0 = virt_to_phys(data->rxskbs[i]->data);
1350                data->rxring[i].misc = TSI108_RX_OWN | TSI108_RX_INT;
1351        }
1352
1353        data->rxfree = i;
1354        TSI_WRITE(TSI108_EC_RXQ_PTRLOW, data->rxdma);
1355
1356        for (i = 0; i < TSI108_TXRING_LEN; i++) {
1357                data->txring[i].next0 = data->txdma + (i + 1) * sizeof(tx_desc);
1358                data->txring[i].misc = 0;
1359        }
1360
1361        data->txring[TSI108_TXRING_LEN - 1].next0 = data->txdma;
1362        data->txtail = 0;
1363        data->txhead = 0;
1364        data->txfree = TSI108_TXRING_LEN;
1365        TSI_WRITE(TSI108_EC_TXQ_PTRLOW, data->txdma);
1366        tsi108_init_phy(dev);
1367
1368        napi_enable(&data->napi);
1369
1370        setup_timer(&data->timer, tsi108_timed_checker, (unsigned long)dev);
1371        mod_timer(&data->timer, jiffies + 1);
1372
1373        tsi108_restart_rx(data, dev);
1374
1375        TSI_WRITE(TSI108_EC_INTSTAT, ~0);
1376
1377        TSI_WRITE(TSI108_EC_INTMASK,
1378                             ~(TSI108_INT_TXQUEUE0 | TSI108_INT_RXERROR |
1379                               TSI108_INT_RXTHRESH | TSI108_INT_RXQUEUE0 |
1380                               TSI108_INT_RXOVERRUN | TSI108_INT_RXWAIT |
1381                               TSI108_INT_SFN | TSI108_INT_STATCARRY));
1382
1383        TSI_WRITE(TSI108_MAC_CFG1,
1384                             TSI108_MAC_CFG1_RXEN | TSI108_MAC_CFG1_TXEN);
1385        netif_start_queue(dev);
1386        return 0;
1387}
1388
1389static int tsi108_close(struct net_device *dev)
1390{
1391        struct tsi108_prv_data *data = netdev_priv(dev);
1392
1393        netif_stop_queue(dev);
1394        napi_disable(&data->napi);
1395
1396        del_timer_sync(&data->timer);
1397
1398        tsi108_stop_ethernet(dev);
1399        tsi108_kill_phy(dev);
1400        TSI_WRITE(TSI108_EC_INTMASK, ~0);
1401        TSI_WRITE(TSI108_MAC_CFG1, 0);
1402
1403        /* Check for any pending TX packets, and drop them. */
1404
1405        while (!data->txfree || data->txhead != data->txtail) {
1406                int tx = data->txtail;
1407                struct sk_buff *skb;
1408                skb = data->txskbs[tx];
1409                data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
1410                data->txfree++;
1411                dev_kfree_skb(skb);
1412        }
1413
1414        free_irq(data->irq_num, dev);
1415
1416        /* Discard the RX ring. */
1417
1418        while (data->rxfree) {
1419                int rx = data->rxtail;
1420                struct sk_buff *skb;
1421
1422                skb = data->rxskbs[rx];
1423                data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
1424                data->rxfree--;
1425                dev_kfree_skb(skb);
1426        }
1427
1428        dma_free_coherent(0,
1429                            TSI108_RXRING_LEN * sizeof(rx_desc),
1430                            data->rxring, data->rxdma);
1431        dma_free_coherent(0,
1432                            TSI108_TXRING_LEN * sizeof(tx_desc),
1433                            data->txring, data->txdma);
1434
1435        return 0;
1436}
1437
1438static void tsi108_init_mac(struct net_device *dev)
1439{
1440        struct tsi108_prv_data *data = netdev_priv(dev);
1441
1442        TSI_WRITE(TSI108_MAC_CFG2, TSI108_MAC_CFG2_DFLT_PREAMBLE |
1443                             TSI108_MAC_CFG2_PADCRC);
1444
1445        TSI_WRITE(TSI108_EC_TXTHRESH,
1446                             (192 << TSI108_EC_TXTHRESH_STARTFILL) |
1447                             (192 << TSI108_EC_TXTHRESH_STOPFILL));
1448
1449        TSI_WRITE(TSI108_STAT_CARRYMASK1,
1450                             ~(TSI108_STAT_CARRY1_RXBYTES |
1451                               TSI108_STAT_CARRY1_RXPKTS |
1452                               TSI108_STAT_CARRY1_RXFCS |
1453                               TSI108_STAT_CARRY1_RXMCAST |
1454                               TSI108_STAT_CARRY1_RXALIGN |
1455                               TSI108_STAT_CARRY1_RXLENGTH |
1456                               TSI108_STAT_CARRY1_RXRUNT |
1457                               TSI108_STAT_CARRY1_RXJUMBO |
1458                               TSI108_STAT_CARRY1_RXFRAG |
1459                               TSI108_STAT_CARRY1_RXJABBER |
1460                               TSI108_STAT_CARRY1_RXDROP));
1461
1462        TSI_WRITE(TSI108_STAT_CARRYMASK2,
1463                             ~(TSI108_STAT_CARRY2_TXBYTES |
1464                               TSI108_STAT_CARRY2_TXPKTS |
1465                               TSI108_STAT_CARRY2_TXEXDEF |
1466                               TSI108_STAT_CARRY2_TXEXCOL |
1467                               TSI108_STAT_CARRY2_TXTCOL |
1468                               TSI108_STAT_CARRY2_TXPAUSE));
1469
1470        TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATEN);
1471        TSI_WRITE(TSI108_MAC_CFG1, 0);
1472
1473        TSI_WRITE(TSI108_EC_RXCFG,
1474                             TSI108_EC_RXCFG_SE | TSI108_EC_RXCFG_BFE);
1475
1476        TSI_WRITE(TSI108_EC_TXQ_CFG, TSI108_EC_TXQ_CFG_DESC_INT |
1477                             TSI108_EC_TXQ_CFG_EOQ_OWN_INT |
1478                             TSI108_EC_TXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1479                                                TSI108_EC_TXQ_CFG_SFNPORT));
1480
1481        TSI_WRITE(TSI108_EC_RXQ_CFG, TSI108_EC_RXQ_CFG_DESC_INT |
1482                             TSI108_EC_RXQ_CFG_EOQ_OWN_INT |
1483                             TSI108_EC_RXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1484                                                TSI108_EC_RXQ_CFG_SFNPORT));
1485
1486        TSI_WRITE(TSI108_EC_TXQ_BUFCFG,
1487                             TSI108_EC_TXQ_BUFCFG_BURST256 |
1488                             TSI108_EC_TXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1489                                                TSI108_EC_TXQ_BUFCFG_SFNPORT));
1490
1491        TSI_WRITE(TSI108_EC_RXQ_BUFCFG,
1492                             TSI108_EC_RXQ_BUFCFG_BURST256 |
1493                             TSI108_EC_RXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1494                                                TSI108_EC_RXQ_BUFCFG_SFNPORT));
1495
1496        TSI_WRITE(TSI108_EC_INTMASK, ~0);
1497}
1498
1499static int tsi108_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1500{
1501        struct tsi108_prv_data *data = netdev_priv(dev);
1502        unsigned long flags;
1503        int rc;
1504
1505        spin_lock_irqsave(&data->txlock, flags);
1506        rc = mii_ethtool_gset(&data->mii_if, cmd);
1507        spin_unlock_irqrestore(&data->txlock, flags);
1508
1509        return rc;
1510}
1511
1512static int tsi108_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1513{
1514        struct tsi108_prv_data *data = netdev_priv(dev);
1515        unsigned long flags;
1516        int rc;
1517
1518        spin_lock_irqsave(&data->txlock, flags);
1519        rc = mii_ethtool_sset(&data->mii_if, cmd);
1520        spin_unlock_irqrestore(&data->txlock, flags);
1521
1522        return rc;
1523}
1524
1525static int tsi108_do_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1526{
1527        struct tsi108_prv_data *data = netdev_priv(dev);
1528        if (!netif_running(dev))
1529                return -EINVAL;
1530        return generic_mii_ioctl(&data->mii_if, if_mii(rq), cmd, NULL);
1531}
1532
1533static const struct ethtool_ops tsi108_ethtool_ops = {
1534        .get_link       = ethtool_op_get_link,
1535        .get_settings   = tsi108_get_settings,
1536        .set_settings   = tsi108_set_settings,
1537};
1538
1539static const struct net_device_ops tsi108_netdev_ops = {
1540        .ndo_open               = tsi108_open,
1541        .ndo_stop               = tsi108_close,
1542        .ndo_start_xmit         = tsi108_send_packet,
1543        .ndo_set_rx_mode        = tsi108_set_rx_mode,
1544        .ndo_get_stats          = tsi108_get_stats,
1545        .ndo_do_ioctl           = tsi108_do_ioctl,
1546        .ndo_set_mac_address    = tsi108_set_mac,
1547        .ndo_validate_addr      = eth_validate_addr,
1548        .ndo_change_mtu         = eth_change_mtu,
1549};
1550
1551static int
1552tsi108_init_one(struct platform_device *pdev)
1553{
1554        struct net_device *dev = NULL;
1555        struct tsi108_prv_data *data = NULL;
1556        hw_info *einfo;
1557        int err = 0;
1558
1559        einfo = dev_get_platdata(&pdev->dev);
1560
1561        if (NULL == einfo) {
1562                printk(KERN_ERR "tsi-eth %d: Missing additional data!\n",
1563                       pdev->id);
1564                return -ENODEV;
1565        }
1566
1567        /* Create an ethernet device instance */
1568
1569        dev = alloc_etherdev(sizeof(struct tsi108_prv_data));
1570        if (!dev)
1571                return -ENOMEM;
1572
1573        printk("tsi108_eth%d: probe...\n", pdev->id);
1574        data = netdev_priv(dev);
1575        data->dev = dev;
1576
1577        pr_debug("tsi108_eth%d:regs:phyresgs:phy:irq_num=0x%x:0x%x:0x%x:0x%x\n",
1578                        pdev->id, einfo->regs, einfo->phyregs,
1579                        einfo->phy, einfo->irq_num);
1580
1581        data->regs = ioremap(einfo->regs, 0x400);
1582        if (NULL == data->regs) {
1583                err = -ENOMEM;
1584                goto regs_fail;
1585        }
1586
1587        data->phyregs = ioremap(einfo->phyregs, 0x400);
1588        if (NULL == data->phyregs) {
1589                err = -ENOMEM;
1590                goto phyregs_fail;
1591        }
1592/* MII setup */
1593        data->mii_if.dev = dev;
1594        data->mii_if.mdio_read = tsi108_mdio_read;
1595        data->mii_if.mdio_write = tsi108_mdio_write;
1596        data->mii_if.phy_id = einfo->phy;
1597        data->mii_if.phy_id_mask = 0x1f;
1598        data->mii_if.reg_num_mask = 0x1f;
1599
1600        data->phy = einfo->phy;
1601        data->phy_type = einfo->phy_type;
1602        data->irq_num = einfo->irq_num;
1603        data->id = pdev->id;
1604        netif_napi_add(dev, &data->napi, tsi108_poll, 64);
1605        dev->netdev_ops = &tsi108_netdev_ops;
1606        dev->ethtool_ops = &tsi108_ethtool_ops;
1607
1608        /* Apparently, the Linux networking code won't use scatter-gather
1609         * if the hardware doesn't do checksums.  However, it's faster
1610         * to checksum in place and use SG, as (among other reasons)
1611         * the cache won't be dirtied (which then has to be flushed
1612         * before DMA).  The checksumming is done by the driver (via
1613         * a new function skb_csum_dev() in net/core/skbuff.c).
1614         */
1615
1616        dev->features = NETIF_F_HIGHDMA;
1617
1618        spin_lock_init(&data->txlock);
1619        spin_lock_init(&data->misclock);
1620
1621        tsi108_reset_ether(data);
1622        tsi108_kill_phy(dev);
1623
1624        if ((err = tsi108_get_mac(dev)) != 0) {
1625                printk(KERN_ERR "%s: Invalid MAC address.  Please correct.\n",
1626                       dev->name);
1627                goto register_fail;
1628        }
1629
1630        tsi108_init_mac(dev);
1631        err = register_netdev(dev);
1632        if (err) {
1633                printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
1634                                dev->name);
1635                goto register_fail;
1636        }
1637
1638        platform_set_drvdata(pdev, dev);
1639        printk(KERN_INFO "%s: Tsi108 Gigabit Ethernet, MAC: %pM\n",
1640               dev->name, dev->dev_addr);
1641#ifdef DEBUG
1642        data->msg_enable = DEBUG;
1643        dump_eth_one(dev);
1644#endif
1645
1646        return 0;
1647
1648register_fail:
1649        iounmap(data->phyregs);
1650
1651phyregs_fail:
1652        iounmap(data->regs);
1653
1654regs_fail:
1655        free_netdev(dev);
1656        return err;
1657}
1658
1659/* There's no way to either get interrupts from the PHY when
1660 * something changes, or to have the Tsi108 automatically communicate
1661 * with the PHY to reconfigure itself.
1662 *
1663 * Thus, we have to do it using a timer.
1664 */
1665
1666static void tsi108_timed_checker(unsigned long dev_ptr)
1667{
1668        struct net_device *dev = (struct net_device *)dev_ptr;
1669        struct tsi108_prv_data *data = netdev_priv(dev);
1670
1671        tsi108_check_phy(dev);
1672        tsi108_check_rxring(dev);
1673        mod_timer(&data->timer, jiffies + CHECK_PHY_INTERVAL);
1674}
1675
1676static int tsi108_ether_remove(struct platform_device *pdev)
1677{
1678        struct net_device *dev = platform_get_drvdata(pdev);
1679        struct tsi108_prv_data *priv = netdev_priv(dev);
1680
1681        unregister_netdev(dev);
1682        tsi108_stop_ethernet(dev);
1683        iounmap(priv->regs);
1684        iounmap(priv->phyregs);
1685        free_netdev(dev);
1686
1687        return 0;
1688}
1689module_platform_driver(tsi_eth_driver);
1690
1691MODULE_AUTHOR("Tundra Semiconductor Corporation");
1692MODULE_DESCRIPTION("Tsi108 Gigabit Ethernet driver");
1693MODULE_LICENSE("GPL");
1694MODULE_ALIAS("platform:tsi-ethernet");
1695