linux/drivers/net/wireless/ralink/rt2x00/rt2500pci.c
<<
>>
Prefs
   1/*
   2        Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
   3        <http://rt2x00.serialmonkey.com>
   4
   5        This program is free software; you can redistribute it and/or modify
   6        it under the terms of the GNU General Public License as published by
   7        the Free Software Foundation; either version 2 of the License, or
   8        (at your option) any later version.
   9
  10        This program is distributed in the hope that it will be useful,
  11        but WITHOUT ANY WARRANTY; without even the implied warranty of
  12        MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13        GNU General Public License for more details.
  14
  15        You should have received a copy of the GNU General Public License
  16        along with this program; if not, see <http://www.gnu.org/licenses/>.
  17 */
  18
  19/*
  20        Module: rt2500pci
  21        Abstract: rt2500pci device specific routines.
  22        Supported chipsets: RT2560.
  23 */
  24
  25#include <linux/delay.h>
  26#include <linux/etherdevice.h>
  27#include <linux/kernel.h>
  28#include <linux/module.h>
  29#include <linux/pci.h>
  30#include <linux/eeprom_93cx6.h>
  31#include <linux/slab.h>
  32
  33#include "rt2x00.h"
  34#include "rt2x00mmio.h"
  35#include "rt2x00pci.h"
  36#include "rt2500pci.h"
  37
  38/*
  39 * Register access.
  40 * All access to the CSR registers will go through the methods
  41 * rt2x00mmio_register_read and rt2x00mmio_register_write.
  42 * BBP and RF register require indirect register access,
  43 * and use the CSR registers BBPCSR and RFCSR to achieve this.
  44 * These indirect registers work with busy bits,
  45 * and we will try maximal REGISTER_BUSY_COUNT times to access
  46 * the register while taking a REGISTER_BUSY_DELAY us delay
  47 * between each attampt. When the busy bit is still set at that time,
  48 * the access attempt is considered to have failed,
  49 * and we will print an error.
  50 */
  51#define WAIT_FOR_BBP(__dev, __reg) \
  52        rt2x00mmio_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
  53#define WAIT_FOR_RF(__dev, __reg) \
  54        rt2x00mmio_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
  55
  56static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
  57                                const unsigned int word, const u8 value)
  58{
  59        u32 reg;
  60
  61        mutex_lock(&rt2x00dev->csr_mutex);
  62
  63        /*
  64         * Wait until the BBP becomes available, afterwards we
  65         * can safely write the new data into the register.
  66         */
  67        if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  68                reg = 0;
  69                rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
  70                rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  71                rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  72                rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
  73
  74                rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
  75        }
  76
  77        mutex_unlock(&rt2x00dev->csr_mutex);
  78}
  79
  80static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
  81                               const unsigned int word, u8 *value)
  82{
  83        u32 reg;
  84
  85        mutex_lock(&rt2x00dev->csr_mutex);
  86
  87        /*
  88         * Wait until the BBP becomes available, afterwards we
  89         * can safely write the read request into the register.
  90         * After the data has been written, we wait until hardware
  91         * returns the correct value, if at any time the register
  92         * doesn't become available in time, reg will be 0xffffffff
  93         * which means we return 0xff to the caller.
  94         */
  95        if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  96                reg = 0;
  97                rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  98                rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  99                rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
 100
 101                rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
 102
 103                WAIT_FOR_BBP(rt2x00dev, &reg);
 104        }
 105
 106        *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
 107
 108        mutex_unlock(&rt2x00dev->csr_mutex);
 109}
 110
 111static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
 112                               const unsigned int word, const u32 value)
 113{
 114        u32 reg;
 115
 116        mutex_lock(&rt2x00dev->csr_mutex);
 117
 118        /*
 119         * Wait until the RF becomes available, afterwards we
 120         * can safely write the new data into the register.
 121         */
 122        if (WAIT_FOR_RF(rt2x00dev, &reg)) {
 123                reg = 0;
 124                rt2x00_set_field32(&reg, RFCSR_VALUE, value);
 125                rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
 126                rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
 127                rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
 128
 129                rt2x00mmio_register_write(rt2x00dev, RFCSR, reg);
 130                rt2x00_rf_write(rt2x00dev, word, value);
 131        }
 132
 133        mutex_unlock(&rt2x00dev->csr_mutex);
 134}
 135
 136static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
 137{
 138        struct rt2x00_dev *rt2x00dev = eeprom->data;
 139        u32 reg;
 140
 141        rt2x00mmio_register_read(rt2x00dev, CSR21, &reg);
 142
 143        eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
 144        eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
 145        eeprom->reg_data_clock =
 146            !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
 147        eeprom->reg_chip_select =
 148            !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
 149}
 150
 151static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
 152{
 153        struct rt2x00_dev *rt2x00dev = eeprom->data;
 154        u32 reg = 0;
 155
 156        rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
 157        rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
 158        rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
 159                           !!eeprom->reg_data_clock);
 160        rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
 161                           !!eeprom->reg_chip_select);
 162
 163        rt2x00mmio_register_write(rt2x00dev, CSR21, reg);
 164}
 165
 166#ifdef CONFIG_RT2X00_LIB_DEBUGFS
 167static const struct rt2x00debug rt2500pci_rt2x00debug = {
 168        .owner  = THIS_MODULE,
 169        .csr    = {
 170                .read           = rt2x00mmio_register_read,
 171                .write          = rt2x00mmio_register_write,
 172                .flags          = RT2X00DEBUGFS_OFFSET,
 173                .word_base      = CSR_REG_BASE,
 174                .word_size      = sizeof(u32),
 175                .word_count     = CSR_REG_SIZE / sizeof(u32),
 176        },
 177        .eeprom = {
 178                .read           = rt2x00_eeprom_read,
 179                .write          = rt2x00_eeprom_write,
 180                .word_base      = EEPROM_BASE,
 181                .word_size      = sizeof(u16),
 182                .word_count     = EEPROM_SIZE / sizeof(u16),
 183        },
 184        .bbp    = {
 185                .read           = rt2500pci_bbp_read,
 186                .write          = rt2500pci_bbp_write,
 187                .word_base      = BBP_BASE,
 188                .word_size      = sizeof(u8),
 189                .word_count     = BBP_SIZE / sizeof(u8),
 190        },
 191        .rf     = {
 192                .read           = rt2x00_rf_read,
 193                .write          = rt2500pci_rf_write,
 194                .word_base      = RF_BASE,
 195                .word_size      = sizeof(u32),
 196                .word_count     = RF_SIZE / sizeof(u32),
 197        },
 198};
 199#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
 200
 201static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
 202{
 203        u32 reg;
 204
 205        rt2x00mmio_register_read(rt2x00dev, GPIOCSR, &reg);
 206        return rt2x00_get_field32(reg, GPIOCSR_VAL0);
 207}
 208
 209#ifdef CONFIG_RT2X00_LIB_LEDS
 210static void rt2500pci_brightness_set(struct led_classdev *led_cdev,
 211                                     enum led_brightness brightness)
 212{
 213        struct rt2x00_led *led =
 214            container_of(led_cdev, struct rt2x00_led, led_dev);
 215        unsigned int enabled = brightness != LED_OFF;
 216        u32 reg;
 217
 218        rt2x00mmio_register_read(led->rt2x00dev, LEDCSR, &reg);
 219
 220        if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
 221                rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
 222        else if (led->type == LED_TYPE_ACTIVITY)
 223                rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
 224
 225        rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
 226}
 227
 228static int rt2500pci_blink_set(struct led_classdev *led_cdev,
 229                               unsigned long *delay_on,
 230                               unsigned long *delay_off)
 231{
 232        struct rt2x00_led *led =
 233            container_of(led_cdev, struct rt2x00_led, led_dev);
 234        u32 reg;
 235
 236        rt2x00mmio_register_read(led->rt2x00dev, LEDCSR, &reg);
 237        rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
 238        rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
 239        rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
 240
 241        return 0;
 242}
 243
 244static void rt2500pci_init_led(struct rt2x00_dev *rt2x00dev,
 245                               struct rt2x00_led *led,
 246                               enum led_type type)
 247{
 248        led->rt2x00dev = rt2x00dev;
 249        led->type = type;
 250        led->led_dev.brightness_set = rt2500pci_brightness_set;
 251        led->led_dev.blink_set = rt2500pci_blink_set;
 252        led->flags = LED_INITIALIZED;
 253}
 254#endif /* CONFIG_RT2X00_LIB_LEDS */
 255
 256/*
 257 * Configuration handlers.
 258 */
 259static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
 260                                    const unsigned int filter_flags)
 261{
 262        u32 reg;
 263
 264        /*
 265         * Start configuration steps.
 266         * Note that the version error will always be dropped
 267         * and broadcast frames will always be accepted since
 268         * there is no filter for it at this time.
 269         */
 270        rt2x00mmio_register_read(rt2x00dev, RXCSR0, &reg);
 271        rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
 272                           !(filter_flags & FIF_FCSFAIL));
 273        rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
 274                           !(filter_flags & FIF_PLCPFAIL));
 275        rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
 276                           !(filter_flags & FIF_CONTROL));
 277        rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
 278                           !test_bit(CONFIG_MONITORING, &rt2x00dev->flags));
 279        rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
 280                           !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) &&
 281                           !rt2x00dev->intf_ap_count);
 282        rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
 283        rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
 284                           !(filter_flags & FIF_ALLMULTI));
 285        rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
 286        rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
 287}
 288
 289static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
 290                                  struct rt2x00_intf *intf,
 291                                  struct rt2x00intf_conf *conf,
 292                                  const unsigned int flags)
 293{
 294        struct data_queue *queue = rt2x00dev->bcn;
 295        unsigned int bcn_preload;
 296        u32 reg;
 297
 298        if (flags & CONFIG_UPDATE_TYPE) {
 299                /*
 300                 * Enable beacon config
 301                 */
 302                bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
 303                rt2x00mmio_register_read(rt2x00dev, BCNCSR1, &reg);
 304                rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
 305                rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
 306                rt2x00mmio_register_write(rt2x00dev, BCNCSR1, reg);
 307
 308                /*
 309                 * Enable synchronisation.
 310                 */
 311                rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
 312                rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
 313                rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
 314        }
 315
 316        if (flags & CONFIG_UPDATE_MAC)
 317                rt2x00mmio_register_multiwrite(rt2x00dev, CSR3,
 318                                              conf->mac, sizeof(conf->mac));
 319
 320        if (flags & CONFIG_UPDATE_BSSID)
 321                rt2x00mmio_register_multiwrite(rt2x00dev, CSR5,
 322                                              conf->bssid, sizeof(conf->bssid));
 323}
 324
 325static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
 326                                 struct rt2x00lib_erp *erp,
 327                                 u32 changed)
 328{
 329        int preamble_mask;
 330        u32 reg;
 331
 332        /*
 333         * When short preamble is enabled, we should set bit 0x08
 334         */
 335        if (changed & BSS_CHANGED_ERP_PREAMBLE) {
 336                preamble_mask = erp->short_preamble << 3;
 337
 338                rt2x00mmio_register_read(rt2x00dev, TXCSR1, &reg);
 339                rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x162);
 340                rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0xa2);
 341                rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
 342                rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
 343                rt2x00mmio_register_write(rt2x00dev, TXCSR1, reg);
 344
 345                rt2x00mmio_register_read(rt2x00dev, ARCSR2, &reg);
 346                rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
 347                rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
 348                rt2x00_set_field32(&reg, ARCSR2_LENGTH,
 349                                   GET_DURATION(ACK_SIZE, 10));
 350                rt2x00mmio_register_write(rt2x00dev, ARCSR2, reg);
 351
 352                rt2x00mmio_register_read(rt2x00dev, ARCSR3, &reg);
 353                rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
 354                rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
 355                rt2x00_set_field32(&reg, ARCSR2_LENGTH,
 356                                   GET_DURATION(ACK_SIZE, 20));
 357                rt2x00mmio_register_write(rt2x00dev, ARCSR3, reg);
 358
 359                rt2x00mmio_register_read(rt2x00dev, ARCSR4, &reg);
 360                rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
 361                rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
 362                rt2x00_set_field32(&reg, ARCSR2_LENGTH,
 363                                   GET_DURATION(ACK_SIZE, 55));
 364                rt2x00mmio_register_write(rt2x00dev, ARCSR4, reg);
 365
 366                rt2x00mmio_register_read(rt2x00dev, ARCSR5, &reg);
 367                rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
 368                rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
 369                rt2x00_set_field32(&reg, ARCSR2_LENGTH,
 370                                   GET_DURATION(ACK_SIZE, 110));
 371                rt2x00mmio_register_write(rt2x00dev, ARCSR5, reg);
 372        }
 373
 374        if (changed & BSS_CHANGED_BASIC_RATES)
 375                rt2x00mmio_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
 376
 377        if (changed & BSS_CHANGED_ERP_SLOT) {
 378                rt2x00mmio_register_read(rt2x00dev, CSR11, &reg);
 379                rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
 380                rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
 381
 382                rt2x00mmio_register_read(rt2x00dev, CSR18, &reg);
 383                rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
 384                rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
 385                rt2x00mmio_register_write(rt2x00dev, CSR18, reg);
 386
 387                rt2x00mmio_register_read(rt2x00dev, CSR19, &reg);
 388                rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
 389                rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
 390                rt2x00mmio_register_write(rt2x00dev, CSR19, reg);
 391        }
 392
 393        if (changed & BSS_CHANGED_BEACON_INT) {
 394                rt2x00mmio_register_read(rt2x00dev, CSR12, &reg);
 395                rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
 396                                   erp->beacon_int * 16);
 397                rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
 398                                   erp->beacon_int * 16);
 399                rt2x00mmio_register_write(rt2x00dev, CSR12, reg);
 400        }
 401
 402}
 403
 404static void rt2500pci_config_ant(struct rt2x00_dev *rt2x00dev,
 405                                 struct antenna_setup *ant)
 406{
 407        u32 reg;
 408        u8 r14;
 409        u8 r2;
 410
 411        /*
 412         * We should never come here because rt2x00lib is supposed
 413         * to catch this and send us the correct antenna explicitely.
 414         */
 415        BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
 416               ant->tx == ANTENNA_SW_DIVERSITY);
 417
 418        rt2x00mmio_register_read(rt2x00dev, BBPCSR1, &reg);
 419        rt2500pci_bbp_read(rt2x00dev, 14, &r14);
 420        rt2500pci_bbp_read(rt2x00dev, 2, &r2);
 421
 422        /*
 423         * Configure the TX antenna.
 424         */
 425        switch (ant->tx) {
 426        case ANTENNA_A:
 427                rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
 428                rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
 429                rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
 430                break;
 431        case ANTENNA_B:
 432        default:
 433                rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
 434                rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
 435                rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
 436                break;
 437        }
 438
 439        /*
 440         * Configure the RX antenna.
 441         */
 442        switch (ant->rx) {
 443        case ANTENNA_A:
 444                rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
 445                break;
 446        case ANTENNA_B:
 447        default:
 448                rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
 449                break;
 450        }
 451
 452        /*
 453         * RT2525E and RT5222 need to flip TX I/Q
 454         */
 455        if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
 456                rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
 457                rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
 458                rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
 459
 460                /*
 461                 * RT2525E does not need RX I/Q Flip.
 462                 */
 463                if (rt2x00_rf(rt2x00dev, RF2525E))
 464                        rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
 465        } else {
 466                rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
 467                rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
 468        }
 469
 470        rt2x00mmio_register_write(rt2x00dev, BBPCSR1, reg);
 471        rt2500pci_bbp_write(rt2x00dev, 14, r14);
 472        rt2500pci_bbp_write(rt2x00dev, 2, r2);
 473}
 474
 475static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
 476                                     struct rf_channel *rf, const int txpower)
 477{
 478        u8 r70;
 479
 480        /*
 481         * Set TXpower.
 482         */
 483        rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
 484
 485        /*
 486         * Switch on tuning bits.
 487         * For RT2523 devices we do not need to update the R1 register.
 488         */
 489        if (!rt2x00_rf(rt2x00dev, RF2523))
 490                rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
 491        rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
 492
 493        /*
 494         * For RT2525 we should first set the channel to half band higher.
 495         */
 496        if (rt2x00_rf(rt2x00dev, RF2525)) {
 497                static const u32 vals[] = {
 498                        0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
 499                        0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
 500                        0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
 501                        0x00080d2e, 0x00080d3a
 502                };
 503
 504                rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
 505                rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
 506                rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
 507                if (rf->rf4)
 508                        rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
 509        }
 510
 511        rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
 512        rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
 513        rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
 514        if (rf->rf4)
 515                rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
 516
 517        /*
 518         * Channel 14 requires the Japan filter bit to be set.
 519         */
 520        r70 = 0x46;
 521        rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
 522        rt2500pci_bbp_write(rt2x00dev, 70, r70);
 523
 524        msleep(1);
 525
 526        /*
 527         * Switch off tuning bits.
 528         * For RT2523 devices we do not need to update the R1 register.
 529         */
 530        if (!rt2x00_rf(rt2x00dev, RF2523)) {
 531                rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
 532                rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
 533        }
 534
 535        rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
 536        rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
 537
 538        /*
 539         * Clear false CRC during channel switch.
 540         */
 541        rt2x00mmio_register_read(rt2x00dev, CNT0, &rf->rf1);
 542}
 543
 544static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
 545                                     const int txpower)
 546{
 547        u32 rf3;
 548
 549        rt2x00_rf_read(rt2x00dev, 3, &rf3);
 550        rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
 551        rt2500pci_rf_write(rt2x00dev, 3, rf3);
 552}
 553
 554static void rt2500pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
 555                                         struct rt2x00lib_conf *libconf)
 556{
 557        u32 reg;
 558
 559        rt2x00mmio_register_read(rt2x00dev, CSR11, &reg);
 560        rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
 561                           libconf->conf->long_frame_max_tx_count);
 562        rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
 563                           libconf->conf->short_frame_max_tx_count);
 564        rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
 565}
 566
 567static void rt2500pci_config_ps(struct rt2x00_dev *rt2x00dev,
 568                                struct rt2x00lib_conf *libconf)
 569{
 570        enum dev_state state =
 571            (libconf->conf->flags & IEEE80211_CONF_PS) ?
 572                STATE_SLEEP : STATE_AWAKE;
 573        u32 reg;
 574
 575        if (state == STATE_SLEEP) {
 576                rt2x00mmio_register_read(rt2x00dev, CSR20, &reg);
 577                rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
 578                                   (rt2x00dev->beacon_int - 20) * 16);
 579                rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
 580                                   libconf->conf->listen_interval - 1);
 581
 582                /* We must first disable autowake before it can be enabled */
 583                rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
 584                rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
 585
 586                rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
 587                rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
 588        } else {
 589                rt2x00mmio_register_read(rt2x00dev, CSR20, &reg);
 590                rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
 591                rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
 592        }
 593
 594        rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
 595}
 596
 597static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
 598                             struct rt2x00lib_conf *libconf,
 599                             const unsigned int flags)
 600{
 601        if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
 602                rt2500pci_config_channel(rt2x00dev, &libconf->rf,
 603                                         libconf->conf->power_level);
 604        if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
 605            !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
 606                rt2500pci_config_txpower(rt2x00dev,
 607                                         libconf->conf->power_level);
 608        if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
 609                rt2500pci_config_retry_limit(rt2x00dev, libconf);
 610        if (flags & IEEE80211_CONF_CHANGE_PS)
 611                rt2500pci_config_ps(rt2x00dev, libconf);
 612}
 613
 614/*
 615 * Link tuning
 616 */
 617static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
 618                                 struct link_qual *qual)
 619{
 620        u32 reg;
 621
 622        /*
 623         * Update FCS error count from register.
 624         */
 625        rt2x00mmio_register_read(rt2x00dev, CNT0, &reg);
 626        qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
 627
 628        /*
 629         * Update False CCA count from register.
 630         */
 631        rt2x00mmio_register_read(rt2x00dev, CNT3, &reg);
 632        qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
 633}
 634
 635static inline void rt2500pci_set_vgc(struct rt2x00_dev *rt2x00dev,
 636                                     struct link_qual *qual, u8 vgc_level)
 637{
 638        if (qual->vgc_level_reg != vgc_level) {
 639                rt2500pci_bbp_write(rt2x00dev, 17, vgc_level);
 640                qual->vgc_level = vgc_level;
 641                qual->vgc_level_reg = vgc_level;
 642        }
 643}
 644
 645static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
 646                                  struct link_qual *qual)
 647{
 648        rt2500pci_set_vgc(rt2x00dev, qual, 0x48);
 649}
 650
 651static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev,
 652                                 struct link_qual *qual, const u32 count)
 653{
 654        /*
 655         * To prevent collisions with MAC ASIC on chipsets
 656         * up to version C the link tuning should halt after 20
 657         * seconds while being associated.
 658         */
 659        if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D &&
 660            rt2x00dev->intf_associated && count > 20)
 661                return;
 662
 663        /*
 664         * Chipset versions C and lower should directly continue
 665         * to the dynamic CCA tuning. Chipset version D and higher
 666         * should go straight to dynamic CCA tuning when they
 667         * are not associated.
 668         */
 669        if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D ||
 670            !rt2x00dev->intf_associated)
 671                goto dynamic_cca_tune;
 672
 673        /*
 674         * A too low RSSI will cause too much false CCA which will
 675         * then corrupt the R17 tuning. To remidy this the tuning should
 676         * be stopped (While making sure the R17 value will not exceed limits)
 677         */
 678        if (qual->rssi < -80 && count > 20) {
 679                if (qual->vgc_level_reg >= 0x41)
 680                        rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
 681                return;
 682        }
 683
 684        /*
 685         * Special big-R17 for short distance
 686         */
 687        if (qual->rssi >= -58) {
 688                rt2500pci_set_vgc(rt2x00dev, qual, 0x50);
 689                return;
 690        }
 691
 692        /*
 693         * Special mid-R17 for middle distance
 694         */
 695        if (qual->rssi >= -74) {
 696                rt2500pci_set_vgc(rt2x00dev, qual, 0x41);
 697                return;
 698        }
 699
 700        /*
 701         * Leave short or middle distance condition, restore r17
 702         * to the dynamic tuning range.
 703         */
 704        if (qual->vgc_level_reg >= 0x41) {
 705                rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
 706                return;
 707        }
 708
 709dynamic_cca_tune:
 710
 711        /*
 712         * R17 is inside the dynamic tuning range,
 713         * start tuning the link based on the false cca counter.
 714         */
 715        if (qual->false_cca > 512 && qual->vgc_level_reg < 0x40)
 716                rt2500pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level_reg);
 717        else if (qual->false_cca < 100 && qual->vgc_level_reg > 0x32)
 718                rt2500pci_set_vgc(rt2x00dev, qual, --qual->vgc_level_reg);
 719}
 720
 721/*
 722 * Queue handlers.
 723 */
 724static void rt2500pci_start_queue(struct data_queue *queue)
 725{
 726        struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
 727        u32 reg;
 728
 729        switch (queue->qid) {
 730        case QID_RX:
 731                rt2x00mmio_register_read(rt2x00dev, RXCSR0, &reg);
 732                rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 0);
 733                rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
 734                break;
 735        case QID_BEACON:
 736                rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
 737                rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
 738                rt2x00_set_field32(&reg, CSR14_TBCN, 1);
 739                rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
 740                rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
 741                break;
 742        default:
 743                break;
 744        }
 745}
 746
 747static void rt2500pci_kick_queue(struct data_queue *queue)
 748{
 749        struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
 750        u32 reg;
 751
 752        switch (queue->qid) {
 753        case QID_AC_VO:
 754                rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
 755                rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
 756                rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
 757                break;
 758        case QID_AC_VI:
 759                rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
 760                rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
 761                rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
 762                break;
 763        case QID_ATIM:
 764                rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
 765                rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
 766                rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
 767                break;
 768        default:
 769                break;
 770        }
 771}
 772
 773static void rt2500pci_stop_queue(struct data_queue *queue)
 774{
 775        struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
 776        u32 reg;
 777
 778        switch (queue->qid) {
 779        case QID_AC_VO:
 780        case QID_AC_VI:
 781        case QID_ATIM:
 782                rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
 783                rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
 784                rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
 785                break;
 786        case QID_RX:
 787                rt2x00mmio_register_read(rt2x00dev, RXCSR0, &reg);
 788                rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 1);
 789                rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
 790                break;
 791        case QID_BEACON:
 792                rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
 793                rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
 794                rt2x00_set_field32(&reg, CSR14_TBCN, 0);
 795                rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
 796                rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
 797
 798                /*
 799                 * Wait for possibly running tbtt tasklets.
 800                 */
 801                tasklet_kill(&rt2x00dev->tbtt_tasklet);
 802                break;
 803        default:
 804                break;
 805        }
 806}
 807
 808/*
 809 * Initialization functions.
 810 */
 811static bool rt2500pci_get_entry_state(struct queue_entry *entry)
 812{
 813        struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
 814        u32 word;
 815
 816        if (entry->queue->qid == QID_RX) {
 817                rt2x00_desc_read(entry_priv->desc, 0, &word);
 818
 819                return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
 820        } else {
 821                rt2x00_desc_read(entry_priv->desc, 0, &word);
 822
 823                return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
 824                        rt2x00_get_field32(word, TXD_W0_VALID));
 825        }
 826}
 827
 828static void rt2500pci_clear_entry(struct queue_entry *entry)
 829{
 830        struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
 831        struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
 832        u32 word;
 833
 834        if (entry->queue->qid == QID_RX) {
 835                rt2x00_desc_read(entry_priv->desc, 1, &word);
 836                rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
 837                rt2x00_desc_write(entry_priv->desc, 1, word);
 838
 839                rt2x00_desc_read(entry_priv->desc, 0, &word);
 840                rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
 841                rt2x00_desc_write(entry_priv->desc, 0, word);
 842        } else {
 843                rt2x00_desc_read(entry_priv->desc, 0, &word);
 844                rt2x00_set_field32(&word, TXD_W0_VALID, 0);
 845                rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
 846                rt2x00_desc_write(entry_priv->desc, 0, word);
 847        }
 848}
 849
 850static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
 851{
 852        struct queue_entry_priv_mmio *entry_priv;
 853        u32 reg;
 854
 855        /*
 856         * Initialize registers.
 857         */
 858        rt2x00mmio_register_read(rt2x00dev, TXCSR2, &reg);
 859        rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
 860        rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
 861        rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->atim->limit);
 862        rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
 863        rt2x00mmio_register_write(rt2x00dev, TXCSR2, reg);
 864
 865        entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
 866        rt2x00mmio_register_read(rt2x00dev, TXCSR3, &reg);
 867        rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
 868                           entry_priv->desc_dma);
 869        rt2x00mmio_register_write(rt2x00dev, TXCSR3, reg);
 870
 871        entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
 872        rt2x00mmio_register_read(rt2x00dev, TXCSR5, &reg);
 873        rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
 874                           entry_priv->desc_dma);
 875        rt2x00mmio_register_write(rt2x00dev, TXCSR5, reg);
 876
 877        entry_priv = rt2x00dev->atim->entries[0].priv_data;
 878        rt2x00mmio_register_read(rt2x00dev, TXCSR4, &reg);
 879        rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
 880                           entry_priv->desc_dma);
 881        rt2x00mmio_register_write(rt2x00dev, TXCSR4, reg);
 882
 883        entry_priv = rt2x00dev->bcn->entries[0].priv_data;
 884        rt2x00mmio_register_read(rt2x00dev, TXCSR6, &reg);
 885        rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
 886                           entry_priv->desc_dma);
 887        rt2x00mmio_register_write(rt2x00dev, TXCSR6, reg);
 888
 889        rt2x00mmio_register_read(rt2x00dev, RXCSR1, &reg);
 890        rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
 891        rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
 892        rt2x00mmio_register_write(rt2x00dev, RXCSR1, reg);
 893
 894        entry_priv = rt2x00dev->rx->entries[0].priv_data;
 895        rt2x00mmio_register_read(rt2x00dev, RXCSR2, &reg);
 896        rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
 897                           entry_priv->desc_dma);
 898        rt2x00mmio_register_write(rt2x00dev, RXCSR2, reg);
 899
 900        return 0;
 901}
 902
 903static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
 904{
 905        u32 reg;
 906
 907        rt2x00mmio_register_write(rt2x00dev, PSCSR0, 0x00020002);
 908        rt2x00mmio_register_write(rt2x00dev, PSCSR1, 0x00000002);
 909        rt2x00mmio_register_write(rt2x00dev, PSCSR2, 0x00020002);
 910        rt2x00mmio_register_write(rt2x00dev, PSCSR3, 0x00000002);
 911
 912        rt2x00mmio_register_read(rt2x00dev, TIMECSR, &reg);
 913        rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
 914        rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
 915        rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
 916        rt2x00mmio_register_write(rt2x00dev, TIMECSR, reg);
 917
 918        rt2x00mmio_register_read(rt2x00dev, CSR9, &reg);
 919        rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
 920                           rt2x00dev->rx->data_size / 128);
 921        rt2x00mmio_register_write(rt2x00dev, CSR9, reg);
 922
 923        /*
 924         * Always use CWmin and CWmax set in descriptor.
 925         */
 926        rt2x00mmio_register_read(rt2x00dev, CSR11, &reg);
 927        rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
 928        rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
 929
 930        rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
 931        rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
 932        rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
 933        rt2x00_set_field32(&reg, CSR14_TBCN, 0);
 934        rt2x00_set_field32(&reg, CSR14_TCFP, 0);
 935        rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
 936        rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
 937        rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
 938        rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
 939        rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
 940
 941        rt2x00mmio_register_write(rt2x00dev, CNT3, 0);
 942
 943        rt2x00mmio_register_read(rt2x00dev, TXCSR8, &reg);
 944        rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
 945        rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
 946        rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
 947        rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
 948        rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
 949        rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
 950        rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
 951        rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
 952        rt2x00mmio_register_write(rt2x00dev, TXCSR8, reg);
 953
 954        rt2x00mmio_register_read(rt2x00dev, ARTCSR0, &reg);
 955        rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
 956        rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
 957        rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
 958        rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
 959        rt2x00mmio_register_write(rt2x00dev, ARTCSR0, reg);
 960
 961        rt2x00mmio_register_read(rt2x00dev, ARTCSR1, &reg);
 962        rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
 963        rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
 964        rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
 965        rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
 966        rt2x00mmio_register_write(rt2x00dev, ARTCSR1, reg);
 967
 968        rt2x00mmio_register_read(rt2x00dev, ARTCSR2, &reg);
 969        rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
 970        rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
 971        rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
 972        rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
 973        rt2x00mmio_register_write(rt2x00dev, ARTCSR2, reg);
 974
 975        rt2x00mmio_register_read(rt2x00dev, RXCSR3, &reg);
 976        rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
 977        rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
 978        rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
 979        rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
 980        rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
 981        rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
 982        rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
 983        rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
 984        rt2x00mmio_register_write(rt2x00dev, RXCSR3, reg);
 985
 986        rt2x00mmio_register_read(rt2x00dev, PCICSR, &reg);
 987        rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
 988        rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
 989        rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
 990        rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
 991        rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
 992        rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
 993        rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
 994        rt2x00mmio_register_write(rt2x00dev, PCICSR, reg);
 995
 996        rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
 997
 998        rt2x00mmio_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
 999        rt2x00mmio_register_write(rt2x00dev, TESTCSR, 0x000000f0);
1000
1001        if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1002                return -EBUSY;
1003
1004        rt2x00mmio_register_write(rt2x00dev, MACCSR0, 0x00213223);
1005        rt2x00mmio_register_write(rt2x00dev, MACCSR1, 0x00235518);
1006
1007        rt2x00mmio_register_read(rt2x00dev, MACCSR2, &reg);
1008        rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
1009        rt2x00mmio_register_write(rt2x00dev, MACCSR2, reg);
1010
1011        rt2x00mmio_register_read(rt2x00dev, RALINKCSR, &reg);
1012        rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
1013        rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
1014        rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
1015        rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
1016        rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
1017        rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
1018        rt2x00mmio_register_write(rt2x00dev, RALINKCSR, reg);
1019
1020        rt2x00mmio_register_write(rt2x00dev, BBPCSR1, 0x82188200);
1021
1022        rt2x00mmio_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
1023
1024        rt2x00mmio_register_read(rt2x00dev, CSR1, &reg);
1025        rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
1026        rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
1027        rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
1028        rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
1029
1030        rt2x00mmio_register_read(rt2x00dev, CSR1, &reg);
1031        rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
1032        rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
1033        rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
1034
1035        /*
1036         * We must clear the FCS and FIFO error count.
1037         * These registers are cleared on read,
1038         * so we may pass a useless variable to store the value.
1039         */
1040        rt2x00mmio_register_read(rt2x00dev, CNT0, &reg);
1041        rt2x00mmio_register_read(rt2x00dev, CNT4, &reg);
1042
1043        return 0;
1044}
1045
1046static int rt2500pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1047{
1048        unsigned int i;
1049        u8 value;
1050
1051        for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1052                rt2500pci_bbp_read(rt2x00dev, 0, &value);
1053                if ((value != 0xff) && (value != 0x00))
1054                        return 0;
1055                udelay(REGISTER_BUSY_DELAY);
1056        }
1057
1058        rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
1059        return -EACCES;
1060}
1061
1062static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1063{
1064        unsigned int i;
1065        u16 eeprom;
1066        u8 reg_id;
1067        u8 value;
1068
1069        if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev)))
1070                return -EACCES;
1071
1072        rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
1073        rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
1074        rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
1075        rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
1076        rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
1077        rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
1078        rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
1079        rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
1080        rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
1081        rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
1082        rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
1083        rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
1084        rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
1085        rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
1086        rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
1087        rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
1088        rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
1089        rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
1090        rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
1091        rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
1092        rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
1093        rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
1094        rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
1095        rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
1096        rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
1097        rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
1098        rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
1099        rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
1100        rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
1101        rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
1102
1103        for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1104                rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1105
1106                if (eeprom != 0xffff && eeprom != 0x0000) {
1107                        reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1108                        value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1109                        rt2500pci_bbp_write(rt2x00dev, reg_id, value);
1110                }
1111        }
1112
1113        return 0;
1114}
1115
1116/*
1117 * Device state switch handlers.
1118 */
1119static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1120                                 enum dev_state state)
1121{
1122        int mask = (state == STATE_RADIO_IRQ_OFF);
1123        u32 reg;
1124        unsigned long flags;
1125
1126        /*
1127         * When interrupts are being enabled, the interrupt registers
1128         * should clear the register to assure a clean state.
1129         */
1130        if (state == STATE_RADIO_IRQ_ON) {
1131                rt2x00mmio_register_read(rt2x00dev, CSR7, &reg);
1132                rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
1133        }
1134
1135        /*
1136         * Only toggle the interrupts bits we are going to use.
1137         * Non-checked interrupt bits are disabled by default.
1138         */
1139        spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
1140
1141        rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
1142        rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
1143        rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
1144        rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
1145        rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
1146        rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
1147        rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1148
1149        spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
1150
1151        if (state == STATE_RADIO_IRQ_OFF) {
1152                /*
1153                 * Ensure that all tasklets are finished.
1154                 */
1155                tasklet_kill(&rt2x00dev->txstatus_tasklet);
1156                tasklet_kill(&rt2x00dev->rxdone_tasklet);
1157                tasklet_kill(&rt2x00dev->tbtt_tasklet);
1158        }
1159}
1160
1161static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1162{
1163        /*
1164         * Initialize all registers.
1165         */
1166        if (unlikely(rt2500pci_init_queues(rt2x00dev) ||
1167                     rt2500pci_init_registers(rt2x00dev) ||
1168                     rt2500pci_init_bbp(rt2x00dev)))
1169                return -EIO;
1170
1171        return 0;
1172}
1173
1174static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1175{
1176        /*
1177         * Disable power
1178         */
1179        rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0);
1180}
1181
1182static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
1183                               enum dev_state state)
1184{
1185        u32 reg, reg2;
1186        unsigned int i;
1187        char put_to_sleep;
1188        char bbp_state;
1189        char rf_state;
1190
1191        put_to_sleep = (state != STATE_AWAKE);
1192
1193        rt2x00mmio_register_read(rt2x00dev, PWRCSR1, &reg);
1194        rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1195        rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1196        rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1197        rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1198        rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
1199
1200        /*
1201         * Device is not guaranteed to be in the requested state yet.
1202         * We must wait until the register indicates that the
1203         * device has entered the correct state.
1204         */
1205        for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1206                rt2x00mmio_register_read(rt2x00dev, PWRCSR1, &reg2);
1207                bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
1208                rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
1209                if (bbp_state == state && rf_state == state)
1210                        return 0;
1211                rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
1212                msleep(10);
1213        }
1214
1215        return -EBUSY;
1216}
1217
1218static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1219                                      enum dev_state state)
1220{
1221        int retval = 0;
1222
1223        switch (state) {
1224        case STATE_RADIO_ON:
1225                retval = rt2500pci_enable_radio(rt2x00dev);
1226                break;
1227        case STATE_RADIO_OFF:
1228                rt2500pci_disable_radio(rt2x00dev);
1229                break;
1230        case STATE_RADIO_IRQ_ON:
1231        case STATE_RADIO_IRQ_OFF:
1232                rt2500pci_toggle_irq(rt2x00dev, state);
1233                break;
1234        case STATE_DEEP_SLEEP:
1235        case STATE_SLEEP:
1236        case STATE_STANDBY:
1237        case STATE_AWAKE:
1238                retval = rt2500pci_set_state(rt2x00dev, state);
1239                break;
1240        default:
1241                retval = -ENOTSUPP;
1242                break;
1243        }
1244
1245        if (unlikely(retval))
1246                rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1247                           state, retval);
1248
1249        return retval;
1250}
1251
1252/*
1253 * TX descriptor initialization
1254 */
1255static void rt2500pci_write_tx_desc(struct queue_entry *entry,
1256                                    struct txentry_desc *txdesc)
1257{
1258        struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1259        struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1260        __le32 *txd = entry_priv->desc;
1261        u32 word;
1262
1263        /*
1264         * Start writing the descriptor words.
1265         */
1266        rt2x00_desc_read(txd, 1, &word);
1267        rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1268        rt2x00_desc_write(txd, 1, word);
1269
1270        rt2x00_desc_read(txd, 2, &word);
1271        rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
1272        rt2x00_set_field32(&word, TXD_W2_AIFS, entry->queue->aifs);
1273        rt2x00_set_field32(&word, TXD_W2_CWMIN, entry->queue->cw_min);
1274        rt2x00_set_field32(&word, TXD_W2_CWMAX, entry->queue->cw_max);
1275        rt2x00_desc_write(txd, 2, word);
1276
1277        rt2x00_desc_read(txd, 3, &word);
1278        rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->u.plcp.signal);
1279        rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->u.plcp.service);
1280        rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW,
1281                           txdesc->u.plcp.length_low);
1282        rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH,
1283                           txdesc->u.plcp.length_high);
1284        rt2x00_desc_write(txd, 3, word);
1285
1286        rt2x00_desc_read(txd, 10, &word);
1287        rt2x00_set_field32(&word, TXD_W10_RTS,
1288                           test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1289        rt2x00_desc_write(txd, 10, word);
1290
1291        /*
1292         * Writing TXD word 0 must the last to prevent a race condition with
1293         * the device, whereby the device may take hold of the TXD before we
1294         * finished updating it.
1295         */
1296        rt2x00_desc_read(txd, 0, &word);
1297        rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1298        rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1299        rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1300                           test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1301        rt2x00_set_field32(&word, TXD_W0_ACK,
1302                           test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1303        rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1304                           test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1305        rt2x00_set_field32(&word, TXD_W0_OFDM,
1306                           (txdesc->rate_mode == RATE_MODE_OFDM));
1307        rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
1308        rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1309        rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1310                           test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1311        rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1312        rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1313        rt2x00_desc_write(txd, 0, word);
1314
1315        /*
1316         * Register descriptor details in skb frame descriptor.
1317         */
1318        skbdesc->desc = txd;
1319        skbdesc->desc_len = TXD_DESC_SIZE;
1320}
1321
1322/*
1323 * TX data initialization
1324 */
1325static void rt2500pci_write_beacon(struct queue_entry *entry,
1326                                   struct txentry_desc *txdesc)
1327{
1328        struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1329        u32 reg;
1330
1331        /*
1332         * Disable beaconing while we are reloading the beacon data,
1333         * otherwise we might be sending out invalid data.
1334         */
1335        rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
1336        rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1337        rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
1338
1339        if (rt2x00queue_map_txskb(entry)) {
1340                rt2x00_err(rt2x00dev, "Fail to map beacon, aborting\n");
1341                goto out;
1342        }
1343
1344        /*
1345         * Write the TX descriptor for the beacon.
1346         */
1347        rt2500pci_write_tx_desc(entry, txdesc);
1348
1349        /*
1350         * Dump beacon to userspace through debugfs.
1351         */
1352        rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1353out:
1354        /*
1355         * Enable beaconing again.
1356         */
1357        rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1358        rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
1359}
1360
1361/*
1362 * RX control handlers
1363 */
1364static void rt2500pci_fill_rxdone(struct queue_entry *entry,
1365                                  struct rxdone_entry_desc *rxdesc)
1366{
1367        struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1368        u32 word0;
1369        u32 word2;
1370
1371        rt2x00_desc_read(entry_priv->desc, 0, &word0);
1372        rt2x00_desc_read(entry_priv->desc, 2, &word2);
1373
1374        if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1375                rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1376        if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1377                rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1378
1379        /*
1380         * Obtain the status about this packet.
1381         * When frame was received with an OFDM bitrate,
1382         * the signal is the PLCP value. If it was received with
1383         * a CCK bitrate the signal is the rate in 100kbit/s.
1384         */
1385        rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1386        rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1387            entry->queue->rt2x00dev->rssi_offset;
1388        rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1389
1390        if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1391                rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1392        else
1393                rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1394        if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1395                rxdesc->dev_flags |= RXDONE_MY_BSS;
1396}
1397
1398/*
1399 * Interrupt functions.
1400 */
1401static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
1402                             const enum data_queue_qid queue_idx)
1403{
1404        struct data_queue *queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
1405        struct queue_entry_priv_mmio *entry_priv;
1406        struct queue_entry *entry;
1407        struct txdone_entry_desc txdesc;
1408        u32 word;
1409
1410        while (!rt2x00queue_empty(queue)) {
1411                entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1412                entry_priv = entry->priv_data;
1413                rt2x00_desc_read(entry_priv->desc, 0, &word);
1414
1415                if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1416                    !rt2x00_get_field32(word, TXD_W0_VALID))
1417                        break;
1418
1419                /*
1420                 * Obtain the status about this packet.
1421                 */
1422                txdesc.flags = 0;
1423                switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1424                case 0: /* Success */
1425                case 1: /* Success with retry */
1426                        __set_bit(TXDONE_SUCCESS, &txdesc.flags);
1427                        break;
1428                case 2: /* Failure, excessive retries */
1429                        __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1430                        /* Don't break, this is a failed frame! */
1431                default: /* Failure */
1432                        __set_bit(TXDONE_FAILURE, &txdesc.flags);
1433                }
1434                txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1435
1436                rt2x00lib_txdone(entry, &txdesc);
1437        }
1438}
1439
1440static inline void rt2500pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
1441                                              struct rt2x00_field32 irq_field)
1442{
1443        u32 reg;
1444
1445        /*
1446         * Enable a single interrupt. The interrupt mask register
1447         * access needs locking.
1448         */
1449        spin_lock_irq(&rt2x00dev->irqmask_lock);
1450
1451        rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
1452        rt2x00_set_field32(&reg, irq_field, 0);
1453        rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1454
1455        spin_unlock_irq(&rt2x00dev->irqmask_lock);
1456}
1457
1458static void rt2500pci_txstatus_tasklet(unsigned long data)
1459{
1460        struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1461        u32 reg;
1462
1463        /*
1464         * Handle all tx queues.
1465         */
1466        rt2500pci_txdone(rt2x00dev, QID_ATIM);
1467        rt2500pci_txdone(rt2x00dev, QID_AC_VO);
1468        rt2500pci_txdone(rt2x00dev, QID_AC_VI);
1469
1470        /*
1471         * Enable all TXDONE interrupts again.
1472         */
1473        if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) {
1474                spin_lock_irq(&rt2x00dev->irqmask_lock);
1475
1476                rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
1477                rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, 0);
1478                rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, 0);
1479                rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, 0);
1480                rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1481
1482                spin_unlock_irq(&rt2x00dev->irqmask_lock);
1483        }
1484}
1485
1486static void rt2500pci_tbtt_tasklet(unsigned long data)
1487{
1488        struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1489        rt2x00lib_beacondone(rt2x00dev);
1490        if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1491                rt2500pci_enable_interrupt(rt2x00dev, CSR8_TBCN_EXPIRE);
1492}
1493
1494static void rt2500pci_rxdone_tasklet(unsigned long data)
1495{
1496        struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1497        if (rt2x00mmio_rxdone(rt2x00dev))
1498                tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1499        else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1500                rt2500pci_enable_interrupt(rt2x00dev, CSR8_RXDONE);
1501}
1502
1503static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
1504{
1505        struct rt2x00_dev *rt2x00dev = dev_instance;
1506        u32 reg, mask;
1507
1508        /*
1509         * Get the interrupt sources & saved to local variable.
1510         * Write register value back to clear pending interrupts.
1511         */
1512        rt2x00mmio_register_read(rt2x00dev, CSR7, &reg);
1513        rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
1514
1515        if (!reg)
1516                return IRQ_NONE;
1517
1518        if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1519                return IRQ_HANDLED;
1520
1521        mask = reg;
1522
1523        /*
1524         * Schedule tasklets for interrupt handling.
1525         */
1526        if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1527                tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
1528
1529        if (rt2x00_get_field32(reg, CSR7_RXDONE))
1530                tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1531
1532        if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING) ||
1533            rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING) ||
1534            rt2x00_get_field32(reg, CSR7_TXDONE_TXRING)) {
1535                tasklet_schedule(&rt2x00dev->txstatus_tasklet);
1536                /*
1537                 * Mask out all txdone interrupts.
1538                 */
1539                rt2x00_set_field32(&mask, CSR8_TXDONE_TXRING, 1);
1540                rt2x00_set_field32(&mask, CSR8_TXDONE_ATIMRING, 1);
1541                rt2x00_set_field32(&mask, CSR8_TXDONE_PRIORING, 1);
1542        }
1543
1544        /*
1545         * Disable all interrupts for which a tasklet was scheduled right now,
1546         * the tasklet will reenable the appropriate interrupts.
1547         */
1548        spin_lock(&rt2x00dev->irqmask_lock);
1549
1550        rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
1551        reg |= mask;
1552        rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1553
1554        spin_unlock(&rt2x00dev->irqmask_lock);
1555
1556        return IRQ_HANDLED;
1557}
1558
1559/*
1560 * Device probe functions.
1561 */
1562static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1563{
1564        struct eeprom_93cx6 eeprom;
1565        u32 reg;
1566        u16 word;
1567        u8 *mac;
1568
1569        rt2x00mmio_register_read(rt2x00dev, CSR21, &reg);
1570
1571        eeprom.data = rt2x00dev;
1572        eeprom.register_read = rt2500pci_eepromregister_read;
1573        eeprom.register_write = rt2500pci_eepromregister_write;
1574        eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1575            PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1576        eeprom.reg_data_in = 0;
1577        eeprom.reg_data_out = 0;
1578        eeprom.reg_data_clock = 0;
1579        eeprom.reg_chip_select = 0;
1580
1581        eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1582                               EEPROM_SIZE / sizeof(u16));
1583
1584        /*
1585         * Start validation of the data that has been read.
1586         */
1587        mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1588        if (!is_valid_ether_addr(mac)) {
1589                eth_random_addr(mac);
1590                rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", mac);
1591        }
1592
1593        rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1594        if (word == 0xffff) {
1595                rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1596                rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1597                                   ANTENNA_SW_DIVERSITY);
1598                rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1599                                   ANTENNA_SW_DIVERSITY);
1600                rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1601                                   LED_MODE_DEFAULT);
1602                rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1603                rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1604                rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1605                rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1606                rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
1607        }
1608
1609        rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1610        if (word == 0xffff) {
1611                rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1612                rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1613                rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1614                rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1615                rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
1616        }
1617
1618        rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1619        if (word == 0xffff) {
1620                rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1621                                   DEFAULT_RSSI_OFFSET);
1622                rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1623                rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n",
1624                                  word);
1625        }
1626
1627        return 0;
1628}
1629
1630static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1631{
1632        u32 reg;
1633        u16 value;
1634        u16 eeprom;
1635
1636        /*
1637         * Read EEPROM word for configuration.
1638         */
1639        rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1640
1641        /*
1642         * Identify RF chipset.
1643         */
1644        value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1645        rt2x00mmio_register_read(rt2x00dev, CSR0, &reg);
1646        rt2x00_set_chip(rt2x00dev, RT2560, value,
1647                        rt2x00_get_field32(reg, CSR0_REVISION));
1648
1649        if (!rt2x00_rf(rt2x00dev, RF2522) &&
1650            !rt2x00_rf(rt2x00dev, RF2523) &&
1651            !rt2x00_rf(rt2x00dev, RF2524) &&
1652            !rt2x00_rf(rt2x00dev, RF2525) &&
1653            !rt2x00_rf(rt2x00dev, RF2525E) &&
1654            !rt2x00_rf(rt2x00dev, RF5222)) {
1655                rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
1656                return -ENODEV;
1657        }
1658
1659        /*
1660         * Identify default antenna configuration.
1661         */
1662        rt2x00dev->default_ant.tx =
1663            rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1664        rt2x00dev->default_ant.rx =
1665            rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1666
1667        /*
1668         * Store led mode, for correct led behaviour.
1669         */
1670#ifdef CONFIG_RT2X00_LIB_LEDS
1671        value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1672
1673        rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1674        if (value == LED_MODE_TXRX_ACTIVITY ||
1675            value == LED_MODE_DEFAULT ||
1676            value == LED_MODE_ASUS)
1677                rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1678                                   LED_TYPE_ACTIVITY);
1679#endif /* CONFIG_RT2X00_LIB_LEDS */
1680
1681        /*
1682         * Detect if this device has an hardware controlled radio.
1683         */
1684        if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO)) {
1685                __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1686                /*
1687                 * On this device RFKILL initialized during probe does not work.
1688                 */
1689                __set_bit(REQUIRE_DELAYED_RFKILL, &rt2x00dev->cap_flags);
1690        }
1691
1692        /*
1693         * Check if the BBP tuning should be enabled.
1694         */
1695        rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1696        if (!rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1697                __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
1698
1699        /*
1700         * Read the RSSI <-> dBm offset information.
1701         */
1702        rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1703        rt2x00dev->rssi_offset =
1704            rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1705
1706        return 0;
1707}
1708
1709/*
1710 * RF value list for RF2522
1711 * Supports: 2.4 GHz
1712 */
1713static const struct rf_channel rf_vals_bg_2522[] = {
1714        { 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1715        { 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1716        { 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1717        { 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1718        { 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1719        { 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1720        { 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1721        { 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1722        { 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1723        { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1724        { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1725        { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1726        { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1727        { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1728};
1729
1730/*
1731 * RF value list for RF2523
1732 * Supports: 2.4 GHz
1733 */
1734static const struct rf_channel rf_vals_bg_2523[] = {
1735        { 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1736        { 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1737        { 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1738        { 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1739        { 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1740        { 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1741        { 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1742        { 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1743        { 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1744        { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1745        { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1746        { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1747        { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1748        { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1749};
1750
1751/*
1752 * RF value list for RF2524
1753 * Supports: 2.4 GHz
1754 */
1755static const struct rf_channel rf_vals_bg_2524[] = {
1756        { 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1757        { 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1758        { 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1759        { 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1760        { 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1761        { 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1762        { 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1763        { 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1764        { 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1765        { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1766        { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1767        { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1768        { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1769        { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1770};
1771
1772/*
1773 * RF value list for RF2525
1774 * Supports: 2.4 GHz
1775 */
1776static const struct rf_channel rf_vals_bg_2525[] = {
1777        { 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1778        { 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1779        { 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1780        { 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1781        { 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1782        { 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1783        { 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1784        { 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1785        { 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1786        { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1787        { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1788        { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1789        { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1790        { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1791};
1792
1793/*
1794 * RF value list for RF2525e
1795 * Supports: 2.4 GHz
1796 */
1797static const struct rf_channel rf_vals_bg_2525e[] = {
1798        { 1,  0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1799        { 2,  0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1800        { 3,  0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1801        { 4,  0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1802        { 5,  0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1803        { 6,  0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1804        { 7,  0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1805        { 8,  0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1806        { 9,  0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1807        { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1808        { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1809        { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1810        { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1811        { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1812};
1813
1814/*
1815 * RF value list for RF5222
1816 * Supports: 2.4 GHz & 5.2 GHz
1817 */
1818static const struct rf_channel rf_vals_5222[] = {
1819        { 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1820        { 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1821        { 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1822        { 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1823        { 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1824        { 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1825        { 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1826        { 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1827        { 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1828        { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1829        { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1830        { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1831        { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1832        { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1833
1834        /* 802.11 UNI / HyperLan 2 */
1835        { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1836        { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1837        { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1838        { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1839        { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1840        { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1841        { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1842        { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1843
1844        /* 802.11 HyperLan 2 */
1845        { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1846        { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1847        { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1848        { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1849        { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1850        { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1851        { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1852        { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1853        { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1854        { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1855
1856        /* 802.11 UNII */
1857        { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1858        { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1859        { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1860        { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1861        { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1862};
1863
1864static int rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1865{
1866        struct hw_mode_spec *spec = &rt2x00dev->spec;
1867        struct channel_info *info;
1868        char *tx_power;
1869        unsigned int i;
1870
1871        /*
1872         * Initialize all hw fields.
1873         */
1874        ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
1875        ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
1876        ieee80211_hw_set(rt2x00dev->hw, HOST_BROADCAST_PS_BUFFERING);
1877        ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
1878
1879        SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1880        SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1881                                rt2x00_eeprom_addr(rt2x00dev,
1882                                                   EEPROM_MAC_ADDR_0));
1883
1884        /*
1885         * Disable powersaving as default.
1886         */
1887        rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
1888
1889        /*
1890         * Initialize hw_mode information.
1891         */
1892        spec->supported_bands = SUPPORT_BAND_2GHZ;
1893        spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1894
1895        if (rt2x00_rf(rt2x00dev, RF2522)) {
1896                spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1897                spec->channels = rf_vals_bg_2522;
1898        } else if (rt2x00_rf(rt2x00dev, RF2523)) {
1899                spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1900                spec->channels = rf_vals_bg_2523;
1901        } else if (rt2x00_rf(rt2x00dev, RF2524)) {
1902                spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1903                spec->channels = rf_vals_bg_2524;
1904        } else if (rt2x00_rf(rt2x00dev, RF2525)) {
1905                spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1906                spec->channels = rf_vals_bg_2525;
1907        } else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1908                spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1909                spec->channels = rf_vals_bg_2525e;
1910        } else if (rt2x00_rf(rt2x00dev, RF5222)) {
1911                spec->supported_bands |= SUPPORT_BAND_5GHZ;
1912                spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1913                spec->channels = rf_vals_5222;
1914        }
1915
1916        /*
1917         * Create channel information array
1918         */
1919        info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1920        if (!info)
1921                return -ENOMEM;
1922
1923        spec->channels_info = info;
1924
1925        tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1926        for (i = 0; i < 14; i++) {
1927                info[i].max_power = MAX_TXPOWER;
1928                info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1929        }
1930
1931        if (spec->num_channels > 14) {
1932                for (i = 14; i < spec->num_channels; i++) {
1933                        info[i].max_power = MAX_TXPOWER;
1934                        info[i].default_power1 = DEFAULT_TXPOWER;
1935                }
1936        }
1937
1938        return 0;
1939}
1940
1941static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1942{
1943        int retval;
1944        u32 reg;
1945
1946        /*
1947         * Allocate eeprom data.
1948         */
1949        retval = rt2500pci_validate_eeprom(rt2x00dev);
1950        if (retval)
1951                return retval;
1952
1953        retval = rt2500pci_init_eeprom(rt2x00dev);
1954        if (retval)
1955                return retval;
1956
1957        /*
1958         * Enable rfkill polling by setting GPIO direction of the
1959         * rfkill switch GPIO pin correctly.
1960         */
1961        rt2x00mmio_register_read(rt2x00dev, GPIOCSR, &reg);
1962        rt2x00_set_field32(&reg, GPIOCSR_DIR0, 1);
1963        rt2x00mmio_register_write(rt2x00dev, GPIOCSR, reg);
1964
1965        /*
1966         * Initialize hw specifications.
1967         */
1968        retval = rt2500pci_probe_hw_mode(rt2x00dev);
1969        if (retval)
1970                return retval;
1971
1972        /*
1973         * This device requires the atim queue and DMA-mapped skbs.
1974         */
1975        __set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1976        __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
1977        __set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1978
1979        /*
1980         * Set the rssi offset.
1981         */
1982        rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1983
1984        return 0;
1985}
1986
1987/*
1988 * IEEE80211 stack callback functions.
1989 */
1990static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw,
1991                             struct ieee80211_vif *vif)
1992{
1993        struct rt2x00_dev *rt2x00dev = hw->priv;
1994        u64 tsf;
1995        u32 reg;
1996
1997        rt2x00mmio_register_read(rt2x00dev, CSR17, &reg);
1998        tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1999        rt2x00mmio_register_read(rt2x00dev, CSR16, &reg);
2000        tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
2001
2002        return tsf;
2003}
2004
2005static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
2006{
2007        struct rt2x00_dev *rt2x00dev = hw->priv;
2008        u32 reg;
2009
2010        rt2x00mmio_register_read(rt2x00dev, CSR15, &reg);
2011        return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
2012}
2013
2014static const struct ieee80211_ops rt2500pci_mac80211_ops = {
2015        .tx                     = rt2x00mac_tx,
2016        .start                  = rt2x00mac_start,
2017        .stop                   = rt2x00mac_stop,
2018        .add_interface          = rt2x00mac_add_interface,
2019        .remove_interface       = rt2x00mac_remove_interface,
2020        .config                 = rt2x00mac_config,
2021        .configure_filter       = rt2x00mac_configure_filter,
2022        .sw_scan_start          = rt2x00mac_sw_scan_start,
2023        .sw_scan_complete       = rt2x00mac_sw_scan_complete,
2024        .get_stats              = rt2x00mac_get_stats,
2025        .bss_info_changed       = rt2x00mac_bss_info_changed,
2026        .conf_tx                = rt2x00mac_conf_tx,
2027        .get_tsf                = rt2500pci_get_tsf,
2028        .tx_last_beacon         = rt2500pci_tx_last_beacon,
2029        .rfkill_poll            = rt2x00mac_rfkill_poll,
2030        .flush                  = rt2x00mac_flush,
2031        .set_antenna            = rt2x00mac_set_antenna,
2032        .get_antenna            = rt2x00mac_get_antenna,
2033        .get_ringparam          = rt2x00mac_get_ringparam,
2034        .tx_frames_pending      = rt2x00mac_tx_frames_pending,
2035};
2036
2037static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
2038        .irq_handler            = rt2500pci_interrupt,
2039        .txstatus_tasklet       = rt2500pci_txstatus_tasklet,
2040        .tbtt_tasklet           = rt2500pci_tbtt_tasklet,
2041        .rxdone_tasklet         = rt2500pci_rxdone_tasklet,
2042        .probe_hw               = rt2500pci_probe_hw,
2043        .initialize             = rt2x00mmio_initialize,
2044        .uninitialize           = rt2x00mmio_uninitialize,
2045        .get_entry_state        = rt2500pci_get_entry_state,
2046        .clear_entry            = rt2500pci_clear_entry,
2047        .set_device_state       = rt2500pci_set_device_state,
2048        .rfkill_poll            = rt2500pci_rfkill_poll,
2049        .link_stats             = rt2500pci_link_stats,
2050        .reset_tuner            = rt2500pci_reset_tuner,
2051        .link_tuner             = rt2500pci_link_tuner,
2052        .start_queue            = rt2500pci_start_queue,
2053        .kick_queue             = rt2500pci_kick_queue,
2054        .stop_queue             = rt2500pci_stop_queue,
2055        .flush_queue            = rt2x00mmio_flush_queue,
2056        .write_tx_desc          = rt2500pci_write_tx_desc,
2057        .write_beacon           = rt2500pci_write_beacon,
2058        .fill_rxdone            = rt2500pci_fill_rxdone,
2059        .config_filter          = rt2500pci_config_filter,
2060        .config_intf            = rt2500pci_config_intf,
2061        .config_erp             = rt2500pci_config_erp,
2062        .config_ant             = rt2500pci_config_ant,
2063        .config                 = rt2500pci_config,
2064};
2065
2066static void rt2500pci_queue_init(struct data_queue *queue)
2067{
2068        switch (queue->qid) {
2069        case QID_RX:
2070                queue->limit = 32;
2071                queue->data_size = DATA_FRAME_SIZE;
2072                queue->desc_size = RXD_DESC_SIZE;
2073                queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2074                break;
2075
2076        case QID_AC_VO:
2077        case QID_AC_VI:
2078        case QID_AC_BE:
2079        case QID_AC_BK:
2080                queue->limit = 32;
2081                queue->data_size = DATA_FRAME_SIZE;
2082                queue->desc_size = TXD_DESC_SIZE;
2083                queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2084                break;
2085
2086        case QID_BEACON:
2087                queue->limit = 1;
2088                queue->data_size = MGMT_FRAME_SIZE;
2089                queue->desc_size = TXD_DESC_SIZE;
2090                queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2091                break;
2092
2093        case QID_ATIM:
2094                queue->limit = 8;
2095                queue->data_size = DATA_FRAME_SIZE;
2096                queue->desc_size = TXD_DESC_SIZE;
2097                queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2098                break;
2099
2100        default:
2101                BUG();
2102                break;
2103        }
2104}
2105
2106static const struct rt2x00_ops rt2500pci_ops = {
2107        .name                   = KBUILD_MODNAME,
2108        .max_ap_intf            = 1,
2109        .eeprom_size            = EEPROM_SIZE,
2110        .rf_size                = RF_SIZE,
2111        .tx_queues              = NUM_TX_QUEUES,
2112        .queue_init             = rt2500pci_queue_init,
2113        .lib                    = &rt2500pci_rt2x00_ops,
2114        .hw                     = &rt2500pci_mac80211_ops,
2115#ifdef CONFIG_RT2X00_LIB_DEBUGFS
2116        .debugfs                = &rt2500pci_rt2x00debug,
2117#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2118};
2119
2120/*
2121 * RT2500pci module information.
2122 */
2123static const struct pci_device_id rt2500pci_device_table[] = {
2124        { PCI_DEVICE(0x1814, 0x0201) },
2125        { 0, }
2126};
2127
2128MODULE_AUTHOR(DRV_PROJECT);
2129MODULE_VERSION(DRV_VERSION);
2130MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
2131MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
2132MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
2133MODULE_LICENSE("GPL");
2134
2135static int rt2500pci_probe(struct pci_dev *pci_dev,
2136                           const struct pci_device_id *id)
2137{
2138        return rt2x00pci_probe(pci_dev, &rt2500pci_ops);
2139}
2140
2141static struct pci_driver rt2500pci_driver = {
2142        .name           = KBUILD_MODNAME,
2143        .id_table       = rt2500pci_device_table,
2144        .probe          = rt2500pci_probe,
2145        .remove         = rt2x00pci_remove,
2146        .suspend        = rt2x00pci_suspend,
2147        .resume         = rt2x00pci_resume,
2148};
2149
2150module_pci_driver(rt2500pci_driver);
2151