linux/drivers/net/wireless/ralink/rt2x00/rt61pci.c
<<
>>
Prefs
   1/*
   2        Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
   3        <http://rt2x00.serialmonkey.com>
   4
   5        This program is free software; you can redistribute it and/or modify
   6        it under the terms of the GNU General Public License as published by
   7        the Free Software Foundation; either version 2 of the License, or
   8        (at your option) any later version.
   9
  10        This program is distributed in the hope that it will be useful,
  11        but WITHOUT ANY WARRANTY; without even the implied warranty of
  12        MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13        GNU General Public License for more details.
  14
  15        You should have received a copy of the GNU General Public License
  16        along with this program; if not, see <http://www.gnu.org/licenses/>.
  17 */
  18
  19/*
  20        Module: rt61pci
  21        Abstract: rt61pci device specific routines.
  22        Supported chipsets: RT2561, RT2561s, RT2661.
  23 */
  24
  25#include <linux/crc-itu-t.h>
  26#include <linux/delay.h>
  27#include <linux/etherdevice.h>
  28#include <linux/kernel.h>
  29#include <linux/module.h>
  30#include <linux/slab.h>
  31#include <linux/pci.h>
  32#include <linux/eeprom_93cx6.h>
  33
  34#include "rt2x00.h"
  35#include "rt2x00mmio.h"
  36#include "rt2x00pci.h"
  37#include "rt61pci.h"
  38
  39/*
  40 * Allow hardware encryption to be disabled.
  41 */
  42static bool modparam_nohwcrypt = false;
  43module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
  44MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
  45
  46/*
  47 * Register access.
  48 * BBP and RF register require indirect register access,
  49 * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
  50 * These indirect registers work with busy bits,
  51 * and we will try maximal REGISTER_BUSY_COUNT times to access
  52 * the register while taking a REGISTER_BUSY_DELAY us delay
  53 * between each attempt. When the busy bit is still set at that time,
  54 * the access attempt is considered to have failed,
  55 * and we will print an error.
  56 */
  57#define WAIT_FOR_BBP(__dev, __reg) \
  58        rt2x00mmio_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
  59#define WAIT_FOR_RF(__dev, __reg) \
  60        rt2x00mmio_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
  61#define WAIT_FOR_MCU(__dev, __reg) \
  62        rt2x00mmio_regbusy_read((__dev), H2M_MAILBOX_CSR, \
  63                                H2M_MAILBOX_CSR_OWNER, (__reg))
  64
  65static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
  66                              const unsigned int word, const u8 value)
  67{
  68        u32 reg;
  69
  70        mutex_lock(&rt2x00dev->csr_mutex);
  71
  72        /*
  73         * Wait until the BBP becomes available, afterwards we
  74         * can safely write the new data into the register.
  75         */
  76        if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  77                reg = 0;
  78                rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
  79                rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
  80                rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
  81                rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
  82
  83                rt2x00mmio_register_write(rt2x00dev, PHY_CSR3, reg);
  84        }
  85
  86        mutex_unlock(&rt2x00dev->csr_mutex);
  87}
  88
  89static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
  90                             const unsigned int word, u8 *value)
  91{
  92        u32 reg;
  93
  94        mutex_lock(&rt2x00dev->csr_mutex);
  95
  96        /*
  97         * Wait until the BBP becomes available, afterwards we
  98         * can safely write the read request into the register.
  99         * After the data has been written, we wait until hardware
 100         * returns the correct value, if at any time the register
 101         * doesn't become available in time, reg will be 0xffffffff
 102         * which means we return 0xff to the caller.
 103         */
 104        if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
 105                reg = 0;
 106                rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
 107                rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
 108                rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
 109
 110                rt2x00mmio_register_write(rt2x00dev, PHY_CSR3, reg);
 111
 112                WAIT_FOR_BBP(rt2x00dev, &reg);
 113        }
 114
 115        *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
 116
 117        mutex_unlock(&rt2x00dev->csr_mutex);
 118}
 119
 120static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
 121                             const unsigned int word, const u32 value)
 122{
 123        u32 reg;
 124
 125        mutex_lock(&rt2x00dev->csr_mutex);
 126
 127        /*
 128         * Wait until the RF becomes available, afterwards we
 129         * can safely write the new data into the register.
 130         */
 131        if (WAIT_FOR_RF(rt2x00dev, &reg)) {
 132                reg = 0;
 133                rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
 134                rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
 135                rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
 136                rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
 137
 138                rt2x00mmio_register_write(rt2x00dev, PHY_CSR4, reg);
 139                rt2x00_rf_write(rt2x00dev, word, value);
 140        }
 141
 142        mutex_unlock(&rt2x00dev->csr_mutex);
 143}
 144
 145static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
 146                                const u8 command, const u8 token,
 147                                const u8 arg0, const u8 arg1)
 148{
 149        u32 reg;
 150
 151        mutex_lock(&rt2x00dev->csr_mutex);
 152
 153        /*
 154         * Wait until the MCU becomes available, afterwards we
 155         * can safely write the new data into the register.
 156         */
 157        if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
 158                rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
 159                rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
 160                rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
 161                rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
 162                rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
 163
 164                rt2x00mmio_register_read(rt2x00dev, HOST_CMD_CSR, &reg);
 165                rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
 166                rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
 167                rt2x00mmio_register_write(rt2x00dev, HOST_CMD_CSR, reg);
 168        }
 169
 170        mutex_unlock(&rt2x00dev->csr_mutex);
 171
 172}
 173
 174static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
 175{
 176        struct rt2x00_dev *rt2x00dev = eeprom->data;
 177        u32 reg;
 178
 179        rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR, &reg);
 180
 181        eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
 182        eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
 183        eeprom->reg_data_clock =
 184            !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
 185        eeprom->reg_chip_select =
 186            !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
 187}
 188
 189static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
 190{
 191        struct rt2x00_dev *rt2x00dev = eeprom->data;
 192        u32 reg = 0;
 193
 194        rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
 195        rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
 196        rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
 197                           !!eeprom->reg_data_clock);
 198        rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
 199                           !!eeprom->reg_chip_select);
 200
 201        rt2x00mmio_register_write(rt2x00dev, E2PROM_CSR, reg);
 202}
 203
 204#ifdef CONFIG_RT2X00_LIB_DEBUGFS
 205static const struct rt2x00debug rt61pci_rt2x00debug = {
 206        .owner  = THIS_MODULE,
 207        .csr    = {
 208                .read           = rt2x00mmio_register_read,
 209                .write          = rt2x00mmio_register_write,
 210                .flags          = RT2X00DEBUGFS_OFFSET,
 211                .word_base      = CSR_REG_BASE,
 212                .word_size      = sizeof(u32),
 213                .word_count     = CSR_REG_SIZE / sizeof(u32),
 214        },
 215        .eeprom = {
 216                .read           = rt2x00_eeprom_read,
 217                .write          = rt2x00_eeprom_write,
 218                .word_base      = EEPROM_BASE,
 219                .word_size      = sizeof(u16),
 220                .word_count     = EEPROM_SIZE / sizeof(u16),
 221        },
 222        .bbp    = {
 223                .read           = rt61pci_bbp_read,
 224                .write          = rt61pci_bbp_write,
 225                .word_base      = BBP_BASE,
 226                .word_size      = sizeof(u8),
 227                .word_count     = BBP_SIZE / sizeof(u8),
 228        },
 229        .rf     = {
 230                .read           = rt2x00_rf_read,
 231                .write          = rt61pci_rf_write,
 232                .word_base      = RF_BASE,
 233                .word_size      = sizeof(u32),
 234                .word_count     = RF_SIZE / sizeof(u32),
 235        },
 236};
 237#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
 238
 239static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
 240{
 241        u32 reg;
 242
 243        rt2x00mmio_register_read(rt2x00dev, MAC_CSR13, &reg);
 244        return rt2x00_get_field32(reg, MAC_CSR13_VAL5);
 245}
 246
 247#ifdef CONFIG_RT2X00_LIB_LEDS
 248static void rt61pci_brightness_set(struct led_classdev *led_cdev,
 249                                   enum led_brightness brightness)
 250{
 251        struct rt2x00_led *led =
 252            container_of(led_cdev, struct rt2x00_led, led_dev);
 253        unsigned int enabled = brightness != LED_OFF;
 254        unsigned int a_mode =
 255            (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
 256        unsigned int bg_mode =
 257            (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
 258
 259        if (led->type == LED_TYPE_RADIO) {
 260                rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
 261                                   MCU_LEDCS_RADIO_STATUS, enabled);
 262
 263                rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
 264                                    (led->rt2x00dev->led_mcu_reg & 0xff),
 265                                    ((led->rt2x00dev->led_mcu_reg >> 8)));
 266        } else if (led->type == LED_TYPE_ASSOC) {
 267                rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
 268                                   MCU_LEDCS_LINK_BG_STATUS, bg_mode);
 269                rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
 270                                   MCU_LEDCS_LINK_A_STATUS, a_mode);
 271
 272                rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
 273                                    (led->rt2x00dev->led_mcu_reg & 0xff),
 274                                    ((led->rt2x00dev->led_mcu_reg >> 8)));
 275        } else if (led->type == LED_TYPE_QUALITY) {
 276                /*
 277                 * The brightness is divided into 6 levels (0 - 5),
 278                 * this means we need to convert the brightness
 279                 * argument into the matching level within that range.
 280                 */
 281                rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
 282                                    brightness / (LED_FULL / 6), 0);
 283        }
 284}
 285
 286static int rt61pci_blink_set(struct led_classdev *led_cdev,
 287                             unsigned long *delay_on,
 288                             unsigned long *delay_off)
 289{
 290        struct rt2x00_led *led =
 291            container_of(led_cdev, struct rt2x00_led, led_dev);
 292        u32 reg;
 293
 294        rt2x00mmio_register_read(led->rt2x00dev, MAC_CSR14, &reg);
 295        rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
 296        rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
 297        rt2x00mmio_register_write(led->rt2x00dev, MAC_CSR14, reg);
 298
 299        return 0;
 300}
 301
 302static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
 303                             struct rt2x00_led *led,
 304                             enum led_type type)
 305{
 306        led->rt2x00dev = rt2x00dev;
 307        led->type = type;
 308        led->led_dev.brightness_set = rt61pci_brightness_set;
 309        led->led_dev.blink_set = rt61pci_blink_set;
 310        led->flags = LED_INITIALIZED;
 311}
 312#endif /* CONFIG_RT2X00_LIB_LEDS */
 313
 314/*
 315 * Configuration handlers.
 316 */
 317static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
 318                                     struct rt2x00lib_crypto *crypto,
 319                                     struct ieee80211_key_conf *key)
 320{
 321        struct hw_key_entry key_entry;
 322        struct rt2x00_field32 field;
 323        u32 mask;
 324        u32 reg;
 325
 326        if (crypto->cmd == SET_KEY) {
 327                /*
 328                 * rt2x00lib can't determine the correct free
 329                 * key_idx for shared keys. We have 1 register
 330                 * with key valid bits. The goal is simple, read
 331                 * the register, if that is full we have no slots
 332                 * left.
 333                 * Note that each BSS is allowed to have up to 4
 334                 * shared keys, so put a mask over the allowed
 335                 * entries.
 336                 */
 337                mask = (0xf << crypto->bssidx);
 338
 339                rt2x00mmio_register_read(rt2x00dev, SEC_CSR0, &reg);
 340                reg &= mask;
 341
 342                if (reg && reg == mask)
 343                        return -ENOSPC;
 344
 345                key->hw_key_idx += reg ? ffz(reg) : 0;
 346
 347                /*
 348                 * Upload key to hardware
 349                 */
 350                memcpy(key_entry.key, crypto->key,
 351                       sizeof(key_entry.key));
 352                memcpy(key_entry.tx_mic, crypto->tx_mic,
 353                       sizeof(key_entry.tx_mic));
 354                memcpy(key_entry.rx_mic, crypto->rx_mic,
 355                       sizeof(key_entry.rx_mic));
 356
 357                reg = SHARED_KEY_ENTRY(key->hw_key_idx);
 358                rt2x00mmio_register_multiwrite(rt2x00dev, reg,
 359                                               &key_entry, sizeof(key_entry));
 360
 361                /*
 362                 * The cipher types are stored over 2 registers.
 363                 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
 364                 * bssidx 1 and 2 keys are stored in SEC_CSR5.
 365                 * Using the correct defines correctly will cause overhead,
 366                 * so just calculate the correct offset.
 367                 */
 368                if (key->hw_key_idx < 8) {
 369                        field.bit_offset = (3 * key->hw_key_idx);
 370                        field.bit_mask = 0x7 << field.bit_offset;
 371
 372                        rt2x00mmio_register_read(rt2x00dev, SEC_CSR1, &reg);
 373                        rt2x00_set_field32(&reg, field, crypto->cipher);
 374                        rt2x00mmio_register_write(rt2x00dev, SEC_CSR1, reg);
 375                } else {
 376                        field.bit_offset = (3 * (key->hw_key_idx - 8));
 377                        field.bit_mask = 0x7 << field.bit_offset;
 378
 379                        rt2x00mmio_register_read(rt2x00dev, SEC_CSR5, &reg);
 380                        rt2x00_set_field32(&reg, field, crypto->cipher);
 381                        rt2x00mmio_register_write(rt2x00dev, SEC_CSR5, reg);
 382                }
 383
 384                /*
 385                 * The driver does not support the IV/EIV generation
 386                 * in hardware. However it doesn't support the IV/EIV
 387                 * inside the ieee80211 frame either, but requires it
 388                 * to be provided separately for the descriptor.
 389                 * rt2x00lib will cut the IV/EIV data out of all frames
 390                 * given to us by mac80211, but we must tell mac80211
 391                 * to generate the IV/EIV data.
 392                 */
 393                key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
 394        }
 395
 396        /*
 397         * SEC_CSR0 contains only single-bit fields to indicate
 398         * a particular key is valid. Because using the FIELD32()
 399         * defines directly will cause a lot of overhead, we use
 400         * a calculation to determine the correct bit directly.
 401         */
 402        mask = 1 << key->hw_key_idx;
 403
 404        rt2x00mmio_register_read(rt2x00dev, SEC_CSR0, &reg);
 405        if (crypto->cmd == SET_KEY)
 406                reg |= mask;
 407        else if (crypto->cmd == DISABLE_KEY)
 408                reg &= ~mask;
 409        rt2x00mmio_register_write(rt2x00dev, SEC_CSR0, reg);
 410
 411        return 0;
 412}
 413
 414static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
 415                                       struct rt2x00lib_crypto *crypto,
 416                                       struct ieee80211_key_conf *key)
 417{
 418        struct hw_pairwise_ta_entry addr_entry;
 419        struct hw_key_entry key_entry;
 420        u32 mask;
 421        u32 reg;
 422
 423        if (crypto->cmd == SET_KEY) {
 424                /*
 425                 * rt2x00lib can't determine the correct free
 426                 * key_idx for pairwise keys. We have 2 registers
 427                 * with key valid bits. The goal is simple: read
 428                 * the first register. If that is full, move to
 429                 * the next register.
 430                 * When both registers are full, we drop the key.
 431                 * Otherwise, we use the first invalid entry.
 432                 */
 433                rt2x00mmio_register_read(rt2x00dev, SEC_CSR2, &reg);
 434                if (reg && reg == ~0) {
 435                        key->hw_key_idx = 32;
 436                        rt2x00mmio_register_read(rt2x00dev, SEC_CSR3, &reg);
 437                        if (reg && reg == ~0)
 438                                return -ENOSPC;
 439                }
 440
 441                key->hw_key_idx += reg ? ffz(reg) : 0;
 442
 443                /*
 444                 * Upload key to hardware
 445                 */
 446                memcpy(key_entry.key, crypto->key,
 447                       sizeof(key_entry.key));
 448                memcpy(key_entry.tx_mic, crypto->tx_mic,
 449                       sizeof(key_entry.tx_mic));
 450                memcpy(key_entry.rx_mic, crypto->rx_mic,
 451                       sizeof(key_entry.rx_mic));
 452
 453                memset(&addr_entry, 0, sizeof(addr_entry));
 454                memcpy(&addr_entry, crypto->address, ETH_ALEN);
 455                addr_entry.cipher = crypto->cipher;
 456
 457                reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
 458                rt2x00mmio_register_multiwrite(rt2x00dev, reg,
 459                                               &key_entry, sizeof(key_entry));
 460
 461                reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
 462                rt2x00mmio_register_multiwrite(rt2x00dev, reg,
 463                                               &addr_entry, sizeof(addr_entry));
 464
 465                /*
 466                 * Enable pairwise lookup table for given BSS idx.
 467                 * Without this, received frames will not be decrypted
 468                 * by the hardware.
 469                 */
 470                rt2x00mmio_register_read(rt2x00dev, SEC_CSR4, &reg);
 471                reg |= (1 << crypto->bssidx);
 472                rt2x00mmio_register_write(rt2x00dev, SEC_CSR4, reg);
 473
 474                /*
 475                 * The driver does not support the IV/EIV generation
 476                 * in hardware. However it doesn't support the IV/EIV
 477                 * inside the ieee80211 frame either, but requires it
 478                 * to be provided separately for the descriptor.
 479                 * rt2x00lib will cut the IV/EIV data out of all frames
 480                 * given to us by mac80211, but we must tell mac80211
 481                 * to generate the IV/EIV data.
 482                 */
 483                key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
 484        }
 485
 486        /*
 487         * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
 488         * a particular key is valid. Because using the FIELD32()
 489         * defines directly will cause a lot of overhead, we use
 490         * a calculation to determine the correct bit directly.
 491         */
 492        if (key->hw_key_idx < 32) {
 493                mask = 1 << key->hw_key_idx;
 494
 495                rt2x00mmio_register_read(rt2x00dev, SEC_CSR2, &reg);
 496                if (crypto->cmd == SET_KEY)
 497                        reg |= mask;
 498                else if (crypto->cmd == DISABLE_KEY)
 499                        reg &= ~mask;
 500                rt2x00mmio_register_write(rt2x00dev, SEC_CSR2, reg);
 501        } else {
 502                mask = 1 << (key->hw_key_idx - 32);
 503
 504                rt2x00mmio_register_read(rt2x00dev, SEC_CSR3, &reg);
 505                if (crypto->cmd == SET_KEY)
 506                        reg |= mask;
 507                else if (crypto->cmd == DISABLE_KEY)
 508                        reg &= ~mask;
 509                rt2x00mmio_register_write(rt2x00dev, SEC_CSR3, reg);
 510        }
 511
 512        return 0;
 513}
 514
 515static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
 516                                  const unsigned int filter_flags)
 517{
 518        u32 reg;
 519
 520        /*
 521         * Start configuration steps.
 522         * Note that the version error will always be dropped
 523         * and broadcast frames will always be accepted since
 524         * there is no filter for it at this time.
 525         */
 526        rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, &reg);
 527        rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
 528                           !(filter_flags & FIF_FCSFAIL));
 529        rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
 530                           !(filter_flags & FIF_PLCPFAIL));
 531        rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
 532                           !(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
 533        rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
 534                           !test_bit(CONFIG_MONITORING, &rt2x00dev->flags));
 535        rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
 536                           !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) &&
 537                           !rt2x00dev->intf_ap_count);
 538        rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
 539        rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
 540                           !(filter_flags & FIF_ALLMULTI));
 541        rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
 542        rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
 543                           !(filter_flags & FIF_CONTROL));
 544        rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
 545}
 546
 547static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
 548                                struct rt2x00_intf *intf,
 549                                struct rt2x00intf_conf *conf,
 550                                const unsigned int flags)
 551{
 552        u32 reg;
 553
 554        if (flags & CONFIG_UPDATE_TYPE) {
 555                /*
 556                 * Enable synchronisation.
 557                 */
 558                rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &reg);
 559                rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
 560                rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
 561        }
 562
 563        if (flags & CONFIG_UPDATE_MAC) {
 564                reg = le32_to_cpu(conf->mac[1]);
 565                rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
 566                conf->mac[1] = cpu_to_le32(reg);
 567
 568                rt2x00mmio_register_multiwrite(rt2x00dev, MAC_CSR2,
 569                                               conf->mac, sizeof(conf->mac));
 570        }
 571
 572        if (flags & CONFIG_UPDATE_BSSID) {
 573                reg = le32_to_cpu(conf->bssid[1]);
 574                rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
 575                conf->bssid[1] = cpu_to_le32(reg);
 576
 577                rt2x00mmio_register_multiwrite(rt2x00dev, MAC_CSR4,
 578                                               conf->bssid,
 579                                               sizeof(conf->bssid));
 580        }
 581}
 582
 583static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
 584                               struct rt2x00lib_erp *erp,
 585                               u32 changed)
 586{
 587        u32 reg;
 588
 589        rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, &reg);
 590        rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
 591        rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
 592        rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
 593
 594        if (changed & BSS_CHANGED_ERP_PREAMBLE) {
 595                rt2x00mmio_register_read(rt2x00dev, TXRX_CSR4, &reg);
 596                rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
 597                rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
 598                                   !!erp->short_preamble);
 599                rt2x00mmio_register_write(rt2x00dev, TXRX_CSR4, reg);
 600        }
 601
 602        if (changed & BSS_CHANGED_BASIC_RATES)
 603                rt2x00mmio_register_write(rt2x00dev, TXRX_CSR5,
 604                                          erp->basic_rates);
 605
 606        if (changed & BSS_CHANGED_BEACON_INT) {
 607                rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &reg);
 608                rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
 609                                   erp->beacon_int * 16);
 610                rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
 611        }
 612
 613        if (changed & BSS_CHANGED_ERP_SLOT) {
 614                rt2x00mmio_register_read(rt2x00dev, MAC_CSR9, &reg);
 615                rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
 616                rt2x00mmio_register_write(rt2x00dev, MAC_CSR9, reg);
 617
 618                rt2x00mmio_register_read(rt2x00dev, MAC_CSR8, &reg);
 619                rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
 620                rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
 621                rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
 622                rt2x00mmio_register_write(rt2x00dev, MAC_CSR8, reg);
 623        }
 624}
 625
 626static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
 627                                      struct antenna_setup *ant)
 628{
 629        u8 r3;
 630        u8 r4;
 631        u8 r77;
 632
 633        rt61pci_bbp_read(rt2x00dev, 3, &r3);
 634        rt61pci_bbp_read(rt2x00dev, 4, &r4);
 635        rt61pci_bbp_read(rt2x00dev, 77, &r77);
 636
 637        rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF5325));
 638
 639        /*
 640         * Configure the RX antenna.
 641         */
 642        switch (ant->rx) {
 643        case ANTENNA_HW_DIVERSITY:
 644                rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
 645                rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
 646                                  (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ));
 647                break;
 648        case ANTENNA_A:
 649                rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
 650                rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
 651                if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
 652                        rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
 653                else
 654                        rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
 655                break;
 656        case ANTENNA_B:
 657        default:
 658                rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
 659                rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
 660                if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
 661                        rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
 662                else
 663                        rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
 664                break;
 665        }
 666
 667        rt61pci_bbp_write(rt2x00dev, 77, r77);
 668        rt61pci_bbp_write(rt2x00dev, 3, r3);
 669        rt61pci_bbp_write(rt2x00dev, 4, r4);
 670}
 671
 672static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
 673                                      struct antenna_setup *ant)
 674{
 675        u8 r3;
 676        u8 r4;
 677        u8 r77;
 678
 679        rt61pci_bbp_read(rt2x00dev, 3, &r3);
 680        rt61pci_bbp_read(rt2x00dev, 4, &r4);
 681        rt61pci_bbp_read(rt2x00dev, 77, &r77);
 682
 683        rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF2529));
 684        rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
 685                          !rt2x00_has_cap_frame_type(rt2x00dev));
 686
 687        /*
 688         * Configure the RX antenna.
 689         */
 690        switch (ant->rx) {
 691        case ANTENNA_HW_DIVERSITY:
 692                rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
 693                break;
 694        case ANTENNA_A:
 695                rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
 696                rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
 697                break;
 698        case ANTENNA_B:
 699        default:
 700                rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
 701                rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
 702                break;
 703        }
 704
 705        rt61pci_bbp_write(rt2x00dev, 77, r77);
 706        rt61pci_bbp_write(rt2x00dev, 3, r3);
 707        rt61pci_bbp_write(rt2x00dev, 4, r4);
 708}
 709
 710static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
 711                                           const int p1, const int p2)
 712{
 713        u32 reg;
 714
 715        rt2x00mmio_register_read(rt2x00dev, MAC_CSR13, &reg);
 716
 717        rt2x00_set_field32(&reg, MAC_CSR13_DIR4, 0);
 718        rt2x00_set_field32(&reg, MAC_CSR13_VAL4, p1);
 719
 720        rt2x00_set_field32(&reg, MAC_CSR13_DIR3, 0);
 721        rt2x00_set_field32(&reg, MAC_CSR13_VAL3, !p2);
 722
 723        rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, reg);
 724}
 725
 726static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
 727                                        struct antenna_setup *ant)
 728{
 729        u8 r3;
 730        u8 r4;
 731        u8 r77;
 732
 733        rt61pci_bbp_read(rt2x00dev, 3, &r3);
 734        rt61pci_bbp_read(rt2x00dev, 4, &r4);
 735        rt61pci_bbp_read(rt2x00dev, 77, &r77);
 736
 737        /*
 738         * Configure the RX antenna.
 739         */
 740        switch (ant->rx) {
 741        case ANTENNA_A:
 742                rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
 743                rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
 744                rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
 745                break;
 746        case ANTENNA_HW_DIVERSITY:
 747                /*
 748                 * FIXME: Antenna selection for the rf 2529 is very confusing
 749                 * in the legacy driver. Just default to antenna B until the
 750                 * legacy code can be properly translated into rt2x00 code.
 751                 */
 752        case ANTENNA_B:
 753        default:
 754                rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
 755                rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
 756                rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
 757                break;
 758        }
 759
 760        rt61pci_bbp_write(rt2x00dev, 77, r77);
 761        rt61pci_bbp_write(rt2x00dev, 3, r3);
 762        rt61pci_bbp_write(rt2x00dev, 4, r4);
 763}
 764
 765struct antenna_sel {
 766        u8 word;
 767        /*
 768         * value[0] -> non-LNA
 769         * value[1] -> LNA
 770         */
 771        u8 value[2];
 772};
 773
 774static const struct antenna_sel antenna_sel_a[] = {
 775        { 96,  { 0x58, 0x78 } },
 776        { 104, { 0x38, 0x48 } },
 777        { 75,  { 0xfe, 0x80 } },
 778        { 86,  { 0xfe, 0x80 } },
 779        { 88,  { 0xfe, 0x80 } },
 780        { 35,  { 0x60, 0x60 } },
 781        { 97,  { 0x58, 0x58 } },
 782        { 98,  { 0x58, 0x58 } },
 783};
 784
 785static const struct antenna_sel antenna_sel_bg[] = {
 786        { 96,  { 0x48, 0x68 } },
 787        { 104, { 0x2c, 0x3c } },
 788        { 75,  { 0xfe, 0x80 } },
 789        { 86,  { 0xfe, 0x80 } },
 790        { 88,  { 0xfe, 0x80 } },
 791        { 35,  { 0x50, 0x50 } },
 792        { 97,  { 0x48, 0x48 } },
 793        { 98,  { 0x48, 0x48 } },
 794};
 795
 796static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev,
 797                               struct antenna_setup *ant)
 798{
 799        const struct antenna_sel *sel;
 800        unsigned int lna;
 801        unsigned int i;
 802        u32 reg;
 803
 804        /*
 805         * We should never come here because rt2x00lib is supposed
 806         * to catch this and send us the correct antenna explicitely.
 807         */
 808        BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
 809               ant->tx == ANTENNA_SW_DIVERSITY);
 810
 811        if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
 812                sel = antenna_sel_a;
 813                lna = rt2x00_has_cap_external_lna_a(rt2x00dev);
 814        } else {
 815                sel = antenna_sel_bg;
 816                lna = rt2x00_has_cap_external_lna_bg(rt2x00dev);
 817        }
 818
 819        for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
 820                rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
 821
 822        rt2x00mmio_register_read(rt2x00dev, PHY_CSR0, &reg);
 823
 824        rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
 825                           rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
 826        rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
 827                           rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
 828
 829        rt2x00mmio_register_write(rt2x00dev, PHY_CSR0, reg);
 830
 831        if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325))
 832                rt61pci_config_antenna_5x(rt2x00dev, ant);
 833        else if (rt2x00_rf(rt2x00dev, RF2527))
 834                rt61pci_config_antenna_2x(rt2x00dev, ant);
 835        else if (rt2x00_rf(rt2x00dev, RF2529)) {
 836                if (rt2x00_has_cap_double_antenna(rt2x00dev))
 837                        rt61pci_config_antenna_2x(rt2x00dev, ant);
 838                else
 839                        rt61pci_config_antenna_2529(rt2x00dev, ant);
 840        }
 841}
 842
 843static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev,
 844                                    struct rt2x00lib_conf *libconf)
 845{
 846        u16 eeprom;
 847        short lna_gain = 0;
 848
 849        if (libconf->conf->chandef.chan->band == IEEE80211_BAND_2GHZ) {
 850                if (rt2x00_has_cap_external_lna_bg(rt2x00dev))
 851                        lna_gain += 14;
 852
 853                rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
 854                lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
 855        } else {
 856                if (rt2x00_has_cap_external_lna_a(rt2x00dev))
 857                        lna_gain += 14;
 858
 859                rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
 860                lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
 861        }
 862
 863        rt2x00dev->lna_gain = lna_gain;
 864}
 865
 866static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
 867                                   struct rf_channel *rf, const int txpower)
 868{
 869        u8 r3;
 870        u8 r94;
 871        u8 smart;
 872
 873        rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
 874        rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
 875
 876        smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527));
 877
 878        rt61pci_bbp_read(rt2x00dev, 3, &r3);
 879        rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
 880        rt61pci_bbp_write(rt2x00dev, 3, r3);
 881
 882        r94 = 6;
 883        if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
 884                r94 += txpower - MAX_TXPOWER;
 885        else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
 886                r94 += txpower;
 887        rt61pci_bbp_write(rt2x00dev, 94, r94);
 888
 889        rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
 890        rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
 891        rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
 892        rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
 893
 894        udelay(200);
 895
 896        rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
 897        rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
 898        rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
 899        rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
 900
 901        udelay(200);
 902
 903        rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
 904        rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
 905        rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
 906        rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
 907
 908        msleep(1);
 909}
 910
 911static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
 912                                   const int txpower)
 913{
 914        struct rf_channel rf;
 915
 916        rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
 917        rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
 918        rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
 919        rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
 920
 921        rt61pci_config_channel(rt2x00dev, &rf, txpower);
 922}
 923
 924static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
 925                                    struct rt2x00lib_conf *libconf)
 926{
 927        u32 reg;
 928
 929        rt2x00mmio_register_read(rt2x00dev, TXRX_CSR4, &reg);
 930        rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1);
 931        rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_STEP, 0);
 932        rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0);
 933        rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
 934                           libconf->conf->long_frame_max_tx_count);
 935        rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
 936                           libconf->conf->short_frame_max_tx_count);
 937        rt2x00mmio_register_write(rt2x00dev, TXRX_CSR4, reg);
 938}
 939
 940static void rt61pci_config_ps(struct rt2x00_dev *rt2x00dev,
 941                                struct rt2x00lib_conf *libconf)
 942{
 943        enum dev_state state =
 944            (libconf->conf->flags & IEEE80211_CONF_PS) ?
 945                STATE_SLEEP : STATE_AWAKE;
 946        u32 reg;
 947
 948        if (state == STATE_SLEEP) {
 949                rt2x00mmio_register_read(rt2x00dev, MAC_CSR11, &reg);
 950                rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
 951                                   rt2x00dev->beacon_int - 10);
 952                rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
 953                                   libconf->conf->listen_interval - 1);
 954                rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
 955
 956                /* We must first disable autowake before it can be enabled */
 957                rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
 958                rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg);
 959
 960                rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
 961                rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg);
 962
 963                rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR,
 964                                          0x00000005);
 965                rt2x00mmio_register_write(rt2x00dev, IO_CNTL_CSR, 0x0000001c);
 966                rt2x00mmio_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000060);
 967
 968                rt61pci_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 0);
 969        } else {
 970                rt2x00mmio_register_read(rt2x00dev, MAC_CSR11, &reg);
 971                rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
 972                rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
 973                rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
 974                rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
 975                rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg);
 976
 977                rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR,
 978                                          0x00000007);
 979                rt2x00mmio_register_write(rt2x00dev, IO_CNTL_CSR, 0x00000018);
 980                rt2x00mmio_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000020);
 981
 982                rt61pci_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0, 0);
 983        }
 984}
 985
 986static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
 987                           struct rt2x00lib_conf *libconf,
 988                           const unsigned int flags)
 989{
 990        /* Always recalculate LNA gain before changing configuration */
 991        rt61pci_config_lna_gain(rt2x00dev, libconf);
 992
 993        if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
 994                rt61pci_config_channel(rt2x00dev, &libconf->rf,
 995                                       libconf->conf->power_level);
 996        if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
 997            !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
 998                rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
 999        if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
1000                rt61pci_config_retry_limit(rt2x00dev, libconf);
1001        if (flags & IEEE80211_CONF_CHANGE_PS)
1002                rt61pci_config_ps(rt2x00dev, libconf);
1003}
1004
1005/*
1006 * Link tuning
1007 */
1008static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
1009                               struct link_qual *qual)
1010{
1011        u32 reg;
1012
1013        /*
1014         * Update FCS error count from register.
1015         */
1016        rt2x00mmio_register_read(rt2x00dev, STA_CSR0, &reg);
1017        qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
1018
1019        /*
1020         * Update False CCA count from register.
1021         */
1022        rt2x00mmio_register_read(rt2x00dev, STA_CSR1, &reg);
1023        qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
1024}
1025
1026static inline void rt61pci_set_vgc(struct rt2x00_dev *rt2x00dev,
1027                                   struct link_qual *qual, u8 vgc_level)
1028{
1029        if (qual->vgc_level != vgc_level) {
1030                rt61pci_bbp_write(rt2x00dev, 17, vgc_level);
1031                qual->vgc_level = vgc_level;
1032                qual->vgc_level_reg = vgc_level;
1033        }
1034}
1035
1036static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
1037                                struct link_qual *qual)
1038{
1039        rt61pci_set_vgc(rt2x00dev, qual, 0x20);
1040}
1041
1042static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev,
1043                               struct link_qual *qual, const u32 count)
1044{
1045        u8 up_bound;
1046        u8 low_bound;
1047
1048        /*
1049         * Determine r17 bounds.
1050         */
1051        if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
1052                low_bound = 0x28;
1053                up_bound = 0x48;
1054                if (rt2x00_has_cap_external_lna_a(rt2x00dev)) {
1055                        low_bound += 0x10;
1056                        up_bound += 0x10;
1057                }
1058        } else {
1059                low_bound = 0x20;
1060                up_bound = 0x40;
1061                if (rt2x00_has_cap_external_lna_bg(rt2x00dev)) {
1062                        low_bound += 0x10;
1063                        up_bound += 0x10;
1064                }
1065        }
1066
1067        /*
1068         * If we are not associated, we should go straight to the
1069         * dynamic CCA tuning.
1070         */
1071        if (!rt2x00dev->intf_associated)
1072                goto dynamic_cca_tune;
1073
1074        /*
1075         * Special big-R17 for very short distance
1076         */
1077        if (qual->rssi >= -35) {
1078                rt61pci_set_vgc(rt2x00dev, qual, 0x60);
1079                return;
1080        }
1081
1082        /*
1083         * Special big-R17 for short distance
1084         */
1085        if (qual->rssi >= -58) {
1086                rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1087                return;
1088        }
1089
1090        /*
1091         * Special big-R17 for middle-short distance
1092         */
1093        if (qual->rssi >= -66) {
1094                rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x10);
1095                return;
1096        }
1097
1098        /*
1099         * Special mid-R17 for middle distance
1100         */
1101        if (qual->rssi >= -74) {
1102                rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x08);
1103                return;
1104        }
1105
1106        /*
1107         * Special case: Change up_bound based on the rssi.
1108         * Lower up_bound when rssi is weaker then -74 dBm.
1109         */
1110        up_bound -= 2 * (-74 - qual->rssi);
1111        if (low_bound > up_bound)
1112                up_bound = low_bound;
1113
1114        if (qual->vgc_level > up_bound) {
1115                rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1116                return;
1117        }
1118
1119dynamic_cca_tune:
1120
1121        /*
1122         * r17 does not yet exceed upper limit, continue and base
1123         * the r17 tuning on the false CCA count.
1124         */
1125        if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
1126                rt61pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
1127        else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
1128                rt61pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
1129}
1130
1131/*
1132 * Queue handlers.
1133 */
1134static void rt61pci_start_queue(struct data_queue *queue)
1135{
1136        struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1137        u32 reg;
1138
1139        switch (queue->qid) {
1140        case QID_RX:
1141                rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, &reg);
1142                rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1143                rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
1144                break;
1145        case QID_BEACON:
1146                rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &reg);
1147                rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1148                rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1149                rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1150                rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
1151                break;
1152        default:
1153                break;
1154        }
1155}
1156
1157static void rt61pci_kick_queue(struct data_queue *queue)
1158{
1159        struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1160        u32 reg;
1161
1162        switch (queue->qid) {
1163        case QID_AC_VO:
1164                rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1165                rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, 1);
1166                rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1167                break;
1168        case QID_AC_VI:
1169                rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1170                rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, 1);
1171                rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1172                break;
1173        case QID_AC_BE:
1174                rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1175                rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, 1);
1176                rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1177                break;
1178        case QID_AC_BK:
1179                rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1180                rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, 1);
1181                rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1182                break;
1183        default:
1184                break;
1185        }
1186}
1187
1188static void rt61pci_stop_queue(struct data_queue *queue)
1189{
1190        struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1191        u32 reg;
1192
1193        switch (queue->qid) {
1194        case QID_AC_VO:
1195                rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1196                rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, 1);
1197                rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1198                break;
1199        case QID_AC_VI:
1200                rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1201                rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, 1);
1202                rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1203                break;
1204        case QID_AC_BE:
1205                rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1206                rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, 1);
1207                rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1208                break;
1209        case QID_AC_BK:
1210                rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1211                rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, 1);
1212                rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1213                break;
1214        case QID_RX:
1215                rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, &reg);
1216                rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 1);
1217                rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
1218                break;
1219        case QID_BEACON:
1220                rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &reg);
1221                rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1222                rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1223                rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1224                rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
1225
1226                /*
1227                 * Wait for possibly running tbtt tasklets.
1228                 */
1229                tasklet_kill(&rt2x00dev->tbtt_tasklet);
1230                break;
1231        default:
1232                break;
1233        }
1234}
1235
1236/*
1237 * Firmware functions
1238 */
1239static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1240{
1241        u16 chip;
1242        char *fw_name;
1243
1244        pci_read_config_word(to_pci_dev(rt2x00dev->dev), PCI_DEVICE_ID, &chip);
1245        switch (chip) {
1246        case RT2561_PCI_ID:
1247                fw_name = FIRMWARE_RT2561;
1248                break;
1249        case RT2561s_PCI_ID:
1250                fw_name = FIRMWARE_RT2561s;
1251                break;
1252        case RT2661_PCI_ID:
1253                fw_name = FIRMWARE_RT2661;
1254                break;
1255        default:
1256                fw_name = NULL;
1257                break;
1258        }
1259
1260        return fw_name;
1261}
1262
1263static int rt61pci_check_firmware(struct rt2x00_dev *rt2x00dev,
1264                                  const u8 *data, const size_t len)
1265{
1266        u16 fw_crc;
1267        u16 crc;
1268
1269        /*
1270         * Only support 8kb firmware files.
1271         */
1272        if (len != 8192)
1273                return FW_BAD_LENGTH;
1274
1275        /*
1276         * The last 2 bytes in the firmware array are the crc checksum itself.
1277         * This means that we should never pass those 2 bytes to the crc
1278         * algorithm.
1279         */
1280        fw_crc = (data[len - 2] << 8 | data[len - 1]);
1281
1282        /*
1283         * Use the crc itu-t algorithm.
1284         */
1285        crc = crc_itu_t(0, data, len - 2);
1286        crc = crc_itu_t_byte(crc, 0);
1287        crc = crc_itu_t_byte(crc, 0);
1288
1289        return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
1290}
1291
1292static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev,
1293                                 const u8 *data, const size_t len)
1294{
1295        int i;
1296        u32 reg;
1297
1298        /*
1299         * Wait for stable hardware.
1300         */
1301        for (i = 0; i < 100; i++) {
1302                rt2x00mmio_register_read(rt2x00dev, MAC_CSR0, &reg);
1303                if (reg)
1304                        break;
1305                msleep(1);
1306        }
1307
1308        if (!reg) {
1309                rt2x00_err(rt2x00dev, "Unstable hardware\n");
1310                return -EBUSY;
1311        }
1312
1313        /*
1314         * Prepare MCU and mailbox for firmware loading.
1315         */
1316        reg = 0;
1317        rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1318        rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1319        rt2x00mmio_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1320        rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
1321        rt2x00mmio_register_write(rt2x00dev, HOST_CMD_CSR, 0);
1322
1323        /*
1324         * Write firmware to device.
1325         */
1326        reg = 0;
1327        rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1328        rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
1329        rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1330
1331        rt2x00mmio_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
1332                                       data, len);
1333
1334        rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
1335        rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1336
1337        rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
1338        rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1339
1340        for (i = 0; i < 100; i++) {
1341                rt2x00mmio_register_read(rt2x00dev, MCU_CNTL_CSR, &reg);
1342                if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
1343                        break;
1344                msleep(1);
1345        }
1346
1347        if (i == 100) {
1348                rt2x00_err(rt2x00dev, "MCU Control register not ready\n");
1349                return -EBUSY;
1350        }
1351
1352        /*
1353         * Hardware needs another millisecond before it is ready.
1354         */
1355        msleep(1);
1356
1357        /*
1358         * Reset MAC and BBP registers.
1359         */
1360        reg = 0;
1361        rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1362        rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1363        rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1364
1365        rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, &reg);
1366        rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1367        rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1368        rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1369
1370        rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, &reg);
1371        rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1372        rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1373
1374        return 0;
1375}
1376
1377/*
1378 * Initialization functions.
1379 */
1380static bool rt61pci_get_entry_state(struct queue_entry *entry)
1381{
1382        struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1383        u32 word;
1384
1385        if (entry->queue->qid == QID_RX) {
1386                rt2x00_desc_read(entry_priv->desc, 0, &word);
1387
1388                return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
1389        } else {
1390                rt2x00_desc_read(entry_priv->desc, 0, &word);
1391
1392                return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1393                        rt2x00_get_field32(word, TXD_W0_VALID));
1394        }
1395}
1396
1397static void rt61pci_clear_entry(struct queue_entry *entry)
1398{
1399        struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1400        struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1401        u32 word;
1402
1403        if (entry->queue->qid == QID_RX) {
1404                rt2x00_desc_read(entry_priv->desc, 5, &word);
1405                rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
1406                                   skbdesc->skb_dma);
1407                rt2x00_desc_write(entry_priv->desc, 5, word);
1408
1409                rt2x00_desc_read(entry_priv->desc, 0, &word);
1410                rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
1411                rt2x00_desc_write(entry_priv->desc, 0, word);
1412        } else {
1413                rt2x00_desc_read(entry_priv->desc, 0, &word);
1414                rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1415                rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
1416                rt2x00_desc_write(entry_priv->desc, 0, word);
1417        }
1418}
1419
1420static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
1421{
1422        struct queue_entry_priv_mmio *entry_priv;
1423        u32 reg;
1424
1425        /*
1426         * Initialize registers.
1427         */
1428        rt2x00mmio_register_read(rt2x00dev, TX_RING_CSR0, &reg);
1429        rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
1430                           rt2x00dev->tx[0].limit);
1431        rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
1432                           rt2x00dev->tx[1].limit);
1433        rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
1434                           rt2x00dev->tx[2].limit);
1435        rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
1436                           rt2x00dev->tx[3].limit);
1437        rt2x00mmio_register_write(rt2x00dev, TX_RING_CSR0, reg);
1438
1439        rt2x00mmio_register_read(rt2x00dev, TX_RING_CSR1, &reg);
1440        rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
1441                           rt2x00dev->tx[0].desc_size / 4);
1442        rt2x00mmio_register_write(rt2x00dev, TX_RING_CSR1, reg);
1443
1444        entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
1445        rt2x00mmio_register_read(rt2x00dev, AC0_BASE_CSR, &reg);
1446        rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
1447                           entry_priv->desc_dma);
1448        rt2x00mmio_register_write(rt2x00dev, AC0_BASE_CSR, reg);
1449
1450        entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
1451        rt2x00mmio_register_read(rt2x00dev, AC1_BASE_CSR, &reg);
1452        rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
1453                           entry_priv->desc_dma);
1454        rt2x00mmio_register_write(rt2x00dev, AC1_BASE_CSR, reg);
1455
1456        entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
1457        rt2x00mmio_register_read(rt2x00dev, AC2_BASE_CSR, &reg);
1458        rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
1459                           entry_priv->desc_dma);
1460        rt2x00mmio_register_write(rt2x00dev, AC2_BASE_CSR, reg);
1461
1462        entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
1463        rt2x00mmio_register_read(rt2x00dev, AC3_BASE_CSR, &reg);
1464        rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
1465                           entry_priv->desc_dma);
1466        rt2x00mmio_register_write(rt2x00dev, AC3_BASE_CSR, reg);
1467
1468        rt2x00mmio_register_read(rt2x00dev, RX_RING_CSR, &reg);
1469        rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
1470        rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
1471                           rt2x00dev->rx->desc_size / 4);
1472        rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
1473        rt2x00mmio_register_write(rt2x00dev, RX_RING_CSR, reg);
1474
1475        entry_priv = rt2x00dev->rx->entries[0].priv_data;
1476        rt2x00mmio_register_read(rt2x00dev, RX_BASE_CSR, &reg);
1477        rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
1478                           entry_priv->desc_dma);
1479        rt2x00mmio_register_write(rt2x00dev, RX_BASE_CSR, reg);
1480
1481        rt2x00mmio_register_read(rt2x00dev, TX_DMA_DST_CSR, &reg);
1482        rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
1483        rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
1484        rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
1485        rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
1486        rt2x00mmio_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
1487
1488        rt2x00mmio_register_read(rt2x00dev, LOAD_TX_RING_CSR, &reg);
1489        rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
1490        rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
1491        rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
1492        rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
1493        rt2x00mmio_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
1494
1495        rt2x00mmio_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1496        rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
1497        rt2x00mmio_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1498
1499        return 0;
1500}
1501
1502static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
1503{
1504        u32 reg;
1505
1506        rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, &reg);
1507        rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1508        rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1509        rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1510        rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
1511
1512        rt2x00mmio_register_read(rt2x00dev, TXRX_CSR1, &reg);
1513        rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1514        rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1515        rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1516        rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1517        rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1518        rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1519        rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1520        rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1521        rt2x00mmio_register_write(rt2x00dev, TXRX_CSR1, reg);
1522
1523        /*
1524         * CCK TXD BBP registers
1525         */
1526        rt2x00mmio_register_read(rt2x00dev, TXRX_CSR2, &reg);
1527        rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1528        rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1529        rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1530        rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1531        rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1532        rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1533        rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1534        rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1535        rt2x00mmio_register_write(rt2x00dev, TXRX_CSR2, reg);
1536
1537        /*
1538         * OFDM TXD BBP registers
1539         */
1540        rt2x00mmio_register_read(rt2x00dev, TXRX_CSR3, &reg);
1541        rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1542        rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1543        rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1544        rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1545        rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1546        rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1547        rt2x00mmio_register_write(rt2x00dev, TXRX_CSR3, reg);
1548
1549        rt2x00mmio_register_read(rt2x00dev, TXRX_CSR7, &reg);
1550        rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1551        rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1552        rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1553        rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1554        rt2x00mmio_register_write(rt2x00dev, TXRX_CSR7, reg);
1555
1556        rt2x00mmio_register_read(rt2x00dev, TXRX_CSR8, &reg);
1557        rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1558        rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1559        rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1560        rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1561        rt2x00mmio_register_write(rt2x00dev, TXRX_CSR8, reg);
1562
1563        rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &reg);
1564        rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1565        rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1566        rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1567        rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1568        rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1569        rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1570        rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
1571
1572        rt2x00mmio_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1573
1574        rt2x00mmio_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
1575
1576        rt2x00mmio_register_read(rt2x00dev, MAC_CSR9, &reg);
1577        rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1578        rt2x00mmio_register_write(rt2x00dev, MAC_CSR9, reg);
1579
1580        rt2x00mmio_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
1581
1582        if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1583                return -EBUSY;
1584
1585        rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
1586
1587        /*
1588         * Invalidate all Shared Keys (SEC_CSR0),
1589         * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1590         */
1591        rt2x00mmio_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1592        rt2x00mmio_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1593        rt2x00mmio_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1594
1595        rt2x00mmio_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
1596        rt2x00mmio_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
1597        rt2x00mmio_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1598        rt2x00mmio_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
1599
1600        rt2x00mmio_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
1601
1602        rt2x00mmio_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
1603
1604        rt2x00mmio_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1605
1606        /*
1607         * Clear all beacons
1608         * For the Beacon base registers we only need to clear
1609         * the first byte since that byte contains the VALID and OWNER
1610         * bits which (when set to 0) will invalidate the entire beacon.
1611         */
1612        rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1613        rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1614        rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1615        rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1616
1617        /*
1618         * We must clear the error counters.
1619         * These registers are cleared on read,
1620         * so we may pass a useless variable to store the value.
1621         */
1622        rt2x00mmio_register_read(rt2x00dev, STA_CSR0, &reg);
1623        rt2x00mmio_register_read(rt2x00dev, STA_CSR1, &reg);
1624        rt2x00mmio_register_read(rt2x00dev, STA_CSR2, &reg);
1625
1626        /*
1627         * Reset MAC and BBP registers.
1628         */
1629        rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, &reg);
1630        rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1631        rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1632        rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1633
1634        rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, &reg);
1635        rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1636        rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1637        rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1638
1639        rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, &reg);
1640        rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1641        rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1642
1643        return 0;
1644}
1645
1646static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1647{
1648        unsigned int i;
1649        u8 value;
1650
1651        for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1652                rt61pci_bbp_read(rt2x00dev, 0, &value);
1653                if ((value != 0xff) && (value != 0x00))
1654                        return 0;
1655                udelay(REGISTER_BUSY_DELAY);
1656        }
1657
1658        rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
1659        return -EACCES;
1660}
1661
1662static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1663{
1664        unsigned int i;
1665        u16 eeprom;
1666        u8 reg_id;
1667        u8 value;
1668
1669        if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
1670                return -EACCES;
1671
1672        rt61pci_bbp_write(rt2x00dev, 3, 0x00);
1673        rt61pci_bbp_write(rt2x00dev, 15, 0x30);
1674        rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
1675        rt61pci_bbp_write(rt2x00dev, 22, 0x38);
1676        rt61pci_bbp_write(rt2x00dev, 23, 0x06);
1677        rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
1678        rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
1679        rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
1680        rt61pci_bbp_write(rt2x00dev, 34, 0x12);
1681        rt61pci_bbp_write(rt2x00dev, 37, 0x07);
1682        rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
1683        rt61pci_bbp_write(rt2x00dev, 41, 0x60);
1684        rt61pci_bbp_write(rt2x00dev, 53, 0x10);
1685        rt61pci_bbp_write(rt2x00dev, 54, 0x18);
1686        rt61pci_bbp_write(rt2x00dev, 60, 0x10);
1687        rt61pci_bbp_write(rt2x00dev, 61, 0x04);
1688        rt61pci_bbp_write(rt2x00dev, 62, 0x04);
1689        rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
1690        rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
1691        rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
1692        rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
1693        rt61pci_bbp_write(rt2x00dev, 99, 0x00);
1694        rt61pci_bbp_write(rt2x00dev, 102, 0x16);
1695        rt61pci_bbp_write(rt2x00dev, 107, 0x04);
1696
1697        for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1698                rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1699
1700                if (eeprom != 0xffff && eeprom != 0x0000) {
1701                        reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1702                        value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1703                        rt61pci_bbp_write(rt2x00dev, reg_id, value);
1704                }
1705        }
1706
1707        return 0;
1708}
1709
1710/*
1711 * Device state switch handlers.
1712 */
1713static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1714                               enum dev_state state)
1715{
1716        int mask = (state == STATE_RADIO_IRQ_OFF);
1717        u32 reg;
1718        unsigned long flags;
1719
1720        /*
1721         * When interrupts are being enabled, the interrupt registers
1722         * should clear the register to assure a clean state.
1723         */
1724        if (state == STATE_RADIO_IRQ_ON) {
1725                rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
1726                rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1727
1728                rt2x00mmio_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg);
1729                rt2x00mmio_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
1730        }
1731
1732        /*
1733         * Only toggle the interrupts bits we are going to use.
1734         * Non-checked interrupt bits are disabled by default.
1735         */
1736        spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
1737
1738        rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, &reg);
1739        rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
1740        rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
1741        rt2x00_set_field32(&reg, INT_MASK_CSR_BEACON_DONE, mask);
1742        rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
1743        rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
1744        rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
1745
1746        rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
1747        rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
1748        rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
1749        rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
1750        rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
1751        rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
1752        rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
1753        rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
1754        rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
1755        rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_TWAKEUP, mask);
1756        rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
1757
1758        spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
1759
1760        if (state == STATE_RADIO_IRQ_OFF) {
1761                /*
1762                 * Ensure that all tasklets are finished.
1763                 */
1764                tasklet_kill(&rt2x00dev->txstatus_tasklet);
1765                tasklet_kill(&rt2x00dev->rxdone_tasklet);
1766                tasklet_kill(&rt2x00dev->autowake_tasklet);
1767                tasklet_kill(&rt2x00dev->tbtt_tasklet);
1768        }
1769}
1770
1771static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1772{
1773        u32 reg;
1774
1775        /*
1776         * Initialize all registers.
1777         */
1778        if (unlikely(rt61pci_init_queues(rt2x00dev) ||
1779                     rt61pci_init_registers(rt2x00dev) ||
1780                     rt61pci_init_bbp(rt2x00dev)))
1781                return -EIO;
1782
1783        /*
1784         * Enable RX.
1785         */
1786        rt2x00mmio_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1787        rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
1788        rt2x00mmio_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1789
1790        return 0;
1791}
1792
1793static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1794{
1795        /*
1796         * Disable power
1797         */
1798        rt2x00mmio_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1799}
1800
1801static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1802{
1803        u32 reg, reg2;
1804        unsigned int i;
1805        char put_to_sleep;
1806
1807        put_to_sleep = (state != STATE_AWAKE);
1808
1809        rt2x00mmio_register_read(rt2x00dev, MAC_CSR12, &reg);
1810        rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1811        rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1812        rt2x00mmio_register_write(rt2x00dev, MAC_CSR12, reg);
1813
1814        /*
1815         * Device is not guaranteed to be in the requested state yet.
1816         * We must wait until the register indicates that the
1817         * device has entered the correct state.
1818         */
1819        for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1820                rt2x00mmio_register_read(rt2x00dev, MAC_CSR12, &reg2);
1821                state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE);
1822                if (state == !put_to_sleep)
1823                        return 0;
1824                rt2x00mmio_register_write(rt2x00dev, MAC_CSR12, reg);
1825                msleep(10);
1826        }
1827
1828        return -EBUSY;
1829}
1830
1831static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1832                                    enum dev_state state)
1833{
1834        int retval = 0;
1835
1836        switch (state) {
1837        case STATE_RADIO_ON:
1838                retval = rt61pci_enable_radio(rt2x00dev);
1839                break;
1840        case STATE_RADIO_OFF:
1841                rt61pci_disable_radio(rt2x00dev);
1842                break;
1843        case STATE_RADIO_IRQ_ON:
1844        case STATE_RADIO_IRQ_OFF:
1845                rt61pci_toggle_irq(rt2x00dev, state);
1846                break;
1847        case STATE_DEEP_SLEEP:
1848        case STATE_SLEEP:
1849        case STATE_STANDBY:
1850        case STATE_AWAKE:
1851                retval = rt61pci_set_state(rt2x00dev, state);
1852                break;
1853        default:
1854                retval = -ENOTSUPP;
1855                break;
1856        }
1857
1858        if (unlikely(retval))
1859                rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1860                           state, retval);
1861
1862        return retval;
1863}
1864
1865/*
1866 * TX descriptor initialization
1867 */
1868static void rt61pci_write_tx_desc(struct queue_entry *entry,
1869                                  struct txentry_desc *txdesc)
1870{
1871        struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1872        struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1873        __le32 *txd = entry_priv->desc;
1874        u32 word;
1875
1876        /*
1877         * Start writing the descriptor words.
1878         */
1879        rt2x00_desc_read(txd, 1, &word);
1880        rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, entry->queue->qid);
1881        rt2x00_set_field32(&word, TXD_W1_AIFSN, entry->queue->aifs);
1882        rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1883        rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1884        rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1885        rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1886                           test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1887        rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
1888        rt2x00_desc_write(txd, 1, word);
1889
1890        rt2x00_desc_read(txd, 2, &word);
1891        rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
1892        rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
1893        rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
1894                           txdesc->u.plcp.length_low);
1895        rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
1896                           txdesc->u.plcp.length_high);
1897        rt2x00_desc_write(txd, 2, word);
1898
1899        if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1900                _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1901                _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1902        }
1903
1904        rt2x00_desc_read(txd, 5, &word);
1905        rt2x00_set_field32(&word, TXD_W5_PID_TYPE, entry->queue->qid);
1906        rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE,
1907                           skbdesc->entry->entry_idx);
1908        rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1909                           TXPOWER_TO_DEV(entry->queue->rt2x00dev->tx_power));
1910        rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1911        rt2x00_desc_write(txd, 5, word);
1912
1913        if (entry->queue->qid != QID_BEACON) {
1914                rt2x00_desc_read(txd, 6, &word);
1915                rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
1916                                   skbdesc->skb_dma);
1917                rt2x00_desc_write(txd, 6, word);
1918
1919                rt2x00_desc_read(txd, 11, &word);
1920                rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0,
1921                                   txdesc->length);
1922                rt2x00_desc_write(txd, 11, word);
1923        }
1924
1925        /*
1926         * Writing TXD word 0 must the last to prevent a race condition with
1927         * the device, whereby the device may take hold of the TXD before we
1928         * finished updating it.
1929         */
1930        rt2x00_desc_read(txd, 0, &word);
1931        rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1932        rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1933        rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1934                           test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1935        rt2x00_set_field32(&word, TXD_W0_ACK,
1936                           test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1937        rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1938                           test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1939        rt2x00_set_field32(&word, TXD_W0_OFDM,
1940                           (txdesc->rate_mode == RATE_MODE_OFDM));
1941        rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1942        rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1943                           test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1944        rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1945                           test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1946        rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1947                           test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1948        rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1949        rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1950        rt2x00_set_field32(&word, TXD_W0_BURST,
1951                           test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1952        rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1953        rt2x00_desc_write(txd, 0, word);
1954
1955        /*
1956         * Register descriptor details in skb frame descriptor.
1957         */
1958        skbdesc->desc = txd;
1959        skbdesc->desc_len = (entry->queue->qid == QID_BEACON) ? TXINFO_SIZE :
1960                            TXD_DESC_SIZE;
1961}
1962
1963/*
1964 * TX data initialization
1965 */
1966static void rt61pci_write_beacon(struct queue_entry *entry,
1967                                 struct txentry_desc *txdesc)
1968{
1969        struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1970        struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1971        unsigned int beacon_base;
1972        unsigned int padding_len;
1973        u32 orig_reg, reg;
1974
1975        /*
1976         * Disable beaconing while we are reloading the beacon data,
1977         * otherwise we might be sending out invalid data.
1978         */
1979        rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &reg);
1980        orig_reg = reg;
1981        rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1982        rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
1983
1984        /*
1985         * Write the TX descriptor for the beacon.
1986         */
1987        rt61pci_write_tx_desc(entry, txdesc);
1988
1989        /*
1990         * Dump beacon to userspace through debugfs.
1991         */
1992        rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1993
1994        /*
1995         * Write entire beacon with descriptor and padding to register.
1996         */
1997        padding_len = roundup(entry->skb->len, 4) - entry->skb->len;
1998        if (padding_len && skb_pad(entry->skb, padding_len)) {
1999                rt2x00_err(rt2x00dev, "Failure padding beacon, aborting\n");
2000                /* skb freed by skb_pad() on failure */
2001                entry->skb = NULL;
2002                rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
2003                return;
2004        }
2005
2006        beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
2007        rt2x00mmio_register_multiwrite(rt2x00dev, beacon_base,
2008                                       entry_priv->desc, TXINFO_SIZE);
2009        rt2x00mmio_register_multiwrite(rt2x00dev, beacon_base + TXINFO_SIZE,
2010                                       entry->skb->data,
2011                                       entry->skb->len + padding_len);
2012
2013        /*
2014         * Enable beaconing again.
2015         *
2016         * For Wi-Fi faily generated beacons between participating
2017         * stations. Set TBTT phase adaptive adjustment step to 8us.
2018         */
2019        rt2x00mmio_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
2020
2021        rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
2022        rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
2023
2024        /*
2025         * Clean up beacon skb.
2026         */
2027        dev_kfree_skb_any(entry->skb);
2028        entry->skb = NULL;
2029}
2030
2031static void rt61pci_clear_beacon(struct queue_entry *entry)
2032{
2033        struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
2034        u32 orig_reg, reg;
2035
2036        /*
2037         * Disable beaconing while we are reloading the beacon data,
2038         * otherwise we might be sending out invalid data.
2039         */
2040        rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &orig_reg);
2041        reg = orig_reg;
2042        rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
2043        rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
2044
2045        /*
2046         * Clear beacon.
2047         */
2048        rt2x00mmio_register_write(rt2x00dev,
2049                                  HW_BEACON_OFFSET(entry->entry_idx), 0);
2050
2051        /*
2052         * Restore global beaconing state.
2053         */
2054        rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
2055}
2056
2057/*
2058 * RX control handlers
2059 */
2060static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
2061{
2062        u8 offset = rt2x00dev->lna_gain;
2063        u8 lna;
2064
2065        lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
2066        switch (lna) {
2067        case 3:
2068                offset += 90;
2069                break;
2070        case 2:
2071                offset += 74;
2072                break;
2073        case 1:
2074                offset += 64;
2075                break;
2076        default:
2077                return 0;
2078        }
2079
2080        if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
2081                if (lna == 3 || lna == 2)
2082                        offset += 10;
2083        }
2084
2085        return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
2086}
2087
2088static void rt61pci_fill_rxdone(struct queue_entry *entry,
2089                                struct rxdone_entry_desc *rxdesc)
2090{
2091        struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
2092        struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
2093        u32 word0;
2094        u32 word1;
2095
2096        rt2x00_desc_read(entry_priv->desc, 0, &word0);
2097        rt2x00_desc_read(entry_priv->desc, 1, &word1);
2098
2099        if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
2100                rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
2101
2102        rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
2103        rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
2104
2105        if (rxdesc->cipher != CIPHER_NONE) {
2106                _rt2x00_desc_read(entry_priv->desc, 2, &rxdesc->iv[0]);
2107                _rt2x00_desc_read(entry_priv->desc, 3, &rxdesc->iv[1]);
2108                rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
2109
2110                _rt2x00_desc_read(entry_priv->desc, 4, &rxdesc->icv);
2111                rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
2112
2113                /*
2114                 * Hardware has stripped IV/EIV data from 802.11 frame during
2115                 * decryption. It has provided the data separately but rt2x00lib
2116                 * should decide if it should be reinserted.
2117                 */
2118                rxdesc->flags |= RX_FLAG_IV_STRIPPED;
2119
2120                /*
2121                 * The hardware has already checked the Michael Mic and has
2122                 * stripped it from the frame. Signal this to mac80211.
2123                 */
2124                rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
2125
2126                if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
2127                        rxdesc->flags |= RX_FLAG_DECRYPTED;
2128                else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
2129                        rxdesc->flags |= RX_FLAG_MMIC_ERROR;
2130        }
2131
2132        /*
2133         * Obtain the status about this packet.
2134         * When frame was received with an OFDM bitrate,
2135         * the signal is the PLCP value. If it was received with
2136         * a CCK bitrate the signal is the rate in 100kbit/s.
2137         */
2138        rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
2139        rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1);
2140        rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
2141
2142        if (rt2x00_get_field32(word0, RXD_W0_OFDM))
2143                rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
2144        else
2145                rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
2146        if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
2147                rxdesc->dev_flags |= RXDONE_MY_BSS;
2148}
2149
2150/*
2151 * Interrupt functions.
2152 */
2153static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
2154{
2155        struct data_queue *queue;
2156        struct queue_entry *entry;
2157        struct queue_entry *entry_done;
2158        struct queue_entry_priv_mmio *entry_priv;
2159        struct txdone_entry_desc txdesc;
2160        u32 word;
2161        u32 reg;
2162        int type;
2163        int index;
2164        int i;
2165
2166        /*
2167         * TX_STA_FIFO is a stack of X entries, hence read TX_STA_FIFO
2168         * at most X times and also stop processing once the TX_STA_FIFO_VALID
2169         * flag is not set anymore.
2170         *
2171         * The legacy drivers use X=TX_RING_SIZE but state in a comment
2172         * that the TX_STA_FIFO stack has a size of 16. We stick to our
2173         * tx ring size for now.
2174         */
2175        for (i = 0; i < rt2x00dev->tx->limit; i++) {
2176                rt2x00mmio_register_read(rt2x00dev, STA_CSR4, &reg);
2177                if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
2178                        break;
2179
2180                /*
2181                 * Skip this entry when it contains an invalid
2182                 * queue identication number.
2183                 */
2184                type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
2185                queue = rt2x00queue_get_tx_queue(rt2x00dev, type);
2186                if (unlikely(!queue))
2187                        continue;
2188
2189                /*
2190                 * Skip this entry when it contains an invalid
2191                 * index number.
2192                 */
2193                index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
2194                if (unlikely(index >= queue->limit))
2195                        continue;
2196
2197                entry = &queue->entries[index];
2198                entry_priv = entry->priv_data;
2199                rt2x00_desc_read(entry_priv->desc, 0, &word);
2200
2201                if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
2202                    !rt2x00_get_field32(word, TXD_W0_VALID))
2203                        return;
2204
2205                entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2206                while (entry != entry_done) {
2207                        /* Catch up.
2208                         * Just report any entries we missed as failed.
2209                         */
2210                        rt2x00_warn(rt2x00dev, "TX status report missed for entry %d\n",
2211                                    entry_done->entry_idx);
2212
2213                        rt2x00lib_txdone_noinfo(entry_done, TXDONE_UNKNOWN);
2214                        entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2215                }
2216
2217                /*
2218                 * Obtain the status about this packet.
2219                 */
2220                txdesc.flags = 0;
2221                switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
2222                case 0: /* Success, maybe with retry */
2223                        __set_bit(TXDONE_SUCCESS, &txdesc.flags);
2224                        break;
2225                case 6: /* Failure, excessive retries */
2226                        __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
2227                        /* Don't break, this is a failed frame! */
2228                default: /* Failure */
2229                        __set_bit(TXDONE_FAILURE, &txdesc.flags);
2230                }
2231                txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
2232
2233                /*
2234                 * the frame was retried at least once
2235                 * -> hw used fallback rates
2236                 */
2237                if (txdesc.retry)
2238                        __set_bit(TXDONE_FALLBACK, &txdesc.flags);
2239
2240                rt2x00lib_txdone(entry, &txdesc);
2241        }
2242}
2243
2244static void rt61pci_wakeup(struct rt2x00_dev *rt2x00dev)
2245{
2246        struct rt2x00lib_conf libconf = { .conf = &rt2x00dev->hw->conf };
2247
2248        rt61pci_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
2249}
2250
2251static inline void rt61pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
2252                                            struct rt2x00_field32 irq_field)
2253{
2254        u32 reg;
2255
2256        /*
2257         * Enable a single interrupt. The interrupt mask register
2258         * access needs locking.
2259         */
2260        spin_lock_irq(&rt2x00dev->irqmask_lock);
2261
2262        rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, &reg);
2263        rt2x00_set_field32(&reg, irq_field, 0);
2264        rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
2265
2266        spin_unlock_irq(&rt2x00dev->irqmask_lock);
2267}
2268
2269static void rt61pci_enable_mcu_interrupt(struct rt2x00_dev *rt2x00dev,
2270                                         struct rt2x00_field32 irq_field)
2271{
2272        u32 reg;
2273
2274        /*
2275         * Enable a single MCU interrupt. The interrupt mask register
2276         * access needs locking.
2277         */
2278        spin_lock_irq(&rt2x00dev->irqmask_lock);
2279
2280        rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
2281        rt2x00_set_field32(&reg, irq_field, 0);
2282        rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
2283
2284        spin_unlock_irq(&rt2x00dev->irqmask_lock);
2285}
2286
2287static void rt61pci_txstatus_tasklet(unsigned long data)
2288{
2289        struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2290        rt61pci_txdone(rt2x00dev);
2291        if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2292                rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TXDONE);
2293}
2294
2295static void rt61pci_tbtt_tasklet(unsigned long data)
2296{
2297        struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2298        rt2x00lib_beacondone(rt2x00dev);
2299        if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2300                rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_BEACON_DONE);
2301}
2302
2303static void rt61pci_rxdone_tasklet(unsigned long data)
2304{
2305        struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2306        if (rt2x00mmio_rxdone(rt2x00dev))
2307                tasklet_schedule(&rt2x00dev->rxdone_tasklet);
2308        else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2309                rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RXDONE);
2310}
2311
2312static void rt61pci_autowake_tasklet(unsigned long data)
2313{
2314        struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2315        rt61pci_wakeup(rt2x00dev);
2316        rt2x00mmio_register_write(rt2x00dev,
2317                                  M2H_CMD_DONE_CSR, 0xffffffff);
2318        if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2319                rt61pci_enable_mcu_interrupt(rt2x00dev, MCU_INT_MASK_CSR_TWAKEUP);
2320}
2321
2322static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
2323{
2324        struct rt2x00_dev *rt2x00dev = dev_instance;
2325        u32 reg_mcu, mask_mcu;
2326        u32 reg, mask;
2327
2328        /*
2329         * Get the interrupt sources & saved to local variable.
2330         * Write register value back to clear pending interrupts.
2331         */
2332        rt2x00mmio_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg_mcu);
2333        rt2x00mmio_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
2334
2335        rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
2336        rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
2337
2338        if (!reg && !reg_mcu)
2339                return IRQ_NONE;
2340
2341        if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2342                return IRQ_HANDLED;
2343
2344        /*
2345         * Schedule tasklets for interrupt handling.
2346         */
2347        if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
2348                tasklet_schedule(&rt2x00dev->rxdone_tasklet);
2349
2350        if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
2351                tasklet_schedule(&rt2x00dev->txstatus_tasklet);
2352
2353        if (rt2x00_get_field32(reg, INT_SOURCE_CSR_BEACON_DONE))
2354                tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
2355
2356        if (rt2x00_get_field32(reg_mcu, MCU_INT_SOURCE_CSR_TWAKEUP))
2357                tasklet_schedule(&rt2x00dev->autowake_tasklet);
2358
2359        /*
2360         * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
2361         * for interrupts and interrupt masks we can just use the value of
2362         * INT_SOURCE_CSR to create the interrupt mask.
2363         */
2364        mask = reg;
2365        mask_mcu = reg_mcu;
2366
2367        /*
2368         * Disable all interrupts for which a tasklet was scheduled right now,
2369         * the tasklet will reenable the appropriate interrupts.
2370         */
2371        spin_lock(&rt2x00dev->irqmask_lock);
2372
2373        rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, &reg);
2374        reg |= mask;
2375        rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
2376
2377        rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
2378        reg |= mask_mcu;
2379        rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
2380
2381        spin_unlock(&rt2x00dev->irqmask_lock);
2382
2383        return IRQ_HANDLED;
2384}
2385
2386/*
2387 * Device probe functions.
2388 */
2389static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
2390{
2391        struct eeprom_93cx6 eeprom;
2392        u32 reg;
2393        u16 word;
2394        u8 *mac;
2395        s8 value;
2396
2397        rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR, &reg);
2398
2399        eeprom.data = rt2x00dev;
2400        eeprom.register_read = rt61pci_eepromregister_read;
2401        eeprom.register_write = rt61pci_eepromregister_write;
2402        eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
2403            PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
2404        eeprom.reg_data_in = 0;
2405        eeprom.reg_data_out = 0;
2406        eeprom.reg_data_clock = 0;
2407        eeprom.reg_chip_select = 0;
2408
2409        eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
2410                               EEPROM_SIZE / sizeof(u16));
2411
2412        /*
2413         * Start validation of the data that has been read.
2414         */
2415        mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
2416        if (!is_valid_ether_addr(mac)) {
2417                eth_random_addr(mac);
2418                rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", mac);
2419        }
2420
2421        rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
2422        if (word == 0xffff) {
2423                rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
2424                rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
2425                                   ANTENNA_B);
2426                rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
2427                                   ANTENNA_B);
2428                rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
2429                rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
2430                rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
2431                rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
2432                rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
2433                rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
2434        }
2435
2436        rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
2437        if (word == 0xffff) {
2438                rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
2439                rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
2440                rt2x00_set_field16(&word, EEPROM_NIC_RX_FIXED, 0);
2441                rt2x00_set_field16(&word, EEPROM_NIC_TX_FIXED, 0);
2442                rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
2443                rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
2444                rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
2445                rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
2446                rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
2447        }
2448
2449        rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
2450        if (word == 0xffff) {
2451                rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
2452                                   LED_MODE_DEFAULT);
2453                rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
2454                rt2x00_eeprom_dbg(rt2x00dev, "Led: 0x%04x\n", word);
2455        }
2456
2457        rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
2458        if (word == 0xffff) {
2459                rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
2460                rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
2461                rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
2462                rt2x00_eeprom_dbg(rt2x00dev, "Freq: 0x%04x\n", word);
2463        }
2464
2465        rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
2466        if (word == 0xffff) {
2467                rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2468                rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2469                rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2470                rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
2471        } else {
2472                value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
2473                if (value < -10 || value > 10)
2474                        rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2475                value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
2476                if (value < -10 || value > 10)
2477                        rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2478                rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2479        }
2480
2481        rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
2482        if (word == 0xffff) {
2483                rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2484                rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2485                rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2486                rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
2487        } else {
2488                value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
2489                if (value < -10 || value > 10)
2490                        rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2491                value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
2492                if (value < -10 || value > 10)
2493                        rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2494                rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2495        }
2496
2497        return 0;
2498}
2499
2500static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
2501{
2502        u32 reg;
2503        u16 value;
2504        u16 eeprom;
2505
2506        /*
2507         * Read EEPROM word for configuration.
2508         */
2509        rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
2510
2511        /*
2512         * Identify RF chipset.
2513         */
2514        value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
2515        rt2x00mmio_register_read(rt2x00dev, MAC_CSR0, &reg);
2516        rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
2517                        value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
2518
2519        if (!rt2x00_rf(rt2x00dev, RF5225) &&
2520            !rt2x00_rf(rt2x00dev, RF5325) &&
2521            !rt2x00_rf(rt2x00dev, RF2527) &&
2522            !rt2x00_rf(rt2x00dev, RF2529)) {
2523                rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
2524                return -ENODEV;
2525        }
2526
2527        /*
2528         * Determine number of antennas.
2529         */
2530        if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
2531                __set_bit(CAPABILITY_DOUBLE_ANTENNA, &rt2x00dev->cap_flags);
2532
2533        /*
2534         * Identify default antenna configuration.
2535         */
2536        rt2x00dev->default_ant.tx =
2537            rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
2538        rt2x00dev->default_ant.rx =
2539            rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
2540
2541        /*
2542         * Read the Frame type.
2543         */
2544        if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
2545                __set_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags);
2546
2547        /*
2548         * Detect if this device has a hardware controlled radio.
2549         */
2550        if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
2551                __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
2552
2553        /*
2554         * Read frequency offset and RF programming sequence.
2555         */
2556        rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
2557        if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
2558                __set_bit(CAPABILITY_RF_SEQUENCE, &rt2x00dev->cap_flags);
2559
2560        rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
2561
2562        /*
2563         * Read external LNA informations.
2564         */
2565        rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
2566
2567        if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
2568                __set_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags);
2569        if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
2570                __set_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags);
2571
2572        /*
2573         * When working with a RF2529 chip without double antenna,
2574         * the antenna settings should be gathered from the NIC
2575         * eeprom word.
2576         */
2577        if (rt2x00_rf(rt2x00dev, RF2529) &&
2578            !rt2x00_has_cap_double_antenna(rt2x00dev)) {
2579                rt2x00dev->default_ant.rx =
2580                    ANTENNA_A + rt2x00_get_field16(eeprom, EEPROM_NIC_RX_FIXED);
2581                rt2x00dev->default_ant.tx =
2582                    ANTENNA_B - rt2x00_get_field16(eeprom, EEPROM_NIC_TX_FIXED);
2583
2584                if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
2585                        rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
2586                if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
2587                        rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
2588        }
2589
2590        /*
2591         * Store led settings, for correct led behaviour.
2592         * If the eeprom value is invalid,
2593         * switch to default led mode.
2594         */
2595#ifdef CONFIG_RT2X00_LIB_LEDS
2596        rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
2597        value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
2598
2599        rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
2600        rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
2601        if (value == LED_MODE_SIGNAL_STRENGTH)
2602                rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
2603                                 LED_TYPE_QUALITY);
2604
2605        rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
2606        rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
2607                           rt2x00_get_field16(eeprom,
2608                                              EEPROM_LED_POLARITY_GPIO_0));
2609        rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
2610                           rt2x00_get_field16(eeprom,
2611                                              EEPROM_LED_POLARITY_GPIO_1));
2612        rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
2613                           rt2x00_get_field16(eeprom,
2614                                              EEPROM_LED_POLARITY_GPIO_2));
2615        rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
2616                           rt2x00_get_field16(eeprom,
2617                                              EEPROM_LED_POLARITY_GPIO_3));
2618        rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
2619                           rt2x00_get_field16(eeprom,
2620                                              EEPROM_LED_POLARITY_GPIO_4));
2621        rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
2622                           rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
2623        rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
2624                           rt2x00_get_field16(eeprom,
2625                                              EEPROM_LED_POLARITY_RDY_G));
2626        rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
2627                           rt2x00_get_field16(eeprom,
2628                                              EEPROM_LED_POLARITY_RDY_A));
2629#endif /* CONFIG_RT2X00_LIB_LEDS */
2630
2631        return 0;
2632}
2633
2634/*
2635 * RF value list for RF5225 & RF5325
2636 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2637 */
2638static const struct rf_channel rf_vals_noseq[] = {
2639        { 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2640        { 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2641        { 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2642        { 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2643        { 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2644        { 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2645        { 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2646        { 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2647        { 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2648        { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2649        { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2650        { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2651        { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2652        { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2653
2654        /* 802.11 UNI / HyperLan 2 */
2655        { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2656        { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2657        { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2658        { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2659        { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2660        { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2661        { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2662        { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2663
2664        /* 802.11 HyperLan 2 */
2665        { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2666        { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2667        { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2668        { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2669        { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2670        { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2671        { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2672        { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2673        { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2674        { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2675
2676        /* 802.11 UNII */
2677        { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2678        { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2679        { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2680        { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2681        { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2682        { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2683
2684        /* MMAC(Japan)J52 ch 34,38,42,46 */
2685        { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2686        { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2687        { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2688        { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2689};
2690
2691/*
2692 * RF value list for RF5225 & RF5325
2693 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2694 */
2695static const struct rf_channel rf_vals_seq[] = {
2696        { 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2697        { 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2698        { 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2699        { 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2700        { 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2701        { 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2702        { 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2703        { 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2704        { 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2705        { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2706        { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2707        { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2708        { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2709        { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2710
2711        /* 802.11 UNI / HyperLan 2 */
2712        { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2713        { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2714        { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2715        { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2716        { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2717        { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2718        { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2719        { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2720
2721        /* 802.11 HyperLan 2 */
2722        { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2723        { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2724        { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2725        { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2726        { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2727        { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2728        { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2729        { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2730        { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2731        { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2732
2733        /* 802.11 UNII */
2734        { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2735        { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2736        { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2737        { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2738        { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2739        { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2740
2741        /* MMAC(Japan)J52 ch 34,38,42,46 */
2742        { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2743        { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2744        { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2745        { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2746};
2747
2748static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2749{
2750        struct hw_mode_spec *spec = &rt2x00dev->spec;
2751        struct channel_info *info;
2752        char *tx_power;
2753        unsigned int i;
2754
2755        /*
2756         * Disable powersaving as default.
2757         */
2758        rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
2759
2760        /*
2761         * Initialize all hw fields.
2762         */
2763        ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
2764        ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
2765        ieee80211_hw_set(rt2x00dev->hw, HOST_BROADCAST_PS_BUFFERING);
2766        ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
2767
2768        SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2769        SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2770                                rt2x00_eeprom_addr(rt2x00dev,
2771                                                   EEPROM_MAC_ADDR_0));
2772
2773        /*
2774         * As rt61 has a global fallback table we cannot specify
2775         * more then one tx rate per frame but since the hw will
2776         * try several rates (based on the fallback table) we should
2777         * initialize max_report_rates to the maximum number of rates
2778         * we are going to try. Otherwise mac80211 will truncate our
2779         * reported tx rates and the rc algortihm will end up with
2780         * incorrect data.
2781         */
2782        rt2x00dev->hw->max_rates = 1;
2783        rt2x00dev->hw->max_report_rates = 7;
2784        rt2x00dev->hw->max_rate_tries = 1;
2785
2786        /*
2787         * Initialize hw_mode information.
2788         */
2789        spec->supported_bands = SUPPORT_BAND_2GHZ;
2790        spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2791
2792        if (!rt2x00_has_cap_rf_sequence(rt2x00dev)) {
2793                spec->num_channels = 14;
2794                spec->channels = rf_vals_noseq;
2795        } else {
2796                spec->num_channels = 14;
2797                spec->channels = rf_vals_seq;
2798        }
2799
2800        if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325)) {
2801                spec->supported_bands |= SUPPORT_BAND_5GHZ;
2802                spec->num_channels = ARRAY_SIZE(rf_vals_seq);
2803        }
2804
2805        /*
2806         * Create channel information array
2807         */
2808        info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
2809        if (!info)
2810                return -ENOMEM;
2811
2812        spec->channels_info = info;
2813
2814        tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2815        for (i = 0; i < 14; i++) {
2816                info[i].max_power = MAX_TXPOWER;
2817                info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2818        }
2819
2820        if (spec->num_channels > 14) {
2821                tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2822                for (i = 14; i < spec->num_channels; i++) {
2823                        info[i].max_power = MAX_TXPOWER;
2824                        info[i].default_power1 =
2825                                        TXPOWER_FROM_DEV(tx_power[i - 14]);
2826                }
2827        }
2828
2829        return 0;
2830}
2831
2832static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
2833{
2834        int retval;
2835        u32 reg;
2836
2837        /*
2838         * Disable power saving.
2839         */
2840        rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
2841
2842        /*
2843         * Allocate eeprom data.
2844         */
2845        retval = rt61pci_validate_eeprom(rt2x00dev);
2846        if (retval)
2847                return retval;
2848
2849        retval = rt61pci_init_eeprom(rt2x00dev);
2850        if (retval)
2851                return retval;
2852
2853        /*
2854         * Enable rfkill polling by setting GPIO direction of the
2855         * rfkill switch GPIO pin correctly.
2856         */
2857        rt2x00mmio_register_read(rt2x00dev, MAC_CSR13, &reg);
2858        rt2x00_set_field32(&reg, MAC_CSR13_DIR5, 1);
2859        rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, reg);
2860
2861        /*
2862         * Initialize hw specifications.
2863         */
2864        retval = rt61pci_probe_hw_mode(rt2x00dev);
2865        if (retval)
2866                return retval;
2867
2868        /*
2869         * This device has multiple filters for control frames,
2870         * but has no a separate filter for PS Poll frames.
2871         */
2872        __set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);
2873
2874        /*
2875         * This device requires firmware and DMA mapped skbs.
2876         */
2877        __set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
2878        __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
2879        if (!modparam_nohwcrypt)
2880                __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
2881        __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
2882
2883        /*
2884         * Set the rssi offset.
2885         */
2886        rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2887
2888        return 0;
2889}
2890
2891/*
2892 * IEEE80211 stack callback functions.
2893 */
2894static int rt61pci_conf_tx(struct ieee80211_hw *hw,
2895                           struct ieee80211_vif *vif, u16 queue_idx,
2896                           const struct ieee80211_tx_queue_params *params)
2897{
2898        struct rt2x00_dev *rt2x00dev = hw->priv;
2899        struct data_queue *queue;
2900        struct rt2x00_field32 field;
2901        int retval;
2902        u32 reg;
2903        u32 offset;
2904
2905        /*
2906         * First pass the configuration through rt2x00lib, that will
2907         * update the queue settings and validate the input. After that
2908         * we are free to update the registers based on the value
2909         * in the queue parameter.
2910         */
2911        retval = rt2x00mac_conf_tx(hw, vif, queue_idx, params);
2912        if (retval)
2913                return retval;
2914
2915        /*
2916         * We only need to perform additional register initialization
2917         * for WMM queues.
2918         */
2919        if (queue_idx >= 4)
2920                return 0;
2921
2922        queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
2923
2924        /* Update WMM TXOP register */
2925        offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
2926        field.bit_offset = (queue_idx & 1) * 16;
2927        field.bit_mask = 0xffff << field.bit_offset;
2928
2929        rt2x00mmio_register_read(rt2x00dev, offset, &reg);
2930        rt2x00_set_field32(&reg, field, queue->txop);
2931        rt2x00mmio_register_write(rt2x00dev, offset, reg);
2932
2933        /* Update WMM registers */
2934        field.bit_offset = queue_idx * 4;
2935        field.bit_mask = 0xf << field.bit_offset;
2936
2937        rt2x00mmio_register_read(rt2x00dev, AIFSN_CSR, &reg);
2938        rt2x00_set_field32(&reg, field, queue->aifs);
2939        rt2x00mmio_register_write(rt2x00dev, AIFSN_CSR, reg);
2940
2941        rt2x00mmio_register_read(rt2x00dev, CWMIN_CSR, &reg);
2942        rt2x00_set_field32(&reg, field, queue->cw_min);
2943        rt2x00mmio_register_write(rt2x00dev, CWMIN_CSR, reg);
2944
2945        rt2x00mmio_register_read(rt2x00dev, CWMAX_CSR, &reg);
2946        rt2x00_set_field32(&reg, field, queue->cw_max);
2947        rt2x00mmio_register_write(rt2x00dev, CWMAX_CSR, reg);
2948
2949        return 0;
2950}
2951
2952static u64 rt61pci_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
2953{
2954        struct rt2x00_dev *rt2x00dev = hw->priv;
2955        u64 tsf;
2956        u32 reg;
2957
2958        rt2x00mmio_register_read(rt2x00dev, TXRX_CSR13, &reg);
2959        tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2960        rt2x00mmio_register_read(rt2x00dev, TXRX_CSR12, &reg);
2961        tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2962
2963        return tsf;
2964}
2965
2966static const struct ieee80211_ops rt61pci_mac80211_ops = {
2967        .tx                     = rt2x00mac_tx,
2968        .start                  = rt2x00mac_start,
2969        .stop                   = rt2x00mac_stop,
2970        .add_interface          = rt2x00mac_add_interface,
2971        .remove_interface       = rt2x00mac_remove_interface,
2972        .config                 = rt2x00mac_config,
2973        .configure_filter       = rt2x00mac_configure_filter,
2974        .set_key                = rt2x00mac_set_key,
2975        .sw_scan_start          = rt2x00mac_sw_scan_start,
2976        .sw_scan_complete       = rt2x00mac_sw_scan_complete,
2977        .get_stats              = rt2x00mac_get_stats,
2978        .bss_info_changed       = rt2x00mac_bss_info_changed,
2979        .conf_tx                = rt61pci_conf_tx,
2980        .get_tsf                = rt61pci_get_tsf,
2981        .rfkill_poll            = rt2x00mac_rfkill_poll,
2982        .flush                  = rt2x00mac_flush,
2983        .set_antenna            = rt2x00mac_set_antenna,
2984        .get_antenna            = rt2x00mac_get_antenna,
2985        .get_ringparam          = rt2x00mac_get_ringparam,
2986        .tx_frames_pending      = rt2x00mac_tx_frames_pending,
2987};
2988
2989static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
2990        .irq_handler            = rt61pci_interrupt,
2991        .txstatus_tasklet       = rt61pci_txstatus_tasklet,
2992        .tbtt_tasklet           = rt61pci_tbtt_tasklet,
2993        .rxdone_tasklet         = rt61pci_rxdone_tasklet,
2994        .autowake_tasklet       = rt61pci_autowake_tasklet,
2995        .probe_hw               = rt61pci_probe_hw,
2996        .get_firmware_name      = rt61pci_get_firmware_name,
2997        .check_firmware         = rt61pci_check_firmware,
2998        .load_firmware          = rt61pci_load_firmware,
2999        .initialize             = rt2x00mmio_initialize,
3000        .uninitialize           = rt2x00mmio_uninitialize,
3001        .get_entry_state        = rt61pci_get_entry_state,
3002        .clear_entry            = rt61pci_clear_entry,
3003        .set_device_state       = rt61pci_set_device_state,
3004        .rfkill_poll            = rt61pci_rfkill_poll,
3005        .link_stats             = rt61pci_link_stats,
3006        .reset_tuner            = rt61pci_reset_tuner,
3007        .link_tuner             = rt61pci_link_tuner,
3008        .start_queue            = rt61pci_start_queue,
3009        .kick_queue             = rt61pci_kick_queue,
3010        .stop_queue             = rt61pci_stop_queue,
3011        .flush_queue            = rt2x00mmio_flush_queue,
3012        .write_tx_desc          = rt61pci_write_tx_desc,
3013        .write_beacon           = rt61pci_write_beacon,
3014        .clear_beacon           = rt61pci_clear_beacon,
3015        .fill_rxdone            = rt61pci_fill_rxdone,
3016        .config_shared_key      = rt61pci_config_shared_key,
3017        .config_pairwise_key    = rt61pci_config_pairwise_key,
3018        .config_filter          = rt61pci_config_filter,
3019        .config_intf            = rt61pci_config_intf,
3020        .config_erp             = rt61pci_config_erp,
3021        .config_ant             = rt61pci_config_ant,
3022        .config                 = rt61pci_config,
3023};
3024
3025static void rt61pci_queue_init(struct data_queue *queue)
3026{
3027        switch (queue->qid) {
3028        case QID_RX:
3029                queue->limit = 32;
3030                queue->data_size = DATA_FRAME_SIZE;
3031                queue->desc_size = RXD_DESC_SIZE;
3032                queue->priv_size = sizeof(struct queue_entry_priv_mmio);
3033                break;
3034
3035        case QID_AC_VO:
3036        case QID_AC_VI:
3037        case QID_AC_BE:
3038        case QID_AC_BK:
3039                queue->limit = 32;
3040                queue->data_size = DATA_FRAME_SIZE;
3041                queue->desc_size = TXD_DESC_SIZE;
3042                queue->priv_size = sizeof(struct queue_entry_priv_mmio);
3043                break;
3044
3045        case QID_BEACON:
3046                queue->limit = 4;
3047                queue->data_size = 0; /* No DMA required for beacons */
3048                queue->desc_size = TXINFO_SIZE;
3049                queue->priv_size = sizeof(struct queue_entry_priv_mmio);
3050                break;
3051
3052        case QID_ATIM:
3053                /* fallthrough */
3054        default:
3055                BUG();
3056                break;
3057        }
3058}
3059
3060static const struct rt2x00_ops rt61pci_ops = {
3061        .name                   = KBUILD_MODNAME,
3062        .max_ap_intf            = 4,
3063        .eeprom_size            = EEPROM_SIZE,
3064        .rf_size                = RF_SIZE,
3065        .tx_queues              = NUM_TX_QUEUES,
3066        .queue_init             = rt61pci_queue_init,
3067        .lib                    = &rt61pci_rt2x00_ops,
3068        .hw                     = &rt61pci_mac80211_ops,
3069#ifdef CONFIG_RT2X00_LIB_DEBUGFS
3070        .debugfs                = &rt61pci_rt2x00debug,
3071#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
3072};
3073
3074/*
3075 * RT61pci module information.
3076 */
3077static const struct pci_device_id rt61pci_device_table[] = {
3078        /* RT2561s */
3079        { PCI_DEVICE(0x1814, 0x0301) },
3080        /* RT2561 v2 */
3081        { PCI_DEVICE(0x1814, 0x0302) },
3082        /* RT2661 */
3083        { PCI_DEVICE(0x1814, 0x0401) },
3084        { 0, }
3085};
3086
3087MODULE_AUTHOR(DRV_PROJECT);
3088MODULE_VERSION(DRV_VERSION);
3089MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
3090MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
3091                        "PCI & PCMCIA chipset based cards");
3092MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
3093MODULE_FIRMWARE(FIRMWARE_RT2561);
3094MODULE_FIRMWARE(FIRMWARE_RT2561s);
3095MODULE_FIRMWARE(FIRMWARE_RT2661);
3096MODULE_LICENSE("GPL");
3097
3098static int rt61pci_probe(struct pci_dev *pci_dev,
3099                         const struct pci_device_id *id)
3100{
3101        return rt2x00pci_probe(pci_dev, &rt61pci_ops);
3102}
3103
3104static struct pci_driver rt61pci_driver = {
3105        .name           = KBUILD_MODNAME,
3106        .id_table       = rt61pci_device_table,
3107        .probe          = rt61pci_probe,
3108        .remove         = rt2x00pci_remove,
3109        .suspend        = rt2x00pci_suspend,
3110        .resume         = rt2x00pci_resume,
3111};
3112
3113module_pci_driver(rt61pci_driver);
3114