linux/drivers/of/address.c
<<
>>
Prefs
   1
   2#include <linux/device.h>
   3#include <linux/io.h>
   4#include <linux/ioport.h>
   5#include <linux/module.h>
   6#include <linux/of_address.h>
   7#include <linux/pci_regs.h>
   8#include <linux/sizes.h>
   9#include <linux/slab.h>
  10#include <linux/string.h>
  11
  12/* Max address size we deal with */
  13#define OF_MAX_ADDR_CELLS       4
  14#define OF_CHECK_ADDR_COUNT(na) ((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
  15#define OF_CHECK_COUNTS(na, ns) (OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
  16
  17static struct of_bus *of_match_bus(struct device_node *np);
  18static int __of_address_to_resource(struct device_node *dev,
  19                const __be32 *addrp, u64 size, unsigned int flags,
  20                const char *name, struct resource *r);
  21
  22/* Debug utility */
  23#ifdef DEBUG
  24static void of_dump_addr(const char *s, const __be32 *addr, int na)
  25{
  26        printk(KERN_DEBUG "%s", s);
  27        while (na--)
  28                printk(" %08x", be32_to_cpu(*(addr++)));
  29        printk("\n");
  30}
  31#else
  32static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
  33#endif
  34
  35/* Callbacks for bus specific translators */
  36struct of_bus {
  37        const char      *name;
  38        const char      *addresses;
  39        int             (*match)(struct device_node *parent);
  40        void            (*count_cells)(struct device_node *child,
  41                                       int *addrc, int *sizec);
  42        u64             (*map)(__be32 *addr, const __be32 *range,
  43                                int na, int ns, int pna);
  44        int             (*translate)(__be32 *addr, u64 offset, int na);
  45        unsigned int    (*get_flags)(const __be32 *addr);
  46};
  47
  48/*
  49 * Default translator (generic bus)
  50 */
  51
  52static void of_bus_default_count_cells(struct device_node *dev,
  53                                       int *addrc, int *sizec)
  54{
  55        if (addrc)
  56                *addrc = of_n_addr_cells(dev);
  57        if (sizec)
  58                *sizec = of_n_size_cells(dev);
  59}
  60
  61static u64 of_bus_default_map(__be32 *addr, const __be32 *range,
  62                int na, int ns, int pna)
  63{
  64        u64 cp, s, da;
  65
  66        cp = of_read_number(range, na);
  67        s  = of_read_number(range + na + pna, ns);
  68        da = of_read_number(addr, na);
  69
  70        pr_debug("OF: default map, cp=%llx, s=%llx, da=%llx\n",
  71                 (unsigned long long)cp, (unsigned long long)s,
  72                 (unsigned long long)da);
  73
  74        if (da < cp || da >= (cp + s))
  75                return OF_BAD_ADDR;
  76        return da - cp;
  77}
  78
  79static int of_bus_default_translate(__be32 *addr, u64 offset, int na)
  80{
  81        u64 a = of_read_number(addr, na);
  82        memset(addr, 0, na * 4);
  83        a += offset;
  84        if (na > 1)
  85                addr[na - 2] = cpu_to_be32(a >> 32);
  86        addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
  87
  88        return 0;
  89}
  90
  91static unsigned int of_bus_default_get_flags(const __be32 *addr)
  92{
  93        return IORESOURCE_MEM;
  94}
  95
  96#ifdef CONFIG_OF_ADDRESS_PCI
  97/*
  98 * PCI bus specific translator
  99 */
 100
 101static int of_bus_pci_match(struct device_node *np)
 102{
 103        /*
 104         * "pciex" is PCI Express
 105         * "vci" is for the /chaos bridge on 1st-gen PCI powermacs
 106         * "ht" is hypertransport
 107         */
 108        return !strcmp(np->type, "pci") || !strcmp(np->type, "pciex") ||
 109                !strcmp(np->type, "vci") || !strcmp(np->type, "ht");
 110}
 111
 112static void of_bus_pci_count_cells(struct device_node *np,
 113                                   int *addrc, int *sizec)
 114{
 115        if (addrc)
 116                *addrc = 3;
 117        if (sizec)
 118                *sizec = 2;
 119}
 120
 121static unsigned int of_bus_pci_get_flags(const __be32 *addr)
 122{
 123        unsigned int flags = 0;
 124        u32 w = be32_to_cpup(addr);
 125
 126        switch((w >> 24) & 0x03) {
 127        case 0x01:
 128                flags |= IORESOURCE_IO;
 129                break;
 130        case 0x02: /* 32 bits */
 131        case 0x03: /* 64 bits */
 132                flags |= IORESOURCE_MEM;
 133                break;
 134        }
 135        if (w & 0x40000000)
 136                flags |= IORESOURCE_PREFETCH;
 137        return flags;
 138}
 139
 140static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns,
 141                int pna)
 142{
 143        u64 cp, s, da;
 144        unsigned int af, rf;
 145
 146        af = of_bus_pci_get_flags(addr);
 147        rf = of_bus_pci_get_flags(range);
 148
 149        /* Check address type match */
 150        if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
 151                return OF_BAD_ADDR;
 152
 153        /* Read address values, skipping high cell */
 154        cp = of_read_number(range + 1, na - 1);
 155        s  = of_read_number(range + na + pna, ns);
 156        da = of_read_number(addr + 1, na - 1);
 157
 158        pr_debug("OF: PCI map, cp=%llx, s=%llx, da=%llx\n",
 159                 (unsigned long long)cp, (unsigned long long)s,
 160                 (unsigned long long)da);
 161
 162        if (da < cp || da >= (cp + s))
 163                return OF_BAD_ADDR;
 164        return da - cp;
 165}
 166
 167static int of_bus_pci_translate(__be32 *addr, u64 offset, int na)
 168{
 169        return of_bus_default_translate(addr + 1, offset, na - 1);
 170}
 171#endif /* CONFIG_OF_ADDRESS_PCI */
 172
 173#ifdef CONFIG_PCI
 174const __be32 *of_get_pci_address(struct device_node *dev, int bar_no, u64 *size,
 175                        unsigned int *flags)
 176{
 177        const __be32 *prop;
 178        unsigned int psize;
 179        struct device_node *parent;
 180        struct of_bus *bus;
 181        int onesize, i, na, ns;
 182
 183        /* Get parent & match bus type */
 184        parent = of_get_parent(dev);
 185        if (parent == NULL)
 186                return NULL;
 187        bus = of_match_bus(parent);
 188        if (strcmp(bus->name, "pci")) {
 189                of_node_put(parent);
 190                return NULL;
 191        }
 192        bus->count_cells(dev, &na, &ns);
 193        of_node_put(parent);
 194        if (!OF_CHECK_ADDR_COUNT(na))
 195                return NULL;
 196
 197        /* Get "reg" or "assigned-addresses" property */
 198        prop = of_get_property(dev, bus->addresses, &psize);
 199        if (prop == NULL)
 200                return NULL;
 201        psize /= 4;
 202
 203        onesize = na + ns;
 204        for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
 205                u32 val = be32_to_cpu(prop[0]);
 206                if ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0)) {
 207                        if (size)
 208                                *size = of_read_number(prop + na, ns);
 209                        if (flags)
 210                                *flags = bus->get_flags(prop);
 211                        return prop;
 212                }
 213        }
 214        return NULL;
 215}
 216EXPORT_SYMBOL(of_get_pci_address);
 217
 218int of_pci_address_to_resource(struct device_node *dev, int bar,
 219                               struct resource *r)
 220{
 221        const __be32    *addrp;
 222        u64             size;
 223        unsigned int    flags;
 224
 225        addrp = of_get_pci_address(dev, bar, &size, &flags);
 226        if (addrp == NULL)
 227                return -EINVAL;
 228        return __of_address_to_resource(dev, addrp, size, flags, NULL, r);
 229}
 230EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
 231
 232int of_pci_range_parser_init(struct of_pci_range_parser *parser,
 233                                struct device_node *node)
 234{
 235        const int na = 3, ns = 2;
 236        int rlen;
 237
 238        parser->node = node;
 239        parser->pna = of_n_addr_cells(node);
 240        parser->np = parser->pna + na + ns;
 241
 242        parser->range = of_get_property(node, "ranges", &rlen);
 243        if (parser->range == NULL)
 244                return -ENOENT;
 245
 246        parser->end = parser->range + rlen / sizeof(__be32);
 247
 248        return 0;
 249}
 250EXPORT_SYMBOL_GPL(of_pci_range_parser_init);
 251
 252struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser,
 253                                                struct of_pci_range *range)
 254{
 255        const int na = 3, ns = 2;
 256
 257        if (!range)
 258                return NULL;
 259
 260        if (!parser->range || parser->range + parser->np > parser->end)
 261                return NULL;
 262
 263        range->pci_space = parser->range[0];
 264        range->flags = of_bus_pci_get_flags(parser->range);
 265        range->pci_addr = of_read_number(parser->range + 1, ns);
 266        range->cpu_addr = of_translate_address(parser->node,
 267                                parser->range + na);
 268        range->size = of_read_number(parser->range + parser->pna + na, ns);
 269
 270        parser->range += parser->np;
 271
 272        /* Now consume following elements while they are contiguous */
 273        while (parser->range + parser->np <= parser->end) {
 274                u32 flags, pci_space;
 275                u64 pci_addr, cpu_addr, size;
 276
 277                pci_space = be32_to_cpup(parser->range);
 278                flags = of_bus_pci_get_flags(parser->range);
 279                pci_addr = of_read_number(parser->range + 1, ns);
 280                cpu_addr = of_translate_address(parser->node,
 281                                parser->range + na);
 282                size = of_read_number(parser->range + parser->pna + na, ns);
 283
 284                if (flags != range->flags)
 285                        break;
 286                if (pci_addr != range->pci_addr + range->size ||
 287                    cpu_addr != range->cpu_addr + range->size)
 288                        break;
 289
 290                range->size += size;
 291                parser->range += parser->np;
 292        }
 293
 294        return range;
 295}
 296EXPORT_SYMBOL_GPL(of_pci_range_parser_one);
 297
 298/*
 299 * of_pci_range_to_resource - Create a resource from an of_pci_range
 300 * @range:      the PCI range that describes the resource
 301 * @np:         device node where the range belongs to
 302 * @res:        pointer to a valid resource that will be updated to
 303 *              reflect the values contained in the range.
 304 *
 305 * Returns EINVAL if the range cannot be converted to resource.
 306 *
 307 * Note that if the range is an IO range, the resource will be converted
 308 * using pci_address_to_pio() which can fail if it is called too early or
 309 * if the range cannot be matched to any host bridge IO space (our case here).
 310 * To guard against that we try to register the IO range first.
 311 * If that fails we know that pci_address_to_pio() will do too.
 312 */
 313int of_pci_range_to_resource(struct of_pci_range *range,
 314                             struct device_node *np, struct resource *res)
 315{
 316        int err;
 317        res->flags = range->flags;
 318        res->parent = res->child = res->sibling = NULL;
 319        res->name = np->full_name;
 320
 321        if (res->flags & IORESOURCE_IO) {
 322                unsigned long port;
 323                err = pci_register_io_range(range->cpu_addr, range->size);
 324                if (err)
 325                        goto invalid_range;
 326                port = pci_address_to_pio(range->cpu_addr);
 327                if (port == (unsigned long)-1) {
 328                        err = -EINVAL;
 329                        goto invalid_range;
 330                }
 331                res->start = port;
 332        } else {
 333                if ((sizeof(resource_size_t) < 8) &&
 334                    upper_32_bits(range->cpu_addr)) {
 335                        err = -EINVAL;
 336                        goto invalid_range;
 337                }
 338
 339                res->start = range->cpu_addr;
 340        }
 341        res->end = res->start + range->size - 1;
 342        return 0;
 343
 344invalid_range:
 345        res->start = (resource_size_t)OF_BAD_ADDR;
 346        res->end = (resource_size_t)OF_BAD_ADDR;
 347        return err;
 348}
 349#endif /* CONFIG_PCI */
 350
 351/*
 352 * ISA bus specific translator
 353 */
 354
 355static int of_bus_isa_match(struct device_node *np)
 356{
 357        return !strcmp(np->name, "isa");
 358}
 359
 360static void of_bus_isa_count_cells(struct device_node *child,
 361                                   int *addrc, int *sizec)
 362{
 363        if (addrc)
 364                *addrc = 2;
 365        if (sizec)
 366                *sizec = 1;
 367}
 368
 369static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns,
 370                int pna)
 371{
 372        u64 cp, s, da;
 373
 374        /* Check address type match */
 375        if ((addr[0] ^ range[0]) & cpu_to_be32(1))
 376                return OF_BAD_ADDR;
 377
 378        /* Read address values, skipping high cell */
 379        cp = of_read_number(range + 1, na - 1);
 380        s  = of_read_number(range + na + pna, ns);
 381        da = of_read_number(addr + 1, na - 1);
 382
 383        pr_debug("OF: ISA map, cp=%llx, s=%llx, da=%llx\n",
 384                 (unsigned long long)cp, (unsigned long long)s,
 385                 (unsigned long long)da);
 386
 387        if (da < cp || da >= (cp + s))
 388                return OF_BAD_ADDR;
 389        return da - cp;
 390}
 391
 392static int of_bus_isa_translate(__be32 *addr, u64 offset, int na)
 393{
 394        return of_bus_default_translate(addr + 1, offset, na - 1);
 395}
 396
 397static unsigned int of_bus_isa_get_flags(const __be32 *addr)
 398{
 399        unsigned int flags = 0;
 400        u32 w = be32_to_cpup(addr);
 401
 402        if (w & 1)
 403                flags |= IORESOURCE_IO;
 404        else
 405                flags |= IORESOURCE_MEM;
 406        return flags;
 407}
 408
 409/*
 410 * Array of bus specific translators
 411 */
 412
 413static struct of_bus of_busses[] = {
 414#ifdef CONFIG_OF_ADDRESS_PCI
 415        /* PCI */
 416        {
 417                .name = "pci",
 418                .addresses = "assigned-addresses",
 419                .match = of_bus_pci_match,
 420                .count_cells = of_bus_pci_count_cells,
 421                .map = of_bus_pci_map,
 422                .translate = of_bus_pci_translate,
 423                .get_flags = of_bus_pci_get_flags,
 424        },
 425#endif /* CONFIG_OF_ADDRESS_PCI */
 426        /* ISA */
 427        {
 428                .name = "isa",
 429                .addresses = "reg",
 430                .match = of_bus_isa_match,
 431                .count_cells = of_bus_isa_count_cells,
 432                .map = of_bus_isa_map,
 433                .translate = of_bus_isa_translate,
 434                .get_flags = of_bus_isa_get_flags,
 435        },
 436        /* Default */
 437        {
 438                .name = "default",
 439                .addresses = "reg",
 440                .match = NULL,
 441                .count_cells = of_bus_default_count_cells,
 442                .map = of_bus_default_map,
 443                .translate = of_bus_default_translate,
 444                .get_flags = of_bus_default_get_flags,
 445        },
 446};
 447
 448static struct of_bus *of_match_bus(struct device_node *np)
 449{
 450        int i;
 451
 452        for (i = 0; i < ARRAY_SIZE(of_busses); i++)
 453                if (!of_busses[i].match || of_busses[i].match(np))
 454                        return &of_busses[i];
 455        BUG();
 456        return NULL;
 457}
 458
 459static int of_empty_ranges_quirk(struct device_node *np)
 460{
 461        if (IS_ENABLED(CONFIG_PPC)) {
 462                /* To save cycles, we cache the result for global "Mac" setting */
 463                static int quirk_state = -1;
 464
 465                /* PA-SEMI sdc DT bug */
 466                if (of_device_is_compatible(np, "1682m-sdc"))
 467                        return true;
 468
 469                /* Make quirk cached */
 470                if (quirk_state < 0)
 471                        quirk_state =
 472                                of_machine_is_compatible("Power Macintosh") ||
 473                                of_machine_is_compatible("MacRISC");
 474                return quirk_state;
 475        }
 476        return false;
 477}
 478
 479static int of_translate_one(struct device_node *parent, struct of_bus *bus,
 480                            struct of_bus *pbus, __be32 *addr,
 481                            int na, int ns, int pna, const char *rprop)
 482{
 483        const __be32 *ranges;
 484        unsigned int rlen;
 485        int rone;
 486        u64 offset = OF_BAD_ADDR;
 487
 488        /*
 489         * Normally, an absence of a "ranges" property means we are
 490         * crossing a non-translatable boundary, and thus the addresses
 491         * below the current cannot be converted to CPU physical ones.
 492         * Unfortunately, while this is very clear in the spec, it's not
 493         * what Apple understood, and they do have things like /uni-n or
 494         * /ht nodes with no "ranges" property and a lot of perfectly
 495         * useable mapped devices below them. Thus we treat the absence of
 496         * "ranges" as equivalent to an empty "ranges" property which means
 497         * a 1:1 translation at that level. It's up to the caller not to try
 498         * to translate addresses that aren't supposed to be translated in
 499         * the first place. --BenH.
 500         *
 501         * As far as we know, this damage only exists on Apple machines, so
 502         * This code is only enabled on powerpc. --gcl
 503         */
 504        ranges = of_get_property(parent, rprop, &rlen);
 505        if (ranges == NULL && !of_empty_ranges_quirk(parent)) {
 506                pr_debug("OF: no ranges; cannot translate\n");
 507                return 1;
 508        }
 509        if (ranges == NULL || rlen == 0) {
 510                offset = of_read_number(addr, na);
 511                memset(addr, 0, pna * 4);
 512                pr_debug("OF: empty ranges; 1:1 translation\n");
 513                goto finish;
 514        }
 515
 516        pr_debug("OF: walking ranges...\n");
 517
 518        /* Now walk through the ranges */
 519        rlen /= 4;
 520        rone = na + pna + ns;
 521        for (; rlen >= rone; rlen -= rone, ranges += rone) {
 522                offset = bus->map(addr, ranges, na, ns, pna);
 523                if (offset != OF_BAD_ADDR)
 524                        break;
 525        }
 526        if (offset == OF_BAD_ADDR) {
 527                pr_debug("OF: not found !\n");
 528                return 1;
 529        }
 530        memcpy(addr, ranges + na, 4 * pna);
 531
 532 finish:
 533        of_dump_addr("OF: parent translation for:", addr, pna);
 534        pr_debug("OF: with offset: %llx\n", (unsigned long long)offset);
 535
 536        /* Translate it into parent bus space */
 537        return pbus->translate(addr, offset, pna);
 538}
 539
 540/*
 541 * Translate an address from the device-tree into a CPU physical address,
 542 * this walks up the tree and applies the various bus mappings on the
 543 * way.
 544 *
 545 * Note: We consider that crossing any level with #size-cells == 0 to mean
 546 * that translation is impossible (that is we are not dealing with a value
 547 * that can be mapped to a cpu physical address). This is not really specified
 548 * that way, but this is traditionally the way IBM at least do things
 549 */
 550static u64 __of_translate_address(struct device_node *dev,
 551                                  const __be32 *in_addr, const char *rprop)
 552{
 553        struct device_node *parent = NULL;
 554        struct of_bus *bus, *pbus;
 555        __be32 addr[OF_MAX_ADDR_CELLS];
 556        int na, ns, pna, pns;
 557        u64 result = OF_BAD_ADDR;
 558
 559        pr_debug("OF: ** translation for device %s **\n", of_node_full_name(dev));
 560
 561        /* Increase refcount at current level */
 562        of_node_get(dev);
 563
 564        /* Get parent & match bus type */
 565        parent = of_get_parent(dev);
 566        if (parent == NULL)
 567                goto bail;
 568        bus = of_match_bus(parent);
 569
 570        /* Count address cells & copy address locally */
 571        bus->count_cells(dev, &na, &ns);
 572        if (!OF_CHECK_COUNTS(na, ns)) {
 573                pr_debug("OF: Bad cell count for %s\n", of_node_full_name(dev));
 574                goto bail;
 575        }
 576        memcpy(addr, in_addr, na * 4);
 577
 578        pr_debug("OF: bus is %s (na=%d, ns=%d) on %s\n",
 579            bus->name, na, ns, of_node_full_name(parent));
 580        of_dump_addr("OF: translating address:", addr, na);
 581
 582        /* Translate */
 583        for (;;) {
 584                /* Switch to parent bus */
 585                of_node_put(dev);
 586                dev = parent;
 587                parent = of_get_parent(dev);
 588
 589                /* If root, we have finished */
 590                if (parent == NULL) {
 591                        pr_debug("OF: reached root node\n");
 592                        result = of_read_number(addr, na);
 593                        break;
 594                }
 595
 596                /* Get new parent bus and counts */
 597                pbus = of_match_bus(parent);
 598                pbus->count_cells(dev, &pna, &pns);
 599                if (!OF_CHECK_COUNTS(pna, pns)) {
 600                        pr_err("prom_parse: Bad cell count for %s\n",
 601                               of_node_full_name(dev));
 602                        break;
 603                }
 604
 605                pr_debug("OF: parent bus is %s (na=%d, ns=%d) on %s\n",
 606                    pbus->name, pna, pns, of_node_full_name(parent));
 607
 608                /* Apply bus translation */
 609                if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop))
 610                        break;
 611
 612                /* Complete the move up one level */
 613                na = pna;
 614                ns = pns;
 615                bus = pbus;
 616
 617                of_dump_addr("OF: one level translation:", addr, na);
 618        }
 619 bail:
 620        of_node_put(parent);
 621        of_node_put(dev);
 622
 623        return result;
 624}
 625
 626u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
 627{
 628        return __of_translate_address(dev, in_addr, "ranges");
 629}
 630EXPORT_SYMBOL(of_translate_address);
 631
 632u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
 633{
 634        return __of_translate_address(dev, in_addr, "dma-ranges");
 635}
 636EXPORT_SYMBOL(of_translate_dma_address);
 637
 638const __be32 *of_get_address(struct device_node *dev, int index, u64 *size,
 639                    unsigned int *flags)
 640{
 641        const __be32 *prop;
 642        unsigned int psize;
 643        struct device_node *parent;
 644        struct of_bus *bus;
 645        int onesize, i, na, ns;
 646
 647        /* Get parent & match bus type */
 648        parent = of_get_parent(dev);
 649        if (parent == NULL)
 650                return NULL;
 651        bus = of_match_bus(parent);
 652        bus->count_cells(dev, &na, &ns);
 653        of_node_put(parent);
 654        if (!OF_CHECK_ADDR_COUNT(na))
 655                return NULL;
 656
 657        /* Get "reg" or "assigned-addresses" property */
 658        prop = of_get_property(dev, bus->addresses, &psize);
 659        if (prop == NULL)
 660                return NULL;
 661        psize /= 4;
 662
 663        onesize = na + ns;
 664        for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++)
 665                if (i == index) {
 666                        if (size)
 667                                *size = of_read_number(prop + na, ns);
 668                        if (flags)
 669                                *flags = bus->get_flags(prop);
 670                        return prop;
 671                }
 672        return NULL;
 673}
 674EXPORT_SYMBOL(of_get_address);
 675
 676#ifdef PCI_IOBASE
 677struct io_range {
 678        struct list_head list;
 679        phys_addr_t start;
 680        resource_size_t size;
 681};
 682
 683static LIST_HEAD(io_range_list);
 684static DEFINE_SPINLOCK(io_range_lock);
 685#endif
 686
 687/*
 688 * Record the PCI IO range (expressed as CPU physical address + size).
 689 * Return a negative value if an error has occured, zero otherwise
 690 */
 691int __weak pci_register_io_range(phys_addr_t addr, resource_size_t size)
 692{
 693        int err = 0;
 694
 695#ifdef PCI_IOBASE
 696        struct io_range *range;
 697        resource_size_t allocated_size = 0;
 698
 699        /* check if the range hasn't been previously recorded */
 700        spin_lock(&io_range_lock);
 701        list_for_each_entry(range, &io_range_list, list) {
 702                if (addr >= range->start && addr + size <= range->start + size) {
 703                        /* range already registered, bail out */
 704                        goto end_register;
 705                }
 706                allocated_size += range->size;
 707        }
 708
 709        /* range not registed yet, check for available space */
 710        if (allocated_size + size - 1 > IO_SPACE_LIMIT) {
 711                /* if it's too big check if 64K space can be reserved */
 712                if (allocated_size + SZ_64K - 1 > IO_SPACE_LIMIT) {
 713                        err = -E2BIG;
 714                        goto end_register;
 715                }
 716
 717                size = SZ_64K;
 718                pr_warn("Requested IO range too big, new size set to 64K\n");
 719        }
 720
 721        /* add the range to the list */
 722        range = kzalloc(sizeof(*range), GFP_ATOMIC);
 723        if (!range) {
 724                err = -ENOMEM;
 725                goto end_register;
 726        }
 727
 728        range->start = addr;
 729        range->size = size;
 730
 731        list_add_tail(&range->list, &io_range_list);
 732
 733end_register:
 734        spin_unlock(&io_range_lock);
 735#endif
 736
 737        return err;
 738}
 739
 740phys_addr_t pci_pio_to_address(unsigned long pio)
 741{
 742        phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
 743
 744#ifdef PCI_IOBASE
 745        struct io_range *range;
 746        resource_size_t allocated_size = 0;
 747
 748        if (pio > IO_SPACE_LIMIT)
 749                return address;
 750
 751        spin_lock(&io_range_lock);
 752        list_for_each_entry(range, &io_range_list, list) {
 753                if (pio >= allocated_size && pio < allocated_size + range->size) {
 754                        address = range->start + pio - allocated_size;
 755                        break;
 756                }
 757                allocated_size += range->size;
 758        }
 759        spin_unlock(&io_range_lock);
 760#endif
 761
 762        return address;
 763}
 764
 765unsigned long __weak pci_address_to_pio(phys_addr_t address)
 766{
 767#ifdef PCI_IOBASE
 768        struct io_range *res;
 769        resource_size_t offset = 0;
 770        unsigned long addr = -1;
 771
 772        spin_lock(&io_range_lock);
 773        list_for_each_entry(res, &io_range_list, list) {
 774                if (address >= res->start && address < res->start + res->size) {
 775                        addr = address - res->start + offset;
 776                        break;
 777                }
 778                offset += res->size;
 779        }
 780        spin_unlock(&io_range_lock);
 781
 782        return addr;
 783#else
 784        if (address > IO_SPACE_LIMIT)
 785                return (unsigned long)-1;
 786
 787        return (unsigned long) address;
 788#endif
 789}
 790
 791static int __of_address_to_resource(struct device_node *dev,
 792                const __be32 *addrp, u64 size, unsigned int flags,
 793                const char *name, struct resource *r)
 794{
 795        u64 taddr;
 796
 797        if ((flags & (IORESOURCE_IO | IORESOURCE_MEM)) == 0)
 798                return -EINVAL;
 799        taddr = of_translate_address(dev, addrp);
 800        if (taddr == OF_BAD_ADDR)
 801                return -EINVAL;
 802        memset(r, 0, sizeof(struct resource));
 803        if (flags & IORESOURCE_IO) {
 804                unsigned long port;
 805                port = pci_address_to_pio(taddr);
 806                if (port == (unsigned long)-1)
 807                        return -EINVAL;
 808                r->start = port;
 809                r->end = port + size - 1;
 810        } else {
 811                r->start = taddr;
 812                r->end = taddr + size - 1;
 813        }
 814        r->flags = flags;
 815        r->name = name ? name : dev->full_name;
 816
 817        return 0;
 818}
 819
 820/**
 821 * of_address_to_resource - Translate device tree address and return as resource
 822 *
 823 * Note that if your address is a PIO address, the conversion will fail if
 824 * the physical address can't be internally converted to an IO token with
 825 * pci_address_to_pio(), that is because it's either called to early or it
 826 * can't be matched to any host bridge IO space
 827 */
 828int of_address_to_resource(struct device_node *dev, int index,
 829                           struct resource *r)
 830{
 831        const __be32    *addrp;
 832        u64             size;
 833        unsigned int    flags;
 834        const char      *name = NULL;
 835
 836        addrp = of_get_address(dev, index, &size, &flags);
 837        if (addrp == NULL)
 838                return -EINVAL;
 839
 840        /* Get optional "reg-names" property to add a name to a resource */
 841        of_property_read_string_index(dev, "reg-names", index, &name);
 842
 843        return __of_address_to_resource(dev, addrp, size, flags, name, r);
 844}
 845EXPORT_SYMBOL_GPL(of_address_to_resource);
 846
 847struct device_node *of_find_matching_node_by_address(struct device_node *from,
 848                                        const struct of_device_id *matches,
 849                                        u64 base_address)
 850{
 851        struct device_node *dn = of_find_matching_node(from, matches);
 852        struct resource res;
 853
 854        while (dn) {
 855                if (!of_address_to_resource(dn, 0, &res) &&
 856                    res.start == base_address)
 857                        return dn;
 858
 859                dn = of_find_matching_node(dn, matches);
 860        }
 861
 862        return NULL;
 863}
 864
 865
 866/**
 867 * of_iomap - Maps the memory mapped IO for a given device_node
 868 * @device:     the device whose io range will be mapped
 869 * @index:      index of the io range
 870 *
 871 * Returns a pointer to the mapped memory
 872 */
 873void __iomem *of_iomap(struct device_node *np, int index)
 874{
 875        struct resource res;
 876
 877        if (of_address_to_resource(np, index, &res))
 878                return NULL;
 879
 880        return ioremap(res.start, resource_size(&res));
 881}
 882EXPORT_SYMBOL(of_iomap);
 883
 884/*
 885 * of_io_request_and_map - Requests a resource and maps the memory mapped IO
 886 *                         for a given device_node
 887 * @device:     the device whose io range will be mapped
 888 * @index:      index of the io range
 889 * @name:       name of the resource
 890 *
 891 * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
 892 * error code on failure. Usage example:
 893 *
 894 *      base = of_io_request_and_map(node, 0, "foo");
 895 *      if (IS_ERR(base))
 896 *              return PTR_ERR(base);
 897 */
 898void __iomem *of_io_request_and_map(struct device_node *np, int index,
 899                                        const char *name)
 900{
 901        struct resource res;
 902        void __iomem *mem;
 903
 904        if (of_address_to_resource(np, index, &res))
 905                return IOMEM_ERR_PTR(-EINVAL);
 906
 907        if (!request_mem_region(res.start, resource_size(&res), name))
 908                return IOMEM_ERR_PTR(-EBUSY);
 909
 910        mem = ioremap(res.start, resource_size(&res));
 911        if (!mem) {
 912                release_mem_region(res.start, resource_size(&res));
 913                return IOMEM_ERR_PTR(-ENOMEM);
 914        }
 915
 916        return mem;
 917}
 918EXPORT_SYMBOL(of_io_request_and_map);
 919
 920/**
 921 * of_dma_get_range - Get DMA range info
 922 * @np:         device node to get DMA range info
 923 * @dma_addr:   pointer to store initial DMA address of DMA range
 924 * @paddr:      pointer to store initial CPU address of DMA range
 925 * @size:       pointer to store size of DMA range
 926 *
 927 * Look in bottom up direction for the first "dma-ranges" property
 928 * and parse it.
 929 *  dma-ranges format:
 930 *      DMA addr (dma_addr)     : naddr cells
 931 *      CPU addr (phys_addr_t)  : pna cells
 932 *      size                    : nsize cells
 933 *
 934 * It returns -ENODEV if "dma-ranges" property was not found
 935 * for this device in DT.
 936 */
 937int of_dma_get_range(struct device_node *np, u64 *dma_addr, u64 *paddr, u64 *size)
 938{
 939        struct device_node *node = of_node_get(np);
 940        const __be32 *ranges = NULL;
 941        int len, naddr, nsize, pna;
 942        int ret = 0;
 943        u64 dmaaddr;
 944
 945        if (!node)
 946                return -EINVAL;
 947
 948        while (1) {
 949                naddr = of_n_addr_cells(node);
 950                nsize = of_n_size_cells(node);
 951                node = of_get_next_parent(node);
 952                if (!node)
 953                        break;
 954
 955                ranges = of_get_property(node, "dma-ranges", &len);
 956
 957                /* Ignore empty ranges, they imply no translation required */
 958                if (ranges && len > 0)
 959                        break;
 960
 961                /*
 962                 * At least empty ranges has to be defined for parent node if
 963                 * DMA is supported
 964                 */
 965                if (!ranges)
 966                        break;
 967        }
 968
 969        if (!ranges) {
 970                pr_debug("%s: no dma-ranges found for node(%s)\n",
 971                         __func__, np->full_name);
 972                ret = -ENODEV;
 973                goto out;
 974        }
 975
 976        len /= sizeof(u32);
 977
 978        pna = of_n_addr_cells(node);
 979
 980        /* dma-ranges format:
 981         * DMA addr     : naddr cells
 982         * CPU addr     : pna cells
 983         * size         : nsize cells
 984         */
 985        dmaaddr = of_read_number(ranges, naddr);
 986        *paddr = of_translate_dma_address(np, ranges);
 987        if (*paddr == OF_BAD_ADDR) {
 988                pr_err("%s: translation of DMA address(%pad) to CPU address failed node(%s)\n",
 989                       __func__, dma_addr, np->full_name);
 990                ret = -EINVAL;
 991                goto out;
 992        }
 993        *dma_addr = dmaaddr;
 994
 995        *size = of_read_number(ranges + naddr + pna, nsize);
 996
 997        pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
 998                 *dma_addr, *paddr, *size);
 999
1000out:
1001        of_node_put(node);
1002
1003        return ret;
1004}
1005EXPORT_SYMBOL_GPL(of_dma_get_range);
1006
1007/**
1008 * of_dma_is_coherent - Check if device is coherent
1009 * @np: device node
1010 *
1011 * It returns true if "dma-coherent" property was found
1012 * for this device in DT.
1013 */
1014bool of_dma_is_coherent(struct device_node *np)
1015{
1016        struct device_node *node = of_node_get(np);
1017
1018        while (node) {
1019                if (of_property_read_bool(node, "dma-coherent")) {
1020                        of_node_put(node);
1021                        return true;
1022                }
1023                node = of_get_next_parent(node);
1024        }
1025        of_node_put(node);
1026        return false;
1027}
1028EXPORT_SYMBOL_GPL(of_dma_is_coherent);
1029