linux/drivers/of/base.c
<<
>>
Prefs
   1/*
   2 * Procedures for creating, accessing and interpreting the device tree.
   3 *
   4 * Paul Mackerras       August 1996.
   5 * Copyright (C) 1996-2005 Paul Mackerras.
   6 *
   7 *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
   8 *    {engebret|bergner}@us.ibm.com
   9 *
  10 *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
  11 *
  12 *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
  13 *  Grant Likely.
  14 *
  15 *      This program is free software; you can redistribute it and/or
  16 *      modify it under the terms of the GNU General Public License
  17 *      as published by the Free Software Foundation; either version
  18 *      2 of the License, or (at your option) any later version.
  19 */
  20#include <linux/console.h>
  21#include <linux/ctype.h>
  22#include <linux/cpu.h>
  23#include <linux/module.h>
  24#include <linux/of.h>
  25#include <linux/of_graph.h>
  26#include <linux/spinlock.h>
  27#include <linux/slab.h>
  28#include <linux/string.h>
  29#include <linux/proc_fs.h>
  30
  31#include "of_private.h"
  32
  33LIST_HEAD(aliases_lookup);
  34
  35struct device_node *of_root;
  36EXPORT_SYMBOL(of_root);
  37struct device_node *of_chosen;
  38struct device_node *of_aliases;
  39struct device_node *of_stdout;
  40static const char *of_stdout_options;
  41
  42struct kset *of_kset;
  43
  44/*
  45 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
  46 * This mutex must be held whenever modifications are being made to the
  47 * device tree. The of_{attach,detach}_node() and
  48 * of_{add,remove,update}_property() helpers make sure this happens.
  49 */
  50DEFINE_MUTEX(of_mutex);
  51
  52/* use when traversing tree through the child, sibling,
  53 * or parent members of struct device_node.
  54 */
  55DEFINE_RAW_SPINLOCK(devtree_lock);
  56
  57int of_n_addr_cells(struct device_node *np)
  58{
  59        const __be32 *ip;
  60
  61        do {
  62                if (np->parent)
  63                        np = np->parent;
  64                ip = of_get_property(np, "#address-cells", NULL);
  65                if (ip)
  66                        return be32_to_cpup(ip);
  67        } while (np->parent);
  68        /* No #address-cells property for the root node */
  69        return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
  70}
  71EXPORT_SYMBOL(of_n_addr_cells);
  72
  73int of_n_size_cells(struct device_node *np)
  74{
  75        const __be32 *ip;
  76
  77        do {
  78                if (np->parent)
  79                        np = np->parent;
  80                ip = of_get_property(np, "#size-cells", NULL);
  81                if (ip)
  82                        return be32_to_cpup(ip);
  83        } while (np->parent);
  84        /* No #size-cells property for the root node */
  85        return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
  86}
  87EXPORT_SYMBOL(of_n_size_cells);
  88
  89#ifdef CONFIG_NUMA
  90int __weak of_node_to_nid(struct device_node *np)
  91{
  92        return NUMA_NO_NODE;
  93}
  94#endif
  95
  96#ifndef CONFIG_OF_DYNAMIC
  97static void of_node_release(struct kobject *kobj)
  98{
  99        /* Without CONFIG_OF_DYNAMIC, no nodes gets freed */
 100}
 101#endif /* CONFIG_OF_DYNAMIC */
 102
 103struct kobj_type of_node_ktype = {
 104        .release = of_node_release,
 105};
 106
 107static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj,
 108                                struct bin_attribute *bin_attr, char *buf,
 109                                loff_t offset, size_t count)
 110{
 111        struct property *pp = container_of(bin_attr, struct property, attr);
 112        return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length);
 113}
 114
 115static const char *safe_name(struct kobject *kobj, const char *orig_name)
 116{
 117        const char *name = orig_name;
 118        struct kernfs_node *kn;
 119        int i = 0;
 120
 121        /* don't be a hero. After 16 tries give up */
 122        while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) {
 123                sysfs_put(kn);
 124                if (name != orig_name)
 125                        kfree(name);
 126                name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i);
 127        }
 128
 129        if (name != orig_name)
 130                pr_warn("device-tree: Duplicate name in %s, renamed to \"%s\"\n",
 131                        kobject_name(kobj), name);
 132        return name;
 133}
 134
 135int __of_add_property_sysfs(struct device_node *np, struct property *pp)
 136{
 137        int rc;
 138
 139        /* Important: Don't leak passwords */
 140        bool secure = strncmp(pp->name, "security-", 9) == 0;
 141
 142        if (!IS_ENABLED(CONFIG_SYSFS))
 143                return 0;
 144
 145        if (!of_kset || !of_node_is_attached(np))
 146                return 0;
 147
 148        sysfs_bin_attr_init(&pp->attr);
 149        pp->attr.attr.name = safe_name(&np->kobj, pp->name);
 150        pp->attr.attr.mode = secure ? S_IRUSR : S_IRUGO;
 151        pp->attr.size = secure ? 0 : pp->length;
 152        pp->attr.read = of_node_property_read;
 153
 154        rc = sysfs_create_bin_file(&np->kobj, &pp->attr);
 155        WARN(rc, "error adding attribute %s to node %s\n", pp->name, np->full_name);
 156        return rc;
 157}
 158
 159int __of_attach_node_sysfs(struct device_node *np)
 160{
 161        const char *name;
 162        struct property *pp;
 163        int rc;
 164
 165        if (!IS_ENABLED(CONFIG_SYSFS))
 166                return 0;
 167
 168        if (!of_kset)
 169                return 0;
 170
 171        np->kobj.kset = of_kset;
 172        if (!np->parent) {
 173                /* Nodes without parents are new top level trees */
 174                rc = kobject_add(&np->kobj, NULL, "%s",
 175                                 safe_name(&of_kset->kobj, "base"));
 176        } else {
 177                name = safe_name(&np->parent->kobj, kbasename(np->full_name));
 178                if (!name || !name[0])
 179                        return -EINVAL;
 180
 181                rc = kobject_add(&np->kobj, &np->parent->kobj, "%s", name);
 182        }
 183        if (rc)
 184                return rc;
 185
 186        for_each_property_of_node(np, pp)
 187                __of_add_property_sysfs(np, pp);
 188
 189        return 0;
 190}
 191
 192void __init of_core_init(void)
 193{
 194        struct device_node *np;
 195
 196        /* Create the kset, and register existing nodes */
 197        mutex_lock(&of_mutex);
 198        of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
 199        if (!of_kset) {
 200                mutex_unlock(&of_mutex);
 201                pr_err("devicetree: failed to register existing nodes\n");
 202                return;
 203        }
 204        for_each_of_allnodes(np)
 205                __of_attach_node_sysfs(np);
 206        mutex_unlock(&of_mutex);
 207
 208        /* Symlink in /proc as required by userspace ABI */
 209        if (of_root)
 210                proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
 211}
 212
 213static struct property *__of_find_property(const struct device_node *np,
 214                                           const char *name, int *lenp)
 215{
 216        struct property *pp;
 217
 218        if (!np)
 219                return NULL;
 220
 221        for (pp = np->properties; pp; pp = pp->next) {
 222                if (of_prop_cmp(pp->name, name) == 0) {
 223                        if (lenp)
 224                                *lenp = pp->length;
 225                        break;
 226                }
 227        }
 228
 229        return pp;
 230}
 231
 232struct property *of_find_property(const struct device_node *np,
 233                                  const char *name,
 234                                  int *lenp)
 235{
 236        struct property *pp;
 237        unsigned long flags;
 238
 239        raw_spin_lock_irqsave(&devtree_lock, flags);
 240        pp = __of_find_property(np, name, lenp);
 241        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 242
 243        return pp;
 244}
 245EXPORT_SYMBOL(of_find_property);
 246
 247struct device_node *__of_find_all_nodes(struct device_node *prev)
 248{
 249        struct device_node *np;
 250        if (!prev) {
 251                np = of_root;
 252        } else if (prev->child) {
 253                np = prev->child;
 254        } else {
 255                /* Walk back up looking for a sibling, or the end of the structure */
 256                np = prev;
 257                while (np->parent && !np->sibling)
 258                        np = np->parent;
 259                np = np->sibling; /* Might be null at the end of the tree */
 260        }
 261        return np;
 262}
 263
 264/**
 265 * of_find_all_nodes - Get next node in global list
 266 * @prev:       Previous node or NULL to start iteration
 267 *              of_node_put() will be called on it
 268 *
 269 * Returns a node pointer with refcount incremented, use
 270 * of_node_put() on it when done.
 271 */
 272struct device_node *of_find_all_nodes(struct device_node *prev)
 273{
 274        struct device_node *np;
 275        unsigned long flags;
 276
 277        raw_spin_lock_irqsave(&devtree_lock, flags);
 278        np = __of_find_all_nodes(prev);
 279        of_node_get(np);
 280        of_node_put(prev);
 281        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 282        return np;
 283}
 284EXPORT_SYMBOL(of_find_all_nodes);
 285
 286/*
 287 * Find a property with a given name for a given node
 288 * and return the value.
 289 */
 290const void *__of_get_property(const struct device_node *np,
 291                              const char *name, int *lenp)
 292{
 293        struct property *pp = __of_find_property(np, name, lenp);
 294
 295        return pp ? pp->value : NULL;
 296}
 297
 298/*
 299 * Find a property with a given name for a given node
 300 * and return the value.
 301 */
 302const void *of_get_property(const struct device_node *np, const char *name,
 303                            int *lenp)
 304{
 305        struct property *pp = of_find_property(np, name, lenp);
 306
 307        return pp ? pp->value : NULL;
 308}
 309EXPORT_SYMBOL(of_get_property);
 310
 311/*
 312 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
 313 *
 314 * @cpu: logical cpu index of a core/thread
 315 * @phys_id: physical identifier of a core/thread
 316 *
 317 * CPU logical to physical index mapping is architecture specific.
 318 * However this __weak function provides a default match of physical
 319 * id to logical cpu index. phys_id provided here is usually values read
 320 * from the device tree which must match the hardware internal registers.
 321 *
 322 * Returns true if the physical identifier and the logical cpu index
 323 * correspond to the same core/thread, false otherwise.
 324 */
 325bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
 326{
 327        return (u32)phys_id == cpu;
 328}
 329
 330/**
 331 * Checks if the given "prop_name" property holds the physical id of the
 332 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
 333 * NULL, local thread number within the core is returned in it.
 334 */
 335static bool __of_find_n_match_cpu_property(struct device_node *cpun,
 336                        const char *prop_name, int cpu, unsigned int *thread)
 337{
 338        const __be32 *cell;
 339        int ac, prop_len, tid;
 340        u64 hwid;
 341
 342        ac = of_n_addr_cells(cpun);
 343        cell = of_get_property(cpun, prop_name, &prop_len);
 344        if (!cell || !ac)
 345                return false;
 346        prop_len /= sizeof(*cell) * ac;
 347        for (tid = 0; tid < prop_len; tid++) {
 348                hwid = of_read_number(cell, ac);
 349                if (arch_match_cpu_phys_id(cpu, hwid)) {
 350                        if (thread)
 351                                *thread = tid;
 352                        return true;
 353                }
 354                cell += ac;
 355        }
 356        return false;
 357}
 358
 359/*
 360 * arch_find_n_match_cpu_physical_id - See if the given device node is
 361 * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
 362 * else false.  If 'thread' is non-NULL, the local thread number within the
 363 * core is returned in it.
 364 */
 365bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
 366                                              int cpu, unsigned int *thread)
 367{
 368        /* Check for non-standard "ibm,ppc-interrupt-server#s" property
 369         * for thread ids on PowerPC. If it doesn't exist fallback to
 370         * standard "reg" property.
 371         */
 372        if (IS_ENABLED(CONFIG_PPC) &&
 373            __of_find_n_match_cpu_property(cpun,
 374                                           "ibm,ppc-interrupt-server#s",
 375                                           cpu, thread))
 376                return true;
 377
 378        return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
 379}
 380
 381/**
 382 * of_get_cpu_node - Get device node associated with the given logical CPU
 383 *
 384 * @cpu: CPU number(logical index) for which device node is required
 385 * @thread: if not NULL, local thread number within the physical core is
 386 *          returned
 387 *
 388 * The main purpose of this function is to retrieve the device node for the
 389 * given logical CPU index. It should be used to initialize the of_node in
 390 * cpu device. Once of_node in cpu device is populated, all the further
 391 * references can use that instead.
 392 *
 393 * CPU logical to physical index mapping is architecture specific and is built
 394 * before booting secondary cores. This function uses arch_match_cpu_phys_id
 395 * which can be overridden by architecture specific implementation.
 396 *
 397 * Returns a node pointer for the logical cpu if found, else NULL.
 398 */
 399struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
 400{
 401        struct device_node *cpun;
 402
 403        for_each_node_by_type(cpun, "cpu") {
 404                if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
 405                        return cpun;
 406        }
 407        return NULL;
 408}
 409EXPORT_SYMBOL(of_get_cpu_node);
 410
 411/**
 412 * __of_device_is_compatible() - Check if the node matches given constraints
 413 * @device: pointer to node
 414 * @compat: required compatible string, NULL or "" for any match
 415 * @type: required device_type value, NULL or "" for any match
 416 * @name: required node name, NULL or "" for any match
 417 *
 418 * Checks if the given @compat, @type and @name strings match the
 419 * properties of the given @device. A constraints can be skipped by
 420 * passing NULL or an empty string as the constraint.
 421 *
 422 * Returns 0 for no match, and a positive integer on match. The return
 423 * value is a relative score with larger values indicating better
 424 * matches. The score is weighted for the most specific compatible value
 425 * to get the highest score. Matching type is next, followed by matching
 426 * name. Practically speaking, this results in the following priority
 427 * order for matches:
 428 *
 429 * 1. specific compatible && type && name
 430 * 2. specific compatible && type
 431 * 3. specific compatible && name
 432 * 4. specific compatible
 433 * 5. general compatible && type && name
 434 * 6. general compatible && type
 435 * 7. general compatible && name
 436 * 8. general compatible
 437 * 9. type && name
 438 * 10. type
 439 * 11. name
 440 */
 441static int __of_device_is_compatible(const struct device_node *device,
 442                                     const char *compat, const char *type, const char *name)
 443{
 444        struct property *prop;
 445        const char *cp;
 446        int index = 0, score = 0;
 447
 448        /* Compatible match has highest priority */
 449        if (compat && compat[0]) {
 450                prop = __of_find_property(device, "compatible", NULL);
 451                for (cp = of_prop_next_string(prop, NULL); cp;
 452                     cp = of_prop_next_string(prop, cp), index++) {
 453                        if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
 454                                score = INT_MAX/2 - (index << 2);
 455                                break;
 456                        }
 457                }
 458                if (!score)
 459                        return 0;
 460        }
 461
 462        /* Matching type is better than matching name */
 463        if (type && type[0]) {
 464                if (!device->type || of_node_cmp(type, device->type))
 465                        return 0;
 466                score += 2;
 467        }
 468
 469        /* Matching name is a bit better than not */
 470        if (name && name[0]) {
 471                if (!device->name || of_node_cmp(name, device->name))
 472                        return 0;
 473                score++;
 474        }
 475
 476        return score;
 477}
 478
 479/** Checks if the given "compat" string matches one of the strings in
 480 * the device's "compatible" property
 481 */
 482int of_device_is_compatible(const struct device_node *device,
 483                const char *compat)
 484{
 485        unsigned long flags;
 486        int res;
 487
 488        raw_spin_lock_irqsave(&devtree_lock, flags);
 489        res = __of_device_is_compatible(device, compat, NULL, NULL);
 490        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 491        return res;
 492}
 493EXPORT_SYMBOL(of_device_is_compatible);
 494
 495/**
 496 * of_machine_is_compatible - Test root of device tree for a given compatible value
 497 * @compat: compatible string to look for in root node's compatible property.
 498 *
 499 * Returns a positive integer if the root node has the given value in its
 500 * compatible property.
 501 */
 502int of_machine_is_compatible(const char *compat)
 503{
 504        struct device_node *root;
 505        int rc = 0;
 506
 507        root = of_find_node_by_path("/");
 508        if (root) {
 509                rc = of_device_is_compatible(root, compat);
 510                of_node_put(root);
 511        }
 512        return rc;
 513}
 514EXPORT_SYMBOL(of_machine_is_compatible);
 515
 516/**
 517 *  __of_device_is_available - check if a device is available for use
 518 *
 519 *  @device: Node to check for availability, with locks already held
 520 *
 521 *  Returns true if the status property is absent or set to "okay" or "ok",
 522 *  false otherwise
 523 */
 524static bool __of_device_is_available(const struct device_node *device)
 525{
 526        const char *status;
 527        int statlen;
 528
 529        if (!device)
 530                return false;
 531
 532        status = __of_get_property(device, "status", &statlen);
 533        if (status == NULL)
 534                return true;
 535
 536        if (statlen > 0) {
 537                if (!strcmp(status, "okay") || !strcmp(status, "ok"))
 538                        return true;
 539        }
 540
 541        return false;
 542}
 543
 544/**
 545 *  of_device_is_available - check if a device is available for use
 546 *
 547 *  @device: Node to check for availability
 548 *
 549 *  Returns true if the status property is absent or set to "okay" or "ok",
 550 *  false otherwise
 551 */
 552bool of_device_is_available(const struct device_node *device)
 553{
 554        unsigned long flags;
 555        bool res;
 556
 557        raw_spin_lock_irqsave(&devtree_lock, flags);
 558        res = __of_device_is_available(device);
 559        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 560        return res;
 561
 562}
 563EXPORT_SYMBOL(of_device_is_available);
 564
 565/**
 566 *  of_device_is_big_endian - check if a device has BE registers
 567 *
 568 *  @device: Node to check for endianness
 569 *
 570 *  Returns true if the device has a "big-endian" property, or if the kernel
 571 *  was compiled for BE *and* the device has a "native-endian" property.
 572 *  Returns false otherwise.
 573 *
 574 *  Callers would nominally use ioread32be/iowrite32be if
 575 *  of_device_is_big_endian() == true, or readl/writel otherwise.
 576 */
 577bool of_device_is_big_endian(const struct device_node *device)
 578{
 579        if (of_property_read_bool(device, "big-endian"))
 580                return true;
 581        if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
 582            of_property_read_bool(device, "native-endian"))
 583                return true;
 584        return false;
 585}
 586EXPORT_SYMBOL(of_device_is_big_endian);
 587
 588/**
 589 *      of_get_parent - Get a node's parent if any
 590 *      @node:  Node to get parent
 591 *
 592 *      Returns a node pointer with refcount incremented, use
 593 *      of_node_put() on it when done.
 594 */
 595struct device_node *of_get_parent(const struct device_node *node)
 596{
 597        struct device_node *np;
 598        unsigned long flags;
 599
 600        if (!node)
 601                return NULL;
 602
 603        raw_spin_lock_irqsave(&devtree_lock, flags);
 604        np = of_node_get(node->parent);
 605        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 606        return np;
 607}
 608EXPORT_SYMBOL(of_get_parent);
 609
 610/**
 611 *      of_get_next_parent - Iterate to a node's parent
 612 *      @node:  Node to get parent of
 613 *
 614 *      This is like of_get_parent() except that it drops the
 615 *      refcount on the passed node, making it suitable for iterating
 616 *      through a node's parents.
 617 *
 618 *      Returns a node pointer with refcount incremented, use
 619 *      of_node_put() on it when done.
 620 */
 621struct device_node *of_get_next_parent(struct device_node *node)
 622{
 623        struct device_node *parent;
 624        unsigned long flags;
 625
 626        if (!node)
 627                return NULL;
 628
 629        raw_spin_lock_irqsave(&devtree_lock, flags);
 630        parent = of_node_get(node->parent);
 631        of_node_put(node);
 632        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 633        return parent;
 634}
 635EXPORT_SYMBOL(of_get_next_parent);
 636
 637static struct device_node *__of_get_next_child(const struct device_node *node,
 638                                                struct device_node *prev)
 639{
 640        struct device_node *next;
 641
 642        if (!node)
 643                return NULL;
 644
 645        next = prev ? prev->sibling : node->child;
 646        for (; next; next = next->sibling)
 647                if (of_node_get(next))
 648                        break;
 649        of_node_put(prev);
 650        return next;
 651}
 652#define __for_each_child_of_node(parent, child) \
 653        for (child = __of_get_next_child(parent, NULL); child != NULL; \
 654             child = __of_get_next_child(parent, child))
 655
 656/**
 657 *      of_get_next_child - Iterate a node childs
 658 *      @node:  parent node
 659 *      @prev:  previous child of the parent node, or NULL to get first
 660 *
 661 *      Returns a node pointer with refcount incremented, use of_node_put() on
 662 *      it when done. Returns NULL when prev is the last child. Decrements the
 663 *      refcount of prev.
 664 */
 665struct device_node *of_get_next_child(const struct device_node *node,
 666        struct device_node *prev)
 667{
 668        struct device_node *next;
 669        unsigned long flags;
 670
 671        raw_spin_lock_irqsave(&devtree_lock, flags);
 672        next = __of_get_next_child(node, prev);
 673        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 674        return next;
 675}
 676EXPORT_SYMBOL(of_get_next_child);
 677
 678/**
 679 *      of_get_next_available_child - Find the next available child node
 680 *      @node:  parent node
 681 *      @prev:  previous child of the parent node, or NULL to get first
 682 *
 683 *      This function is like of_get_next_child(), except that it
 684 *      automatically skips any disabled nodes (i.e. status = "disabled").
 685 */
 686struct device_node *of_get_next_available_child(const struct device_node *node,
 687        struct device_node *prev)
 688{
 689        struct device_node *next;
 690        unsigned long flags;
 691
 692        if (!node)
 693                return NULL;
 694
 695        raw_spin_lock_irqsave(&devtree_lock, flags);
 696        next = prev ? prev->sibling : node->child;
 697        for (; next; next = next->sibling) {
 698                if (!__of_device_is_available(next))
 699                        continue;
 700                if (of_node_get(next))
 701                        break;
 702        }
 703        of_node_put(prev);
 704        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 705        return next;
 706}
 707EXPORT_SYMBOL(of_get_next_available_child);
 708
 709/**
 710 *      of_get_child_by_name - Find the child node by name for a given parent
 711 *      @node:  parent node
 712 *      @name:  child name to look for.
 713 *
 714 *      This function looks for child node for given matching name
 715 *
 716 *      Returns a node pointer if found, with refcount incremented, use
 717 *      of_node_put() on it when done.
 718 *      Returns NULL if node is not found.
 719 */
 720struct device_node *of_get_child_by_name(const struct device_node *node,
 721                                const char *name)
 722{
 723        struct device_node *child;
 724
 725        for_each_child_of_node(node, child)
 726                if (child->name && (of_node_cmp(child->name, name) == 0))
 727                        break;
 728        return child;
 729}
 730EXPORT_SYMBOL(of_get_child_by_name);
 731
 732static struct device_node *__of_find_node_by_path(struct device_node *parent,
 733                                                const char *path)
 734{
 735        struct device_node *child;
 736        int len;
 737
 738        len = strcspn(path, "/:");
 739        if (!len)
 740                return NULL;
 741
 742        __for_each_child_of_node(parent, child) {
 743                const char *name = strrchr(child->full_name, '/');
 744                if (WARN(!name, "malformed device_node %s\n", child->full_name))
 745                        continue;
 746                name++;
 747                if (strncmp(path, name, len) == 0 && (strlen(name) == len))
 748                        return child;
 749        }
 750        return NULL;
 751}
 752
 753/**
 754 *      of_find_node_opts_by_path - Find a node matching a full OF path
 755 *      @path: Either the full path to match, or if the path does not
 756 *             start with '/', the name of a property of the /aliases
 757 *             node (an alias).  In the case of an alias, the node
 758 *             matching the alias' value will be returned.
 759 *      @opts: Address of a pointer into which to store the start of
 760 *             an options string appended to the end of the path with
 761 *             a ':' separator.
 762 *
 763 *      Valid paths:
 764 *              /foo/bar        Full path
 765 *              foo             Valid alias
 766 *              foo/bar         Valid alias + relative path
 767 *
 768 *      Returns a node pointer with refcount incremented, use
 769 *      of_node_put() on it when done.
 770 */
 771struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
 772{
 773        struct device_node *np = NULL;
 774        struct property *pp;
 775        unsigned long flags;
 776        const char *separator = strchr(path, ':');
 777
 778        if (opts)
 779                *opts = separator ? separator + 1 : NULL;
 780
 781        if (strcmp(path, "/") == 0)
 782                return of_node_get(of_root);
 783
 784        /* The path could begin with an alias */
 785        if (*path != '/') {
 786                int len;
 787                const char *p = separator;
 788
 789                if (!p)
 790                        p = strchrnul(path, '/');
 791                len = p - path;
 792
 793                /* of_aliases must not be NULL */
 794                if (!of_aliases)
 795                        return NULL;
 796
 797                for_each_property_of_node(of_aliases, pp) {
 798                        if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
 799                                np = of_find_node_by_path(pp->value);
 800                                break;
 801                        }
 802                }
 803                if (!np)
 804                        return NULL;
 805                path = p;
 806        }
 807
 808        /* Step down the tree matching path components */
 809        raw_spin_lock_irqsave(&devtree_lock, flags);
 810        if (!np)
 811                np = of_node_get(of_root);
 812        while (np && *path == '/') {
 813                path++; /* Increment past '/' delimiter */
 814                np = __of_find_node_by_path(np, path);
 815                path = strchrnul(path, '/');
 816                if (separator && separator < path)
 817                        break;
 818        }
 819        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 820        return np;
 821}
 822EXPORT_SYMBOL(of_find_node_opts_by_path);
 823
 824/**
 825 *      of_find_node_by_name - Find a node by its "name" property
 826 *      @from:  The node to start searching from or NULL, the node
 827 *              you pass will not be searched, only the next one
 828 *              will; typically, you pass what the previous call
 829 *              returned. of_node_put() will be called on it
 830 *      @name:  The name string to match against
 831 *
 832 *      Returns a node pointer with refcount incremented, use
 833 *      of_node_put() on it when done.
 834 */
 835struct device_node *of_find_node_by_name(struct device_node *from,
 836        const char *name)
 837{
 838        struct device_node *np;
 839        unsigned long flags;
 840
 841        raw_spin_lock_irqsave(&devtree_lock, flags);
 842        for_each_of_allnodes_from(from, np)
 843                if (np->name && (of_node_cmp(np->name, name) == 0)
 844                    && of_node_get(np))
 845                        break;
 846        of_node_put(from);
 847        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 848        return np;
 849}
 850EXPORT_SYMBOL(of_find_node_by_name);
 851
 852/**
 853 *      of_find_node_by_type - Find a node by its "device_type" property
 854 *      @from:  The node to start searching from, or NULL to start searching
 855 *              the entire device tree. The node you pass will not be
 856 *              searched, only the next one will; typically, you pass
 857 *              what the previous call returned. of_node_put() will be
 858 *              called on from for you.
 859 *      @type:  The type string to match against
 860 *
 861 *      Returns a node pointer with refcount incremented, use
 862 *      of_node_put() on it when done.
 863 */
 864struct device_node *of_find_node_by_type(struct device_node *from,
 865        const char *type)
 866{
 867        struct device_node *np;
 868        unsigned long flags;
 869
 870        raw_spin_lock_irqsave(&devtree_lock, flags);
 871        for_each_of_allnodes_from(from, np)
 872                if (np->type && (of_node_cmp(np->type, type) == 0)
 873                    && of_node_get(np))
 874                        break;
 875        of_node_put(from);
 876        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 877        return np;
 878}
 879EXPORT_SYMBOL(of_find_node_by_type);
 880
 881/**
 882 *      of_find_compatible_node - Find a node based on type and one of the
 883 *                                tokens in its "compatible" property
 884 *      @from:          The node to start searching from or NULL, the node
 885 *                      you pass will not be searched, only the next one
 886 *                      will; typically, you pass what the previous call
 887 *                      returned. of_node_put() will be called on it
 888 *      @type:          The type string to match "device_type" or NULL to ignore
 889 *      @compatible:    The string to match to one of the tokens in the device
 890 *                      "compatible" list.
 891 *
 892 *      Returns a node pointer with refcount incremented, use
 893 *      of_node_put() on it when done.
 894 */
 895struct device_node *of_find_compatible_node(struct device_node *from,
 896        const char *type, const char *compatible)
 897{
 898        struct device_node *np;
 899        unsigned long flags;
 900
 901        raw_spin_lock_irqsave(&devtree_lock, flags);
 902        for_each_of_allnodes_from(from, np)
 903                if (__of_device_is_compatible(np, compatible, type, NULL) &&
 904                    of_node_get(np))
 905                        break;
 906        of_node_put(from);
 907        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 908        return np;
 909}
 910EXPORT_SYMBOL(of_find_compatible_node);
 911
 912/**
 913 *      of_find_node_with_property - Find a node which has a property with
 914 *                                   the given name.
 915 *      @from:          The node to start searching from or NULL, the node
 916 *                      you pass will not be searched, only the next one
 917 *                      will; typically, you pass what the previous call
 918 *                      returned. of_node_put() will be called on it
 919 *      @prop_name:     The name of the property to look for.
 920 *
 921 *      Returns a node pointer with refcount incremented, use
 922 *      of_node_put() on it when done.
 923 */
 924struct device_node *of_find_node_with_property(struct device_node *from,
 925        const char *prop_name)
 926{
 927        struct device_node *np;
 928        struct property *pp;
 929        unsigned long flags;
 930
 931        raw_spin_lock_irqsave(&devtree_lock, flags);
 932        for_each_of_allnodes_from(from, np) {
 933                for (pp = np->properties; pp; pp = pp->next) {
 934                        if (of_prop_cmp(pp->name, prop_name) == 0) {
 935                                of_node_get(np);
 936                                goto out;
 937                        }
 938                }
 939        }
 940out:
 941        of_node_put(from);
 942        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 943        return np;
 944}
 945EXPORT_SYMBOL(of_find_node_with_property);
 946
 947static
 948const struct of_device_id *__of_match_node(const struct of_device_id *matches,
 949                                           const struct device_node *node)
 950{
 951        const struct of_device_id *best_match = NULL;
 952        int score, best_score = 0;
 953
 954        if (!matches)
 955                return NULL;
 956
 957        for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
 958                score = __of_device_is_compatible(node, matches->compatible,
 959                                                  matches->type, matches->name);
 960                if (score > best_score) {
 961                        best_match = matches;
 962                        best_score = score;
 963                }
 964        }
 965
 966        return best_match;
 967}
 968
 969/**
 970 * of_match_node - Tell if a device_node has a matching of_match structure
 971 *      @matches:       array of of device match structures to search in
 972 *      @node:          the of device structure to match against
 973 *
 974 *      Low level utility function used by device matching.
 975 */
 976const struct of_device_id *of_match_node(const struct of_device_id *matches,
 977                                         const struct device_node *node)
 978{
 979        const struct of_device_id *match;
 980        unsigned long flags;
 981
 982        raw_spin_lock_irqsave(&devtree_lock, flags);
 983        match = __of_match_node(matches, node);
 984        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 985        return match;
 986}
 987EXPORT_SYMBOL(of_match_node);
 988
 989/**
 990 *      of_find_matching_node_and_match - Find a node based on an of_device_id
 991 *                                        match table.
 992 *      @from:          The node to start searching from or NULL, the node
 993 *                      you pass will not be searched, only the next one
 994 *                      will; typically, you pass what the previous call
 995 *                      returned. of_node_put() will be called on it
 996 *      @matches:       array of of device match structures to search in
 997 *      @match          Updated to point at the matches entry which matched
 998 *
 999 *      Returns a node pointer with refcount incremented, use
1000 *      of_node_put() on it when done.
1001 */
1002struct device_node *of_find_matching_node_and_match(struct device_node *from,
1003                                        const struct of_device_id *matches,
1004                                        const struct of_device_id **match)
1005{
1006        struct device_node *np;
1007        const struct of_device_id *m;
1008        unsigned long flags;
1009
1010        if (match)
1011                *match = NULL;
1012
1013        raw_spin_lock_irqsave(&devtree_lock, flags);
1014        for_each_of_allnodes_from(from, np) {
1015                m = __of_match_node(matches, np);
1016                if (m && of_node_get(np)) {
1017                        if (match)
1018                                *match = m;
1019                        break;
1020                }
1021        }
1022        of_node_put(from);
1023        raw_spin_unlock_irqrestore(&devtree_lock, flags);
1024        return np;
1025}
1026EXPORT_SYMBOL(of_find_matching_node_and_match);
1027
1028/**
1029 * of_modalias_node - Lookup appropriate modalias for a device node
1030 * @node:       pointer to a device tree node
1031 * @modalias:   Pointer to buffer that modalias value will be copied into
1032 * @len:        Length of modalias value
1033 *
1034 * Based on the value of the compatible property, this routine will attempt
1035 * to choose an appropriate modalias value for a particular device tree node.
1036 * It does this by stripping the manufacturer prefix (as delimited by a ',')
1037 * from the first entry in the compatible list property.
1038 *
1039 * This routine returns 0 on success, <0 on failure.
1040 */
1041int of_modalias_node(struct device_node *node, char *modalias, int len)
1042{
1043        const char *compatible, *p;
1044        int cplen;
1045
1046        compatible = of_get_property(node, "compatible", &cplen);
1047        if (!compatible || strlen(compatible) > cplen)
1048                return -ENODEV;
1049        p = strchr(compatible, ',');
1050        strlcpy(modalias, p ? p + 1 : compatible, len);
1051        return 0;
1052}
1053EXPORT_SYMBOL_GPL(of_modalias_node);
1054
1055/**
1056 * of_find_node_by_phandle - Find a node given a phandle
1057 * @handle:     phandle of the node to find
1058 *
1059 * Returns a node pointer with refcount incremented, use
1060 * of_node_put() on it when done.
1061 */
1062struct device_node *of_find_node_by_phandle(phandle handle)
1063{
1064        struct device_node *np;
1065        unsigned long flags;
1066
1067        if (!handle)
1068                return NULL;
1069
1070        raw_spin_lock_irqsave(&devtree_lock, flags);
1071        for_each_of_allnodes(np)
1072                if (np->phandle == handle)
1073                        break;
1074        of_node_get(np);
1075        raw_spin_unlock_irqrestore(&devtree_lock, flags);
1076        return np;
1077}
1078EXPORT_SYMBOL(of_find_node_by_phandle);
1079
1080/**
1081 * of_property_count_elems_of_size - Count the number of elements in a property
1082 *
1083 * @np:         device node from which the property value is to be read.
1084 * @propname:   name of the property to be searched.
1085 * @elem_size:  size of the individual element
1086 *
1087 * Search for a property in a device node and count the number of elements of
1088 * size elem_size in it. Returns number of elements on sucess, -EINVAL if the
1089 * property does not exist or its length does not match a multiple of elem_size
1090 * and -ENODATA if the property does not have a value.
1091 */
1092int of_property_count_elems_of_size(const struct device_node *np,
1093                                const char *propname, int elem_size)
1094{
1095        struct property *prop = of_find_property(np, propname, NULL);
1096
1097        if (!prop)
1098                return -EINVAL;
1099        if (!prop->value)
1100                return -ENODATA;
1101
1102        if (prop->length % elem_size != 0) {
1103                pr_err("size of %s in node %s is not a multiple of %d\n",
1104                       propname, np->full_name, elem_size);
1105                return -EINVAL;
1106        }
1107
1108        return prop->length / elem_size;
1109}
1110EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
1111
1112/**
1113 * of_find_property_value_of_size
1114 *
1115 * @np:         device node from which the property value is to be read.
1116 * @propname:   name of the property to be searched.
1117 * @len:        requested length of property value
1118 *
1119 * Search for a property in a device node and valid the requested size.
1120 * Returns the property value on success, -EINVAL if the property does not
1121 *  exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
1122 * property data isn't large enough.
1123 *
1124 */
1125static void *of_find_property_value_of_size(const struct device_node *np,
1126                        const char *propname, u32 len)
1127{
1128        struct property *prop = of_find_property(np, propname, NULL);
1129
1130        if (!prop)
1131                return ERR_PTR(-EINVAL);
1132        if (!prop->value)
1133                return ERR_PTR(-ENODATA);
1134        if (len > prop->length)
1135                return ERR_PTR(-EOVERFLOW);
1136
1137        return prop->value;
1138}
1139
1140/**
1141 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
1142 *
1143 * @np:         device node from which the property value is to be read.
1144 * @propname:   name of the property to be searched.
1145 * @index:      index of the u32 in the list of values
1146 * @out_value:  pointer to return value, modified only if no error.
1147 *
1148 * Search for a property in a device node and read nth 32-bit value from
1149 * it. Returns 0 on success, -EINVAL if the property does not exist,
1150 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1151 * property data isn't large enough.
1152 *
1153 * The out_value is modified only if a valid u32 value can be decoded.
1154 */
1155int of_property_read_u32_index(const struct device_node *np,
1156                                       const char *propname,
1157                                       u32 index, u32 *out_value)
1158{
1159        const u32 *val = of_find_property_value_of_size(np, propname,
1160                                        ((index + 1) * sizeof(*out_value)));
1161
1162        if (IS_ERR(val))
1163                return PTR_ERR(val);
1164
1165        *out_value = be32_to_cpup(((__be32 *)val) + index);
1166        return 0;
1167}
1168EXPORT_SYMBOL_GPL(of_property_read_u32_index);
1169
1170/**
1171 * of_property_read_u8_array - Find and read an array of u8 from a property.
1172 *
1173 * @np:         device node from which the property value is to be read.
1174 * @propname:   name of the property to be searched.
1175 * @out_values: pointer to return value, modified only if return value is 0.
1176 * @sz:         number of array elements to read
1177 *
1178 * Search for a property in a device node and read 8-bit value(s) from
1179 * it. Returns 0 on success, -EINVAL if the property does not exist,
1180 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1181 * property data isn't large enough.
1182 *
1183 * dts entry of array should be like:
1184 *      property = /bits/ 8 <0x50 0x60 0x70>;
1185 *
1186 * The out_values is modified only if a valid u8 value can be decoded.
1187 */
1188int of_property_read_u8_array(const struct device_node *np,
1189                        const char *propname, u8 *out_values, size_t sz)
1190{
1191        const u8 *val = of_find_property_value_of_size(np, propname,
1192                                                (sz * sizeof(*out_values)));
1193
1194        if (IS_ERR(val))
1195                return PTR_ERR(val);
1196
1197        while (sz--)
1198                *out_values++ = *val++;
1199        return 0;
1200}
1201EXPORT_SYMBOL_GPL(of_property_read_u8_array);
1202
1203/**
1204 * of_property_read_u16_array - Find and read an array of u16 from a property.
1205 *
1206 * @np:         device node from which the property value is to be read.
1207 * @propname:   name of the property to be searched.
1208 * @out_values: pointer to return value, modified only if return value is 0.
1209 * @sz:         number of array elements to read
1210 *
1211 * Search for a property in a device node and read 16-bit value(s) from
1212 * it. Returns 0 on success, -EINVAL if the property does not exist,
1213 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1214 * property data isn't large enough.
1215 *
1216 * dts entry of array should be like:
1217 *      property = /bits/ 16 <0x5000 0x6000 0x7000>;
1218 *
1219 * The out_values is modified only if a valid u16 value can be decoded.
1220 */
1221int of_property_read_u16_array(const struct device_node *np,
1222                        const char *propname, u16 *out_values, size_t sz)
1223{
1224        const __be16 *val = of_find_property_value_of_size(np, propname,
1225                                                (sz * sizeof(*out_values)));
1226
1227        if (IS_ERR(val))
1228                return PTR_ERR(val);
1229
1230        while (sz--)
1231                *out_values++ = be16_to_cpup(val++);
1232        return 0;
1233}
1234EXPORT_SYMBOL_GPL(of_property_read_u16_array);
1235
1236/**
1237 * of_property_read_u32_array - Find and read an array of 32 bit integers
1238 * from a property.
1239 *
1240 * @np:         device node from which the property value is to be read.
1241 * @propname:   name of the property to be searched.
1242 * @out_values: pointer to return value, modified only if return value is 0.
1243 * @sz:         number of array elements to read
1244 *
1245 * Search for a property in a device node and read 32-bit value(s) from
1246 * it. Returns 0 on success, -EINVAL if the property does not exist,
1247 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1248 * property data isn't large enough.
1249 *
1250 * The out_values is modified only if a valid u32 value can be decoded.
1251 */
1252int of_property_read_u32_array(const struct device_node *np,
1253                               const char *propname, u32 *out_values,
1254                               size_t sz)
1255{
1256        const __be32 *val = of_find_property_value_of_size(np, propname,
1257                                                (sz * sizeof(*out_values)));
1258
1259        if (IS_ERR(val))
1260                return PTR_ERR(val);
1261
1262        while (sz--)
1263                *out_values++ = be32_to_cpup(val++);
1264        return 0;
1265}
1266EXPORT_SYMBOL_GPL(of_property_read_u32_array);
1267
1268/**
1269 * of_property_read_u64 - Find and read a 64 bit integer from a property
1270 * @np:         device node from which the property value is to be read.
1271 * @propname:   name of the property to be searched.
1272 * @out_value:  pointer to return value, modified only if return value is 0.
1273 *
1274 * Search for a property in a device node and read a 64-bit value from
1275 * it. Returns 0 on success, -EINVAL if the property does not exist,
1276 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1277 * property data isn't large enough.
1278 *
1279 * The out_value is modified only if a valid u64 value can be decoded.
1280 */
1281int of_property_read_u64(const struct device_node *np, const char *propname,
1282                         u64 *out_value)
1283{
1284        const __be32 *val = of_find_property_value_of_size(np, propname,
1285                                                sizeof(*out_value));
1286
1287        if (IS_ERR(val))
1288                return PTR_ERR(val);
1289
1290        *out_value = of_read_number(val, 2);
1291        return 0;
1292}
1293EXPORT_SYMBOL_GPL(of_property_read_u64);
1294
1295/**
1296 * of_property_read_u64_array - Find and read an array of 64 bit integers
1297 * from a property.
1298 *
1299 * @np:         device node from which the property value is to be read.
1300 * @propname:   name of the property to be searched.
1301 * @out_values: pointer to return value, modified only if return value is 0.
1302 * @sz:         number of array elements to read
1303 *
1304 * Search for a property in a device node and read 64-bit value(s) from
1305 * it. Returns 0 on success, -EINVAL if the property does not exist,
1306 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1307 * property data isn't large enough.
1308 *
1309 * The out_values is modified only if a valid u64 value can be decoded.
1310 */
1311int of_property_read_u64_array(const struct device_node *np,
1312                               const char *propname, u64 *out_values,
1313                               size_t sz)
1314{
1315        const __be32 *val = of_find_property_value_of_size(np, propname,
1316                                                (sz * sizeof(*out_values)));
1317
1318        if (IS_ERR(val))
1319                return PTR_ERR(val);
1320
1321        while (sz--) {
1322                *out_values++ = of_read_number(val, 2);
1323                val += 2;
1324        }
1325        return 0;
1326}
1327EXPORT_SYMBOL_GPL(of_property_read_u64_array);
1328
1329/**
1330 * of_property_read_string - Find and read a string from a property
1331 * @np:         device node from which the property value is to be read.
1332 * @propname:   name of the property to be searched.
1333 * @out_string: pointer to null terminated return string, modified only if
1334 *              return value is 0.
1335 *
1336 * Search for a property in a device tree node and retrieve a null
1337 * terminated string value (pointer to data, not a copy). Returns 0 on
1338 * success, -EINVAL if the property does not exist, -ENODATA if property
1339 * does not have a value, and -EILSEQ if the string is not null-terminated
1340 * within the length of the property data.
1341 *
1342 * The out_string pointer is modified only if a valid string can be decoded.
1343 */
1344int of_property_read_string(const struct device_node *np, const char *propname,
1345                                const char **out_string)
1346{
1347        const struct property *prop = of_find_property(np, propname, NULL);
1348        if (!prop)
1349                return -EINVAL;
1350        if (!prop->value)
1351                return -ENODATA;
1352        if (strnlen(prop->value, prop->length) >= prop->length)
1353                return -EILSEQ;
1354        *out_string = prop->value;
1355        return 0;
1356}
1357EXPORT_SYMBOL_GPL(of_property_read_string);
1358
1359/**
1360 * of_property_match_string() - Find string in a list and return index
1361 * @np: pointer to node containing string list property
1362 * @propname: string list property name
1363 * @string: pointer to string to search for in string list
1364 *
1365 * This function searches a string list property and returns the index
1366 * of a specific string value.
1367 */
1368int of_property_match_string(const struct device_node *np, const char *propname,
1369                             const char *string)
1370{
1371        const struct property *prop = of_find_property(np, propname, NULL);
1372        size_t l;
1373        int i;
1374        const char *p, *end;
1375
1376        if (!prop)
1377                return -EINVAL;
1378        if (!prop->value)
1379                return -ENODATA;
1380
1381        p = prop->value;
1382        end = p + prop->length;
1383
1384        for (i = 0; p < end; i++, p += l) {
1385                l = strnlen(p, end - p) + 1;
1386                if (p + l > end)
1387                        return -EILSEQ;
1388                pr_debug("comparing %s with %s\n", string, p);
1389                if (strcmp(string, p) == 0)
1390                        return i; /* Found it; return index */
1391        }
1392        return -ENODATA;
1393}
1394EXPORT_SYMBOL_GPL(of_property_match_string);
1395
1396/**
1397 * of_property_read_string_helper() - Utility helper for parsing string properties
1398 * @np:         device node from which the property value is to be read.
1399 * @propname:   name of the property to be searched.
1400 * @out_strs:   output array of string pointers.
1401 * @sz:         number of array elements to read.
1402 * @skip:       Number of strings to skip over at beginning of list.
1403 *
1404 * Don't call this function directly. It is a utility helper for the
1405 * of_property_read_string*() family of functions.
1406 */
1407int of_property_read_string_helper(const struct device_node *np,
1408                                   const char *propname, const char **out_strs,
1409                                   size_t sz, int skip)
1410{
1411        const struct property *prop = of_find_property(np, propname, NULL);
1412        int l = 0, i = 0;
1413        const char *p, *end;
1414
1415        if (!prop)
1416                return -EINVAL;
1417        if (!prop->value)
1418                return -ENODATA;
1419        p = prop->value;
1420        end = p + prop->length;
1421
1422        for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
1423                l = strnlen(p, end - p) + 1;
1424                if (p + l > end)
1425                        return -EILSEQ;
1426                if (out_strs && i >= skip)
1427                        *out_strs++ = p;
1428        }
1429        i -= skip;
1430        return i <= 0 ? -ENODATA : i;
1431}
1432EXPORT_SYMBOL_GPL(of_property_read_string_helper);
1433
1434void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1435{
1436        int i;
1437        printk("%s %s", msg, of_node_full_name(args->np));
1438        for (i = 0; i < args->args_count; i++)
1439                printk(i ? ",%08x" : ":%08x", args->args[i]);
1440        printk("\n");
1441}
1442
1443static int __of_parse_phandle_with_args(const struct device_node *np,
1444                                        const char *list_name,
1445                                        const char *cells_name,
1446                                        int cell_count, int index,
1447                                        struct of_phandle_args *out_args)
1448{
1449        const __be32 *list, *list_end;
1450        int rc = 0, size, cur_index = 0;
1451        uint32_t count = 0;
1452        struct device_node *node = NULL;
1453        phandle phandle;
1454
1455        /* Retrieve the phandle list property */
1456        list = of_get_property(np, list_name, &size);
1457        if (!list)
1458                return -ENOENT;
1459        list_end = list + size / sizeof(*list);
1460
1461        /* Loop over the phandles until all the requested entry is found */
1462        while (list < list_end) {
1463                rc = -EINVAL;
1464                count = 0;
1465
1466                /*
1467                 * If phandle is 0, then it is an empty entry with no
1468                 * arguments.  Skip forward to the next entry.
1469                 */
1470                phandle = be32_to_cpup(list++);
1471                if (phandle) {
1472                        /*
1473                         * Find the provider node and parse the #*-cells
1474                         * property to determine the argument length.
1475                         *
1476                         * This is not needed if the cell count is hard-coded
1477                         * (i.e. cells_name not set, but cell_count is set),
1478                         * except when we're going to return the found node
1479                         * below.
1480                         */
1481                        if (cells_name || cur_index == index) {
1482                                node = of_find_node_by_phandle(phandle);
1483                                if (!node) {
1484                                        pr_err("%s: could not find phandle\n",
1485                                                np->full_name);
1486                                        goto err;
1487                                }
1488                        }
1489
1490                        if (cells_name) {
1491                                if (of_property_read_u32(node, cells_name,
1492                                                         &count)) {
1493                                        pr_err("%s: could not get %s for %s\n",
1494                                                np->full_name, cells_name,
1495                                                node->full_name);
1496                                        goto err;
1497                                }
1498                        } else {
1499                                count = cell_count;
1500                        }
1501
1502                        /*
1503                         * Make sure that the arguments actually fit in the
1504                         * remaining property data length
1505                         */
1506                        if (list + count > list_end) {
1507                                pr_err("%s: arguments longer than property\n",
1508                                         np->full_name);
1509                                goto err;
1510                        }
1511                }
1512
1513                /*
1514                 * All of the error cases above bail out of the loop, so at
1515                 * this point, the parsing is successful. If the requested
1516                 * index matches, then fill the out_args structure and return,
1517                 * or return -ENOENT for an empty entry.
1518                 */
1519                rc = -ENOENT;
1520                if (cur_index == index) {
1521                        if (!phandle)
1522                                goto err;
1523
1524                        if (out_args) {
1525                                int i;
1526                                if (WARN_ON(count > MAX_PHANDLE_ARGS))
1527                                        count = MAX_PHANDLE_ARGS;
1528                                out_args->np = node;
1529                                out_args->args_count = count;
1530                                for (i = 0; i < count; i++)
1531                                        out_args->args[i] = be32_to_cpup(list++);
1532                        } else {
1533                                of_node_put(node);
1534                        }
1535
1536                        /* Found it! return success */
1537                        return 0;
1538                }
1539
1540                of_node_put(node);
1541                node = NULL;
1542                list += count;
1543                cur_index++;
1544        }
1545
1546        /*
1547         * Unlock node before returning result; will be one of:
1548         * -ENOENT : index is for empty phandle
1549         * -EINVAL : parsing error on data
1550         * [1..n]  : Number of phandle (count mode; when index = -1)
1551         */
1552        rc = index < 0 ? cur_index : -ENOENT;
1553 err:
1554        if (node)
1555                of_node_put(node);
1556        return rc;
1557}
1558
1559/**
1560 * of_parse_phandle - Resolve a phandle property to a device_node pointer
1561 * @np: Pointer to device node holding phandle property
1562 * @phandle_name: Name of property holding a phandle value
1563 * @index: For properties holding a table of phandles, this is the index into
1564 *         the table
1565 *
1566 * Returns the device_node pointer with refcount incremented.  Use
1567 * of_node_put() on it when done.
1568 */
1569struct device_node *of_parse_phandle(const struct device_node *np,
1570                                     const char *phandle_name, int index)
1571{
1572        struct of_phandle_args args;
1573
1574        if (index < 0)
1575                return NULL;
1576
1577        if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1578                                         index, &args))
1579                return NULL;
1580
1581        return args.np;
1582}
1583EXPORT_SYMBOL(of_parse_phandle);
1584
1585/**
1586 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1587 * @np:         pointer to a device tree node containing a list
1588 * @list_name:  property name that contains a list
1589 * @cells_name: property name that specifies phandles' arguments count
1590 * @index:      index of a phandle to parse out
1591 * @out_args:   optional pointer to output arguments structure (will be filled)
1592 *
1593 * This function is useful to parse lists of phandles and their arguments.
1594 * Returns 0 on success and fills out_args, on error returns appropriate
1595 * errno value.
1596 *
1597 * Caller is responsible to call of_node_put() on the returned out_args->np
1598 * pointer.
1599 *
1600 * Example:
1601 *
1602 * phandle1: node1 {
1603 *      #list-cells = <2>;
1604 * }
1605 *
1606 * phandle2: node2 {
1607 *      #list-cells = <1>;
1608 * }
1609 *
1610 * node3 {
1611 *      list = <&phandle1 1 2 &phandle2 3>;
1612 * }
1613 *
1614 * To get a device_node of the `node2' node you may call this:
1615 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1616 */
1617int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1618                                const char *cells_name, int index,
1619                                struct of_phandle_args *out_args)
1620{
1621        if (index < 0)
1622                return -EINVAL;
1623        return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1624                                            index, out_args);
1625}
1626EXPORT_SYMBOL(of_parse_phandle_with_args);
1627
1628/**
1629 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1630 * @np:         pointer to a device tree node containing a list
1631 * @list_name:  property name that contains a list
1632 * @cell_count: number of argument cells following the phandle
1633 * @index:      index of a phandle to parse out
1634 * @out_args:   optional pointer to output arguments structure (will be filled)
1635 *
1636 * This function is useful to parse lists of phandles and their arguments.
1637 * Returns 0 on success and fills out_args, on error returns appropriate
1638 * errno value.
1639 *
1640 * Caller is responsible to call of_node_put() on the returned out_args->np
1641 * pointer.
1642 *
1643 * Example:
1644 *
1645 * phandle1: node1 {
1646 * }
1647 *
1648 * phandle2: node2 {
1649 * }
1650 *
1651 * node3 {
1652 *      list = <&phandle1 0 2 &phandle2 2 3>;
1653 * }
1654 *
1655 * To get a device_node of the `node2' node you may call this:
1656 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1657 */
1658int of_parse_phandle_with_fixed_args(const struct device_node *np,
1659                                const char *list_name, int cell_count,
1660                                int index, struct of_phandle_args *out_args)
1661{
1662        if (index < 0)
1663                return -EINVAL;
1664        return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1665                                           index, out_args);
1666}
1667EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1668
1669/**
1670 * of_count_phandle_with_args() - Find the number of phandles references in a property
1671 * @np:         pointer to a device tree node containing a list
1672 * @list_name:  property name that contains a list
1673 * @cells_name: property name that specifies phandles' arguments count
1674 *
1675 * Returns the number of phandle + argument tuples within a property. It
1676 * is a typical pattern to encode a list of phandle and variable
1677 * arguments into a single property. The number of arguments is encoded
1678 * by a property in the phandle-target node. For example, a gpios
1679 * property would contain a list of GPIO specifies consisting of a
1680 * phandle and 1 or more arguments. The number of arguments are
1681 * determined by the #gpio-cells property in the node pointed to by the
1682 * phandle.
1683 */
1684int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1685                                const char *cells_name)
1686{
1687        return __of_parse_phandle_with_args(np, list_name, cells_name, 0, -1,
1688                                            NULL);
1689}
1690EXPORT_SYMBOL(of_count_phandle_with_args);
1691
1692/**
1693 * __of_add_property - Add a property to a node without lock operations
1694 */
1695int __of_add_property(struct device_node *np, struct property *prop)
1696{
1697        struct property **next;
1698
1699        prop->next = NULL;
1700        next = &np->properties;
1701        while (*next) {
1702                if (strcmp(prop->name, (*next)->name) == 0)
1703                        /* duplicate ! don't insert it */
1704                        return -EEXIST;
1705
1706                next = &(*next)->next;
1707        }
1708        *next = prop;
1709
1710        return 0;
1711}
1712
1713/**
1714 * of_add_property - Add a property to a node
1715 */
1716int of_add_property(struct device_node *np, struct property *prop)
1717{
1718        unsigned long flags;
1719        int rc;
1720
1721        mutex_lock(&of_mutex);
1722
1723        raw_spin_lock_irqsave(&devtree_lock, flags);
1724        rc = __of_add_property(np, prop);
1725        raw_spin_unlock_irqrestore(&devtree_lock, flags);
1726
1727        if (!rc)
1728                __of_add_property_sysfs(np, prop);
1729
1730        mutex_unlock(&of_mutex);
1731
1732        if (!rc)
1733                of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1734
1735        return rc;
1736}
1737
1738int __of_remove_property(struct device_node *np, struct property *prop)
1739{
1740        struct property **next;
1741
1742        for (next = &np->properties; *next; next = &(*next)->next) {
1743                if (*next == prop)
1744                        break;
1745        }
1746        if (*next == NULL)
1747                return -ENODEV;
1748
1749        /* found the node */
1750        *next = prop->next;
1751        prop->next = np->deadprops;
1752        np->deadprops = prop;
1753
1754        return 0;
1755}
1756
1757void __of_remove_property_sysfs(struct device_node *np, struct property *prop)
1758{
1759        if (!IS_ENABLED(CONFIG_SYSFS))
1760                return;
1761
1762        /* at early boot, bail here and defer setup to of_init() */
1763        if (of_kset && of_node_is_attached(np))
1764                sysfs_remove_bin_file(&np->kobj, &prop->attr);
1765}
1766
1767/**
1768 * of_remove_property - Remove a property from a node.
1769 *
1770 * Note that we don't actually remove it, since we have given out
1771 * who-knows-how-many pointers to the data using get-property.
1772 * Instead we just move the property to the "dead properties"
1773 * list, so it won't be found any more.
1774 */
1775int of_remove_property(struct device_node *np, struct property *prop)
1776{
1777        unsigned long flags;
1778        int rc;
1779
1780        mutex_lock(&of_mutex);
1781
1782        raw_spin_lock_irqsave(&devtree_lock, flags);
1783        rc = __of_remove_property(np, prop);
1784        raw_spin_unlock_irqrestore(&devtree_lock, flags);
1785
1786        if (!rc)
1787                __of_remove_property_sysfs(np, prop);
1788
1789        mutex_unlock(&of_mutex);
1790
1791        if (!rc)
1792                of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1793
1794        return rc;
1795}
1796
1797int __of_update_property(struct device_node *np, struct property *newprop,
1798                struct property **oldpropp)
1799{
1800        struct property **next, *oldprop;
1801
1802        for (next = &np->properties; *next; next = &(*next)->next) {
1803                if (of_prop_cmp((*next)->name, newprop->name) == 0)
1804                        break;
1805        }
1806        *oldpropp = oldprop = *next;
1807
1808        if (oldprop) {
1809                /* replace the node */
1810                newprop->next = oldprop->next;
1811                *next = newprop;
1812                oldprop->next = np->deadprops;
1813                np->deadprops = oldprop;
1814        } else {
1815                /* new node */
1816                newprop->next = NULL;
1817                *next = newprop;
1818        }
1819
1820        return 0;
1821}
1822
1823void __of_update_property_sysfs(struct device_node *np, struct property *newprop,
1824                struct property *oldprop)
1825{
1826        if (!IS_ENABLED(CONFIG_SYSFS))
1827                return;
1828
1829        /* At early boot, bail out and defer setup to of_init() */
1830        if (!of_kset)
1831                return;
1832
1833        if (oldprop)
1834                sysfs_remove_bin_file(&np->kobj, &oldprop->attr);
1835        __of_add_property_sysfs(np, newprop);
1836}
1837
1838/*
1839 * of_update_property - Update a property in a node, if the property does
1840 * not exist, add it.
1841 *
1842 * Note that we don't actually remove it, since we have given out
1843 * who-knows-how-many pointers to the data using get-property.
1844 * Instead we just move the property to the "dead properties" list,
1845 * and add the new property to the property list
1846 */
1847int of_update_property(struct device_node *np, struct property *newprop)
1848{
1849        struct property *oldprop;
1850        unsigned long flags;
1851        int rc;
1852
1853        if (!newprop->name)
1854                return -EINVAL;
1855
1856        mutex_lock(&of_mutex);
1857
1858        raw_spin_lock_irqsave(&devtree_lock, flags);
1859        rc = __of_update_property(np, newprop, &oldprop);
1860        raw_spin_unlock_irqrestore(&devtree_lock, flags);
1861
1862        if (!rc)
1863                __of_update_property_sysfs(np, newprop, oldprop);
1864
1865        mutex_unlock(&of_mutex);
1866
1867        if (!rc)
1868                of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1869
1870        return rc;
1871}
1872
1873static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1874                         int id, const char *stem, int stem_len)
1875{
1876        ap->np = np;
1877        ap->id = id;
1878        strncpy(ap->stem, stem, stem_len);
1879        ap->stem[stem_len] = 0;
1880        list_add_tail(&ap->link, &aliases_lookup);
1881        pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
1882                 ap->alias, ap->stem, ap->id, of_node_full_name(np));
1883}
1884
1885/**
1886 * of_alias_scan - Scan all properties of the 'aliases' node
1887 *
1888 * The function scans all the properties of the 'aliases' node and populates
1889 * the global lookup table with the properties.  It returns the
1890 * number of alias properties found, or an error code in case of failure.
1891 *
1892 * @dt_alloc:   An allocator that provides a virtual address to memory
1893 *              for storing the resulting tree
1894 */
1895void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1896{
1897        struct property *pp;
1898
1899        of_aliases = of_find_node_by_path("/aliases");
1900        of_chosen = of_find_node_by_path("/chosen");
1901        if (of_chosen == NULL)
1902                of_chosen = of_find_node_by_path("/chosen@0");
1903
1904        if (of_chosen) {
1905                /* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1906                const char *name = of_get_property(of_chosen, "stdout-path", NULL);
1907                if (!name)
1908                        name = of_get_property(of_chosen, "linux,stdout-path", NULL);
1909                if (IS_ENABLED(CONFIG_PPC) && !name)
1910                        name = of_get_property(of_aliases, "stdout", NULL);
1911                if (name)
1912                        of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1913        }
1914
1915        if (!of_aliases)
1916                return;
1917
1918        for_each_property_of_node(of_aliases, pp) {
1919                const char *start = pp->name;
1920                const char *end = start + strlen(start);
1921                struct device_node *np;
1922                struct alias_prop *ap;
1923                int id, len;
1924
1925                /* Skip those we do not want to proceed */
1926                if (!strcmp(pp->name, "name") ||
1927                    !strcmp(pp->name, "phandle") ||
1928                    !strcmp(pp->name, "linux,phandle"))
1929                        continue;
1930
1931                np = of_find_node_by_path(pp->value);
1932                if (!np)
1933                        continue;
1934
1935                /* walk the alias backwards to extract the id and work out
1936                 * the 'stem' string */
1937                while (isdigit(*(end-1)) && end > start)
1938                        end--;
1939                len = end - start;
1940
1941                if (kstrtoint(end, 10, &id) < 0)
1942                        continue;
1943
1944                /* Allocate an alias_prop with enough space for the stem */
1945                ap = dt_alloc(sizeof(*ap) + len + 1, 4);
1946                if (!ap)
1947                        continue;
1948                memset(ap, 0, sizeof(*ap) + len + 1);
1949                ap->alias = start;
1950                of_alias_add(ap, np, id, start, len);
1951        }
1952}
1953
1954/**
1955 * of_alias_get_id - Get alias id for the given device_node
1956 * @np:         Pointer to the given device_node
1957 * @stem:       Alias stem of the given device_node
1958 *
1959 * The function travels the lookup table to get the alias id for the given
1960 * device_node and alias stem.  It returns the alias id if found.
1961 */
1962int of_alias_get_id(struct device_node *np, const char *stem)
1963{
1964        struct alias_prop *app;
1965        int id = -ENODEV;
1966
1967        mutex_lock(&of_mutex);
1968        list_for_each_entry(app, &aliases_lookup, link) {
1969                if (strcmp(app->stem, stem) != 0)
1970                        continue;
1971
1972                if (np == app->np) {
1973                        id = app->id;
1974                        break;
1975                }
1976        }
1977        mutex_unlock(&of_mutex);
1978
1979        return id;
1980}
1981EXPORT_SYMBOL_GPL(of_alias_get_id);
1982
1983/**
1984 * of_alias_get_highest_id - Get highest alias id for the given stem
1985 * @stem:       Alias stem to be examined
1986 *
1987 * The function travels the lookup table to get the highest alias id for the
1988 * given alias stem.  It returns the alias id if found.
1989 */
1990int of_alias_get_highest_id(const char *stem)
1991{
1992        struct alias_prop *app;
1993        int id = -ENODEV;
1994
1995        mutex_lock(&of_mutex);
1996        list_for_each_entry(app, &aliases_lookup, link) {
1997                if (strcmp(app->stem, stem) != 0)
1998                        continue;
1999
2000                if (app->id > id)
2001                        id = app->id;
2002        }
2003        mutex_unlock(&of_mutex);
2004
2005        return id;
2006}
2007EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
2008
2009const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
2010                               u32 *pu)
2011{
2012        const void *curv = cur;
2013
2014        if (!prop)
2015                return NULL;
2016
2017        if (!cur) {
2018                curv = prop->value;
2019                goto out_val;
2020        }
2021
2022        curv += sizeof(*cur);
2023        if (curv >= prop->value + prop->length)
2024                return NULL;
2025
2026out_val:
2027        *pu = be32_to_cpup(curv);
2028        return curv;
2029}
2030EXPORT_SYMBOL_GPL(of_prop_next_u32);
2031
2032const char *of_prop_next_string(struct property *prop, const char *cur)
2033{
2034        const void *curv = cur;
2035
2036        if (!prop)
2037                return NULL;
2038
2039        if (!cur)
2040                return prop->value;
2041
2042        curv += strlen(cur) + 1;
2043        if (curv >= prop->value + prop->length)
2044                return NULL;
2045
2046        return curv;
2047}
2048EXPORT_SYMBOL_GPL(of_prop_next_string);
2049
2050/**
2051 * of_console_check() - Test and setup console for DT setup
2052 * @dn - Pointer to device node
2053 * @name - Name to use for preferred console without index. ex. "ttyS"
2054 * @index - Index to use for preferred console.
2055 *
2056 * Check if the given device node matches the stdout-path property in the
2057 * /chosen node. If it does then register it as the preferred console and return
2058 * TRUE. Otherwise return FALSE.
2059 */
2060bool of_console_check(struct device_node *dn, char *name, int index)
2061{
2062        if (!dn || dn != of_stdout || console_set_on_cmdline)
2063                return false;
2064        return !add_preferred_console(name, index,
2065                                      kstrdup(of_stdout_options, GFP_KERNEL));
2066}
2067EXPORT_SYMBOL_GPL(of_console_check);
2068
2069/**
2070 *      of_find_next_cache_node - Find a node's subsidiary cache
2071 *      @np:    node of type "cpu" or "cache"
2072 *
2073 *      Returns a node pointer with refcount incremented, use
2074 *      of_node_put() on it when done.  Caller should hold a reference
2075 *      to np.
2076 */
2077struct device_node *of_find_next_cache_node(const struct device_node *np)
2078{
2079        struct device_node *child;
2080        const phandle *handle;
2081
2082        handle = of_get_property(np, "l2-cache", NULL);
2083        if (!handle)
2084                handle = of_get_property(np, "next-level-cache", NULL);
2085
2086        if (handle)
2087                return of_find_node_by_phandle(be32_to_cpup(handle));
2088
2089        /* OF on pmac has nodes instead of properties named "l2-cache"
2090         * beneath CPU nodes.
2091         */
2092        if (!strcmp(np->type, "cpu"))
2093                for_each_child_of_node(np, child)
2094                        if (!strcmp(child->type, "cache"))
2095                                return child;
2096
2097        return NULL;
2098}
2099
2100/**
2101 * of_graph_parse_endpoint() - parse common endpoint node properties
2102 * @node: pointer to endpoint device_node
2103 * @endpoint: pointer to the OF endpoint data structure
2104 *
2105 * The caller should hold a reference to @node.
2106 */
2107int of_graph_parse_endpoint(const struct device_node *node,
2108                            struct of_endpoint *endpoint)
2109{
2110        struct device_node *port_node = of_get_parent(node);
2111
2112        WARN_ONCE(!port_node, "%s(): endpoint %s has no parent node\n",
2113                  __func__, node->full_name);
2114
2115        memset(endpoint, 0, sizeof(*endpoint));
2116
2117        endpoint->local_node = node;
2118        /*
2119         * It doesn't matter whether the two calls below succeed.
2120         * If they don't then the default value 0 is used.
2121         */
2122        of_property_read_u32(port_node, "reg", &endpoint->port);
2123        of_property_read_u32(node, "reg", &endpoint->id);
2124
2125        of_node_put(port_node);
2126
2127        return 0;
2128}
2129EXPORT_SYMBOL(of_graph_parse_endpoint);
2130
2131/**
2132 * of_graph_get_port_by_id() - get the port matching a given id
2133 * @parent: pointer to the parent device node
2134 * @id: id of the port
2135 *
2136 * Return: A 'port' node pointer with refcount incremented. The caller
2137 * has to use of_node_put() on it when done.
2138 */
2139struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id)
2140{
2141        struct device_node *node, *port;
2142
2143        node = of_get_child_by_name(parent, "ports");
2144        if (node)
2145                parent = node;
2146
2147        for_each_child_of_node(parent, port) {
2148                u32 port_id = 0;
2149
2150                if (of_node_cmp(port->name, "port") != 0)
2151                        continue;
2152                of_property_read_u32(port, "reg", &port_id);
2153                if (id == port_id)
2154                        break;
2155        }
2156
2157        of_node_put(node);
2158
2159        return port;
2160}
2161EXPORT_SYMBOL(of_graph_get_port_by_id);
2162
2163/**
2164 * of_graph_get_next_endpoint() - get next endpoint node
2165 * @parent: pointer to the parent device node
2166 * @prev: previous endpoint node, or NULL to get first
2167 *
2168 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
2169 * of the passed @prev node is decremented.
2170 */
2171struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
2172                                        struct device_node *prev)
2173{
2174        struct device_node *endpoint;
2175        struct device_node *port;
2176
2177        if (!parent)
2178                return NULL;
2179
2180        /*
2181         * Start by locating the port node. If no previous endpoint is specified
2182         * search for the first port node, otherwise get the previous endpoint
2183         * parent port node.
2184         */
2185        if (!prev) {
2186                struct device_node *node;
2187
2188                node = of_get_child_by_name(parent, "ports");
2189                if (node)
2190                        parent = node;
2191
2192                port = of_get_child_by_name(parent, "port");
2193                of_node_put(node);
2194
2195                if (!port) {
2196                        pr_err("%s(): no port node found in %s\n",
2197                               __func__, parent->full_name);
2198                        return NULL;
2199                }
2200        } else {
2201                port = of_get_parent(prev);
2202                if (WARN_ONCE(!port, "%s(): endpoint %s has no parent node\n",
2203                              __func__, prev->full_name))
2204                        return NULL;
2205        }
2206
2207        while (1) {
2208                /*
2209                 * Now that we have a port node, get the next endpoint by
2210                 * getting the next child. If the previous endpoint is NULL this
2211                 * will return the first child.
2212                 */
2213                endpoint = of_get_next_child(port, prev);
2214                if (endpoint) {
2215                        of_node_put(port);
2216                        return endpoint;
2217                }
2218
2219                /* No more endpoints under this port, try the next one. */
2220                prev = NULL;
2221
2222                do {
2223                        port = of_get_next_child(parent, port);
2224                        if (!port)
2225                                return NULL;
2226                } while (of_node_cmp(port->name, "port"));
2227        }
2228}
2229EXPORT_SYMBOL(of_graph_get_next_endpoint);
2230
2231/**
2232 * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers
2233 * @parent: pointer to the parent device node
2234 * @port_reg: identifier (value of reg property) of the parent port node
2235 * @reg: identifier (value of reg property) of the endpoint node
2236 *
2237 * Return: An 'endpoint' node pointer which is identified by reg and at the same
2238 * is the child of a port node identified by port_reg. reg and port_reg are
2239 * ignored when they are -1.
2240 */
2241struct device_node *of_graph_get_endpoint_by_regs(
2242        const struct device_node *parent, int port_reg, int reg)
2243{
2244        struct of_endpoint endpoint;
2245        struct device_node *node, *prev_node = NULL;
2246
2247        while (1) {
2248                node = of_graph_get_next_endpoint(parent, prev_node);
2249                of_node_put(prev_node);
2250                if (!node)
2251                        break;
2252
2253                of_graph_parse_endpoint(node, &endpoint);
2254                if (((port_reg == -1) || (endpoint.port == port_reg)) &&
2255                        ((reg == -1) || (endpoint.id == reg)))
2256                        return node;
2257
2258                prev_node = node;
2259        }
2260
2261        return NULL;
2262}
2263EXPORT_SYMBOL(of_graph_get_endpoint_by_regs);
2264
2265/**
2266 * of_graph_get_remote_port_parent() - get remote port's parent node
2267 * @node: pointer to a local endpoint device_node
2268 *
2269 * Return: Remote device node associated with remote endpoint node linked
2270 *         to @node. Use of_node_put() on it when done.
2271 */
2272struct device_node *of_graph_get_remote_port_parent(
2273                               const struct device_node *node)
2274{
2275        struct device_node *np;
2276        unsigned int depth;
2277
2278        /* Get remote endpoint node. */
2279        np = of_parse_phandle(node, "remote-endpoint", 0);
2280
2281        /* Walk 3 levels up only if there is 'ports' node. */
2282        for (depth = 3; depth && np; depth--) {
2283                np = of_get_next_parent(np);
2284                if (depth == 2 && of_node_cmp(np->name, "ports"))
2285                        break;
2286        }
2287        return np;
2288}
2289EXPORT_SYMBOL(of_graph_get_remote_port_parent);
2290
2291/**
2292 * of_graph_get_remote_port() - get remote port node
2293 * @node: pointer to a local endpoint device_node
2294 *
2295 * Return: Remote port node associated with remote endpoint node linked
2296 *         to @node. Use of_node_put() on it when done.
2297 */
2298struct device_node *of_graph_get_remote_port(const struct device_node *node)
2299{
2300        struct device_node *np;
2301
2302        /* Get remote endpoint node. */
2303        np = of_parse_phandle(node, "remote-endpoint", 0);
2304        if (!np)
2305                return NULL;
2306        return of_get_next_parent(np);
2307}
2308EXPORT_SYMBOL(of_graph_get_remote_port);
2309