linux/drivers/pci/hotplug/cpqphp_ctrl.c
<<
>>
Prefs
   1/*
   2 * Compaq Hot Plug Controller Driver
   3 *
   4 * Copyright (C) 1995,2001 Compaq Computer Corporation
   5 * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
   6 * Copyright (C) 2001 IBM Corp.
   7 *
   8 * All rights reserved.
   9 *
  10 * This program is free software; you can redistribute it and/or modify
  11 * it under the terms of the GNU General Public License as published by
  12 * the Free Software Foundation; either version 2 of the License, or (at
  13 * your option) any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful, but
  16 * WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  18 * NON INFRINGEMENT.  See the GNU General Public License for more
  19 * details.
  20 *
  21 * You should have received a copy of the GNU General Public License
  22 * along with this program; if not, write to the Free Software
  23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  24 *
  25 * Send feedback to <greg@kroah.com>
  26 *
  27 */
  28
  29#include <linux/module.h>
  30#include <linux/kernel.h>
  31#include <linux/types.h>
  32#include <linux/slab.h>
  33#include <linux/workqueue.h>
  34#include <linux/interrupt.h>
  35#include <linux/delay.h>
  36#include <linux/wait.h>
  37#include <linux/pci.h>
  38#include <linux/pci_hotplug.h>
  39#include <linux/kthread.h>
  40#include "cpqphp.h"
  41
  42static u32 configure_new_device(struct controller *ctrl, struct pci_func *func,
  43                        u8 behind_bridge, struct resource_lists *resources);
  44static int configure_new_function(struct controller *ctrl, struct pci_func *func,
  45                        u8 behind_bridge, struct resource_lists *resources);
  46static void interrupt_event_handler(struct controller *ctrl);
  47
  48
  49static struct task_struct *cpqhp_event_thread;
  50static unsigned long pushbutton_pending;        /* = 0 */
  51
  52/* delay is in jiffies to wait for */
  53static void long_delay(int delay)
  54{
  55        /*
  56         * XXX(hch): if someone is bored please convert all callers
  57         * to call msleep_interruptible directly.  They really want
  58         * to specify timeouts in natural units and spend a lot of
  59         * effort converting them to jiffies..
  60         */
  61        msleep_interruptible(jiffies_to_msecs(delay));
  62}
  63
  64
  65/* FIXME: The following line needs to be somewhere else... */
  66#define WRONG_BUS_FREQUENCY 0x07
  67static u8 handle_switch_change(u8 change, struct controller *ctrl)
  68{
  69        int hp_slot;
  70        u8 rc = 0;
  71        u16 temp_word;
  72        struct pci_func *func;
  73        struct event_info *taskInfo;
  74
  75        if (!change)
  76                return 0;
  77
  78        /* Switch Change */
  79        dbg("cpqsbd:  Switch interrupt received.\n");
  80
  81        for (hp_slot = 0; hp_slot < 6; hp_slot++) {
  82                if (change & (0x1L << hp_slot)) {
  83                        /*
  84                         * this one changed.
  85                         */
  86                        func = cpqhp_slot_find(ctrl->bus,
  87                                (hp_slot + ctrl->slot_device_offset), 0);
  88
  89                        /* this is the structure that tells the worker thread
  90                         * what to do
  91                         */
  92                        taskInfo = &(ctrl->event_queue[ctrl->next_event]);
  93                        ctrl->next_event = (ctrl->next_event + 1) % 10;
  94                        taskInfo->hp_slot = hp_slot;
  95
  96                        rc++;
  97
  98                        temp_word = ctrl->ctrl_int_comp >> 16;
  99                        func->presence_save = (temp_word >> hp_slot) & 0x01;
 100                        func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
 101
 102                        if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
 103                                /*
 104                                 * Switch opened
 105                                 */
 106
 107                                func->switch_save = 0;
 108
 109                                taskInfo->event_type = INT_SWITCH_OPEN;
 110                        } else {
 111                                /*
 112                                 * Switch closed
 113                                 */
 114
 115                                func->switch_save = 0x10;
 116
 117                                taskInfo->event_type = INT_SWITCH_CLOSE;
 118                        }
 119                }
 120        }
 121
 122        return rc;
 123}
 124
 125/**
 126 * cpqhp_find_slot - find the struct slot of given device
 127 * @ctrl: scan lots of this controller
 128 * @device: the device id to find
 129 */
 130static struct slot *cpqhp_find_slot(struct controller *ctrl, u8 device)
 131{
 132        struct slot *slot = ctrl->slot;
 133
 134        while (slot && (slot->device != device))
 135                slot = slot->next;
 136
 137        return slot;
 138}
 139
 140
 141static u8 handle_presence_change(u16 change, struct controller *ctrl)
 142{
 143        int hp_slot;
 144        u8 rc = 0;
 145        u8 temp_byte;
 146        u16 temp_word;
 147        struct pci_func *func;
 148        struct event_info *taskInfo;
 149        struct slot *p_slot;
 150
 151        if (!change)
 152                return 0;
 153
 154        /*
 155         * Presence Change
 156         */
 157        dbg("cpqsbd:  Presence/Notify input change.\n");
 158        dbg("         Changed bits are 0x%4.4x\n", change);
 159
 160        for (hp_slot = 0; hp_slot < 6; hp_slot++) {
 161                if (change & (0x0101 << hp_slot)) {
 162                        /*
 163                         * this one changed.
 164                         */
 165                        func = cpqhp_slot_find(ctrl->bus,
 166                                (hp_slot + ctrl->slot_device_offset), 0);
 167
 168                        taskInfo = &(ctrl->event_queue[ctrl->next_event]);
 169                        ctrl->next_event = (ctrl->next_event + 1) % 10;
 170                        taskInfo->hp_slot = hp_slot;
 171
 172                        rc++;
 173
 174                        p_slot = cpqhp_find_slot(ctrl, hp_slot + (readb(ctrl->hpc_reg + SLOT_MASK) >> 4));
 175                        if (!p_slot)
 176                                return 0;
 177
 178                        /* If the switch closed, must be a button
 179                         * If not in button mode, nevermind
 180                         */
 181                        if (func->switch_save && (ctrl->push_button == 1)) {
 182                                temp_word = ctrl->ctrl_int_comp >> 16;
 183                                temp_byte = (temp_word >> hp_slot) & 0x01;
 184                                temp_byte |= (temp_word >> (hp_slot + 7)) & 0x02;
 185
 186                                if (temp_byte != func->presence_save) {
 187                                        /*
 188                                         * button Pressed (doesn't do anything)
 189                                         */
 190                                        dbg("hp_slot %d button pressed\n", hp_slot);
 191                                        taskInfo->event_type = INT_BUTTON_PRESS;
 192                                } else {
 193                                        /*
 194                                         * button Released - TAKE ACTION!!!!
 195                                         */
 196                                        dbg("hp_slot %d button released\n", hp_slot);
 197                                        taskInfo->event_type = INT_BUTTON_RELEASE;
 198
 199                                        /* Cancel if we are still blinking */
 200                                        if ((p_slot->state == BLINKINGON_STATE)
 201                                            || (p_slot->state == BLINKINGOFF_STATE)) {
 202                                                taskInfo->event_type = INT_BUTTON_CANCEL;
 203                                                dbg("hp_slot %d button cancel\n", hp_slot);
 204                                        } else if ((p_slot->state == POWERON_STATE)
 205                                                   || (p_slot->state == POWEROFF_STATE)) {
 206                                                /* info(msg_button_ignore, p_slot->number); */
 207                                                taskInfo->event_type = INT_BUTTON_IGNORE;
 208                                                dbg("hp_slot %d button ignore\n", hp_slot);
 209                                        }
 210                                }
 211                        } else {
 212                                /* Switch is open, assume a presence change
 213                                 * Save the presence state
 214                                 */
 215                                temp_word = ctrl->ctrl_int_comp >> 16;
 216                                func->presence_save = (temp_word >> hp_slot) & 0x01;
 217                                func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
 218
 219                                if ((!(ctrl->ctrl_int_comp & (0x010000 << hp_slot))) ||
 220                                    (!(ctrl->ctrl_int_comp & (0x01000000 << hp_slot)))) {
 221                                        /* Present */
 222                                        taskInfo->event_type = INT_PRESENCE_ON;
 223                                } else {
 224                                        /* Not Present */
 225                                        taskInfo->event_type = INT_PRESENCE_OFF;
 226                                }
 227                        }
 228                }
 229        }
 230
 231        return rc;
 232}
 233
 234
 235static u8 handle_power_fault(u8 change, struct controller *ctrl)
 236{
 237        int hp_slot;
 238        u8 rc = 0;
 239        struct pci_func *func;
 240        struct event_info *taskInfo;
 241
 242        if (!change)
 243                return 0;
 244
 245        /*
 246         * power fault
 247         */
 248
 249        info("power fault interrupt\n");
 250
 251        for (hp_slot = 0; hp_slot < 6; hp_slot++) {
 252                if (change & (0x01 << hp_slot)) {
 253                        /*
 254                         * this one changed.
 255                         */
 256                        func = cpqhp_slot_find(ctrl->bus,
 257                                (hp_slot + ctrl->slot_device_offset), 0);
 258
 259                        taskInfo = &(ctrl->event_queue[ctrl->next_event]);
 260                        ctrl->next_event = (ctrl->next_event + 1) % 10;
 261                        taskInfo->hp_slot = hp_slot;
 262
 263                        rc++;
 264
 265                        if (ctrl->ctrl_int_comp & (0x00000100 << hp_slot)) {
 266                                /*
 267                                 * power fault Cleared
 268                                 */
 269                                func->status = 0x00;
 270
 271                                taskInfo->event_type = INT_POWER_FAULT_CLEAR;
 272                        } else {
 273                                /*
 274                                 * power fault
 275                                 */
 276                                taskInfo->event_type = INT_POWER_FAULT;
 277
 278                                if (ctrl->rev < 4) {
 279                                        amber_LED_on(ctrl, hp_slot);
 280                                        green_LED_off(ctrl, hp_slot);
 281                                        set_SOGO(ctrl);
 282
 283                                        /* this is a fatal condition, we want
 284                                         * to crash the machine to protect from
 285                                         * data corruption. simulated_NMI
 286                                         * shouldn't ever return */
 287                                        /* FIXME
 288                                        simulated_NMI(hp_slot, ctrl); */
 289
 290                                        /* The following code causes a software
 291                                         * crash just in case simulated_NMI did
 292                                         * return */
 293                                        /*FIXME
 294                                        panic(msg_power_fault); */
 295                                } else {
 296                                        /* set power fault status for this board */
 297                                        func->status = 0xFF;
 298                                        info("power fault bit %x set\n", hp_slot);
 299                                }
 300                        }
 301                }
 302        }
 303
 304        return rc;
 305}
 306
 307
 308/**
 309 * sort_by_size - sort nodes on the list by their length, smallest first.
 310 * @head: list to sort
 311 */
 312static int sort_by_size(struct pci_resource **head)
 313{
 314        struct pci_resource *current_res;
 315        struct pci_resource *next_res;
 316        int out_of_order = 1;
 317
 318        if (!(*head))
 319                return 1;
 320
 321        if (!((*head)->next))
 322                return 0;
 323
 324        while (out_of_order) {
 325                out_of_order = 0;
 326
 327                /* Special case for swapping list head */
 328                if (((*head)->next) &&
 329                    ((*head)->length > (*head)->next->length)) {
 330                        out_of_order++;
 331                        current_res = *head;
 332                        *head = (*head)->next;
 333                        current_res->next = (*head)->next;
 334                        (*head)->next = current_res;
 335                }
 336
 337                current_res = *head;
 338
 339                while (current_res->next && current_res->next->next) {
 340                        if (current_res->next->length > current_res->next->next->length) {
 341                                out_of_order++;
 342                                next_res = current_res->next;
 343                                current_res->next = current_res->next->next;
 344                                current_res = current_res->next;
 345                                next_res->next = current_res->next;
 346                                current_res->next = next_res;
 347                        } else
 348                                current_res = current_res->next;
 349                }
 350        }  /* End of out_of_order loop */
 351
 352        return 0;
 353}
 354
 355
 356/**
 357 * sort_by_max_size - sort nodes on the list by their length, largest first.
 358 * @head: list to sort
 359 */
 360static int sort_by_max_size(struct pci_resource **head)
 361{
 362        struct pci_resource *current_res;
 363        struct pci_resource *next_res;
 364        int out_of_order = 1;
 365
 366        if (!(*head))
 367                return 1;
 368
 369        if (!((*head)->next))
 370                return 0;
 371
 372        while (out_of_order) {
 373                out_of_order = 0;
 374
 375                /* Special case for swapping list head */
 376                if (((*head)->next) &&
 377                    ((*head)->length < (*head)->next->length)) {
 378                        out_of_order++;
 379                        current_res = *head;
 380                        *head = (*head)->next;
 381                        current_res->next = (*head)->next;
 382                        (*head)->next = current_res;
 383                }
 384
 385                current_res = *head;
 386
 387                while (current_res->next && current_res->next->next) {
 388                        if (current_res->next->length < current_res->next->next->length) {
 389                                out_of_order++;
 390                                next_res = current_res->next;
 391                                current_res->next = current_res->next->next;
 392                                current_res = current_res->next;
 393                                next_res->next = current_res->next;
 394                                current_res->next = next_res;
 395                        } else
 396                                current_res = current_res->next;
 397                }
 398        }  /* End of out_of_order loop */
 399
 400        return 0;
 401}
 402
 403
 404/**
 405 * do_pre_bridge_resource_split - find node of resources that are unused
 406 * @head: new list head
 407 * @orig_head: original list head
 408 * @alignment: max node size (?)
 409 */
 410static struct pci_resource *do_pre_bridge_resource_split(struct pci_resource **head,
 411                                struct pci_resource **orig_head, u32 alignment)
 412{
 413        struct pci_resource *prevnode = NULL;
 414        struct pci_resource *node;
 415        struct pci_resource *split_node;
 416        u32 rc;
 417        u32 temp_dword;
 418        dbg("do_pre_bridge_resource_split\n");
 419
 420        if (!(*head) || !(*orig_head))
 421                return NULL;
 422
 423        rc = cpqhp_resource_sort_and_combine(head);
 424
 425        if (rc)
 426                return NULL;
 427
 428        if ((*head)->base != (*orig_head)->base)
 429                return NULL;
 430
 431        if ((*head)->length == (*orig_head)->length)
 432                return NULL;
 433
 434
 435        /* If we got here, there the bridge requires some of the resource, but
 436         * we may be able to split some off of the front
 437         */
 438
 439        node = *head;
 440
 441        if (node->length & (alignment - 1)) {
 442                /* this one isn't an aligned length, so we'll make a new entry
 443                 * and split it up.
 444                 */
 445                split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
 446
 447                if (!split_node)
 448                        return NULL;
 449
 450                temp_dword = (node->length | (alignment-1)) + 1 - alignment;
 451
 452                split_node->base = node->base;
 453                split_node->length = temp_dword;
 454
 455                node->length -= temp_dword;
 456                node->base += split_node->length;
 457
 458                /* Put it in the list */
 459                *head = split_node;
 460                split_node->next = node;
 461        }
 462
 463        if (node->length < alignment)
 464                return NULL;
 465
 466        /* Now unlink it */
 467        if (*head == node) {
 468                *head = node->next;
 469        } else {
 470                prevnode = *head;
 471                while (prevnode->next != node)
 472                        prevnode = prevnode->next;
 473
 474                prevnode->next = node->next;
 475        }
 476        node->next = NULL;
 477
 478        return node;
 479}
 480
 481
 482/**
 483 * do_bridge_resource_split - find one node of resources that aren't in use
 484 * @head: list head
 485 * @alignment: max node size (?)
 486 */
 487static struct pci_resource *do_bridge_resource_split(struct pci_resource **head, u32 alignment)
 488{
 489        struct pci_resource *prevnode = NULL;
 490        struct pci_resource *node;
 491        u32 rc;
 492        u32 temp_dword;
 493
 494        rc = cpqhp_resource_sort_and_combine(head);
 495
 496        if (rc)
 497                return NULL;
 498
 499        node = *head;
 500
 501        while (node->next) {
 502                prevnode = node;
 503                node = node->next;
 504                kfree(prevnode);
 505        }
 506
 507        if (node->length < alignment)
 508                goto error;
 509
 510        if (node->base & (alignment - 1)) {
 511                /* Short circuit if adjusted size is too small */
 512                temp_dword = (node->base | (alignment-1)) + 1;
 513                if ((node->length - (temp_dword - node->base)) < alignment)
 514                        goto error;
 515
 516                node->length -= (temp_dword - node->base);
 517                node->base = temp_dword;
 518        }
 519
 520        if (node->length & (alignment - 1))
 521                /* There's stuff in use after this node */
 522                goto error;
 523
 524        return node;
 525error:
 526        kfree(node);
 527        return NULL;
 528}
 529
 530
 531/**
 532 * get_io_resource - find first node of given size not in ISA aliasing window.
 533 * @head: list to search
 534 * @size: size of node to find, must be a power of two.
 535 *
 536 * Description: This function sorts the resource list by size and then returns
 537 * returns the first node of "size" length that is not in the ISA aliasing
 538 * window.  If it finds a node larger than "size" it will split it up.
 539 */
 540static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size)
 541{
 542        struct pci_resource *prevnode;
 543        struct pci_resource *node;
 544        struct pci_resource *split_node;
 545        u32 temp_dword;
 546
 547        if (!(*head))
 548                return NULL;
 549
 550        if (cpqhp_resource_sort_and_combine(head))
 551                return NULL;
 552
 553        if (sort_by_size(head))
 554                return NULL;
 555
 556        for (node = *head; node; node = node->next) {
 557                if (node->length < size)
 558                        continue;
 559
 560                if (node->base & (size - 1)) {
 561                        /* this one isn't base aligned properly
 562                         * so we'll make a new entry and split it up
 563                         */
 564                        temp_dword = (node->base | (size-1)) + 1;
 565
 566                        /* Short circuit if adjusted size is too small */
 567                        if ((node->length - (temp_dword - node->base)) < size)
 568                                continue;
 569
 570                        split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
 571
 572                        if (!split_node)
 573                                return NULL;
 574
 575                        split_node->base = node->base;
 576                        split_node->length = temp_dword - node->base;
 577                        node->base = temp_dword;
 578                        node->length -= split_node->length;
 579
 580                        /* Put it in the list */
 581                        split_node->next = node->next;
 582                        node->next = split_node;
 583                } /* End of non-aligned base */
 584
 585                /* Don't need to check if too small since we already did */
 586                if (node->length > size) {
 587                        /* this one is longer than we need
 588                         * so we'll make a new entry and split it up
 589                         */
 590                        split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
 591
 592                        if (!split_node)
 593                                return NULL;
 594
 595                        split_node->base = node->base + size;
 596                        split_node->length = node->length - size;
 597                        node->length = size;
 598
 599                        /* Put it in the list */
 600                        split_node->next = node->next;
 601                        node->next = split_node;
 602                }  /* End of too big on top end */
 603
 604                /* For IO make sure it's not in the ISA aliasing space */
 605                if (node->base & 0x300L)
 606                        continue;
 607
 608                /* If we got here, then it is the right size
 609                 * Now take it out of the list and break
 610                 */
 611                if (*head == node) {
 612                        *head = node->next;
 613                } else {
 614                        prevnode = *head;
 615                        while (prevnode->next != node)
 616                                prevnode = prevnode->next;
 617
 618                        prevnode->next = node->next;
 619                }
 620                node->next = NULL;
 621                break;
 622        }
 623
 624        return node;
 625}
 626
 627
 628/**
 629 * get_max_resource - get largest node which has at least the given size.
 630 * @head: the list to search the node in
 631 * @size: the minimum size of the node to find
 632 *
 633 * Description: Gets the largest node that is at least "size" big from the
 634 * list pointed to by head.  It aligns the node on top and bottom
 635 * to "size" alignment before returning it.
 636 */
 637static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size)
 638{
 639        struct pci_resource *max;
 640        struct pci_resource *temp;
 641        struct pci_resource *split_node;
 642        u32 temp_dword;
 643
 644        if (cpqhp_resource_sort_and_combine(head))
 645                return NULL;
 646
 647        if (sort_by_max_size(head))
 648                return NULL;
 649
 650        for (max = *head; max; max = max->next) {
 651                /* If not big enough we could probably just bail,
 652                 * instead we'll continue to the next.
 653                 */
 654                if (max->length < size)
 655                        continue;
 656
 657                if (max->base & (size - 1)) {
 658                        /* this one isn't base aligned properly
 659                         * so we'll make a new entry and split it up
 660                         */
 661                        temp_dword = (max->base | (size-1)) + 1;
 662
 663                        /* Short circuit if adjusted size is too small */
 664                        if ((max->length - (temp_dword - max->base)) < size)
 665                                continue;
 666
 667                        split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
 668
 669                        if (!split_node)
 670                                return NULL;
 671
 672                        split_node->base = max->base;
 673                        split_node->length = temp_dword - max->base;
 674                        max->base = temp_dword;
 675                        max->length -= split_node->length;
 676
 677                        split_node->next = max->next;
 678                        max->next = split_node;
 679                }
 680
 681                if ((max->base + max->length) & (size - 1)) {
 682                        /* this one isn't end aligned properly at the top
 683                         * so we'll make a new entry and split it up
 684                         */
 685                        split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
 686
 687                        if (!split_node)
 688                                return NULL;
 689                        temp_dword = ((max->base + max->length) & ~(size - 1));
 690                        split_node->base = temp_dword;
 691                        split_node->length = max->length + max->base
 692                                             - split_node->base;
 693                        max->length -= split_node->length;
 694
 695                        split_node->next = max->next;
 696                        max->next = split_node;
 697                }
 698
 699                /* Make sure it didn't shrink too much when we aligned it */
 700                if (max->length < size)
 701                        continue;
 702
 703                /* Now take it out of the list */
 704                temp = *head;
 705                if (temp == max) {
 706                        *head = max->next;
 707                } else {
 708                        while (temp && temp->next != max)
 709                                temp = temp->next;
 710
 711                        if (temp)
 712                                temp->next = max->next;
 713                }
 714
 715                max->next = NULL;
 716                break;
 717        }
 718
 719        return max;
 720}
 721
 722
 723/**
 724 * get_resource - find resource of given size and split up larger ones.
 725 * @head: the list to search for resources
 726 * @size: the size limit to use
 727 *
 728 * Description: This function sorts the resource list by size and then
 729 * returns the first node of "size" length.  If it finds a node
 730 * larger than "size" it will split it up.
 731 *
 732 * size must be a power of two.
 733 */
 734static struct pci_resource *get_resource(struct pci_resource **head, u32 size)
 735{
 736        struct pci_resource *prevnode;
 737        struct pci_resource *node;
 738        struct pci_resource *split_node;
 739        u32 temp_dword;
 740
 741        if (cpqhp_resource_sort_and_combine(head))
 742                return NULL;
 743
 744        if (sort_by_size(head))
 745                return NULL;
 746
 747        for (node = *head; node; node = node->next) {
 748                dbg("%s: req_size =%x node=%p, base=%x, length=%x\n",
 749                    __func__, size, node, node->base, node->length);
 750                if (node->length < size)
 751                        continue;
 752
 753                if (node->base & (size - 1)) {
 754                        dbg("%s: not aligned\n", __func__);
 755                        /* this one isn't base aligned properly
 756                         * so we'll make a new entry and split it up
 757                         */
 758                        temp_dword = (node->base | (size-1)) + 1;
 759
 760                        /* Short circuit if adjusted size is too small */
 761                        if ((node->length - (temp_dword - node->base)) < size)
 762                                continue;
 763
 764                        split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
 765
 766                        if (!split_node)
 767                                return NULL;
 768
 769                        split_node->base = node->base;
 770                        split_node->length = temp_dword - node->base;
 771                        node->base = temp_dword;
 772                        node->length -= split_node->length;
 773
 774                        split_node->next = node->next;
 775                        node->next = split_node;
 776                } /* End of non-aligned base */
 777
 778                /* Don't need to check if too small since we already did */
 779                if (node->length > size) {
 780                        dbg("%s: too big\n", __func__);
 781                        /* this one is longer than we need
 782                         * so we'll make a new entry and split it up
 783                         */
 784                        split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
 785
 786                        if (!split_node)
 787                                return NULL;
 788
 789                        split_node->base = node->base + size;
 790                        split_node->length = node->length - size;
 791                        node->length = size;
 792
 793                        /* Put it in the list */
 794                        split_node->next = node->next;
 795                        node->next = split_node;
 796                }  /* End of too big on top end */
 797
 798                dbg("%s: got one!!!\n", __func__);
 799                /* If we got here, then it is the right size
 800                 * Now take it out of the list */
 801                if (*head == node) {
 802                        *head = node->next;
 803                } else {
 804                        prevnode = *head;
 805                        while (prevnode->next != node)
 806                                prevnode = prevnode->next;
 807
 808                        prevnode->next = node->next;
 809                }
 810                node->next = NULL;
 811                break;
 812        }
 813        return node;
 814}
 815
 816
 817/**
 818 * cpqhp_resource_sort_and_combine - sort nodes by base addresses and clean up
 819 * @head: the list to sort and clean up
 820 *
 821 * Description: Sorts all of the nodes in the list in ascending order by
 822 * their base addresses.  Also does garbage collection by
 823 * combining adjacent nodes.
 824 *
 825 * Returns %0 if success.
 826 */
 827int cpqhp_resource_sort_and_combine(struct pci_resource **head)
 828{
 829        struct pci_resource *node1;
 830        struct pci_resource *node2;
 831        int out_of_order = 1;
 832
 833        dbg("%s: head = %p, *head = %p\n", __func__, head, *head);
 834
 835        if (!(*head))
 836                return 1;
 837
 838        dbg("*head->next = %p\n", (*head)->next);
 839
 840        if (!(*head)->next)
 841                return 0;       /* only one item on the list, already sorted! */
 842
 843        dbg("*head->base = 0x%x\n", (*head)->base);
 844        dbg("*head->next->base = 0x%x\n", (*head)->next->base);
 845        while (out_of_order) {
 846                out_of_order = 0;
 847
 848                /* Special case for swapping list head */
 849                if (((*head)->next) &&
 850                    ((*head)->base > (*head)->next->base)) {
 851                        node1 = *head;
 852                        (*head) = (*head)->next;
 853                        node1->next = (*head)->next;
 854                        (*head)->next = node1;
 855                        out_of_order++;
 856                }
 857
 858                node1 = (*head);
 859
 860                while (node1->next && node1->next->next) {
 861                        if (node1->next->base > node1->next->next->base) {
 862                                out_of_order++;
 863                                node2 = node1->next;
 864                                node1->next = node1->next->next;
 865                                node1 = node1->next;
 866                                node2->next = node1->next;
 867                                node1->next = node2;
 868                        } else
 869                                node1 = node1->next;
 870                }
 871        }  /* End of out_of_order loop */
 872
 873        node1 = *head;
 874
 875        while (node1 && node1->next) {
 876                if ((node1->base + node1->length) == node1->next->base) {
 877                        /* Combine */
 878                        dbg("8..\n");
 879                        node1->length += node1->next->length;
 880                        node2 = node1->next;
 881                        node1->next = node1->next->next;
 882                        kfree(node2);
 883                } else
 884                        node1 = node1->next;
 885        }
 886
 887        return 0;
 888}
 889
 890
 891irqreturn_t cpqhp_ctrl_intr(int IRQ, void *data)
 892{
 893        struct controller *ctrl = data;
 894        u8 schedule_flag = 0;
 895        u8 reset;
 896        u16 misc;
 897        u32 Diff;
 898        u32 temp_dword;
 899
 900
 901        misc = readw(ctrl->hpc_reg + MISC);
 902        /*
 903         * Check to see if it was our interrupt
 904         */
 905        if (!(misc & 0x000C))
 906                return IRQ_NONE;
 907
 908        if (misc & 0x0004) {
 909                /*
 910                 * Serial Output interrupt Pending
 911                 */
 912
 913                /* Clear the interrupt */
 914                misc |= 0x0004;
 915                writew(misc, ctrl->hpc_reg + MISC);
 916
 917                /* Read to clear posted writes */
 918                misc = readw(ctrl->hpc_reg + MISC);
 919
 920                dbg("%s - waking up\n", __func__);
 921                wake_up_interruptible(&ctrl->queue);
 922        }
 923
 924        if (misc & 0x0008) {
 925                /* General-interrupt-input interrupt Pending */
 926                Diff = readl(ctrl->hpc_reg + INT_INPUT_CLEAR) ^ ctrl->ctrl_int_comp;
 927
 928                ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
 929
 930                /* Clear the interrupt */
 931                writel(Diff, ctrl->hpc_reg + INT_INPUT_CLEAR);
 932
 933                /* Read it back to clear any posted writes */
 934                temp_dword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
 935
 936                if (!Diff)
 937                        /* Clear all interrupts */
 938                        writel(0xFFFFFFFF, ctrl->hpc_reg + INT_INPUT_CLEAR);
 939
 940                schedule_flag += handle_switch_change((u8)(Diff & 0xFFL), ctrl);
 941                schedule_flag += handle_presence_change((u16)((Diff & 0xFFFF0000L) >> 16), ctrl);
 942                schedule_flag += handle_power_fault((u8)((Diff & 0xFF00L) >> 8), ctrl);
 943        }
 944
 945        reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
 946        if (reset & 0x40) {
 947                /* Bus reset has completed */
 948                reset &= 0xCF;
 949                writeb(reset, ctrl->hpc_reg + RESET_FREQ_MODE);
 950                reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
 951                wake_up_interruptible(&ctrl->queue);
 952        }
 953
 954        if (schedule_flag) {
 955                wake_up_process(cpqhp_event_thread);
 956                dbg("Waking even thread");
 957        }
 958        return IRQ_HANDLED;
 959}
 960
 961
 962/**
 963 * cpqhp_slot_create - Creates a node and adds it to the proper bus.
 964 * @busnumber: bus where new node is to be located
 965 *
 966 * Returns pointer to the new node or %NULL if unsuccessful.
 967 */
 968struct pci_func *cpqhp_slot_create(u8 busnumber)
 969{
 970        struct pci_func *new_slot;
 971        struct pci_func *next;
 972
 973        new_slot = kzalloc(sizeof(*new_slot), GFP_KERNEL);
 974        if (new_slot == NULL)
 975                return new_slot;
 976
 977        new_slot->next = NULL;
 978        new_slot->configured = 1;
 979
 980        if (cpqhp_slot_list[busnumber] == NULL) {
 981                cpqhp_slot_list[busnumber] = new_slot;
 982        } else {
 983                next = cpqhp_slot_list[busnumber];
 984                while (next->next != NULL)
 985                        next = next->next;
 986                next->next = new_slot;
 987        }
 988        return new_slot;
 989}
 990
 991
 992/**
 993 * slot_remove - Removes a node from the linked list of slots.
 994 * @old_slot: slot to remove
 995 *
 996 * Returns %0 if successful, !0 otherwise.
 997 */
 998static int slot_remove(struct pci_func *old_slot)
 999{
1000        struct pci_func *next;
1001
1002        if (old_slot == NULL)
1003                return 1;
1004
1005        next = cpqhp_slot_list[old_slot->bus];
1006        if (next == NULL)
1007                return 1;
1008
1009        if (next == old_slot) {
1010                cpqhp_slot_list[old_slot->bus] = old_slot->next;
1011                cpqhp_destroy_board_resources(old_slot);
1012                kfree(old_slot);
1013                return 0;
1014        }
1015
1016        while ((next->next != old_slot) && (next->next != NULL))
1017                next = next->next;
1018
1019        if (next->next == old_slot) {
1020                next->next = old_slot->next;
1021                cpqhp_destroy_board_resources(old_slot);
1022                kfree(old_slot);
1023                return 0;
1024        } else
1025                return 2;
1026}
1027
1028
1029/**
1030 * bridge_slot_remove - Removes a node from the linked list of slots.
1031 * @bridge: bridge to remove
1032 *
1033 * Returns %0 if successful, !0 otherwise.
1034 */
1035static int bridge_slot_remove(struct pci_func *bridge)
1036{
1037        u8 subordinateBus, secondaryBus;
1038        u8 tempBus;
1039        struct pci_func *next;
1040
1041        secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF;
1042        subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF;
1043
1044        for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) {
1045                next = cpqhp_slot_list[tempBus];
1046
1047                while (!slot_remove(next))
1048                        next = cpqhp_slot_list[tempBus];
1049        }
1050
1051        next = cpqhp_slot_list[bridge->bus];
1052
1053        if (next == NULL)
1054                return 1;
1055
1056        if (next == bridge) {
1057                cpqhp_slot_list[bridge->bus] = bridge->next;
1058                goto out;
1059        }
1060
1061        while ((next->next != bridge) && (next->next != NULL))
1062                next = next->next;
1063
1064        if (next->next != bridge)
1065                return 2;
1066        next->next = bridge->next;
1067out:
1068        kfree(bridge);
1069        return 0;
1070}
1071
1072
1073/**
1074 * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed
1075 * @bus: bus to find
1076 * @device: device to find
1077 * @index: is %0 for first function found, %1 for the second...
1078 *
1079 * Returns pointer to the node if successful, %NULL otherwise.
1080 */
1081struct pci_func *cpqhp_slot_find(u8 bus, u8 device, u8 index)
1082{
1083        int found = -1;
1084        struct pci_func *func;
1085
1086        func = cpqhp_slot_list[bus];
1087
1088        if ((func == NULL) || ((func->device == device) && (index == 0)))
1089                return func;
1090
1091        if (func->device == device)
1092                found++;
1093
1094        while (func->next != NULL) {
1095                func = func->next;
1096
1097                if (func->device == device)
1098                        found++;
1099
1100                if (found == index)
1101                        return func;
1102        }
1103
1104        return NULL;
1105}
1106
1107
1108/* DJZ: I don't think is_bridge will work as is.
1109 * FIXME */
1110static int is_bridge(struct pci_func *func)
1111{
1112        /* Check the header type */
1113        if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01)
1114                return 1;
1115        else
1116                return 0;
1117}
1118
1119
1120/**
1121 * set_controller_speed - set the frequency and/or mode of a specific controller segment.
1122 * @ctrl: controller to change frequency/mode for.
1123 * @adapter_speed: the speed of the adapter we want to match.
1124 * @hp_slot: the slot number where the adapter is installed.
1125 *
1126 * Returns %0 if we successfully change frequency and/or mode to match the
1127 * adapter speed.
1128 */
1129static u8 set_controller_speed(struct controller *ctrl, u8 adapter_speed, u8 hp_slot)
1130{
1131        struct slot *slot;
1132        struct pci_bus *bus = ctrl->pci_bus;
1133        u8 reg;
1134        u8 slot_power = readb(ctrl->hpc_reg + SLOT_POWER);
1135        u16 reg16;
1136        u32 leds = readl(ctrl->hpc_reg + LED_CONTROL);
1137
1138        if (bus->cur_bus_speed == adapter_speed)
1139                return 0;
1140
1141        /* We don't allow freq/mode changes if we find another adapter running
1142         * in another slot on this controller
1143         */
1144        for (slot = ctrl->slot; slot; slot = slot->next) {
1145                if (slot->device == (hp_slot + ctrl->slot_device_offset))
1146                        continue;
1147                if (!slot->hotplug_slot || !slot->hotplug_slot->info)
1148                        continue;
1149                if (slot->hotplug_slot->info->adapter_status == 0)
1150                        continue;
1151                /* If another adapter is running on the same segment but at a
1152                 * lower speed/mode, we allow the new adapter to function at
1153                 * this rate if supported
1154                 */
1155                if (bus->cur_bus_speed < adapter_speed)
1156                        return 0;
1157
1158                return 1;
1159        }
1160
1161        /* If the controller doesn't support freq/mode changes and the
1162         * controller is running at a higher mode, we bail
1163         */
1164        if ((bus->cur_bus_speed > adapter_speed) && (!ctrl->pcix_speed_capability))
1165                return 1;
1166
1167        /* But we allow the adapter to run at a lower rate if possible */
1168        if ((bus->cur_bus_speed < adapter_speed) && (!ctrl->pcix_speed_capability))
1169                return 0;
1170
1171        /* We try to set the max speed supported by both the adapter and
1172         * controller
1173         */
1174        if (bus->max_bus_speed < adapter_speed) {
1175                if (bus->cur_bus_speed == bus->max_bus_speed)
1176                        return 0;
1177                adapter_speed = bus->max_bus_speed;
1178        }
1179
1180        writel(0x0L, ctrl->hpc_reg + LED_CONTROL);
1181        writeb(0x00, ctrl->hpc_reg + SLOT_ENABLE);
1182
1183        set_SOGO(ctrl);
1184        wait_for_ctrl_irq(ctrl);
1185
1186        if (adapter_speed != PCI_SPEED_133MHz_PCIX)
1187                reg = 0xF5;
1188        else
1189                reg = 0xF4;
1190        pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1191
1192        reg16 = readw(ctrl->hpc_reg + NEXT_CURR_FREQ);
1193        reg16 &= ~0x000F;
1194        switch (adapter_speed) {
1195                case(PCI_SPEED_133MHz_PCIX):
1196                        reg = 0x75;
1197                        reg16 |= 0xB;
1198                        break;
1199                case(PCI_SPEED_100MHz_PCIX):
1200                        reg = 0x74;
1201                        reg16 |= 0xA;
1202                        break;
1203                case(PCI_SPEED_66MHz_PCIX):
1204                        reg = 0x73;
1205                        reg16 |= 0x9;
1206                        break;
1207                case(PCI_SPEED_66MHz):
1208                        reg = 0x73;
1209                        reg16 |= 0x1;
1210                        break;
1211                default: /* 33MHz PCI 2.2 */
1212                        reg = 0x71;
1213                        break;
1214
1215        }
1216        reg16 |= 0xB << 12;
1217        writew(reg16, ctrl->hpc_reg + NEXT_CURR_FREQ);
1218
1219        mdelay(5);
1220
1221        /* Reenable interrupts */
1222        writel(0, ctrl->hpc_reg + INT_MASK);
1223
1224        pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1225
1226        /* Restart state machine */
1227        reg = ~0xF;
1228        pci_read_config_byte(ctrl->pci_dev, 0x43, &reg);
1229        pci_write_config_byte(ctrl->pci_dev, 0x43, reg);
1230
1231        /* Only if mode change...*/
1232        if (((bus->cur_bus_speed == PCI_SPEED_66MHz) && (adapter_speed == PCI_SPEED_66MHz_PCIX)) ||
1233                ((bus->cur_bus_speed == PCI_SPEED_66MHz_PCIX) && (adapter_speed == PCI_SPEED_66MHz)))
1234                        set_SOGO(ctrl);
1235
1236        wait_for_ctrl_irq(ctrl);
1237        mdelay(1100);
1238
1239        /* Restore LED/Slot state */
1240        writel(leds, ctrl->hpc_reg + LED_CONTROL);
1241        writeb(slot_power, ctrl->hpc_reg + SLOT_ENABLE);
1242
1243        set_SOGO(ctrl);
1244        wait_for_ctrl_irq(ctrl);
1245
1246        bus->cur_bus_speed = adapter_speed;
1247        slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1248
1249        info("Successfully changed frequency/mode for adapter in slot %d\n",
1250                        slot->number);
1251        return 0;
1252}
1253
1254/* the following routines constitute the bulk of the
1255 * hotplug controller logic
1256 */
1257
1258
1259/**
1260 * board_replaced - Called after a board has been replaced in the system.
1261 * @func: PCI device/function information
1262 * @ctrl: hotplug controller
1263 *
1264 * This is only used if we don't have resources for hot add.
1265 * Turns power on for the board.
1266 * Checks to see if board is the same.
1267 * If board is same, reconfigures it.
1268 * If board isn't same, turns it back off.
1269 */
1270static u32 board_replaced(struct pci_func *func, struct controller *ctrl)
1271{
1272        struct pci_bus *bus = ctrl->pci_bus;
1273        u8 hp_slot;
1274        u8 temp_byte;
1275        u8 adapter_speed;
1276        u32 rc = 0;
1277
1278        hp_slot = func->device - ctrl->slot_device_offset;
1279
1280        /*
1281         * The switch is open.
1282         */
1283        if (readl(ctrl->hpc_reg + INT_INPUT_CLEAR) & (0x01L << hp_slot))
1284                rc = INTERLOCK_OPEN;
1285        /*
1286         * The board is already on
1287         */
1288        else if (is_slot_enabled(ctrl, hp_slot))
1289                rc = CARD_FUNCTIONING;
1290        else {
1291                mutex_lock(&ctrl->crit_sect);
1292
1293                /* turn on board without attaching to the bus */
1294                enable_slot_power(ctrl, hp_slot);
1295
1296                set_SOGO(ctrl);
1297
1298                /* Wait for SOBS to be unset */
1299                wait_for_ctrl_irq(ctrl);
1300
1301                /* Change bits in slot power register to force another shift out
1302                 * NOTE: this is to work around the timer bug */
1303                temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1304                writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1305                writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1306
1307                set_SOGO(ctrl);
1308
1309                /* Wait for SOBS to be unset */
1310                wait_for_ctrl_irq(ctrl);
1311
1312                adapter_speed = get_adapter_speed(ctrl, hp_slot);
1313                if (bus->cur_bus_speed != adapter_speed)
1314                        if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1315                                rc = WRONG_BUS_FREQUENCY;
1316
1317                /* turn off board without attaching to the bus */
1318                disable_slot_power(ctrl, hp_slot);
1319
1320                set_SOGO(ctrl);
1321
1322                /* Wait for SOBS to be unset */
1323                wait_for_ctrl_irq(ctrl);
1324
1325                mutex_unlock(&ctrl->crit_sect);
1326
1327                if (rc)
1328                        return rc;
1329
1330                mutex_lock(&ctrl->crit_sect);
1331
1332                slot_enable(ctrl, hp_slot);
1333                green_LED_blink(ctrl, hp_slot);
1334
1335                amber_LED_off(ctrl, hp_slot);
1336
1337                set_SOGO(ctrl);
1338
1339                /* Wait for SOBS to be unset */
1340                wait_for_ctrl_irq(ctrl);
1341
1342                mutex_unlock(&ctrl->crit_sect);
1343
1344                /* Wait for ~1 second because of hot plug spec */
1345                long_delay(1*HZ);
1346
1347                /* Check for a power fault */
1348                if (func->status == 0xFF) {
1349                        /* power fault occurred, but it was benign */
1350                        rc = POWER_FAILURE;
1351                        func->status = 0;
1352                } else
1353                        rc = cpqhp_valid_replace(ctrl, func);
1354
1355                if (!rc) {
1356                        /* It must be the same board */
1357
1358                        rc = cpqhp_configure_board(ctrl, func);
1359
1360                        /* If configuration fails, turn it off
1361                         * Get slot won't work for devices behind
1362                         * bridges, but in this case it will always be
1363                         * called for the "base" bus/dev/func of an
1364                         * adapter.
1365                         */
1366
1367                        mutex_lock(&ctrl->crit_sect);
1368
1369                        amber_LED_on(ctrl, hp_slot);
1370                        green_LED_off(ctrl, hp_slot);
1371                        slot_disable(ctrl, hp_slot);
1372
1373                        set_SOGO(ctrl);
1374
1375                        /* Wait for SOBS to be unset */
1376                        wait_for_ctrl_irq(ctrl);
1377
1378                        mutex_unlock(&ctrl->crit_sect);
1379
1380                        if (rc)
1381                                return rc;
1382                        else
1383                                return 1;
1384
1385                } else {
1386                        /* Something is wrong
1387
1388                         * Get slot won't work for devices behind bridges, but
1389                         * in this case it will always be called for the "base"
1390                         * bus/dev/func of an adapter.
1391                         */
1392
1393                        mutex_lock(&ctrl->crit_sect);
1394
1395                        amber_LED_on(ctrl, hp_slot);
1396                        green_LED_off(ctrl, hp_slot);
1397                        slot_disable(ctrl, hp_slot);
1398
1399                        set_SOGO(ctrl);
1400
1401                        /* Wait for SOBS to be unset */
1402                        wait_for_ctrl_irq(ctrl);
1403
1404                        mutex_unlock(&ctrl->crit_sect);
1405                }
1406
1407        }
1408        return rc;
1409
1410}
1411
1412
1413/**
1414 * board_added - Called after a board has been added to the system.
1415 * @func: PCI device/function info
1416 * @ctrl: hotplug controller
1417 *
1418 * Turns power on for the board.
1419 * Configures board.
1420 */
1421static u32 board_added(struct pci_func *func, struct controller *ctrl)
1422{
1423        u8 hp_slot;
1424        u8 temp_byte;
1425        u8 adapter_speed;
1426        int index;
1427        u32 temp_register = 0xFFFFFFFF;
1428        u32 rc = 0;
1429        struct pci_func *new_slot = NULL;
1430        struct pci_bus *bus = ctrl->pci_bus;
1431        struct slot *p_slot;
1432        struct resource_lists res_lists;
1433
1434        hp_slot = func->device - ctrl->slot_device_offset;
1435        dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n",
1436            __func__, func->device, ctrl->slot_device_offset, hp_slot);
1437
1438        mutex_lock(&ctrl->crit_sect);
1439
1440        /* turn on board without attaching to the bus */
1441        enable_slot_power(ctrl, hp_slot);
1442
1443        set_SOGO(ctrl);
1444
1445        /* Wait for SOBS to be unset */
1446        wait_for_ctrl_irq(ctrl);
1447
1448        /* Change bits in slot power register to force another shift out
1449         * NOTE: this is to work around the timer bug
1450         */
1451        temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1452        writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1453        writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1454
1455        set_SOGO(ctrl);
1456
1457        /* Wait for SOBS to be unset */
1458        wait_for_ctrl_irq(ctrl);
1459
1460        adapter_speed = get_adapter_speed(ctrl, hp_slot);
1461        if (bus->cur_bus_speed != adapter_speed)
1462                if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1463                        rc = WRONG_BUS_FREQUENCY;
1464
1465        /* turn off board without attaching to the bus */
1466        disable_slot_power(ctrl, hp_slot);
1467
1468        set_SOGO(ctrl);
1469
1470        /* Wait for SOBS to be unset */
1471        wait_for_ctrl_irq(ctrl);
1472
1473        mutex_unlock(&ctrl->crit_sect);
1474
1475        if (rc)
1476                return rc;
1477
1478        p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1479
1480        /* turn on board and blink green LED */
1481
1482        dbg("%s: before down\n", __func__);
1483        mutex_lock(&ctrl->crit_sect);
1484        dbg("%s: after down\n", __func__);
1485
1486        dbg("%s: before slot_enable\n", __func__);
1487        slot_enable(ctrl, hp_slot);
1488
1489        dbg("%s: before green_LED_blink\n", __func__);
1490        green_LED_blink(ctrl, hp_slot);
1491
1492        dbg("%s: before amber_LED_blink\n", __func__);
1493        amber_LED_off(ctrl, hp_slot);
1494
1495        dbg("%s: before set_SOGO\n", __func__);
1496        set_SOGO(ctrl);
1497
1498        /* Wait for SOBS to be unset */
1499        dbg("%s: before wait_for_ctrl_irq\n", __func__);
1500        wait_for_ctrl_irq(ctrl);
1501        dbg("%s: after wait_for_ctrl_irq\n", __func__);
1502
1503        dbg("%s: before up\n", __func__);
1504        mutex_unlock(&ctrl->crit_sect);
1505        dbg("%s: after up\n", __func__);
1506
1507        /* Wait for ~1 second because of hot plug spec */
1508        dbg("%s: before long_delay\n", __func__);
1509        long_delay(1*HZ);
1510        dbg("%s: after long_delay\n", __func__);
1511
1512        dbg("%s: func status = %x\n", __func__, func->status);
1513        /* Check for a power fault */
1514        if (func->status == 0xFF) {
1515                /* power fault occurred, but it was benign */
1516                temp_register = 0xFFFFFFFF;
1517                dbg("%s: temp register set to %x by power fault\n", __func__, temp_register);
1518                rc = POWER_FAILURE;
1519                func->status = 0;
1520        } else {
1521                /* Get vendor/device ID u32 */
1522                ctrl->pci_bus->number = func->bus;
1523                rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(func->device, func->function), PCI_VENDOR_ID, &temp_register);
1524                dbg("%s: pci_read_config_dword returns %d\n", __func__, rc);
1525                dbg("%s: temp_register is %x\n", __func__, temp_register);
1526
1527                if (rc != 0) {
1528                        /* Something's wrong here */
1529                        temp_register = 0xFFFFFFFF;
1530                        dbg("%s: temp register set to %x by error\n", __func__, temp_register);
1531                }
1532                /* Preset return code.  It will be changed later if things go okay. */
1533                rc = NO_ADAPTER_PRESENT;
1534        }
1535
1536        /* All F's is an empty slot or an invalid board */
1537        if (temp_register != 0xFFFFFFFF) {
1538                res_lists.io_head = ctrl->io_head;
1539                res_lists.mem_head = ctrl->mem_head;
1540                res_lists.p_mem_head = ctrl->p_mem_head;
1541                res_lists.bus_head = ctrl->bus_head;
1542                res_lists.irqs = NULL;
1543
1544                rc = configure_new_device(ctrl, func, 0, &res_lists);
1545
1546                dbg("%s: back from configure_new_device\n", __func__);
1547                ctrl->io_head = res_lists.io_head;
1548                ctrl->mem_head = res_lists.mem_head;
1549                ctrl->p_mem_head = res_lists.p_mem_head;
1550                ctrl->bus_head = res_lists.bus_head;
1551
1552                cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1553                cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1554                cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1555                cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1556
1557                if (rc) {
1558                        mutex_lock(&ctrl->crit_sect);
1559
1560                        amber_LED_on(ctrl, hp_slot);
1561                        green_LED_off(ctrl, hp_slot);
1562                        slot_disable(ctrl, hp_slot);
1563
1564                        set_SOGO(ctrl);
1565
1566                        /* Wait for SOBS to be unset */
1567                        wait_for_ctrl_irq(ctrl);
1568
1569                        mutex_unlock(&ctrl->crit_sect);
1570                        return rc;
1571                } else {
1572                        cpqhp_save_slot_config(ctrl, func);
1573                }
1574
1575
1576                func->status = 0;
1577                func->switch_save = 0x10;
1578                func->is_a_board = 0x01;
1579
1580                /* next, we will instantiate the linux pci_dev structures (with
1581                 * appropriate driver notification, if already present) */
1582                dbg("%s: configure linux pci_dev structure\n", __func__);
1583                index = 0;
1584                do {
1585                        new_slot = cpqhp_slot_find(ctrl->bus, func->device, index++);
1586                        if (new_slot && !new_slot->pci_dev)
1587                                cpqhp_configure_device(ctrl, new_slot);
1588                } while (new_slot);
1589
1590                mutex_lock(&ctrl->crit_sect);
1591
1592                green_LED_on(ctrl, hp_slot);
1593
1594                set_SOGO(ctrl);
1595
1596                /* Wait for SOBS to be unset */
1597                wait_for_ctrl_irq(ctrl);
1598
1599                mutex_unlock(&ctrl->crit_sect);
1600        } else {
1601                mutex_lock(&ctrl->crit_sect);
1602
1603                amber_LED_on(ctrl, hp_slot);
1604                green_LED_off(ctrl, hp_slot);
1605                slot_disable(ctrl, hp_slot);
1606
1607                set_SOGO(ctrl);
1608
1609                /* Wait for SOBS to be unset */
1610                wait_for_ctrl_irq(ctrl);
1611
1612                mutex_unlock(&ctrl->crit_sect);
1613
1614                return rc;
1615        }
1616        return 0;
1617}
1618
1619
1620/**
1621 * remove_board - Turns off slot and LEDs
1622 * @func: PCI device/function info
1623 * @replace_flag: whether replacing or adding a new device
1624 * @ctrl: target controller
1625 */
1626static u32 remove_board(struct pci_func *func, u32 replace_flag, struct controller *ctrl)
1627{
1628        int index;
1629        u8 skip = 0;
1630        u8 device;
1631        u8 hp_slot;
1632        u8 temp_byte;
1633        u32 rc;
1634        struct resource_lists res_lists;
1635        struct pci_func *temp_func;
1636
1637        if (cpqhp_unconfigure_device(func))
1638                return 1;
1639
1640        device = func->device;
1641
1642        hp_slot = func->device - ctrl->slot_device_offset;
1643        dbg("In %s, hp_slot = %d\n", __func__, hp_slot);
1644
1645        /* When we get here, it is safe to change base address registers.
1646         * We will attempt to save the base address register lengths */
1647        if (replace_flag || !ctrl->add_support)
1648                rc = cpqhp_save_base_addr_length(ctrl, func);
1649        else if (!func->bus_head && !func->mem_head &&
1650                 !func->p_mem_head && !func->io_head) {
1651                /* Here we check to see if we've saved any of the board's
1652                 * resources already.  If so, we'll skip the attempt to
1653                 * determine what's being used. */
1654                index = 0;
1655                temp_func = cpqhp_slot_find(func->bus, func->device, index++);
1656                while (temp_func) {
1657                        if (temp_func->bus_head || temp_func->mem_head
1658                            || temp_func->p_mem_head || temp_func->io_head) {
1659                                skip = 1;
1660                                break;
1661                        }
1662                        temp_func = cpqhp_slot_find(temp_func->bus, temp_func->device, index++);
1663                }
1664
1665                if (!skip)
1666                        rc = cpqhp_save_used_resources(ctrl, func);
1667        }
1668        /* Change status to shutdown */
1669        if (func->is_a_board)
1670                func->status = 0x01;
1671        func->configured = 0;
1672
1673        mutex_lock(&ctrl->crit_sect);
1674
1675        green_LED_off(ctrl, hp_slot);
1676        slot_disable(ctrl, hp_slot);
1677
1678        set_SOGO(ctrl);
1679
1680        /* turn off SERR for slot */
1681        temp_byte = readb(ctrl->hpc_reg + SLOT_SERR);
1682        temp_byte &= ~(0x01 << hp_slot);
1683        writeb(temp_byte, ctrl->hpc_reg + SLOT_SERR);
1684
1685        /* Wait for SOBS to be unset */
1686        wait_for_ctrl_irq(ctrl);
1687
1688        mutex_unlock(&ctrl->crit_sect);
1689
1690        if (!replace_flag && ctrl->add_support) {
1691                while (func) {
1692                        res_lists.io_head = ctrl->io_head;
1693                        res_lists.mem_head = ctrl->mem_head;
1694                        res_lists.p_mem_head = ctrl->p_mem_head;
1695                        res_lists.bus_head = ctrl->bus_head;
1696
1697                        cpqhp_return_board_resources(func, &res_lists);
1698
1699                        ctrl->io_head = res_lists.io_head;
1700                        ctrl->mem_head = res_lists.mem_head;
1701                        ctrl->p_mem_head = res_lists.p_mem_head;
1702                        ctrl->bus_head = res_lists.bus_head;
1703
1704                        cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1705                        cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1706                        cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1707                        cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1708
1709                        if (is_bridge(func)) {
1710                                bridge_slot_remove(func);
1711                        } else
1712                                slot_remove(func);
1713
1714                        func = cpqhp_slot_find(ctrl->bus, device, 0);
1715                }
1716
1717                /* Setup slot structure with entry for empty slot */
1718                func = cpqhp_slot_create(ctrl->bus);
1719
1720                if (func == NULL)
1721                        return 1;
1722
1723                func->bus = ctrl->bus;
1724                func->device = device;
1725                func->function = 0;
1726                func->configured = 0;
1727                func->switch_save = 0x10;
1728                func->is_a_board = 0;
1729                func->p_task_event = NULL;
1730        }
1731
1732        return 0;
1733}
1734
1735static void pushbutton_helper_thread(unsigned long data)
1736{
1737        pushbutton_pending = data;
1738        wake_up_process(cpqhp_event_thread);
1739}
1740
1741
1742/* this is the main worker thread */
1743static int event_thread(void *data)
1744{
1745        struct controller *ctrl;
1746
1747        while (1) {
1748                dbg("!!!!event_thread sleeping\n");
1749                set_current_state(TASK_INTERRUPTIBLE);
1750                schedule();
1751
1752                if (kthread_should_stop())
1753                        break;
1754                /* Do stuff here */
1755                if (pushbutton_pending)
1756                        cpqhp_pushbutton_thread(pushbutton_pending);
1757                else
1758                        for (ctrl = cpqhp_ctrl_list; ctrl; ctrl = ctrl->next)
1759                                interrupt_event_handler(ctrl);
1760        }
1761        dbg("event_thread signals exit\n");
1762        return 0;
1763}
1764
1765int cpqhp_event_start_thread(void)
1766{
1767        cpqhp_event_thread = kthread_run(event_thread, NULL, "phpd_event");
1768        if (IS_ERR(cpqhp_event_thread)) {
1769                err("Can't start up our event thread\n");
1770                return PTR_ERR(cpqhp_event_thread);
1771        }
1772
1773        return 0;
1774}
1775
1776
1777void cpqhp_event_stop_thread(void)
1778{
1779        kthread_stop(cpqhp_event_thread);
1780}
1781
1782
1783static int update_slot_info(struct controller *ctrl, struct slot *slot)
1784{
1785        struct hotplug_slot_info *info;
1786        int result;
1787
1788        info = kmalloc(sizeof(*info), GFP_KERNEL);
1789        if (!info)
1790                return -ENOMEM;
1791
1792        info->power_status = get_slot_enabled(ctrl, slot);
1793        info->attention_status = cpq_get_attention_status(ctrl, slot);
1794        info->latch_status = cpq_get_latch_status(ctrl, slot);
1795        info->adapter_status = get_presence_status(ctrl, slot);
1796        result = pci_hp_change_slot_info(slot->hotplug_slot, info);
1797        kfree(info);
1798        return result;
1799}
1800
1801static void interrupt_event_handler(struct controller *ctrl)
1802{
1803        int loop = 0;
1804        int change = 1;
1805        struct pci_func *func;
1806        u8 hp_slot;
1807        struct slot *p_slot;
1808
1809        while (change) {
1810                change = 0;
1811
1812                for (loop = 0; loop < 10; loop++) {
1813                        /* dbg("loop %d\n", loop); */
1814                        if (ctrl->event_queue[loop].event_type != 0) {
1815                                hp_slot = ctrl->event_queue[loop].hp_slot;
1816
1817                                func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0);
1818                                if (!func)
1819                                        return;
1820
1821                                p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1822                                if (!p_slot)
1823                                        return;
1824
1825                                dbg("hp_slot %d, func %p, p_slot %p\n",
1826                                    hp_slot, func, p_slot);
1827
1828                                if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) {
1829                                        dbg("button pressed\n");
1830                                } else if (ctrl->event_queue[loop].event_type ==
1831                                           INT_BUTTON_CANCEL) {
1832                                        dbg("button cancel\n");
1833                                        del_timer(&p_slot->task_event);
1834
1835                                        mutex_lock(&ctrl->crit_sect);
1836
1837                                        if (p_slot->state == BLINKINGOFF_STATE) {
1838                                                /* slot is on */
1839                                                dbg("turn on green LED\n");
1840                                                green_LED_on(ctrl, hp_slot);
1841                                        } else if (p_slot->state == BLINKINGON_STATE) {
1842                                                /* slot is off */
1843                                                dbg("turn off green LED\n");
1844                                                green_LED_off(ctrl, hp_slot);
1845                                        }
1846
1847                                        info(msg_button_cancel, p_slot->number);
1848
1849                                        p_slot->state = STATIC_STATE;
1850
1851                                        amber_LED_off(ctrl, hp_slot);
1852
1853                                        set_SOGO(ctrl);
1854
1855                                        /* Wait for SOBS to be unset */
1856                                        wait_for_ctrl_irq(ctrl);
1857
1858                                        mutex_unlock(&ctrl->crit_sect);
1859                                }
1860                                /*** button Released (No action on press...) */
1861                                else if (ctrl->event_queue[loop].event_type == INT_BUTTON_RELEASE) {
1862                                        dbg("button release\n");
1863
1864                                        if (is_slot_enabled(ctrl, hp_slot)) {
1865                                                dbg("slot is on\n");
1866                                                p_slot->state = BLINKINGOFF_STATE;
1867                                                info(msg_button_off, p_slot->number);
1868                                        } else {
1869                                                dbg("slot is off\n");
1870                                                p_slot->state = BLINKINGON_STATE;
1871                                                info(msg_button_on, p_slot->number);
1872                                        }
1873                                        mutex_lock(&ctrl->crit_sect);
1874
1875                                        dbg("blink green LED and turn off amber\n");
1876
1877                                        amber_LED_off(ctrl, hp_slot);
1878                                        green_LED_blink(ctrl, hp_slot);
1879
1880                                        set_SOGO(ctrl);
1881
1882                                        /* Wait for SOBS to be unset */
1883                                        wait_for_ctrl_irq(ctrl);
1884
1885                                        mutex_unlock(&ctrl->crit_sect);
1886                                        init_timer(&p_slot->task_event);
1887                                        p_slot->hp_slot = hp_slot;
1888                                        p_slot->ctrl = ctrl;
1889/*                                      p_slot->physical_slot = physical_slot; */
1890                                        p_slot->task_event.expires = jiffies + 5 * HZ;   /* 5 second delay */
1891                                        p_slot->task_event.function = pushbutton_helper_thread;
1892                                        p_slot->task_event.data = (u32) p_slot;
1893
1894                                        dbg("add_timer p_slot = %p\n", p_slot);
1895                                        add_timer(&p_slot->task_event);
1896                                }
1897                                /***********POWER FAULT */
1898                                else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) {
1899                                        dbg("power fault\n");
1900                                } else {
1901                                        /* refresh notification */
1902                                        update_slot_info(ctrl, p_slot);
1903                                }
1904
1905                                ctrl->event_queue[loop].event_type = 0;
1906
1907                                change = 1;
1908                        }
1909                }               /* End of FOR loop */
1910        }
1911
1912        return;
1913}
1914
1915
1916/**
1917 * cpqhp_pushbutton_thread - handle pushbutton events
1918 * @slot: target slot (struct)
1919 *
1920 * Scheduled procedure to handle blocking stuff for the pushbuttons.
1921 * Handles all pending events and exits.
1922 */
1923void cpqhp_pushbutton_thread(unsigned long slot)
1924{
1925        u8 hp_slot;
1926        u8 device;
1927        struct pci_func *func;
1928        struct slot *p_slot = (struct slot *) slot;
1929        struct controller *ctrl = (struct controller *) p_slot->ctrl;
1930
1931        pushbutton_pending = 0;
1932        hp_slot = p_slot->hp_slot;
1933
1934        device = p_slot->device;
1935
1936        if (is_slot_enabled(ctrl, hp_slot)) {
1937                p_slot->state = POWEROFF_STATE;
1938                /* power Down board */
1939                func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1940                dbg("In power_down_board, func = %p, ctrl = %p\n", func, ctrl);
1941                if (!func) {
1942                        dbg("Error! func NULL in %s\n", __func__);
1943                        return;
1944                }
1945
1946                if (cpqhp_process_SS(ctrl, func) != 0) {
1947                        amber_LED_on(ctrl, hp_slot);
1948                        green_LED_on(ctrl, hp_slot);
1949
1950                        set_SOGO(ctrl);
1951
1952                        /* Wait for SOBS to be unset */
1953                        wait_for_ctrl_irq(ctrl);
1954                }
1955
1956                p_slot->state = STATIC_STATE;
1957        } else {
1958                p_slot->state = POWERON_STATE;
1959                /* slot is off */
1960
1961                func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1962                dbg("In add_board, func = %p, ctrl = %p\n", func, ctrl);
1963                if (!func) {
1964                        dbg("Error! func NULL in %s\n", __func__);
1965                        return;
1966                }
1967
1968                if (ctrl != NULL) {
1969                        if (cpqhp_process_SI(ctrl, func) != 0) {
1970                                amber_LED_on(ctrl, hp_slot);
1971                                green_LED_off(ctrl, hp_slot);
1972
1973                                set_SOGO(ctrl);
1974
1975                                /* Wait for SOBS to be unset */
1976                                wait_for_ctrl_irq(ctrl);
1977                        }
1978                }
1979
1980                p_slot->state = STATIC_STATE;
1981        }
1982
1983        return;
1984}
1985
1986
1987int cpqhp_process_SI(struct controller *ctrl, struct pci_func *func)
1988{
1989        u8 device, hp_slot;
1990        u16 temp_word;
1991        u32 tempdword;
1992        int rc;
1993        struct slot *p_slot;
1994        int physical_slot = 0;
1995
1996        tempdword = 0;
1997
1998        device = func->device;
1999        hp_slot = device - ctrl->slot_device_offset;
2000        p_slot = cpqhp_find_slot(ctrl, device);
2001        if (p_slot)
2002                physical_slot = p_slot->number;
2003
2004        /* Check to see if the interlock is closed */
2005        tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
2006
2007        if (tempdword & (0x01 << hp_slot))
2008                return 1;
2009
2010        if (func->is_a_board) {
2011                rc = board_replaced(func, ctrl);
2012        } else {
2013                /* add board */
2014                slot_remove(func);
2015
2016                func = cpqhp_slot_create(ctrl->bus);
2017                if (func == NULL)
2018                        return 1;
2019
2020                func->bus = ctrl->bus;
2021                func->device = device;
2022                func->function = 0;
2023                func->configured = 0;
2024                func->is_a_board = 1;
2025
2026                /* We have to save the presence info for these slots */
2027                temp_word = ctrl->ctrl_int_comp >> 16;
2028                func->presence_save = (temp_word >> hp_slot) & 0x01;
2029                func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
2030
2031                if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2032                        func->switch_save = 0;
2033                } else {
2034                        func->switch_save = 0x10;
2035                }
2036
2037                rc = board_added(func, ctrl);
2038                if (rc) {
2039                        if (is_bridge(func)) {
2040                                bridge_slot_remove(func);
2041                        } else
2042                                slot_remove(func);
2043
2044                        /* Setup slot structure with entry for empty slot */
2045                        func = cpqhp_slot_create(ctrl->bus);
2046
2047                        if (func == NULL)
2048                                return 1;
2049
2050                        func->bus = ctrl->bus;
2051                        func->device = device;
2052                        func->function = 0;
2053                        func->configured = 0;
2054                        func->is_a_board = 0;
2055
2056                        /* We have to save the presence info for these slots */
2057                        temp_word = ctrl->ctrl_int_comp >> 16;
2058                        func->presence_save = (temp_word >> hp_slot) & 0x01;
2059                        func->presence_save |=
2060                        (temp_word >> (hp_slot + 7)) & 0x02;
2061
2062                        if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2063                                func->switch_save = 0;
2064                        } else {
2065                                func->switch_save = 0x10;
2066                        }
2067                }
2068        }
2069
2070        if (rc)
2071                dbg("%s: rc = %d\n", __func__, rc);
2072
2073        if (p_slot)
2074                update_slot_info(ctrl, p_slot);
2075
2076        return rc;
2077}
2078
2079
2080int cpqhp_process_SS(struct controller *ctrl, struct pci_func *func)
2081{
2082        u8 device, class_code, header_type, BCR;
2083        u8 index = 0;
2084        u8 replace_flag;
2085        u32 rc = 0;
2086        unsigned int devfn;
2087        struct slot *p_slot;
2088        struct pci_bus *pci_bus = ctrl->pci_bus;
2089        int physical_slot = 0;
2090
2091        device = func->device;
2092        func = cpqhp_slot_find(ctrl->bus, device, index++);
2093        p_slot = cpqhp_find_slot(ctrl, device);
2094        if (p_slot)
2095                physical_slot = p_slot->number;
2096
2097        /* Make sure there are no video controllers here */
2098        while (func && !rc) {
2099                pci_bus->number = func->bus;
2100                devfn = PCI_DEVFN(func->device, func->function);
2101
2102                /* Check the Class Code */
2103                rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code);
2104                if (rc)
2105                        return rc;
2106
2107                if (class_code == PCI_BASE_CLASS_DISPLAY) {
2108                        /* Display/Video adapter (not supported) */
2109                        rc = REMOVE_NOT_SUPPORTED;
2110                } else {
2111                        /* See if it's a bridge */
2112                        rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
2113                        if (rc)
2114                                return rc;
2115
2116                        /* If it's a bridge, check the VGA Enable bit */
2117                        if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2118                                rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR);
2119                                if (rc)
2120                                        return rc;
2121
2122                                /* If the VGA Enable bit is set, remove isn't
2123                                 * supported */
2124                                if (BCR & PCI_BRIDGE_CTL_VGA)
2125                                        rc = REMOVE_NOT_SUPPORTED;
2126                        }
2127                }
2128
2129                func = cpqhp_slot_find(ctrl->bus, device, index++);
2130        }
2131
2132        func = cpqhp_slot_find(ctrl->bus, device, 0);
2133        if ((func != NULL) && !rc) {
2134                /* FIXME: Replace flag should be passed into process_SS */
2135                replace_flag = !(ctrl->add_support);
2136                rc = remove_board(func, replace_flag, ctrl);
2137        } else if (!rc) {
2138                rc = 1;
2139        }
2140
2141        if (p_slot)
2142                update_slot_info(ctrl, p_slot);
2143
2144        return rc;
2145}
2146
2147/**
2148 * switch_leds - switch the leds, go from one site to the other.
2149 * @ctrl: controller to use
2150 * @num_of_slots: number of slots to use
2151 * @work_LED: LED control value
2152 * @direction: 1 to start from the left side, 0 to start right.
2153 */
2154static void switch_leds(struct controller *ctrl, const int num_of_slots,
2155                        u32 *work_LED, const int direction)
2156{
2157        int loop;
2158
2159        for (loop = 0; loop < num_of_slots; loop++) {
2160                if (direction)
2161                        *work_LED = *work_LED >> 1;
2162                else
2163                        *work_LED = *work_LED << 1;
2164                writel(*work_LED, ctrl->hpc_reg + LED_CONTROL);
2165
2166                set_SOGO(ctrl);
2167
2168                /* Wait for SOGO interrupt */
2169                wait_for_ctrl_irq(ctrl);
2170
2171                /* Get ready for next iteration */
2172                long_delay((2*HZ)/10);
2173        }
2174}
2175
2176/**
2177 * cpqhp_hardware_test - runs hardware tests
2178 * @ctrl: target controller
2179 * @test_num: the number written to the "test" file in sysfs.
2180 *
2181 * For hot plug ctrl folks to play with.
2182 */
2183int cpqhp_hardware_test(struct controller *ctrl, int test_num)
2184{
2185        u32 save_LED;
2186        u32 work_LED;
2187        int loop;
2188        int num_of_slots;
2189
2190        num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0f;
2191
2192        switch (test_num) {
2193        case 1:
2194                /* Do stuff here! */
2195
2196                /* Do that funky LED thing */
2197                /* so we can restore them later */
2198                save_LED = readl(ctrl->hpc_reg + LED_CONTROL);
2199                work_LED = 0x01010101;
2200                switch_leds(ctrl, num_of_slots, &work_LED, 0);
2201                switch_leds(ctrl, num_of_slots, &work_LED, 1);
2202                switch_leds(ctrl, num_of_slots, &work_LED, 0);
2203                switch_leds(ctrl, num_of_slots, &work_LED, 1);
2204
2205                work_LED = 0x01010000;
2206                writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2207                switch_leds(ctrl, num_of_slots, &work_LED, 0);
2208                switch_leds(ctrl, num_of_slots, &work_LED, 1);
2209                work_LED = 0x00000101;
2210                writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2211                switch_leds(ctrl, num_of_slots, &work_LED, 0);
2212                switch_leds(ctrl, num_of_slots, &work_LED, 1);
2213
2214                work_LED = 0x01010000;
2215                writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2216                for (loop = 0; loop < num_of_slots; loop++) {
2217                        set_SOGO(ctrl);
2218
2219                        /* Wait for SOGO interrupt */
2220                        wait_for_ctrl_irq(ctrl);
2221
2222                        /* Get ready for next iteration */
2223                        long_delay((3*HZ)/10);
2224                        work_LED = work_LED >> 16;
2225                        writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2226
2227                        set_SOGO(ctrl);
2228
2229                        /* Wait for SOGO interrupt */
2230                        wait_for_ctrl_irq(ctrl);
2231
2232                        /* Get ready for next iteration */
2233                        long_delay((3*HZ)/10);
2234                        work_LED = work_LED << 16;
2235                        writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2236                        work_LED = work_LED << 1;
2237                        writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2238                }
2239
2240                /* put it back the way it was */
2241                writel(save_LED, ctrl->hpc_reg + LED_CONTROL);
2242
2243                set_SOGO(ctrl);
2244
2245                /* Wait for SOBS to be unset */
2246                wait_for_ctrl_irq(ctrl);
2247                break;
2248        case 2:
2249                /* Do other stuff here! */
2250                break;
2251        case 3:
2252                /* and more... */
2253                break;
2254        }
2255        return 0;
2256}
2257
2258
2259/**
2260 * configure_new_device - Configures the PCI header information of one board.
2261 * @ctrl: pointer to controller structure
2262 * @func: pointer to function structure
2263 * @behind_bridge: 1 if this is a recursive call, 0 if not
2264 * @resources: pointer to set of resource lists
2265 *
2266 * Returns 0 if success.
2267 */
2268static u32 configure_new_device(struct controller  *ctrl, struct pci_func  *func,
2269                                 u8 behind_bridge, struct resource_lists  *resources)
2270{
2271        u8 temp_byte, function, max_functions, stop_it;
2272        int rc;
2273        u32 ID;
2274        struct pci_func *new_slot;
2275        int index;
2276
2277        new_slot = func;
2278
2279        dbg("%s\n", __func__);
2280        /* Check for Multi-function device */
2281        ctrl->pci_bus->number = func->bus;
2282        rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte);
2283        if (rc) {
2284                dbg("%s: rc = %d\n", __func__, rc);
2285                return rc;
2286        }
2287
2288        if (temp_byte & 0x80)   /* Multi-function device */
2289                max_functions = 8;
2290        else
2291                max_functions = 1;
2292
2293        function = 0;
2294
2295        do {
2296                rc = configure_new_function(ctrl, new_slot, behind_bridge, resources);
2297
2298                if (rc) {
2299                        dbg("configure_new_function failed %d\n", rc);
2300                        index = 0;
2301
2302                        while (new_slot) {
2303                                new_slot = cpqhp_slot_find(new_slot->bus, new_slot->device, index++);
2304
2305                                if (new_slot)
2306                                        cpqhp_return_board_resources(new_slot, resources);
2307                        }
2308
2309                        return rc;
2310                }
2311
2312                function++;
2313
2314                stop_it = 0;
2315
2316                /* The following loop skips to the next present function
2317                 * and creates a board structure */
2318
2319                while ((function < max_functions) && (!stop_it)) {
2320                        pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID);
2321
2322                        if (ID == 0xFFFFFFFF) {
2323                                function++;
2324                        } else {
2325                                /* Setup slot structure. */
2326                                new_slot = cpqhp_slot_create(func->bus);
2327
2328                                if (new_slot == NULL)
2329                                        return 1;
2330
2331                                new_slot->bus = func->bus;
2332                                new_slot->device = func->device;
2333                                new_slot->function = function;
2334                                new_slot->is_a_board = 1;
2335                                new_slot->status = 0;
2336
2337                                stop_it++;
2338                        }
2339                }
2340
2341        } while (function < max_functions);
2342        dbg("returning from configure_new_device\n");
2343
2344        return 0;
2345}
2346
2347
2348/*
2349 * Configuration logic that involves the hotplug data structures and
2350 * their bookkeeping
2351 */
2352
2353
2354/**
2355 * configure_new_function - Configures the PCI header information of one device
2356 * @ctrl: pointer to controller structure
2357 * @func: pointer to function structure
2358 * @behind_bridge: 1 if this is a recursive call, 0 if not
2359 * @resources: pointer to set of resource lists
2360 *
2361 * Calls itself recursively for bridged devices.
2362 * Returns 0 if success.
2363 */
2364static int configure_new_function(struct controller *ctrl, struct pci_func *func,
2365                                   u8 behind_bridge,
2366                                   struct resource_lists *resources)
2367{
2368        int cloop;
2369        u8 IRQ = 0;
2370        u8 temp_byte;
2371        u8 device;
2372        u8 class_code;
2373        u16 command;
2374        u16 temp_word;
2375        u32 temp_dword;
2376        u32 rc;
2377        u32 temp_register;
2378        u32 base;
2379        u32 ID;
2380        unsigned int devfn;
2381        struct pci_resource *mem_node;
2382        struct pci_resource *p_mem_node;
2383        struct pci_resource *io_node;
2384        struct pci_resource *bus_node;
2385        struct pci_resource *hold_mem_node;
2386        struct pci_resource *hold_p_mem_node;
2387        struct pci_resource *hold_IO_node;
2388        struct pci_resource *hold_bus_node;
2389        struct irq_mapping irqs;
2390        struct pci_func *new_slot;
2391        struct pci_bus *pci_bus;
2392        struct resource_lists temp_resources;
2393
2394        pci_bus = ctrl->pci_bus;
2395        pci_bus->number = func->bus;
2396        devfn = PCI_DEVFN(func->device, func->function);
2397
2398        /* Check for Bridge */
2399        rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte);
2400        if (rc)
2401                return rc;
2402
2403        if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2404                /* set Primary bus */
2405                dbg("set Primary bus = %d\n", func->bus);
2406                rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus);
2407                if (rc)
2408                        return rc;
2409
2410                /* find range of buses to use */
2411                dbg("find ranges of buses to use\n");
2412                bus_node = get_max_resource(&(resources->bus_head), 1);
2413
2414                /* If we don't have any buses to allocate, we can't continue */
2415                if (!bus_node)
2416                        return -ENOMEM;
2417
2418                /* set Secondary bus */
2419                temp_byte = bus_node->base;
2420                dbg("set Secondary bus = %d\n", bus_node->base);
2421                rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte);
2422                if (rc)
2423                        return rc;
2424
2425                /* set subordinate bus */
2426                temp_byte = bus_node->base + bus_node->length - 1;
2427                dbg("set subordinate bus = %d\n", bus_node->base + bus_node->length - 1);
2428                rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2429                if (rc)
2430                        return rc;
2431
2432                /* set subordinate Latency Timer and base Latency Timer */
2433                temp_byte = 0x40;
2434                rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SEC_LATENCY_TIMER, temp_byte);
2435                if (rc)
2436                        return rc;
2437                rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_LATENCY_TIMER, temp_byte);
2438                if (rc)
2439                        return rc;
2440
2441                /* set Cache Line size */
2442                temp_byte = 0x08;
2443                rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_CACHE_LINE_SIZE, temp_byte);
2444                if (rc)
2445                        return rc;
2446
2447                /* Setup the IO, memory, and prefetchable windows */
2448                io_node = get_max_resource(&(resources->io_head), 0x1000);
2449                if (!io_node)
2450                        return -ENOMEM;
2451                mem_node = get_max_resource(&(resources->mem_head), 0x100000);
2452                if (!mem_node)
2453                        return -ENOMEM;
2454                p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000);
2455                if (!p_mem_node)
2456                        return -ENOMEM;
2457                dbg("Setup the IO, memory, and prefetchable windows\n");
2458                dbg("io_node\n");
2459                dbg("(base, len, next) (%x, %x, %p)\n", io_node->base,
2460                                        io_node->length, io_node->next);
2461                dbg("mem_node\n");
2462                dbg("(base, len, next) (%x, %x, %p)\n", mem_node->base,
2463                                        mem_node->length, mem_node->next);
2464                dbg("p_mem_node\n");
2465                dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node->base,
2466                                        p_mem_node->length, p_mem_node->next);
2467
2468                /* set up the IRQ info */
2469                if (!resources->irqs) {
2470                        irqs.barber_pole = 0;
2471                        irqs.interrupt[0] = 0;
2472                        irqs.interrupt[1] = 0;
2473                        irqs.interrupt[2] = 0;
2474                        irqs.interrupt[3] = 0;
2475                        irqs.valid_INT = 0;
2476                } else {
2477                        irqs.barber_pole = resources->irqs->barber_pole;
2478                        irqs.interrupt[0] = resources->irqs->interrupt[0];
2479                        irqs.interrupt[1] = resources->irqs->interrupt[1];
2480                        irqs.interrupt[2] = resources->irqs->interrupt[2];
2481                        irqs.interrupt[3] = resources->irqs->interrupt[3];
2482                        irqs.valid_INT = resources->irqs->valid_INT;
2483                }
2484
2485                /* set up resource lists that are now aligned on top and bottom
2486                 * for anything behind the bridge. */
2487                temp_resources.bus_head = bus_node;
2488                temp_resources.io_head = io_node;
2489                temp_resources.mem_head = mem_node;
2490                temp_resources.p_mem_head = p_mem_node;
2491                temp_resources.irqs = &irqs;
2492
2493                /* Make copies of the nodes we are going to pass down so that
2494                 * if there is a problem,we can just use these to free resources
2495                 */
2496                hold_bus_node = kmalloc(sizeof(*hold_bus_node), GFP_KERNEL);
2497                hold_IO_node = kmalloc(sizeof(*hold_IO_node), GFP_KERNEL);
2498                hold_mem_node = kmalloc(sizeof(*hold_mem_node), GFP_KERNEL);
2499                hold_p_mem_node = kmalloc(sizeof(*hold_p_mem_node), GFP_KERNEL);
2500
2501                if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) {
2502                        kfree(hold_bus_node);
2503                        kfree(hold_IO_node);
2504                        kfree(hold_mem_node);
2505                        kfree(hold_p_mem_node);
2506
2507                        return 1;
2508                }
2509
2510                memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource));
2511
2512                bus_node->base += 1;
2513                bus_node->length -= 1;
2514                bus_node->next = NULL;
2515
2516                /* If we have IO resources copy them and fill in the bridge's
2517                 * IO range registers */
2518                memcpy(hold_IO_node, io_node, sizeof(struct pci_resource));
2519                io_node->next = NULL;
2520
2521                /* set IO base and Limit registers */
2522                temp_byte = io_node->base >> 8;
2523                rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_BASE, temp_byte);
2524
2525                temp_byte = (io_node->base + io_node->length - 1) >> 8;
2526                rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2527
2528                /* Copy the memory resources and fill in the bridge's memory
2529                 * range registers.
2530                 */
2531                memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource));
2532                mem_node->next = NULL;
2533
2534                /* set Mem base and Limit registers */
2535                temp_word = mem_node->base >> 16;
2536                rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2537
2538                temp_word = (mem_node->base + mem_node->length - 1) >> 16;
2539                rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2540
2541                memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource));
2542                p_mem_node->next = NULL;
2543
2544                /* set Pre Mem base and Limit registers */
2545                temp_word = p_mem_node->base >> 16;
2546                rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2547
2548                temp_word = (p_mem_node->base + p_mem_node->length - 1) >> 16;
2549                rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2550
2551                /* Adjust this to compensate for extra adjustment in first loop
2552                 */
2553                irqs.barber_pole--;
2554
2555                rc = 0;
2556
2557                /* Here we actually find the devices and configure them */
2558                for (device = 0; (device <= 0x1F) && !rc; device++) {
2559                        irqs.barber_pole = (irqs.barber_pole + 1) & 0x03;
2560
2561                        ID = 0xFFFFFFFF;
2562                        pci_bus->number = hold_bus_node->base;
2563                        pci_bus_read_config_dword(pci_bus, PCI_DEVFN(device, 0), 0x00, &ID);
2564                        pci_bus->number = func->bus;
2565
2566                        if (ID != 0xFFFFFFFF) {   /*  device present */
2567                                /* Setup slot structure. */
2568                                new_slot = cpqhp_slot_create(hold_bus_node->base);
2569
2570                                if (new_slot == NULL) {
2571                                        rc = -ENOMEM;
2572                                        continue;
2573                                }
2574
2575                                new_slot->bus = hold_bus_node->base;
2576                                new_slot->device = device;
2577                                new_slot->function = 0;
2578                                new_slot->is_a_board = 1;
2579                                new_slot->status = 0;
2580
2581                                rc = configure_new_device(ctrl, new_slot, 1, &temp_resources);
2582                                dbg("configure_new_device rc=0x%x\n", rc);
2583                        }       /* End of IF (device in slot?) */
2584                }               /* End of FOR loop */
2585
2586                if (rc)
2587                        goto free_and_out;
2588                /* save the interrupt routing information */
2589                if (resources->irqs) {
2590                        resources->irqs->interrupt[0] = irqs.interrupt[0];
2591                        resources->irqs->interrupt[1] = irqs.interrupt[1];
2592                        resources->irqs->interrupt[2] = irqs.interrupt[2];
2593                        resources->irqs->interrupt[3] = irqs.interrupt[3];
2594                        resources->irqs->valid_INT = irqs.valid_INT;
2595                } else if (!behind_bridge) {
2596                        /* We need to hook up the interrupts here */
2597                        for (cloop = 0; cloop < 4; cloop++) {
2598                                if (irqs.valid_INT & (0x01 << cloop)) {
2599                                        rc = cpqhp_set_irq(func->bus, func->device,
2600                                                           cloop + 1, irqs.interrupt[cloop]);
2601                                        if (rc)
2602                                                goto free_and_out;
2603                                }
2604                        }       /* end of for loop */
2605                }
2606                /* Return unused bus resources
2607                 * First use the temporary node to store information for
2608                 * the board */
2609                if (bus_node && temp_resources.bus_head) {
2610                        hold_bus_node->length = bus_node->base - hold_bus_node->base;
2611
2612                        hold_bus_node->next = func->bus_head;
2613                        func->bus_head = hold_bus_node;
2614
2615                        temp_byte = temp_resources.bus_head->base - 1;
2616
2617                        /* set subordinate bus */
2618                        rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2619
2620                        if (temp_resources.bus_head->length == 0) {
2621                                kfree(temp_resources.bus_head);
2622                                temp_resources.bus_head = NULL;
2623                        } else {
2624                                return_resource(&(resources->bus_head), temp_resources.bus_head);
2625                        }
2626                }
2627
2628                /* If we have IO space available and there is some left,
2629                 * return the unused portion */
2630                if (hold_IO_node && temp_resources.io_head) {
2631                        io_node = do_pre_bridge_resource_split(&(temp_resources.io_head),
2632                                                               &hold_IO_node, 0x1000);
2633
2634                        /* Check if we were able to split something off */
2635                        if (io_node) {
2636                                hold_IO_node->base = io_node->base + io_node->length;
2637
2638                                temp_byte = (hold_IO_node->base) >> 8;
2639                                rc = pci_bus_write_config_word(pci_bus, devfn, PCI_IO_BASE, temp_byte);
2640
2641                                return_resource(&(resources->io_head), io_node);
2642                        }
2643
2644                        io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000);
2645
2646                        /* Check if we were able to split something off */
2647                        if (io_node) {
2648                                /* First use the temporary node to store
2649                                 * information for the board */
2650                                hold_IO_node->length = io_node->base - hold_IO_node->base;
2651
2652                                /* If we used any, add it to the board's list */
2653                                if (hold_IO_node->length) {
2654                                        hold_IO_node->next = func->io_head;
2655                                        func->io_head = hold_IO_node;
2656
2657                                        temp_byte = (io_node->base - 1) >> 8;
2658                                        rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2659
2660                                        return_resource(&(resources->io_head), io_node);
2661                                } else {
2662                                        /* it doesn't need any IO */
2663                                        temp_word = 0x0000;
2664                                        rc = pci_bus_write_config_word(pci_bus, devfn, PCI_IO_LIMIT, temp_word);
2665
2666                                        return_resource(&(resources->io_head), io_node);
2667                                        kfree(hold_IO_node);
2668                                }
2669                        } else {
2670                                /* it used most of the range */
2671                                hold_IO_node->next = func->io_head;
2672                                func->io_head = hold_IO_node;
2673                        }
2674                } else if (hold_IO_node) {
2675                        /* it used the whole range */
2676                        hold_IO_node->next = func->io_head;
2677                        func->io_head = hold_IO_node;
2678                }
2679                /* If we have memory space available and there is some left,
2680                 * return the unused portion */
2681                if (hold_mem_node && temp_resources.mem_head) {
2682                        mem_node = do_pre_bridge_resource_split(&(temp_resources.  mem_head),
2683                                                                &hold_mem_node, 0x100000);
2684
2685                        /* Check if we were able to split something off */
2686                        if (mem_node) {
2687                                hold_mem_node->base = mem_node->base + mem_node->length;
2688
2689                                temp_word = (hold_mem_node->base) >> 16;
2690                                rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2691
2692                                return_resource(&(resources->mem_head), mem_node);
2693                        }
2694
2695                        mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000);
2696
2697                        /* Check if we were able to split something off */
2698                        if (mem_node) {
2699                                /* First use the temporary node to store
2700                                 * information for the board */
2701                                hold_mem_node->length = mem_node->base - hold_mem_node->base;
2702
2703                                if (hold_mem_node->length) {
2704                                        hold_mem_node->next = func->mem_head;
2705                                        func->mem_head = hold_mem_node;
2706
2707                                        /* configure end address */
2708                                        temp_word = (mem_node->base - 1) >> 16;
2709                                        rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2710
2711                                        /* Return unused resources to the pool */
2712                                        return_resource(&(resources->mem_head), mem_node);
2713                                } else {
2714                                        /* it doesn't need any Mem */
2715                                        temp_word = 0x0000;
2716                                        rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2717
2718                                        return_resource(&(resources->mem_head), mem_node);
2719                                        kfree(hold_mem_node);
2720                                }
2721                        } else {
2722                                /* it used most of the range */
2723                                hold_mem_node->next = func->mem_head;
2724                                func->mem_head = hold_mem_node;
2725                        }
2726                } else if (hold_mem_node) {
2727                        /* it used the whole range */
2728                        hold_mem_node->next = func->mem_head;
2729                        func->mem_head = hold_mem_node;
2730                }
2731                /* If we have prefetchable memory space available and there
2732                 * is some left at the end, return the unused portion */
2733                if (temp_resources.p_mem_head) {
2734                        p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head),
2735                                                                  &hold_p_mem_node, 0x100000);
2736
2737                        /* Check if we were able to split something off */
2738                        if (p_mem_node) {
2739                                hold_p_mem_node->base = p_mem_node->base + p_mem_node->length;
2740
2741                                temp_word = (hold_p_mem_node->base) >> 16;
2742                                rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2743
2744                                return_resource(&(resources->p_mem_head), p_mem_node);
2745                        }
2746
2747                        p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000);
2748
2749                        /* Check if we were able to split something off */
2750                        if (p_mem_node) {
2751                                /* First use the temporary node to store
2752                                 * information for the board */
2753                                hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base;
2754
2755                                /* If we used any, add it to the board's list */
2756                                if (hold_p_mem_node->length) {
2757                                        hold_p_mem_node->next = func->p_mem_head;
2758                                        func->p_mem_head = hold_p_mem_node;
2759
2760                                        temp_word = (p_mem_node->base - 1) >> 16;
2761                                        rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2762
2763                                        return_resource(&(resources->p_mem_head), p_mem_node);
2764                                } else {
2765                                        /* it doesn't need any PMem */
2766                                        temp_word = 0x0000;
2767                                        rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2768
2769                                        return_resource(&(resources->p_mem_head), p_mem_node);
2770                                        kfree(hold_p_mem_node);
2771                                }
2772                        } else {
2773                                /* it used the most of the range */
2774                                hold_p_mem_node->next = func->p_mem_head;
2775                                func->p_mem_head = hold_p_mem_node;
2776                        }
2777                } else if (hold_p_mem_node) {
2778                        /* it used the whole range */
2779                        hold_p_mem_node->next = func->p_mem_head;
2780                        func->p_mem_head = hold_p_mem_node;
2781                }
2782                /* We should be configuring an IRQ and the bridge's base address
2783                 * registers if it needs them.  Although we have never seen such
2784                 * a device */
2785
2786                /* enable card */
2787                command = 0x0157;       /* = PCI_COMMAND_IO |
2788                                         *   PCI_COMMAND_MEMORY |
2789                                         *   PCI_COMMAND_MASTER |
2790                                         *   PCI_COMMAND_INVALIDATE |
2791                                         *   PCI_COMMAND_PARITY |
2792                                         *   PCI_COMMAND_SERR */
2793                rc = pci_bus_write_config_word(pci_bus, devfn, PCI_COMMAND, command);
2794
2795                /* set Bridge Control Register */
2796                command = 0x07;         /* = PCI_BRIDGE_CTL_PARITY |
2797                                         *   PCI_BRIDGE_CTL_SERR |
2798                                         *   PCI_BRIDGE_CTL_NO_ISA */
2799                rc = pci_bus_write_config_word(pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
2800        } else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
2801                /* Standard device */
2802                rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code);
2803
2804                if (class_code == PCI_BASE_CLASS_DISPLAY) {
2805                        /* Display (video) adapter (not supported) */
2806                        return DEVICE_TYPE_NOT_SUPPORTED;
2807                }
2808                /* Figure out IO and memory needs */
2809                for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
2810                        temp_register = 0xFFFFFFFF;
2811
2812                        dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus->number, devfn, cloop);
2813                        rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
2814
2815                        rc = pci_bus_read_config_dword(pci_bus, devfn, cloop, &temp_register);
2816                        dbg("CND: base = 0x%x\n", temp_register);
2817
2818                        if (temp_register) {      /* If this register is implemented */
2819                                if ((temp_register & 0x03L) == 0x01) {
2820                                        /* Map IO */
2821
2822                                        /* set base = amount of IO space */
2823                                        base = temp_register & 0xFFFFFFFC;
2824                                        base = ~base + 1;
2825
2826                                        dbg("CND:      length = 0x%x\n", base);
2827                                        io_node = get_io_resource(&(resources->io_head), base);
2828                                        dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n",
2829                                            io_node->base, io_node->length, io_node->next);
2830                                        dbg("func (%p) io_head (%p)\n", func, func->io_head);
2831
2832                                        /* allocate the resource to the board */
2833                                        if (io_node) {
2834                                                base = io_node->base;
2835
2836                                                io_node->next = func->io_head;
2837                                                func->io_head = io_node;
2838                                        } else
2839                                                return -ENOMEM;
2840                                } else if ((temp_register & 0x0BL) == 0x08) {
2841                                        /* Map prefetchable memory */
2842                                        base = temp_register & 0xFFFFFFF0;
2843                                        base = ~base + 1;
2844
2845                                        dbg("CND:      length = 0x%x\n", base);
2846                                        p_mem_node = get_resource(&(resources->p_mem_head), base);
2847
2848                                        /* allocate the resource to the board */
2849                                        if (p_mem_node) {
2850                                                base = p_mem_node->base;
2851
2852                                                p_mem_node->next = func->p_mem_head;
2853                                                func->p_mem_head = p_mem_node;
2854                                        } else
2855                                                return -ENOMEM;
2856                                } else if ((temp_register & 0x0BL) == 0x00) {
2857                                        /* Map memory */
2858                                        base = temp_register & 0xFFFFFFF0;
2859                                        base = ~base + 1;
2860
2861                                        dbg("CND:      length = 0x%x\n", base);
2862                                        mem_node = get_resource(&(resources->mem_head), base);
2863
2864                                        /* allocate the resource to the board */
2865                                        if (mem_node) {
2866                                                base = mem_node->base;
2867
2868                                                mem_node->next = func->mem_head;
2869                                                func->mem_head = mem_node;
2870                                        } else
2871                                                return -ENOMEM;
2872                                } else {
2873                                        /* Reserved bits or requesting space below 1M */
2874                                        return NOT_ENOUGH_RESOURCES;
2875                                }
2876
2877                                rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2878
2879                                /* Check for 64-bit base */
2880                                if ((temp_register & 0x07L) == 0x04) {
2881                                        cloop += 4;
2882
2883                                        /* Upper 32 bits of address always zero
2884                                         * on today's systems */
2885                                        /* FIXME this is probably not true on
2886                                         * Alpha and ia64??? */
2887                                        base = 0;
2888                                        rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2889                                }
2890                        }
2891                }               /* End of base register loop */
2892                if (cpqhp_legacy_mode) {
2893                        /* Figure out which interrupt pin this function uses */
2894                        rc = pci_bus_read_config_byte(pci_bus, devfn,
2895                                PCI_INTERRUPT_PIN, &temp_byte);
2896
2897                        /* If this function needs an interrupt and we are behind
2898                         * a bridge and the pin is tied to something that's
2899                         * already mapped, set this one the same */
2900                        if (temp_byte && resources->irqs &&
2901                            (resources->irqs->valid_INT &
2902                             (0x01 << ((temp_byte + resources->irqs->barber_pole - 1) & 0x03)))) {
2903                                /* We have to share with something already set up */
2904                                IRQ = resources->irqs->interrupt[(temp_byte +
2905                                        resources->irqs->barber_pole - 1) & 0x03];
2906                        } else {
2907                                /* Program IRQ based on card type */
2908                                rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code);
2909
2910                                if (class_code == PCI_BASE_CLASS_STORAGE)
2911                                        IRQ = cpqhp_disk_irq;
2912                                else
2913                                        IRQ = cpqhp_nic_irq;
2914                        }
2915
2916                        /* IRQ Line */
2917                        rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_INTERRUPT_LINE, IRQ);
2918                }
2919
2920                if (!behind_bridge) {
2921                        rc = cpqhp_set_irq(func->bus, func->device, temp_byte, IRQ);
2922                        if (rc)
2923                                return 1;
2924                } else {
2925                        /* TBD - this code may also belong in the other clause
2926                         * of this If statement */
2927                        resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03] = IRQ;
2928                        resources->irqs->valid_INT |= 0x01 << (temp_byte + resources->irqs->barber_pole - 1) & 0x03;
2929                }
2930
2931                /* Latency Timer */
2932                temp_byte = 0x40;
2933                rc = pci_bus_write_config_byte(pci_bus, devfn,
2934                                        PCI_LATENCY_TIMER, temp_byte);
2935
2936                /* Cache Line size */
2937                temp_byte = 0x08;
2938                rc = pci_bus_write_config_byte(pci_bus, devfn,
2939                                        PCI_CACHE_LINE_SIZE, temp_byte);
2940
2941                /* disable ROM base Address */
2942                temp_dword = 0x00L;
2943                rc = pci_bus_write_config_word(pci_bus, devfn,
2944                                        PCI_ROM_ADDRESS, temp_dword);
2945
2946                /* enable card */
2947                temp_word = 0x0157;     /* = PCI_COMMAND_IO |
2948                                         *   PCI_COMMAND_MEMORY |
2949                                         *   PCI_COMMAND_MASTER |
2950                                         *   PCI_COMMAND_INVALIDATE |
2951                                         *   PCI_COMMAND_PARITY |
2952                                         *   PCI_COMMAND_SERR */
2953                rc = pci_bus_write_config_word(pci_bus, devfn,
2954                                        PCI_COMMAND, temp_word);
2955        } else {                /* End of Not-A-Bridge else */
2956                /* It's some strange type of PCI adapter (Cardbus?) */
2957                return DEVICE_TYPE_NOT_SUPPORTED;
2958        }
2959
2960        func->configured = 1;
2961
2962        return 0;
2963free_and_out:
2964        cpqhp_destroy_resource_list(&temp_resources);
2965
2966        return_resource(&(resources->bus_head), hold_bus_node);
2967        return_resource(&(resources->io_head), hold_IO_node);
2968        return_resource(&(resources->mem_head), hold_mem_node);
2969        return_resource(&(resources->p_mem_head), hold_p_mem_node);
2970        return rc;
2971}
2972