linux/drivers/platform/x86/intel_scu_ipc.c
<<
>>
Prefs
   1/*
   2 * intel_scu_ipc.c: Driver for the Intel SCU IPC mechanism
   3 *
   4 * (C) Copyright 2008-2010,2015 Intel Corporation
   5 * Author: Sreedhara DS (sreedhara.ds@intel.com)
   6 *
   7 * This program is free software; you can redistribute it and/or
   8 * modify it under the terms of the GNU General Public License
   9 * as published by the Free Software Foundation; version 2
  10 * of the License.
  11 *
  12 * SCU running in ARC processor communicates with other entity running in IA
  13 * core through IPC mechanism which in turn messaging between IA core ad SCU.
  14 * SCU has two IPC mechanism IPC-1 and IPC-2. IPC-1 is used between IA32 and
  15 * SCU where IPC-2 is used between P-Unit and SCU. This driver delas with
  16 * IPC-1 Driver provides an API for power control unit registers (e.g. MSIC)
  17 * along with other APIs.
  18 */
  19#include <linux/delay.h>
  20#include <linux/errno.h>
  21#include <linux/init.h>
  22#include <linux/device.h>
  23#include <linux/pm.h>
  24#include <linux/pci.h>
  25#include <linux/interrupt.h>
  26#include <linux/sfi.h>
  27#include <asm/intel-mid.h>
  28#include <asm/intel_scu_ipc.h>
  29
  30/* IPC defines the following message types */
  31#define IPCMSG_WATCHDOG_TIMER 0xF8 /* Set Kernel Watchdog Threshold */
  32#define IPCMSG_BATTERY        0xEF /* Coulomb Counter Accumulator */
  33#define IPCMSG_FW_UPDATE      0xFE /* Firmware update */
  34#define IPCMSG_PCNTRL         0xFF /* Power controller unit read/write */
  35#define IPCMSG_FW_REVISION    0xF4 /* Get firmware revision */
  36
  37/* Command id associated with message IPCMSG_PCNTRL */
  38#define IPC_CMD_PCNTRL_W      0 /* Register write */
  39#define IPC_CMD_PCNTRL_R      1 /* Register read */
  40#define IPC_CMD_PCNTRL_M      2 /* Register read-modify-write */
  41
  42/*
  43 * IPC register summary
  44 *
  45 * IPC register blocks are memory mapped at fixed address of PCI BAR 0.
  46 * To read or write information to the SCU, driver writes to IPC-1 memory
  47 * mapped registers. The following is the IPC mechanism
  48 *
  49 * 1. IA core cDMI interface claims this transaction and converts it to a
  50 *    Transaction Layer Packet (TLP) message which is sent across the cDMI.
  51 *
  52 * 2. South Complex cDMI block receives this message and writes it to
  53 *    the IPC-1 register block, causing an interrupt to the SCU
  54 *
  55 * 3. SCU firmware decodes this interrupt and IPC message and the appropriate
  56 *    message handler is called within firmware.
  57 */
  58
  59#define IPC_WWBUF_SIZE    20            /* IPC Write buffer Size */
  60#define IPC_RWBUF_SIZE    20            /* IPC Read buffer Size */
  61#define IPC_IOC           0x100         /* IPC command register IOC bit */
  62
  63#define PCI_DEVICE_ID_LINCROFT          0x082a
  64#define PCI_DEVICE_ID_PENWELL           0x080e
  65#define PCI_DEVICE_ID_CLOVERVIEW        0x08ea
  66#define PCI_DEVICE_ID_TANGIER           0x11a0
  67
  68/* intel scu ipc driver data */
  69struct intel_scu_ipc_pdata_t {
  70        u32 i2c_base;
  71        u32 i2c_len;
  72        u8 irq_mode;
  73};
  74
  75static struct intel_scu_ipc_pdata_t intel_scu_ipc_lincroft_pdata = {
  76        .i2c_base = 0xff12b000,
  77        .i2c_len = 0x10,
  78        .irq_mode = 0,
  79};
  80
  81/* Penwell and Cloverview */
  82static struct intel_scu_ipc_pdata_t intel_scu_ipc_penwell_pdata = {
  83        .i2c_base = 0xff12b000,
  84        .i2c_len = 0x10,
  85        .irq_mode = 1,
  86};
  87
  88static struct intel_scu_ipc_pdata_t intel_scu_ipc_tangier_pdata = {
  89        .i2c_base  = 0xff00d000,
  90        .i2c_len = 0x10,
  91        .irq_mode = 0,
  92};
  93
  94struct intel_scu_ipc_dev {
  95        struct device *dev;
  96        void __iomem *ipc_base;
  97        void __iomem *i2c_base;
  98        struct completion cmd_complete;
  99        u8 irq_mode;
 100};
 101
 102static struct intel_scu_ipc_dev  ipcdev; /* Only one for now */
 103
 104/*
 105 * IPC Read Buffer (Read Only):
 106 * 16 byte buffer for receiving data from SCU, if IPC command
 107 * processing results in response data
 108 */
 109#define IPC_READ_BUFFER         0x90
 110
 111#define IPC_I2C_CNTRL_ADDR      0
 112#define I2C_DATA_ADDR           0x04
 113
 114static DEFINE_MUTEX(ipclock); /* lock used to prevent multiple call to SCU */
 115
 116/*
 117 * Send ipc command
 118 * Command Register (Write Only):
 119 * A write to this register results in an interrupt to the SCU core processor
 120 * Format:
 121 * |rfu2(8) | size(8) | command id(4) | rfu1(3) | ioc(1) | command(8)|
 122 */
 123static inline void ipc_command(struct intel_scu_ipc_dev *scu, u32 cmd)
 124{
 125        if (scu->irq_mode) {
 126                reinit_completion(&scu->cmd_complete);
 127                writel(cmd | IPC_IOC, scu->ipc_base);
 128        }
 129        writel(cmd, scu->ipc_base);
 130}
 131
 132/*
 133 * Write ipc data
 134 * IPC Write Buffer (Write Only):
 135 * 16-byte buffer for sending data associated with IPC command to
 136 * SCU. Size of the data is specified in the IPC_COMMAND_REG register
 137 */
 138static inline void ipc_data_writel(struct intel_scu_ipc_dev *scu, u32 data, u32 offset)
 139{
 140        writel(data, scu->ipc_base + 0x80 + offset);
 141}
 142
 143/*
 144 * Status Register (Read Only):
 145 * Driver will read this register to get the ready/busy status of the IPC
 146 * block and error status of the IPC command that was just processed by SCU
 147 * Format:
 148 * |rfu3(8)|error code(8)|initiator id(8)|cmd id(4)|rfu1(2)|error(1)|busy(1)|
 149 */
 150static inline u8 ipc_read_status(struct intel_scu_ipc_dev *scu)
 151{
 152        return __raw_readl(scu->ipc_base + 0x04);
 153}
 154
 155/* Read ipc byte data */
 156static inline u8 ipc_data_readb(struct intel_scu_ipc_dev *scu, u32 offset)
 157{
 158        return readb(scu->ipc_base + IPC_READ_BUFFER + offset);
 159}
 160
 161/* Read ipc u32 data */
 162static inline u32 ipc_data_readl(struct intel_scu_ipc_dev *scu, u32 offset)
 163{
 164        return readl(scu->ipc_base + IPC_READ_BUFFER + offset);
 165}
 166
 167/* Wait till scu status is busy */
 168static inline int busy_loop(struct intel_scu_ipc_dev *scu)
 169{
 170        u32 status = ipc_read_status(scu);
 171        u32 loop_count = 100000;
 172
 173        /* break if scu doesn't reset busy bit after huge retry */
 174        while ((status & BIT(0)) && --loop_count) {
 175                udelay(1); /* scu processing time is in few u secods */
 176                status = ipc_read_status(scu);
 177        }
 178
 179        if (status & BIT(0)) {
 180                dev_err(scu->dev, "IPC timed out");
 181                return -ETIMEDOUT;
 182        }
 183
 184        if (status & BIT(1))
 185                return -EIO;
 186
 187        return 0;
 188}
 189
 190/* Wait till ipc ioc interrupt is received or timeout in 3 HZ */
 191static inline int ipc_wait_for_interrupt(struct intel_scu_ipc_dev *scu)
 192{
 193        int status;
 194
 195        if (!wait_for_completion_timeout(&scu->cmd_complete, 3 * HZ)) {
 196                dev_err(scu->dev, "IPC timed out\n");
 197                return -ETIMEDOUT;
 198        }
 199
 200        status = ipc_read_status(scu);
 201        if (status & BIT(1))
 202                return -EIO;
 203
 204        return 0;
 205}
 206
 207static int intel_scu_ipc_check_status(struct intel_scu_ipc_dev *scu)
 208{
 209        return scu->irq_mode ? ipc_wait_for_interrupt(scu) : busy_loop(scu);
 210}
 211
 212/* Read/Write power control(PMIC in Langwell, MSIC in PenWell) registers */
 213static int pwr_reg_rdwr(u16 *addr, u8 *data, u32 count, u32 op, u32 id)
 214{
 215        struct intel_scu_ipc_dev *scu = &ipcdev;
 216        int nc;
 217        u32 offset = 0;
 218        int err;
 219        u8 cbuf[IPC_WWBUF_SIZE];
 220        u32 *wbuf = (u32 *)&cbuf;
 221
 222        memset(cbuf, 0, sizeof(cbuf));
 223
 224        mutex_lock(&ipclock);
 225
 226        if (scu->dev == NULL) {
 227                mutex_unlock(&ipclock);
 228                return -ENODEV;
 229        }
 230
 231        for (nc = 0; nc < count; nc++, offset += 2) {
 232                cbuf[offset] = addr[nc];
 233                cbuf[offset + 1] = addr[nc] >> 8;
 234        }
 235
 236        if (id == IPC_CMD_PCNTRL_R) {
 237                for (nc = 0, offset = 0; nc < count; nc++, offset += 4)
 238                        ipc_data_writel(scu, wbuf[nc], offset);
 239                ipc_command(scu, (count * 2) << 16 | id << 12 | 0 << 8 | op);
 240        } else if (id == IPC_CMD_PCNTRL_W) {
 241                for (nc = 0; nc < count; nc++, offset += 1)
 242                        cbuf[offset] = data[nc];
 243                for (nc = 0, offset = 0; nc < count; nc++, offset += 4)
 244                        ipc_data_writel(scu, wbuf[nc], offset);
 245                ipc_command(scu, (count * 3) << 16 | id << 12 | 0 << 8 | op);
 246        } else if (id == IPC_CMD_PCNTRL_M) {
 247                cbuf[offset] = data[0];
 248                cbuf[offset + 1] = data[1];
 249                ipc_data_writel(scu, wbuf[0], 0); /* Write wbuff */
 250                ipc_command(scu, 4 << 16 | id << 12 | 0 << 8 | op);
 251        }
 252
 253        err = intel_scu_ipc_check_status(scu);
 254        if (!err && id == IPC_CMD_PCNTRL_R) { /* Read rbuf */
 255                /* Workaround: values are read as 0 without memcpy_fromio */
 256                memcpy_fromio(cbuf, scu->ipc_base + 0x90, 16);
 257                for (nc = 0; nc < count; nc++)
 258                        data[nc] = ipc_data_readb(scu, nc);
 259        }
 260        mutex_unlock(&ipclock);
 261        return err;
 262}
 263
 264/**
 265 *      intel_scu_ipc_ioread8           -       read a word via the SCU
 266 *      @addr: register on SCU
 267 *      @data: return pointer for read byte
 268 *
 269 *      Read a single register. Returns 0 on success or an error code. All
 270 *      locking between SCU accesses is handled for the caller.
 271 *
 272 *      This function may sleep.
 273 */
 274int intel_scu_ipc_ioread8(u16 addr, u8 *data)
 275{
 276        return pwr_reg_rdwr(&addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
 277}
 278EXPORT_SYMBOL(intel_scu_ipc_ioread8);
 279
 280/**
 281 *      intel_scu_ipc_ioread16          -       read a word via the SCU
 282 *      @addr: register on SCU
 283 *      @data: return pointer for read word
 284 *
 285 *      Read a register pair. Returns 0 on success or an error code. All
 286 *      locking between SCU accesses is handled for the caller.
 287 *
 288 *      This function may sleep.
 289 */
 290int intel_scu_ipc_ioread16(u16 addr, u16 *data)
 291{
 292        u16 x[2] = {addr, addr + 1};
 293        return pwr_reg_rdwr(x, (u8 *)data, 2, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
 294}
 295EXPORT_SYMBOL(intel_scu_ipc_ioread16);
 296
 297/**
 298 *      intel_scu_ipc_ioread32          -       read a dword via the SCU
 299 *      @addr: register on SCU
 300 *      @data: return pointer for read dword
 301 *
 302 *      Read four registers. Returns 0 on success or an error code. All
 303 *      locking between SCU accesses is handled for the caller.
 304 *
 305 *      This function may sleep.
 306 */
 307int intel_scu_ipc_ioread32(u16 addr, u32 *data)
 308{
 309        u16 x[4] = {addr, addr + 1, addr + 2, addr + 3};
 310        return pwr_reg_rdwr(x, (u8 *)data, 4, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
 311}
 312EXPORT_SYMBOL(intel_scu_ipc_ioread32);
 313
 314/**
 315 *      intel_scu_ipc_iowrite8          -       write a byte via the SCU
 316 *      @addr: register on SCU
 317 *      @data: byte to write
 318 *
 319 *      Write a single register. Returns 0 on success or an error code. All
 320 *      locking between SCU accesses is handled for the caller.
 321 *
 322 *      This function may sleep.
 323 */
 324int intel_scu_ipc_iowrite8(u16 addr, u8 data)
 325{
 326        return pwr_reg_rdwr(&addr, &data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
 327}
 328EXPORT_SYMBOL(intel_scu_ipc_iowrite8);
 329
 330/**
 331 *      intel_scu_ipc_iowrite16         -       write a word via the SCU
 332 *      @addr: register on SCU
 333 *      @data: word to write
 334 *
 335 *      Write two registers. Returns 0 on success or an error code. All
 336 *      locking between SCU accesses is handled for the caller.
 337 *
 338 *      This function may sleep.
 339 */
 340int intel_scu_ipc_iowrite16(u16 addr, u16 data)
 341{
 342        u16 x[2] = {addr, addr + 1};
 343        return pwr_reg_rdwr(x, (u8 *)&data, 2, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
 344}
 345EXPORT_SYMBOL(intel_scu_ipc_iowrite16);
 346
 347/**
 348 *      intel_scu_ipc_iowrite32         -       write a dword via the SCU
 349 *      @addr: register on SCU
 350 *      @data: dword to write
 351 *
 352 *      Write four registers. Returns 0 on success or an error code. All
 353 *      locking between SCU accesses is handled for the caller.
 354 *
 355 *      This function may sleep.
 356 */
 357int intel_scu_ipc_iowrite32(u16 addr, u32 data)
 358{
 359        u16 x[4] = {addr, addr + 1, addr + 2, addr + 3};
 360        return pwr_reg_rdwr(x, (u8 *)&data, 4, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
 361}
 362EXPORT_SYMBOL(intel_scu_ipc_iowrite32);
 363
 364/**
 365 *      intel_scu_ipc_readvv            -       read a set of registers
 366 *      @addr: register list
 367 *      @data: bytes to return
 368 *      @len: length of array
 369 *
 370 *      Read registers. Returns 0 on success or an error code. All
 371 *      locking between SCU accesses is handled for the caller.
 372 *
 373 *      The largest array length permitted by the hardware is 5 items.
 374 *
 375 *      This function may sleep.
 376 */
 377int intel_scu_ipc_readv(u16 *addr, u8 *data, int len)
 378{
 379        return pwr_reg_rdwr(addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
 380}
 381EXPORT_SYMBOL(intel_scu_ipc_readv);
 382
 383/**
 384 *      intel_scu_ipc_writev            -       write a set of registers
 385 *      @addr: register list
 386 *      @data: bytes to write
 387 *      @len: length of array
 388 *
 389 *      Write registers. Returns 0 on success or an error code. All
 390 *      locking between SCU accesses is handled for the caller.
 391 *
 392 *      The largest array length permitted by the hardware is 5 items.
 393 *
 394 *      This function may sleep.
 395 *
 396 */
 397int intel_scu_ipc_writev(u16 *addr, u8 *data, int len)
 398{
 399        return pwr_reg_rdwr(addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
 400}
 401EXPORT_SYMBOL(intel_scu_ipc_writev);
 402
 403/**
 404 *      intel_scu_ipc_update_register   -       r/m/w a register
 405 *      @addr: register address
 406 *      @bits: bits to update
 407 *      @mask: mask of bits to update
 408 *
 409 *      Read-modify-write power control unit register. The first data argument
 410 *      must be register value and second is mask value
 411 *      mask is a bitmap that indicates which bits to update.
 412 *      0 = masked. Don't modify this bit, 1 = modify this bit.
 413 *      returns 0 on success or an error code.
 414 *
 415 *      This function may sleep. Locking between SCU accesses is handled
 416 *      for the caller.
 417 */
 418int intel_scu_ipc_update_register(u16 addr, u8 bits, u8 mask)
 419{
 420        u8 data[2] = { bits, mask };
 421        return pwr_reg_rdwr(&addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_M);
 422}
 423EXPORT_SYMBOL(intel_scu_ipc_update_register);
 424
 425/**
 426 *      intel_scu_ipc_simple_command    -       send a simple command
 427 *      @cmd: command
 428 *      @sub: sub type
 429 *
 430 *      Issue a simple command to the SCU. Do not use this interface if
 431 *      you must then access data as any data values may be overwritten
 432 *      by another SCU access by the time this function returns.
 433 *
 434 *      This function may sleep. Locking for SCU accesses is handled for
 435 *      the caller.
 436 */
 437int intel_scu_ipc_simple_command(int cmd, int sub)
 438{
 439        struct intel_scu_ipc_dev *scu = &ipcdev;
 440        int err;
 441
 442        mutex_lock(&ipclock);
 443        if (scu->dev == NULL) {
 444                mutex_unlock(&ipclock);
 445                return -ENODEV;
 446        }
 447        ipc_command(scu, sub << 12 | cmd);
 448        err = intel_scu_ipc_check_status(scu);
 449        mutex_unlock(&ipclock);
 450        return err;
 451}
 452EXPORT_SYMBOL(intel_scu_ipc_simple_command);
 453
 454/**
 455 *      intel_scu_ipc_command   -       command with data
 456 *      @cmd: command
 457 *      @sub: sub type
 458 *      @in: input data
 459 *      @inlen: input length in dwords
 460 *      @out: output data
 461 *      @outlein: output length in dwords
 462 *
 463 *      Issue a command to the SCU which involves data transfers. Do the
 464 *      data copies under the lock but leave it for the caller to interpret
 465 */
 466int intel_scu_ipc_command(int cmd, int sub, u32 *in, int inlen,
 467                          u32 *out, int outlen)
 468{
 469        struct intel_scu_ipc_dev *scu = &ipcdev;
 470        int i, err;
 471
 472        mutex_lock(&ipclock);
 473        if (scu->dev == NULL) {
 474                mutex_unlock(&ipclock);
 475                return -ENODEV;
 476        }
 477
 478        for (i = 0; i < inlen; i++)
 479                ipc_data_writel(scu, *in++, 4 * i);
 480
 481        ipc_command(scu, (inlen << 16) | (sub << 12) | cmd);
 482        err = intel_scu_ipc_check_status(scu);
 483
 484        if (!err) {
 485                for (i = 0; i < outlen; i++)
 486                        *out++ = ipc_data_readl(scu, 4 * i);
 487        }
 488
 489        mutex_unlock(&ipclock);
 490        return err;
 491}
 492EXPORT_SYMBOL(intel_scu_ipc_command);
 493
 494/* I2C commands */
 495#define IPC_I2C_WRITE 1 /* I2C Write command */
 496#define IPC_I2C_READ  2 /* I2C Read command */
 497
 498/**
 499 *      intel_scu_ipc_i2c_cntrl         -       I2C read/write operations
 500 *      @addr: I2C address + command bits
 501 *      @data: data to read/write
 502 *
 503 *      Perform an an I2C read/write operation via the SCU. All locking is
 504 *      handled for the caller. This function may sleep.
 505 *
 506 *      Returns an error code or 0 on success.
 507 *
 508 *      This has to be in the IPC driver for the locking.
 509 */
 510int intel_scu_ipc_i2c_cntrl(u32 addr, u32 *data)
 511{
 512        struct intel_scu_ipc_dev *scu = &ipcdev;
 513        u32 cmd = 0;
 514
 515        mutex_lock(&ipclock);
 516        if (scu->dev == NULL) {
 517                mutex_unlock(&ipclock);
 518                return -ENODEV;
 519        }
 520        cmd = (addr >> 24) & 0xFF;
 521        if (cmd == IPC_I2C_READ) {
 522                writel(addr, scu->i2c_base + IPC_I2C_CNTRL_ADDR);
 523                /* Write not getting updated without delay */
 524                mdelay(1);
 525                *data = readl(scu->i2c_base + I2C_DATA_ADDR);
 526        } else if (cmd == IPC_I2C_WRITE) {
 527                writel(*data, scu->i2c_base + I2C_DATA_ADDR);
 528                mdelay(1);
 529                writel(addr, scu->i2c_base + IPC_I2C_CNTRL_ADDR);
 530        } else {
 531                dev_err(scu->dev,
 532                        "intel_scu_ipc: I2C INVALID_CMD = 0x%x\n", cmd);
 533
 534                mutex_unlock(&ipclock);
 535                return -EIO;
 536        }
 537        mutex_unlock(&ipclock);
 538        return 0;
 539}
 540EXPORT_SYMBOL(intel_scu_ipc_i2c_cntrl);
 541
 542/*
 543 * Interrupt handler gets called when ioc bit of IPC_COMMAND_REG set to 1
 544 * When ioc bit is set to 1, caller api must wait for interrupt handler called
 545 * which in turn unlocks the caller api. Currently this is not used
 546 *
 547 * This is edge triggered so we need take no action to clear anything
 548 */
 549static irqreturn_t ioc(int irq, void *dev_id)
 550{
 551        struct intel_scu_ipc_dev *scu = dev_id;
 552
 553        if (scu->irq_mode)
 554                complete(&scu->cmd_complete);
 555
 556        return IRQ_HANDLED;
 557}
 558
 559/**
 560 *      ipc_probe       -       probe an Intel SCU IPC
 561 *      @pdev: the PCI device matching
 562 *      @id: entry in the match table
 563 *
 564 *      Enable and install an intel SCU IPC. This appears in the PCI space
 565 *      but uses some hard coded addresses as well.
 566 */
 567static int ipc_probe(struct pci_dev *pdev, const struct pci_device_id *id)
 568{
 569        int platform;           /* Platform type */
 570        int err;
 571        struct intel_scu_ipc_dev *scu = &ipcdev;
 572        struct intel_scu_ipc_pdata_t *pdata;
 573
 574        platform = intel_mid_identify_cpu();
 575        if (platform == 0)
 576                return -ENODEV;
 577
 578        if (scu->dev)           /* We support only one SCU */
 579                return -EBUSY;
 580
 581        pdata = (struct intel_scu_ipc_pdata_t *)id->driver_data;
 582
 583        scu->dev = &pdev->dev;
 584        scu->irq_mode = pdata->irq_mode;
 585
 586        err = pcim_enable_device(pdev);
 587        if (err)
 588                return err;
 589
 590        err = pcim_iomap_regions(pdev, 1 << 0, pci_name(pdev));
 591        if (err)
 592                return err;
 593
 594        init_completion(&scu->cmd_complete);
 595
 596        err = devm_request_irq(&pdev->dev, pdev->irq, ioc, 0, "intel_scu_ipc",
 597                               scu);
 598        if (err)
 599                return err;
 600
 601        scu->ipc_base = pcim_iomap_table(pdev)[0];
 602
 603        scu->i2c_base = ioremap_nocache(pdata->i2c_base, pdata->i2c_len);
 604        if (!scu->i2c_base)
 605                return -ENOMEM;
 606
 607        intel_scu_devices_create();
 608
 609        pci_set_drvdata(pdev, scu);
 610        return 0;
 611}
 612
 613static const struct pci_device_id pci_ids[] = {
 614        {
 615                PCI_VDEVICE(INTEL, PCI_DEVICE_ID_LINCROFT),
 616                (kernel_ulong_t)&intel_scu_ipc_lincroft_pdata,
 617        }, {
 618                PCI_VDEVICE(INTEL, PCI_DEVICE_ID_PENWELL),
 619                (kernel_ulong_t)&intel_scu_ipc_penwell_pdata,
 620        }, {
 621                PCI_VDEVICE(INTEL, PCI_DEVICE_ID_CLOVERVIEW),
 622                (kernel_ulong_t)&intel_scu_ipc_penwell_pdata,
 623        }, {
 624                PCI_VDEVICE(INTEL, PCI_DEVICE_ID_TANGIER),
 625                (kernel_ulong_t)&intel_scu_ipc_tangier_pdata,
 626        }, {
 627                0,
 628        }
 629};
 630
 631static struct pci_driver ipc_driver = {
 632        .driver = {
 633                .suppress_bind_attrs = true,
 634        },
 635        .name = "intel_scu_ipc",
 636        .id_table = pci_ids,
 637        .probe = ipc_probe,
 638};
 639builtin_pci_driver(ipc_driver);
 640