linux/drivers/power/ab8500_fg.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) ST-Ericsson AB 2012
   3 *
   4 * Main and Back-up battery management driver.
   5 *
   6 * Note: Backup battery management is required in case of Li-Ion battery and not
   7 * for capacitive battery. HREF boards have capacitive battery and hence backup
   8 * battery management is not used and the supported code is available in this
   9 * driver.
  10 *
  11 * License Terms: GNU General Public License v2
  12 * Author:
  13 *      Johan Palsson <johan.palsson@stericsson.com>
  14 *      Karl Komierowski <karl.komierowski@stericsson.com>
  15 *      Arun R Murthy <arun.murthy@stericsson.com>
  16 */
  17
  18#include <linux/init.h>
  19#include <linux/module.h>
  20#include <linux/device.h>
  21#include <linux/interrupt.h>
  22#include <linux/platform_device.h>
  23#include <linux/power_supply.h>
  24#include <linux/kobject.h>
  25#include <linux/slab.h>
  26#include <linux/delay.h>
  27#include <linux/time.h>
  28#include <linux/time64.h>
  29#include <linux/of.h>
  30#include <linux/completion.h>
  31#include <linux/mfd/core.h>
  32#include <linux/mfd/abx500.h>
  33#include <linux/mfd/abx500/ab8500.h>
  34#include <linux/mfd/abx500/ab8500-bm.h>
  35#include <linux/mfd/abx500/ab8500-gpadc.h>
  36#include <linux/kernel.h>
  37
  38#define MILLI_TO_MICRO                  1000
  39#define FG_LSB_IN_MA                    1627
  40#define QLSB_NANO_AMP_HOURS_X10         1071
  41#define INS_CURR_TIMEOUT                (3 * HZ)
  42
  43#define SEC_TO_SAMPLE(S)                (S * 4)
  44
  45#define NBR_AVG_SAMPLES                 20
  46
  47#define LOW_BAT_CHECK_INTERVAL          (HZ / 16) /* 62.5 ms */
  48
  49#define VALID_CAPACITY_SEC              (45 * 60) /* 45 minutes */
  50#define BATT_OK_MIN                     2360 /* mV */
  51#define BATT_OK_INCREMENT               50 /* mV */
  52#define BATT_OK_MAX_NR_INCREMENTS       0xE
  53
  54/* FG constants */
  55#define BATT_OVV                        0x01
  56
  57#define interpolate(x, x1, y1, x2, y2) \
  58        ((y1) + ((((y2) - (y1)) * ((x) - (x1))) / ((x2) - (x1))));
  59
  60/**
  61 * struct ab8500_fg_interrupts - ab8500 fg interupts
  62 * @name:       name of the interrupt
  63 * @isr         function pointer to the isr
  64 */
  65struct ab8500_fg_interrupts {
  66        char *name;
  67        irqreturn_t (*isr)(int irq, void *data);
  68};
  69
  70enum ab8500_fg_discharge_state {
  71        AB8500_FG_DISCHARGE_INIT,
  72        AB8500_FG_DISCHARGE_INITMEASURING,
  73        AB8500_FG_DISCHARGE_INIT_RECOVERY,
  74        AB8500_FG_DISCHARGE_RECOVERY,
  75        AB8500_FG_DISCHARGE_READOUT_INIT,
  76        AB8500_FG_DISCHARGE_READOUT,
  77        AB8500_FG_DISCHARGE_WAKEUP,
  78};
  79
  80static char *discharge_state[] = {
  81        "DISCHARGE_INIT",
  82        "DISCHARGE_INITMEASURING",
  83        "DISCHARGE_INIT_RECOVERY",
  84        "DISCHARGE_RECOVERY",
  85        "DISCHARGE_READOUT_INIT",
  86        "DISCHARGE_READOUT",
  87        "DISCHARGE_WAKEUP",
  88};
  89
  90enum ab8500_fg_charge_state {
  91        AB8500_FG_CHARGE_INIT,
  92        AB8500_FG_CHARGE_READOUT,
  93};
  94
  95static char *charge_state[] = {
  96        "CHARGE_INIT",
  97        "CHARGE_READOUT",
  98};
  99
 100enum ab8500_fg_calibration_state {
 101        AB8500_FG_CALIB_INIT,
 102        AB8500_FG_CALIB_WAIT,
 103        AB8500_FG_CALIB_END,
 104};
 105
 106struct ab8500_fg_avg_cap {
 107        int avg;
 108        int samples[NBR_AVG_SAMPLES];
 109        time64_t time_stamps[NBR_AVG_SAMPLES];
 110        int pos;
 111        int nbr_samples;
 112        int sum;
 113};
 114
 115struct ab8500_fg_cap_scaling {
 116        bool enable;
 117        int cap_to_scale[2];
 118        int disable_cap_level;
 119        int scaled_cap;
 120};
 121
 122struct ab8500_fg_battery_capacity {
 123        int max_mah_design;
 124        int max_mah;
 125        int mah;
 126        int permille;
 127        int level;
 128        int prev_mah;
 129        int prev_percent;
 130        int prev_level;
 131        int user_mah;
 132        struct ab8500_fg_cap_scaling cap_scale;
 133};
 134
 135struct ab8500_fg_flags {
 136        bool fg_enabled;
 137        bool conv_done;
 138        bool charging;
 139        bool fully_charged;
 140        bool force_full;
 141        bool low_bat_delay;
 142        bool low_bat;
 143        bool bat_ovv;
 144        bool batt_unknown;
 145        bool calibrate;
 146        bool user_cap;
 147        bool batt_id_received;
 148};
 149
 150struct inst_curr_result_list {
 151        struct list_head list;
 152        int *result;
 153};
 154
 155/**
 156 * struct ab8500_fg - ab8500 FG device information
 157 * @dev:                Pointer to the structure device
 158 * @node:               a list of AB8500 FGs, hence prepared for reentrance
 159 * @irq                 holds the CCEOC interrupt number
 160 * @vbat:               Battery voltage in mV
 161 * @vbat_nom:           Nominal battery voltage in mV
 162 * @inst_curr:          Instantenous battery current in mA
 163 * @avg_curr:           Average battery current in mA
 164 * @bat_temp            battery temperature
 165 * @fg_samples:         Number of samples used in the FG accumulation
 166 * @accu_charge:        Accumulated charge from the last conversion
 167 * @recovery_cnt:       Counter for recovery mode
 168 * @high_curr_cnt:      Counter for high current mode
 169 * @init_cnt:           Counter for init mode
 170 * @low_bat_cnt         Counter for number of consecutive low battery measures
 171 * @nbr_cceoc_irq_cnt   Counter for number of CCEOC irqs received since enabled
 172 * @recovery_needed:    Indicate if recovery is needed
 173 * @high_curr_mode:     Indicate if we're in high current mode
 174 * @init_capacity:      Indicate if initial capacity measuring should be done
 175 * @turn_off_fg:        True if fg was off before current measurement
 176 * @calib_state         State during offset calibration
 177 * @discharge_state:    Current discharge state
 178 * @charge_state:       Current charge state
 179 * @ab8500_fg_started   Completion struct used for the instant current start
 180 * @ab8500_fg_complete  Completion struct used for the instant current reading
 181 * @flags:              Structure for information about events triggered
 182 * @bat_cap:            Structure for battery capacity specific parameters
 183 * @avg_cap:            Average capacity filter
 184 * @parent:             Pointer to the struct ab8500
 185 * @gpadc:              Pointer to the struct gpadc
 186 * @bm:                 Platform specific battery management information
 187 * @fg_psy:             Structure that holds the FG specific battery properties
 188 * @fg_wq:              Work queue for running the FG algorithm
 189 * @fg_periodic_work:   Work to run the FG algorithm periodically
 190 * @fg_low_bat_work:    Work to check low bat condition
 191 * @fg_reinit_work      Work used to reset and reinitialise the FG algorithm
 192 * @fg_work:            Work to run the FG algorithm instantly
 193 * @fg_acc_cur_work:    Work to read the FG accumulator
 194 * @fg_check_hw_failure_work:   Work for checking HW state
 195 * @cc_lock:            Mutex for locking the CC
 196 * @fg_kobject:         Structure of type kobject
 197 */
 198struct ab8500_fg {
 199        struct device *dev;
 200        struct list_head node;
 201        int irq;
 202        int vbat;
 203        int vbat_nom;
 204        int inst_curr;
 205        int avg_curr;
 206        int bat_temp;
 207        int fg_samples;
 208        int accu_charge;
 209        int recovery_cnt;
 210        int high_curr_cnt;
 211        int init_cnt;
 212        int low_bat_cnt;
 213        int nbr_cceoc_irq_cnt;
 214        bool recovery_needed;
 215        bool high_curr_mode;
 216        bool init_capacity;
 217        bool turn_off_fg;
 218        enum ab8500_fg_calibration_state calib_state;
 219        enum ab8500_fg_discharge_state discharge_state;
 220        enum ab8500_fg_charge_state charge_state;
 221        struct completion ab8500_fg_started;
 222        struct completion ab8500_fg_complete;
 223        struct ab8500_fg_flags flags;
 224        struct ab8500_fg_battery_capacity bat_cap;
 225        struct ab8500_fg_avg_cap avg_cap;
 226        struct ab8500 *parent;
 227        struct ab8500_gpadc *gpadc;
 228        struct abx500_bm_data *bm;
 229        struct power_supply *fg_psy;
 230        struct workqueue_struct *fg_wq;
 231        struct delayed_work fg_periodic_work;
 232        struct delayed_work fg_low_bat_work;
 233        struct delayed_work fg_reinit_work;
 234        struct work_struct fg_work;
 235        struct work_struct fg_acc_cur_work;
 236        struct delayed_work fg_check_hw_failure_work;
 237        struct mutex cc_lock;
 238        struct kobject fg_kobject;
 239};
 240static LIST_HEAD(ab8500_fg_list);
 241
 242/**
 243 * ab8500_fg_get() - returns a reference to the primary AB8500 fuel gauge
 244 * (i.e. the first fuel gauge in the instance list)
 245 */
 246struct ab8500_fg *ab8500_fg_get(void)
 247{
 248        struct ab8500_fg *fg;
 249
 250        if (list_empty(&ab8500_fg_list))
 251                return NULL;
 252
 253        fg = list_first_entry(&ab8500_fg_list, struct ab8500_fg, node);
 254        return fg;
 255}
 256
 257/* Main battery properties */
 258static enum power_supply_property ab8500_fg_props[] = {
 259        POWER_SUPPLY_PROP_VOLTAGE_NOW,
 260        POWER_SUPPLY_PROP_CURRENT_NOW,
 261        POWER_SUPPLY_PROP_CURRENT_AVG,
 262        POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
 263        POWER_SUPPLY_PROP_ENERGY_FULL,
 264        POWER_SUPPLY_PROP_ENERGY_NOW,
 265        POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
 266        POWER_SUPPLY_PROP_CHARGE_FULL,
 267        POWER_SUPPLY_PROP_CHARGE_NOW,
 268        POWER_SUPPLY_PROP_CAPACITY,
 269        POWER_SUPPLY_PROP_CAPACITY_LEVEL,
 270};
 271
 272/*
 273 * This array maps the raw hex value to lowbat voltage used by the AB8500
 274 * Values taken from the UM0836
 275 */
 276static int ab8500_fg_lowbat_voltage_map[] = {
 277        2300 ,
 278        2325 ,
 279        2350 ,
 280        2375 ,
 281        2400 ,
 282        2425 ,
 283        2450 ,
 284        2475 ,
 285        2500 ,
 286        2525 ,
 287        2550 ,
 288        2575 ,
 289        2600 ,
 290        2625 ,
 291        2650 ,
 292        2675 ,
 293        2700 ,
 294        2725 ,
 295        2750 ,
 296        2775 ,
 297        2800 ,
 298        2825 ,
 299        2850 ,
 300        2875 ,
 301        2900 ,
 302        2925 ,
 303        2950 ,
 304        2975 ,
 305        3000 ,
 306        3025 ,
 307        3050 ,
 308        3075 ,
 309        3100 ,
 310        3125 ,
 311        3150 ,
 312        3175 ,
 313        3200 ,
 314        3225 ,
 315        3250 ,
 316        3275 ,
 317        3300 ,
 318        3325 ,
 319        3350 ,
 320        3375 ,
 321        3400 ,
 322        3425 ,
 323        3450 ,
 324        3475 ,
 325        3500 ,
 326        3525 ,
 327        3550 ,
 328        3575 ,
 329        3600 ,
 330        3625 ,
 331        3650 ,
 332        3675 ,
 333        3700 ,
 334        3725 ,
 335        3750 ,
 336        3775 ,
 337        3800 ,
 338        3825 ,
 339        3850 ,
 340        3850 ,
 341};
 342
 343static u8 ab8500_volt_to_regval(int voltage)
 344{
 345        int i;
 346
 347        if (voltage < ab8500_fg_lowbat_voltage_map[0])
 348                return 0;
 349
 350        for (i = 0; i < ARRAY_SIZE(ab8500_fg_lowbat_voltage_map); i++) {
 351                if (voltage < ab8500_fg_lowbat_voltage_map[i])
 352                        return (u8) i - 1;
 353        }
 354
 355        /* If not captured above, return index of last element */
 356        return (u8) ARRAY_SIZE(ab8500_fg_lowbat_voltage_map) - 1;
 357}
 358
 359/**
 360 * ab8500_fg_is_low_curr() - Low or high current mode
 361 * @di:         pointer to the ab8500_fg structure
 362 * @curr:       the current to base or our decision on
 363 *
 364 * Low current mode if the current consumption is below a certain threshold
 365 */
 366static int ab8500_fg_is_low_curr(struct ab8500_fg *di, int curr)
 367{
 368        /*
 369         * We want to know if we're in low current mode
 370         */
 371        if (curr > -di->bm->fg_params->high_curr_threshold)
 372                return true;
 373        else
 374                return false;
 375}
 376
 377/**
 378 * ab8500_fg_add_cap_sample() - Add capacity to average filter
 379 * @di:         pointer to the ab8500_fg structure
 380 * @sample:     the capacity in mAh to add to the filter
 381 *
 382 * A capacity is added to the filter and a new mean capacity is calculated and
 383 * returned
 384 */
 385static int ab8500_fg_add_cap_sample(struct ab8500_fg *di, int sample)
 386{
 387        struct timespec64 ts64;
 388        struct ab8500_fg_avg_cap *avg = &di->avg_cap;
 389
 390        getnstimeofday64(&ts64);
 391
 392        do {
 393                avg->sum += sample - avg->samples[avg->pos];
 394                avg->samples[avg->pos] = sample;
 395                avg->time_stamps[avg->pos] = ts64.tv_sec;
 396                avg->pos++;
 397
 398                if (avg->pos == NBR_AVG_SAMPLES)
 399                        avg->pos = 0;
 400
 401                if (avg->nbr_samples < NBR_AVG_SAMPLES)
 402                        avg->nbr_samples++;
 403
 404                /*
 405                 * Check the time stamp for each sample. If too old,
 406                 * replace with latest sample
 407                 */
 408        } while (ts64.tv_sec - VALID_CAPACITY_SEC > avg->time_stamps[avg->pos]);
 409
 410        avg->avg = avg->sum / avg->nbr_samples;
 411
 412        return avg->avg;
 413}
 414
 415/**
 416 * ab8500_fg_clear_cap_samples() - Clear average filter
 417 * @di:         pointer to the ab8500_fg structure
 418 *
 419 * The capacity filter is is reset to zero.
 420 */
 421static void ab8500_fg_clear_cap_samples(struct ab8500_fg *di)
 422{
 423        int i;
 424        struct ab8500_fg_avg_cap *avg = &di->avg_cap;
 425
 426        avg->pos = 0;
 427        avg->nbr_samples = 0;
 428        avg->sum = 0;
 429        avg->avg = 0;
 430
 431        for (i = 0; i < NBR_AVG_SAMPLES; i++) {
 432                avg->samples[i] = 0;
 433                avg->time_stamps[i] = 0;
 434        }
 435}
 436
 437/**
 438 * ab8500_fg_fill_cap_sample() - Fill average filter
 439 * @di:         pointer to the ab8500_fg structure
 440 * @sample:     the capacity in mAh to fill the filter with
 441 *
 442 * The capacity filter is filled with a capacity in mAh
 443 */
 444static void ab8500_fg_fill_cap_sample(struct ab8500_fg *di, int sample)
 445{
 446        int i;
 447        struct timespec64 ts64;
 448        struct ab8500_fg_avg_cap *avg = &di->avg_cap;
 449
 450        getnstimeofday64(&ts64);
 451
 452        for (i = 0; i < NBR_AVG_SAMPLES; i++) {
 453                avg->samples[i] = sample;
 454                avg->time_stamps[i] = ts64.tv_sec;
 455        }
 456
 457        avg->pos = 0;
 458        avg->nbr_samples = NBR_AVG_SAMPLES;
 459        avg->sum = sample * NBR_AVG_SAMPLES;
 460        avg->avg = sample;
 461}
 462
 463/**
 464 * ab8500_fg_coulomb_counter() - enable coulomb counter
 465 * @di:         pointer to the ab8500_fg structure
 466 * @enable:     enable/disable
 467 *
 468 * Enable/Disable coulomb counter.
 469 * On failure returns negative value.
 470 */
 471static int ab8500_fg_coulomb_counter(struct ab8500_fg *di, bool enable)
 472{
 473        int ret = 0;
 474        mutex_lock(&di->cc_lock);
 475        if (enable) {
 476                /* To be able to reprogram the number of samples, we have to
 477                 * first stop the CC and then enable it again */
 478                ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
 479                        AB8500_RTC_CC_CONF_REG, 0x00);
 480                if (ret)
 481                        goto cc_err;
 482
 483                /* Program the samples */
 484                ret = abx500_set_register_interruptible(di->dev,
 485                        AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
 486                        di->fg_samples);
 487                if (ret)
 488                        goto cc_err;
 489
 490                /* Start the CC */
 491                ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
 492                        AB8500_RTC_CC_CONF_REG,
 493                        (CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
 494                if (ret)
 495                        goto cc_err;
 496
 497                di->flags.fg_enabled = true;
 498        } else {
 499                /* Clear any pending read requests */
 500                ret = abx500_mask_and_set_register_interruptible(di->dev,
 501                        AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
 502                        (RESET_ACCU | READ_REQ), 0);
 503                if (ret)
 504                        goto cc_err;
 505
 506                ret = abx500_set_register_interruptible(di->dev,
 507                        AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU_CTRL, 0);
 508                if (ret)
 509                        goto cc_err;
 510
 511                /* Stop the CC */
 512                ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
 513                        AB8500_RTC_CC_CONF_REG, 0);
 514                if (ret)
 515                        goto cc_err;
 516
 517                di->flags.fg_enabled = false;
 518
 519        }
 520        dev_dbg(di->dev, " CC enabled: %d Samples: %d\n",
 521                enable, di->fg_samples);
 522
 523        mutex_unlock(&di->cc_lock);
 524
 525        return ret;
 526cc_err:
 527        dev_err(di->dev, "%s Enabling coulomb counter failed\n", __func__);
 528        mutex_unlock(&di->cc_lock);
 529        return ret;
 530}
 531
 532/**
 533 * ab8500_fg_inst_curr_start() - start battery instantaneous current
 534 * @di:         pointer to the ab8500_fg structure
 535 *
 536 * Returns 0 or error code
 537 * Note: This is part "one" and has to be called before
 538 * ab8500_fg_inst_curr_finalize()
 539 */
 540int ab8500_fg_inst_curr_start(struct ab8500_fg *di)
 541{
 542        u8 reg_val;
 543        int ret;
 544
 545        mutex_lock(&di->cc_lock);
 546
 547        di->nbr_cceoc_irq_cnt = 0;
 548        ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
 549                AB8500_RTC_CC_CONF_REG, &reg_val);
 550        if (ret < 0)
 551                goto fail;
 552
 553        if (!(reg_val & CC_PWR_UP_ENA)) {
 554                dev_dbg(di->dev, "%s Enable FG\n", __func__);
 555                di->turn_off_fg = true;
 556
 557                /* Program the samples */
 558                ret = abx500_set_register_interruptible(di->dev,
 559                        AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
 560                        SEC_TO_SAMPLE(10));
 561                if (ret)
 562                        goto fail;
 563
 564                /* Start the CC */
 565                ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
 566                        AB8500_RTC_CC_CONF_REG,
 567                        (CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
 568                if (ret)
 569                        goto fail;
 570        } else {
 571                di->turn_off_fg = false;
 572        }
 573
 574        /* Return and WFI */
 575        reinit_completion(&di->ab8500_fg_started);
 576        reinit_completion(&di->ab8500_fg_complete);
 577        enable_irq(di->irq);
 578
 579        /* Note: cc_lock is still locked */
 580        return 0;
 581fail:
 582        mutex_unlock(&di->cc_lock);
 583        return ret;
 584}
 585
 586/**
 587 * ab8500_fg_inst_curr_started() - check if fg conversion has started
 588 * @di:         pointer to the ab8500_fg structure
 589 *
 590 * Returns 1 if conversion started, 0 if still waiting
 591 */
 592int ab8500_fg_inst_curr_started(struct ab8500_fg *di)
 593{
 594        return completion_done(&di->ab8500_fg_started);
 595}
 596
 597/**
 598 * ab8500_fg_inst_curr_done() - check if fg conversion is done
 599 * @di:         pointer to the ab8500_fg structure
 600 *
 601 * Returns 1 if conversion done, 0 if still waiting
 602 */
 603int ab8500_fg_inst_curr_done(struct ab8500_fg *di)
 604{
 605        return completion_done(&di->ab8500_fg_complete);
 606}
 607
 608/**
 609 * ab8500_fg_inst_curr_finalize() - battery instantaneous current
 610 * @di:         pointer to the ab8500_fg structure
 611 * @res:        battery instantenous current(on success)
 612 *
 613 * Returns 0 or an error code
 614 * Note: This is part "two" and has to be called at earliest 250 ms
 615 * after ab8500_fg_inst_curr_start()
 616 */
 617int ab8500_fg_inst_curr_finalize(struct ab8500_fg *di, int *res)
 618{
 619        u8 low, high;
 620        int val;
 621        int ret;
 622        unsigned long timeout;
 623
 624        if (!completion_done(&di->ab8500_fg_complete)) {
 625                timeout = wait_for_completion_timeout(
 626                        &di->ab8500_fg_complete,
 627                        INS_CURR_TIMEOUT);
 628                dev_dbg(di->dev, "Finalize time: %d ms\n",
 629                        jiffies_to_msecs(INS_CURR_TIMEOUT - timeout));
 630                if (!timeout) {
 631                        ret = -ETIME;
 632                        disable_irq(di->irq);
 633                        di->nbr_cceoc_irq_cnt = 0;
 634                        dev_err(di->dev, "completion timed out [%d]\n",
 635                                __LINE__);
 636                        goto fail;
 637                }
 638        }
 639
 640        disable_irq(di->irq);
 641        di->nbr_cceoc_irq_cnt = 0;
 642
 643        ret = abx500_mask_and_set_register_interruptible(di->dev,
 644                        AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
 645                        READ_REQ, READ_REQ);
 646
 647        /* 100uS between read request and read is needed */
 648        usleep_range(100, 100);
 649
 650        /* Read CC Sample conversion value Low and high */
 651        ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
 652                AB8500_GASG_CC_SMPL_CNVL_REG,  &low);
 653        if (ret < 0)
 654                goto fail;
 655
 656        ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
 657                AB8500_GASG_CC_SMPL_CNVH_REG,  &high);
 658        if (ret < 0)
 659                goto fail;
 660
 661        /*
 662         * negative value for Discharging
 663         * convert 2's compliment into decimal
 664         */
 665        if (high & 0x10)
 666                val = (low | (high << 8) | 0xFFFFE000);
 667        else
 668                val = (low | (high << 8));
 669
 670        /*
 671         * Convert to unit value in mA
 672         * Full scale input voltage is
 673         * 63.160mV => LSB = 63.160mV/(4096*res) = 1.542mA
 674         * Given a 250ms conversion cycle time the LSB corresponds
 675         * to 107.1 nAh. Convert to current by dividing by the conversion
 676         * time in hours (250ms = 1 / (3600 * 4)h)
 677         * 107.1nAh assumes 10mOhm, but fg_res is in 0.1mOhm
 678         */
 679        val = (val * QLSB_NANO_AMP_HOURS_X10 * 36 * 4) /
 680                (1000 * di->bm->fg_res);
 681
 682        if (di->turn_off_fg) {
 683                dev_dbg(di->dev, "%s Disable FG\n", __func__);
 684
 685                /* Clear any pending read requests */
 686                ret = abx500_set_register_interruptible(di->dev,
 687                        AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, 0);
 688                if (ret)
 689                        goto fail;
 690
 691                /* Stop the CC */
 692                ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
 693                        AB8500_RTC_CC_CONF_REG, 0);
 694                if (ret)
 695                        goto fail;
 696        }
 697        mutex_unlock(&di->cc_lock);
 698        (*res) = val;
 699
 700        return 0;
 701fail:
 702        mutex_unlock(&di->cc_lock);
 703        return ret;
 704}
 705
 706/**
 707 * ab8500_fg_inst_curr_blocking() - battery instantaneous current
 708 * @di:         pointer to the ab8500_fg structure
 709 * @res:        battery instantenous current(on success)
 710 *
 711 * Returns 0 else error code
 712 */
 713int ab8500_fg_inst_curr_blocking(struct ab8500_fg *di)
 714{
 715        int ret;
 716        unsigned long timeout;
 717        int res = 0;
 718
 719        ret = ab8500_fg_inst_curr_start(di);
 720        if (ret) {
 721                dev_err(di->dev, "Failed to initialize fg_inst\n");
 722                return 0;
 723        }
 724
 725        /* Wait for CC to actually start */
 726        if (!completion_done(&di->ab8500_fg_started)) {
 727                timeout = wait_for_completion_timeout(
 728                        &di->ab8500_fg_started,
 729                        INS_CURR_TIMEOUT);
 730                dev_dbg(di->dev, "Start time: %d ms\n",
 731                        jiffies_to_msecs(INS_CURR_TIMEOUT - timeout));
 732                if (!timeout) {
 733                        ret = -ETIME;
 734                        dev_err(di->dev, "completion timed out [%d]\n",
 735                                __LINE__);
 736                        goto fail;
 737                }
 738        }
 739
 740        ret = ab8500_fg_inst_curr_finalize(di, &res);
 741        if (ret) {
 742                dev_err(di->dev, "Failed to finalize fg_inst\n");
 743                return 0;
 744        }
 745
 746        dev_dbg(di->dev, "%s instant current: %d", __func__, res);
 747        return res;
 748fail:
 749        disable_irq(di->irq);
 750        mutex_unlock(&di->cc_lock);
 751        return ret;
 752}
 753
 754/**
 755 * ab8500_fg_acc_cur_work() - average battery current
 756 * @work:       pointer to the work_struct structure
 757 *
 758 * Updated the average battery current obtained from the
 759 * coulomb counter.
 760 */
 761static void ab8500_fg_acc_cur_work(struct work_struct *work)
 762{
 763        int val;
 764        int ret;
 765        u8 low, med, high;
 766
 767        struct ab8500_fg *di = container_of(work,
 768                struct ab8500_fg, fg_acc_cur_work);
 769
 770        mutex_lock(&di->cc_lock);
 771        ret = abx500_set_register_interruptible(di->dev, AB8500_GAS_GAUGE,
 772                AB8500_GASG_CC_NCOV_ACCU_CTRL, RD_NCONV_ACCU_REQ);
 773        if (ret)
 774                goto exit;
 775
 776        ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
 777                AB8500_GASG_CC_NCOV_ACCU_LOW,  &low);
 778        if (ret < 0)
 779                goto exit;
 780
 781        ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
 782                AB8500_GASG_CC_NCOV_ACCU_MED,  &med);
 783        if (ret < 0)
 784                goto exit;
 785
 786        ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
 787                AB8500_GASG_CC_NCOV_ACCU_HIGH, &high);
 788        if (ret < 0)
 789                goto exit;
 790
 791        /* Check for sign bit in case of negative value, 2's compliment */
 792        if (high & 0x10)
 793                val = (low | (med << 8) | (high << 16) | 0xFFE00000);
 794        else
 795                val = (low | (med << 8) | (high << 16));
 796
 797        /*
 798         * Convert to uAh
 799         * Given a 250ms conversion cycle time the LSB corresponds
 800         * to 112.9 nAh.
 801         * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
 802         */
 803        di->accu_charge = (val * QLSB_NANO_AMP_HOURS_X10) /
 804                (100 * di->bm->fg_res);
 805
 806        /*
 807         * Convert to unit value in mA
 808         * by dividing by the conversion
 809         * time in hours (= samples / (3600 * 4)h)
 810         * and multiply with 1000
 811         */
 812        di->avg_curr = (val * QLSB_NANO_AMP_HOURS_X10 * 36) /
 813                (1000 * di->bm->fg_res * (di->fg_samples / 4));
 814
 815        di->flags.conv_done = true;
 816
 817        mutex_unlock(&di->cc_lock);
 818
 819        queue_work(di->fg_wq, &di->fg_work);
 820
 821        dev_dbg(di->dev, "fg_res: %d, fg_samples: %d, gasg: %d, accu_charge: %d \n",
 822                                di->bm->fg_res, di->fg_samples, val, di->accu_charge);
 823        return;
 824exit:
 825        dev_err(di->dev,
 826                "Failed to read or write gas gauge registers\n");
 827        mutex_unlock(&di->cc_lock);
 828        queue_work(di->fg_wq, &di->fg_work);
 829}
 830
 831/**
 832 * ab8500_fg_bat_voltage() - get battery voltage
 833 * @di:         pointer to the ab8500_fg structure
 834 *
 835 * Returns battery voltage(on success) else error code
 836 */
 837static int ab8500_fg_bat_voltage(struct ab8500_fg *di)
 838{
 839        int vbat;
 840        static int prev;
 841
 842        vbat = ab8500_gpadc_convert(di->gpadc, MAIN_BAT_V);
 843        if (vbat < 0) {
 844                dev_err(di->dev,
 845                        "%s gpadc conversion failed, using previous value\n",
 846                        __func__);
 847                return prev;
 848        }
 849
 850        prev = vbat;
 851        return vbat;
 852}
 853
 854/**
 855 * ab8500_fg_volt_to_capacity() - Voltage based capacity
 856 * @di:         pointer to the ab8500_fg structure
 857 * @voltage:    The voltage to convert to a capacity
 858 *
 859 * Returns battery capacity in per mille based on voltage
 860 */
 861static int ab8500_fg_volt_to_capacity(struct ab8500_fg *di, int voltage)
 862{
 863        int i, tbl_size;
 864        const struct abx500_v_to_cap *tbl;
 865        int cap = 0;
 866
 867        tbl = di->bm->bat_type[di->bm->batt_id].v_to_cap_tbl,
 868        tbl_size = di->bm->bat_type[di->bm->batt_id].n_v_cap_tbl_elements;
 869
 870        for (i = 0; i < tbl_size; ++i) {
 871                if (voltage > tbl[i].voltage)
 872                        break;
 873        }
 874
 875        if ((i > 0) && (i < tbl_size)) {
 876                cap = interpolate(voltage,
 877                        tbl[i].voltage,
 878                        tbl[i].capacity * 10,
 879                        tbl[i-1].voltage,
 880                        tbl[i-1].capacity * 10);
 881        } else if (i == 0) {
 882                cap = 1000;
 883        } else {
 884                cap = 0;
 885        }
 886
 887        dev_dbg(di->dev, "%s Vbat: %d, Cap: %d per mille",
 888                __func__, voltage, cap);
 889
 890        return cap;
 891}
 892
 893/**
 894 * ab8500_fg_uncomp_volt_to_capacity() - Uncompensated voltage based capacity
 895 * @di:         pointer to the ab8500_fg structure
 896 *
 897 * Returns battery capacity based on battery voltage that is not compensated
 898 * for the voltage drop due to the load
 899 */
 900static int ab8500_fg_uncomp_volt_to_capacity(struct ab8500_fg *di)
 901{
 902        di->vbat = ab8500_fg_bat_voltage(di);
 903        return ab8500_fg_volt_to_capacity(di, di->vbat);
 904}
 905
 906/**
 907 * ab8500_fg_battery_resistance() - Returns the battery inner resistance
 908 * @di:         pointer to the ab8500_fg structure
 909 *
 910 * Returns battery inner resistance added with the fuel gauge resistor value
 911 * to get the total resistance in the whole link from gnd to bat+ node.
 912 */
 913static int ab8500_fg_battery_resistance(struct ab8500_fg *di)
 914{
 915        int i, tbl_size;
 916        const struct batres_vs_temp *tbl;
 917        int resist = 0;
 918
 919        tbl = di->bm->bat_type[di->bm->batt_id].batres_tbl;
 920        tbl_size = di->bm->bat_type[di->bm->batt_id].n_batres_tbl_elements;
 921
 922        for (i = 0; i < tbl_size; ++i) {
 923                if (di->bat_temp / 10 > tbl[i].temp)
 924                        break;
 925        }
 926
 927        if ((i > 0) && (i < tbl_size)) {
 928                resist = interpolate(di->bat_temp / 10,
 929                        tbl[i].temp,
 930                        tbl[i].resist,
 931                        tbl[i-1].temp,
 932                        tbl[i-1].resist);
 933        } else if (i == 0) {
 934                resist = tbl[0].resist;
 935        } else {
 936                resist = tbl[tbl_size - 1].resist;
 937        }
 938
 939        dev_dbg(di->dev, "%s Temp: %d battery internal resistance: %d"
 940            " fg resistance %d, total: %d (mOhm)\n",
 941                __func__, di->bat_temp, resist, di->bm->fg_res / 10,
 942                (di->bm->fg_res / 10) + resist);
 943
 944        /* fg_res variable is in 0.1mOhm */
 945        resist += di->bm->fg_res / 10;
 946
 947        return resist;
 948}
 949
 950/**
 951 * ab8500_fg_load_comp_volt_to_capacity() - Load compensated voltage based capacity
 952 * @di:         pointer to the ab8500_fg structure
 953 *
 954 * Returns battery capacity based on battery voltage that is load compensated
 955 * for the voltage drop
 956 */
 957static int ab8500_fg_load_comp_volt_to_capacity(struct ab8500_fg *di)
 958{
 959        int vbat_comp, res;
 960        int i = 0;
 961        int vbat = 0;
 962
 963        ab8500_fg_inst_curr_start(di);
 964
 965        do {
 966                vbat += ab8500_fg_bat_voltage(di);
 967                i++;
 968                usleep_range(5000, 6000);
 969        } while (!ab8500_fg_inst_curr_done(di));
 970
 971        ab8500_fg_inst_curr_finalize(di, &di->inst_curr);
 972
 973        di->vbat = vbat / i;
 974        res = ab8500_fg_battery_resistance(di);
 975
 976        /* Use Ohms law to get the load compensated voltage */
 977        vbat_comp = di->vbat - (di->inst_curr * res) / 1000;
 978
 979        dev_dbg(di->dev, "%s Measured Vbat: %dmV,Compensated Vbat %dmV, "
 980                "R: %dmOhm, Current: %dmA Vbat Samples: %d\n",
 981                __func__, di->vbat, vbat_comp, res, di->inst_curr, i);
 982
 983        return ab8500_fg_volt_to_capacity(di, vbat_comp);
 984}
 985
 986/**
 987 * ab8500_fg_convert_mah_to_permille() - Capacity in mAh to permille
 988 * @di:         pointer to the ab8500_fg structure
 989 * @cap_mah:    capacity in mAh
 990 *
 991 * Converts capacity in mAh to capacity in permille
 992 */
 993static int ab8500_fg_convert_mah_to_permille(struct ab8500_fg *di, int cap_mah)
 994{
 995        return (cap_mah * 1000) / di->bat_cap.max_mah_design;
 996}
 997
 998/**
 999 * ab8500_fg_convert_permille_to_mah() - Capacity in permille to mAh
1000 * @di:         pointer to the ab8500_fg structure
1001 * @cap_pm:     capacity in permille
1002 *
1003 * Converts capacity in permille to capacity in mAh
1004 */
1005static int ab8500_fg_convert_permille_to_mah(struct ab8500_fg *di, int cap_pm)
1006{
1007        return cap_pm * di->bat_cap.max_mah_design / 1000;
1008}
1009
1010/**
1011 * ab8500_fg_convert_mah_to_uwh() - Capacity in mAh to uWh
1012 * @di:         pointer to the ab8500_fg structure
1013 * @cap_mah:    capacity in mAh
1014 *
1015 * Converts capacity in mAh to capacity in uWh
1016 */
1017static int ab8500_fg_convert_mah_to_uwh(struct ab8500_fg *di, int cap_mah)
1018{
1019        u64 div_res;
1020        u32 div_rem;
1021
1022        div_res = ((u64) cap_mah) * ((u64) di->vbat_nom);
1023        div_rem = do_div(div_res, 1000);
1024
1025        /* Make sure to round upwards if necessary */
1026        if (div_rem >= 1000 / 2)
1027                div_res++;
1028
1029        return (int) div_res;
1030}
1031
1032/**
1033 * ab8500_fg_calc_cap_charging() - Calculate remaining capacity while charging
1034 * @di:         pointer to the ab8500_fg structure
1035 *
1036 * Return the capacity in mAh based on previous calculated capcity and the FG
1037 * accumulator register value. The filter is filled with this capacity
1038 */
1039static int ab8500_fg_calc_cap_charging(struct ab8500_fg *di)
1040{
1041        dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
1042                __func__,
1043                di->bat_cap.mah,
1044                di->accu_charge);
1045
1046        /* Capacity should not be less than 0 */
1047        if (di->bat_cap.mah + di->accu_charge > 0)
1048                di->bat_cap.mah += di->accu_charge;
1049        else
1050                di->bat_cap.mah = 0;
1051        /*
1052         * We force capacity to 100% once when the algorithm
1053         * reports that it's full.
1054         */
1055        if (di->bat_cap.mah >= di->bat_cap.max_mah_design ||
1056                di->flags.force_full) {
1057                di->bat_cap.mah = di->bat_cap.max_mah_design;
1058        }
1059
1060        ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1061        di->bat_cap.permille =
1062                ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1063
1064        /* We need to update battery voltage and inst current when charging */
1065        di->vbat = ab8500_fg_bat_voltage(di);
1066        di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1067
1068        return di->bat_cap.mah;
1069}
1070
1071/**
1072 * ab8500_fg_calc_cap_discharge_voltage() - Capacity in discharge with voltage
1073 * @di:         pointer to the ab8500_fg structure
1074 * @comp:       if voltage should be load compensated before capacity calc
1075 *
1076 * Return the capacity in mAh based on the battery voltage. The voltage can
1077 * either be load compensated or not. This value is added to the filter and a
1078 * new mean value is calculated and returned.
1079 */
1080static int ab8500_fg_calc_cap_discharge_voltage(struct ab8500_fg *di, bool comp)
1081{
1082        int permille, mah;
1083
1084        if (comp)
1085                permille = ab8500_fg_load_comp_volt_to_capacity(di);
1086        else
1087                permille = ab8500_fg_uncomp_volt_to_capacity(di);
1088
1089        mah = ab8500_fg_convert_permille_to_mah(di, permille);
1090
1091        di->bat_cap.mah = ab8500_fg_add_cap_sample(di, mah);
1092        di->bat_cap.permille =
1093                ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1094
1095        return di->bat_cap.mah;
1096}
1097
1098/**
1099 * ab8500_fg_calc_cap_discharge_fg() - Capacity in discharge with FG
1100 * @di:         pointer to the ab8500_fg structure
1101 *
1102 * Return the capacity in mAh based on previous calculated capcity and the FG
1103 * accumulator register value. This value is added to the filter and a
1104 * new mean value is calculated and returned.
1105 */
1106static int ab8500_fg_calc_cap_discharge_fg(struct ab8500_fg *di)
1107{
1108        int permille_volt, permille;
1109
1110        dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
1111                __func__,
1112                di->bat_cap.mah,
1113                di->accu_charge);
1114
1115        /* Capacity should not be less than 0 */
1116        if (di->bat_cap.mah + di->accu_charge > 0)
1117                di->bat_cap.mah += di->accu_charge;
1118        else
1119                di->bat_cap.mah = 0;
1120
1121        if (di->bat_cap.mah >= di->bat_cap.max_mah_design)
1122                di->bat_cap.mah = di->bat_cap.max_mah_design;
1123
1124        /*
1125         * Check against voltage based capacity. It can not be lower
1126         * than what the uncompensated voltage says
1127         */
1128        permille = ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1129        permille_volt = ab8500_fg_uncomp_volt_to_capacity(di);
1130
1131        if (permille < permille_volt) {
1132                di->bat_cap.permille = permille_volt;
1133                di->bat_cap.mah = ab8500_fg_convert_permille_to_mah(di,
1134                        di->bat_cap.permille);
1135
1136                dev_dbg(di->dev, "%s voltage based: perm %d perm_volt %d\n",
1137                        __func__,
1138                        permille,
1139                        permille_volt);
1140
1141                ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1142        } else {
1143                ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1144                di->bat_cap.permille =
1145                        ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1146        }
1147
1148        return di->bat_cap.mah;
1149}
1150
1151/**
1152 * ab8500_fg_capacity_level() - Get the battery capacity level
1153 * @di:         pointer to the ab8500_fg structure
1154 *
1155 * Get the battery capacity level based on the capacity in percent
1156 */
1157static int ab8500_fg_capacity_level(struct ab8500_fg *di)
1158{
1159        int ret, percent;
1160
1161        percent = DIV_ROUND_CLOSEST(di->bat_cap.permille, 10);
1162
1163        if (percent <= di->bm->cap_levels->critical ||
1164                di->flags.low_bat)
1165                ret = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1166        else if (percent <= di->bm->cap_levels->low)
1167                ret = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
1168        else if (percent <= di->bm->cap_levels->normal)
1169                ret = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1170        else if (percent <= di->bm->cap_levels->high)
1171                ret = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
1172        else
1173                ret = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1174
1175        return ret;
1176}
1177
1178/**
1179 * ab8500_fg_calculate_scaled_capacity() - Capacity scaling
1180 * @di:         pointer to the ab8500_fg structure
1181 *
1182 * Calculates the capacity to be shown to upper layers. Scales the capacity
1183 * to have 100% as a reference from the actual capacity upon removal of charger
1184 * when charging is in maintenance mode.
1185 */
1186static int ab8500_fg_calculate_scaled_capacity(struct ab8500_fg *di)
1187{
1188        struct ab8500_fg_cap_scaling *cs = &di->bat_cap.cap_scale;
1189        int capacity = di->bat_cap.prev_percent;
1190
1191        if (!cs->enable)
1192                return capacity;
1193
1194        /*
1195         * As long as we are in fully charge mode scale the capacity
1196         * to show 100%.
1197         */
1198        if (di->flags.fully_charged) {
1199                cs->cap_to_scale[0] = 100;
1200                cs->cap_to_scale[1] =
1201                        max(capacity, di->bm->fg_params->maint_thres);
1202                dev_dbg(di->dev, "Scale cap with %d/%d\n",
1203                         cs->cap_to_scale[0], cs->cap_to_scale[1]);
1204        }
1205
1206        /* Calculates the scaled capacity. */
1207        if ((cs->cap_to_scale[0] != cs->cap_to_scale[1])
1208                                        && (cs->cap_to_scale[1] > 0))
1209                capacity = min(100,
1210                                 DIV_ROUND_CLOSEST(di->bat_cap.prev_percent *
1211                                                 cs->cap_to_scale[0],
1212                                                 cs->cap_to_scale[1]));
1213
1214        if (di->flags.charging) {
1215                if (capacity < cs->disable_cap_level) {
1216                        cs->disable_cap_level = capacity;
1217                        dev_dbg(di->dev, "Cap to stop scale lowered %d%%\n",
1218                                cs->disable_cap_level);
1219                } else if (!di->flags.fully_charged) {
1220                        if (di->bat_cap.prev_percent >=
1221                            cs->disable_cap_level) {
1222                                dev_dbg(di->dev, "Disabling scaled capacity\n");
1223                                cs->enable = false;
1224                                capacity = di->bat_cap.prev_percent;
1225                        } else {
1226                                dev_dbg(di->dev,
1227                                        "Waiting in cap to level %d%%\n",
1228                                        cs->disable_cap_level);
1229                                capacity = cs->disable_cap_level;
1230                        }
1231                }
1232        }
1233
1234        return capacity;
1235}
1236
1237/**
1238 * ab8500_fg_update_cap_scalers() - Capacity scaling
1239 * @di:         pointer to the ab8500_fg structure
1240 *
1241 * To be called when state change from charge<->discharge to update
1242 * the capacity scalers.
1243 */
1244static void ab8500_fg_update_cap_scalers(struct ab8500_fg *di)
1245{
1246        struct ab8500_fg_cap_scaling *cs = &di->bat_cap.cap_scale;
1247
1248        if (!cs->enable)
1249                return;
1250        if (di->flags.charging) {
1251                di->bat_cap.cap_scale.disable_cap_level =
1252                        di->bat_cap.cap_scale.scaled_cap;
1253                dev_dbg(di->dev, "Cap to stop scale at charge %d%%\n",
1254                                di->bat_cap.cap_scale.disable_cap_level);
1255        } else {
1256                if (cs->scaled_cap != 100) {
1257                        cs->cap_to_scale[0] = cs->scaled_cap;
1258                        cs->cap_to_scale[1] = di->bat_cap.prev_percent;
1259                } else {
1260                        cs->cap_to_scale[0] = 100;
1261                        cs->cap_to_scale[1] =
1262                                max(di->bat_cap.prev_percent,
1263                                    di->bm->fg_params->maint_thres);
1264                }
1265
1266                dev_dbg(di->dev, "Cap to scale at discharge %d/%d\n",
1267                                cs->cap_to_scale[0], cs->cap_to_scale[1]);
1268        }
1269}
1270
1271/**
1272 * ab8500_fg_check_capacity_limits() - Check if capacity has changed
1273 * @di:         pointer to the ab8500_fg structure
1274 * @init:       capacity is allowed to go up in init mode
1275 *
1276 * Check if capacity or capacity limit has changed and notify the system
1277 * about it using the power_supply framework
1278 */
1279static void ab8500_fg_check_capacity_limits(struct ab8500_fg *di, bool init)
1280{
1281        bool changed = false;
1282        int percent = DIV_ROUND_CLOSEST(di->bat_cap.permille, 10);
1283
1284        di->bat_cap.level = ab8500_fg_capacity_level(di);
1285
1286        if (di->bat_cap.level != di->bat_cap.prev_level) {
1287                /*
1288                 * We do not allow reported capacity level to go up
1289                 * unless we're charging or if we're in init
1290                 */
1291                if (!(!di->flags.charging && di->bat_cap.level >
1292                        di->bat_cap.prev_level) || init) {
1293                        dev_dbg(di->dev, "level changed from %d to %d\n",
1294                                di->bat_cap.prev_level,
1295                                di->bat_cap.level);
1296                        di->bat_cap.prev_level = di->bat_cap.level;
1297                        changed = true;
1298                } else {
1299                        dev_dbg(di->dev, "level not allowed to go up "
1300                                "since no charger is connected: %d to %d\n",
1301                                di->bat_cap.prev_level,
1302                                di->bat_cap.level);
1303                }
1304        }
1305
1306        /*
1307         * If we have received the LOW_BAT IRQ, set capacity to 0 to initiate
1308         * shutdown
1309         */
1310        if (di->flags.low_bat) {
1311                dev_dbg(di->dev, "Battery low, set capacity to 0\n");
1312                di->bat_cap.prev_percent = 0;
1313                di->bat_cap.permille = 0;
1314                percent = 0;
1315                di->bat_cap.prev_mah = 0;
1316                di->bat_cap.mah = 0;
1317                changed = true;
1318        } else if (di->flags.fully_charged) {
1319                /*
1320                 * We report 100% if algorithm reported fully charged
1321                 * and show 100% during maintenance charging (scaling).
1322                 */
1323                if (di->flags.force_full) {
1324                        di->bat_cap.prev_percent = percent;
1325                        di->bat_cap.prev_mah = di->bat_cap.mah;
1326
1327                        changed = true;
1328
1329                        if (!di->bat_cap.cap_scale.enable &&
1330                                                di->bm->capacity_scaling) {
1331                                di->bat_cap.cap_scale.enable = true;
1332                                di->bat_cap.cap_scale.cap_to_scale[0] = 100;
1333                                di->bat_cap.cap_scale.cap_to_scale[1] =
1334                                                di->bat_cap.prev_percent;
1335                                di->bat_cap.cap_scale.disable_cap_level = 100;
1336                        }
1337                } else if (di->bat_cap.prev_percent != percent) {
1338                        dev_dbg(di->dev,
1339                                "battery reported full "
1340                                "but capacity dropping: %d\n",
1341                                percent);
1342                        di->bat_cap.prev_percent = percent;
1343                        di->bat_cap.prev_mah = di->bat_cap.mah;
1344
1345                        changed = true;
1346                }
1347        } else if (di->bat_cap.prev_percent != percent) {
1348                if (percent == 0) {
1349                        /*
1350                         * We will not report 0% unless we've got
1351                         * the LOW_BAT IRQ, no matter what the FG
1352                         * algorithm says.
1353                         */
1354                        di->bat_cap.prev_percent = 1;
1355                        percent = 1;
1356
1357                        changed = true;
1358                } else if (!(!di->flags.charging &&
1359                        percent > di->bat_cap.prev_percent) || init) {
1360                        /*
1361                         * We do not allow reported capacity to go up
1362                         * unless we're charging or if we're in init
1363                         */
1364                        dev_dbg(di->dev,
1365                                "capacity changed from %d to %d (%d)\n",
1366                                di->bat_cap.prev_percent,
1367                                percent,
1368                                di->bat_cap.permille);
1369                        di->bat_cap.prev_percent = percent;
1370                        di->bat_cap.prev_mah = di->bat_cap.mah;
1371
1372                        changed = true;
1373                } else {
1374                        dev_dbg(di->dev, "capacity not allowed to go up since "
1375                                "no charger is connected: %d to %d (%d)\n",
1376                                di->bat_cap.prev_percent,
1377                                percent,
1378                                di->bat_cap.permille);
1379                }
1380        }
1381
1382        if (changed) {
1383                if (di->bm->capacity_scaling) {
1384                        di->bat_cap.cap_scale.scaled_cap =
1385                                ab8500_fg_calculate_scaled_capacity(di);
1386
1387                        dev_info(di->dev, "capacity=%d (%d)\n",
1388                                di->bat_cap.prev_percent,
1389                                di->bat_cap.cap_scale.scaled_cap);
1390                }
1391                power_supply_changed(di->fg_psy);
1392                if (di->flags.fully_charged && di->flags.force_full) {
1393                        dev_dbg(di->dev, "Battery full, notifying.\n");
1394                        di->flags.force_full = false;
1395                        sysfs_notify(&di->fg_kobject, NULL, "charge_full");
1396                }
1397                sysfs_notify(&di->fg_kobject, NULL, "charge_now");
1398        }
1399}
1400
1401static void ab8500_fg_charge_state_to(struct ab8500_fg *di,
1402        enum ab8500_fg_charge_state new_state)
1403{
1404        dev_dbg(di->dev, "Charge state from %d [%s] to %d [%s]\n",
1405                di->charge_state,
1406                charge_state[di->charge_state],
1407                new_state,
1408                charge_state[new_state]);
1409
1410        di->charge_state = new_state;
1411}
1412
1413static void ab8500_fg_discharge_state_to(struct ab8500_fg *di,
1414        enum ab8500_fg_discharge_state new_state)
1415{
1416        dev_dbg(di->dev, "Disharge state from %d [%s] to %d [%s]\n",
1417                di->discharge_state,
1418                discharge_state[di->discharge_state],
1419                new_state,
1420                discharge_state[new_state]);
1421
1422        di->discharge_state = new_state;
1423}
1424
1425/**
1426 * ab8500_fg_algorithm_charging() - FG algorithm for when charging
1427 * @di:         pointer to the ab8500_fg structure
1428 *
1429 * Battery capacity calculation state machine for when we're charging
1430 */
1431static void ab8500_fg_algorithm_charging(struct ab8500_fg *di)
1432{
1433        /*
1434         * If we change to discharge mode
1435         * we should start with recovery
1436         */
1437        if (di->discharge_state != AB8500_FG_DISCHARGE_INIT_RECOVERY)
1438                ab8500_fg_discharge_state_to(di,
1439                        AB8500_FG_DISCHARGE_INIT_RECOVERY);
1440
1441        switch (di->charge_state) {
1442        case AB8500_FG_CHARGE_INIT:
1443                di->fg_samples = SEC_TO_SAMPLE(
1444                        di->bm->fg_params->accu_charging);
1445
1446                ab8500_fg_coulomb_counter(di, true);
1447                ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_READOUT);
1448
1449                break;
1450
1451        case AB8500_FG_CHARGE_READOUT:
1452                /*
1453                 * Read the FG and calculate the new capacity
1454                 */
1455                mutex_lock(&di->cc_lock);
1456                if (!di->flags.conv_done && !di->flags.force_full) {
1457                        /* Wasn't the CC IRQ that got us here */
1458                        mutex_unlock(&di->cc_lock);
1459                        dev_dbg(di->dev, "%s CC conv not done\n",
1460                                __func__);
1461
1462                        break;
1463                }
1464                di->flags.conv_done = false;
1465                mutex_unlock(&di->cc_lock);
1466
1467                ab8500_fg_calc_cap_charging(di);
1468
1469                break;
1470
1471        default:
1472                break;
1473        }
1474
1475        /* Check capacity limits */
1476        ab8500_fg_check_capacity_limits(di, false);
1477}
1478
1479static void force_capacity(struct ab8500_fg *di)
1480{
1481        int cap;
1482
1483        ab8500_fg_clear_cap_samples(di);
1484        cap = di->bat_cap.user_mah;
1485        if (cap > di->bat_cap.max_mah_design) {
1486                dev_dbg(di->dev, "Remaining cap %d can't be bigger than total"
1487                        " %d\n", cap, di->bat_cap.max_mah_design);
1488                cap = di->bat_cap.max_mah_design;
1489        }
1490        ab8500_fg_fill_cap_sample(di, di->bat_cap.user_mah);
1491        di->bat_cap.permille = ab8500_fg_convert_mah_to_permille(di, cap);
1492        di->bat_cap.mah = cap;
1493        ab8500_fg_check_capacity_limits(di, true);
1494}
1495
1496static bool check_sysfs_capacity(struct ab8500_fg *di)
1497{
1498        int cap, lower, upper;
1499        int cap_permille;
1500
1501        cap = di->bat_cap.user_mah;
1502
1503        cap_permille = ab8500_fg_convert_mah_to_permille(di,
1504                di->bat_cap.user_mah);
1505
1506        lower = di->bat_cap.permille - di->bm->fg_params->user_cap_limit * 10;
1507        upper = di->bat_cap.permille + di->bm->fg_params->user_cap_limit * 10;
1508
1509        if (lower < 0)
1510                lower = 0;
1511        /* 1000 is permille, -> 100 percent */
1512        if (upper > 1000)
1513                upper = 1000;
1514
1515        dev_dbg(di->dev, "Capacity limits:"
1516                " (Lower: %d User: %d Upper: %d) [user: %d, was: %d]\n",
1517                lower, cap_permille, upper, cap, di->bat_cap.mah);
1518
1519        /* If within limits, use the saved capacity and exit estimation...*/
1520        if (cap_permille > lower && cap_permille < upper) {
1521                dev_dbg(di->dev, "OK! Using users cap %d uAh now\n", cap);
1522                force_capacity(di);
1523                return true;
1524        }
1525        dev_dbg(di->dev, "Capacity from user out of limits, ignoring");
1526        return false;
1527}
1528
1529/**
1530 * ab8500_fg_algorithm_discharging() - FG algorithm for when discharging
1531 * @di:         pointer to the ab8500_fg structure
1532 *
1533 * Battery capacity calculation state machine for when we're discharging
1534 */
1535static void ab8500_fg_algorithm_discharging(struct ab8500_fg *di)
1536{
1537        int sleep_time;
1538
1539        /* If we change to charge mode we should start with init */
1540        if (di->charge_state != AB8500_FG_CHARGE_INIT)
1541                ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
1542
1543        switch (di->discharge_state) {
1544        case AB8500_FG_DISCHARGE_INIT:
1545                /* We use the FG IRQ to work on */
1546                di->init_cnt = 0;
1547                di->fg_samples = SEC_TO_SAMPLE(di->bm->fg_params->init_timer);
1548                ab8500_fg_coulomb_counter(di, true);
1549                ab8500_fg_discharge_state_to(di,
1550                        AB8500_FG_DISCHARGE_INITMEASURING);
1551
1552                /* Intentional fallthrough */
1553        case AB8500_FG_DISCHARGE_INITMEASURING:
1554                /*
1555                 * Discard a number of samples during startup.
1556                 * After that, use compensated voltage for a few
1557                 * samples to get an initial capacity.
1558                 * Then go to READOUT
1559                 */
1560                sleep_time = di->bm->fg_params->init_timer;
1561
1562                /* Discard the first [x] seconds */
1563                if (di->init_cnt > di->bm->fg_params->init_discard_time) {
1564                        ab8500_fg_calc_cap_discharge_voltage(di, true);
1565
1566                        ab8500_fg_check_capacity_limits(di, true);
1567                }
1568
1569                di->init_cnt += sleep_time;
1570                if (di->init_cnt > di->bm->fg_params->init_total_time)
1571                        ab8500_fg_discharge_state_to(di,
1572                                AB8500_FG_DISCHARGE_READOUT_INIT);
1573
1574                break;
1575
1576        case AB8500_FG_DISCHARGE_INIT_RECOVERY:
1577                di->recovery_cnt = 0;
1578                di->recovery_needed = true;
1579                ab8500_fg_discharge_state_to(di,
1580                        AB8500_FG_DISCHARGE_RECOVERY);
1581
1582                /* Intentional fallthrough */
1583
1584        case AB8500_FG_DISCHARGE_RECOVERY:
1585                sleep_time = di->bm->fg_params->recovery_sleep_timer;
1586
1587                /*
1588                 * We should check the power consumption
1589                 * If low, go to READOUT (after x min) or
1590                 * RECOVERY_SLEEP if time left.
1591                 * If high, go to READOUT
1592                 */
1593                di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1594
1595                if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
1596                        if (di->recovery_cnt >
1597                                di->bm->fg_params->recovery_total_time) {
1598                                di->fg_samples = SEC_TO_SAMPLE(
1599                                        di->bm->fg_params->accu_high_curr);
1600                                ab8500_fg_coulomb_counter(di, true);
1601                                ab8500_fg_discharge_state_to(di,
1602                                        AB8500_FG_DISCHARGE_READOUT);
1603                                di->recovery_needed = false;
1604                        } else {
1605                                queue_delayed_work(di->fg_wq,
1606                                        &di->fg_periodic_work,
1607                                        sleep_time * HZ);
1608                        }
1609                        di->recovery_cnt += sleep_time;
1610                } else {
1611                        di->fg_samples = SEC_TO_SAMPLE(
1612                                di->bm->fg_params->accu_high_curr);
1613                        ab8500_fg_coulomb_counter(di, true);
1614                        ab8500_fg_discharge_state_to(di,
1615                                AB8500_FG_DISCHARGE_READOUT);
1616                }
1617                break;
1618
1619        case AB8500_FG_DISCHARGE_READOUT_INIT:
1620                di->fg_samples = SEC_TO_SAMPLE(
1621                        di->bm->fg_params->accu_high_curr);
1622                ab8500_fg_coulomb_counter(di, true);
1623                ab8500_fg_discharge_state_to(di,
1624                                AB8500_FG_DISCHARGE_READOUT);
1625                break;
1626
1627        case AB8500_FG_DISCHARGE_READOUT:
1628                di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1629
1630                if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
1631                        /* Detect mode change */
1632                        if (di->high_curr_mode) {
1633                                di->high_curr_mode = false;
1634                                di->high_curr_cnt = 0;
1635                        }
1636
1637                        if (di->recovery_needed) {
1638                                ab8500_fg_discharge_state_to(di,
1639                                        AB8500_FG_DISCHARGE_INIT_RECOVERY);
1640
1641                                queue_delayed_work(di->fg_wq,
1642                                        &di->fg_periodic_work, 0);
1643
1644                                break;
1645                        }
1646
1647                        ab8500_fg_calc_cap_discharge_voltage(di, true);
1648                } else {
1649                        mutex_lock(&di->cc_lock);
1650                        if (!di->flags.conv_done) {
1651                                /* Wasn't the CC IRQ that got us here */
1652                                mutex_unlock(&di->cc_lock);
1653                                dev_dbg(di->dev, "%s CC conv not done\n",
1654                                        __func__);
1655
1656                                break;
1657                        }
1658                        di->flags.conv_done = false;
1659                        mutex_unlock(&di->cc_lock);
1660
1661                        /* Detect mode change */
1662                        if (!di->high_curr_mode) {
1663                                di->high_curr_mode = true;
1664                                di->high_curr_cnt = 0;
1665                        }
1666
1667                        di->high_curr_cnt +=
1668                                di->bm->fg_params->accu_high_curr;
1669                        if (di->high_curr_cnt >
1670                                di->bm->fg_params->high_curr_time)
1671                                di->recovery_needed = true;
1672
1673                        ab8500_fg_calc_cap_discharge_fg(di);
1674                }
1675
1676                ab8500_fg_check_capacity_limits(di, false);
1677
1678                break;
1679
1680        case AB8500_FG_DISCHARGE_WAKEUP:
1681                ab8500_fg_calc_cap_discharge_voltage(di, true);
1682
1683                di->fg_samples = SEC_TO_SAMPLE(
1684                        di->bm->fg_params->accu_high_curr);
1685                ab8500_fg_coulomb_counter(di, true);
1686                ab8500_fg_discharge_state_to(di,
1687                                AB8500_FG_DISCHARGE_READOUT);
1688
1689                ab8500_fg_check_capacity_limits(di, false);
1690
1691                break;
1692
1693        default:
1694                break;
1695        }
1696}
1697
1698/**
1699 * ab8500_fg_algorithm_calibrate() - Internal columb counter offset calibration
1700 * @di:         pointer to the ab8500_fg structure
1701 *
1702 */
1703static void ab8500_fg_algorithm_calibrate(struct ab8500_fg *di)
1704{
1705        int ret;
1706
1707        switch (di->calib_state) {
1708        case AB8500_FG_CALIB_INIT:
1709                dev_dbg(di->dev, "Calibration ongoing...\n");
1710
1711                ret = abx500_mask_and_set_register_interruptible(di->dev,
1712                        AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1713                        CC_INT_CAL_N_AVG_MASK, CC_INT_CAL_SAMPLES_8);
1714                if (ret < 0)
1715                        goto err;
1716
1717                ret = abx500_mask_and_set_register_interruptible(di->dev,
1718                        AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1719                        CC_INTAVGOFFSET_ENA, CC_INTAVGOFFSET_ENA);
1720                if (ret < 0)
1721                        goto err;
1722                di->calib_state = AB8500_FG_CALIB_WAIT;
1723                break;
1724        case AB8500_FG_CALIB_END:
1725                ret = abx500_mask_and_set_register_interruptible(di->dev,
1726                        AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1727                        CC_MUXOFFSET, CC_MUXOFFSET);
1728                if (ret < 0)
1729                        goto err;
1730                di->flags.calibrate = false;
1731                dev_dbg(di->dev, "Calibration done...\n");
1732                queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1733                break;
1734        case AB8500_FG_CALIB_WAIT:
1735                dev_dbg(di->dev, "Calibration WFI\n");
1736        default:
1737                break;
1738        }
1739        return;
1740err:
1741        /* Something went wrong, don't calibrate then */
1742        dev_err(di->dev, "failed to calibrate the CC\n");
1743        di->flags.calibrate = false;
1744        di->calib_state = AB8500_FG_CALIB_INIT;
1745        queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1746}
1747
1748/**
1749 * ab8500_fg_algorithm() - Entry point for the FG algorithm
1750 * @di:         pointer to the ab8500_fg structure
1751 *
1752 * Entry point for the battery capacity calculation state machine
1753 */
1754static void ab8500_fg_algorithm(struct ab8500_fg *di)
1755{
1756        if (di->flags.calibrate)
1757                ab8500_fg_algorithm_calibrate(di);
1758        else {
1759                if (di->flags.charging)
1760                        ab8500_fg_algorithm_charging(di);
1761                else
1762                        ab8500_fg_algorithm_discharging(di);
1763        }
1764
1765        dev_dbg(di->dev, "[FG_DATA] %d %d %d %d %d %d %d %d %d %d "
1766                "%d %d %d %d %d %d %d\n",
1767                di->bat_cap.max_mah_design,
1768                di->bat_cap.max_mah,
1769                di->bat_cap.mah,
1770                di->bat_cap.permille,
1771                di->bat_cap.level,
1772                di->bat_cap.prev_mah,
1773                di->bat_cap.prev_percent,
1774                di->bat_cap.prev_level,
1775                di->vbat,
1776                di->inst_curr,
1777                di->avg_curr,
1778                di->accu_charge,
1779                di->flags.charging,
1780                di->charge_state,
1781                di->discharge_state,
1782                di->high_curr_mode,
1783                di->recovery_needed);
1784}
1785
1786/**
1787 * ab8500_fg_periodic_work() - Run the FG state machine periodically
1788 * @work:       pointer to the work_struct structure
1789 *
1790 * Work queue function for periodic work
1791 */
1792static void ab8500_fg_periodic_work(struct work_struct *work)
1793{
1794        struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1795                fg_periodic_work.work);
1796
1797        if (di->init_capacity) {
1798                /* Get an initial capacity calculation */
1799                ab8500_fg_calc_cap_discharge_voltage(di, true);
1800                ab8500_fg_check_capacity_limits(di, true);
1801                di->init_capacity = false;
1802
1803                queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1804        } else if (di->flags.user_cap) {
1805                if (check_sysfs_capacity(di)) {
1806                        ab8500_fg_check_capacity_limits(di, true);
1807                        if (di->flags.charging)
1808                                ab8500_fg_charge_state_to(di,
1809                                        AB8500_FG_CHARGE_INIT);
1810                        else
1811                                ab8500_fg_discharge_state_to(di,
1812                                        AB8500_FG_DISCHARGE_READOUT_INIT);
1813                }
1814                di->flags.user_cap = false;
1815                queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1816        } else
1817                ab8500_fg_algorithm(di);
1818
1819}
1820
1821/**
1822 * ab8500_fg_check_hw_failure_work() - Check OVV_BAT condition
1823 * @work:       pointer to the work_struct structure
1824 *
1825 * Work queue function for checking the OVV_BAT condition
1826 */
1827static void ab8500_fg_check_hw_failure_work(struct work_struct *work)
1828{
1829        int ret;
1830        u8 reg_value;
1831
1832        struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1833                fg_check_hw_failure_work.work);
1834
1835        /*
1836         * If we have had a battery over-voltage situation,
1837         * check ovv-bit to see if it should be reset.
1838         */
1839        ret = abx500_get_register_interruptible(di->dev,
1840                AB8500_CHARGER, AB8500_CH_STAT_REG,
1841                &reg_value);
1842        if (ret < 0) {
1843                dev_err(di->dev, "%s ab8500 read failed\n", __func__);
1844                return;
1845        }
1846        if ((reg_value & BATT_OVV) == BATT_OVV) {
1847                if (!di->flags.bat_ovv) {
1848                        dev_dbg(di->dev, "Battery OVV\n");
1849                        di->flags.bat_ovv = true;
1850                        power_supply_changed(di->fg_psy);
1851                }
1852                /* Not yet recovered from ovv, reschedule this test */
1853                queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work,
1854                                   HZ);
1855                } else {
1856                        dev_dbg(di->dev, "Battery recovered from OVV\n");
1857                        di->flags.bat_ovv = false;
1858                        power_supply_changed(di->fg_psy);
1859        }
1860}
1861
1862/**
1863 * ab8500_fg_low_bat_work() - Check LOW_BAT condition
1864 * @work:       pointer to the work_struct structure
1865 *
1866 * Work queue function for checking the LOW_BAT condition
1867 */
1868static void ab8500_fg_low_bat_work(struct work_struct *work)
1869{
1870        int vbat;
1871
1872        struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1873                fg_low_bat_work.work);
1874
1875        vbat = ab8500_fg_bat_voltage(di);
1876
1877        /* Check if LOW_BAT still fulfilled */
1878        if (vbat < di->bm->fg_params->lowbat_threshold) {
1879                /* Is it time to shut down? */
1880                if (di->low_bat_cnt < 1) {
1881                        di->flags.low_bat = true;
1882                        dev_warn(di->dev, "Shut down pending...\n");
1883                } else {
1884                        /*
1885                        * Else we need to re-schedule this check to be able to detect
1886                        * if the voltage increases again during charging or
1887                        * due to decreasing load.
1888                        */
1889                        di->low_bat_cnt--;
1890                        dev_warn(di->dev, "Battery voltage still LOW\n");
1891                        queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
1892                                round_jiffies(LOW_BAT_CHECK_INTERVAL));
1893                }
1894        } else {
1895                di->flags.low_bat_delay = false;
1896                di->low_bat_cnt = 10;
1897                dev_warn(di->dev, "Battery voltage OK again\n");
1898        }
1899
1900        /* This is needed to dispatch LOW_BAT */
1901        ab8500_fg_check_capacity_limits(di, false);
1902}
1903
1904/**
1905 * ab8500_fg_battok_calc - calculate the bit pattern corresponding
1906 * to the target voltage.
1907 * @di:       pointer to the ab8500_fg structure
1908 * @target    target voltage
1909 *
1910 * Returns bit pattern closest to the target voltage
1911 * valid return values are 0-14. (0-BATT_OK_MAX_NR_INCREMENTS)
1912 */
1913
1914static int ab8500_fg_battok_calc(struct ab8500_fg *di, int target)
1915{
1916        if (target > BATT_OK_MIN +
1917                (BATT_OK_INCREMENT * BATT_OK_MAX_NR_INCREMENTS))
1918                return BATT_OK_MAX_NR_INCREMENTS;
1919        if (target < BATT_OK_MIN)
1920                return 0;
1921        return (target - BATT_OK_MIN) / BATT_OK_INCREMENT;
1922}
1923
1924/**
1925 * ab8500_fg_battok_init_hw_register - init battok levels
1926 * @di:       pointer to the ab8500_fg structure
1927 *
1928 */
1929
1930static int ab8500_fg_battok_init_hw_register(struct ab8500_fg *di)
1931{
1932        int selected;
1933        int sel0;
1934        int sel1;
1935        int cbp_sel0;
1936        int cbp_sel1;
1937        int ret;
1938        int new_val;
1939
1940        sel0 = di->bm->fg_params->battok_falling_th_sel0;
1941        sel1 = di->bm->fg_params->battok_raising_th_sel1;
1942
1943        cbp_sel0 = ab8500_fg_battok_calc(di, sel0);
1944        cbp_sel1 = ab8500_fg_battok_calc(di, sel1);
1945
1946        selected = BATT_OK_MIN + cbp_sel0 * BATT_OK_INCREMENT;
1947
1948        if (selected != sel0)
1949                dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
1950                        sel0, selected, cbp_sel0);
1951
1952        selected = BATT_OK_MIN + cbp_sel1 * BATT_OK_INCREMENT;
1953
1954        if (selected != sel1)
1955                dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
1956                        sel1, selected, cbp_sel1);
1957
1958        new_val = cbp_sel0 | (cbp_sel1 << 4);
1959
1960        dev_dbg(di->dev, "using: %x %d %d\n", new_val, cbp_sel0, cbp_sel1);
1961        ret = abx500_set_register_interruptible(di->dev, AB8500_SYS_CTRL2_BLOCK,
1962                AB8500_BATT_OK_REG, new_val);
1963        return ret;
1964}
1965
1966/**
1967 * ab8500_fg_instant_work() - Run the FG state machine instantly
1968 * @work:       pointer to the work_struct structure
1969 *
1970 * Work queue function for instant work
1971 */
1972static void ab8500_fg_instant_work(struct work_struct *work)
1973{
1974        struct ab8500_fg *di = container_of(work, struct ab8500_fg, fg_work);
1975
1976        ab8500_fg_algorithm(di);
1977}
1978
1979/**
1980 * ab8500_fg_cc_data_end_handler() - end of data conversion isr.
1981 * @irq:       interrupt number
1982 * @_di:       pointer to the ab8500_fg structure
1983 *
1984 * Returns IRQ status(IRQ_HANDLED)
1985 */
1986static irqreturn_t ab8500_fg_cc_data_end_handler(int irq, void *_di)
1987{
1988        struct ab8500_fg *di = _di;
1989        if (!di->nbr_cceoc_irq_cnt) {
1990                di->nbr_cceoc_irq_cnt++;
1991                complete(&di->ab8500_fg_started);
1992        } else {
1993                di->nbr_cceoc_irq_cnt = 0;
1994                complete(&di->ab8500_fg_complete);
1995        }
1996        return IRQ_HANDLED;
1997}
1998
1999/**
2000 * ab8500_fg_cc_int_calib_handler () - end of calibration isr.
2001 * @irq:       interrupt number
2002 * @_di:       pointer to the ab8500_fg structure
2003 *
2004 * Returns IRQ status(IRQ_HANDLED)
2005 */
2006static irqreturn_t ab8500_fg_cc_int_calib_handler(int irq, void *_di)
2007{
2008        struct ab8500_fg *di = _di;
2009        di->calib_state = AB8500_FG_CALIB_END;
2010        queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2011        return IRQ_HANDLED;
2012}
2013
2014/**
2015 * ab8500_fg_cc_convend_handler() - isr to get battery avg current.
2016 * @irq:       interrupt number
2017 * @_di:       pointer to the ab8500_fg structure
2018 *
2019 * Returns IRQ status(IRQ_HANDLED)
2020 */
2021static irqreturn_t ab8500_fg_cc_convend_handler(int irq, void *_di)
2022{
2023        struct ab8500_fg *di = _di;
2024
2025        queue_work(di->fg_wq, &di->fg_acc_cur_work);
2026
2027        return IRQ_HANDLED;
2028}
2029
2030/**
2031 * ab8500_fg_batt_ovv_handler() - Battery OVV occured
2032 * @irq:       interrupt number
2033 * @_di:       pointer to the ab8500_fg structure
2034 *
2035 * Returns IRQ status(IRQ_HANDLED)
2036 */
2037static irqreturn_t ab8500_fg_batt_ovv_handler(int irq, void *_di)
2038{
2039        struct ab8500_fg *di = _di;
2040
2041        dev_dbg(di->dev, "Battery OVV\n");
2042
2043        /* Schedule a new HW failure check */
2044        queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work, 0);
2045
2046        return IRQ_HANDLED;
2047}
2048
2049/**
2050 * ab8500_fg_lowbatf_handler() - Battery voltage is below LOW threshold
2051 * @irq:       interrupt number
2052 * @_di:       pointer to the ab8500_fg structure
2053 *
2054 * Returns IRQ status(IRQ_HANDLED)
2055 */
2056static irqreturn_t ab8500_fg_lowbatf_handler(int irq, void *_di)
2057{
2058        struct ab8500_fg *di = _di;
2059
2060        /* Initiate handling in ab8500_fg_low_bat_work() if not already initiated. */
2061        if (!di->flags.low_bat_delay) {
2062                dev_warn(di->dev, "Battery voltage is below LOW threshold\n");
2063                di->flags.low_bat_delay = true;
2064                /*
2065                 * Start a timer to check LOW_BAT again after some time
2066                 * This is done to avoid shutdown on single voltage dips
2067                 */
2068                queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
2069                        round_jiffies(LOW_BAT_CHECK_INTERVAL));
2070        }
2071        return IRQ_HANDLED;
2072}
2073
2074/**
2075 * ab8500_fg_get_property() - get the fg properties
2076 * @psy:        pointer to the power_supply structure
2077 * @psp:        pointer to the power_supply_property structure
2078 * @val:        pointer to the power_supply_propval union
2079 *
2080 * This function gets called when an application tries to get the
2081 * fg properties by reading the sysfs files.
2082 * voltage_now:         battery voltage
2083 * current_now:         battery instant current
2084 * current_avg:         battery average current
2085 * charge_full_design:  capacity where battery is considered full
2086 * charge_now:          battery capacity in nAh
2087 * capacity:            capacity in percent
2088 * capacity_level:      capacity level
2089 *
2090 * Returns error code in case of failure else 0 on success
2091 */
2092static int ab8500_fg_get_property(struct power_supply *psy,
2093        enum power_supply_property psp,
2094        union power_supply_propval *val)
2095{
2096        struct ab8500_fg *di = power_supply_get_drvdata(psy);
2097
2098        /*
2099         * If battery is identified as unknown and charging of unknown
2100         * batteries is disabled, we always report 100% capacity and
2101         * capacity level UNKNOWN, since we can't calculate
2102         * remaining capacity
2103         */
2104
2105        switch (psp) {
2106        case POWER_SUPPLY_PROP_VOLTAGE_NOW:
2107                if (di->flags.bat_ovv)
2108                        val->intval = BATT_OVV_VALUE * 1000;
2109                else
2110                        val->intval = di->vbat * 1000;
2111                break;
2112        case POWER_SUPPLY_PROP_CURRENT_NOW:
2113                val->intval = di->inst_curr * 1000;
2114                break;
2115        case POWER_SUPPLY_PROP_CURRENT_AVG:
2116                val->intval = di->avg_curr * 1000;
2117                break;
2118        case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
2119                val->intval = ab8500_fg_convert_mah_to_uwh(di,
2120                                di->bat_cap.max_mah_design);
2121                break;
2122        case POWER_SUPPLY_PROP_ENERGY_FULL:
2123                val->intval = ab8500_fg_convert_mah_to_uwh(di,
2124                                di->bat_cap.max_mah);
2125                break;
2126        case POWER_SUPPLY_PROP_ENERGY_NOW:
2127                if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2128                                di->flags.batt_id_received)
2129                        val->intval = ab8500_fg_convert_mah_to_uwh(di,
2130                                        di->bat_cap.max_mah);
2131                else
2132                        val->intval = ab8500_fg_convert_mah_to_uwh(di,
2133                                        di->bat_cap.prev_mah);
2134                break;
2135        case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
2136                val->intval = di->bat_cap.max_mah_design;
2137                break;
2138        case POWER_SUPPLY_PROP_CHARGE_FULL:
2139                val->intval = di->bat_cap.max_mah;
2140                break;
2141        case POWER_SUPPLY_PROP_CHARGE_NOW:
2142                if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2143                                di->flags.batt_id_received)
2144                        val->intval = di->bat_cap.max_mah;
2145                else
2146                        val->intval = di->bat_cap.prev_mah;
2147                break;
2148        case POWER_SUPPLY_PROP_CAPACITY:
2149                if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2150                                di->flags.batt_id_received)
2151                        val->intval = 100;
2152                else
2153                        val->intval = di->bat_cap.prev_percent;
2154                break;
2155        case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
2156                if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2157                                di->flags.batt_id_received)
2158                        val->intval = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
2159                else
2160                        val->intval = di->bat_cap.prev_level;
2161                break;
2162        default:
2163                return -EINVAL;
2164        }
2165        return 0;
2166}
2167
2168static int ab8500_fg_get_ext_psy_data(struct device *dev, void *data)
2169{
2170        struct power_supply *psy;
2171        struct power_supply *ext = dev_get_drvdata(dev);
2172        const char **supplicants = (const char **)ext->supplied_to;
2173        struct ab8500_fg *di;
2174        union power_supply_propval ret;
2175        int j;
2176
2177        psy = (struct power_supply *)data;
2178        di = power_supply_get_drvdata(psy);
2179
2180        /*
2181         * For all psy where the name of your driver
2182         * appears in any supplied_to
2183         */
2184        j = match_string(supplicants, ext->num_supplicants, psy->desc->name);
2185        if (j < 0)
2186                return 0;
2187
2188        /* Go through all properties for the psy */
2189        for (j = 0; j < ext->desc->num_properties; j++) {
2190                enum power_supply_property prop;
2191                prop = ext->desc->properties[j];
2192
2193                if (power_supply_get_property(ext, prop, &ret))
2194                        continue;
2195
2196                switch (prop) {
2197                case POWER_SUPPLY_PROP_STATUS:
2198                        switch (ext->desc->type) {
2199                        case POWER_SUPPLY_TYPE_BATTERY:
2200                                switch (ret.intval) {
2201                                case POWER_SUPPLY_STATUS_UNKNOWN:
2202                                case POWER_SUPPLY_STATUS_DISCHARGING:
2203                                case POWER_SUPPLY_STATUS_NOT_CHARGING:
2204                                        if (!di->flags.charging)
2205                                                break;
2206                                        di->flags.charging = false;
2207                                        di->flags.fully_charged = false;
2208                                        if (di->bm->capacity_scaling)
2209                                                ab8500_fg_update_cap_scalers(di);
2210                                        queue_work(di->fg_wq, &di->fg_work);
2211                                        break;
2212                                case POWER_SUPPLY_STATUS_FULL:
2213                                        if (di->flags.fully_charged)
2214                                                break;
2215                                        di->flags.fully_charged = true;
2216                                        di->flags.force_full = true;
2217                                        /* Save current capacity as maximum */
2218                                        di->bat_cap.max_mah = di->bat_cap.mah;
2219                                        queue_work(di->fg_wq, &di->fg_work);
2220                                        break;
2221                                case POWER_SUPPLY_STATUS_CHARGING:
2222                                        if (di->flags.charging &&
2223                                                !di->flags.fully_charged)
2224                                                break;
2225                                        di->flags.charging = true;
2226                                        di->flags.fully_charged = false;
2227                                        if (di->bm->capacity_scaling)
2228                                                ab8500_fg_update_cap_scalers(di);
2229                                        queue_work(di->fg_wq, &di->fg_work);
2230                                        break;
2231                                };
2232                        default:
2233                                break;
2234                        };
2235                        break;
2236                case POWER_SUPPLY_PROP_TECHNOLOGY:
2237                        switch (ext->desc->type) {
2238                        case POWER_SUPPLY_TYPE_BATTERY:
2239                                if (!di->flags.batt_id_received &&
2240                                    di->bm->batt_id != BATTERY_UNKNOWN) {
2241                                        const struct abx500_battery_type *b;
2242
2243                                        b = &(di->bm->bat_type[di->bm->batt_id]);
2244
2245                                        di->flags.batt_id_received = true;
2246
2247                                        di->bat_cap.max_mah_design =
2248                                                MILLI_TO_MICRO *
2249                                                b->charge_full_design;
2250
2251                                        di->bat_cap.max_mah =
2252                                                di->bat_cap.max_mah_design;
2253
2254                                        di->vbat_nom = b->nominal_voltage;
2255                                }
2256
2257                                if (ret.intval)
2258                                        di->flags.batt_unknown = false;
2259                                else
2260                                        di->flags.batt_unknown = true;
2261                                break;
2262                        default:
2263                                break;
2264                        }
2265                        break;
2266                case POWER_SUPPLY_PROP_TEMP:
2267                        switch (ext->desc->type) {
2268                        case POWER_SUPPLY_TYPE_BATTERY:
2269                                if (di->flags.batt_id_received)
2270                                        di->bat_temp = ret.intval;
2271                                break;
2272                        default:
2273                                break;
2274                        }
2275                        break;
2276                default:
2277                        break;
2278                }
2279        }
2280        return 0;
2281}
2282
2283/**
2284 * ab8500_fg_init_hw_registers() - Set up FG related registers
2285 * @di:         pointer to the ab8500_fg structure
2286 *
2287 * Set up battery OVV, low battery voltage registers
2288 */
2289static int ab8500_fg_init_hw_registers(struct ab8500_fg *di)
2290{
2291        int ret;
2292
2293        /* Set VBAT OVV threshold */
2294        ret = abx500_mask_and_set_register_interruptible(di->dev,
2295                AB8500_CHARGER,
2296                AB8500_BATT_OVV,
2297                BATT_OVV_TH_4P75,
2298                BATT_OVV_TH_4P75);
2299        if (ret) {
2300                dev_err(di->dev, "failed to set BATT_OVV\n");
2301                goto out;
2302        }
2303
2304        /* Enable VBAT OVV detection */
2305        ret = abx500_mask_and_set_register_interruptible(di->dev,
2306                AB8500_CHARGER,
2307                AB8500_BATT_OVV,
2308                BATT_OVV_ENA,
2309                BATT_OVV_ENA);
2310        if (ret) {
2311                dev_err(di->dev, "failed to enable BATT_OVV\n");
2312                goto out;
2313        }
2314
2315        /* Low Battery Voltage */
2316        ret = abx500_set_register_interruptible(di->dev,
2317                AB8500_SYS_CTRL2_BLOCK,
2318                AB8500_LOW_BAT_REG,
2319                ab8500_volt_to_regval(
2320                        di->bm->fg_params->lowbat_threshold) << 1 |
2321                LOW_BAT_ENABLE);
2322        if (ret) {
2323                dev_err(di->dev, "%s write failed\n", __func__);
2324                goto out;
2325        }
2326
2327        /* Battery OK threshold */
2328        ret = ab8500_fg_battok_init_hw_register(di);
2329        if (ret) {
2330                dev_err(di->dev, "BattOk init write failed.\n");
2331                goto out;
2332        }
2333
2334        if (((is_ab8505(di->parent) || is_ab9540(di->parent)) &&
2335                        abx500_get_chip_id(di->dev) >= AB8500_CUT2P0)
2336                        || is_ab8540(di->parent)) {
2337                ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2338                        AB8505_RTC_PCUT_MAX_TIME_REG, di->bm->fg_params->pcut_max_time);
2339
2340                if (ret) {
2341                        dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_MAX_TIME_REG\n", __func__);
2342                        goto out;
2343                };
2344
2345                ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2346                        AB8505_RTC_PCUT_FLAG_TIME_REG, di->bm->fg_params->pcut_flag_time);
2347
2348                if (ret) {
2349                        dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_FLAG_TIME_REG\n", __func__);
2350                        goto out;
2351                };
2352
2353                ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2354                        AB8505_RTC_PCUT_RESTART_REG, di->bm->fg_params->pcut_max_restart);
2355
2356                if (ret) {
2357                        dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_RESTART_REG\n", __func__);
2358                        goto out;
2359                };
2360
2361                ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2362                        AB8505_RTC_PCUT_DEBOUNCE_REG, di->bm->fg_params->pcut_debounce_time);
2363
2364                if (ret) {
2365                        dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_DEBOUNCE_REG\n", __func__);
2366                        goto out;
2367                };
2368
2369                ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2370                        AB8505_RTC_PCUT_CTL_STATUS_REG, di->bm->fg_params->pcut_enable);
2371
2372                if (ret) {
2373                        dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_CTL_STATUS_REG\n", __func__);
2374                        goto out;
2375                };
2376        }
2377out:
2378        return ret;
2379}
2380
2381/**
2382 * ab8500_fg_external_power_changed() - callback for power supply changes
2383 * @psy:       pointer to the structure power_supply
2384 *
2385 * This function is the entry point of the pointer external_power_changed
2386 * of the structure power_supply.
2387 * This function gets executed when there is a change in any external power
2388 * supply that this driver needs to be notified of.
2389 */
2390static void ab8500_fg_external_power_changed(struct power_supply *psy)
2391{
2392        struct ab8500_fg *di = power_supply_get_drvdata(psy);
2393
2394        class_for_each_device(power_supply_class, NULL,
2395                di->fg_psy, ab8500_fg_get_ext_psy_data);
2396}
2397
2398/**
2399 * abab8500_fg_reinit_work() - work to reset the FG algorithm
2400 * @work:       pointer to the work_struct structure
2401 *
2402 * Used to reset the current battery capacity to be able to
2403 * retrigger a new voltage base capacity calculation. For
2404 * test and verification purpose.
2405 */
2406static void ab8500_fg_reinit_work(struct work_struct *work)
2407{
2408        struct ab8500_fg *di = container_of(work, struct ab8500_fg,
2409                fg_reinit_work.work);
2410
2411        if (di->flags.calibrate == false) {
2412                dev_dbg(di->dev, "Resetting FG state machine to init.\n");
2413                ab8500_fg_clear_cap_samples(di);
2414                ab8500_fg_calc_cap_discharge_voltage(di, true);
2415                ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
2416                ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
2417                queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2418
2419        } else {
2420                dev_err(di->dev, "Residual offset calibration ongoing "
2421                        "retrying..\n");
2422                /* Wait one second until next try*/
2423                queue_delayed_work(di->fg_wq, &di->fg_reinit_work,
2424                        round_jiffies(1));
2425        }
2426}
2427
2428/* Exposure to the sysfs interface */
2429
2430struct ab8500_fg_sysfs_entry {
2431        struct attribute attr;
2432        ssize_t (*show)(struct ab8500_fg *, char *);
2433        ssize_t (*store)(struct ab8500_fg *, const char *, size_t);
2434};
2435
2436static ssize_t charge_full_show(struct ab8500_fg *di, char *buf)
2437{
2438        return sprintf(buf, "%d\n", di->bat_cap.max_mah);
2439}
2440
2441static ssize_t charge_full_store(struct ab8500_fg *di, const char *buf,
2442                                 size_t count)
2443{
2444        unsigned long charge_full;
2445        ssize_t ret;
2446
2447        ret = kstrtoul(buf, 10, &charge_full);
2448
2449        dev_dbg(di->dev, "Ret %zd charge_full %lu", ret, charge_full);
2450
2451        if (!ret) {
2452                di->bat_cap.max_mah = (int) charge_full;
2453                ret = count;
2454        }
2455        return ret;
2456}
2457
2458static ssize_t charge_now_show(struct ab8500_fg *di, char *buf)
2459{
2460        return sprintf(buf, "%d\n", di->bat_cap.prev_mah);
2461}
2462
2463static ssize_t charge_now_store(struct ab8500_fg *di, const char *buf,
2464                                 size_t count)
2465{
2466        unsigned long charge_now;
2467        ssize_t ret;
2468
2469        ret = kstrtoul(buf, 10, &charge_now);
2470
2471        dev_dbg(di->dev, "Ret %zd charge_now %lu was %d",
2472                ret, charge_now, di->bat_cap.prev_mah);
2473
2474        if (!ret) {
2475                di->bat_cap.user_mah = (int) charge_now;
2476                di->flags.user_cap = true;
2477                ret = count;
2478                queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2479        }
2480        return ret;
2481}
2482
2483static struct ab8500_fg_sysfs_entry charge_full_attr =
2484        __ATTR(charge_full, 0644, charge_full_show, charge_full_store);
2485
2486static struct ab8500_fg_sysfs_entry charge_now_attr =
2487        __ATTR(charge_now, 0644, charge_now_show, charge_now_store);
2488
2489static ssize_t
2490ab8500_fg_show(struct kobject *kobj, struct attribute *attr, char *buf)
2491{
2492        struct ab8500_fg_sysfs_entry *entry;
2493        struct ab8500_fg *di;
2494
2495        entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
2496        di = container_of(kobj, struct ab8500_fg, fg_kobject);
2497
2498        if (!entry->show)
2499                return -EIO;
2500
2501        return entry->show(di, buf);
2502}
2503static ssize_t
2504ab8500_fg_store(struct kobject *kobj, struct attribute *attr, const char *buf,
2505                size_t count)
2506{
2507        struct ab8500_fg_sysfs_entry *entry;
2508        struct ab8500_fg *di;
2509
2510        entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
2511        di = container_of(kobj, struct ab8500_fg, fg_kobject);
2512
2513        if (!entry->store)
2514                return -EIO;
2515
2516        return entry->store(di, buf, count);
2517}
2518
2519static const struct sysfs_ops ab8500_fg_sysfs_ops = {
2520        .show = ab8500_fg_show,
2521        .store = ab8500_fg_store,
2522};
2523
2524static struct attribute *ab8500_fg_attrs[] = {
2525        &charge_full_attr.attr,
2526        &charge_now_attr.attr,
2527        NULL,
2528};
2529
2530static struct kobj_type ab8500_fg_ktype = {
2531        .sysfs_ops = &ab8500_fg_sysfs_ops,
2532        .default_attrs = ab8500_fg_attrs,
2533};
2534
2535/**
2536 * ab8500_chargalg_sysfs_exit() - de-init of sysfs entry
2537 * @di:                pointer to the struct ab8500_chargalg
2538 *
2539 * This function removes the entry in sysfs.
2540 */
2541static void ab8500_fg_sysfs_exit(struct ab8500_fg *di)
2542{
2543        kobject_del(&di->fg_kobject);
2544}
2545
2546/**
2547 * ab8500_chargalg_sysfs_init() - init of sysfs entry
2548 * @di:                pointer to the struct ab8500_chargalg
2549 *
2550 * This function adds an entry in sysfs.
2551 * Returns error code in case of failure else 0(on success)
2552 */
2553static int ab8500_fg_sysfs_init(struct ab8500_fg *di)
2554{
2555        int ret = 0;
2556
2557        ret = kobject_init_and_add(&di->fg_kobject,
2558                &ab8500_fg_ktype,
2559                NULL, "battery");
2560        if (ret < 0)
2561                dev_err(di->dev, "failed to create sysfs entry\n");
2562
2563        return ret;
2564}
2565
2566static ssize_t ab8505_powercut_flagtime_read(struct device *dev,
2567                             struct device_attribute *attr,
2568                             char *buf)
2569{
2570        int ret;
2571        u8 reg_value;
2572        struct power_supply *psy = dev_get_drvdata(dev);
2573        struct ab8500_fg *di = power_supply_get_drvdata(psy);
2574
2575        ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2576                AB8505_RTC_PCUT_FLAG_TIME_REG, &reg_value);
2577
2578        if (ret < 0) {
2579                dev_err(dev, "Failed to read AB8505_RTC_PCUT_FLAG_TIME_REG\n");
2580                goto fail;
2581        }
2582
2583        return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7F));
2584
2585fail:
2586        return ret;
2587}
2588
2589static ssize_t ab8505_powercut_flagtime_write(struct device *dev,
2590                                  struct device_attribute *attr,
2591                                  const char *buf, size_t count)
2592{
2593        int ret;
2594        long unsigned reg_value;
2595        struct power_supply *psy = dev_get_drvdata(dev);
2596        struct ab8500_fg *di = power_supply_get_drvdata(psy);
2597
2598        reg_value = simple_strtoul(buf, NULL, 10);
2599
2600        if (reg_value > 0x7F) {
2601                dev_err(dev, "Incorrect parameter, echo 0 (1.98s) - 127 (15.625ms) for flagtime\n");
2602                goto fail;
2603        }
2604
2605        ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2606                AB8505_RTC_PCUT_FLAG_TIME_REG, (u8)reg_value);
2607
2608        if (ret < 0)
2609                dev_err(dev, "Failed to set AB8505_RTC_PCUT_FLAG_TIME_REG\n");
2610
2611fail:
2612        return count;
2613}
2614
2615static ssize_t ab8505_powercut_maxtime_read(struct device *dev,
2616                             struct device_attribute *attr,
2617                             char *buf)
2618{
2619        int ret;
2620        u8 reg_value;
2621        struct power_supply *psy = dev_get_drvdata(dev);
2622        struct ab8500_fg *di = power_supply_get_drvdata(psy);
2623
2624        ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2625                AB8505_RTC_PCUT_MAX_TIME_REG, &reg_value);
2626
2627        if (ret < 0) {
2628                dev_err(dev, "Failed to read AB8505_RTC_PCUT_MAX_TIME_REG\n");
2629                goto fail;
2630        }
2631
2632        return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7F));
2633
2634fail:
2635        return ret;
2636
2637}
2638
2639static ssize_t ab8505_powercut_maxtime_write(struct device *dev,
2640                                  struct device_attribute *attr,
2641                                  const char *buf, size_t count)
2642{
2643        int ret;
2644        int reg_value;
2645        struct power_supply *psy = dev_get_drvdata(dev);
2646        struct ab8500_fg *di = power_supply_get_drvdata(psy);
2647
2648        reg_value = simple_strtoul(buf, NULL, 10);
2649        if (reg_value > 0x7F) {
2650                dev_err(dev, "Incorrect parameter, echo 0 (0.0s) - 127 (1.98s) for maxtime\n");
2651                goto fail;
2652        }
2653
2654        ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2655                AB8505_RTC_PCUT_MAX_TIME_REG, (u8)reg_value);
2656
2657        if (ret < 0)
2658                dev_err(dev, "Failed to set AB8505_RTC_PCUT_MAX_TIME_REG\n");
2659
2660fail:
2661        return count;
2662}
2663
2664static ssize_t ab8505_powercut_restart_read(struct device *dev,
2665                             struct device_attribute *attr,
2666                             char *buf)
2667{
2668        int ret;
2669        u8 reg_value;
2670        struct power_supply *psy = dev_get_drvdata(dev);
2671        struct ab8500_fg *di = power_supply_get_drvdata(psy);
2672
2673        ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2674                AB8505_RTC_PCUT_RESTART_REG, &reg_value);
2675
2676        if (ret < 0) {
2677                dev_err(dev, "Failed to read AB8505_RTC_PCUT_RESTART_REG\n");
2678                goto fail;
2679        }
2680
2681        return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0xF));
2682
2683fail:
2684        return ret;
2685}
2686
2687static ssize_t ab8505_powercut_restart_write(struct device *dev,
2688                                             struct device_attribute *attr,
2689                                             const char *buf, size_t count)
2690{
2691        int ret;
2692        int reg_value;
2693        struct power_supply *psy = dev_get_drvdata(dev);
2694        struct ab8500_fg *di = power_supply_get_drvdata(psy);
2695
2696        reg_value = simple_strtoul(buf, NULL, 10);
2697        if (reg_value > 0xF) {
2698                dev_err(dev, "Incorrect parameter, echo 0 - 15 for number of restart\n");
2699                goto fail;
2700        }
2701
2702        ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2703                                                AB8505_RTC_PCUT_RESTART_REG, (u8)reg_value);
2704
2705        if (ret < 0)
2706                dev_err(dev, "Failed to set AB8505_RTC_PCUT_RESTART_REG\n");
2707
2708fail:
2709        return count;
2710
2711}
2712
2713static ssize_t ab8505_powercut_timer_read(struct device *dev,
2714                                          struct device_attribute *attr,
2715                                          char *buf)
2716{
2717        int ret;
2718        u8 reg_value;
2719        struct power_supply *psy = dev_get_drvdata(dev);
2720        struct ab8500_fg *di = power_supply_get_drvdata(psy);
2721
2722        ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2723                                                AB8505_RTC_PCUT_TIME_REG, &reg_value);
2724
2725        if (ret < 0) {
2726                dev_err(dev, "Failed to read AB8505_RTC_PCUT_TIME_REG\n");
2727                goto fail;
2728        }
2729
2730        return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7F));
2731
2732fail:
2733        return ret;
2734}
2735
2736static ssize_t ab8505_powercut_restart_counter_read(struct device *dev,
2737                                                    struct device_attribute *attr,
2738                                                    char *buf)
2739{
2740        int ret;
2741        u8 reg_value;
2742        struct power_supply *psy = dev_get_drvdata(dev);
2743        struct ab8500_fg *di = power_supply_get_drvdata(psy);
2744
2745        ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2746                                                AB8505_RTC_PCUT_RESTART_REG, &reg_value);
2747
2748        if (ret < 0) {
2749                dev_err(dev, "Failed to read AB8505_RTC_PCUT_RESTART_REG\n");
2750                goto fail;
2751        }
2752
2753        return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0xF0) >> 4);
2754
2755fail:
2756        return ret;
2757}
2758
2759static ssize_t ab8505_powercut_read(struct device *dev,
2760                                    struct device_attribute *attr,
2761                                    char *buf)
2762{
2763        int ret;
2764        u8 reg_value;
2765        struct power_supply *psy = dev_get_drvdata(dev);
2766        struct ab8500_fg *di = power_supply_get_drvdata(psy);
2767
2768        ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2769                                                AB8505_RTC_PCUT_CTL_STATUS_REG, &reg_value);
2770
2771        if (ret < 0)
2772                goto fail;
2773
2774        return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x1));
2775
2776fail:
2777        return ret;
2778}
2779
2780static ssize_t ab8505_powercut_write(struct device *dev,
2781                                     struct device_attribute *attr,
2782                                     const char *buf, size_t count)
2783{
2784        int ret;
2785        int reg_value;
2786        struct power_supply *psy = dev_get_drvdata(dev);
2787        struct ab8500_fg *di = power_supply_get_drvdata(psy);
2788
2789        reg_value = simple_strtoul(buf, NULL, 10);
2790        if (reg_value > 0x1) {
2791                dev_err(dev, "Incorrect parameter, echo 0/1 to disable/enable Pcut feature\n");
2792                goto fail;
2793        }
2794
2795        ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2796                                                AB8505_RTC_PCUT_CTL_STATUS_REG, (u8)reg_value);
2797
2798        if (ret < 0)
2799                dev_err(dev, "Failed to set AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2800
2801fail:
2802        return count;
2803}
2804
2805static ssize_t ab8505_powercut_flag_read(struct device *dev,
2806                                         struct device_attribute *attr,
2807                                         char *buf)
2808{
2809
2810        int ret;
2811        u8 reg_value;
2812        struct power_supply *psy = dev_get_drvdata(dev);
2813        struct ab8500_fg *di = power_supply_get_drvdata(psy);
2814
2815        ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2816                                                AB8505_RTC_PCUT_CTL_STATUS_REG,  &reg_value);
2817
2818        if (ret < 0) {
2819                dev_err(dev, "Failed to read AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2820                goto fail;
2821        }
2822
2823        return scnprintf(buf, PAGE_SIZE, "%d\n", ((reg_value & 0x10) >> 4));
2824
2825fail:
2826        return ret;
2827}
2828
2829static ssize_t ab8505_powercut_debounce_read(struct device *dev,
2830                                             struct device_attribute *attr,
2831                                             char *buf)
2832{
2833        int ret;
2834        u8 reg_value;
2835        struct power_supply *psy = dev_get_drvdata(dev);
2836        struct ab8500_fg *di = power_supply_get_drvdata(psy);
2837
2838        ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2839                                                AB8505_RTC_PCUT_DEBOUNCE_REG,  &reg_value);
2840
2841        if (ret < 0) {
2842                dev_err(dev, "Failed to read AB8505_RTC_PCUT_DEBOUNCE_REG\n");
2843                goto fail;
2844        }
2845
2846        return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7));
2847
2848fail:
2849        return ret;
2850}
2851
2852static ssize_t ab8505_powercut_debounce_write(struct device *dev,
2853                                              struct device_attribute *attr,
2854                                              const char *buf, size_t count)
2855{
2856        int ret;
2857        int reg_value;
2858        struct power_supply *psy = dev_get_drvdata(dev);
2859        struct ab8500_fg *di = power_supply_get_drvdata(psy);
2860
2861        reg_value = simple_strtoul(buf, NULL, 10);
2862        if (reg_value > 0x7) {
2863                dev_err(dev, "Incorrect parameter, echo 0 to 7 for debounce setting\n");
2864                goto fail;
2865        }
2866
2867        ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2868                                                AB8505_RTC_PCUT_DEBOUNCE_REG, (u8)reg_value);
2869
2870        if (ret < 0)
2871                dev_err(dev, "Failed to set AB8505_RTC_PCUT_DEBOUNCE_REG\n");
2872
2873fail:
2874        return count;
2875}
2876
2877static ssize_t ab8505_powercut_enable_status_read(struct device *dev,
2878                                                  struct device_attribute *attr,
2879                                                  char *buf)
2880{
2881        int ret;
2882        u8 reg_value;
2883        struct power_supply *psy = dev_get_drvdata(dev);
2884        struct ab8500_fg *di = power_supply_get_drvdata(psy);
2885
2886        ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2887                                                AB8505_RTC_PCUT_CTL_STATUS_REG, &reg_value);
2888
2889        if (ret < 0) {
2890                dev_err(dev, "Failed to read AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2891                goto fail;
2892        }
2893
2894        return scnprintf(buf, PAGE_SIZE, "%d\n", ((reg_value & 0x20) >> 5));
2895
2896fail:
2897        return ret;
2898}
2899
2900static struct device_attribute ab8505_fg_sysfs_psy_attrs[] = {
2901        __ATTR(powercut_flagtime, (S_IRUGO | S_IWUSR | S_IWGRP),
2902                ab8505_powercut_flagtime_read, ab8505_powercut_flagtime_write),
2903        __ATTR(powercut_maxtime, (S_IRUGO | S_IWUSR | S_IWGRP),
2904                ab8505_powercut_maxtime_read, ab8505_powercut_maxtime_write),
2905        __ATTR(powercut_restart_max, (S_IRUGO | S_IWUSR | S_IWGRP),
2906                ab8505_powercut_restart_read, ab8505_powercut_restart_write),
2907        __ATTR(powercut_timer, S_IRUGO, ab8505_powercut_timer_read, NULL),
2908        __ATTR(powercut_restart_counter, S_IRUGO,
2909                ab8505_powercut_restart_counter_read, NULL),
2910        __ATTR(powercut_enable, (S_IRUGO | S_IWUSR | S_IWGRP),
2911                ab8505_powercut_read, ab8505_powercut_write),
2912        __ATTR(powercut_flag, S_IRUGO, ab8505_powercut_flag_read, NULL),
2913        __ATTR(powercut_debounce_time, (S_IRUGO | S_IWUSR | S_IWGRP),
2914                ab8505_powercut_debounce_read, ab8505_powercut_debounce_write),
2915        __ATTR(powercut_enable_status, S_IRUGO,
2916                ab8505_powercut_enable_status_read, NULL),
2917};
2918
2919static int ab8500_fg_sysfs_psy_create_attrs(struct ab8500_fg *di)
2920{
2921        unsigned int i;
2922
2923        if (((is_ab8505(di->parent) || is_ab9540(di->parent)) &&
2924             abx500_get_chip_id(di->dev) >= AB8500_CUT2P0)
2925            || is_ab8540(di->parent)) {
2926                for (i = 0; i < ARRAY_SIZE(ab8505_fg_sysfs_psy_attrs); i++)
2927                        if (device_create_file(&di->fg_psy->dev,
2928                                               &ab8505_fg_sysfs_psy_attrs[i]))
2929                                goto sysfs_psy_create_attrs_failed_ab8505;
2930        }
2931        return 0;
2932sysfs_psy_create_attrs_failed_ab8505:
2933        dev_err(&di->fg_psy->dev, "Failed creating sysfs psy attrs for ab8505.\n");
2934        while (i--)
2935                device_remove_file(&di->fg_psy->dev,
2936                                   &ab8505_fg_sysfs_psy_attrs[i]);
2937
2938        return -EIO;
2939}
2940
2941static void ab8500_fg_sysfs_psy_remove_attrs(struct ab8500_fg *di)
2942{
2943        unsigned int i;
2944
2945        if (((is_ab8505(di->parent) || is_ab9540(di->parent)) &&
2946             abx500_get_chip_id(di->dev) >= AB8500_CUT2P0)
2947            || is_ab8540(di->parent)) {
2948                for (i = 0; i < ARRAY_SIZE(ab8505_fg_sysfs_psy_attrs); i++)
2949                        (void)device_remove_file(&di->fg_psy->dev,
2950                                                 &ab8505_fg_sysfs_psy_attrs[i]);
2951        }
2952}
2953
2954/* Exposure to the sysfs interface <<END>> */
2955
2956#if defined(CONFIG_PM)
2957static int ab8500_fg_resume(struct platform_device *pdev)
2958{
2959        struct ab8500_fg *di = platform_get_drvdata(pdev);
2960
2961        /*
2962         * Change state if we're not charging. If we're charging we will wake
2963         * up on the FG IRQ
2964         */
2965        if (!di->flags.charging) {
2966                ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_WAKEUP);
2967                queue_work(di->fg_wq, &di->fg_work);
2968        }
2969
2970        return 0;
2971}
2972
2973static int ab8500_fg_suspend(struct platform_device *pdev,
2974        pm_message_t state)
2975{
2976        struct ab8500_fg *di = platform_get_drvdata(pdev);
2977
2978        flush_delayed_work(&di->fg_periodic_work);
2979        flush_work(&di->fg_work);
2980        flush_work(&di->fg_acc_cur_work);
2981        flush_delayed_work(&di->fg_reinit_work);
2982        flush_delayed_work(&di->fg_low_bat_work);
2983        flush_delayed_work(&di->fg_check_hw_failure_work);
2984
2985        /*
2986         * If the FG is enabled we will disable it before going to suspend
2987         * only if we're not charging
2988         */
2989        if (di->flags.fg_enabled && !di->flags.charging)
2990                ab8500_fg_coulomb_counter(di, false);
2991
2992        return 0;
2993}
2994#else
2995#define ab8500_fg_suspend      NULL
2996#define ab8500_fg_resume       NULL
2997#endif
2998
2999static int ab8500_fg_remove(struct platform_device *pdev)
3000{
3001        int ret = 0;
3002        struct ab8500_fg *di = platform_get_drvdata(pdev);
3003
3004        list_del(&di->node);
3005
3006        /* Disable coulomb counter */
3007        ret = ab8500_fg_coulomb_counter(di, false);
3008        if (ret)
3009                dev_err(di->dev, "failed to disable coulomb counter\n");
3010
3011        destroy_workqueue(di->fg_wq);
3012        ab8500_fg_sysfs_exit(di);
3013
3014        flush_scheduled_work();
3015        ab8500_fg_sysfs_psy_remove_attrs(di);
3016        power_supply_unregister(di->fg_psy);
3017        return ret;
3018}
3019
3020/* ab8500 fg driver interrupts and their respective isr */
3021static struct ab8500_fg_interrupts ab8500_fg_irq_th[] = {
3022        {"NCONV_ACCU", ab8500_fg_cc_convend_handler},
3023        {"BATT_OVV", ab8500_fg_batt_ovv_handler},
3024        {"LOW_BAT_F", ab8500_fg_lowbatf_handler},
3025        {"CC_INT_CALIB", ab8500_fg_cc_int_calib_handler},
3026};
3027
3028static struct ab8500_fg_interrupts ab8500_fg_irq_bh[] = {
3029        {"CCEOC", ab8500_fg_cc_data_end_handler},
3030};
3031
3032static char *supply_interface[] = {
3033        "ab8500_chargalg",
3034        "ab8500_usb",
3035};
3036
3037static const struct power_supply_desc ab8500_fg_desc = {
3038        .name                   = "ab8500_fg",
3039        .type                   = POWER_SUPPLY_TYPE_BATTERY,
3040        .properties             = ab8500_fg_props,
3041        .num_properties         = ARRAY_SIZE(ab8500_fg_props),
3042        .get_property           = ab8500_fg_get_property,
3043        .external_power_changed = ab8500_fg_external_power_changed,
3044};
3045
3046static int ab8500_fg_probe(struct platform_device *pdev)
3047{
3048        struct device_node *np = pdev->dev.of_node;
3049        struct abx500_bm_data *plat = pdev->dev.platform_data;
3050        struct power_supply_config psy_cfg = {};
3051        struct ab8500_fg *di;
3052        int i, irq;
3053        int ret = 0;
3054
3055        di = devm_kzalloc(&pdev->dev, sizeof(*di), GFP_KERNEL);
3056        if (!di) {
3057                dev_err(&pdev->dev, "%s no mem for ab8500_fg\n", __func__);
3058                return -ENOMEM;
3059        }
3060
3061        if (!plat) {
3062                dev_err(&pdev->dev, "no battery management data supplied\n");
3063                return -EINVAL;
3064        }
3065        di->bm = plat;
3066
3067        if (np) {
3068                ret = ab8500_bm_of_probe(&pdev->dev, np, di->bm);
3069                if (ret) {
3070                        dev_err(&pdev->dev, "failed to get battery information\n");
3071                        return ret;
3072                }
3073        }
3074
3075        mutex_init(&di->cc_lock);
3076
3077        /* get parent data */
3078        di->dev = &pdev->dev;
3079        di->parent = dev_get_drvdata(pdev->dev.parent);
3080        di->gpadc = ab8500_gpadc_get("ab8500-gpadc.0");
3081
3082        psy_cfg.supplied_to = supply_interface;
3083        psy_cfg.num_supplicants = ARRAY_SIZE(supply_interface);
3084        psy_cfg.drv_data = di;
3085
3086        di->bat_cap.max_mah_design = MILLI_TO_MICRO *
3087                di->bm->bat_type[di->bm->batt_id].charge_full_design;
3088
3089        di->bat_cap.max_mah = di->bat_cap.max_mah_design;
3090
3091        di->vbat_nom = di->bm->bat_type[di->bm->batt_id].nominal_voltage;
3092
3093        di->init_capacity = true;
3094
3095        ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
3096        ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
3097
3098        /* Create a work queue for running the FG algorithm */
3099        di->fg_wq = create_singlethread_workqueue("ab8500_fg_wq");
3100        if (di->fg_wq == NULL) {
3101                dev_err(di->dev, "failed to create work queue\n");
3102                return -ENOMEM;
3103        }
3104
3105        /* Init work for running the fg algorithm instantly */
3106        INIT_WORK(&di->fg_work, ab8500_fg_instant_work);
3107
3108        /* Init work for getting the battery accumulated current */
3109        INIT_WORK(&di->fg_acc_cur_work, ab8500_fg_acc_cur_work);
3110
3111        /* Init work for reinitialising the fg algorithm */
3112        INIT_DEFERRABLE_WORK(&di->fg_reinit_work,
3113                ab8500_fg_reinit_work);
3114
3115        /* Work delayed Queue to run the state machine */
3116        INIT_DEFERRABLE_WORK(&di->fg_periodic_work,
3117                ab8500_fg_periodic_work);
3118
3119        /* Work to check low battery condition */
3120        INIT_DEFERRABLE_WORK(&di->fg_low_bat_work,
3121                ab8500_fg_low_bat_work);
3122
3123        /* Init work for HW failure check */
3124        INIT_DEFERRABLE_WORK(&di->fg_check_hw_failure_work,
3125                ab8500_fg_check_hw_failure_work);
3126
3127        /* Reset battery low voltage flag */
3128        di->flags.low_bat = false;
3129
3130        /* Initialize low battery counter */
3131        di->low_bat_cnt = 10;
3132
3133        /* Initialize OVV, and other registers */
3134        ret = ab8500_fg_init_hw_registers(di);
3135        if (ret) {
3136                dev_err(di->dev, "failed to initialize registers\n");
3137                goto free_inst_curr_wq;
3138        }
3139
3140        /* Consider battery unknown until we're informed otherwise */
3141        di->flags.batt_unknown = true;
3142        di->flags.batt_id_received = false;
3143
3144        /* Register FG power supply class */
3145        di->fg_psy = power_supply_register(di->dev, &ab8500_fg_desc, &psy_cfg);
3146        if (IS_ERR(di->fg_psy)) {
3147                dev_err(di->dev, "failed to register FG psy\n");
3148                ret = PTR_ERR(di->fg_psy);
3149                goto free_inst_curr_wq;
3150        }
3151
3152        di->fg_samples = SEC_TO_SAMPLE(di->bm->fg_params->init_timer);
3153        ab8500_fg_coulomb_counter(di, true);
3154
3155        /*
3156         * Initialize completion used to notify completion and start
3157         * of inst current
3158         */
3159        init_completion(&di->ab8500_fg_started);
3160        init_completion(&di->ab8500_fg_complete);
3161
3162        /* Register primary interrupt handlers */
3163        for (i = 0; i < ARRAY_SIZE(ab8500_fg_irq_th); i++) {
3164                irq = platform_get_irq_byname(pdev, ab8500_fg_irq_th[i].name);
3165                ret = request_irq(irq, ab8500_fg_irq_th[i].isr,
3166                                  IRQF_SHARED | IRQF_NO_SUSPEND,
3167                                  ab8500_fg_irq_th[i].name, di);
3168
3169                if (ret != 0) {
3170                        dev_err(di->dev, "failed to request %s IRQ %d: %d\n",
3171                                ab8500_fg_irq_th[i].name, irq, ret);
3172                        goto free_irq;
3173                }
3174                dev_dbg(di->dev, "Requested %s IRQ %d: %d\n",
3175                        ab8500_fg_irq_th[i].name, irq, ret);
3176        }
3177
3178        /* Register threaded interrupt handler */
3179        irq = platform_get_irq_byname(pdev, ab8500_fg_irq_bh[0].name);
3180        ret = request_threaded_irq(irq, NULL, ab8500_fg_irq_bh[0].isr,
3181                                IRQF_SHARED | IRQF_NO_SUSPEND | IRQF_ONESHOT,
3182                        ab8500_fg_irq_bh[0].name, di);
3183
3184        if (ret != 0) {
3185                dev_err(di->dev, "failed to request %s IRQ %d: %d\n",
3186                        ab8500_fg_irq_bh[0].name, irq, ret);
3187                goto free_irq;
3188        }
3189        dev_dbg(di->dev, "Requested %s IRQ %d: %d\n",
3190                ab8500_fg_irq_bh[0].name, irq, ret);
3191
3192        di->irq = platform_get_irq_byname(pdev, "CCEOC");
3193        disable_irq(di->irq);
3194        di->nbr_cceoc_irq_cnt = 0;
3195
3196        platform_set_drvdata(pdev, di);
3197
3198        ret = ab8500_fg_sysfs_init(di);
3199        if (ret) {
3200                dev_err(di->dev, "failed to create sysfs entry\n");
3201                goto free_irq;
3202        }
3203
3204        ret = ab8500_fg_sysfs_psy_create_attrs(di);
3205        if (ret) {
3206                dev_err(di->dev, "failed to create FG psy\n");
3207                ab8500_fg_sysfs_exit(di);
3208                goto free_irq;
3209        }
3210
3211        /* Calibrate the fg first time */
3212        di->flags.calibrate = true;
3213        di->calib_state = AB8500_FG_CALIB_INIT;
3214
3215        /* Use room temp as default value until we get an update from driver. */
3216        di->bat_temp = 210;
3217
3218        /* Run the FG algorithm */
3219        queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
3220
3221        list_add_tail(&di->node, &ab8500_fg_list);
3222
3223        return ret;
3224
3225free_irq:
3226        power_supply_unregister(di->fg_psy);
3227
3228        /* We also have to free all registered irqs */
3229        for (i = 0; i < ARRAY_SIZE(ab8500_fg_irq_th); i++) {
3230                irq = platform_get_irq_byname(pdev, ab8500_fg_irq_th[i].name);
3231                free_irq(irq, di);
3232        }
3233        irq = platform_get_irq_byname(pdev, ab8500_fg_irq_bh[0].name);
3234        free_irq(irq, di);
3235free_inst_curr_wq:
3236        destroy_workqueue(di->fg_wq);
3237        return ret;
3238}
3239
3240static const struct of_device_id ab8500_fg_match[] = {
3241        { .compatible = "stericsson,ab8500-fg", },
3242        { },
3243};
3244
3245static struct platform_driver ab8500_fg_driver = {
3246        .probe = ab8500_fg_probe,
3247        .remove = ab8500_fg_remove,
3248        .suspend = ab8500_fg_suspend,
3249        .resume = ab8500_fg_resume,
3250        .driver = {
3251                .name = "ab8500-fg",
3252                .of_match_table = ab8500_fg_match,
3253        },
3254};
3255
3256static int __init ab8500_fg_init(void)
3257{
3258        return platform_driver_register(&ab8500_fg_driver);
3259}
3260
3261static void __exit ab8500_fg_exit(void)
3262{
3263        platform_driver_unregister(&ab8500_fg_driver);
3264}
3265
3266subsys_initcall_sync(ab8500_fg_init);
3267module_exit(ab8500_fg_exit);
3268
3269MODULE_LICENSE("GPL v2");
3270MODULE_AUTHOR("Johan Palsson, Karl Komierowski");
3271MODULE_ALIAS("platform:ab8500-fg");
3272MODULE_DESCRIPTION("AB8500 Fuel Gauge driver");
3273