linux/drivers/powercap/intel_rapl.c
<<
>>
Prefs
   1/*
   2 * Intel Running Average Power Limit (RAPL) Driver
   3 * Copyright (c) 2013, Intel Corporation.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms and conditions of the GNU General Public License,
   7 * version 2, as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 *
  14 * You should have received a copy of the GNU General Public License along with
  15 * this program; if not, write to the Free Software Foundation, Inc.
  16 *
  17 */
  18#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  19
  20#include <linux/kernel.h>
  21#include <linux/module.h>
  22#include <linux/list.h>
  23#include <linux/types.h>
  24#include <linux/device.h>
  25#include <linux/slab.h>
  26#include <linux/log2.h>
  27#include <linux/bitmap.h>
  28#include <linux/delay.h>
  29#include <linux/sysfs.h>
  30#include <linux/cpu.h>
  31#include <linux/powercap.h>
  32#include <asm/iosf_mbi.h>
  33
  34#include <asm/processor.h>
  35#include <asm/cpu_device_id.h>
  36
  37/* bitmasks for RAPL MSRs, used by primitive access functions */
  38#define ENERGY_STATUS_MASK      0xffffffff
  39
  40#define POWER_LIMIT1_MASK       0x7FFF
  41#define POWER_LIMIT1_ENABLE     BIT(15)
  42#define POWER_LIMIT1_CLAMP      BIT(16)
  43
  44#define POWER_LIMIT2_MASK       (0x7FFFULL<<32)
  45#define POWER_LIMIT2_ENABLE     BIT_ULL(47)
  46#define POWER_LIMIT2_CLAMP      BIT_ULL(48)
  47#define POWER_PACKAGE_LOCK      BIT_ULL(63)
  48#define POWER_PP_LOCK           BIT(31)
  49
  50#define TIME_WINDOW1_MASK       (0x7FULL<<17)
  51#define TIME_WINDOW2_MASK       (0x7FULL<<49)
  52
  53#define POWER_UNIT_OFFSET       0
  54#define POWER_UNIT_MASK         0x0F
  55
  56#define ENERGY_UNIT_OFFSET      0x08
  57#define ENERGY_UNIT_MASK        0x1F00
  58
  59#define TIME_UNIT_OFFSET        0x10
  60#define TIME_UNIT_MASK          0xF0000
  61
  62#define POWER_INFO_MAX_MASK     (0x7fffULL<<32)
  63#define POWER_INFO_MIN_MASK     (0x7fffULL<<16)
  64#define POWER_INFO_MAX_TIME_WIN_MASK     (0x3fULL<<48)
  65#define POWER_INFO_THERMAL_SPEC_MASK     0x7fff
  66
  67#define PERF_STATUS_THROTTLE_TIME_MASK 0xffffffff
  68#define PP_POLICY_MASK         0x1F
  69
  70/* Non HW constants */
  71#define RAPL_PRIMITIVE_DERIVED       BIT(1) /* not from raw data */
  72#define RAPL_PRIMITIVE_DUMMY         BIT(2)
  73
  74#define TIME_WINDOW_MAX_MSEC 40000
  75#define TIME_WINDOW_MIN_MSEC 250
  76#define ENERGY_UNIT_SCALE    1000 /* scale from driver unit to powercap unit */
  77enum unit_type {
  78        ARBITRARY_UNIT, /* no translation */
  79        POWER_UNIT,
  80        ENERGY_UNIT,
  81        TIME_UNIT,
  82};
  83
  84enum rapl_domain_type {
  85        RAPL_DOMAIN_PACKAGE, /* entire package/socket */
  86        RAPL_DOMAIN_PP0, /* core power plane */
  87        RAPL_DOMAIN_PP1, /* graphics uncore */
  88        RAPL_DOMAIN_DRAM,/* DRAM control_type */
  89        RAPL_DOMAIN_MAX,
  90};
  91
  92enum rapl_domain_msr_id {
  93        RAPL_DOMAIN_MSR_LIMIT,
  94        RAPL_DOMAIN_MSR_STATUS,
  95        RAPL_DOMAIN_MSR_PERF,
  96        RAPL_DOMAIN_MSR_POLICY,
  97        RAPL_DOMAIN_MSR_INFO,
  98        RAPL_DOMAIN_MSR_MAX,
  99};
 100
 101/* per domain data, some are optional */
 102enum rapl_primitives {
 103        ENERGY_COUNTER,
 104        POWER_LIMIT1,
 105        POWER_LIMIT2,
 106        FW_LOCK,
 107
 108        PL1_ENABLE,  /* power limit 1, aka long term */
 109        PL1_CLAMP,   /* allow frequency to go below OS request */
 110        PL2_ENABLE,  /* power limit 2, aka short term, instantaneous */
 111        PL2_CLAMP,
 112
 113        TIME_WINDOW1, /* long term */
 114        TIME_WINDOW2, /* short term */
 115        THERMAL_SPEC_POWER,
 116        MAX_POWER,
 117
 118        MIN_POWER,
 119        MAX_TIME_WINDOW,
 120        THROTTLED_TIME,
 121        PRIORITY_LEVEL,
 122
 123        /* below are not raw primitive data */
 124        AVERAGE_POWER,
 125        NR_RAPL_PRIMITIVES,
 126};
 127
 128#define NR_RAW_PRIMITIVES (NR_RAPL_PRIMITIVES - 2)
 129
 130/* Can be expanded to include events, etc.*/
 131struct rapl_domain_data {
 132        u64 primitives[NR_RAPL_PRIMITIVES];
 133        unsigned long timestamp;
 134};
 135
 136struct msrl_action {
 137        u32 msr_no;
 138        u64 clear_mask;
 139        u64 set_mask;
 140        int err;
 141};
 142
 143#define DOMAIN_STATE_INACTIVE           BIT(0)
 144#define DOMAIN_STATE_POWER_LIMIT_SET    BIT(1)
 145#define DOMAIN_STATE_BIOS_LOCKED        BIT(2)
 146
 147#define NR_POWER_LIMITS (2)
 148struct rapl_power_limit {
 149        struct powercap_zone_constraint *constraint;
 150        int prim_id; /* primitive ID used to enable */
 151        struct rapl_domain *domain;
 152        const char *name;
 153};
 154
 155static const char pl1_name[] = "long_term";
 156static const char pl2_name[] = "short_term";
 157
 158struct rapl_package;
 159struct rapl_domain {
 160        const char *name;
 161        enum rapl_domain_type id;
 162        int msrs[RAPL_DOMAIN_MSR_MAX];
 163        struct powercap_zone power_zone;
 164        struct rapl_domain_data rdd;
 165        struct rapl_power_limit rpl[NR_POWER_LIMITS];
 166        u64 attr_map; /* track capabilities */
 167        unsigned int state;
 168        unsigned int domain_energy_unit;
 169        struct rapl_package *rp;
 170};
 171#define power_zone_to_rapl_domain(_zone) \
 172        container_of(_zone, struct rapl_domain, power_zone)
 173
 174
 175/* Each physical package contains multiple domains, these are the common
 176 * data across RAPL domains within a package.
 177 */
 178struct rapl_package {
 179        unsigned int id; /* physical package/socket id */
 180        unsigned int nr_domains;
 181        unsigned long domain_map; /* bit map of active domains */
 182        unsigned int power_unit;
 183        unsigned int energy_unit;
 184        unsigned int time_unit;
 185        struct rapl_domain *domains; /* array of domains, sized at runtime */
 186        struct powercap_zone *power_zone; /* keep track of parent zone */
 187        int nr_cpus; /* active cpus on the package, topology info is lost during
 188                      * cpu hotplug. so we have to track ourselves.
 189                      */
 190        unsigned long power_limit_irq; /* keep track of package power limit
 191                                        * notify interrupt enable status.
 192                                        */
 193        struct list_head plist;
 194        int lead_cpu; /* one active cpu per package for access */
 195};
 196
 197struct rapl_defaults {
 198        u8 floor_freq_reg_addr;
 199        int (*check_unit)(struct rapl_package *rp, int cpu);
 200        void (*set_floor_freq)(struct rapl_domain *rd, bool mode);
 201        u64 (*compute_time_window)(struct rapl_package *rp, u64 val,
 202                                bool to_raw);
 203        unsigned int dram_domain_energy_unit;
 204};
 205static struct rapl_defaults *rapl_defaults;
 206
 207/* Sideband MBI registers */
 208#define IOSF_CPU_POWER_BUDGET_CTL_BYT (0x2)
 209#define IOSF_CPU_POWER_BUDGET_CTL_TNG (0xdf)
 210
 211#define PACKAGE_PLN_INT_SAVED   BIT(0)
 212#define MAX_PRIM_NAME (32)
 213
 214/* per domain data. used to describe individual knobs such that access function
 215 * can be consolidated into one instead of many inline functions.
 216 */
 217struct rapl_primitive_info {
 218        const char *name;
 219        u64 mask;
 220        int shift;
 221        enum rapl_domain_msr_id id;
 222        enum unit_type unit;
 223        u32 flag;
 224};
 225
 226#define PRIMITIVE_INFO_INIT(p, m, s, i, u, f) { \
 227                .name = #p,                     \
 228                .mask = m,                      \
 229                .shift = s,                     \
 230                .id = i,                        \
 231                .unit = u,                      \
 232                .flag = f                       \
 233        }
 234
 235static void rapl_init_domains(struct rapl_package *rp);
 236static int rapl_read_data_raw(struct rapl_domain *rd,
 237                        enum rapl_primitives prim,
 238                        bool xlate, u64 *data);
 239static int rapl_write_data_raw(struct rapl_domain *rd,
 240                        enum rapl_primitives prim,
 241                        unsigned long long value);
 242static u64 rapl_unit_xlate(struct rapl_domain *rd,
 243                        enum unit_type type, u64 value,
 244                        int to_raw);
 245static void package_power_limit_irq_save(struct rapl_package *rp);
 246
 247static LIST_HEAD(rapl_packages); /* guarded by CPU hotplug lock */
 248
 249static const char * const rapl_domain_names[] = {
 250        "package",
 251        "core",
 252        "uncore",
 253        "dram",
 254};
 255
 256static struct powercap_control_type *control_type; /* PowerCap Controller */
 257
 258/* caller to ensure CPU hotplug lock is held */
 259static struct rapl_package *find_package_by_id(int id)
 260{
 261        struct rapl_package *rp;
 262
 263        list_for_each_entry(rp, &rapl_packages, plist) {
 264                if (rp->id == id)
 265                        return rp;
 266        }
 267
 268        return NULL;
 269}
 270
 271/* caller must hold cpu hotplug lock */
 272static void rapl_cleanup_data(void)
 273{
 274        struct rapl_package *p, *tmp;
 275
 276        list_for_each_entry_safe(p, tmp, &rapl_packages, plist) {
 277                kfree(p->domains);
 278                list_del(&p->plist);
 279                kfree(p);
 280        }
 281}
 282
 283static int get_energy_counter(struct powercap_zone *power_zone, u64 *energy_raw)
 284{
 285        struct rapl_domain *rd;
 286        u64 energy_now;
 287
 288        /* prevent CPU hotplug, make sure the RAPL domain does not go
 289         * away while reading the counter.
 290         */
 291        get_online_cpus();
 292        rd = power_zone_to_rapl_domain(power_zone);
 293
 294        if (!rapl_read_data_raw(rd, ENERGY_COUNTER, true, &energy_now)) {
 295                *energy_raw = energy_now;
 296                put_online_cpus();
 297
 298                return 0;
 299        }
 300        put_online_cpus();
 301
 302        return -EIO;
 303}
 304
 305static int get_max_energy_counter(struct powercap_zone *pcd_dev, u64 *energy)
 306{
 307        struct rapl_domain *rd = power_zone_to_rapl_domain(pcd_dev);
 308
 309        *energy = rapl_unit_xlate(rd, ENERGY_UNIT, ENERGY_STATUS_MASK, 0);
 310        return 0;
 311}
 312
 313static int release_zone(struct powercap_zone *power_zone)
 314{
 315        struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
 316        struct rapl_package *rp = rd->rp;
 317
 318        /* package zone is the last zone of a package, we can free
 319         * memory here since all children has been unregistered.
 320         */
 321        if (rd->id == RAPL_DOMAIN_PACKAGE) {
 322                kfree(rd);
 323                rp->domains = NULL;
 324        }
 325
 326        return 0;
 327
 328}
 329
 330static int find_nr_power_limit(struct rapl_domain *rd)
 331{
 332        int i;
 333
 334        for (i = 0; i < NR_POWER_LIMITS; i++) {
 335                if (rd->rpl[i].name == NULL)
 336                        break;
 337        }
 338
 339        return i;
 340}
 341
 342static int set_domain_enable(struct powercap_zone *power_zone, bool mode)
 343{
 344        struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
 345
 346        if (rd->state & DOMAIN_STATE_BIOS_LOCKED)
 347                return -EACCES;
 348
 349        get_online_cpus();
 350        rapl_write_data_raw(rd, PL1_ENABLE, mode);
 351        if (rapl_defaults->set_floor_freq)
 352                rapl_defaults->set_floor_freq(rd, mode);
 353        put_online_cpus();
 354
 355        return 0;
 356}
 357
 358static int get_domain_enable(struct powercap_zone *power_zone, bool *mode)
 359{
 360        struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
 361        u64 val;
 362
 363        if (rd->state & DOMAIN_STATE_BIOS_LOCKED) {
 364                *mode = false;
 365                return 0;
 366        }
 367        get_online_cpus();
 368        if (rapl_read_data_raw(rd, PL1_ENABLE, true, &val)) {
 369                put_online_cpus();
 370                return -EIO;
 371        }
 372        *mode = val;
 373        put_online_cpus();
 374
 375        return 0;
 376}
 377
 378/* per RAPL domain ops, in the order of rapl_domain_type */
 379static const struct powercap_zone_ops zone_ops[] = {
 380        /* RAPL_DOMAIN_PACKAGE */
 381        {
 382                .get_energy_uj = get_energy_counter,
 383                .get_max_energy_range_uj = get_max_energy_counter,
 384                .release = release_zone,
 385                .set_enable = set_domain_enable,
 386                .get_enable = get_domain_enable,
 387        },
 388        /* RAPL_DOMAIN_PP0 */
 389        {
 390                .get_energy_uj = get_energy_counter,
 391                .get_max_energy_range_uj = get_max_energy_counter,
 392                .release = release_zone,
 393                .set_enable = set_domain_enable,
 394                .get_enable = get_domain_enable,
 395        },
 396        /* RAPL_DOMAIN_PP1 */
 397        {
 398                .get_energy_uj = get_energy_counter,
 399                .get_max_energy_range_uj = get_max_energy_counter,
 400                .release = release_zone,
 401                .set_enable = set_domain_enable,
 402                .get_enable = get_domain_enable,
 403        },
 404        /* RAPL_DOMAIN_DRAM */
 405        {
 406                .get_energy_uj = get_energy_counter,
 407                .get_max_energy_range_uj = get_max_energy_counter,
 408                .release = release_zone,
 409                .set_enable = set_domain_enable,
 410                .get_enable = get_domain_enable,
 411        },
 412};
 413
 414static int set_power_limit(struct powercap_zone *power_zone, int id,
 415                        u64 power_limit)
 416{
 417        struct rapl_domain *rd;
 418        struct rapl_package *rp;
 419        int ret = 0;
 420
 421        get_online_cpus();
 422        rd = power_zone_to_rapl_domain(power_zone);
 423        rp = rd->rp;
 424
 425        if (rd->state & DOMAIN_STATE_BIOS_LOCKED) {
 426                dev_warn(&power_zone->dev, "%s locked by BIOS, monitoring only\n",
 427                        rd->name);
 428                ret = -EACCES;
 429                goto set_exit;
 430        }
 431
 432        switch (rd->rpl[id].prim_id) {
 433        case PL1_ENABLE:
 434                rapl_write_data_raw(rd, POWER_LIMIT1, power_limit);
 435                break;
 436        case PL2_ENABLE:
 437                rapl_write_data_raw(rd, POWER_LIMIT2, power_limit);
 438                break;
 439        default:
 440                ret = -EINVAL;
 441        }
 442        if (!ret)
 443                package_power_limit_irq_save(rp);
 444set_exit:
 445        put_online_cpus();
 446        return ret;
 447}
 448
 449static int get_current_power_limit(struct powercap_zone *power_zone, int id,
 450                                        u64 *data)
 451{
 452        struct rapl_domain *rd;
 453        u64 val;
 454        int prim;
 455        int ret = 0;
 456
 457        get_online_cpus();
 458        rd = power_zone_to_rapl_domain(power_zone);
 459        switch (rd->rpl[id].prim_id) {
 460        case PL1_ENABLE:
 461                prim = POWER_LIMIT1;
 462                break;
 463        case PL2_ENABLE:
 464                prim = POWER_LIMIT2;
 465                break;
 466        default:
 467                put_online_cpus();
 468                return -EINVAL;
 469        }
 470        if (rapl_read_data_raw(rd, prim, true, &val))
 471                ret = -EIO;
 472        else
 473                *data = val;
 474
 475        put_online_cpus();
 476
 477        return ret;
 478}
 479
 480static int set_time_window(struct powercap_zone *power_zone, int id,
 481                                                                u64 window)
 482{
 483        struct rapl_domain *rd;
 484        int ret = 0;
 485
 486        get_online_cpus();
 487        rd = power_zone_to_rapl_domain(power_zone);
 488        switch (rd->rpl[id].prim_id) {
 489        case PL1_ENABLE:
 490                rapl_write_data_raw(rd, TIME_WINDOW1, window);
 491                break;
 492        case PL2_ENABLE:
 493                rapl_write_data_raw(rd, TIME_WINDOW2, window);
 494                break;
 495        default:
 496                ret = -EINVAL;
 497        }
 498        put_online_cpus();
 499        return ret;
 500}
 501
 502static int get_time_window(struct powercap_zone *power_zone, int id, u64 *data)
 503{
 504        struct rapl_domain *rd;
 505        u64 val;
 506        int ret = 0;
 507
 508        get_online_cpus();
 509        rd = power_zone_to_rapl_domain(power_zone);
 510        switch (rd->rpl[id].prim_id) {
 511        case PL1_ENABLE:
 512                ret = rapl_read_data_raw(rd, TIME_WINDOW1, true, &val);
 513                break;
 514        case PL2_ENABLE:
 515                ret = rapl_read_data_raw(rd, TIME_WINDOW2, true, &val);
 516                break;
 517        default:
 518                put_online_cpus();
 519                return -EINVAL;
 520        }
 521        if (!ret)
 522                *data = val;
 523        put_online_cpus();
 524
 525        return ret;
 526}
 527
 528static const char *get_constraint_name(struct powercap_zone *power_zone, int id)
 529{
 530        struct rapl_power_limit *rpl;
 531        struct rapl_domain *rd;
 532
 533        rd = power_zone_to_rapl_domain(power_zone);
 534        rpl = (struct rapl_power_limit *) &rd->rpl[id];
 535
 536        return rpl->name;
 537}
 538
 539
 540static int get_max_power(struct powercap_zone *power_zone, int id,
 541                                        u64 *data)
 542{
 543        struct rapl_domain *rd;
 544        u64 val;
 545        int prim;
 546        int ret = 0;
 547
 548        get_online_cpus();
 549        rd = power_zone_to_rapl_domain(power_zone);
 550        switch (rd->rpl[id].prim_id) {
 551        case PL1_ENABLE:
 552                prim = THERMAL_SPEC_POWER;
 553                break;
 554        case PL2_ENABLE:
 555                prim = MAX_POWER;
 556                break;
 557        default:
 558                put_online_cpus();
 559                return -EINVAL;
 560        }
 561        if (rapl_read_data_raw(rd, prim, true, &val))
 562                ret = -EIO;
 563        else
 564                *data = val;
 565
 566        put_online_cpus();
 567
 568        return ret;
 569}
 570
 571static const struct powercap_zone_constraint_ops constraint_ops = {
 572        .set_power_limit_uw = set_power_limit,
 573        .get_power_limit_uw = get_current_power_limit,
 574        .set_time_window_us = set_time_window,
 575        .get_time_window_us = get_time_window,
 576        .get_max_power_uw = get_max_power,
 577        .get_name = get_constraint_name,
 578};
 579
 580/* called after domain detection and package level data are set */
 581static void rapl_init_domains(struct rapl_package *rp)
 582{
 583        int i;
 584        struct rapl_domain *rd = rp->domains;
 585
 586        for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
 587                unsigned int mask = rp->domain_map & (1 << i);
 588                switch (mask) {
 589                case BIT(RAPL_DOMAIN_PACKAGE):
 590                        rd->name = rapl_domain_names[RAPL_DOMAIN_PACKAGE];
 591                        rd->id = RAPL_DOMAIN_PACKAGE;
 592                        rd->msrs[0] = MSR_PKG_POWER_LIMIT;
 593                        rd->msrs[1] = MSR_PKG_ENERGY_STATUS;
 594                        rd->msrs[2] = MSR_PKG_PERF_STATUS;
 595                        rd->msrs[3] = 0;
 596                        rd->msrs[4] = MSR_PKG_POWER_INFO;
 597                        rd->rpl[0].prim_id = PL1_ENABLE;
 598                        rd->rpl[0].name = pl1_name;
 599                        rd->rpl[1].prim_id = PL2_ENABLE;
 600                        rd->rpl[1].name = pl2_name;
 601                        break;
 602                case BIT(RAPL_DOMAIN_PP0):
 603                        rd->name = rapl_domain_names[RAPL_DOMAIN_PP0];
 604                        rd->id = RAPL_DOMAIN_PP0;
 605                        rd->msrs[0] = MSR_PP0_POWER_LIMIT;
 606                        rd->msrs[1] = MSR_PP0_ENERGY_STATUS;
 607                        rd->msrs[2] = 0;
 608                        rd->msrs[3] = MSR_PP0_POLICY;
 609                        rd->msrs[4] = 0;
 610                        rd->rpl[0].prim_id = PL1_ENABLE;
 611                        rd->rpl[0].name = pl1_name;
 612                        break;
 613                case BIT(RAPL_DOMAIN_PP1):
 614                        rd->name = rapl_domain_names[RAPL_DOMAIN_PP1];
 615                        rd->id = RAPL_DOMAIN_PP1;
 616                        rd->msrs[0] = MSR_PP1_POWER_LIMIT;
 617                        rd->msrs[1] = MSR_PP1_ENERGY_STATUS;
 618                        rd->msrs[2] = 0;
 619                        rd->msrs[3] = MSR_PP1_POLICY;
 620                        rd->msrs[4] = 0;
 621                        rd->rpl[0].prim_id = PL1_ENABLE;
 622                        rd->rpl[0].name = pl1_name;
 623                        break;
 624                case BIT(RAPL_DOMAIN_DRAM):
 625                        rd->name = rapl_domain_names[RAPL_DOMAIN_DRAM];
 626                        rd->id = RAPL_DOMAIN_DRAM;
 627                        rd->msrs[0] = MSR_DRAM_POWER_LIMIT;
 628                        rd->msrs[1] = MSR_DRAM_ENERGY_STATUS;
 629                        rd->msrs[2] = MSR_DRAM_PERF_STATUS;
 630                        rd->msrs[3] = 0;
 631                        rd->msrs[4] = MSR_DRAM_POWER_INFO;
 632                        rd->rpl[0].prim_id = PL1_ENABLE;
 633                        rd->rpl[0].name = pl1_name;
 634                        rd->domain_energy_unit =
 635                                rapl_defaults->dram_domain_energy_unit;
 636                        if (rd->domain_energy_unit)
 637                                pr_info("DRAM domain energy unit %dpj\n",
 638                                        rd->domain_energy_unit);
 639                        break;
 640                }
 641                if (mask) {
 642                        rd->rp = rp;
 643                        rd++;
 644                }
 645        }
 646}
 647
 648static u64 rapl_unit_xlate(struct rapl_domain *rd, enum unit_type type,
 649                        u64 value, int to_raw)
 650{
 651        u64 units = 1;
 652        struct rapl_package *rp = rd->rp;
 653        u64 scale = 1;
 654
 655        switch (type) {
 656        case POWER_UNIT:
 657                units = rp->power_unit;
 658                break;
 659        case ENERGY_UNIT:
 660                scale = ENERGY_UNIT_SCALE;
 661                /* per domain unit takes precedence */
 662                if (rd && rd->domain_energy_unit)
 663                        units = rd->domain_energy_unit;
 664                else
 665                        units = rp->energy_unit;
 666                break;
 667        case TIME_UNIT:
 668                return rapl_defaults->compute_time_window(rp, value, to_raw);
 669        case ARBITRARY_UNIT:
 670        default:
 671                return value;
 672        };
 673
 674        if (to_raw)
 675                return div64_u64(value, units) * scale;
 676
 677        value *= units;
 678
 679        return div64_u64(value, scale);
 680}
 681
 682/* in the order of enum rapl_primitives */
 683static struct rapl_primitive_info rpi[] = {
 684        /* name, mask, shift, msr index, unit divisor */
 685        PRIMITIVE_INFO_INIT(ENERGY_COUNTER, ENERGY_STATUS_MASK, 0,
 686                                RAPL_DOMAIN_MSR_STATUS, ENERGY_UNIT, 0),
 687        PRIMITIVE_INFO_INIT(POWER_LIMIT1, POWER_LIMIT1_MASK, 0,
 688                                RAPL_DOMAIN_MSR_LIMIT, POWER_UNIT, 0),
 689        PRIMITIVE_INFO_INIT(POWER_LIMIT2, POWER_LIMIT2_MASK, 32,
 690                                RAPL_DOMAIN_MSR_LIMIT, POWER_UNIT, 0),
 691        PRIMITIVE_INFO_INIT(FW_LOCK, POWER_PP_LOCK, 31,
 692                                RAPL_DOMAIN_MSR_LIMIT, ARBITRARY_UNIT, 0),
 693        PRIMITIVE_INFO_INIT(PL1_ENABLE, POWER_LIMIT1_ENABLE, 15,
 694                                RAPL_DOMAIN_MSR_LIMIT, ARBITRARY_UNIT, 0),
 695        PRIMITIVE_INFO_INIT(PL1_CLAMP, POWER_LIMIT1_CLAMP, 16,
 696                                RAPL_DOMAIN_MSR_LIMIT, ARBITRARY_UNIT, 0),
 697        PRIMITIVE_INFO_INIT(PL2_ENABLE, POWER_LIMIT2_ENABLE, 47,
 698                                RAPL_DOMAIN_MSR_LIMIT, ARBITRARY_UNIT, 0),
 699        PRIMITIVE_INFO_INIT(PL2_CLAMP, POWER_LIMIT2_CLAMP, 48,
 700                                RAPL_DOMAIN_MSR_LIMIT, ARBITRARY_UNIT, 0),
 701        PRIMITIVE_INFO_INIT(TIME_WINDOW1, TIME_WINDOW1_MASK, 17,
 702                                RAPL_DOMAIN_MSR_LIMIT, TIME_UNIT, 0),
 703        PRIMITIVE_INFO_INIT(TIME_WINDOW2, TIME_WINDOW2_MASK, 49,
 704                                RAPL_DOMAIN_MSR_LIMIT, TIME_UNIT, 0),
 705        PRIMITIVE_INFO_INIT(THERMAL_SPEC_POWER, POWER_INFO_THERMAL_SPEC_MASK,
 706                                0, RAPL_DOMAIN_MSR_INFO, POWER_UNIT, 0),
 707        PRIMITIVE_INFO_INIT(MAX_POWER, POWER_INFO_MAX_MASK, 32,
 708                                RAPL_DOMAIN_MSR_INFO, POWER_UNIT, 0),
 709        PRIMITIVE_INFO_INIT(MIN_POWER, POWER_INFO_MIN_MASK, 16,
 710                                RAPL_DOMAIN_MSR_INFO, POWER_UNIT, 0),
 711        PRIMITIVE_INFO_INIT(MAX_TIME_WINDOW, POWER_INFO_MAX_TIME_WIN_MASK, 48,
 712                                RAPL_DOMAIN_MSR_INFO, TIME_UNIT, 0),
 713        PRIMITIVE_INFO_INIT(THROTTLED_TIME, PERF_STATUS_THROTTLE_TIME_MASK, 0,
 714                                RAPL_DOMAIN_MSR_PERF, TIME_UNIT, 0),
 715        PRIMITIVE_INFO_INIT(PRIORITY_LEVEL, PP_POLICY_MASK, 0,
 716                                RAPL_DOMAIN_MSR_POLICY, ARBITRARY_UNIT, 0),
 717        /* non-hardware */
 718        PRIMITIVE_INFO_INIT(AVERAGE_POWER, 0, 0, 0, POWER_UNIT,
 719                                RAPL_PRIMITIVE_DERIVED),
 720        {NULL, 0, 0, 0},
 721};
 722
 723/* Read primitive data based on its related struct rapl_primitive_info.
 724 * if xlate flag is set, return translated data based on data units, i.e.
 725 * time, energy, and power.
 726 * RAPL MSRs are non-architectual and are laid out not consistently across
 727 * domains. Here we use primitive info to allow writing consolidated access
 728 * functions.
 729 * For a given primitive, it is processed by MSR mask and shift. Unit conversion
 730 * is pre-assigned based on RAPL unit MSRs read at init time.
 731 * 63-------------------------- 31--------------------------- 0
 732 * |                           xxxxx (mask)                   |
 733 * |                                |<- shift ----------------|
 734 * 63-------------------------- 31--------------------------- 0
 735 */
 736static int rapl_read_data_raw(struct rapl_domain *rd,
 737                        enum rapl_primitives prim,
 738                        bool xlate, u64 *data)
 739{
 740        u64 value, final;
 741        u32 msr;
 742        struct rapl_primitive_info *rp = &rpi[prim];
 743        int cpu;
 744
 745        if (!rp->name || rp->flag & RAPL_PRIMITIVE_DUMMY)
 746                return -EINVAL;
 747
 748        msr = rd->msrs[rp->id];
 749        if (!msr)
 750                return -EINVAL;
 751
 752        cpu = rd->rp->lead_cpu;
 753
 754        /* special-case package domain, which uses a different bit*/
 755        if (prim == FW_LOCK && rd->id == RAPL_DOMAIN_PACKAGE) {
 756                rp->mask = POWER_PACKAGE_LOCK;
 757                rp->shift = 63;
 758        }
 759        /* non-hardware data are collected by the polling thread */
 760        if (rp->flag & RAPL_PRIMITIVE_DERIVED) {
 761                *data = rd->rdd.primitives[prim];
 762                return 0;
 763        }
 764
 765        if (rdmsrl_safe_on_cpu(cpu, msr, &value)) {
 766                pr_debug("failed to read msr 0x%x on cpu %d\n", msr, cpu);
 767                return -EIO;
 768        }
 769
 770        final = value & rp->mask;
 771        final = final >> rp->shift;
 772        if (xlate)
 773                *data = rapl_unit_xlate(rd, rp->unit, final, 0);
 774        else
 775                *data = final;
 776
 777        return 0;
 778}
 779
 780
 781static int msrl_update_safe(u32 msr_no, u64 clear_mask, u64 set_mask)
 782{
 783        int err;
 784        u64 val;
 785
 786        err = rdmsrl_safe(msr_no, &val);
 787        if (err)
 788                goto out;
 789
 790        val &= ~clear_mask;
 791        val |= set_mask;
 792
 793        err = wrmsrl_safe(msr_no, val);
 794
 795out:
 796        return err;
 797}
 798
 799static void msrl_update_func(void *info)
 800{
 801        struct msrl_action *ma = info;
 802
 803        ma->err = msrl_update_safe(ma->msr_no, ma->clear_mask, ma->set_mask);
 804}
 805
 806/* Similar use of primitive info in the read counterpart */
 807static int rapl_write_data_raw(struct rapl_domain *rd,
 808                        enum rapl_primitives prim,
 809                        unsigned long long value)
 810{
 811        struct rapl_primitive_info *rp = &rpi[prim];
 812        int cpu;
 813        u64 bits;
 814        struct msrl_action ma;
 815        int ret;
 816
 817        cpu = rd->rp->lead_cpu;
 818        bits = rapl_unit_xlate(rd, rp->unit, value, 1);
 819        bits |= bits << rp->shift;
 820        memset(&ma, 0, sizeof(ma));
 821
 822        ma.msr_no = rd->msrs[rp->id];
 823        ma.clear_mask = rp->mask;
 824        ma.set_mask = bits;
 825
 826        ret = smp_call_function_single(cpu, msrl_update_func, &ma, 1);
 827        if (ret)
 828                WARN_ON_ONCE(ret);
 829        else
 830                ret = ma.err;
 831
 832        return ret;
 833}
 834
 835/*
 836 * Raw RAPL data stored in MSRs are in certain scales. We need to
 837 * convert them into standard units based on the units reported in
 838 * the RAPL unit MSRs. This is specific to CPUs as the method to
 839 * calculate units differ on different CPUs.
 840 * We convert the units to below format based on CPUs.
 841 * i.e.
 842 * energy unit: picoJoules  : Represented in picoJoules by default
 843 * power unit : microWatts  : Represented in milliWatts by default
 844 * time unit  : microseconds: Represented in seconds by default
 845 */
 846static int rapl_check_unit_core(struct rapl_package *rp, int cpu)
 847{
 848        u64 msr_val;
 849        u32 value;
 850
 851        if (rdmsrl_safe_on_cpu(cpu, MSR_RAPL_POWER_UNIT, &msr_val)) {
 852                pr_err("Failed to read power unit MSR 0x%x on CPU %d, exit.\n",
 853                        MSR_RAPL_POWER_UNIT, cpu);
 854                return -ENODEV;
 855        }
 856
 857        value = (msr_val & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
 858        rp->energy_unit = ENERGY_UNIT_SCALE * 1000000 / (1 << value);
 859
 860        value = (msr_val & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
 861        rp->power_unit = 1000000 / (1 << value);
 862
 863        value = (msr_val & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
 864        rp->time_unit = 1000000 / (1 << value);
 865
 866        pr_debug("Core CPU package %d energy=%dpJ, time=%dus, power=%duW\n",
 867                rp->id, rp->energy_unit, rp->time_unit, rp->power_unit);
 868
 869        return 0;
 870}
 871
 872static int rapl_check_unit_atom(struct rapl_package *rp, int cpu)
 873{
 874        u64 msr_val;
 875        u32 value;
 876
 877        if (rdmsrl_safe_on_cpu(cpu, MSR_RAPL_POWER_UNIT, &msr_val)) {
 878                pr_err("Failed to read power unit MSR 0x%x on CPU %d, exit.\n",
 879                        MSR_RAPL_POWER_UNIT, cpu);
 880                return -ENODEV;
 881        }
 882        value = (msr_val & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
 883        rp->energy_unit = ENERGY_UNIT_SCALE * 1 << value;
 884
 885        value = (msr_val & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
 886        rp->power_unit = (1 << value) * 1000;
 887
 888        value = (msr_val & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
 889        rp->time_unit = 1000000 / (1 << value);
 890
 891        pr_debug("Atom package %d energy=%dpJ, time=%dus, power=%duW\n",
 892                rp->id, rp->energy_unit, rp->time_unit, rp->power_unit);
 893
 894        return 0;
 895}
 896
 897static void power_limit_irq_save_cpu(void *info)
 898{
 899        u32 l, h = 0;
 900        struct rapl_package *rp = (struct rapl_package *)info;
 901
 902        /* save the state of PLN irq mask bit before disabling it */
 903        rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
 904        if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED)) {
 905                rp->power_limit_irq = l & PACKAGE_THERM_INT_PLN_ENABLE;
 906                rp->power_limit_irq |= PACKAGE_PLN_INT_SAVED;
 907        }
 908        l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
 909        wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
 910}
 911
 912
 913/* REVISIT:
 914 * When package power limit is set artificially low by RAPL, LVT
 915 * thermal interrupt for package power limit should be ignored
 916 * since we are not really exceeding the real limit. The intention
 917 * is to avoid excessive interrupts while we are trying to save power.
 918 * A useful feature might be routing the package_power_limit interrupt
 919 * to userspace via eventfd. once we have a usecase, this is simple
 920 * to do by adding an atomic notifier.
 921 */
 922
 923static void package_power_limit_irq_save(struct rapl_package *rp)
 924{
 925        if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
 926                return;
 927
 928        smp_call_function_single(rp->lead_cpu, power_limit_irq_save_cpu, rp, 1);
 929}
 930
 931static void power_limit_irq_restore_cpu(void *info)
 932{
 933        u32 l, h = 0;
 934        struct rapl_package *rp = (struct rapl_package *)info;
 935
 936        rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
 937
 938        if (rp->power_limit_irq & PACKAGE_THERM_INT_PLN_ENABLE)
 939                l |= PACKAGE_THERM_INT_PLN_ENABLE;
 940        else
 941                l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
 942
 943        wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
 944}
 945
 946/* restore per package power limit interrupt enable state */
 947static void package_power_limit_irq_restore(struct rapl_package *rp)
 948{
 949        if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
 950                return;
 951
 952        /* irq enable state not saved, nothing to restore */
 953        if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED))
 954                return;
 955
 956        smp_call_function_single(rp->lead_cpu, power_limit_irq_restore_cpu, rp, 1);
 957}
 958
 959static void set_floor_freq_default(struct rapl_domain *rd, bool mode)
 960{
 961        int nr_powerlimit = find_nr_power_limit(rd);
 962
 963        /* always enable clamp such that p-state can go below OS requested
 964         * range. power capping priority over guranteed frequency.
 965         */
 966        rapl_write_data_raw(rd, PL1_CLAMP, mode);
 967
 968        /* some domains have pl2 */
 969        if (nr_powerlimit > 1) {
 970                rapl_write_data_raw(rd, PL2_ENABLE, mode);
 971                rapl_write_data_raw(rd, PL2_CLAMP, mode);
 972        }
 973}
 974
 975static void set_floor_freq_atom(struct rapl_domain *rd, bool enable)
 976{
 977        static u32 power_ctrl_orig_val;
 978        u32 mdata;
 979
 980        if (!rapl_defaults->floor_freq_reg_addr) {
 981                pr_err("Invalid floor frequency config register\n");
 982                return;
 983        }
 984
 985        if (!power_ctrl_orig_val)
 986                iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_CR_READ,
 987                              rapl_defaults->floor_freq_reg_addr,
 988                              &power_ctrl_orig_val);
 989        mdata = power_ctrl_orig_val;
 990        if (enable) {
 991                mdata &= ~(0x7f << 8);
 992                mdata |= 1 << 8;
 993        }
 994        iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_CR_WRITE,
 995                       rapl_defaults->floor_freq_reg_addr, mdata);
 996}
 997
 998static u64 rapl_compute_time_window_core(struct rapl_package *rp, u64 value,
 999                                        bool to_raw)
1000{
1001        u64 f, y; /* fraction and exp. used for time unit */
1002
1003        /*
1004         * Special processing based on 2^Y*(1+F/4), refer
1005         * to Intel Software Developer's manual Vol.3B: CH 14.9.3.
1006         */
1007        if (!to_raw) {
1008                f = (value & 0x60) >> 5;
1009                y = value & 0x1f;
1010                value = (1 << y) * (4 + f) * rp->time_unit / 4;
1011        } else {
1012                do_div(value, rp->time_unit);
1013                y = ilog2(value);
1014                f = div64_u64(4 * (value - (1 << y)), 1 << y);
1015                value = (y & 0x1f) | ((f & 0x3) << 5);
1016        }
1017        return value;
1018}
1019
1020static u64 rapl_compute_time_window_atom(struct rapl_package *rp, u64 value,
1021                                        bool to_raw)
1022{
1023        /*
1024         * Atom time unit encoding is straight forward val * time_unit,
1025         * where time_unit is default to 1 sec. Never 0.
1026         */
1027        if (!to_raw)
1028                return (value) ? value *= rp->time_unit : rp->time_unit;
1029        else
1030                value = div64_u64(value, rp->time_unit);
1031
1032        return value;
1033}
1034
1035static const struct rapl_defaults rapl_defaults_core = {
1036        .floor_freq_reg_addr = 0,
1037        .check_unit = rapl_check_unit_core,
1038        .set_floor_freq = set_floor_freq_default,
1039        .compute_time_window = rapl_compute_time_window_core,
1040};
1041
1042static const struct rapl_defaults rapl_defaults_hsw_server = {
1043        .check_unit = rapl_check_unit_core,
1044        .set_floor_freq = set_floor_freq_default,
1045        .compute_time_window = rapl_compute_time_window_core,
1046        .dram_domain_energy_unit = 15300,
1047};
1048
1049static const struct rapl_defaults rapl_defaults_byt = {
1050        .floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_BYT,
1051        .check_unit = rapl_check_unit_atom,
1052        .set_floor_freq = set_floor_freq_atom,
1053        .compute_time_window = rapl_compute_time_window_atom,
1054};
1055
1056static const struct rapl_defaults rapl_defaults_tng = {
1057        .floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_TNG,
1058        .check_unit = rapl_check_unit_atom,
1059        .set_floor_freq = set_floor_freq_atom,
1060        .compute_time_window = rapl_compute_time_window_atom,
1061};
1062
1063static const struct rapl_defaults rapl_defaults_ann = {
1064        .floor_freq_reg_addr = 0,
1065        .check_unit = rapl_check_unit_atom,
1066        .set_floor_freq = NULL,
1067        .compute_time_window = rapl_compute_time_window_atom,
1068};
1069
1070static const struct rapl_defaults rapl_defaults_cht = {
1071        .floor_freq_reg_addr = 0,
1072        .check_unit = rapl_check_unit_atom,
1073        .set_floor_freq = NULL,
1074        .compute_time_window = rapl_compute_time_window_atom,
1075};
1076
1077#define RAPL_CPU(_model, _ops) {                        \
1078                .vendor = X86_VENDOR_INTEL,             \
1079                .family = 6,                            \
1080                .model = _model,                        \
1081                .driver_data = (kernel_ulong_t)&_ops,   \
1082                }
1083
1084static const struct x86_cpu_id rapl_ids[] __initconst = {
1085        RAPL_CPU(0x2a, rapl_defaults_core),/* Sandy Bridge */
1086        RAPL_CPU(0x2d, rapl_defaults_core),/* Sandy Bridge EP */
1087        RAPL_CPU(0x37, rapl_defaults_byt),/* Valleyview */
1088        RAPL_CPU(0x3a, rapl_defaults_core),/* Ivy Bridge */
1089        RAPL_CPU(0x3c, rapl_defaults_core),/* Haswell */
1090        RAPL_CPU(0x3d, rapl_defaults_core),/* Broadwell */
1091        RAPL_CPU(0x3f, rapl_defaults_hsw_server),/* Haswell servers */
1092        RAPL_CPU(0x4f, rapl_defaults_hsw_server),/* Broadwell servers */
1093        RAPL_CPU(0x45, rapl_defaults_core),/* Haswell ULT */
1094        RAPL_CPU(0x46, rapl_defaults_core),/* Haswell */
1095        RAPL_CPU(0x47, rapl_defaults_core),/* Broadwell-H */
1096        RAPL_CPU(0x4E, rapl_defaults_core),/* Skylake */
1097        RAPL_CPU(0x4C, rapl_defaults_cht),/* Braswell/Cherryview */
1098        RAPL_CPU(0x4A, rapl_defaults_tng),/* Tangier */
1099        RAPL_CPU(0x56, rapl_defaults_core),/* Future Xeon */
1100        RAPL_CPU(0x5A, rapl_defaults_ann),/* Annidale */
1101        RAPL_CPU(0X5C, rapl_defaults_core),/* Broxton */
1102        RAPL_CPU(0x5E, rapl_defaults_core),/* Skylake-H/S */
1103        RAPL_CPU(0x57, rapl_defaults_hsw_server),/* Knights Landing */
1104        {}
1105};
1106MODULE_DEVICE_TABLE(x86cpu, rapl_ids);
1107
1108/* read once for all raw primitive data for all packages, domains */
1109static void rapl_update_domain_data(void)
1110{
1111        int dmn, prim;
1112        u64 val;
1113        struct rapl_package *rp;
1114
1115        list_for_each_entry(rp, &rapl_packages, plist) {
1116                for (dmn = 0; dmn < rp->nr_domains; dmn++) {
1117                        pr_debug("update package %d domain %s data\n", rp->id,
1118                                rp->domains[dmn].name);
1119                        /* exclude non-raw primitives */
1120                        for (prim = 0; prim < NR_RAW_PRIMITIVES; prim++)
1121                                if (!rapl_read_data_raw(&rp->domains[dmn], prim,
1122                                                                rpi[prim].unit,
1123                                                                &val))
1124                                        rp->domains[dmn].rdd.primitives[prim] =
1125                                                                        val;
1126                }
1127        }
1128
1129}
1130
1131static int rapl_unregister_powercap(void)
1132{
1133        struct rapl_package *rp;
1134        struct rapl_domain *rd, *rd_package = NULL;
1135
1136        /* unregister all active rapl packages from the powercap layer,
1137         * hotplug lock held
1138         */
1139        list_for_each_entry(rp, &rapl_packages, plist) {
1140                package_power_limit_irq_restore(rp);
1141
1142                for (rd = rp->domains; rd < rp->domains + rp->nr_domains;
1143                     rd++) {
1144                        pr_debug("remove package, undo power limit on %d: %s\n",
1145                                rp->id, rd->name);
1146                        rapl_write_data_raw(rd, PL1_ENABLE, 0);
1147                        rapl_write_data_raw(rd, PL1_CLAMP, 0);
1148                        if (find_nr_power_limit(rd) > 1) {
1149                                rapl_write_data_raw(rd, PL2_ENABLE, 0);
1150                                rapl_write_data_raw(rd, PL2_CLAMP, 0);
1151                        }
1152                        if (rd->id == RAPL_DOMAIN_PACKAGE) {
1153                                rd_package = rd;
1154                                continue;
1155                        }
1156                        powercap_unregister_zone(control_type, &rd->power_zone);
1157                }
1158                /* do the package zone last */
1159                if (rd_package)
1160                        powercap_unregister_zone(control_type,
1161                                                &rd_package->power_zone);
1162        }
1163        powercap_unregister_control_type(control_type);
1164
1165        return 0;
1166}
1167
1168static int rapl_package_register_powercap(struct rapl_package *rp)
1169{
1170        struct rapl_domain *rd;
1171        int ret = 0;
1172        char dev_name[17]; /* max domain name = 7 + 1 + 8 for int + 1 for null*/
1173        struct powercap_zone *power_zone = NULL;
1174        int nr_pl;
1175
1176        /* first we register package domain as the parent zone*/
1177        for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1178                if (rd->id == RAPL_DOMAIN_PACKAGE) {
1179                        nr_pl = find_nr_power_limit(rd);
1180                        pr_debug("register socket %d package domain %s\n",
1181                                rp->id, rd->name);
1182                        memset(dev_name, 0, sizeof(dev_name));
1183                        snprintf(dev_name, sizeof(dev_name), "%s-%d",
1184                                rd->name, rp->id);
1185                        power_zone = powercap_register_zone(&rd->power_zone,
1186                                                        control_type,
1187                                                        dev_name, NULL,
1188                                                        &zone_ops[rd->id],
1189                                                        nr_pl,
1190                                                        &constraint_ops);
1191                        if (IS_ERR(power_zone)) {
1192                                pr_debug("failed to register package, %d\n",
1193                                        rp->id);
1194                                ret = PTR_ERR(power_zone);
1195                                goto exit_package;
1196                        }
1197                        /* track parent zone in per package/socket data */
1198                        rp->power_zone = power_zone;
1199                        /* done, only one package domain per socket */
1200                        break;
1201                }
1202        }
1203        if (!power_zone) {
1204                pr_err("no package domain found, unknown topology!\n");
1205                ret = -ENODEV;
1206                goto exit_package;
1207        }
1208        /* now register domains as children of the socket/package*/
1209        for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1210                if (rd->id == RAPL_DOMAIN_PACKAGE)
1211                        continue;
1212                /* number of power limits per domain varies */
1213                nr_pl = find_nr_power_limit(rd);
1214                power_zone = powercap_register_zone(&rd->power_zone,
1215                                                control_type, rd->name,
1216                                                rp->power_zone,
1217                                                &zone_ops[rd->id], nr_pl,
1218                                                &constraint_ops);
1219
1220                if (IS_ERR(power_zone)) {
1221                        pr_debug("failed to register power_zone, %d:%s:%s\n",
1222                                rp->id, rd->name, dev_name);
1223                        ret = PTR_ERR(power_zone);
1224                        goto err_cleanup;
1225                }
1226        }
1227
1228exit_package:
1229        return ret;
1230err_cleanup:
1231        /* clean up previously initialized domains within the package if we
1232         * failed after the first domain setup.
1233         */
1234        while (--rd >= rp->domains) {
1235                pr_debug("unregister package %d domain %s\n", rp->id, rd->name);
1236                powercap_unregister_zone(control_type, &rd->power_zone);
1237        }
1238
1239        return ret;
1240}
1241
1242static int rapl_register_powercap(void)
1243{
1244        struct rapl_domain *rd;
1245        struct rapl_package *rp;
1246        int ret = 0;
1247
1248        control_type = powercap_register_control_type(NULL, "intel-rapl", NULL);
1249        if (IS_ERR(control_type)) {
1250                pr_debug("failed to register powercap control_type.\n");
1251                return PTR_ERR(control_type);
1252        }
1253        /* read the initial data */
1254        rapl_update_domain_data();
1255        list_for_each_entry(rp, &rapl_packages, plist)
1256                if (rapl_package_register_powercap(rp))
1257                        goto err_cleanup_package;
1258        return ret;
1259
1260err_cleanup_package:
1261        /* clean up previously initialized packages */
1262        list_for_each_entry_continue_reverse(rp, &rapl_packages, plist) {
1263                for (rd = rp->domains; rd < rp->domains + rp->nr_domains;
1264                     rd++) {
1265                        pr_debug("unregister zone/package %d, %s domain\n",
1266                                rp->id, rd->name);
1267                        powercap_unregister_zone(control_type, &rd->power_zone);
1268                }
1269        }
1270
1271        return ret;
1272}
1273
1274static int rapl_check_domain(int cpu, int domain)
1275{
1276        unsigned msr;
1277        u64 val = 0;
1278
1279        switch (domain) {
1280        case RAPL_DOMAIN_PACKAGE:
1281                msr = MSR_PKG_ENERGY_STATUS;
1282                break;
1283        case RAPL_DOMAIN_PP0:
1284                msr = MSR_PP0_ENERGY_STATUS;
1285                break;
1286        case RAPL_DOMAIN_PP1:
1287                msr = MSR_PP1_ENERGY_STATUS;
1288                break;
1289        case RAPL_DOMAIN_DRAM:
1290                msr = MSR_DRAM_ENERGY_STATUS;
1291                break;
1292        default:
1293                pr_err("invalid domain id %d\n", domain);
1294                return -EINVAL;
1295        }
1296        /* make sure domain counters are available and contains non-zero
1297         * values, otherwise skip it.
1298         */
1299        if (rdmsrl_safe_on_cpu(cpu, msr, &val) || !val)
1300                return -ENODEV;
1301
1302        return 0;
1303}
1304
1305/* Detect active and valid domains for the given CPU, caller must
1306 * ensure the CPU belongs to the targeted package and CPU hotlug is disabled.
1307 */
1308static int rapl_detect_domains(struct rapl_package *rp, int cpu)
1309{
1310        int i;
1311        int ret = 0;
1312        struct rapl_domain *rd;
1313        u64 locked;
1314
1315        for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
1316                /* use physical package id to read counters */
1317                if (!rapl_check_domain(cpu, i)) {
1318                        rp->domain_map |= 1 << i;
1319                        pr_info("Found RAPL domain %s\n", rapl_domain_names[i]);
1320                }
1321        }
1322        rp->nr_domains = bitmap_weight(&rp->domain_map, RAPL_DOMAIN_MAX);
1323        if (!rp->nr_domains) {
1324                pr_err("no valid rapl domains found in package %d\n", rp->id);
1325                ret = -ENODEV;
1326                goto done;
1327        }
1328        pr_debug("found %d domains on package %d\n", rp->nr_domains, rp->id);
1329
1330        rp->domains = kcalloc(rp->nr_domains + 1, sizeof(struct rapl_domain),
1331                        GFP_KERNEL);
1332        if (!rp->domains) {
1333                ret = -ENOMEM;
1334                goto done;
1335        }
1336        rapl_init_domains(rp);
1337
1338        for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1339                /* check if the domain is locked by BIOS */
1340                ret = rapl_read_data_raw(rd, FW_LOCK, false, &locked);
1341                if (ret)
1342                        return ret;
1343                if (locked) {
1344                        pr_info("RAPL package %d domain %s locked by BIOS\n",
1345                                rp->id, rd->name);
1346                        rd->state |= DOMAIN_STATE_BIOS_LOCKED;
1347                }
1348        }
1349
1350
1351done:
1352        return ret;
1353}
1354
1355static bool is_package_new(int package)
1356{
1357        struct rapl_package *rp;
1358
1359        /* caller prevents cpu hotplug, there will be no new packages added
1360         * or deleted while traversing the package list, no need for locking.
1361         */
1362        list_for_each_entry(rp, &rapl_packages, plist)
1363                if (package == rp->id)
1364                        return false;
1365
1366        return true;
1367}
1368
1369/* RAPL interface can be made of a two-level hierarchy: package level and domain
1370 * level. We first detect the number of packages then domains of each package.
1371 * We have to consider the possiblity of CPU online/offline due to hotplug and
1372 * other scenarios.
1373 */
1374static int rapl_detect_topology(void)
1375{
1376        int i;
1377        int phy_package_id;
1378        struct rapl_package *new_package, *rp;
1379
1380        for_each_online_cpu(i) {
1381                phy_package_id = topology_physical_package_id(i);
1382                if (is_package_new(phy_package_id)) {
1383                        new_package = kzalloc(sizeof(*rp), GFP_KERNEL);
1384                        if (!new_package) {
1385                                rapl_cleanup_data();
1386                                return -ENOMEM;
1387                        }
1388                        /* add the new package to the list */
1389                        new_package->id = phy_package_id;
1390                        new_package->nr_cpus = 1;
1391                        /* use the first active cpu of the package to access */
1392                        new_package->lead_cpu = i;
1393                        /* check if the package contains valid domains */
1394                        if (rapl_detect_domains(new_package, i) ||
1395                                rapl_defaults->check_unit(new_package, i)) {
1396                                kfree(new_package->domains);
1397                                kfree(new_package);
1398                                /* free up the packages already initialized */
1399                                rapl_cleanup_data();
1400                                return -ENODEV;
1401                        }
1402                        INIT_LIST_HEAD(&new_package->plist);
1403                        list_add(&new_package->plist, &rapl_packages);
1404                } else {
1405                        rp = find_package_by_id(phy_package_id);
1406                        if (rp)
1407                                ++rp->nr_cpus;
1408                }
1409        }
1410
1411        return 0;
1412}
1413
1414/* called from CPU hotplug notifier, hotplug lock held */
1415static void rapl_remove_package(struct rapl_package *rp)
1416{
1417        struct rapl_domain *rd, *rd_package = NULL;
1418
1419        for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1420                if (rd->id == RAPL_DOMAIN_PACKAGE) {
1421                        rd_package = rd;
1422                        continue;
1423                }
1424                pr_debug("remove package %d, %s domain\n", rp->id, rd->name);
1425                powercap_unregister_zone(control_type, &rd->power_zone);
1426        }
1427        /* do parent zone last */
1428        powercap_unregister_zone(control_type, &rd_package->power_zone);
1429        list_del(&rp->plist);
1430        kfree(rp);
1431}
1432
1433/* called from CPU hotplug notifier, hotplug lock held */
1434static int rapl_add_package(int cpu)
1435{
1436        int ret = 0;
1437        int phy_package_id;
1438        struct rapl_package *rp;
1439
1440        phy_package_id = topology_physical_package_id(cpu);
1441        rp = kzalloc(sizeof(struct rapl_package), GFP_KERNEL);
1442        if (!rp)
1443                return -ENOMEM;
1444
1445        /* add the new package to the list */
1446        rp->id = phy_package_id;
1447        rp->nr_cpus = 1;
1448        rp->lead_cpu = cpu;
1449
1450        /* check if the package contains valid domains */
1451        if (rapl_detect_domains(rp, cpu) ||
1452                rapl_defaults->check_unit(rp, cpu)) {
1453                ret = -ENODEV;
1454                goto err_free_package;
1455        }
1456        if (!rapl_package_register_powercap(rp)) {
1457                INIT_LIST_HEAD(&rp->plist);
1458                list_add(&rp->plist, &rapl_packages);
1459                return ret;
1460        }
1461
1462err_free_package:
1463        kfree(rp->domains);
1464        kfree(rp);
1465
1466        return ret;
1467}
1468
1469/* Handles CPU hotplug on multi-socket systems.
1470 * If a CPU goes online as the first CPU of the physical package
1471 * we add the RAPL package to the system. Similarly, when the last
1472 * CPU of the package is removed, we remove the RAPL package and its
1473 * associated domains. Cooling devices are handled accordingly at
1474 * per-domain level.
1475 */
1476static int rapl_cpu_callback(struct notifier_block *nfb,
1477                                unsigned long action, void *hcpu)
1478{
1479        unsigned long cpu = (unsigned long)hcpu;
1480        int phy_package_id;
1481        struct rapl_package *rp;
1482        int lead_cpu;
1483
1484        phy_package_id = topology_physical_package_id(cpu);
1485        switch (action) {
1486        case CPU_ONLINE:
1487        case CPU_ONLINE_FROZEN:
1488        case CPU_DOWN_FAILED:
1489        case CPU_DOWN_FAILED_FROZEN:
1490                rp = find_package_by_id(phy_package_id);
1491                if (rp)
1492                        ++rp->nr_cpus;
1493                else
1494                        rapl_add_package(cpu);
1495                break;
1496        case CPU_DOWN_PREPARE:
1497        case CPU_DOWN_PREPARE_FROZEN:
1498                rp = find_package_by_id(phy_package_id);
1499                if (!rp)
1500                        break;
1501                if (--rp->nr_cpus == 0)
1502                        rapl_remove_package(rp);
1503                else if (cpu == rp->lead_cpu) {
1504                        /* choose another active cpu in the package */
1505                        lead_cpu = cpumask_any_but(topology_core_cpumask(cpu), cpu);
1506                        if (lead_cpu < nr_cpu_ids)
1507                                rp->lead_cpu = lead_cpu;
1508                        else /* should never go here */
1509                                pr_err("no active cpu available for package %d\n",
1510                                        phy_package_id);
1511                }
1512        }
1513
1514        return NOTIFY_OK;
1515}
1516
1517static struct notifier_block rapl_cpu_notifier = {
1518        .notifier_call = rapl_cpu_callback,
1519};
1520
1521static int __init rapl_init(void)
1522{
1523        int ret = 0;
1524        const struct x86_cpu_id *id;
1525
1526        id = x86_match_cpu(rapl_ids);
1527        if (!id) {
1528                pr_err("driver does not support CPU family %d model %d\n",
1529                        boot_cpu_data.x86, boot_cpu_data.x86_model);
1530
1531                return -ENODEV;
1532        }
1533
1534        rapl_defaults = (struct rapl_defaults *)id->driver_data;
1535
1536        cpu_notifier_register_begin();
1537
1538        /* prevent CPU hotplug during detection */
1539        get_online_cpus();
1540        ret = rapl_detect_topology();
1541        if (ret)
1542                goto done;
1543
1544        if (rapl_register_powercap()) {
1545                rapl_cleanup_data();
1546                ret = -ENODEV;
1547                goto done;
1548        }
1549        __register_hotcpu_notifier(&rapl_cpu_notifier);
1550done:
1551        put_online_cpus();
1552        cpu_notifier_register_done();
1553
1554        return ret;
1555}
1556
1557static void __exit rapl_exit(void)
1558{
1559        cpu_notifier_register_begin();
1560        get_online_cpus();
1561        __unregister_hotcpu_notifier(&rapl_cpu_notifier);
1562        rapl_unregister_powercap();
1563        rapl_cleanup_data();
1564        put_online_cpus();
1565        cpu_notifier_register_done();
1566}
1567
1568module_init(rapl_init);
1569module_exit(rapl_exit);
1570
1571MODULE_DESCRIPTION("Driver for Intel RAPL (Running Average Power Limit)");
1572MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@intel.com>");
1573MODULE_LICENSE("GPL v2");
1574