linux/drivers/rtc/rtc-mxc.c
<<
>>
Prefs
   1/*
   2 * Copyright 2004-2008 Freescale Semiconductor, Inc. All Rights Reserved.
   3 *
   4 * The code contained herein is licensed under the GNU General Public
   5 * License. You may obtain a copy of the GNU General Public License
   6 * Version 2 or later at the following locations:
   7 *
   8 * http://www.opensource.org/licenses/gpl-license.html
   9 * http://www.gnu.org/copyleft/gpl.html
  10 */
  11
  12#include <linux/io.h>
  13#include <linux/rtc.h>
  14#include <linux/module.h>
  15#include <linux/slab.h>
  16#include <linux/interrupt.h>
  17#include <linux/platform_device.h>
  18#include <linux/clk.h>
  19#include <linux/of.h>
  20#include <linux/of_device.h>
  21
  22#define RTC_INPUT_CLK_32768HZ   (0x00 << 5)
  23#define RTC_INPUT_CLK_32000HZ   (0x01 << 5)
  24#define RTC_INPUT_CLK_38400HZ   (0x02 << 5)
  25
  26#define RTC_SW_BIT      (1 << 0)
  27#define RTC_ALM_BIT     (1 << 2)
  28#define RTC_1HZ_BIT     (1 << 4)
  29#define RTC_2HZ_BIT     (1 << 7)
  30#define RTC_SAM0_BIT    (1 << 8)
  31#define RTC_SAM1_BIT    (1 << 9)
  32#define RTC_SAM2_BIT    (1 << 10)
  33#define RTC_SAM3_BIT    (1 << 11)
  34#define RTC_SAM4_BIT    (1 << 12)
  35#define RTC_SAM5_BIT    (1 << 13)
  36#define RTC_SAM6_BIT    (1 << 14)
  37#define RTC_SAM7_BIT    (1 << 15)
  38#define PIT_ALL_ON      (RTC_2HZ_BIT | RTC_SAM0_BIT | RTC_SAM1_BIT | \
  39                         RTC_SAM2_BIT | RTC_SAM3_BIT | RTC_SAM4_BIT | \
  40                         RTC_SAM5_BIT | RTC_SAM6_BIT | RTC_SAM7_BIT)
  41
  42#define RTC_ENABLE_BIT  (1 << 7)
  43
  44#define MAX_PIE_NUM     9
  45#define MAX_PIE_FREQ    512
  46static const u32 PIE_BIT_DEF[MAX_PIE_NUM][2] = {
  47        { 2,            RTC_2HZ_BIT },
  48        { 4,            RTC_SAM0_BIT },
  49        { 8,            RTC_SAM1_BIT },
  50        { 16,           RTC_SAM2_BIT },
  51        { 32,           RTC_SAM3_BIT },
  52        { 64,           RTC_SAM4_BIT },
  53        { 128,          RTC_SAM5_BIT },
  54        { 256,          RTC_SAM6_BIT },
  55        { MAX_PIE_FREQ, RTC_SAM7_BIT },
  56};
  57
  58#define MXC_RTC_TIME    0
  59#define MXC_RTC_ALARM   1
  60
  61#define RTC_HOURMIN     0x00    /*  32bit rtc hour/min counter reg */
  62#define RTC_SECOND      0x04    /*  32bit rtc seconds counter reg */
  63#define RTC_ALRM_HM     0x08    /*  32bit rtc alarm hour/min reg */
  64#define RTC_ALRM_SEC    0x0C    /*  32bit rtc alarm seconds reg */
  65#define RTC_RTCCTL      0x10    /*  32bit rtc control reg */
  66#define RTC_RTCISR      0x14    /*  32bit rtc interrupt status reg */
  67#define RTC_RTCIENR     0x18    /*  32bit rtc interrupt enable reg */
  68#define RTC_STPWCH      0x1C    /*  32bit rtc stopwatch min reg */
  69#define RTC_DAYR        0x20    /*  32bit rtc days counter reg */
  70#define RTC_DAYALARM    0x24    /*  32bit rtc day alarm reg */
  71#define RTC_TEST1       0x28    /*  32bit rtc test reg 1 */
  72#define RTC_TEST2       0x2C    /*  32bit rtc test reg 2 */
  73#define RTC_TEST3       0x30    /*  32bit rtc test reg 3 */
  74
  75enum imx_rtc_type {
  76        IMX1_RTC,
  77        IMX21_RTC,
  78};
  79
  80struct rtc_plat_data {
  81        struct rtc_device *rtc;
  82        void __iomem *ioaddr;
  83        int irq;
  84        struct clk *clk_ref;
  85        struct clk *clk_ipg;
  86        struct rtc_time g_rtc_alarm;
  87        enum imx_rtc_type devtype;
  88};
  89
  90static const struct platform_device_id imx_rtc_devtype[] = {
  91        {
  92                .name = "imx1-rtc",
  93                .driver_data = IMX1_RTC,
  94        }, {
  95                .name = "imx21-rtc",
  96                .driver_data = IMX21_RTC,
  97        }, {
  98                /* sentinel */
  99        }
 100};
 101MODULE_DEVICE_TABLE(platform, imx_rtc_devtype);
 102
 103#ifdef CONFIG_OF
 104static const struct of_device_id imx_rtc_dt_ids[] = {
 105        { .compatible = "fsl,imx1-rtc", .data = (const void *)IMX1_RTC },
 106        { .compatible = "fsl,imx21-rtc", .data = (const void *)IMX21_RTC },
 107        {}
 108};
 109MODULE_DEVICE_TABLE(of, imx_rtc_dt_ids);
 110#endif
 111
 112static inline int is_imx1_rtc(struct rtc_plat_data *data)
 113{
 114        return data->devtype == IMX1_RTC;
 115}
 116
 117/*
 118 * This function is used to obtain the RTC time or the alarm value in
 119 * second.
 120 */
 121static time64_t get_alarm_or_time(struct device *dev, int time_alarm)
 122{
 123        struct platform_device *pdev = to_platform_device(dev);
 124        struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
 125        void __iomem *ioaddr = pdata->ioaddr;
 126        u32 day = 0, hr = 0, min = 0, sec = 0, hr_min = 0;
 127
 128        switch (time_alarm) {
 129        case MXC_RTC_TIME:
 130                day = readw(ioaddr + RTC_DAYR);
 131                hr_min = readw(ioaddr + RTC_HOURMIN);
 132                sec = readw(ioaddr + RTC_SECOND);
 133                break;
 134        case MXC_RTC_ALARM:
 135                day = readw(ioaddr + RTC_DAYALARM);
 136                hr_min = readw(ioaddr + RTC_ALRM_HM) & 0xffff;
 137                sec = readw(ioaddr + RTC_ALRM_SEC);
 138                break;
 139        }
 140
 141        hr = hr_min >> 8;
 142        min = hr_min & 0xff;
 143
 144        return ((((time64_t)day * 24 + hr) * 60) + min) * 60 + sec;
 145}
 146
 147/*
 148 * This function sets the RTC alarm value or the time value.
 149 */
 150static void set_alarm_or_time(struct device *dev, int time_alarm, time64_t time)
 151{
 152        u32 tod, day, hr, min, sec, temp;
 153        struct platform_device *pdev = to_platform_device(dev);
 154        struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
 155        void __iomem *ioaddr = pdata->ioaddr;
 156
 157        day = div_s64_rem(time, 86400, &tod);
 158
 159        /* time is within a day now */
 160        hr = tod / 3600;
 161        tod -= hr * 3600;
 162
 163        /* time is within an hour now */
 164        min = tod / 60;
 165        sec = tod - min * 60;
 166
 167        temp = (hr << 8) + min;
 168
 169        switch (time_alarm) {
 170        case MXC_RTC_TIME:
 171                writew(day, ioaddr + RTC_DAYR);
 172                writew(sec, ioaddr + RTC_SECOND);
 173                writew(temp, ioaddr + RTC_HOURMIN);
 174                break;
 175        case MXC_RTC_ALARM:
 176                writew(day, ioaddr + RTC_DAYALARM);
 177                writew(sec, ioaddr + RTC_ALRM_SEC);
 178                writew(temp, ioaddr + RTC_ALRM_HM);
 179                break;
 180        }
 181}
 182
 183/*
 184 * This function updates the RTC alarm registers and then clears all the
 185 * interrupt status bits.
 186 */
 187static void rtc_update_alarm(struct device *dev, struct rtc_time *alrm)
 188{
 189        time64_t time;
 190        struct platform_device *pdev = to_platform_device(dev);
 191        struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
 192        void __iomem *ioaddr = pdata->ioaddr;
 193
 194        time = rtc_tm_to_time64(alrm);
 195
 196        /* clear all the interrupt status bits */
 197        writew(readw(ioaddr + RTC_RTCISR), ioaddr + RTC_RTCISR);
 198        set_alarm_or_time(dev, MXC_RTC_ALARM, time);
 199}
 200
 201static void mxc_rtc_irq_enable(struct device *dev, unsigned int bit,
 202                                unsigned int enabled)
 203{
 204        struct platform_device *pdev = to_platform_device(dev);
 205        struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
 206        void __iomem *ioaddr = pdata->ioaddr;
 207        u32 reg;
 208
 209        spin_lock_irq(&pdata->rtc->irq_lock);
 210        reg = readw(ioaddr + RTC_RTCIENR);
 211
 212        if (enabled)
 213                reg |= bit;
 214        else
 215                reg &= ~bit;
 216
 217        writew(reg, ioaddr + RTC_RTCIENR);
 218        spin_unlock_irq(&pdata->rtc->irq_lock);
 219}
 220
 221/* This function is the RTC interrupt service routine. */
 222static irqreturn_t mxc_rtc_interrupt(int irq, void *dev_id)
 223{
 224        struct platform_device *pdev = dev_id;
 225        struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
 226        void __iomem *ioaddr = pdata->ioaddr;
 227        unsigned long flags;
 228        u32 status;
 229        u32 events = 0;
 230
 231        spin_lock_irqsave(&pdata->rtc->irq_lock, flags);
 232        status = readw(ioaddr + RTC_RTCISR) & readw(ioaddr + RTC_RTCIENR);
 233        /* clear interrupt sources */
 234        writew(status, ioaddr + RTC_RTCISR);
 235
 236        /* update irq data & counter */
 237        if (status & RTC_ALM_BIT) {
 238                events |= (RTC_AF | RTC_IRQF);
 239                /* RTC alarm should be one-shot */
 240                mxc_rtc_irq_enable(&pdev->dev, RTC_ALM_BIT, 0);
 241        }
 242
 243        if (status & RTC_1HZ_BIT)
 244                events |= (RTC_UF | RTC_IRQF);
 245
 246        if (status & PIT_ALL_ON)
 247                events |= (RTC_PF | RTC_IRQF);
 248
 249        rtc_update_irq(pdata->rtc, 1, events);
 250        spin_unlock_irqrestore(&pdata->rtc->irq_lock, flags);
 251
 252        return IRQ_HANDLED;
 253}
 254
 255/*
 256 * Clear all interrupts and release the IRQ
 257 */
 258static void mxc_rtc_release(struct device *dev)
 259{
 260        struct platform_device *pdev = to_platform_device(dev);
 261        struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
 262        void __iomem *ioaddr = pdata->ioaddr;
 263
 264        spin_lock_irq(&pdata->rtc->irq_lock);
 265
 266        /* Disable all rtc interrupts */
 267        writew(0, ioaddr + RTC_RTCIENR);
 268
 269        /* Clear all interrupt status */
 270        writew(0xffffffff, ioaddr + RTC_RTCISR);
 271
 272        spin_unlock_irq(&pdata->rtc->irq_lock);
 273}
 274
 275static int mxc_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
 276{
 277        mxc_rtc_irq_enable(dev, RTC_ALM_BIT, enabled);
 278        return 0;
 279}
 280
 281/*
 282 * This function reads the current RTC time into tm in Gregorian date.
 283 */
 284static int mxc_rtc_read_time(struct device *dev, struct rtc_time *tm)
 285{
 286        time64_t val;
 287
 288        /* Avoid roll-over from reading the different registers */
 289        do {
 290                val = get_alarm_or_time(dev, MXC_RTC_TIME);
 291        } while (val != get_alarm_or_time(dev, MXC_RTC_TIME));
 292
 293        rtc_time64_to_tm(val, tm);
 294
 295        return 0;
 296}
 297
 298/*
 299 * This function sets the internal RTC time based on tm in Gregorian date.
 300 */
 301static int mxc_rtc_set_mmss(struct device *dev, time64_t time)
 302{
 303        struct platform_device *pdev = to_platform_device(dev);
 304        struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
 305
 306        /*
 307         * TTC_DAYR register is 9-bit in MX1 SoC, save time and day of year only
 308         */
 309        if (is_imx1_rtc(pdata)) {
 310                struct rtc_time tm;
 311
 312                rtc_time64_to_tm(time, &tm);
 313                tm.tm_year = 70;
 314                time = rtc_tm_to_time64(&tm);
 315        }
 316
 317        /* Avoid roll-over from reading the different registers */
 318        do {
 319                set_alarm_or_time(dev, MXC_RTC_TIME, time);
 320        } while (time != get_alarm_or_time(dev, MXC_RTC_TIME));
 321
 322        return 0;
 323}
 324
 325/*
 326 * This function reads the current alarm value into the passed in 'alrm'
 327 * argument. It updates the alrm's pending field value based on the whether
 328 * an alarm interrupt occurs or not.
 329 */
 330static int mxc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
 331{
 332        struct platform_device *pdev = to_platform_device(dev);
 333        struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
 334        void __iomem *ioaddr = pdata->ioaddr;
 335
 336        rtc_time64_to_tm(get_alarm_or_time(dev, MXC_RTC_ALARM), &alrm->time);
 337        alrm->pending = ((readw(ioaddr + RTC_RTCISR) & RTC_ALM_BIT)) ? 1 : 0;
 338
 339        return 0;
 340}
 341
 342/*
 343 * This function sets the RTC alarm based on passed in alrm.
 344 */
 345static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
 346{
 347        struct platform_device *pdev = to_platform_device(dev);
 348        struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
 349
 350        rtc_update_alarm(dev, &alrm->time);
 351
 352        memcpy(&pdata->g_rtc_alarm, &alrm->time, sizeof(struct rtc_time));
 353        mxc_rtc_irq_enable(dev, RTC_ALM_BIT, alrm->enabled);
 354
 355        return 0;
 356}
 357
 358/* RTC layer */
 359static struct rtc_class_ops mxc_rtc_ops = {
 360        .release                = mxc_rtc_release,
 361        .read_time              = mxc_rtc_read_time,
 362        .set_mmss64             = mxc_rtc_set_mmss,
 363        .read_alarm             = mxc_rtc_read_alarm,
 364        .set_alarm              = mxc_rtc_set_alarm,
 365        .alarm_irq_enable       = mxc_rtc_alarm_irq_enable,
 366};
 367
 368static int mxc_rtc_probe(struct platform_device *pdev)
 369{
 370        struct resource *res;
 371        struct rtc_device *rtc;
 372        struct rtc_plat_data *pdata = NULL;
 373        u32 reg;
 374        unsigned long rate;
 375        int ret;
 376        const struct of_device_id *of_id;
 377
 378        pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
 379        if (!pdata)
 380                return -ENOMEM;
 381
 382        of_id = of_match_device(imx_rtc_dt_ids, &pdev->dev);
 383        if (of_id)
 384                pdata->devtype = (enum imx_rtc_type)of_id->data;
 385        else
 386                pdata->devtype = pdev->id_entry->driver_data;
 387
 388        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 389        pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res);
 390        if (IS_ERR(pdata->ioaddr))
 391                return PTR_ERR(pdata->ioaddr);
 392
 393        pdata->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
 394        if (IS_ERR(pdata->clk_ipg)) {
 395                dev_err(&pdev->dev, "unable to get ipg clock!\n");
 396                return PTR_ERR(pdata->clk_ipg);
 397        }
 398
 399        ret = clk_prepare_enable(pdata->clk_ipg);
 400        if (ret)
 401                return ret;
 402
 403        pdata->clk_ref = devm_clk_get(&pdev->dev, "ref");
 404        if (IS_ERR(pdata->clk_ref)) {
 405                dev_err(&pdev->dev, "unable to get ref clock!\n");
 406                ret = PTR_ERR(pdata->clk_ref);
 407                goto exit_put_clk_ipg;
 408        }
 409
 410        ret = clk_prepare_enable(pdata->clk_ref);
 411        if (ret)
 412                goto exit_put_clk_ipg;
 413
 414        rate = clk_get_rate(pdata->clk_ref);
 415
 416        if (rate == 32768)
 417                reg = RTC_INPUT_CLK_32768HZ;
 418        else if (rate == 32000)
 419                reg = RTC_INPUT_CLK_32000HZ;
 420        else if (rate == 38400)
 421                reg = RTC_INPUT_CLK_38400HZ;
 422        else {
 423                dev_err(&pdev->dev, "rtc clock is not valid (%lu)\n", rate);
 424                ret = -EINVAL;
 425                goto exit_put_clk_ref;
 426        }
 427
 428        reg |= RTC_ENABLE_BIT;
 429        writew(reg, (pdata->ioaddr + RTC_RTCCTL));
 430        if (((readw(pdata->ioaddr + RTC_RTCCTL)) & RTC_ENABLE_BIT) == 0) {
 431                dev_err(&pdev->dev, "hardware module can't be enabled!\n");
 432                ret = -EIO;
 433                goto exit_put_clk_ref;
 434        }
 435
 436        platform_set_drvdata(pdev, pdata);
 437
 438        /* Configure and enable the RTC */
 439        pdata->irq = platform_get_irq(pdev, 0);
 440
 441        if (pdata->irq >= 0 &&
 442            devm_request_irq(&pdev->dev, pdata->irq, mxc_rtc_interrupt,
 443                             IRQF_SHARED, pdev->name, pdev) < 0) {
 444                dev_warn(&pdev->dev, "interrupt not available.\n");
 445                pdata->irq = -1;
 446        }
 447
 448        if (pdata->irq >= 0)
 449                device_init_wakeup(&pdev->dev, 1);
 450
 451        rtc = devm_rtc_device_register(&pdev->dev, pdev->name, &mxc_rtc_ops,
 452                                  THIS_MODULE);
 453        if (IS_ERR(rtc)) {
 454                ret = PTR_ERR(rtc);
 455                goto exit_put_clk_ref;
 456        }
 457
 458        pdata->rtc = rtc;
 459
 460        return 0;
 461
 462exit_put_clk_ref:
 463        clk_disable_unprepare(pdata->clk_ref);
 464exit_put_clk_ipg:
 465        clk_disable_unprepare(pdata->clk_ipg);
 466
 467        return ret;
 468}
 469
 470static int mxc_rtc_remove(struct platform_device *pdev)
 471{
 472        struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
 473
 474        clk_disable_unprepare(pdata->clk_ref);
 475        clk_disable_unprepare(pdata->clk_ipg);
 476
 477        return 0;
 478}
 479
 480#ifdef CONFIG_PM_SLEEP
 481static int mxc_rtc_suspend(struct device *dev)
 482{
 483        struct rtc_plat_data *pdata = dev_get_drvdata(dev);
 484
 485        if (device_may_wakeup(dev))
 486                enable_irq_wake(pdata->irq);
 487
 488        return 0;
 489}
 490
 491static int mxc_rtc_resume(struct device *dev)
 492{
 493        struct rtc_plat_data *pdata = dev_get_drvdata(dev);
 494
 495        if (device_may_wakeup(dev))
 496                disable_irq_wake(pdata->irq);
 497
 498        return 0;
 499}
 500#endif
 501
 502static SIMPLE_DEV_PM_OPS(mxc_rtc_pm_ops, mxc_rtc_suspend, mxc_rtc_resume);
 503
 504static struct platform_driver mxc_rtc_driver = {
 505        .driver = {
 506                   .name        = "mxc_rtc",
 507                   .of_match_table = of_match_ptr(imx_rtc_dt_ids),
 508                   .pm          = &mxc_rtc_pm_ops,
 509        },
 510        .id_table = imx_rtc_devtype,
 511        .probe = mxc_rtc_probe,
 512        .remove = mxc_rtc_remove,
 513};
 514
 515module_platform_driver(mxc_rtc_driver)
 516
 517MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>");
 518MODULE_DESCRIPTION("RTC driver for Freescale MXC");
 519MODULE_LICENSE("GPL");
 520
 521