linux/drivers/s390/block/xpram.c
<<
>>
Prefs
   1/*
   2 * Xpram.c -- the S/390 expanded memory RAM-disk
   3 *           
   4 * significant parts of this code are based on
   5 * the sbull device driver presented in
   6 * A. Rubini: Linux Device Drivers
   7 *
   8 * Author of XPRAM specific coding: Reinhard Buendgen
   9 *                                  buendgen@de.ibm.com
  10 * Rewrite for 2.5: Martin Schwidefsky <schwidefsky@de.ibm.com>
  11 *
  12 * External interfaces:
  13 *   Interfaces to linux kernel
  14 *        xpram_setup: read kernel parameters
  15 *   Device specific file operations
  16 *        xpram_iotcl
  17 *        xpram_open
  18 *
  19 * "ad-hoc" partitioning:
  20 *    the expanded memory can be partitioned among several devices 
  21 *    (with different minors). The partitioning set up can be
  22 *    set by kernel or module parameters (int devs & int sizes[])
  23 *
  24 * Potential future improvements:
  25 *   generic hard disk support to replace ad-hoc partitioning
  26 */
  27
  28#define KMSG_COMPONENT "xpram"
  29#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  30
  31#include <linux/module.h>
  32#include <linux/moduleparam.h>
  33#include <linux/ctype.h>  /* isdigit, isxdigit */
  34#include <linux/errno.h>
  35#include <linux/init.h>
  36#include <linux/blkdev.h>
  37#include <linux/blkpg.h>
  38#include <linux/hdreg.h>  /* HDIO_GETGEO */
  39#include <linux/device.h>
  40#include <linux/bio.h>
  41#include <linux/suspend.h>
  42#include <linux/platform_device.h>
  43#include <linux/gfp.h>
  44#include <asm/uaccess.h>
  45
  46#define XPRAM_NAME      "xpram"
  47#define XPRAM_DEVS      1       /* one partition */
  48#define XPRAM_MAX_DEVS  32      /* maximal number of devices (partitions) */
  49
  50typedef struct {
  51        unsigned int    size;           /* size of xpram segment in pages */
  52        unsigned int    offset;         /* start page of xpram segment */
  53} xpram_device_t;
  54
  55static xpram_device_t xpram_devices[XPRAM_MAX_DEVS];
  56static unsigned int xpram_sizes[XPRAM_MAX_DEVS];
  57static struct gendisk *xpram_disks[XPRAM_MAX_DEVS];
  58static struct request_queue *xpram_queues[XPRAM_MAX_DEVS];
  59static unsigned int xpram_pages;
  60static int xpram_devs;
  61
  62/*
  63 * Parameter parsing functions.
  64 */
  65static int devs = XPRAM_DEVS;
  66static char *sizes[XPRAM_MAX_DEVS];
  67
  68module_param(devs, int, 0);
  69module_param_array(sizes, charp, NULL, 0);
  70
  71MODULE_PARM_DESC(devs, "number of devices (\"partitions\"), " \
  72                 "the default is " __MODULE_STRING(XPRAM_DEVS) "\n");
  73MODULE_PARM_DESC(sizes, "list of device (partition) sizes " \
  74                 "the defaults are 0s \n" \
  75                 "All devices with size 0 equally partition the "
  76                 "remaining space on the expanded strorage not "
  77                 "claimed by explicit sizes\n");
  78MODULE_LICENSE("GPL");
  79
  80/*
  81 * Copy expanded memory page (4kB) into main memory                  
  82 * Arguments                                                         
  83 *           page_addr:    address of target page                    
  84 *           xpage_index:  index of expandeded memory page           
  85 * Return value                                                      
  86 *           0:            if operation succeeds
  87 *           -EIO:         if pgin failed
  88 *           -ENXIO:       if xpram has vanished
  89 */
  90static int xpram_page_in (unsigned long page_addr, unsigned int xpage_index)
  91{
  92        int cc = 2;     /* return unused cc 2 if pgin traps */
  93
  94        asm volatile(
  95                "       .insn   rre,0xb22e0000,%1,%2\n"  /* pgin %1,%2 */
  96                "0:     ipm     %0\n"
  97                "       srl     %0,28\n"
  98                "1:\n"
  99                EX_TABLE(0b,1b)
 100                : "+d" (cc) : "a" (__pa(page_addr)), "d" (xpage_index) : "cc");
 101        if (cc == 3)
 102                return -ENXIO;
 103        if (cc == 2)
 104                return -ENXIO;
 105        if (cc == 1)
 106                return -EIO;
 107        return 0;
 108}
 109
 110/*
 111 * Copy a 4kB page of main memory to an expanded memory page          
 112 * Arguments                                                          
 113 *           page_addr:    address of source page                     
 114 *           xpage_index:  index of expandeded memory page            
 115 * Return value                                                       
 116 *           0:            if operation succeeds
 117 *           -EIO:         if pgout failed
 118 *           -ENXIO:       if xpram has vanished
 119 */
 120static long xpram_page_out (unsigned long page_addr, unsigned int xpage_index)
 121{
 122        int cc = 2;     /* return unused cc 2 if pgin traps */
 123
 124        asm volatile(
 125                "       .insn   rre,0xb22f0000,%1,%2\n"  /* pgout %1,%2 */
 126                "0:     ipm     %0\n"
 127                "       srl     %0,28\n"
 128                "1:\n"
 129                EX_TABLE(0b,1b)
 130                : "+d" (cc) : "a" (__pa(page_addr)), "d" (xpage_index) : "cc");
 131        if (cc == 3)
 132                return -ENXIO;
 133        if (cc == 2)
 134                return -ENXIO;
 135        if (cc == 1)
 136                return -EIO;
 137        return 0;
 138}
 139
 140/*
 141 * Check if xpram is available.
 142 */
 143static int xpram_present(void)
 144{
 145        unsigned long mem_page;
 146        int rc;
 147
 148        mem_page = (unsigned long) __get_free_page(GFP_KERNEL);
 149        if (!mem_page)
 150                return -ENOMEM;
 151        rc = xpram_page_in(mem_page, 0);
 152        free_page(mem_page);
 153        return rc ? -ENXIO : 0;
 154}
 155
 156/*
 157 * Return index of the last available xpram page.
 158 */
 159static unsigned long xpram_highest_page_index(void)
 160{
 161        unsigned int page_index, add_bit;
 162        unsigned long mem_page;
 163
 164        mem_page = (unsigned long) __get_free_page(GFP_KERNEL);
 165        if (!mem_page)
 166                return 0;
 167
 168        page_index = 0;
 169        add_bit = 1ULL << (sizeof(unsigned int)*8 - 1);
 170        while (add_bit > 0) {
 171                if (xpram_page_in(mem_page, page_index | add_bit) == 0)
 172                        page_index |= add_bit;
 173                add_bit >>= 1;
 174        }
 175
 176        free_page (mem_page);
 177
 178        return page_index;
 179}
 180
 181/*
 182 * Block device make request function.
 183 */
 184static blk_qc_t xpram_make_request(struct request_queue *q, struct bio *bio)
 185{
 186        xpram_device_t *xdev = bio->bi_bdev->bd_disk->private_data;
 187        struct bio_vec bvec;
 188        struct bvec_iter iter;
 189        unsigned int index;
 190        unsigned long page_addr;
 191        unsigned long bytes;
 192
 193        blk_queue_split(q, &bio, q->bio_split);
 194
 195        if ((bio->bi_iter.bi_sector & 7) != 0 ||
 196            (bio->bi_iter.bi_size & 4095) != 0)
 197                /* Request is not page-aligned. */
 198                goto fail;
 199        if ((bio->bi_iter.bi_size >> 12) > xdev->size)
 200                /* Request size is no page-aligned. */
 201                goto fail;
 202        if ((bio->bi_iter.bi_sector >> 3) > 0xffffffffU - xdev->offset)
 203                goto fail;
 204        index = (bio->bi_iter.bi_sector >> 3) + xdev->offset;
 205        bio_for_each_segment(bvec, bio, iter) {
 206                page_addr = (unsigned long)
 207                        kmap(bvec.bv_page) + bvec.bv_offset;
 208                bytes = bvec.bv_len;
 209                if ((page_addr & 4095) != 0 || (bytes & 4095) != 0)
 210                        /* More paranoia. */
 211                        goto fail;
 212                while (bytes > 0) {
 213                        if (bio_data_dir(bio) == READ) {
 214                                if (xpram_page_in(page_addr, index) != 0)
 215                                        goto fail;
 216                        } else {
 217                                if (xpram_page_out(page_addr, index) != 0)
 218                                        goto fail;
 219                        }
 220                        page_addr += 4096;
 221                        bytes -= 4096;
 222                        index++;
 223                }
 224        }
 225        bio_endio(bio);
 226        return BLK_QC_T_NONE;
 227fail:
 228        bio_io_error(bio);
 229        return BLK_QC_T_NONE;
 230}
 231
 232static int xpram_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 233{
 234        unsigned long size;
 235
 236        /*
 237         * get geometry: we have to fake one...  trim the size to a
 238         * multiple of 64 (32k): tell we have 16 sectors, 4 heads,
 239         * whatever cylinders. Tell also that data starts at sector. 4.
 240         */
 241        size = (xpram_pages * 8) & ~0x3f;
 242        geo->cylinders = size >> 6;
 243        geo->heads = 4;
 244        geo->sectors = 16;
 245        geo->start = 4;
 246        return 0;
 247}
 248
 249static const struct block_device_operations xpram_devops =
 250{
 251        .owner  = THIS_MODULE,
 252        .getgeo = xpram_getgeo,
 253};
 254
 255/*
 256 * Setup xpram_sizes array.
 257 */
 258static int __init xpram_setup_sizes(unsigned long pages)
 259{
 260        unsigned long mem_needed;
 261        unsigned long mem_auto;
 262        unsigned long long size;
 263        char *sizes_end;
 264        int mem_auto_no;
 265        int i;
 266
 267        /* Check number of devices. */
 268        if (devs <= 0 || devs > XPRAM_MAX_DEVS) {
 269                pr_err("%d is not a valid number of XPRAM devices\n",devs);
 270                return -EINVAL;
 271        }
 272        xpram_devs = devs;
 273
 274        /*
 275         * Copy sizes array to xpram_sizes and align partition
 276         * sizes to page boundary.
 277         */
 278        mem_needed = 0;
 279        mem_auto_no = 0;
 280        for (i = 0; i < xpram_devs; i++) {
 281                if (sizes[i]) {
 282                        size = simple_strtoull(sizes[i], &sizes_end, 0);
 283                        switch (*sizes_end) {
 284                        case 'g':
 285                        case 'G':
 286                                size <<= 20;
 287                                break;
 288                        case 'm':
 289                        case 'M':
 290                                size <<= 10;
 291                        }
 292                        xpram_sizes[i] = (size + 3) & -4UL;
 293                }
 294                if (xpram_sizes[i])
 295                        mem_needed += xpram_sizes[i];
 296                else
 297                        mem_auto_no++;
 298        }
 299        
 300        pr_info("  number of devices (partitions): %d \n", xpram_devs);
 301        for (i = 0; i < xpram_devs; i++) {
 302                if (xpram_sizes[i])
 303                        pr_info("  size of partition %d: %u kB\n",
 304                                i, xpram_sizes[i]);
 305                else
 306                        pr_info("  size of partition %d to be set "
 307                                "automatically\n",i);
 308        }
 309        pr_info("  memory needed (for sized partitions): %lu kB\n",
 310                mem_needed);
 311        pr_info("  partitions to be sized automatically: %d\n",
 312                mem_auto_no);
 313
 314        if (mem_needed > pages * 4) {
 315                pr_err("Not enough expanded memory available\n");
 316                return -EINVAL;
 317        }
 318
 319        /*
 320         * partitioning:
 321         * xpram_sizes[i] != 0; partition i has size xpram_sizes[i] kB
 322         * else:             ; all partitions with zero xpram_sizes[i]
 323         *                     partition equally the remaining space
 324         */
 325        if (mem_auto_no) {
 326                mem_auto = ((pages - mem_needed / 4) / mem_auto_no) * 4;
 327                pr_info("  automatically determined "
 328                        "partition size: %lu kB\n", mem_auto);
 329                for (i = 0; i < xpram_devs; i++)
 330                        if (xpram_sizes[i] == 0)
 331                                xpram_sizes[i] = mem_auto;
 332        }
 333        return 0;
 334}
 335
 336static int __init xpram_setup_blkdev(void)
 337{
 338        unsigned long offset;
 339        int i, rc = -ENOMEM;
 340
 341        for (i = 0; i < xpram_devs; i++) {
 342                xpram_disks[i] = alloc_disk(1);
 343                if (!xpram_disks[i])
 344                        goto out;
 345                xpram_queues[i] = blk_alloc_queue(GFP_KERNEL);
 346                if (!xpram_queues[i]) {
 347                        put_disk(xpram_disks[i]);
 348                        goto out;
 349                }
 350                queue_flag_set_unlocked(QUEUE_FLAG_NONROT, xpram_queues[i]);
 351                queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, xpram_queues[i]);
 352                blk_queue_make_request(xpram_queues[i], xpram_make_request);
 353                blk_queue_logical_block_size(xpram_queues[i], 4096);
 354        }
 355
 356        /*
 357         * Register xpram major.
 358         */
 359        rc = register_blkdev(XPRAM_MAJOR, XPRAM_NAME);
 360        if (rc < 0)
 361                goto out;
 362
 363        /*
 364         * Setup device structures.
 365         */
 366        offset = 0;
 367        for (i = 0; i < xpram_devs; i++) {
 368                struct gendisk *disk = xpram_disks[i];
 369
 370                xpram_devices[i].size = xpram_sizes[i] / 4;
 371                xpram_devices[i].offset = offset;
 372                offset += xpram_devices[i].size;
 373                disk->major = XPRAM_MAJOR;
 374                disk->first_minor = i;
 375                disk->fops = &xpram_devops;
 376                disk->private_data = &xpram_devices[i];
 377                disk->queue = xpram_queues[i];
 378                sprintf(disk->disk_name, "slram%d", i);
 379                set_capacity(disk, xpram_sizes[i] << 1);
 380                add_disk(disk);
 381        }
 382
 383        return 0;
 384out:
 385        while (i--) {
 386                blk_cleanup_queue(xpram_queues[i]);
 387                put_disk(xpram_disks[i]);
 388        }
 389        return rc;
 390}
 391
 392/*
 393 * Resume failed: Print error message and call panic.
 394 */
 395static void xpram_resume_error(const char *message)
 396{
 397        pr_err("Resuming the system failed: %s\n", message);
 398        panic("xpram resume error\n");
 399}
 400
 401/*
 402 * Check if xpram setup changed between suspend and resume.
 403 */
 404static int xpram_restore(struct device *dev)
 405{
 406        if (!xpram_pages)
 407                return 0;
 408        if (xpram_present() != 0)
 409                xpram_resume_error("xpram disappeared");
 410        if (xpram_pages != xpram_highest_page_index() + 1)
 411                xpram_resume_error("Size of xpram changed");
 412        return 0;
 413}
 414
 415static const struct dev_pm_ops xpram_pm_ops = {
 416        .restore        = xpram_restore,
 417};
 418
 419static struct platform_driver xpram_pdrv = {
 420        .driver = {
 421                .name   = XPRAM_NAME,
 422                .pm     = &xpram_pm_ops,
 423        },
 424};
 425
 426static struct platform_device *xpram_pdev;
 427
 428/*
 429 * Finally, the init/exit functions.
 430 */
 431static void __exit xpram_exit(void)
 432{
 433        int i;
 434        for (i = 0; i < xpram_devs; i++) {
 435                del_gendisk(xpram_disks[i]);
 436                blk_cleanup_queue(xpram_queues[i]);
 437                put_disk(xpram_disks[i]);
 438        }
 439        unregister_blkdev(XPRAM_MAJOR, XPRAM_NAME);
 440        platform_device_unregister(xpram_pdev);
 441        platform_driver_unregister(&xpram_pdrv);
 442}
 443
 444static int __init xpram_init(void)
 445{
 446        int rc;
 447
 448        /* Find out size of expanded memory. */
 449        if (xpram_present() != 0) {
 450                pr_err("No expanded memory available\n");
 451                return -ENODEV;
 452        }
 453        xpram_pages = xpram_highest_page_index() + 1;
 454        pr_info("  %u pages expanded memory found (%lu KB).\n",
 455                xpram_pages, (unsigned long) xpram_pages*4);
 456        rc = xpram_setup_sizes(xpram_pages);
 457        if (rc)
 458                return rc;
 459        rc = platform_driver_register(&xpram_pdrv);
 460        if (rc)
 461                return rc;
 462        xpram_pdev = platform_device_register_simple(XPRAM_NAME, -1, NULL, 0);
 463        if (IS_ERR(xpram_pdev)) {
 464                rc = PTR_ERR(xpram_pdev);
 465                goto fail_platform_driver_unregister;
 466        }
 467        rc = xpram_setup_blkdev();
 468        if (rc)
 469                goto fail_platform_device_unregister;
 470        return 0;
 471
 472fail_platform_device_unregister:
 473        platform_device_unregister(xpram_pdev);
 474fail_platform_driver_unregister:
 475        platform_driver_unregister(&xpram_pdrv);
 476        return rc;
 477}
 478
 479module_init(xpram_init);
 480module_exit(xpram_exit);
 481