linux/drivers/s390/crypto/ap_bus.c
<<
>>
Prefs
   1/*
   2 * Copyright IBM Corp. 2006, 2012
   3 * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com>
   4 *            Martin Schwidefsky <schwidefsky@de.ibm.com>
   5 *            Ralph Wuerthner <rwuerthn@de.ibm.com>
   6 *            Felix Beck <felix.beck@de.ibm.com>
   7 *            Holger Dengler <hd@linux.vnet.ibm.com>
   8 *
   9 * Adjunct processor bus.
  10 *
  11 * This program is free software; you can redistribute it and/or modify
  12 * it under the terms of the GNU General Public License as published by
  13 * the Free Software Foundation; either version 2, or (at your option)
  14 * any later version.
  15 *
  16 * This program is distributed in the hope that it will be useful,
  17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  19 * GNU General Public License for more details.
  20 *
  21 * You should have received a copy of the GNU General Public License
  22 * along with this program; if not, write to the Free Software
  23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  24 */
  25
  26#define KMSG_COMPONENT "ap"
  27#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  28
  29#include <linux/kernel_stat.h>
  30#include <linux/module.h>
  31#include <linux/init.h>
  32#include <linux/delay.h>
  33#include <linux/err.h>
  34#include <linux/interrupt.h>
  35#include <linux/workqueue.h>
  36#include <linux/slab.h>
  37#include <linux/notifier.h>
  38#include <linux/kthread.h>
  39#include <linux/mutex.h>
  40#include <linux/suspend.h>
  41#include <asm/reset.h>
  42#include <asm/airq.h>
  43#include <linux/atomic.h>
  44#include <asm/isc.h>
  45#include <linux/hrtimer.h>
  46#include <linux/ktime.h>
  47#include <asm/facility.h>
  48#include <linux/crypto.h>
  49
  50#include "ap_bus.h"
  51
  52/*
  53 * Module description.
  54 */
  55MODULE_AUTHOR("IBM Corporation");
  56MODULE_DESCRIPTION("Adjunct Processor Bus driver, " \
  57                   "Copyright IBM Corp. 2006, 2012");
  58MODULE_LICENSE("GPL");
  59MODULE_ALIAS_CRYPTO("z90crypt");
  60
  61/*
  62 * Module parameter
  63 */
  64int ap_domain_index = -1;       /* Adjunct Processor Domain Index */
  65module_param_named(domain, ap_domain_index, int, S_IRUSR|S_IRGRP);
  66MODULE_PARM_DESC(domain, "domain index for ap devices");
  67EXPORT_SYMBOL(ap_domain_index);
  68
  69static int ap_thread_flag = 0;
  70module_param_named(poll_thread, ap_thread_flag, int, S_IRUSR|S_IRGRP);
  71MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off).");
  72
  73static struct device *ap_root_device = NULL;
  74static struct ap_config_info *ap_configuration;
  75static DEFINE_SPINLOCK(ap_device_list_lock);
  76static LIST_HEAD(ap_device_list);
  77static bool initialised;
  78
  79/*
  80 * Workqueue timer for bus rescan.
  81 */
  82static struct timer_list ap_config_timer;
  83static int ap_config_time = AP_CONFIG_TIME;
  84static void ap_scan_bus(struct work_struct *);
  85static DECLARE_WORK(ap_scan_work, ap_scan_bus);
  86
  87/*
  88 * Tasklet & timer for AP request polling and interrupts
  89 */
  90static void ap_tasklet_fn(unsigned long);
  91static DECLARE_TASKLET(ap_tasklet, ap_tasklet_fn, 0);
  92static atomic_t ap_poll_requests = ATOMIC_INIT(0);
  93static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait);
  94static struct task_struct *ap_poll_kthread = NULL;
  95static DEFINE_MUTEX(ap_poll_thread_mutex);
  96static DEFINE_SPINLOCK(ap_poll_timer_lock);
  97static struct hrtimer ap_poll_timer;
  98/* In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds.
  99 * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling.*/
 100static unsigned long long poll_timeout = 250000;
 101
 102/* Suspend flag */
 103static int ap_suspend_flag;
 104/* Maximum domain id */
 105static int ap_max_domain_id;
 106/* Flag to check if domain was set through module parameter domain=. This is
 107 * important when supsend and resume is done in a z/VM environment where the
 108 * domain might change. */
 109static int user_set_domain = 0;
 110static struct bus_type ap_bus_type;
 111
 112/* Adapter interrupt definitions */
 113static void ap_interrupt_handler(struct airq_struct *airq);
 114
 115static int ap_airq_flag;
 116
 117static struct airq_struct ap_airq = {
 118        .handler = ap_interrupt_handler,
 119        .isc = AP_ISC,
 120};
 121
 122/**
 123 * ap_using_interrupts() - Returns non-zero if interrupt support is
 124 * available.
 125 */
 126static inline int ap_using_interrupts(void)
 127{
 128        return ap_airq_flag;
 129}
 130
 131/**
 132 * ap_intructions_available() - Test if AP instructions are available.
 133 *
 134 * Returns 0 if the AP instructions are installed.
 135 */
 136static inline int ap_instructions_available(void)
 137{
 138        register unsigned long reg0 asm ("0") = AP_MKQID(0,0);
 139        register unsigned long reg1 asm ("1") = -ENODEV;
 140        register unsigned long reg2 asm ("2") = 0UL;
 141
 142        asm volatile(
 143                "   .long 0xb2af0000\n"         /* PQAP(TAPQ) */
 144                "0: la    %1,0\n"
 145                "1:\n"
 146                EX_TABLE(0b, 1b)
 147                : "+d" (reg0), "+d" (reg1), "+d" (reg2) : : "cc" );
 148        return reg1;
 149}
 150
 151/**
 152 * ap_interrupts_available(): Test if AP interrupts are available.
 153 *
 154 * Returns 1 if AP interrupts are available.
 155 */
 156static int ap_interrupts_available(void)
 157{
 158        return test_facility(65);
 159}
 160
 161/**
 162 * ap_configuration_available(): Test if AP configuration
 163 * information is available.
 164 *
 165 * Returns 1 if AP configuration information is available.
 166 */
 167static int ap_configuration_available(void)
 168{
 169        return test_facility(12);
 170}
 171
 172/**
 173 * ap_test_queue(): Test adjunct processor queue.
 174 * @qid: The AP queue number
 175 * @info: Pointer to queue descriptor
 176 *
 177 * Returns AP queue status structure.
 178 */
 179static inline struct ap_queue_status
 180ap_test_queue(ap_qid_t qid, unsigned long *info)
 181{
 182        register unsigned long reg0 asm ("0") = qid;
 183        register struct ap_queue_status reg1 asm ("1");
 184        register unsigned long reg2 asm ("2") = 0UL;
 185
 186        if (test_facility(15))
 187                reg0 |= 1UL << 23;              /* set APFT T bit*/
 188        asm volatile(".long 0xb2af0000"         /* PQAP(TAPQ) */
 189                     : "+d" (reg0), "=d" (reg1), "+d" (reg2) : : "cc");
 190        if (info)
 191                *info = reg2;
 192        return reg1;
 193}
 194
 195/**
 196 * ap_reset_queue(): Reset adjunct processor queue.
 197 * @qid: The AP queue number
 198 *
 199 * Returns AP queue status structure.
 200 */
 201static inline struct ap_queue_status ap_reset_queue(ap_qid_t qid)
 202{
 203        register unsigned long reg0 asm ("0") = qid | 0x01000000UL;
 204        register struct ap_queue_status reg1 asm ("1");
 205        register unsigned long reg2 asm ("2") = 0UL;
 206
 207        asm volatile(
 208                ".long 0xb2af0000"              /* PQAP(RAPQ) */
 209                : "+d" (reg0), "=d" (reg1), "+d" (reg2) : : "cc");
 210        return reg1;
 211}
 212
 213/**
 214 * ap_queue_interruption_control(): Enable interruption for a specific AP.
 215 * @qid: The AP queue number
 216 * @ind: The notification indicator byte
 217 *
 218 * Returns AP queue status.
 219 */
 220static inline struct ap_queue_status
 221ap_queue_interruption_control(ap_qid_t qid, void *ind)
 222{
 223        register unsigned long reg0 asm ("0") = qid | 0x03000000UL;
 224        register unsigned long reg1_in asm ("1") = 0x0000800000000000UL | AP_ISC;
 225        register struct ap_queue_status reg1_out asm ("1");
 226        register void *reg2 asm ("2") = ind;
 227        asm volatile(
 228                ".long 0xb2af0000"              /* PQAP(AQIC) */
 229                : "+d" (reg0), "+d" (reg1_in), "=d" (reg1_out), "+d" (reg2)
 230                :
 231                : "cc" );
 232        return reg1_out;
 233}
 234
 235/**
 236 * ap_query_configuration(): Get AP configuration data
 237 *
 238 * Returns 0 on success, or -EOPNOTSUPP.
 239 */
 240static inline int ap_query_configuration(void)
 241{
 242        register unsigned long reg0 asm ("0") = 0x04000000UL;
 243        register unsigned long reg1 asm ("1") = -EINVAL;
 244        register void *reg2 asm ("2") = (void *) ap_configuration;
 245
 246        if (!ap_configuration)
 247                return -EOPNOTSUPP;
 248        asm volatile(
 249                ".long 0xb2af0000\n"            /* PQAP(QCI) */
 250                "0: la    %1,0\n"
 251                "1:\n"
 252                EX_TABLE(0b, 1b)
 253                : "+d" (reg0), "+d" (reg1), "+d" (reg2)
 254                :
 255                : "cc");
 256
 257        return reg1;
 258}
 259
 260/**
 261 * ap_init_configuration(): Allocate and query configuration array.
 262 */
 263static void ap_init_configuration(void)
 264{
 265        if (!ap_configuration_available())
 266                return;
 267
 268        ap_configuration = kzalloc(sizeof(*ap_configuration), GFP_KERNEL);
 269        if (!ap_configuration)
 270                return;
 271        if (ap_query_configuration() != 0) {
 272                kfree(ap_configuration);
 273                ap_configuration = NULL;
 274                return;
 275        }
 276}
 277
 278/*
 279 * ap_test_config(): helper function to extract the nrth bit
 280 *                   within the unsigned int array field.
 281 */
 282static inline int ap_test_config(unsigned int *field, unsigned int nr)
 283{
 284        return ap_test_bit((field + (nr >> 5)), (nr & 0x1f));
 285}
 286
 287/*
 288 * ap_test_config_card_id(): Test, whether an AP card ID is configured.
 289 * @id AP card ID
 290 *
 291 * Returns 0 if the card is not configured
 292 *         1 if the card is configured or
 293 *           if the configuration information is not available
 294 */
 295static inline int ap_test_config_card_id(unsigned int id)
 296{
 297        if (!ap_configuration)  /* QCI not supported */
 298                return 1;
 299        return ap_test_config(ap_configuration->apm, id);
 300}
 301
 302/*
 303 * ap_test_config_domain(): Test, whether an AP usage domain is configured.
 304 * @domain AP usage domain ID
 305 *
 306 * Returns 0 if the usage domain is not configured
 307 *         1 if the usage domain is configured or
 308 *           if the configuration information is not available
 309 */
 310static inline int ap_test_config_domain(unsigned int domain)
 311{
 312        if (!ap_configuration)  /* QCI not supported */
 313                return domain < 16;
 314        return ap_test_config(ap_configuration->aqm, domain);
 315}
 316
 317/**
 318 * ap_queue_enable_interruption(): Enable interruption on an AP.
 319 * @qid: The AP queue number
 320 * @ind: the notification indicator byte
 321 *
 322 * Enables interruption on AP queue via ap_queue_interruption_control(). Based
 323 * on the return value it waits a while and tests the AP queue if interrupts
 324 * have been switched on using ap_test_queue().
 325 */
 326static int ap_queue_enable_interruption(struct ap_device *ap_dev, void *ind)
 327{
 328        struct ap_queue_status status;
 329
 330        status = ap_queue_interruption_control(ap_dev->qid, ind);
 331        switch (status.response_code) {
 332        case AP_RESPONSE_NORMAL:
 333        case AP_RESPONSE_OTHERWISE_CHANGED:
 334                return 0;
 335        case AP_RESPONSE_Q_NOT_AVAIL:
 336        case AP_RESPONSE_DECONFIGURED:
 337        case AP_RESPONSE_CHECKSTOPPED:
 338        case AP_RESPONSE_INVALID_ADDRESS:
 339                pr_err("Registering adapter interrupts for AP %d failed\n",
 340                       AP_QID_DEVICE(ap_dev->qid));
 341                return -EOPNOTSUPP;
 342        case AP_RESPONSE_RESET_IN_PROGRESS:
 343        case AP_RESPONSE_BUSY:
 344        default:
 345                return -EBUSY;
 346        }
 347}
 348
 349/**
 350 * __ap_send(): Send message to adjunct processor queue.
 351 * @qid: The AP queue number
 352 * @psmid: The program supplied message identifier
 353 * @msg: The message text
 354 * @length: The message length
 355 * @special: Special Bit
 356 *
 357 * Returns AP queue status structure.
 358 * Condition code 1 on NQAP can't happen because the L bit is 1.
 359 * Condition code 2 on NQAP also means the send is incomplete,
 360 * because a segment boundary was reached. The NQAP is repeated.
 361 */
 362static inline struct ap_queue_status
 363__ap_send(ap_qid_t qid, unsigned long long psmid, void *msg, size_t length,
 364          unsigned int special)
 365{
 366        typedef struct { char _[length]; } msgblock;
 367        register unsigned long reg0 asm ("0") = qid | 0x40000000UL;
 368        register struct ap_queue_status reg1 asm ("1");
 369        register unsigned long reg2 asm ("2") = (unsigned long) msg;
 370        register unsigned long reg3 asm ("3") = (unsigned long) length;
 371        register unsigned long reg4 asm ("4") = (unsigned int) (psmid >> 32);
 372        register unsigned long reg5 asm ("5") = psmid & 0xffffffff;
 373
 374        if (special == 1)
 375                reg0 |= 0x400000UL;
 376
 377        asm volatile (
 378                "0: .long 0xb2ad0042\n"         /* NQAP */
 379                "   brc   2,0b"
 380                : "+d" (reg0), "=d" (reg1), "+d" (reg2), "+d" (reg3)
 381                : "d" (reg4), "d" (reg5), "m" (*(msgblock *) msg)
 382                : "cc" );
 383        return reg1;
 384}
 385
 386int ap_send(ap_qid_t qid, unsigned long long psmid, void *msg, size_t length)
 387{
 388        struct ap_queue_status status;
 389
 390        status = __ap_send(qid, psmid, msg, length, 0);
 391        switch (status.response_code) {
 392        case AP_RESPONSE_NORMAL:
 393                return 0;
 394        case AP_RESPONSE_Q_FULL:
 395        case AP_RESPONSE_RESET_IN_PROGRESS:
 396                return -EBUSY;
 397        case AP_RESPONSE_REQ_FAC_NOT_INST:
 398                return -EINVAL;
 399        default:        /* Device is gone. */
 400                return -ENODEV;
 401        }
 402}
 403EXPORT_SYMBOL(ap_send);
 404
 405/**
 406 * __ap_recv(): Receive message from adjunct processor queue.
 407 * @qid: The AP queue number
 408 * @psmid: Pointer to program supplied message identifier
 409 * @msg: The message text
 410 * @length: The message length
 411 *
 412 * Returns AP queue status structure.
 413 * Condition code 1 on DQAP means the receive has taken place
 414 * but only partially.  The response is incomplete, hence the
 415 * DQAP is repeated.
 416 * Condition code 2 on DQAP also means the receive is incomplete,
 417 * this time because a segment boundary was reached. Again, the
 418 * DQAP is repeated.
 419 * Note that gpr2 is used by the DQAP instruction to keep track of
 420 * any 'residual' length, in case the instruction gets interrupted.
 421 * Hence it gets zeroed before the instruction.
 422 */
 423static inline struct ap_queue_status
 424__ap_recv(ap_qid_t qid, unsigned long long *psmid, void *msg, size_t length)
 425{
 426        typedef struct { char _[length]; } msgblock;
 427        register unsigned long reg0 asm("0") = qid | 0x80000000UL;
 428        register struct ap_queue_status reg1 asm ("1");
 429        register unsigned long reg2 asm("2") = 0UL;
 430        register unsigned long reg4 asm("4") = (unsigned long) msg;
 431        register unsigned long reg5 asm("5") = (unsigned long) length;
 432        register unsigned long reg6 asm("6") = 0UL;
 433        register unsigned long reg7 asm("7") = 0UL;
 434
 435
 436        asm volatile(
 437                "0: .long 0xb2ae0064\n"         /* DQAP */
 438                "   brc   6,0b\n"
 439                : "+d" (reg0), "=d" (reg1), "+d" (reg2),
 440                "+d" (reg4), "+d" (reg5), "+d" (reg6), "+d" (reg7),
 441                "=m" (*(msgblock *) msg) : : "cc" );
 442        *psmid = (((unsigned long long) reg6) << 32) + reg7;
 443        return reg1;
 444}
 445
 446int ap_recv(ap_qid_t qid, unsigned long long *psmid, void *msg, size_t length)
 447{
 448        struct ap_queue_status status;
 449
 450        status = __ap_recv(qid, psmid, msg, length);
 451        switch (status.response_code) {
 452        case AP_RESPONSE_NORMAL:
 453                return 0;
 454        case AP_RESPONSE_NO_PENDING_REPLY:
 455                if (status.queue_empty)
 456                        return -ENOENT;
 457                return -EBUSY;
 458        case AP_RESPONSE_RESET_IN_PROGRESS:
 459                return -EBUSY;
 460        default:
 461                return -ENODEV;
 462        }
 463}
 464EXPORT_SYMBOL(ap_recv);
 465
 466/**
 467 * ap_query_queue(): Check if an AP queue is available.
 468 * @qid: The AP queue number
 469 * @queue_depth: Pointer to queue depth value
 470 * @device_type: Pointer to device type value
 471 * @facilities: Pointer to facility indicator
 472 */
 473static int ap_query_queue(ap_qid_t qid, int *queue_depth, int *device_type,
 474                          unsigned int *facilities)
 475{
 476        struct ap_queue_status status;
 477        unsigned long info;
 478        int nd;
 479
 480        if (!ap_test_config_card_id(AP_QID_DEVICE(qid)))
 481                return -ENODEV;
 482
 483        status = ap_test_queue(qid, &info);
 484        switch (status.response_code) {
 485        case AP_RESPONSE_NORMAL:
 486                *queue_depth = (int)(info & 0xff);
 487                *device_type = (int)((info >> 24) & 0xff);
 488                *facilities = (unsigned int)(info >> 32);
 489                /* Update maximum domain id */
 490                nd = (info >> 16) & 0xff;
 491                if ((info & (1UL << 57)) && nd > 0)
 492                        ap_max_domain_id = nd;
 493                return 0;
 494        case AP_RESPONSE_Q_NOT_AVAIL:
 495        case AP_RESPONSE_DECONFIGURED:
 496        case AP_RESPONSE_CHECKSTOPPED:
 497        case AP_RESPONSE_INVALID_ADDRESS:
 498                return -ENODEV;
 499        case AP_RESPONSE_RESET_IN_PROGRESS:
 500        case AP_RESPONSE_OTHERWISE_CHANGED:
 501        case AP_RESPONSE_BUSY:
 502                return -EBUSY;
 503        default:
 504                BUG();
 505        }
 506}
 507
 508/* State machine definitions and helpers */
 509
 510static void ap_sm_wait(enum ap_wait wait)
 511{
 512        ktime_t hr_time;
 513
 514        switch (wait) {
 515        case AP_WAIT_AGAIN:
 516        case AP_WAIT_INTERRUPT:
 517                if (ap_using_interrupts())
 518                        break;
 519                if (ap_poll_kthread) {
 520                        wake_up(&ap_poll_wait);
 521                        break;
 522                }
 523                /* Fall through */
 524        case AP_WAIT_TIMEOUT:
 525                spin_lock_bh(&ap_poll_timer_lock);
 526                if (!hrtimer_is_queued(&ap_poll_timer)) {
 527                        hr_time = ktime_set(0, poll_timeout);
 528                        hrtimer_forward_now(&ap_poll_timer, hr_time);
 529                        hrtimer_restart(&ap_poll_timer);
 530                }
 531                spin_unlock_bh(&ap_poll_timer_lock);
 532                break;
 533        case AP_WAIT_NONE:
 534        default:
 535                break;
 536        }
 537}
 538
 539static enum ap_wait ap_sm_nop(struct ap_device *ap_dev)
 540{
 541        return AP_WAIT_NONE;
 542}
 543
 544/**
 545 * ap_sm_recv(): Receive pending reply messages from an AP device but do
 546 *      not change the state of the device.
 547 * @ap_dev: pointer to the AP device
 548 *
 549 * Returns AP_WAIT_NONE, AP_WAIT_AGAIN, or AP_WAIT_INTERRUPT
 550 */
 551static struct ap_queue_status ap_sm_recv(struct ap_device *ap_dev)
 552{
 553        struct ap_queue_status status;
 554        struct ap_message *ap_msg;
 555
 556        status = __ap_recv(ap_dev->qid, &ap_dev->reply->psmid,
 557                           ap_dev->reply->message, ap_dev->reply->length);
 558        switch (status.response_code) {
 559        case AP_RESPONSE_NORMAL:
 560                atomic_dec(&ap_poll_requests);
 561                ap_dev->queue_count--;
 562                if (ap_dev->queue_count > 0)
 563                        mod_timer(&ap_dev->timeout,
 564                                  jiffies + ap_dev->drv->request_timeout);
 565                list_for_each_entry(ap_msg, &ap_dev->pendingq, list) {
 566                        if (ap_msg->psmid != ap_dev->reply->psmid)
 567                                continue;
 568                        list_del_init(&ap_msg->list);
 569                        ap_dev->pendingq_count--;
 570                        ap_msg->receive(ap_dev, ap_msg, ap_dev->reply);
 571                        break;
 572                }
 573        case AP_RESPONSE_NO_PENDING_REPLY:
 574                if (!status.queue_empty || ap_dev->queue_count <= 0)
 575                        break;
 576                /* The card shouldn't forget requests but who knows. */
 577                atomic_sub(ap_dev->queue_count, &ap_poll_requests);
 578                ap_dev->queue_count = 0;
 579                list_splice_init(&ap_dev->pendingq, &ap_dev->requestq);
 580                ap_dev->requestq_count += ap_dev->pendingq_count;
 581                ap_dev->pendingq_count = 0;
 582                break;
 583        default:
 584                break;
 585        }
 586        return status;
 587}
 588
 589/**
 590 * ap_sm_read(): Receive pending reply messages from an AP device.
 591 * @ap_dev: pointer to the AP device
 592 *
 593 * Returns AP_WAIT_NONE, AP_WAIT_AGAIN, or AP_WAIT_INTERRUPT
 594 */
 595static enum ap_wait ap_sm_read(struct ap_device *ap_dev)
 596{
 597        struct ap_queue_status status;
 598
 599        status = ap_sm_recv(ap_dev);
 600        switch (status.response_code) {
 601        case AP_RESPONSE_NORMAL:
 602                if (ap_dev->queue_count > 0) {
 603                        ap_dev->state = AP_STATE_WORKING;
 604                        return AP_WAIT_AGAIN;
 605                }
 606                ap_dev->state = AP_STATE_IDLE;
 607                return AP_WAIT_NONE;
 608        case AP_RESPONSE_NO_PENDING_REPLY:
 609                if (ap_dev->queue_count > 0)
 610                        return AP_WAIT_INTERRUPT;
 611                ap_dev->state = AP_STATE_IDLE;
 612                return AP_WAIT_NONE;
 613        default:
 614                ap_dev->state = AP_STATE_BORKED;
 615                return AP_WAIT_NONE;
 616        }
 617}
 618
 619/**
 620 * ap_sm_write(): Send messages from the request queue to an AP device.
 621 * @ap_dev: pointer to the AP device
 622 *
 623 * Returns AP_WAIT_NONE, AP_WAIT_AGAIN, or AP_WAIT_INTERRUPT
 624 */
 625static enum ap_wait ap_sm_write(struct ap_device *ap_dev)
 626{
 627        struct ap_queue_status status;
 628        struct ap_message *ap_msg;
 629
 630        if (ap_dev->requestq_count <= 0)
 631                return AP_WAIT_NONE;
 632        /* Start the next request on the queue. */
 633        ap_msg = list_entry(ap_dev->requestq.next, struct ap_message, list);
 634        status = __ap_send(ap_dev->qid, ap_msg->psmid,
 635                           ap_msg->message, ap_msg->length, ap_msg->special);
 636        switch (status.response_code) {
 637        case AP_RESPONSE_NORMAL:
 638                atomic_inc(&ap_poll_requests);
 639                ap_dev->queue_count++;
 640                if (ap_dev->queue_count == 1)
 641                        mod_timer(&ap_dev->timeout,
 642                                  jiffies + ap_dev->drv->request_timeout);
 643                list_move_tail(&ap_msg->list, &ap_dev->pendingq);
 644                ap_dev->requestq_count--;
 645                ap_dev->pendingq_count++;
 646                if (ap_dev->queue_count < ap_dev->queue_depth) {
 647                        ap_dev->state = AP_STATE_WORKING;
 648                        return AP_WAIT_AGAIN;
 649                }
 650                /* fall through */
 651        case AP_RESPONSE_Q_FULL:
 652                ap_dev->state = AP_STATE_QUEUE_FULL;
 653                return AP_WAIT_INTERRUPT;
 654        case AP_RESPONSE_RESET_IN_PROGRESS:
 655                ap_dev->state = AP_STATE_RESET_WAIT;
 656                return AP_WAIT_TIMEOUT;
 657        case AP_RESPONSE_MESSAGE_TOO_BIG:
 658        case AP_RESPONSE_REQ_FAC_NOT_INST:
 659                list_del_init(&ap_msg->list);
 660                ap_dev->requestq_count--;
 661                ap_msg->rc = -EINVAL;
 662                ap_msg->receive(ap_dev, ap_msg, NULL);
 663                return AP_WAIT_AGAIN;
 664        default:
 665                ap_dev->state = AP_STATE_BORKED;
 666                return AP_WAIT_NONE;
 667        }
 668}
 669
 670/**
 671 * ap_sm_read_write(): Send and receive messages to/from an AP device.
 672 * @ap_dev: pointer to the AP device
 673 *
 674 * Returns AP_WAIT_NONE, AP_WAIT_AGAIN, or AP_WAIT_INTERRUPT
 675 */
 676static enum ap_wait ap_sm_read_write(struct ap_device *ap_dev)
 677{
 678        return min(ap_sm_read(ap_dev), ap_sm_write(ap_dev));
 679}
 680
 681/**
 682 * ap_sm_reset(): Reset an AP queue.
 683 * @qid: The AP queue number
 684 *
 685 * Submit the Reset command to an AP queue.
 686 */
 687static enum ap_wait ap_sm_reset(struct ap_device *ap_dev)
 688{
 689        struct ap_queue_status status;
 690
 691        status = ap_reset_queue(ap_dev->qid);
 692        switch (status.response_code) {
 693        case AP_RESPONSE_NORMAL:
 694        case AP_RESPONSE_RESET_IN_PROGRESS:
 695                ap_dev->state = AP_STATE_RESET_WAIT;
 696                ap_dev->interrupt = AP_INTR_DISABLED;
 697                return AP_WAIT_TIMEOUT;
 698        case AP_RESPONSE_BUSY:
 699                return AP_WAIT_TIMEOUT;
 700        case AP_RESPONSE_Q_NOT_AVAIL:
 701        case AP_RESPONSE_DECONFIGURED:
 702        case AP_RESPONSE_CHECKSTOPPED:
 703        default:
 704                ap_dev->state = AP_STATE_BORKED;
 705                return AP_WAIT_NONE;
 706        }
 707}
 708
 709/**
 710 * ap_sm_reset_wait(): Test queue for completion of the reset operation
 711 * @ap_dev: pointer to the AP device
 712 *
 713 * Returns AP_POLL_IMMEDIATELY, AP_POLL_AFTER_TIMEROUT or 0.
 714 */
 715static enum ap_wait ap_sm_reset_wait(struct ap_device *ap_dev)
 716{
 717        struct ap_queue_status status;
 718        unsigned long info;
 719
 720        if (ap_dev->queue_count > 0)
 721                /* Try to read a completed message and get the status */
 722                status = ap_sm_recv(ap_dev);
 723        else
 724                /* Get the status with TAPQ */
 725                status = ap_test_queue(ap_dev->qid, &info);
 726
 727        switch (status.response_code) {
 728        case AP_RESPONSE_NORMAL:
 729                if (ap_using_interrupts() &&
 730                    ap_queue_enable_interruption(ap_dev,
 731                                                 ap_airq.lsi_ptr) == 0)
 732                        ap_dev->state = AP_STATE_SETIRQ_WAIT;
 733                else
 734                        ap_dev->state = (ap_dev->queue_count > 0) ?
 735                                AP_STATE_WORKING : AP_STATE_IDLE;
 736                return AP_WAIT_AGAIN;
 737        case AP_RESPONSE_BUSY:
 738        case AP_RESPONSE_RESET_IN_PROGRESS:
 739                return AP_WAIT_TIMEOUT;
 740        case AP_RESPONSE_Q_NOT_AVAIL:
 741        case AP_RESPONSE_DECONFIGURED:
 742        case AP_RESPONSE_CHECKSTOPPED:
 743        default:
 744                ap_dev->state = AP_STATE_BORKED;
 745                return AP_WAIT_NONE;
 746        }
 747}
 748
 749/**
 750 * ap_sm_setirq_wait(): Test queue for completion of the irq enablement
 751 * @ap_dev: pointer to the AP device
 752 *
 753 * Returns AP_POLL_IMMEDIATELY, AP_POLL_AFTER_TIMEROUT or 0.
 754 */
 755static enum ap_wait ap_sm_setirq_wait(struct ap_device *ap_dev)
 756{
 757        struct ap_queue_status status;
 758        unsigned long info;
 759
 760        if (ap_dev->queue_count > 0)
 761                /* Try to read a completed message and get the status */
 762                status = ap_sm_recv(ap_dev);
 763        else
 764                /* Get the status with TAPQ */
 765                status = ap_test_queue(ap_dev->qid, &info);
 766
 767        if (status.int_enabled == 1) {
 768                /* Irqs are now enabled */
 769                ap_dev->interrupt = AP_INTR_ENABLED;
 770                ap_dev->state = (ap_dev->queue_count > 0) ?
 771                        AP_STATE_WORKING : AP_STATE_IDLE;
 772        }
 773
 774        switch (status.response_code) {
 775        case AP_RESPONSE_NORMAL:
 776                if (ap_dev->queue_count > 0)
 777                        return AP_WAIT_AGAIN;
 778                /* fallthrough */
 779        case AP_RESPONSE_NO_PENDING_REPLY:
 780                return AP_WAIT_TIMEOUT;
 781        default:
 782                ap_dev->state = AP_STATE_BORKED;
 783                return AP_WAIT_NONE;
 784        }
 785}
 786
 787/*
 788 * AP state machine jump table
 789 */
 790ap_func_t *ap_jumptable[NR_AP_STATES][NR_AP_EVENTS] = {
 791        [AP_STATE_RESET_START] = {
 792                [AP_EVENT_POLL] = ap_sm_reset,
 793                [AP_EVENT_TIMEOUT] = ap_sm_nop,
 794        },
 795        [AP_STATE_RESET_WAIT] = {
 796                [AP_EVENT_POLL] = ap_sm_reset_wait,
 797                [AP_EVENT_TIMEOUT] = ap_sm_nop,
 798        },
 799        [AP_STATE_SETIRQ_WAIT] = {
 800                [AP_EVENT_POLL] = ap_sm_setirq_wait,
 801                [AP_EVENT_TIMEOUT] = ap_sm_nop,
 802        },
 803        [AP_STATE_IDLE] = {
 804                [AP_EVENT_POLL] = ap_sm_write,
 805                [AP_EVENT_TIMEOUT] = ap_sm_nop,
 806        },
 807        [AP_STATE_WORKING] = {
 808                [AP_EVENT_POLL] = ap_sm_read_write,
 809                [AP_EVENT_TIMEOUT] = ap_sm_reset,
 810        },
 811        [AP_STATE_QUEUE_FULL] = {
 812                [AP_EVENT_POLL] = ap_sm_read,
 813                [AP_EVENT_TIMEOUT] = ap_sm_reset,
 814        },
 815        [AP_STATE_SUSPEND_WAIT] = {
 816                [AP_EVENT_POLL] = ap_sm_read,
 817                [AP_EVENT_TIMEOUT] = ap_sm_nop,
 818        },
 819        [AP_STATE_BORKED] = {
 820                [AP_EVENT_POLL] = ap_sm_nop,
 821                [AP_EVENT_TIMEOUT] = ap_sm_nop,
 822        },
 823};
 824
 825static inline enum ap_wait ap_sm_event(struct ap_device *ap_dev,
 826                                       enum ap_event event)
 827{
 828        return ap_jumptable[ap_dev->state][event](ap_dev);
 829}
 830
 831static inline enum ap_wait ap_sm_event_loop(struct ap_device *ap_dev,
 832                                            enum ap_event event)
 833{
 834        enum ap_wait wait;
 835
 836        while ((wait = ap_sm_event(ap_dev, event)) == AP_WAIT_AGAIN)
 837                ;
 838        return wait;
 839}
 840
 841/**
 842 * ap_request_timeout(): Handling of request timeouts
 843 * @data: Holds the AP device.
 844 *
 845 * Handles request timeouts.
 846 */
 847static void ap_request_timeout(unsigned long data)
 848{
 849        struct ap_device *ap_dev = (struct ap_device *) data;
 850
 851        if (ap_suspend_flag)
 852                return;
 853        spin_lock_bh(&ap_dev->lock);
 854        ap_sm_wait(ap_sm_event(ap_dev, AP_EVENT_TIMEOUT));
 855        spin_unlock_bh(&ap_dev->lock);
 856}
 857
 858/**
 859 * ap_poll_timeout(): AP receive polling for finished AP requests.
 860 * @unused: Unused pointer.
 861 *
 862 * Schedules the AP tasklet using a high resolution timer.
 863 */
 864static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused)
 865{
 866        if (!ap_suspend_flag)
 867                tasklet_schedule(&ap_tasklet);
 868        return HRTIMER_NORESTART;
 869}
 870
 871/**
 872 * ap_interrupt_handler() - Schedule ap_tasklet on interrupt
 873 * @airq: pointer to adapter interrupt descriptor
 874 */
 875static void ap_interrupt_handler(struct airq_struct *airq)
 876{
 877        inc_irq_stat(IRQIO_APB);
 878        if (!ap_suspend_flag)
 879                tasklet_schedule(&ap_tasklet);
 880}
 881
 882/**
 883 * ap_tasklet_fn(): Tasklet to poll all AP devices.
 884 * @dummy: Unused variable
 885 *
 886 * Poll all AP devices on the bus.
 887 */
 888static void ap_tasklet_fn(unsigned long dummy)
 889{
 890        struct ap_device *ap_dev;
 891        enum ap_wait wait = AP_WAIT_NONE;
 892
 893        /* Reset the indicator if interrupts are used. Thus new interrupts can
 894         * be received. Doing it in the beginning of the tasklet is therefor
 895         * important that no requests on any AP get lost.
 896         */
 897        if (ap_using_interrupts())
 898                xchg(ap_airq.lsi_ptr, 0);
 899
 900        spin_lock(&ap_device_list_lock);
 901        list_for_each_entry(ap_dev, &ap_device_list, list) {
 902                spin_lock_bh(&ap_dev->lock);
 903                wait = min(wait, ap_sm_event_loop(ap_dev, AP_EVENT_POLL));
 904                spin_unlock_bh(&ap_dev->lock);
 905        }
 906        spin_unlock(&ap_device_list_lock);
 907        ap_sm_wait(wait);
 908}
 909
 910/**
 911 * ap_poll_thread(): Thread that polls for finished requests.
 912 * @data: Unused pointer
 913 *
 914 * AP bus poll thread. The purpose of this thread is to poll for
 915 * finished requests in a loop if there is a "free" cpu - that is
 916 * a cpu that doesn't have anything better to do. The polling stops
 917 * as soon as there is another task or if all messages have been
 918 * delivered.
 919 */
 920static int ap_poll_thread(void *data)
 921{
 922        DECLARE_WAITQUEUE(wait, current);
 923
 924        set_user_nice(current, MAX_NICE);
 925        set_freezable();
 926        while (!kthread_should_stop()) {
 927                add_wait_queue(&ap_poll_wait, &wait);
 928                set_current_state(TASK_INTERRUPTIBLE);
 929                if (ap_suspend_flag ||
 930                    atomic_read(&ap_poll_requests) <= 0) {
 931                        schedule();
 932                        try_to_freeze();
 933                }
 934                set_current_state(TASK_RUNNING);
 935                remove_wait_queue(&ap_poll_wait, &wait);
 936                if (need_resched()) {
 937                        schedule();
 938                        try_to_freeze();
 939                        continue;
 940                }
 941                ap_tasklet_fn(0);
 942        } while (!kthread_should_stop());
 943        return 0;
 944}
 945
 946static int ap_poll_thread_start(void)
 947{
 948        int rc;
 949
 950        if (ap_using_interrupts() || ap_poll_kthread)
 951                return 0;
 952        mutex_lock(&ap_poll_thread_mutex);
 953        ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll");
 954        rc = PTR_RET(ap_poll_kthread);
 955        if (rc)
 956                ap_poll_kthread = NULL;
 957        mutex_unlock(&ap_poll_thread_mutex);
 958        return rc;
 959}
 960
 961static void ap_poll_thread_stop(void)
 962{
 963        if (!ap_poll_kthread)
 964                return;
 965        mutex_lock(&ap_poll_thread_mutex);
 966        kthread_stop(ap_poll_kthread);
 967        ap_poll_kthread = NULL;
 968        mutex_unlock(&ap_poll_thread_mutex);
 969}
 970
 971/**
 972 * ap_queue_message(): Queue a request to an AP device.
 973 * @ap_dev: The AP device to queue the message to
 974 * @ap_msg: The message that is to be added
 975 */
 976void ap_queue_message(struct ap_device *ap_dev, struct ap_message *ap_msg)
 977{
 978        /* For asynchronous message handling a valid receive-callback
 979         * is required. */
 980        BUG_ON(!ap_msg->receive);
 981
 982        spin_lock_bh(&ap_dev->lock);
 983        /* Queue the message. */
 984        list_add_tail(&ap_msg->list, &ap_dev->requestq);
 985        ap_dev->requestq_count++;
 986        ap_dev->total_request_count++;
 987        /* Send/receive as many request from the queue as possible. */
 988        ap_sm_wait(ap_sm_event_loop(ap_dev, AP_EVENT_POLL));
 989        spin_unlock_bh(&ap_dev->lock);
 990}
 991EXPORT_SYMBOL(ap_queue_message);
 992
 993/**
 994 * ap_cancel_message(): Cancel a crypto request.
 995 * @ap_dev: The AP device that has the message queued
 996 * @ap_msg: The message that is to be removed
 997 *
 998 * Cancel a crypto request. This is done by removing the request
 999 * from the device pending or request queue. Note that the
1000 * request stays on the AP queue. When it finishes the message
1001 * reply will be discarded because the psmid can't be found.
1002 */
1003void ap_cancel_message(struct ap_device *ap_dev, struct ap_message *ap_msg)
1004{
1005        struct ap_message *tmp;
1006
1007        spin_lock_bh(&ap_dev->lock);
1008        if (!list_empty(&ap_msg->list)) {
1009                list_for_each_entry(tmp, &ap_dev->pendingq, list)
1010                        if (tmp->psmid == ap_msg->psmid) {
1011                                ap_dev->pendingq_count--;
1012                                goto found;
1013                        }
1014                ap_dev->requestq_count--;
1015found:
1016                list_del_init(&ap_msg->list);
1017        }
1018        spin_unlock_bh(&ap_dev->lock);
1019}
1020EXPORT_SYMBOL(ap_cancel_message);
1021
1022/*
1023 * AP device related attributes.
1024 */
1025static ssize_t ap_hwtype_show(struct device *dev,
1026                              struct device_attribute *attr, char *buf)
1027{
1028        struct ap_device *ap_dev = to_ap_dev(dev);
1029        return snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->device_type);
1030}
1031
1032static DEVICE_ATTR(hwtype, 0444, ap_hwtype_show, NULL);
1033
1034static ssize_t ap_raw_hwtype_show(struct device *dev,
1035                              struct device_attribute *attr, char *buf)
1036{
1037        struct ap_device *ap_dev = to_ap_dev(dev);
1038
1039        return snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->raw_hwtype);
1040}
1041
1042static DEVICE_ATTR(raw_hwtype, 0444, ap_raw_hwtype_show, NULL);
1043
1044static ssize_t ap_depth_show(struct device *dev, struct device_attribute *attr,
1045                             char *buf)
1046{
1047        struct ap_device *ap_dev = to_ap_dev(dev);
1048        return snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->queue_depth);
1049}
1050
1051static DEVICE_ATTR(depth, 0444, ap_depth_show, NULL);
1052static ssize_t ap_request_count_show(struct device *dev,
1053                                     struct device_attribute *attr,
1054                                     char *buf)
1055{
1056        struct ap_device *ap_dev = to_ap_dev(dev);
1057        int rc;
1058
1059        spin_lock_bh(&ap_dev->lock);
1060        rc = snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->total_request_count);
1061        spin_unlock_bh(&ap_dev->lock);
1062        return rc;
1063}
1064
1065static DEVICE_ATTR(request_count, 0444, ap_request_count_show, NULL);
1066
1067static ssize_t ap_requestq_count_show(struct device *dev,
1068                                      struct device_attribute *attr, char *buf)
1069{
1070        struct ap_device *ap_dev = to_ap_dev(dev);
1071        int rc;
1072
1073        spin_lock_bh(&ap_dev->lock);
1074        rc = snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->requestq_count);
1075        spin_unlock_bh(&ap_dev->lock);
1076        return rc;
1077}
1078
1079static DEVICE_ATTR(requestq_count, 0444, ap_requestq_count_show, NULL);
1080
1081static ssize_t ap_pendingq_count_show(struct device *dev,
1082                                      struct device_attribute *attr, char *buf)
1083{
1084        struct ap_device *ap_dev = to_ap_dev(dev);
1085        int rc;
1086
1087        spin_lock_bh(&ap_dev->lock);
1088        rc = snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->pendingq_count);
1089        spin_unlock_bh(&ap_dev->lock);
1090        return rc;
1091}
1092
1093static DEVICE_ATTR(pendingq_count, 0444, ap_pendingq_count_show, NULL);
1094
1095static ssize_t ap_reset_show(struct device *dev,
1096                                      struct device_attribute *attr, char *buf)
1097{
1098        struct ap_device *ap_dev = to_ap_dev(dev);
1099        int rc = 0;
1100
1101        spin_lock_bh(&ap_dev->lock);
1102        switch (ap_dev->state) {
1103        case AP_STATE_RESET_START:
1104        case AP_STATE_RESET_WAIT:
1105                rc = snprintf(buf, PAGE_SIZE, "Reset in progress.\n");
1106                break;
1107        case AP_STATE_WORKING:
1108        case AP_STATE_QUEUE_FULL:
1109                rc = snprintf(buf, PAGE_SIZE, "Reset Timer armed.\n");
1110                break;
1111        default:
1112                rc = snprintf(buf, PAGE_SIZE, "No Reset Timer set.\n");
1113        }
1114        spin_unlock_bh(&ap_dev->lock);
1115        return rc;
1116}
1117
1118static DEVICE_ATTR(reset, 0444, ap_reset_show, NULL);
1119
1120static ssize_t ap_interrupt_show(struct device *dev,
1121                                      struct device_attribute *attr, char *buf)
1122{
1123        struct ap_device *ap_dev = to_ap_dev(dev);
1124        int rc = 0;
1125
1126        spin_lock_bh(&ap_dev->lock);
1127        if (ap_dev->state == AP_STATE_SETIRQ_WAIT)
1128                rc = snprintf(buf, PAGE_SIZE, "Enable Interrupt pending.\n");
1129        else if (ap_dev->interrupt == AP_INTR_ENABLED)
1130                rc = snprintf(buf, PAGE_SIZE, "Interrupts enabled.\n");
1131        else
1132                rc = snprintf(buf, PAGE_SIZE, "Interrupts disabled.\n");
1133        spin_unlock_bh(&ap_dev->lock);
1134        return rc;
1135}
1136
1137static DEVICE_ATTR(interrupt, 0444, ap_interrupt_show, NULL);
1138
1139static ssize_t ap_modalias_show(struct device *dev,
1140                                struct device_attribute *attr, char *buf)
1141{
1142        return sprintf(buf, "ap:t%02X\n", to_ap_dev(dev)->device_type);
1143}
1144
1145static DEVICE_ATTR(modalias, 0444, ap_modalias_show, NULL);
1146
1147static ssize_t ap_functions_show(struct device *dev,
1148                                 struct device_attribute *attr, char *buf)
1149{
1150        struct ap_device *ap_dev = to_ap_dev(dev);
1151        return snprintf(buf, PAGE_SIZE, "0x%08X\n", ap_dev->functions);
1152}
1153
1154static DEVICE_ATTR(ap_functions, 0444, ap_functions_show, NULL);
1155
1156static struct attribute *ap_dev_attrs[] = {
1157        &dev_attr_hwtype.attr,
1158        &dev_attr_raw_hwtype.attr,
1159        &dev_attr_depth.attr,
1160        &dev_attr_request_count.attr,
1161        &dev_attr_requestq_count.attr,
1162        &dev_attr_pendingq_count.attr,
1163        &dev_attr_reset.attr,
1164        &dev_attr_interrupt.attr,
1165        &dev_attr_modalias.attr,
1166        &dev_attr_ap_functions.attr,
1167        NULL
1168};
1169static struct attribute_group ap_dev_attr_group = {
1170        .attrs = ap_dev_attrs
1171};
1172
1173/**
1174 * ap_bus_match()
1175 * @dev: Pointer to device
1176 * @drv: Pointer to device_driver
1177 *
1178 * AP bus driver registration/unregistration.
1179 */
1180static int ap_bus_match(struct device *dev, struct device_driver *drv)
1181{
1182        struct ap_device *ap_dev = to_ap_dev(dev);
1183        struct ap_driver *ap_drv = to_ap_drv(drv);
1184        struct ap_device_id *id;
1185
1186        /*
1187         * Compare device type of the device with the list of
1188         * supported types of the device_driver.
1189         */
1190        for (id = ap_drv->ids; id->match_flags; id++) {
1191                if ((id->match_flags & AP_DEVICE_ID_MATCH_DEVICE_TYPE) &&
1192                    (id->dev_type != ap_dev->device_type))
1193                        continue;
1194                return 1;
1195        }
1196        return 0;
1197}
1198
1199/**
1200 * ap_uevent(): Uevent function for AP devices.
1201 * @dev: Pointer to device
1202 * @env: Pointer to kobj_uevent_env
1203 *
1204 * It sets up a single environment variable DEV_TYPE which contains the
1205 * hardware device type.
1206 */
1207static int ap_uevent (struct device *dev, struct kobj_uevent_env *env)
1208{
1209        struct ap_device *ap_dev = to_ap_dev(dev);
1210        int retval = 0;
1211
1212        if (!ap_dev)
1213                return -ENODEV;
1214
1215        /* Set up DEV_TYPE environment variable. */
1216        retval = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type);
1217        if (retval)
1218                return retval;
1219
1220        /* Add MODALIAS= */
1221        retval = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type);
1222
1223        return retval;
1224}
1225
1226static int ap_dev_suspend(struct device *dev, pm_message_t state)
1227{
1228        struct ap_device *ap_dev = to_ap_dev(dev);
1229
1230        /* Poll on the device until all requests are finished. */
1231        spin_lock_bh(&ap_dev->lock);
1232        ap_dev->state = AP_STATE_SUSPEND_WAIT;
1233        while (ap_sm_event(ap_dev, AP_EVENT_POLL) != AP_WAIT_NONE)
1234                ;
1235        ap_dev->state = AP_STATE_BORKED;
1236        spin_unlock_bh(&ap_dev->lock);
1237        return 0;
1238}
1239
1240static int ap_dev_resume(struct device *dev)
1241{
1242        return 0;
1243}
1244
1245static void ap_bus_suspend(void)
1246{
1247        ap_suspend_flag = 1;
1248        /*
1249         * Disable scanning for devices, thus we do not want to scan
1250         * for them after removing.
1251         */
1252        flush_work(&ap_scan_work);
1253        tasklet_disable(&ap_tasklet);
1254}
1255
1256static int __ap_devices_unregister(struct device *dev, void *dummy)
1257{
1258        device_unregister(dev);
1259        return 0;
1260}
1261
1262static void ap_bus_resume(void)
1263{
1264        int rc;
1265
1266        /* Unconditionally remove all AP devices */
1267        bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_devices_unregister);
1268        /* Reset thin interrupt setting */
1269        if (ap_interrupts_available() && !ap_using_interrupts()) {
1270                rc = register_adapter_interrupt(&ap_airq);
1271                ap_airq_flag = (rc == 0);
1272        }
1273        if (!ap_interrupts_available() && ap_using_interrupts()) {
1274                unregister_adapter_interrupt(&ap_airq);
1275                ap_airq_flag = 0;
1276        }
1277        /* Reset domain */
1278        if (!user_set_domain)
1279                ap_domain_index = -1;
1280        /* Get things going again */
1281        ap_suspend_flag = 0;
1282        if (ap_airq_flag)
1283                xchg(ap_airq.lsi_ptr, 0);
1284        tasklet_enable(&ap_tasklet);
1285        queue_work(system_long_wq, &ap_scan_work);
1286}
1287
1288static int ap_power_event(struct notifier_block *this, unsigned long event,
1289                          void *ptr)
1290{
1291        switch (event) {
1292        case PM_HIBERNATION_PREPARE:
1293        case PM_SUSPEND_PREPARE:
1294                ap_bus_suspend();
1295                break;
1296        case PM_POST_HIBERNATION:
1297        case PM_POST_SUSPEND:
1298                ap_bus_resume();
1299                break;
1300        default:
1301                break;
1302        }
1303        return NOTIFY_DONE;
1304}
1305static struct notifier_block ap_power_notifier = {
1306        .notifier_call = ap_power_event,
1307};
1308
1309static struct bus_type ap_bus_type = {
1310        .name = "ap",
1311        .match = &ap_bus_match,
1312        .uevent = &ap_uevent,
1313        .suspend = ap_dev_suspend,
1314        .resume = ap_dev_resume,
1315};
1316
1317static int ap_device_probe(struct device *dev)
1318{
1319        struct ap_device *ap_dev = to_ap_dev(dev);
1320        struct ap_driver *ap_drv = to_ap_drv(dev->driver);
1321        int rc;
1322
1323        ap_dev->drv = ap_drv;
1324        rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV;
1325        if (rc)
1326                ap_dev->drv = NULL;
1327        return rc;
1328}
1329
1330/**
1331 * __ap_flush_queue(): Flush requests.
1332 * @ap_dev: Pointer to the AP device
1333 *
1334 * Flush all requests from the request/pending queue of an AP device.
1335 */
1336static void __ap_flush_queue(struct ap_device *ap_dev)
1337{
1338        struct ap_message *ap_msg, *next;
1339
1340        list_for_each_entry_safe(ap_msg, next, &ap_dev->pendingq, list) {
1341                list_del_init(&ap_msg->list);
1342                ap_dev->pendingq_count--;
1343                ap_msg->rc = -EAGAIN;
1344                ap_msg->receive(ap_dev, ap_msg, NULL);
1345        }
1346        list_for_each_entry_safe(ap_msg, next, &ap_dev->requestq, list) {
1347                list_del_init(&ap_msg->list);
1348                ap_dev->requestq_count--;
1349                ap_msg->rc = -EAGAIN;
1350                ap_msg->receive(ap_dev, ap_msg, NULL);
1351        }
1352}
1353
1354void ap_flush_queue(struct ap_device *ap_dev)
1355{
1356        spin_lock_bh(&ap_dev->lock);
1357        __ap_flush_queue(ap_dev);
1358        spin_unlock_bh(&ap_dev->lock);
1359}
1360EXPORT_SYMBOL(ap_flush_queue);
1361
1362static int ap_device_remove(struct device *dev)
1363{
1364        struct ap_device *ap_dev = to_ap_dev(dev);
1365        struct ap_driver *ap_drv = ap_dev->drv;
1366
1367        ap_flush_queue(ap_dev);
1368        del_timer_sync(&ap_dev->timeout);
1369        spin_lock_bh(&ap_device_list_lock);
1370        list_del_init(&ap_dev->list);
1371        spin_unlock_bh(&ap_device_list_lock);
1372        if (ap_drv->remove)
1373                ap_drv->remove(ap_dev);
1374        spin_lock_bh(&ap_dev->lock);
1375        atomic_sub(ap_dev->queue_count, &ap_poll_requests);
1376        spin_unlock_bh(&ap_dev->lock);
1377        return 0;
1378}
1379
1380static void ap_device_release(struct device *dev)
1381{
1382        kfree(to_ap_dev(dev));
1383}
1384
1385int ap_driver_register(struct ap_driver *ap_drv, struct module *owner,
1386                       char *name)
1387{
1388        struct device_driver *drv = &ap_drv->driver;
1389
1390        if (!initialised)
1391                return -ENODEV;
1392
1393        drv->bus = &ap_bus_type;
1394        drv->probe = ap_device_probe;
1395        drv->remove = ap_device_remove;
1396        drv->owner = owner;
1397        drv->name = name;
1398        return driver_register(drv);
1399}
1400EXPORT_SYMBOL(ap_driver_register);
1401
1402void ap_driver_unregister(struct ap_driver *ap_drv)
1403{
1404        driver_unregister(&ap_drv->driver);
1405}
1406EXPORT_SYMBOL(ap_driver_unregister);
1407
1408void ap_bus_force_rescan(void)
1409{
1410        if (ap_suspend_flag)
1411                return;
1412        /* processing a asynchronous bus rescan */
1413        del_timer(&ap_config_timer);
1414        queue_work(system_long_wq, &ap_scan_work);
1415        flush_work(&ap_scan_work);
1416}
1417EXPORT_SYMBOL(ap_bus_force_rescan);
1418
1419/*
1420 * AP bus attributes.
1421 */
1422static ssize_t ap_domain_show(struct bus_type *bus, char *buf)
1423{
1424        return snprintf(buf, PAGE_SIZE, "%d\n", ap_domain_index);
1425}
1426
1427static BUS_ATTR(ap_domain, 0444, ap_domain_show, NULL);
1428
1429static ssize_t ap_control_domain_mask_show(struct bus_type *bus, char *buf)
1430{
1431        if (!ap_configuration)  /* QCI not supported */
1432                return snprintf(buf, PAGE_SIZE, "not supported\n");
1433        if (!test_facility(76))
1434                /* format 0 - 16 bit domain field */
1435                return snprintf(buf, PAGE_SIZE, "%08x%08x\n",
1436                                ap_configuration->adm[0],
1437                                ap_configuration->adm[1]);
1438        /* format 1 - 256 bit domain field */
1439        return snprintf(buf, PAGE_SIZE,
1440                        "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1441                        ap_configuration->adm[0], ap_configuration->adm[1],
1442                        ap_configuration->adm[2], ap_configuration->adm[3],
1443                        ap_configuration->adm[4], ap_configuration->adm[5],
1444                        ap_configuration->adm[6], ap_configuration->adm[7]);
1445}
1446
1447static BUS_ATTR(ap_control_domain_mask, 0444,
1448                ap_control_domain_mask_show, NULL);
1449
1450static ssize_t ap_config_time_show(struct bus_type *bus, char *buf)
1451{
1452        return snprintf(buf, PAGE_SIZE, "%d\n", ap_config_time);
1453}
1454
1455static ssize_t ap_interrupts_show(struct bus_type *bus, char *buf)
1456{
1457        return snprintf(buf, PAGE_SIZE, "%d\n",
1458                        ap_using_interrupts() ? 1 : 0);
1459}
1460
1461static BUS_ATTR(ap_interrupts, 0444, ap_interrupts_show, NULL);
1462
1463static ssize_t ap_config_time_store(struct bus_type *bus,
1464                                    const char *buf, size_t count)
1465{
1466        int time;
1467
1468        if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120)
1469                return -EINVAL;
1470        ap_config_time = time;
1471        mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
1472        return count;
1473}
1474
1475static BUS_ATTR(config_time, 0644, ap_config_time_show, ap_config_time_store);
1476
1477static ssize_t ap_poll_thread_show(struct bus_type *bus, char *buf)
1478{
1479        return snprintf(buf, PAGE_SIZE, "%d\n", ap_poll_kthread ? 1 : 0);
1480}
1481
1482static ssize_t ap_poll_thread_store(struct bus_type *bus,
1483                                    const char *buf, size_t count)
1484{
1485        int flag, rc;
1486
1487        if (sscanf(buf, "%d\n", &flag) != 1)
1488                return -EINVAL;
1489        if (flag) {
1490                rc = ap_poll_thread_start();
1491                if (rc)
1492                        count = rc;
1493        } else
1494                ap_poll_thread_stop();
1495        return count;
1496}
1497
1498static BUS_ATTR(poll_thread, 0644, ap_poll_thread_show, ap_poll_thread_store);
1499
1500static ssize_t poll_timeout_show(struct bus_type *bus, char *buf)
1501{
1502        return snprintf(buf, PAGE_SIZE, "%llu\n", poll_timeout);
1503}
1504
1505static ssize_t poll_timeout_store(struct bus_type *bus, const char *buf,
1506                                  size_t count)
1507{
1508        unsigned long long time;
1509        ktime_t hr_time;
1510
1511        /* 120 seconds = maximum poll interval */
1512        if (sscanf(buf, "%llu\n", &time) != 1 || time < 1 ||
1513            time > 120000000000ULL)
1514                return -EINVAL;
1515        poll_timeout = time;
1516        hr_time = ktime_set(0, poll_timeout);
1517
1518        spin_lock_bh(&ap_poll_timer_lock);
1519        hrtimer_cancel(&ap_poll_timer);
1520        hrtimer_set_expires(&ap_poll_timer, hr_time);
1521        hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS);
1522        spin_unlock_bh(&ap_poll_timer_lock);
1523
1524        return count;
1525}
1526
1527static BUS_ATTR(poll_timeout, 0644, poll_timeout_show, poll_timeout_store);
1528
1529static ssize_t ap_max_domain_id_show(struct bus_type *bus, char *buf)
1530{
1531        int max_domain_id;
1532
1533        if (ap_configuration)
1534                max_domain_id = ap_max_domain_id ? : -1;
1535        else
1536                max_domain_id = 15;
1537        return snprintf(buf, PAGE_SIZE, "%d\n", max_domain_id);
1538}
1539
1540static BUS_ATTR(ap_max_domain_id, 0444, ap_max_domain_id_show, NULL);
1541
1542static struct bus_attribute *const ap_bus_attrs[] = {
1543        &bus_attr_ap_domain,
1544        &bus_attr_ap_control_domain_mask,
1545        &bus_attr_config_time,
1546        &bus_attr_poll_thread,
1547        &bus_attr_ap_interrupts,
1548        &bus_attr_poll_timeout,
1549        &bus_attr_ap_max_domain_id,
1550        NULL,
1551};
1552
1553/**
1554 * ap_select_domain(): Select an AP domain.
1555 *
1556 * Pick one of the 16 AP domains.
1557 */
1558static int ap_select_domain(void)
1559{
1560        int count, max_count, best_domain;
1561        struct ap_queue_status status;
1562        int i, j;
1563
1564        /*
1565         * We want to use a single domain. Either the one specified with
1566         * the "domain=" parameter or the domain with the maximum number
1567         * of devices.
1568         */
1569        if (ap_domain_index >= 0)
1570                /* Domain has already been selected. */
1571                return 0;
1572        best_domain = -1;
1573        max_count = 0;
1574        for (i = 0; i < AP_DOMAINS; i++) {
1575                if (!ap_test_config_domain(i))
1576                        continue;
1577                count = 0;
1578                for (j = 0; j < AP_DEVICES; j++) {
1579                        if (!ap_test_config_card_id(j))
1580                                continue;
1581                        status = ap_test_queue(AP_MKQID(j, i), NULL);
1582                        if (status.response_code != AP_RESPONSE_NORMAL)
1583                                continue;
1584                        count++;
1585                }
1586                if (count > max_count) {
1587                        max_count = count;
1588                        best_domain = i;
1589                }
1590        }
1591        if (best_domain >= 0){
1592                ap_domain_index = best_domain;
1593                return 0;
1594        }
1595        return -ENODEV;
1596}
1597
1598/**
1599 * __ap_scan_bus(): Scan the AP bus.
1600 * @dev: Pointer to device
1601 * @data: Pointer to data
1602 *
1603 * Scan the AP bus for new devices.
1604 */
1605static int __ap_scan_bus(struct device *dev, void *data)
1606{
1607        return to_ap_dev(dev)->qid == (ap_qid_t)(unsigned long) data;
1608}
1609
1610static void ap_scan_bus(struct work_struct *unused)
1611{
1612        struct ap_device *ap_dev;
1613        struct device *dev;
1614        ap_qid_t qid;
1615        int queue_depth = 0, device_type = 0;
1616        unsigned int device_functions = 0;
1617        int rc, i, borked;
1618
1619        ap_query_configuration();
1620        if (ap_select_domain() != 0)
1621                goto out;
1622
1623        for (i = 0; i < AP_DEVICES; i++) {
1624                qid = AP_MKQID(i, ap_domain_index);
1625                dev = bus_find_device(&ap_bus_type, NULL,
1626                                      (void *)(unsigned long)qid,
1627                                      __ap_scan_bus);
1628                rc = ap_query_queue(qid, &queue_depth, &device_type,
1629                                    &device_functions);
1630                if (dev) {
1631                        ap_dev = to_ap_dev(dev);
1632                        spin_lock_bh(&ap_dev->lock);
1633                        if (rc == -ENODEV)
1634                                ap_dev->state = AP_STATE_BORKED;
1635                        borked = ap_dev->state == AP_STATE_BORKED;
1636                        spin_unlock_bh(&ap_dev->lock);
1637                        if (borked)     /* Remove broken device */
1638                                device_unregister(dev);
1639                        put_device(dev);
1640                        if (!borked)
1641                                continue;
1642                }
1643                if (rc)
1644                        continue;
1645                ap_dev = kzalloc(sizeof(*ap_dev), GFP_KERNEL);
1646                if (!ap_dev)
1647                        break;
1648                ap_dev->qid = qid;
1649                ap_dev->state = AP_STATE_RESET_START;
1650                ap_dev->interrupt = AP_INTR_DISABLED;
1651                ap_dev->queue_depth = queue_depth;
1652                ap_dev->raw_hwtype = device_type;
1653                ap_dev->device_type = device_type;
1654                ap_dev->functions = device_functions;
1655                spin_lock_init(&ap_dev->lock);
1656                INIT_LIST_HEAD(&ap_dev->pendingq);
1657                INIT_LIST_HEAD(&ap_dev->requestq);
1658                INIT_LIST_HEAD(&ap_dev->list);
1659                setup_timer(&ap_dev->timeout, ap_request_timeout,
1660                            (unsigned long) ap_dev);
1661
1662                ap_dev->device.bus = &ap_bus_type;
1663                ap_dev->device.parent = ap_root_device;
1664                rc = dev_set_name(&ap_dev->device, "card%02x",
1665                                  AP_QID_DEVICE(ap_dev->qid));
1666                if (rc) {
1667                        kfree(ap_dev);
1668                        continue;
1669                }
1670                /* Add to list of devices */
1671                spin_lock_bh(&ap_device_list_lock);
1672                list_add(&ap_dev->list, &ap_device_list);
1673                spin_unlock_bh(&ap_device_list_lock);
1674                /* Start with a device reset */
1675                spin_lock_bh(&ap_dev->lock);
1676                ap_sm_wait(ap_sm_event(ap_dev, AP_EVENT_POLL));
1677                spin_unlock_bh(&ap_dev->lock);
1678                /* Register device */
1679                ap_dev->device.release = ap_device_release;
1680                rc = device_register(&ap_dev->device);
1681                if (rc) {
1682                        spin_lock_bh(&ap_dev->lock);
1683                        list_del_init(&ap_dev->list);
1684                        spin_unlock_bh(&ap_dev->lock);
1685                        put_device(&ap_dev->device);
1686                        continue;
1687                }
1688                /* Add device attributes. */
1689                rc = sysfs_create_group(&ap_dev->device.kobj,
1690                                        &ap_dev_attr_group);
1691                if (rc) {
1692                        device_unregister(&ap_dev->device);
1693                        continue;
1694                }
1695        }
1696out:
1697        mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
1698}
1699
1700static void ap_config_timeout(unsigned long ptr)
1701{
1702        if (ap_suspend_flag)
1703                return;
1704        queue_work(system_long_wq, &ap_scan_work);
1705}
1706
1707static void ap_reset_domain(void)
1708{
1709        int i;
1710
1711        if (ap_domain_index == -1 || !ap_test_config_domain(ap_domain_index))
1712                return;
1713        for (i = 0; i < AP_DEVICES; i++)
1714                ap_reset_queue(AP_MKQID(i, ap_domain_index));
1715}
1716
1717static void ap_reset_all(void)
1718{
1719        int i, j;
1720
1721        for (i = 0; i < AP_DOMAINS; i++) {
1722                if (!ap_test_config_domain(i))
1723                        continue;
1724                for (j = 0; j < AP_DEVICES; j++) {
1725                        if (!ap_test_config_card_id(j))
1726                                continue;
1727                        ap_reset_queue(AP_MKQID(j, i));
1728                }
1729        }
1730}
1731
1732static struct reset_call ap_reset_call = {
1733        .fn = ap_reset_all,
1734};
1735
1736/**
1737 * ap_module_init(): The module initialization code.
1738 *
1739 * Initializes the module.
1740 */
1741int __init ap_module_init(void)
1742{
1743        int max_domain_id;
1744        int rc, i;
1745
1746        if (ap_instructions_available() != 0) {
1747                pr_warn("The hardware system does not support AP instructions\n");
1748                return -ENODEV;
1749        }
1750
1751        /* Get AP configuration data if available */
1752        ap_init_configuration();
1753
1754        if (ap_configuration)
1755                max_domain_id = ap_max_domain_id ? : (AP_DOMAINS - 1);
1756        else
1757                max_domain_id = 15;
1758        if (ap_domain_index < -1 || ap_domain_index > max_domain_id) {
1759                pr_warn("%d is not a valid cryptographic domain\n",
1760                        ap_domain_index);
1761                return -EINVAL;
1762        }
1763        /* In resume callback we need to know if the user had set the domain.
1764         * If so, we can not just reset it.
1765         */
1766        if (ap_domain_index >= 0)
1767                user_set_domain = 1;
1768
1769        if (ap_interrupts_available()) {
1770                rc = register_adapter_interrupt(&ap_airq);
1771                ap_airq_flag = (rc == 0);
1772        }
1773
1774        register_reset_call(&ap_reset_call);
1775
1776        /* Create /sys/bus/ap. */
1777        rc = bus_register(&ap_bus_type);
1778        if (rc)
1779                goto out;
1780        for (i = 0; ap_bus_attrs[i]; i++) {
1781                rc = bus_create_file(&ap_bus_type, ap_bus_attrs[i]);
1782                if (rc)
1783                        goto out_bus;
1784        }
1785
1786        /* Create /sys/devices/ap. */
1787        ap_root_device = root_device_register("ap");
1788        rc = PTR_RET(ap_root_device);
1789        if (rc)
1790                goto out_bus;
1791
1792        /* Setup the AP bus rescan timer. */
1793        setup_timer(&ap_config_timer, ap_config_timeout, 0);
1794
1795        /*
1796         * Setup the high resultion poll timer.
1797         * If we are running under z/VM adjust polling to z/VM polling rate.
1798         */
1799        if (MACHINE_IS_VM)
1800                poll_timeout = 1500000;
1801        spin_lock_init(&ap_poll_timer_lock);
1802        hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1803        ap_poll_timer.function = ap_poll_timeout;
1804
1805        /* Start the low priority AP bus poll thread. */
1806        if (ap_thread_flag) {
1807                rc = ap_poll_thread_start();
1808                if (rc)
1809                        goto out_work;
1810        }
1811
1812        rc = register_pm_notifier(&ap_power_notifier);
1813        if (rc)
1814                goto out_pm;
1815
1816        queue_work(system_long_wq, &ap_scan_work);
1817        initialised = true;
1818
1819        return 0;
1820
1821out_pm:
1822        ap_poll_thread_stop();
1823out_work:
1824        hrtimer_cancel(&ap_poll_timer);
1825        root_device_unregister(ap_root_device);
1826out_bus:
1827        while (i--)
1828                bus_remove_file(&ap_bus_type, ap_bus_attrs[i]);
1829        bus_unregister(&ap_bus_type);
1830out:
1831        unregister_reset_call(&ap_reset_call);
1832        if (ap_using_interrupts())
1833                unregister_adapter_interrupt(&ap_airq);
1834        kfree(ap_configuration);
1835        return rc;
1836}
1837
1838/**
1839 * ap_modules_exit(): The module termination code
1840 *
1841 * Terminates the module.
1842 */
1843void ap_module_exit(void)
1844{
1845        int i;
1846
1847        initialised = false;
1848        ap_reset_domain();
1849        ap_poll_thread_stop();
1850        del_timer_sync(&ap_config_timer);
1851        hrtimer_cancel(&ap_poll_timer);
1852        tasklet_kill(&ap_tasklet);
1853        bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_devices_unregister);
1854        for (i = 0; ap_bus_attrs[i]; i++)
1855                bus_remove_file(&ap_bus_type, ap_bus_attrs[i]);
1856        unregister_pm_notifier(&ap_power_notifier);
1857        root_device_unregister(ap_root_device);
1858        bus_unregister(&ap_bus_type);
1859        kfree(ap_configuration);
1860        unregister_reset_call(&ap_reset_call);
1861        if (ap_using_interrupts())
1862                unregister_adapter_interrupt(&ap_airq);
1863}
1864
1865module_init(ap_module_init);
1866module_exit(ap_module_exit);
1867